1
|
Hamele CE, Spurrier MA, Leonard RA, Heaton NS. Segmented, Negative-Sense RNA Viruses of Humans: Genetic Systems and Experimental Uses of Reporter Strains. Annu Rev Virol 2023; 10:261-282. [PMID: 37774125 PMCID: PMC10795101 DOI: 10.1146/annurev-virology-111821-120445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Negative-stranded RNA viruses are a large group of viruses that encode their genomes in RNA across multiple segments in an orientation antisense to messenger RNA. Their members infect broad ranges of hosts, and there are a number of notable human pathogens. Here, we examine the development of reverse genetic systems as applied to these virus families, emphasizing conserved approaches illustrated by some of the prominent members that cause significant human disease. We also describe the utility of their genetic systems in the development of reporter strains of the viruses and some biological insights made possible by their use. To conclude the review, we highlight some possible future uses of reporter viruses that not only will increase our basic understanding of how these viruses replicate and cause disease but also could inform the development of new approaches to therapeutically intervene.
Collapse
Affiliation(s)
- Cait E Hamele
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - M Ariel Spurrier
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Rebecca A Leonard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Nicholas S Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
2
|
Wang C, Honce R, Salvatore M, Chow D, Randazzo D, Yang J, Twells NM, Mahal LK, Schultz-Cherry S, Ghedin E. Influenza Defective Interfering Virus Promotes Multiciliated Cell Differentiation and Reduces the Inflammatory Response in Mice. J Virol 2023; 97:e0049323. [PMID: 37255439 PMCID: PMC10308934 DOI: 10.1128/jvi.00493-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
Influenza defective interfering (DI) viruses have long been considered promising antiviral candidates because of their ability to interfere with replication-competent viruses and induce antiviral immunity. However, the mechanisms underlying DI-mediated antiviral immunity have not been extensively explored. Here, we demonstrated the interferon (IFN)-independent protection conferred by the influenza DI virus against homologous virus infection in mice deficient in type I and III IFN signaling. We identified unique host signatures responding to DI coinfection by integrating transcriptional and posttranscriptional regulatory data. DI-treated mice exhibited reduced viral transcription, less intense inflammatory and innate immune responses, and primed multiciliated cell differentiation in their lungs at an early stage of infection, even in the absence of type I or III IFNs. This increased multiciliogenesis could also be detected at the protein level via the immunofluorescence staining of lung tissue from DI-treated mice. Overall, our study provides mechanistic insight into the protection mediated by DIs, implying a unifying theme involving inflammation and multiciliogenesis in maintaining respiratory homeostasis and revealing their IFN-independent antiviral activity. IMPORTANCE During replication, the influenza virus generates genetically defective viruses. These are found in natural infections as part of the virus population within the infected host. Some versions of these defective viruses are thought to have protective effects through their interference with replication-competent viruses and induction of antiviral immunity. To better determine the mechanisms underlying the protective effects of these defective interfering (DI) viruses, we tested a DI that we previously identified in vitro with mice. Mice that were infected with a mix of wild-type influenza and DI viruses had less intense inflammatory and innate immune responses than did mice that were infected with the wild-type virus only, even when type I or III interferons, which are cytokines that play a prominent role in defending the respiratory epithelial barrier, were absent. More interestingly, the DI-infected mice had primed multiciliated cell differentiation in their lungs, indicating the potential promotion of epithelial repair by DIs.
Collapse
Affiliation(s)
- Chang Wang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, USA
| | - Rebekah Honce
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Integrated Program in Biomedical Sciences, Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Mirella Salvatore
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Department of Population Health Sciences, Weill Cornell Medical College, New York, New York, USA
| | - Daniela Chow
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland, USA
| | - Davide Randazzo
- Light Imaging Section, NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| | - Jianjun Yang
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Nicholas M. Twells
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, USA
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Chiem K, Park JG, Morales Vasquez D, Plemper RK, Torrelles JB, Kobie JJ, Walter MR, Ye C, Martinez-Sobrido L. Monitoring SARS-CoV-2 Infection Using a Double Reporter-Expressing Virus. Microbiol Spectr 2022; 10:e0237922. [PMID: 35980204 PMCID: PMC9603146 DOI: 10.1128/spectrum.02379-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/02/2022] [Indexed: 01/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the highly contagious agent responsible for the coronavirus disease 2019 (COVID-19) pandemic. An essential requirement for understanding SARS-CoV-2 biology and the impact of antiviral therapeutics is a robust method to detect the presence of the virus in infected cells or animal models. Despite the development and successful generation of recombinant (r)SARS-CoV-2-expressing fluorescent or luciferase reporter genes, knowledge acquired from their use in in vitro assays and/or in live animals is limited to the properties of the fluorescent or luciferase reporter genes. Herein, for the first time, we engineered a replication-competent rSARS-CoV-2 that expresses both fluorescent (mCherry) and luciferase (Nluc) reporter genes (rSARS-CoV-2/mCherry-Nluc) to overcome limitations associated with the use of a single reporter gene. In cultured cells, rSARS-CoV-2/mCherry-Nluc displayed similar viral fitness as rSARS-CoV-2 expressing single reporter fluorescent and luciferase genes (rSARS-CoV-2/mCherry and rSARS-CoV-2/Nluc, respectively) or wild-type (WT) rSARS-CoV-2, while maintaining comparable expression levels of both reporter genes. In vivo, rSARS-CoV-2/mCherry-Nluc has similar pathogenicity in K18 human angiotensin-converting enzyme 2 (hACE2) transgenic mice than rSARS-CoV-2 expressing individual reporter genes or WT rSARS-CoV-2. Importantly, rSARS-CoV-2/mCherry-Nluc facilitates the assessment of viral infection and transmission in golden Syrian hamsters using in vivo imaging systems (IVIS). Altogether, this study demonstrates the feasibility of using this novel bioreporter-expressing rSARS-CoV-2 for the study of SARS-CoV-2 in vitro and in vivo. IMPORTANCE Despite the availability of vaccines and antivirals, the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to ravage health care institutions worldwide. Previously, we generated replication-competent recombinant (r)SARS-CoV-2 expressing fluorescent or luciferase reporter proteins to track viral infection in vitro and/or in vivo. However, these rSARS-CoV-2 are restricted to express only a single fluorescent or a luciferase reporter gene, limiting or preventing their use in specific in vitro assays and/or in vivo studies. To overcome this limitation, we have engineered a rSARS-CoV-2 expressing both fluorescent (mCherry) and luciferase (Nluc) genes and demonstrated its feasibility to study the biology of SARS-CoV-2 in vitro and/or in vivo, including the identification and characterization of neutralizing antibodies and/or antivirals. Using rodent models, we visualized SARS-CoV-2 infection and transmission through in vivo imaging systems (IVIS).
Collapse
Affiliation(s)
- Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jun-Gyu Park
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | | | - Richard K. Plemper
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | | | - James J. Kobie
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mark R. Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | | |
Collapse
|
4
|
Abstract
INTRODUCTION Influenza virus is a major cause of seasonal epidemics and intermittent pandemics. Despite the current molecular biology and vaccine development, influenza virus infection is a significant burden. Vaccines are considered an essential countermeasure for effective control and prevention of influenza virus infection. Even though current influenza virus vaccines provide efficient protection against seasonal influenza outbreaks, the efficacy of these vaccines is not suitable due to antigenic changes of the viruses. AREAS COVERED This review focuses on different live-attenuated platforms for influenza virus vaccine development and proposes essential considerations for a rational universal influenza virus vaccine design. EXPERT OPINION Despite the recent efforts for universal influenza virus vaccines, there is a lack of broadly reactive antibodies' induction that can confer broad and long-lasting protection. Various strategies using live-attenuated influenza virus vaccines (LAIVs) are investigated to induce broadly reactive, durable, and cross-protective immune responses. LAIVs based on NS segment truncation prevent influenza virus infection and have shown to be effective vaccine candidates among other vaccine platforms. Although many approaches have been used for LAIVs generation, there is still a need to focus on the LAIVs development platforms to generate a universal influenza virus vaccine candidate.
Collapse
Affiliation(s)
- Subhan Ullah
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA.,Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Feng H, Yi R, Wu S, Wang G, Sun R, Lin L, Zhu S, Nie Z, He Y, Wang S, Wang P, Shu J, Wu L. KAP1 Positively Modulates Influenza A Virus Replication by Interacting with PB2 and NS1 Proteins in Human Lung Epithelial Cells. Viruses 2022; 14:v14040689. [PMID: 35458419 PMCID: PMC9025026 DOI: 10.3390/v14040689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza virus only encodes a dozen of viral proteins, which need to use host machinery to complete the viral life cycle. Previously, KAP1 was identified as one host protein that potentially interacts with influenza viral proteins in HEK 293 cells. However, the role of KAP1 in influenza virus replication in human lung alveolar epithelial cells and the underlying mechanism remains unclear. In this study, we first generated KAP1 KO A549 cells by CRISPR/Cas9 gene editing. KAP1 deletion had no significant effect on the cell viability and lack of KAP1 expression significantly reduced the influenza A virus replication. Moreover, we demonstrated that KAP1 is involved in the influenza virus entry, transcription/replication of viral genome, and viral protein synthesis in human lung epithelial cells and confirmed that KAP1 interacted with PB2 and NS1 viral proteins during the virus infection. Further study showed that KAP1 inhibited the production of type I IFN and overexpression of KAP1 significantly reduced the IFN-β production. In addition, influenza virus infection induces the deSUMOylation and enhanced phosphorylation of KAP1. Our results suggested that KAP1 is required for the replication of influenza A virus and mediates the replication of influenza A virus by facilitating viral infectivity and synthesis of viral proteins, enhancing viral polymerase activity, and inhibiting the type I IFN production.
Collapse
Affiliation(s)
- Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
- Correspondence: (H.F.); (J.S.); (L.W.)
| | - Ruonan Yi
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
| | - Shixiang Wu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
| | - Genzhu Wang
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
| | - Ruolin Sun
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
| | - Liming Lin
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
| | - Shunfan Zhu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
| | - Zhenyu Nie
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
| | - Siquan Wang
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
| | - Pei Wang
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (S.W.); (G.W.); (R.S.); (L.L.); (S.Z.); (Z.N.); (Y.H.); (S.W.); (P.W.)
- Correspondence: (H.F.); (J.S.); (L.W.)
| | - Li Wu
- Department of Biology, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Correspondence: (H.F.); (J.S.); (L.W.)
| |
Collapse
|
6
|
Kim JH, Bryant H, Fiedler E, Cao T, Rayner JO. Real-time tracking of bioluminescent influenza A virus infection in mice. Sci Rep 2022; 12:3152. [PMID: 35210462 PMCID: PMC8873407 DOI: 10.1038/s41598-022-06667-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/04/2022] [Indexed: 01/13/2023] Open
Abstract
Despite the availability of vaccines and antiviral therapies, seasonal influenza infections cause 400,000 human deaths on average per year. Low vaccine coverage and the occurrence of drug-resistant viral strains highlight the need for new and improved countermeasures. While influenza A virus (IAV) engineered to express a reporter gene may serve as a valuable tool for real-time tracking of viral infection, reporter gene insertion into IAV typically attenuates viral pathogenicity, hindering its application to research. Here, we demonstrate that lethal or even sublethal doses of bioluminescent IAV carrying the NanoLuc gene in the C-terminus of PB2 can be tracked in real-time in live mice without compromising pathogenicity. Real-time tracking of this bioluminescent IAV enables spatiotemporal viral replication tracking in animals that will facilitate the development of countermeasures by enhancing the interpretation of clinical signs and prognosis while also allowing less animal usage.
Collapse
Affiliation(s)
- Jin H Kim
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA. .,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA.
| | - Hannah Bryant
- Department of Comparative Medicine, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA
| | - Edward Fiedler
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA
| | - TuAnh Cao
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA
| | - Jonathan O Rayner
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA
| |
Collapse
|
7
|
Imai M, Takada K, Kawaoka Y. Receptor-Binding Specificity of Influenza Viruses. Methods Mol Biol 2022; 2556:79-96. [PMID: 36175629 DOI: 10.1007/978-1-0716-2635-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Influenza A virus infection begins with the attachment of virus particles to sialic acid-containing receptors on the surface of host cells. This attachment is mediated by the viral surface glycoprotein hemagglutinin (HA). Influenza A viruses have a wide host range, meaning they are able to infect many mammal and bird species. Influenza pandemics have been caused by viruses that contain genes from avian influenza viruses. Therefore, the infection of humans with avian influenza viruses, including avian H5Nx and H7Nx viruses, poses a huge threat to public health. These avian influenza viruses can transmit directly to humans from infected poultry, but do not spread easily among people, in part, due to differences in the receptor-binding specificities of human and avian influenza viruses. Therefore, conversion from avian- to human-type receptor-binding specificity is widely believed to be necessary for the efficient transmission of avian influenza viruses among humans. Accordingly, constant monitoring of the receptor-binding specificity of avian influenza viruses is important. In this chapter, we describe the protocol for assessing the receptor-binding specificity of influenza A viruses.
Collapse
Affiliation(s)
- Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Kosuke Takada
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Recent advances in rotavirus reverse genetics and its utilization in basic research and vaccine development. Arch Virol 2021; 166:2369-2386. [PMID: 34216267 PMCID: PMC8254061 DOI: 10.1007/s00705-021-05142-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/27/2021] [Indexed: 11/29/2022]
Abstract
Rotaviruses are segmented double-stranded RNA viruses with a high frequency of gene reassortment, and they are a leading cause of global diarrheal deaths in children less than 5 years old. Two-thirds of rotavirus-associated deaths occur in low-income countries. Currently, the available vaccines in developing countries have lower efficacy in children than those in developed countries. Due to added safety concerns and the high cost of current vaccines, there is a need to develop cost-effective next-generation vaccines with improved safety and efficacy. The reverse genetics system (RGS) is a powerful tool for investigating viral protein functions and developing novel vaccines. Recently, an entirely plasmid-based RGS has been developed for several rotaviruses, and this technological advancement has significantly facilitated novel rotavirus research. Here, we review the recently developed RGS platform and discuss its application in studying infection biology, gene reassortment, and development of vaccines against rotavirus disease.
Collapse
|
9
|
Kingstad-Bakke B, Toy R, Lee W, Pradhan P, Vogel G, Marinaik CB, Larsen A, Gates D, Luu T, Pandey B, Kawaoka Y, Roy K, Suresh M. Polymeric Pathogen-Like Particles-Based Combination Adjuvants Elicit Potent Mucosal T Cell Immunity to Influenza A Virus. Front Immunol 2021; 11:559382. [PMID: 33767689 PMCID: PMC7986715 DOI: 10.3389/fimmu.2020.559382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
Eliciting durable and protective T cell-mediated immunity in the respiratory mucosa remains a significant challenge. Polylactic-co-glycolic acid (PLGA)-based cationic pathogen-like particles (PLPs) loaded with TLR agonists mimic biophysical properties of microbes and hence, simulate pathogen-pattern recognition receptor interactions to safely and effectively stimulate innate immune responses. We generated micro particle PLPs loaded with TLR4 (glucopyranosyl lipid adjuvant, GLA) or TLR9 (CpG) agonists, and formulated them with and without a mucosal delivery enhancing carbomer-based nanoemulsion adjuvant (ADJ). These adjuvants delivered intranasally to mice elicited high numbers of influenza nucleoprotein (NP)-specific CD8+ and CD4+ effector and tissue-resident memory T cells (TRMs) in lungs and airways. PLPs delivering TLR4 versus TLR9 agonists drove phenotypically and functionally distinct populations of effector and memory T cells. While PLPs loaded with CpG or GLA provided immunity, combining the adjuvanticity of PLP-GLA and ADJ markedly enhanced the development of airway and lung TRMs and CD4 and CD8 T cell-dependent immunity to influenza virus. Further, balanced CD8 (Tc1/Tc17) and CD4 (Th1/Th17) recall responses were linked to effective influenza virus control. These studies provide mechanistic insights into vaccine-induced pulmonary T cell immunity and pave the way for the development of a universal influenza and SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Brock Kingstad-Bakke
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Randall Toy
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Woojong Lee
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Pallab Pradhan
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Gabriela Vogel
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Chandranaik B Marinaik
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Autumn Larsen
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Daisy Gates
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Tracy Luu
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Bhawana Pandey
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Yoshihoro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - M Suresh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
10
|
Khalil AM, Yoshida R, Masatani T, Takada A, Ozawa M. Variation in the HA antigenicity of A(H1N1)pdm09-related swine influenza viruses. J Gen Virol 2021; 102. [PMID: 33616517 DOI: 10.1099/jgv.0.001569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Since the influenza pandemic in 2009, the causative agent 'A(H1N1)pdm09 virus', has been circulating in both human and swine populations. Although phylogenetic analyses of the haemagglutinin (HA) gene segment have revealed broader genetic diversity of A(H1N1)pdm09-related swine influenza A viruses (swIAVs) compared with human A(H1N1)pdm09 viruses, it remains unclear whether the genetic diversity reflects the antigenic differences in HA. To assess the impact of the diversity of the HA gene of A(H1N1)pdm09-related swIAVs on HA antigenicity, we characterized 12 swIAVs isolated in Japan from 2013 to 2018. We used a ferret antiserum and a panel of anti-HA mouse monoclonal antibodies (mAbs) raised against an early A(H1N1)pdm09 isolate. The neutralization assay with the ferret antiserum revealed that five of the 12 swIAVs were significantly different in their HA antigenicity from the early A(H1N1)pdm09 isolate. The mAbs also showed differential neutralization patterns depending on the swIAV strains. In addition, the single amino acid substitution at position 190 of HA, which was found in one of the five antigenically different swIAVs but not in human isolates, was shown to be one of the critical determinants for the antigenic difference of swIAV HAs. Two potential N-glycosylation sites at amino acid positions 185 and 276 of the HA molecule were identified in two antigenically different swIAVs. These results indicated that the genetic diversity of HA in the A(H1N1)pdm09-related swIAVs is associated with their HA antigenic variation. Our findings highlighted the need for surveillance to monitor the emergence of swIAV antigenic variants with public health importance.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Joint Faculty of Veterinary Medicine, Kagoshima University, Japan.,United Graduate School of Veterinary Science, Yamaguchi University, Japan.,Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Reiko Yoshida
- Research Center for Zoonosis Control, Hokkaido University, Japan
| | - Tatsunori Masatani
- United Graduate School of Veterinary Science, Yamaguchi University, Japan.,Joint Faculty of Veterinary Medicine, Kagoshima University, Japan
| | - Ayato Takada
- Research Center for Zoonosis Control, Hokkaido University, Japan
| | - Makoto Ozawa
- United Graduate School of Veterinary Science, Yamaguchi University, Japan.,Joint Faculty of Veterinary Medicine, Kagoshima University, Japan
| |
Collapse
|
11
|
Ito G, Morikawa M, Akimoto S, Masatani T, Ozawa M. Establishment of a safe and convenient assay for detection of HA subtype-specific antibodies with PB2 gene-knockout influenza viruses. Virus Res 2021; 295:198331. [PMID: 33539845 DOI: 10.1016/j.virusres.2021.198331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 11/17/2022]
Abstract
Monitoring of the epidemic situation is imperative to control the risk of infection with avian influenza H5 and H7 subtype viruses. A microneutralization (MN) assay was employed to detect hemagglutinin (HA) subtype-specific antibodies. However, the conventional MN assay raises biosafety concerns and is labor-intensive and time-consuming. Therefore, a safer and more convenient assay that can be applied in a high-throughput format is warranted. In this study, PB2 knockout (PB2-KO) influenza viruses of H5 and H7 subtypes expressing different colored fluorescent proteins were generated using a reverse genetics system and applied to a novel MN assay for the detection of specific antibodies. The detection sensitivity of our PB2-KO virus-based MN assay was evaluated by observing fluorescent proteins under a fluorescence microscope and measuring fluorescence intensities using a plate reader. In addition, the PB2-KO virus-based MN assay was used for the simultaneous detection of H5 and H7 subtype-specific antibodies in a single assay. Expression of the reporter fluorescent protein from H5 and H7 PB2-KO viruses was restricted toin PB2 protein-expressing cells. The MN titer as determined using fluorescence microscopy and plate reader revealed that the detection sensitivity of our PB2-KO virus-based MN assay was comparable to that of the conventional MN assay. Moreover, H5 and H7 PB2-KO viruses could be usedapplied forto the simultaneous detection of H5 and H7 subtype-specific antibodies in a single assay. Our study demonstrates a safe and convenient assay for the detection of H5 and H7 subtype-specific antibodies.
Collapse
Affiliation(s)
- Gakushi Ito
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Momoko Morikawa
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | | | - Tatsunori Masatani
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Joint Graduate School of Veterinary Science, Kagoshima University, Kagoshima, Japan
| | - Makoto Ozawa
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Joint Graduate School of Veterinary Science, Kagoshima University, Kagoshima, Japan; Kagoshima Crane Conservation Committee, Izumi, Kagoshima, Japan.
| |
Collapse
|
12
|
tenOever BR. Synthetic Virology: Building Viruses to Better Understand Them. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038703. [PMID: 31871242 DOI: 10.1101/cshperspect.a038703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Generally comprised of less than a dozen components, RNA viruses can be viewed as well-designed genetic circuits optimized to replicate and spread within a given host. Understanding the molecular design that enables this activity not only allows one to disrupt these circuits to study their biology, but it provides a reprogramming framework to achieve novel outputs. Recent advances have enabled a "learning by building" approach to better understand virus biology and create valuable tools. Below is a summary of how modifying the preexisting genetic framework of influenza A virus has been used to track viral movement, understand virus replication, and identify host factors that engage this viral circuitry.
Collapse
Affiliation(s)
- Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
13
|
Hiono T, Kuno A. C-Terminally tagged NA in replication-competent influenza A viruses reveals differences in glycan profiles between NA and HA. Analyst 2020; 145:5845-5853. [PMID: 32830838 DOI: 10.1039/d0an00770f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycans attached to the viruses regulate their pathogenicity, immunogenicity, and antigenicity. We have previously shown that lectin microarray provided an easy and highly sensitive platform for analyzing glycan profiles of hemagglutinin (HA) of influenza A viruses in culture supernatants. On the other hand, the system is not applicable for neuraminidase (NA), the other viral glycoprotein of influenza A viruses, due to the limited availability of specific antibodies used to detect NA in the lectin microarray. Accordingly, we established replication-competent viruses harboring the short peptide-tag sequence at the C-terminus of NA in this study. The generated viruses underwent normal proliferation cycles and showed similar properties to the wild-type viruses. Lectin microarray analyses of the tagged NA enriched from the viral particles showed that glycan profiles of NA were mostly occupied by mannose-type glycans. Interestingly, the profiles were distinct from those of HA separated from the same particle preparation, in which core-fucosylated complex-type N-glycans terminating with non-sialylated N-acetyllactosamine were dominant. Collectively, this study provides novel platforms for the analyses of the distinction between the glycan profiles of NA and HA, and contributes to a better understanding of later stages of the viral life cycles through analyzing the glycans attached to NA.
Collapse
Affiliation(s)
- Takahiro Hiono
- Molecular & Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki 305-8565, Japan.
| | | |
Collapse
|
14
|
AGL2017-82570-RReverse genetics approaches for the development of new vaccines against influenza A virus infections. Curr Opin Virol 2020; 44:26-34. [PMID: 32599532 DOI: 10.1016/j.coviro.2020.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 01/30/2023]
Abstract
Influenza A viruses (IAVs) represent a serious concern globally because they are capable of rapid spread and cause severe disease in humans and other animals. The development and implementation of plasmid-based reverse genetics approaches have allowed the manipulation and recovery of recombinant IAVs from complementary DNA copies of the viral genome. Furthermore, IAV reverse genetics have provided researchers an efficient and powerful platform to introduce specific changes in the viral genome with the final goal of studying IAV biology, designing more effective vaccine strategies, and to reduce the rates of incidence and mortality associated with viral infections. In this review, we briefly discuss IAV reverse genetics and their applications to prevent IAV infections.
Collapse
|
15
|
Cell-to-Cell Variation in Defective Virus Expression and Effects on Host Responses during Influenza Virus Infection. mBio 2020; 11:mBio.02880-19. [PMID: 31937643 PMCID: PMC6960286 DOI: 10.1128/mbio.02880-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Defective influenza virus particles generated during viral replication carry incomplete viral genomes and can interfere with the replication of competent viruses. These defective genomes are thought to modulate the disease severity and pathogenicity of an influenza virus infection. Different defective viral genomes also introduce another source of variation across a heterogeneous cell population. Evaluating the impact of defective virus genomes on host cell responses cannot be fully resolved at the population level, requiring single-cell transcriptional profiling. Here, we characterized virus and host transcriptomes in individual influenza virus-infected cells, including those of defective viruses that arise during influenza A virus infection. We established an association between defective virus transcription and host responses and validated interfering and immunostimulatory functions of identified dominant defective viral genome species in vitro. This study demonstrates the intricate effects of defective viral genomes on host transcriptional responses and highlights the importance of capturing host-virus interactions at the single-cell level. Virus and host factors contribute to cell-to-cell variation in viral infections and determine the outcome of the overall infection. However, the extent of the variability at the single-cell level and how it impacts virus-host interactions at a system level are not well understood. To characterize the dynamics of viral transcription and host responses, we used single-cell RNA sequencing to quantify at multiple time points the host and viral transcriptomes of human A549 cells and primary bronchial epithelial cells infected with influenza A virus. We observed substantial variability in viral transcription between cells, including the accumulation of defective viral genomes (DVGs) that impact viral replication. We show (i) a correlation between DVGs and virus-induced variation of the host transcriptional program and (ii) an association between differential inductions of innate immune response genes and attenuated viral transcription in subpopulations of cells. These observations at the single-cell level improve our understanding of the complex virus-host interplay during influenza virus infection.
Collapse
|
16
|
G Protein Pathway Suppressor 1 Promotes Influenza Virus Polymerase Activity by Activating the NF-κB Signaling Pathway. mBio 2019; 10:mBio.02867-19. [PMID: 31848286 PMCID: PMC6918087 DOI: 10.1128/mbio.02867-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the present study, we identified G protein pathway suppressor 1 (GPS1) to be a host cellular protein that is important for influenza virus replication. We also found that GPS1 plays a role in viral genome transcription through the NF-κB signaling pathway. Moreover, downregulation of GPS1 also affected the growth of vesicular stomatitis virus. Therefore, GPS1 may be a host target for antiviral drugs against influenza virus and possibly other viruses. Influenza virus relies heavily on cellular machinery to replicate in host cells. Therefore, to better understand the influenza virus life cycle, it is important to identify which host proteins are involved and how they function in virus replication. Previously, we identified G protein pathway suppressor 1 (GPS1) to be a matrix protein 2 (M2)-interacting host protein. GPS1 is a component of the COP9 signalosome, which regulates the NF-κB signaling pathway. Here, we found that the downregulation of GPS1 expression reduced influenza virus replication by more than 2 log units. Although GPS1 was not involved in the early and late stages of virus replication, such as viral entry, uncoating, assembly, or budding, we found that viral polymerase activity was impaired in GPS1-downregulated cells. Moreover, our results suggest that M2 activates the NF-κB signaling pathway in a GPS1-dependent manner and that activation of NF-κB signaling leads to the upregulation of influenza virus polymerase activity. Our findings indicate that GPS1 is involved in the transcription and replication of influenza virus genomic RNA through the activation of the NF-κB signaling pathway.
Collapse
|
17
|
Tapia F, Laske T, Wasik MA, Rammhold M, Genzel Y, Reichl U. Production of Defective Interfering Particles of Influenza A Virus in Parallel Continuous Cultures at Two Residence Times-Insights From qPCR Measurements and Viral Dynamics Modeling. Front Bioeng Biotechnol 2019; 7:275. [PMID: 31681751 PMCID: PMC6813217 DOI: 10.3389/fbioe.2019.00275] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023] Open
Abstract
Defective interfering particles (DIPs) are a natural byproduct of influenza A virus (IAV) replication. DIPs interfere with the propagation and spread of infectious standard virus (STV), reduce virus yields by competing for viral and cellular resources, and induce antiviral responses. These properties open exciting possibilities for the development of DIP-based antivirals. Exploring options for cell culture-based DIP production, we have established a fully continuous cultivation process, where one bioreactor is used to grow cells that are fed to two bioreactors operated in parallel for virus production. This system allows head-to-head comparisons of STV and DIP replication dynamics over extended time periods. Cultivations were performed at two residence times (RT, 22 and 36 h) using MDCK suspension cells grown in a fully defined medium. For infection, we used a virus seed generated by reverse genetics containing STVs and a known DIP carrying a deletion in segment 1 (delS1(1)). Four days post infection, DIPs achieved maximum concentrations of 7.0·109 virions/mL and 8.4·109 virions/mL for RTs of 22 and 36 h, respectively. Furthermore, oscillations in virus titers with two to three maxima were found for DIP accumulation at 36 and 22 h RT, respectively. To complement the study, a basic mathematical model using simple kinetics and a reasonable number of parameters to describe DIP-propagation in continuous cultures was established. Upon fitting the model individually to each of the two data sets, oscillations in the viral dynamics and the cell population dynamics were described well. Modeling suggests that both STV inactivation and virus degradation have to be taken into account to achieve good agreement of simulations and experimental data for longer RTs. Together, the high DIP titers obtained, and the successful simulation of the experimental data showed that the combination of continuous bioreactors and mathematical models can enable studies regarding DIP dynamics over extended time periods and allow large scale manufacturing of DIP-based antivirals.
Collapse
Affiliation(s)
- Felipe Tapia
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Tanja Laske
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Milena A Wasik
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Markus Rammhold
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Chair for Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
18
|
Yamagata Y, Muramoto Y, Miyamoto S, Shindo K, Nakano M, Noda T. Generation of a purely clonal defective interfering influenza virus. Microbiol Immunol 2019; 63:164-171. [PMID: 30997933 DOI: 10.1111/1348-0421.12681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 11/29/2022]
Abstract
Defective interfering (DI) influenza viruses carry a large deletion in a gene segment that interferes with the replication of infectious virus; thus, such viruses have potential for antiviral therapy. However, because DI viruses cannot replicate autonomously without the aid of an infectious helper virus, clonal DI virus stocks that are not contaminated with helper virus have not yet been generated. To overcome this problem, we used reverse genetics to generate a clonal DI virus with a PB2 DI gene, amplified the clonal DI virus using a cell line stably expressing the PB2 protein, and confirmed its ability to interfere with infectious virus replication in vitro. Thus, our approach is suitable for obtaining purely clonal DI viruses, will contribute to the understanding of DI virus interference mechanisms and can be used to develop DI virus-based antivirals.
Collapse
Affiliation(s)
- Yutaro Yamagata
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan.,Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yukiko Muramoto
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Sho Miyamoto
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan.,Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiko Shindo
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Masahiro Nakano
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan.,Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan.,Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
19
|
Gerlach T, Elbahesh H, Saletti G, Rimmelzwaan GF. Recombinant influenza A viruses as vaccine vectors. Expert Rev Vaccines 2019; 18:379-392. [PMID: 30777467 DOI: 10.1080/14760584.2019.1582338] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Various viruses, including poxviruses, adenoviruses and vesicular stomatitis virus, have been considered as vaccine vectors for the delivery of antigens of interest in the development of vaccines against newly emerging pathogens. AREAS COVERED Here, we review results that have been obtained with influenza A viruses (IAV) as vaccine vectors. With the advent of reverse genetics technology, IAV-based recombinant vaccine candidates have been constructed that induce protective immunity to a variety of different pathogens of interest, including West Nile virus, Plasmodium falciparum and respiratory syncytial virus. The various cloning strategies to produce effective and attenuated, safe to use IAV-based viral vectors are discussed. EXPERT COMMENTARY It was concluded that IAV-based vector system has several advantages and holds promise for further development.
Collapse
Affiliation(s)
- Thomas Gerlach
- a Research Center for Emerging Infections and Zoonoses (RIZ) , University of Veterinary Medicine Hannover (TiHo) , Hannover , Germany
| | - Husni Elbahesh
- a Research Center for Emerging Infections and Zoonoses (RIZ) , University of Veterinary Medicine Hannover (TiHo) , Hannover , Germany
| | - Giulietta Saletti
- a Research Center for Emerging Infections and Zoonoses (RIZ) , University of Veterinary Medicine Hannover (TiHo) , Hannover , Germany
| | - Guus F Rimmelzwaan
- a Research Center for Emerging Infections and Zoonoses (RIZ) , University of Veterinary Medicine Hannover (TiHo) , Hannover , Germany
| |
Collapse
|
20
|
Bdeir N, Arora P, Gärtner S, Hoffmann M, Reichl U, Pöhlmann S, Winkler M. A system for production of defective interfering particles in the absence of infectious influenza A virus. PLoS One 2019; 14:e0212757. [PMID: 30822349 PMCID: PMC6396908 DOI: 10.1371/journal.pone.0212757] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/10/2019] [Indexed: 12/28/2022] Open
Abstract
Influenza A virus (IAV) infection poses a serious health threat and novel antiviral strategies are needed. Defective interfering particles (DIPs) can be generated in IAV infected cells due to errors of the viral polymerase and may suppress spread of wild type (wt) virus. The antiviral activity of DIPs is exerted by a DI genomic RNA segment that usually contains a large deletion and suppresses amplification of wt segments, potentially by competing for cellular and viral resources. DI-244 is a naturally occurring prototypic segment 1-derived DI RNA in which most of the PB2 open reading frame has been deleted and which is currently developed for antiviral therapy. At present, coinfection with wt virus is required for production of DI-244 particles which raises concerns regarding biosafety and may complicate interpretation of research results. Here, we show that cocultures of 293T and MDCK cell lines stably expressing codon optimized PB2 allow production of DI-244 particles solely from plasmids and in the absence of helper virus. Moreover, we demonstrate that infectivity of these particles can be quantified using MDCK-PB2 cells. Finally, we report that the DI-244 particles produced in this novel system exert potent antiviral activity against H1N1 and H3N2 IAV but not against the unrelated vesicular stomatitis virus. This is the first report of DIP production in the absence of infectious IAV and may spur efforts to develop DIPs for antiviral therapy.
Collapse
Affiliation(s)
- Najat Bdeir
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Prerna Arora
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Sabine Gärtner
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
- Otto von Guericke University Magdeburg, Chair for Bioprocess Engineering, Magdeburg, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
- * E-mail:
| | - Michael Winkler
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
21
|
Blanco-Lobo P, Nogales A, Rodríguez L, Martínez-Sobrido L. Novel Approaches for The Development of Live Attenuated Influenza Vaccines. Viruses 2019; 11:E190. [PMID: 30813325 PMCID: PMC6409754 DOI: 10.3390/v11020190] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 01/04/2023] Open
Abstract
Influenza virus still represents a considerable threat to global public health, despite the advances in the development and wide use of influenza vaccines. Vaccination with traditional inactivate influenza vaccines (IIV) or live-attenuated influenza vaccines (LAIV) remains the main strategy in the control of annual seasonal epidemics, but it does not offer protection against new influenza viruses with pandemic potential, those that have shifted. Moreover, the continual antigenic drift of seasonal circulating influenza viruses, causing an antigenic mismatch that requires yearly reformulation of seasonal influenza vaccines, seriously compromises vaccine efficacy. Therefore, the quick optimization of vaccine production for seasonal influenza and the development of new vaccine approaches for pandemic viruses is still a challenge for the prevention of influenza infections. Moreover, recent reports have questioned the effectiveness of the current LAIV because of limited protection, mainly against the influenza A virus (IAV) component of the vaccine. Although the reasons for the poor protection efficacy of the LAIV have not yet been elucidated, researchers are encouraged to develop new vaccination approaches that overcome the limitations that are associated with the current LAIV. The discovery and implementation of plasmid-based reverse genetics has been a key advance in the rapid generation of recombinant attenuated influenza viruses that can be used for the development of new and most effective LAIV. In this review, we provide an update regarding the progress that has been made during the last five years in the development of new LAIV and the innovative ways that are being explored as alternatives to the currently licensed LAIV. The safety, immunogenicity, and protection efficacy profile of these new LAIVs reveal their possible implementation in combating influenza infections. However, efforts by vaccine companies and government agencies will be needed for controlled testing and approving, respectively, these new vaccine methodologies for the control of influenza infections.
Collapse
Affiliation(s)
- Pilar Blanco-Lobo
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, NY 14642, USA.
| | - Aitor Nogales
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, NY 14642, USA.
| | - Laura Rodríguez
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, NY 14642, USA.
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, NY 14642, USA.
| |
Collapse
|
22
|
Development of Stable Rotavirus Reporter Expression Systems. J Virol 2019; 93:JVI.01774-18. [PMID: 30541830 DOI: 10.1128/jvi.01774-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/27/2018] [Indexed: 01/22/2023] Open
Abstract
Engineered recombinant viruses expressing reporter genes have been developed for real-time monitoring of replication and for mass screening of antiviral inhibitors. Recently, we reported using a reverse genetics system to develop the first recombinant reporter rotaviruses (RVs) that expressed NanoLuc (NLuc) luciferase. Here, we describe a strategy for developing stable reporter RVs expressing luciferase and green or red fluorescent proteins. The reporter genes were inserted into the open reading frame of NSP1 and expressed as a fusion with an NSP1 peptide consisting of amino acids 1 to 27. The stability of foreign genes within the reporter RV strains harboring a shorter chimeric NSP1-reporter gene was greater than that of those in the original reporter RV strain, independent of the transgene inserted. The improved reporter RV was used to screen for neutralizing monoclonal antibodies (MAbs). Sequence analysis of escape mutants from one MAb clone (clone 29) identified an amino acid substitution (arginine to glycine) at position 441 in the VP4 protein, which resides within neutralizing epitope 5-1 in the VP5* fragment. Furthermore, to express a native reporter protein lacking NSP1 amino acids 1 to 27, the 5'- and 3'-terminal region sequences were modified to restore the predicted secondary RNA structure of the NSP1-reporter chimeric gene. These data demonstrate the utility of reporter RVs for live monitoring of RV infections and also suggest further applications (e.g., RV vaccine vectors, which can induce mucosal immunity against intestinal pathogens).IMPORTANCE Development of reporter RVs has been hampered by the lack of comprehensive reverse genetics systems. Recently, we developed a plasmid-based reverse genetics system that enables generation of reporter RVs expressing NLuc luciferase. The prototype reporter RV had some disadvantages (i.e., the transgene was unstable and was expressed as a fusion protein with a partial NSP1 peptide); however, the improved reporter RV overcomes these problems through modification of the untranslated region of the reporter-NSP1 chimeric gene. This strategy for generating stable reporter RVs could be expanded to diverse transgenes and be used to develop RV transduction vectors. Also, the data improve our understanding of the importance of 5'- and 3'-terminal sequences in terms of genome replication, assembly, and packaging.
Collapse
|
23
|
Kim DH, Park GS, Nile AS, Kwon YD, Enkhtaivan G, Nile SH. Utilization of Dianthus superbus L and its bioactive compounds for antioxidant, anti-influenza and toxicological effects. Food Chem Toxicol 2019; 125:313-321. [PMID: 30654095 DOI: 10.1016/j.fct.2019.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/07/2018] [Accepted: 01/12/2019] [Indexed: 12/17/2022]
Abstract
Dianthus superbus (DS) is a traditional medicinal herb well known for its medicinal and therapeutic potential and widely distributed in various Asian countries. The ethyl acetate (EA), butanol (Bu) and distilled water (DW) extracts of DS assessed for extraction of bioactive compounds and their biological activities. The chemical analysis was done using LC-MS/MS and antioxidant, anticancer and antiviral activities were determined. EA extracts showed strong anticancer activity with IC50 of 9.5, 13.8 and 69.9 μg/mL on SKOV, NCL-H1299 and Caski cancer cell lines, respectively. The Bu extracts exhibited strongest antiviral activity with respect to both influenza A and B viruses with IC50 values of 4.97 and 3.9 μg/mL, respectively. Also the metabolic profile for EA, Bu and DW extracts shows high variations and influence precisely the antioxidant, anticancer and antiviral properties. The quercetin 3- rutinoside and isorhamnetin 3- glucoside showed higher neuraminidase inhibition activity in dose dependent manner. Molecular docking study revealed that flavonol glycosides have higher binding activities towards influenza polymerase membrane glycoprotein. Correlation study showed that flavonol glycosides were linked to anti-influenza activity and cyclic peptides with anticancer activities. This study provides vital information for effective utilization of DS for medicinal, food and therapeutic purposes.
Collapse
Affiliation(s)
- Doo Hwan Kim
- Department of Bio-resources and Food Science, Konkuk University, Seoul, 143-701, South Korea
| | - Gyun Seok Park
- Department of Bio-resources and Food Science, Konkuk University, Seoul, 143-701, South Korea
| | - Arti Shivraj Nile
- Department of Bio-resources and Food Science, Konkuk University, Seoul, 143-701, South Korea
| | - Young Deuk Kwon
- Department of Bio-resources and Food Science, Konkuk University, Seoul, 143-701, South Korea
| | - Gansukh Enkhtaivan
- Department of Bio-resources and Food Science, Konkuk University, Seoul, 143-701, South Korea.
| | - Shivraj Hariram Nile
- Department of Bio-resources and Food Science, Konkuk University, Seoul, 143-701, South Korea.
| |
Collapse
|
24
|
Partial Inactivation of the Chromatin Remodelers SMARCA2 and SMARCA4 in Virus-Infected Cells by Caspase-Mediated Cleavage. J Virol 2018; 92:JVI.00343-18. [PMID: 29848589 DOI: 10.1128/jvi.00343-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/22/2018] [Indexed: 01/18/2023] Open
Abstract
The BAF-chromatin remodeling complex, with its mutually exclusive ATPases SMARCA2 and SMARCA4, is essential for the transcriptional activation of numerous genes, including a subset of interferon-stimulated genes (ISGs). Here, we show that C-terminally truncated forms of both SMARCA2 and SMARCA4 accumulate in cells infected with different RNA or DNA viruses. The levels of truncated SMARCA2 or SMARCA4 strongly correlate with the degree of cell damage and death observed after virus infection. The use of a pan-caspase inhibitor and genetically modified cell lines unable to undergo apoptosis revealed that the truncated forms result from the activity of caspases downstream of the activated intrinsic apoptotic pathway. C-terminally cleaved SMARCA2 and SMARCA4 lack potential nuclear localization signals as well as the bromo- and SnAC domain, with the latter two domains believed to be essential for chromatin association and remodeling. Consistent with this belief, C-terminally truncated SMARCA2 was partially relocated to the cytoplasm. However, the remaining nuclear protein was sufficient to induce ISG expression and inhibit the replication of vesicular stomatitis virus and influenza A virus. This suggests that virus-induced apoptosis does not occur at the expense of an intact interferon-mediated antiviral response pathway.IMPORTANCE Efficient induction of interferon-stimulated genes (ISGs) prior to infection is known to effectively convert a cell into an antiviral state, blocking viral replication. Additionally, cells can undergo caspase-mediated apoptosis to control viral infection. Here, we identify SMARCA2 and SMARCA4 to be essential for the efficient induction of ISGs but also to be targeted by cellular caspases downstream of the intrinsic apoptotic pathway. We find that C-terminally cleaved SMARCA2 and SMARCA4 accumulate at late stages of infection, when cell damage already had occurred. Cleavage of the C terminus removes domains important for nuclear localization and chromatin binding of SMARCA2 and SMARCA4. Consequently, the cleaved forms are unable to efficiently accumulate in the cell nucleus. Intriguingly, the remaining nuclear C-terminally truncated SMARCA2 still induced ISG expression, although to lower levels. These data suggest that in virus-infected cells caspase-mediated cell death does not completely inactivate the SMARCA2- and SMARCA4-dependent interferon signaling pathway.
Collapse
|
25
|
Directed Evolution of an Influenza Reporter Virus To Restore Replication and Virulence and Enhance Noninvasive Bioluminescence Imaging in Mice. J Virol 2018; 92:JVI.00593-18. [PMID: 29899096 DOI: 10.1128/jvi.00593-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023] Open
Abstract
Reporter viruses provide a powerful tool to study infection, yet incorporating a nonessential gene often results in virus attenuation and genetic instability. Here, we used directed evolution of a luciferase-expressing pandemic H1N1 (pH1N1) 2009 influenza A virus in mice to restore replication kinetics and virulence, increase the bioluminescence signal, and maintain reporter gene expression. An unadapted pH1N1 virus with NanoLuc luciferase inserted into the 5' end of the PA gene segment grew to titers 10-fold less than those of the wild type in MDCK cells and in DBA/2 mice and was less virulent. For 12 rounds, we propagated DBA/2 lung samples with the highest bioluminescence-to-titer ratios. Every three rounds, we compared in vivo replication, weight loss, mortality, and bioluminescence. Mouse-adapted virus after 9 rounds (MA-9) had the highest relative bioluminescence signal and had wild-type-like fitness and virulence in DBA/2 mice. Using reverse genetics, we discovered fitness was restored in virus rPB2-MA9/PA-D479N by a combination of PA-D479N and PB2-E158G amino acid mutations and PB2 noncoding mutations C1161T and C1977T. rPB2-MA9/PA-D479N has increased mRNA transcription, which helps restore wild-type-like phenotypes in DBA/2 and BALB/c mice. Overall, the results demonstrate that directed evolution that maximizes foreign-gene expression while maintaining genetic stability is an effective method to restore wild-type-like in vivo fitness of a reporter virus. Virus rPB2-MA9/PA-D479N is expected to be a useful tool for noninvasive imaging of pH1N1 influenza virus infection and clearance while analyzing virus-host interactions and developing new therapeutics and vaccines.IMPORTANCE Influenza viruses contribute to 290,000 to 650,000 deaths globally each year. Infection is studied in mice to learn how the virus causes sickness and to develop new drugs and vaccines. During experiments, scientists have needed to euthanize groups of mice at different times to measure the amount of infectious virus in mouse tissues. By inserting a foreign gene that causes infected cells to light up, scientists could see infection spread in living mice. Unfortunately, adding an extra gene not needed by the virus slowed it down and made it weaker. Here, we used a new strategy to restore the fitness and lethality of an influenza reporter virus; we adapted it to mouse lungs and selected for variants that had the greatest light signal. The adapted virus can be used to study influenza virus infection, immunology, and disease in living mice. The strategy can also be used to adapt other viruses.
Collapse
|
26
|
Furusawa Y, Yamada S, Kawaoka Y. Host Factor Nucleoporin 93 Is Involved in the Nuclear Export of Influenza Virus RNA. Front Microbiol 2018; 9:1675. [PMID: 30087672 PMCID: PMC6066526 DOI: 10.3389/fmicb.2018.01675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/04/2018] [Indexed: 11/13/2022] Open
Abstract
Influenza virus replication relies on the functions of host factors. In our previous study, we identified host factors involved in virus replication and began analyses of their roles in this process. In this study, we focused on Nucleoporin 93 (NUP93) and revealed its importance in influenza virus replication. NUP93 knockdown mediated by siRNAs reduced viral replication and decreased the efficiency of the early step of the viral life cycle. NUP93 did not appear to be important for virus binding, internalization, or the nuclear import of viral ribonucleoprotein (vRNP); however, in NUP93-depleted cells, viral RNA accumulated in the nucleus. These results suggest that NUP93 is involved in the nuclear export of viral RNA.
Collapse
Affiliation(s)
- Yuri Furusawa
- Division of Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shinya Yamada
- Division of Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Department of Special Pathogens, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Matsui K, Ozawa M, Kiso M, Yamashita M, Maekawa T, Kubota M, Sugano S, Kawaoka Y. Stimulation of alpha2-adrenergic receptors impairs influenza virus infection. Sci Rep 2018; 8:4631. [PMID: 29545586 PMCID: PMC5854622 DOI: 10.1038/s41598-018-22927-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 02/26/2018] [Indexed: 11/30/2022] Open
Abstract
Influenza A viruses cause seasonal epidemics and occasional pandemics. The emergence of viruses resistant to neuraminidase (NA) inhibitors and M2 ion channel inhibitors underlines the need for alternate anti-influenza drugs with novel mechanisms of action. Here, we report the discovery of a host factor as a potential target of anti-influenza drugs. By using cell-based virus replication screening of a chemical library and several additional assays, we identified clonidine as a new anti-influenza agent in vitro. We found that clonidine, which is an agonist of the alpha2-adrenergic receptor (α2-AR), has an inhibitory effect on the replication of various influenza virus strains. α2-AR is a Gi-type G protein-coupled receptor that reduces intracellular cyclic AMP (cAMP) levels. In-depth analysis showed that stimulation of α2-ARs leads to impairment of influenza virus replication and that α2-AR agonists inhibit the virus assembly step, likely via a cAMP-mediated pathway. Although clonidine administration did not reduce lung virus titers or prevent body weight loss, it did suppress lung edema and improve survival in a murine lethal infection model. Clonidine may thus protect against lung damage caused by influenza virus infection. Our results identify α2-AR-mediated signaling as a key pathway to exploit in the development of anti-influenza agents.
Collapse
Affiliation(s)
- Ken Matsui
- Laboratory of Next Generation Drug Development, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa-shi, Chiba, Japan.,Pharmaceutical and Healthcare Research Laboratories, Research and Development Management Headquarters, Fujifilm Corporation, Kaisei-machi, Ashigarakami-gun, Kanagawa, Japan
| | - Makoto Ozawa
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-shi, Kagoshima, Japan
| | - Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Makoto Yamashita
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Toshihiko Maekawa
- Laboratory of Next Generation Drug Development, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa-shi, Chiba, Japan.,Pharmaceutical and Healthcare Research Laboratories, Research and Development Management Headquarters, Fujifilm Corporation, Kaisei-machi, Ashigarakami-gun, Kanagawa, Japan
| | - Minoru Kubota
- Laboratory of Next Generation Drug Development, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa-shi, Chiba, Japan.,Pharmaceutical and Healthcare Research Laboratories, Research and Development Management Headquarters, Fujifilm Corporation, Kaisei-machi, Ashigarakami-gun, Kanagawa, Japan
| | - Sumio Sugano
- Laboratory of Next Generation Drug Development, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa-shi, Chiba, Japan.,Laboratory of Functional Genomics, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan. .,International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan. .,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA. .,Exploratory Research for Advanced Technology Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
28
|
Imai M, Watanabe T, Kiso M, Nakajima N, Yamayoshi S, Iwatsuki-Horimoto K, Hatta M, Yamada S, Ito M, Sakai-Tagawa Y, Shirakura M, Takashita E, Fujisaki S, McBride R, Thompson AJ, Takahashi K, Maemura T, Mitake H, Chiba S, Zhong G, Fan S, Oishi K, Yasuhara A, Takada K, Nakao T, Fukuyama S, Yamashita M, Lopes TJS, Neumann G, Odagiri T, Watanabe S, Shu Y, Paulson JC, Hasegawa H, Kawaoka Y. A Highly Pathogenic Avian H7N9 Influenza Virus Isolated from A Human Is Lethal in Some Ferrets Infected via Respiratory Droplets. Cell Host Microbe 2017; 22:615-626.e8. [PMID: 29056430 DOI: 10.1016/j.chom.2017.09.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/03/2017] [Accepted: 09/15/2017] [Indexed: 11/16/2022]
Abstract
Low pathogenic H7N9 influenza viruses have recently evolved to become highly pathogenic, raising concerns of a pandemic, particularly if these viruses acquire efficient human-to-human transmissibility. We compared a low pathogenic H7N9 virus with a highly pathogenic isolate, and two of its variants that represent neuraminidase inhibitor-sensitive and -resistant subpopulations detected within the isolate. The highly pathogenic H7N9 viruses replicated efficiently in mice, ferrets, and/or nonhuman primates, and were more pathogenic in mice and ferrets than the low pathogenic H7N9 virus, with the exception of the neuraminidase inhibitor-resistant virus, which showed mild-to-moderate attenuation. All viruses transmitted among ferrets via respiratory droplets, and the neuraminidase-sensitive variant killed several of the infected and exposed animals. Neuraminidase inhibitors showed limited effectiveness against these viruses in vivo, but the viruses were susceptible to a polymerase inhibitor. These results suggest that the highly pathogenic H7N9 virus has pandemic potential and should be closely monitored.
Collapse
Affiliation(s)
- Masaki Imai
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| | - Tokiko Watanabe
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Noriko Nakajima
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Masato Hatta
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Shinya Yamada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Mutsumi Ito
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yuko Sakai-Tagawa
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Masayuki Shirakura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Emi Takashita
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Seiichiro Fujisaki
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Ryan McBride
- Departments of Molecular Medicine & Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew J Thompson
- Departments of Molecular Medicine & Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kenta Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tadashi Maemura
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hiromichi Mitake
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Shiho Chiba
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Gongxun Zhong
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Shufang Fan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Kohei Oishi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Atsuhiro Yasuhara
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Kosuke Takada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Tomomi Nakao
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Satoshi Fukuyama
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Makoto Yamashita
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Tiago J S Lopes
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Takato Odagiri
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Shinji Watanabe
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, China Centers for Disease Control and Prevention, Beijing 102206, China
| | - James C Paulson
- Departments of Molecular Medicine & Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA; Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
29
|
Chin AWH, Leong NKC, Nicholls JM, Poon LLM. Characterization of influenza A viruses with polymorphism in PB2 residues 701 and 702. Sci Rep 2017; 7:11361. [PMID: 28900145 PMCID: PMC5595998 DOI: 10.1038/s41598-017-11625-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/25/2017] [Indexed: 12/04/2022] Open
Abstract
The 701 and 702 positions of influenza PB2 polymerase subunit are previously shown to have roles on host range. Limited polymorphisms at these two residues are identified in natural isolates, thereby limiting the study of their role in the polymerase. In this study, we generated 31 viable viruses by random mutagenesis at this region, indicating that these positions can tolerate a wide range of amino acids. These mutants demonstrated varying polymerase activities and viral replication rates in mammalian and avian cells. Notably, some mutants displayed enhanced polymerase activity, yet their replication kinetics were comparable to the wild-type virus. Surface electrostatic charge predication on the PB2 structural model revealed that the viral polymerase activity in mammalian cells generally increases as this region becomes more positively charged. One of the mutants (701A/702E) showed much reduced pathogenicity in mice while others had a pathogenicity similar to the wild-type level. Distinct tissue tropisms of the PB2-701/702 mutants were observed in infected chicken embryos. Overall, this study demonstrates that the PB2-701/702 region has a high degree of sequence plasticity and sequence changes in this region can alter virus phenotypes in vitro and in vivo.
Collapse
Affiliation(s)
- Alex W H Chin
- Centre of Influenza Research & School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nathaniel K C Leong
- Centre of Influenza Research & School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - John M Nicholls
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Leo L M Poon
- Centre of Influenza Research & School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
30
|
Ui H, Yamayoshi S, Uraki R, Kiso M, Oishi K, Murakami S, Mimori S, Kawaoka Y. Evaluation of seasonal influenza vaccines for H1N1pdm09 and type B viruses based on a replication-incompetent PB2-KO virus. Vaccine 2017; 35:1892-1897. [PMID: 28285982 DOI: 10.1016/j.vaccine.2017.02.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 12/19/2016] [Accepted: 02/20/2017] [Indexed: 12/15/2022]
Abstract
Vaccination is the first line of protection against influenza virus infection in humans. Although inactivated and live-attenuated vaccines are available, each vaccine has drawbacks in terms of immunogenicity and safety. To overcome these issues, our group has developed a replication-incompetent PB2-knockout (PB2-KO) influenza virus that replicates only in PB2-expressing cells. Here we generated PB2-KO viruses possessing the hemagglutinin (HA) and neuraminidase (NA) segments from H1N1pdm09 or type B viruses and tested their vaccine potential. The two PB2-KO viruses propagated efficiently in PB2-expressing cells, and expressed chimeric HA as expected. Virus-specific IgG and IgA antibodies were detected in mice immunized with the viruses, and the immunized mice showed milder clinical signs and/or lower virus replication levels in the respiratory tract upon virus challenge. Our results indicate that these PB2-KO viruses have potential as vaccine candidates.
Collapse
Affiliation(s)
- Hiroki Ui
- Vaccine Research Department, Denka Seiken Co., Ltd., Niigata, Japan; Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ryuta Uraki
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kohei Oishi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shin Murakami
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shigetaka Mimori
- Vaccine Research Department, Denka Seiken Co., Ltd., Niigata, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
31
|
Yamayoshi S, Uraki R, Ito M, Kiso M, Nakatsu S, Yasuhara A, Oishi K, Sasaki T, Ikuta K, Kawaoka Y. A Broadly Reactive Human Anti-hemagglutinin Stem Monoclonal Antibody That Inhibits Influenza A Virus Particle Release. EBioMedicine 2017; 17:182-191. [PMID: 28286060 PMCID: PMC5360590 DOI: 10.1016/j.ebiom.2017.03.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/21/2022] Open
Abstract
Many broadly reactive human monoclonal antibodies against the hemagglutinin (HA) stem of influenza A virus have been developed for therapeutic applications. These antibodies typically inhibit viral entry steps, especially the HA conformational change that is required for membrane fusion. To better understand the mechanisms by which such antibodies inhibit viral replication, we established broadly reactive human anti-HA stem antibodies and determined the properties of these antibodies by examining their reactivity with 18 subtypes of HA, evaluating their in vivo protective efficacy, identifying their epitopes, and characterizing their inhibitory mechanisms. Among the eight human monoclonal antibodies we generated, which recognized at least 3 subtypes of the soluble HA antigens tested, clone S9-1-10/5-1 reacted with 18 subtypes of HA and protected mice from lethal infection with H1N1pdm09, H3N2, H5N1, and H7N9 viruses. This antibody recognized the HA2 helix A in the HA stem, and inhibited virus particle release from infected cells but did not block viral entry completely. These results show that broadly reactive human anti-HA stem antibodies can exhibit protective efficacy by inhibiting virus particle release. These findings expand our knowledge of the mechanisms by which broadly reactive stem-targeting antibodies inhibit viral replication and provide valuable information for universal vaccine development. A broadly mouse-protective anti-HA stem antibody, S9-1-10/5-1, was isolated. S9-1-10/5-1 mainly inhibited virus release rather than virus entry. S9-1-10/5-1 tethers virions via crosslinking HA molecules between neighboring virions.
Broadly reactive human monoclonal antibodies against the influenza HA stem have received attention because of their potential utility against multiple HA subtypes. Some of these antibodies inhibit virus entry and/or protect mice via antibody-dependent cellular cytotoxicity. Here, we identified a human monoclonal antibody that suppresses virus propagation in vitro and in vivo by primarily inhibiting virus particle release. This finding provides another inhibitory mechanism of action for the anti-HA stem antibodies, indicating that the anti-HA stem antibodies could be potent anti-virals due to their pluripotency.
Collapse
Affiliation(s)
- Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | - Ryuta Uraki
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | - Mutsumi Ito
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | - Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | - Sumiho Nakatsu
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | - Atsuhiro Yasuhara
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | - Kohei Oishi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | - Tadahiro Sasaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Kazuyoshi Ikuta
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, USA; Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Japan; ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Japan.
| |
Collapse
|
32
|
Gasper DJ, Neldner B, Plisch EH, Rustom H, Carrow E, Imai H, Kawaoka Y, Suresh M. Effective Respiratory CD8 T-Cell Immunity to Influenza Virus Induced by Intranasal Carbomer-Lecithin-Adjuvanted Non-replicating Vaccines. PLoS Pathog 2016; 12:e1006064. [PMID: 27997610 PMCID: PMC5173246 DOI: 10.1371/journal.ppat.1006064] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 11/14/2016] [Indexed: 01/31/2023] Open
Abstract
CD8+ cytotoxic T lymphocytes (CTLs) are critical for clearing many viral infections, and protective CTL memory can be induced by vaccination with attenuated viruses and vectors. Non-replicating vaccines are typically potentiated by the addition of adjuvants that enhance humoral responses, however few are capable of generating CTL responses. Adjuplex is a carbomer-lecithin-based adjuvant demonstrated to elicit robust humoral immunity to non-replicating antigens. We report that mice immunized with non-replicating Adjuplex-adjuvanted vaccines generated robust antigen-specific CTL responses. Vaccination by the subcutaneous or the intranasal route stimulated systemic and mucosal CTL memory respectively. However, only CTL memory induced by intranasal vaccination was protective against influenza viral challenge, and correlated with an enhancement of memory CTLs in the airways and CD103+ CD69+ CXCR3+ resident memory-like CTLs in the lungs. Mechanistically, Myd88-deficient mice mounted primary CTL responses to Adjuplex vaccines that were similar in magnitude to wild-type mice, but exhibited altered differentiation of effector cell subsets. Immune potentiating effects of Adjuplex entailed alterations in the frequency of antigen-presenting-cell subsets in vaccine draining lymph nodes, and in the lungs and airways following intranasal vaccination. Further, Adjuplex enhanced the ability of dendritic cells to promote antigen-induced proliferation of naïve CD8 T cells by modulating antigen uptake, its intracellular localization, and rate of processing. Taken together, we have identified an adjuvant that elicits both systemic and mucosal CTL memory to non-replicating antigens, and engenders protective CTL-based heterosubtypic immunity to influenza A virus in the respiratory tract. Further, findings presented in this manuscript have provided key insights into the mechanisms and factors that govern the induction and programming of systemic and protective memory CTLs in the respiratory tract. Current respiratory-virus vaccines typically employ non-replicating antigens and rely solely on the generation of humoral responses for protection. Viruses such as influenza can mutate and escape these responses, thereby limiting immunity and necessitating revaccination. Cell-mediated immunity (CMI) could provide broader protection by targeting viral components that infrequently mutate, however non-replicating vaccines capable of inducing CMI are not available. Impediments to vaccine development include an incomplete understanding of the nature of protective respiratory CMI and a lack of vaccine adjuvants capable of eliciting CMI to non-replicating antigens. Using a mouse model, we characterized the protective immunity afforded by CMI responses to non-replicating vaccines formulated with the adjuvant Adjuplex. We found that vaccination via either the subcutaneous or intranasal route was capable of inducing potent CMI responses. However, only intranasal vaccination protected against challenge with heterosubtypic influenza viruses. This protection correlated with enhancement of T cells with a resident-memory phenotype in the lungs. Additionally, mechanistic studies showed that Adjuplex affects antigen-presenting cells via activation and alteration of antigen uptake, processing, and presentation. The current studies: (1) identified an adjuvant that elicits protective CMI to respiratory viral pathogens; (2) suggested that stimulation of protective CMI in the respiratory tract requires intranasal vaccine delivery.
Collapse
Affiliation(s)
- David J Gasper
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.,Comparative Biomedical Sciences Graduate Program, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Brandon Neldner
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erin H Plisch
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hani Rustom
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emily Carrow
- Advanced Bioadjuvants, Omaha, Nebraska, United States of America
| | - Hirotaka Imai
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - M Suresh
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
33
|
Gansukh E, Kazibwe Z, Pandurangan M, Judy G, Kim DH. Probing the impact of quercetin-7-O-glucoside on influenza virus replication influence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:958-67. [PMID: 27387404 DOI: 10.1016/j.phymed.2016.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/25/2016] [Accepted: 06/01/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND Influenza virus is still at large and seriously affects social welfare and health. Dianthus superbus is a well-known medicinal plant widely used in Mongolian and Chinese traditional medicine for anti-inflammatory purposes. PURPOSE To investigate the influence of this novel herbal medicinal product over virus infection and virus-induced symptoms METHOD Quercetin-7-O-glucoside was isolated by bioassay (anti-influenza)-guided fractionation. The structural elucidation was made with 1H-NMR and 13C-NMR. Influenza A/Vic/3/75 (H3N2), A/PR/8/34 (H1N1), B/Maryland/1/59 and B/Lee/40 viruses were used for the evaluation of the antiviral activity. Virus-induced reactive oxygen species and autophagy formation levels were studied. The antiviral mechanism was elucidated via time-dependent, pre-, post-incubation assay methods. The viral RNA replication inhibition of Q7G was analyzed using quantitative RT-PCR method. The blocking of polymerase basic protein subunits of influenza viral RNA polymerase by Q7G was detected by in silico molecular docking assays using AutoDock Vina program with m(7)GTP. Additionally, Q7G was tested against M-MuLV RNA polymerase. RESULTS Q7G was not cytotoxic (CC50>100µg/ml) in MDCK cells and it showed 3.1µg/ml, 6.61µg/ml, 8.19µg/ml and 5.17µg/ml IC50 values against influenza A/PR/8/34, A/Vic/3/75, B/Lee/40 and B/Maryland/1/59 virus strains, respectively. Treatment of Q7G highly reduced ROS and autophagy formation induced by influenza virus infection. Q7G did not reduce NA activity and did not directly interact with the virus particles. Since viral RNA synthesis was blocked by treatment of Q7G. We targeted viral RNA polymerase for further probing. Interestingly, the binding energy of Q7G on viral PB2 protein was -9.1kcal/mol and was higher than m(7)GTP recorded as -7.5kcal/mol. It also was observe to block M-MuLV RNA polymerase. CONCLUSION Isolated compound Q7G showed strong inhibition activity against influenza A and B viruses. It also reduced virus-induced ROS and autophagy formation. Q7G does not directly bind to the virus particles and did not affect NA activity. These results indicated that Q7G inhibits viral RNA polymerase, and that it occupies the binding site of m(7)GTP on viral PB2 protein.
Collapse
Affiliation(s)
- Enkhtaivan Gansukh
- Department of Bio-resources and Food Science, Konkuk University, Seoul 143-701, South Korea
| | - Zakayo Kazibwe
- Department of Bio-resources and Food Science, Konkuk University, Seoul 143-701, South Korea
| | - Muthuraman Pandurangan
- Department of Bio-resources and Food Science, Konkuk University, Seoul 143-701, South Korea
| | - Gopal Judy
- Department of Bio-resources and Food Science, Konkuk University, Seoul 143-701, South Korea
| | - Doo Hwan Kim
- Department of Bio-resources and Food Science, Konkuk University, Seoul 143-701, South Korea..
| |
Collapse
|
34
|
Abstract
Influenza A viruses (IAVs) harbor a segmented RNA genome that is organized into eight distinct viral ribonucleoprotein (vRNP) complexes. Although a segmented genome may be a major advantage to adapt to new host environments, it comes at the cost of a highly sophisticated genome packaging mechanism. Newly synthesized vRNPs conquer the cellular endosomal recycling machinery to access the viral budding site at the plasma membrane. Genome packaging sequences unique to each RNA genome segment are thought to be key determinants ensuring the assembly and incorporation of eight distinct vRNPs into progeny viral particles. Recent studies using advanced fluorescence microscopy techniques suggest the formation of vRNP sub-bundles (comprising less than eight vRNPs) during their transport on recycling endosomes. The formation of such sub-bundles might be required for efficient packaging of a bundle of eight different genomes segments at the budding site, further highlighting the complexity of IAV genome packaging.
Collapse
|
35
|
Nogales A, Baker SF, Domm W, Martínez-Sobrido L. Development and applications of single-cycle infectious influenza A virus (sciIAV). Virus Res 2016; 216:26-40. [PMID: 26220478 PMCID: PMC4728073 DOI: 10.1016/j.virusres.2015.07.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/05/2015] [Accepted: 07/13/2015] [Indexed: 02/06/2023]
Abstract
The diverse host range, high transmissibility, and rapid evolution of influenza A viruses justify the importance of containing pathogenic viruses studied in the laboratory. Other than physically or mechanically changing influenza A virus containment procedures, modifying the virus to only replicate for a single round of infection similarly ensures safety and consequently decreases the level of biosafety containment required to study highly pathogenic members in the virus family. This biological containment is more ideal because it is less apt to computer, machine, or human error. With many necessary proteins that can be deleted, generation of single-cycle infectious influenza A viruses (sciIAV) can be achieved using a variety of approaches. Here, we review the recent burst in sciIAV generation and summarize the applications and findings on this important human pathogen using biocontained viral mimics.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Steven F Baker
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - William Domm
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States.
| |
Collapse
|
36
|
C646, a Novel p300/CREB-Binding Protein-Specific Inhibitor of Histone Acetyltransferase, Attenuates Influenza A Virus Infection. Antimicrob Agents Chemother 2015; 60:1902-6. [PMID: 26711748 DOI: 10.1128/aac.02055-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/16/2015] [Indexed: 01/01/2023] Open
Abstract
New strategies to develop novel broad-spectrum antiviral drugs against influenza virus infections are needed due to the emergence of antigenic variants and drug-resistant viruses. Here, we evaluated C646, a novel p300/CREB-binding protein-specific inhibitor of histone acetyltransferase (HAT), as an anti-influenza virus agent in vitro and in vivo and explored how C646 affects the viral life cycle and host response. Our studies highlight the value of targeting HAT activity for anti-influenza drug development.
Collapse
|
37
|
Tran V, Poole DS, Jeffery JJ, Sheahan TP, Creech D, Yevtodiyenko A, Peat AJ, Francis KP, You S, Mehle A. Multi-Modal Imaging with a Toolbox of Influenza A Reporter Viruses. Viruses 2015; 7:5319-27. [PMID: 26473913 PMCID: PMC4632381 DOI: 10.3390/v7102873] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 12/11/2022] Open
Abstract
Reporter viruses are useful probes for studying multiple stages of the viral life cycle. Here we describe an expanded toolbox of fluorescent and bioluminescent influenza A reporter viruses. The enhanced utility of these tools enabled kinetic studies of viral attachment, infection, and co-infection. Multi-modal bioluminescence and positron emission tomography–computed tomography (PET/CT) imaging of infected animals revealed that antiviral treatment reduced viral load, dissemination, and inflammation. These new technologies and applications will dramatically accelerate in vitro and in vivo influenza virus studies.
Collapse
Affiliation(s)
- Vy Tran
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI 53706, USA.
- Microbiology Doctoral Training Program, University of Wisconsin Madison, Madison, WI 53706, USA.
| | - Daniel S Poole
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI 53706, USA.
| | - Justin J Jeffery
- Carbone Cancer Center, University of Wisconsin Madison, Madison, WI 53706, USA.
| | - Timothy P Sheahan
- GlaxoSmithKline, Antiviral Discovery Performance Unit, 5 Moore Drive, Research Triangle Park, NC 27709, USA.
| | - Donald Creech
- GlaxoSmithKline, Antiviral Discovery Performance Unit, 5 Moore Drive, Research Triangle Park, NC 27709, USA.
| | | | - Andrew J Peat
- GlaxoSmithKline, Antiviral Discovery Performance Unit, 5 Moore Drive, Research Triangle Park, NC 27709, USA.
| | | | - Shihyun You
- GlaxoSmithKline, Antiviral Discovery Performance Unit, 5 Moore Drive, Research Triangle Park, NC 27709, USA.
| | - Andrew Mehle
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI 53706, USA.
| |
Collapse
|
38
|
Uraki R, Piao Z, Akeda Y, Iwatsuki-Horimoto K, Kiso M, Ozawa M, Oishi K, Kawaoka Y. A Bivalent Vaccine Based on a PB2-Knockout Influenza Virus Protects Mice From Secondary Pneumococcal Pneumonia. J Infect Dis 2015; 212:1939-48. [PMID: 26123562 DOI: 10.1093/infdis/jiv341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/10/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Secondary bacterial infections after influenza can be a serious problem, especially in young children and the elderly, yet the efficacy of current vaccines is limited. Earlier work demonstrated that a replication-incompetent PB2-knockout (PB2-KO) influenza virus possessing a foreign gene in the coding region of its PB2 segment can serve as a platform for a bivalent vaccine. METHODS In the current study, we generated the PB2-KO virus expressing pneumococcal surface protein A (PspA), PB2-KO-PspA virus, the replication of which is restricted to PB2-expressing cells. We then examined the protective efficacy of intranasal immunization with this virus as a bivalent vaccine in a mouse model. RESULTS High levels of influenza virus-specific and PspA-specific antibodies were induced in the serum and airways of immunized mice. The intranasally immunized mice were protected from lethal doses of influenza virus or Streptococcus pneumoniae. These mice were also completely protected from secondary pneumococcal pneumonia after influenza virus infection. CONCLUSIONS These findings indicate that our recombinant influenza virus serves as a novel and powerful bivalent vaccine against primary and secondary pneumococcal pneumonia as well as influenza.
Collapse
Affiliation(s)
- Ryuta Uraki
- Division of Virology, Department of Microbiology and Immunology
| | - Zhenyu Piao
- Laboratory of Clinical Research on Infectious Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University
| | - Yukihiro Akeda
- Laboratory of Clinical Research on Infectious Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University
| | | | - Maki Kiso
- Division of Virology, Department of Microbiology and Immunology
| | - Makoto Ozawa
- Laboratory of Animal Hygiene Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University
| | - Kazunori Oishi
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo Laboratory of Clinical Research on Infectious Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo ERATO Infection-Induced Host Responses Project (JST), Saitama, Japan Department of Pathobiological Sciences, University of Wisconsin-Madison
| |
Collapse
|
39
|
Baker SF, Nogales A, Santiago FW, Topham DJ, Martínez-Sobrido L. Competitive detection of influenza neutralizing antibodies using a novel bivalent fluorescence-based microneutralization assay (BiFMA). Vaccine 2015; 33:3562-70. [PMID: 26044496 DOI: 10.1016/j.vaccine.2015.05.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/23/2015] [Accepted: 05/19/2015] [Indexed: 01/01/2023]
Abstract
Avian-derived influenza A zoonoses are closely monitored and may be an indication of virus strains with pandemic potential. Both successful vaccination and convalescence of influenza A virus in humans typically results in the induction of antibodies that can neutralize viral infection. To improve long-standing and new-generation methodologies for detection of neutralizing antibodies, we have employed a novel reporter-based approach that allows for multiple antigenic testing within a single sample. Central to this approach is a single-cycle infectious influenza A virus (sciIAV), where a functional hemagglutinin (HA) gene was changed to encode either the green or the monomeric red fluorescent protein (GFP and mRFP, respectively) and HA is complemented in trans by stable HA-expressing cell lines. By using fluorescent proteins with non-overlapping emission spectra, this novel bivalent fluorescence-based microneutralization assay (BiFMA) can be used to detect neutralizing antibodies against two distinct influenza isolates in a single reaction, doubling the speed of experimentation while halving the amount of sera required. Moreover, this approach can be used for the rapid identification of influenza broadly neutralizing antibodies. Importantly, this novel BiFMA can be used for any given influenza HA-pseudotyped virus under BSL-2 facilities, including highly pathogenic influenza HA isolates.
Collapse
Affiliation(s)
- Steven F Baker
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Felix W Santiago
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States.
| |
Collapse
|
40
|
Efficient isolation of Swine influenza viruses by age-targeted specimen collection. J Clin Microbiol 2015; 53:1331-8. [PMID: 25694523 DOI: 10.1128/jcm.02941-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The control of swine influenza virus (SIV) infection is paramount for increasing the productivity of pig farming and minimizing the threat of pandemic outbreaks. Thus, SIV surveillance should be conducted by region and on a regular basis. Here, we established a microneutralization assay specific for SIV seroprevalence surveillance by using reporter gene-expressing recombinant influenza viruses. Growth-based SIV seroprevalence revealed that most sows and piglets were positive for neutralizing antibodies against influenza viruses. In contrast, the 90-day-old growing pigs exhibited limited neutralizing activity in their sera, suggesting that this particular age of population is most susceptible to SIV infection and thus is an ideal age group for SIV isolation. From nasal swab specimens of healthy pigs in this age population, we were able to isolate SIVs at a higher incidence (5.3%) than those of previous reports. Nucleotide sequencing and phylogenetic analysis of the hemagglutinin (HA) genes revealed that the isolated SIVs have circulated and evolved in pigs but not have been recently introduced from humans, implying that a large number of SIV lineages may remain "undiscovered" in the global porcine populations. We propose that the 90-day-old growing pig-targeted nasal swab collection presented in this study facilitates global SIV surveillance and contributes to the detection and control of SIV infection.
Collapse
|
41
|
Nogales A, Baker SF, Martínez-Sobrido L. Replication-competent influenza A viruses expressing a red fluorescent protein. Virology 2015; 476:206-216. [PMID: 25553516 PMCID: PMC4323957 DOI: 10.1016/j.virol.2014.12.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/25/2014] [Accepted: 12/02/2014] [Indexed: 11/16/2022]
Abstract
Like most animal viruses, studying influenza A in model systems requires secondary methodologies to identify infected cells. To circumvent this requirement, we describe the generation of replication-competent influenza A red fluorescent viruses. These influenza A viruses encode mCherry fused to the viral non-structural 1 (NS1) protein and display comparable growth kinetics to wild-type viruses in vitro. Infection of cells with influenza A mCherry viruses was neutralized with monoclonal antibodies and inhibited with antivirals to levels similar to wild-type virus. Influenza A mCherry viruses were also able to lethally infect mice, and strikingly, dose- and time-dependent kinetics of viral replication were monitored in whole excised mouse lungs using an in vivo imaging system (IVIS). By eliminating the need for secondary labeling of infected cells, influenza A mCherry viruses provide an ideal tool in the ongoing struggle to better characterize the virus and identify new therapeutics against influenza A viral infections.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Steven F Baker
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States.
| |
Collapse
|
42
|
Watanabe T, Kawakami E, Shoemaker JE, Lopes TJS, Matsuoka Y, Tomita Y, Kozuka-Hata H, Gorai T, Kuwahara T, Takeda E, Nagata A, Takano R, Kiso M, Yamashita M, Sakai-Tagawa Y, Katsura H, Nonaka N, Fujii H, Fujii K, Sugita Y, Noda T, Goto H, Fukuyama S, Watanabe S, Neumann G, Oyama M, Kitano H, Kawaoka Y. Influenza virus-host interactome screen as a platform for antiviral drug development. Cell Host Microbe 2014; 16:795-805. [PMID: 25464832 DOI: 10.1016/j.chom.2014.11.002] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/01/2014] [Accepted: 10/20/2014] [Indexed: 12/30/2022]
Abstract
Host factors required for viral replication are ideal drug targets because they are less likely than viral proteins to mutate under drug-mediated selective pressure. Although genome-wide screens have identified host proteins involved in influenza virus replication, limited mechanistic understanding of how these factors affect influenza has hindered potential drug development. We conducted a systematic analysis to identify and validate host factors that associate with influenza virus proteins and affect viral replication. After identifying over 1,000 host factors that coimmunoprecipitate with specific viral proteins, we generated a network of virus-host protein interactions based on the stage of the viral life cycle affected upon host factor downregulation. Using compounds that inhibit these host factors, we validated several proteins, notably Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1) and JAK1, as potential antiviral drug targets. Thus, virus-host interactome screens are powerful strategies to identify targetable host factors and guide antiviral drug development.
Collapse
Affiliation(s)
- Tokiko Watanabe
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan; Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Eiryo Kawakami
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Jason E Shoemaker
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan; Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Tiago J S Lopes
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Yukiko Matsuoka
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan; The Systems Biology Institute, Minato-ku, Tokyo 108-0071, Japan
| | - Yuriko Tomita
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Takeo Gorai
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA
| | - Tomoko Kuwahara
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Eiji Takeda
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Atsushi Nagata
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Ryo Takano
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Makoto Yamashita
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Yuko Sakai-Tagawa
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroaki Katsura
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Naoki Nonaka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroko Fujii
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Ken Fujii
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Yukihiko Sugita
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Takeshi Noda
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Hideo Goto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Satoshi Fukuyama
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan; Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Shinji Watanabe
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan; Laboratory of Veterinary Microbiology, Department of Veterinary Sciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA
| | - Masaaki Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroaki Kitano
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan; The Systems Biology Institute, Minato-ku, Tokyo 108-0071, Japan; Laboratory for Disease Systems Modeling, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan
| | - Yoshihiro Kawaoka
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan; Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA; Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
43
|
Chin AWH, Li OTW, Mok CKP, Ng MKW, Peiris M, Poon LLM. Influenza A viruses with different amino acid residues at PB2-627 display distinct replication properties in vitro and in vivo: revealing the sequence plasticity of PB2-627 position. Virology 2014; 468-470:545-555. [PMID: 25262472 DOI: 10.1016/j.virol.2014.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/23/2014] [Accepted: 09/08/2014] [Indexed: 11/26/2022]
Abstract
Sequence analyses of influenza PB2 sequences indicate that the 627 position almost exclusively contains either lysine (K) or glutamic acid (E), suggesting a high sequence constraint at this genetic marker. Here, we used a site-directed random mutagenesis method to demonstrate that PB2-627 position has a high sequence plasticity. Recombinant viruses carrying various amino acid residues at this position are viable in cell cultures. These PB2-627 mutants showed various polymerase activities and replication kinetics in mammalian and avian cells as well as pathogenicity in mice. Serially passaging these mutants in MDCK cells generated some compensatory PB2 mutations that can restore polymerase activities of the PB2-627 mutants. Of these, PB2-D309N was identified as a novel one. Besides showing that influenza virus can tolerate a wide range of amino acid residues at the PB2-627 position, this study also demonstrates a potential strategy to identify novel mutations that can enhance viral polymerase.
Collapse
Affiliation(s)
- Alex W H Chin
- Centre of Influenza Research & School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Olive T W Li
- Centre of Influenza Research & School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chris K P Mok
- Centre of Influenza Research & School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong; The HKU-Pasteur Research Pole & School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Miko K W Ng
- Centre of Influenza Research & School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Malik Peiris
- Centre of Influenza Research & School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong; The HKU-Pasteur Research Pole & School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Leo L M Poon
- Centre of Influenza Research & School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong.
| |
Collapse
|
44
|
Kawaoka Y, Neumann G. Reverse Genetics Approaches for Rational Design of Inactivated and Live Attenuated Influenza Vaccines. NOVEL TECHNOLOGIES FOR VACCINE DEVELOPMENT 2014:3-32. [DOI: 10.1007/978-3-7091-1818-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
45
|
Kobayashi H, Iwatsuki-Horimoto K, Kiso M, Uraki R, Ichiko Y, Takimoto T, Kawaoka Y. A replication-incompetent influenza virus bearing the HN glycoprotein of human parainfluenza virus as a bivalent vaccine. Vaccine 2013; 31:6239-46. [PMID: 24144478 PMCID: PMC11774192 DOI: 10.1016/j.vaccine.2013.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 09/23/2013] [Accepted: 10/08/2013] [Indexed: 11/20/2022]
Abstract
Influenza virus and human parainfluenza virus (HPIV) are major etiologic agents of acute respiratory illness in young children. Inactivated and live attenuated influenza vaccines are approved in several countries, yet no vaccine is licensed for HPIV. We previously showed that a replication-incompetent PB2-knockout (PB2-KO) virus that possesses a reporter gene in the coding region of the PB2 segment can serve as a platform for a bivalent vaccine. To develop a bivalent vaccine against influenza and parainfluenza virus, here, we generated a PB2-KO virus possessing the hemagglutinin-neuraminidase (HN) glycoprotein of HPIV type 3 (HPIV3), a major surface antigen of HPIV, in its PB2 segment. We confirmed that this virus replicated only in PB2-expressing cells and expressed HN. We then examined the efficacy of this virus as a bivalent vaccine in a hamster model. High levels of virus-specific IgG antibodies in sera and IgA, IgG, and IgM antibodies in bronchoalveolar lavage fluids against both influenza virus and HPIV3 were detected from hamsters immunized with this virus. The neutralizing capability of these serum antibodies was also confirmed. Moreover, the immunized hamsters were completely protected from virus challenge with influenza virus or HPIV3. These results indicate that PB2-KO virus expressing the HN of HPIV3 has the potential to be a novel bivalent vaccine against influenza and human parainfluenza viruses.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/analysis
- Antibodies, Neutralizing/blood
- Antibodies, Viral/analysis
- Antibodies, Viral/blood
- Bronchoalveolar Lavage Fluid/immunology
- Cricetinae
- Female
- HN Protein/genetics
- HN Protein/immunology
- Immunoglobulin A/analysis
- Immunoglobulin G/analysis
- Immunoglobulin G/blood
- Immunoglobulin M/analysis
- Immunoglobulin M/blood
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Mesocricetus
- Orthomyxoviridae/genetics
- Orthomyxoviridae/immunology
- Parainfluenza Vaccines/administration & dosage
- Parainfluenza Vaccines/genetics
- Parainfluenza Vaccines/immunology
- Parainfluenza Virus 3, Human/genetics
- Parainfluenza Virus 3, Human/immunology
- Serum/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Hirofumi Kobayashi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Tran V, Moser LA, Poole DS, Mehle A. Highly sensitive real-time in vivo imaging of an influenza reporter virus reveals dynamics of replication and spread. J Virol 2013; 87:13321-9. [PMID: 24089552 PMCID: PMC3838222 DOI: 10.1128/jvi.02381-13] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/24/2013] [Indexed: 12/13/2022] Open
Abstract
The continual public health threat posed by the emergence of novel influenza viruses necessitates the ability to rapidly monitor infection and spread in experimental systems. To analyze real-time infection dynamics, we have created a replication-competent influenza reporter virus suitable for in vivo imaging. The reporter virus encodes the small and bright NanoLuc luciferase whose activity serves as an extremely sensitive readout of viral infection. This virus stably maintains the reporter construct and replicates in culture and in mice with near-native properties. Bioluminescent imaging of the reporter virus permits serial observations of viral load and dissemination in infected animals, even following clearance of a sublethal challenge. We further show that the reporter virus recapitulates known restrictions due to host range and antiviral treatment, suggesting that this technology can be applied to studying emerging influenza viruses and the impact of antiviral interventions on infections in vivo. These results describe a generalizable method to quickly determine the replication and pathogenicity potential of diverse influenza strains in animals.
Collapse
Affiliation(s)
- Vy Tran
- Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
47
|
Fonseca W, Ozawa M, Hatta M, Orozco E, Martínez MB, Kawaoka Y. A recombinant influenza virus vaccine expressing the F protein of respiratory syncytial virus. Arch Virol 2013; 159:1067-77. [PMID: 24292020 DOI: 10.1007/s00705-013-1932-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 11/18/2013] [Indexed: 11/24/2022]
Abstract
Infections with influenza and respiratory syncytial virus (RSV) rank high among the most common human respiratory diseases worldwide. Previously, we developed a replication-incompetent influenza virus by replacing the coding sequence of the PB2 gene, which encodes one of the viral RNA polymerase subunits, with that of a reporter gene. Here, we generated a PB2-knockout recombinant influenza virus expressing the F protein of RSV (PB2-RSVF virus) and tested its potential as a bivalent vaccine. In mice intranasally immunized with the PB2-RSVF virus, we detected high levels of antibodies against influenza virus, but not RSV. PB2-RSVF virus-immunized mice were protected from a lethal challenge with influenza virus but experienced severe body weight loss when challenged with RSV, indicating that PB2-RSVF vaccination enhanced RSV-associated disease. These results highlight one of the difficulties of developing an effective bivalent vaccine against influenza virus and RSV infections.
Collapse
Affiliation(s)
- Wendy Fonseca
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico, Mexico
| | | | | | | | | | | |
Collapse
|
48
|
Kuznetsova I, Shurygina AP, Wolf B, Wolschek M, Enzmann F, Sansyzbay A, Khairullin B, Sandybayev N, Stukova M, Kiselev O, Egorov A, Bergmann M. Adaptive mutation in nuclear export protein allows stable transgene expression in a chimaeric influenza A virus vector. J Gen Virol 2013; 95:337-349. [PMID: 24222196 DOI: 10.1099/vir.0.056036-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The development of influenza virus vectors with long insertions of foreign sequences remains difficult due to the small size and instable nature of the virus. Here, we used the influenza virus inherent property of self-optimization to generate a vector stably expressing long transgenes from the NS1 protein ORF. This was achieved by continuous selection of bright fluorescent plaques of a GFP-expressing vector during multiple passages in mouse B16f1 cells. The newly generated vector acquired stability in IFN-competent cell lines and in vivo in murine lungs. Although improved vector fitness was associated with the appearance of four coding mutations in the polymerase (PB2), haemagglutinin and non-structural (NS) segments, the stability of the transgene expression was dependent primarily on the single mutation Q20R in the nuclear export protein (NEP). Importantly, a longer insert, such as a cassette of 1299 nt encoding two Mycobacterium tuberculosis Esat6 and Ag85A proteins, could substitute for the GFP transgene. Thus, the inherent property of the influenza virus to adapt can also be used to adjust a vector backbone to give stable expression of long transgenes.
Collapse
Affiliation(s)
- Irina Kuznetsova
- Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Anna-Polina Shurygina
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Brigitte Wolf
- Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Markus Wolschek
- Avir Green Hills Biotechnology AG, Vienna, Austria.,Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Florian Enzmann
- Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Abylay Sansyzbay
- Research Institute for Biological Safety Problems, Gvardeyskyi, Kazakhstan
| | - Berik Khairullin
- Research Institute for Biological Safety Problems, Gvardeyskyi, Kazakhstan
| | - Nurlan Sandybayev
- Research Institute for Biological Safety Problems, Gvardeyskyi, Kazakhstan
| | - Marina Stukova
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Oleg Kiselev
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Andrej Egorov
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Michael Bergmann
- Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria.,Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| |
Collapse
|
49
|
An eight-segment swine influenza virus harboring H1 and H3 hemagglutinins is attenuated and protective against H1N1 and H3N2 subtypes in pigs. J Virol 2013; 87:10114-25. [PMID: 23843633 DOI: 10.1128/jvi.01348-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Swine influenza virus (SIV) infections continue to cause production losses in the agricultural industry in addition to being a human public health concern. The primary method of controlling SIV is through vaccination. The killed SIV vaccines currently in use must be closely matched to the challenge virus, and their protective efficacy is limited. Live attenuated influenza vaccines (LAIV) provide strong, long-lived cell-mediated and humoral immunity against different influenza virus subtypes with no need for antigen matching. Here we report the generation of a new potential LAIV, an eight-segment SIV harboring two different SIV hemagglutinins (HAs), H1 and H3, in the genetic background of H1N1 SIV. This mutant SIV was generated by fusing the H3 HA ectodomain from A/Swine/Texas/4199-2/98 (H3N2) to the cytoplasmic tail, transmembrane domain, and stalk region of neuraminidase (NA) from A/Swine/Saskatchewan/18789/02 (H1N1) SIV. While this H1-H3 chimeric SIV, when propagated in vitro in the presence of exogenous neuraminidase, showed kinetics and growth properties similar to those of the parental wild-type virus, in vivo it was highly attenuated in pigs, demonstrating a great potential for serving as a dual LAIV. Furthermore, vaccination with the H1-H3 virus elicited robust immune responses, which conferred complete protection against infections with both H1 and H3 SIV subtypes in pigs.
Collapse
|
50
|
A novel bivalent vaccine based on a PB2-knockout influenza virus protects mice from pandemic H1N1 and highly pathogenic H5N1 virus challenges. J Virol 2013; 87:7874-81. [PMID: 23658445 DOI: 10.1128/jvi.00076-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccination is an effective means to protect against influenza virus. Although inactivated and live-attenuated vaccines are currently available, each vaccine has disadvantages (e.g., immunogenicity and safety issues). To overcome these problems, we previously developed a replication-incompetent PB2-knockout (PB2-KO) influenza virus that replicates only in PB2 protein-expressing cells. Here, we generated two PB2-KO viruses whose PB2-coding regions were replaced with the HA genes of either A/California/04/2009 (H1N1pdm09) or A/Vietnam/1203/2004 (H5N1). The resultant viruses comparably, or in some cases more efficiently, induced virus-specific antibodies in the serum, nasal wash, and bronchoalveolar lavage fluid of mice relative to a conventional formalin-inactivated vaccine. Furthermore, mice immunized with these PB2-KO viruses were protected from lethal challenges with not only the backbone virus strain but also strains from which their foreign HAs originated, indicating that PB2-KO viruses with antigenically different HAs could serve as bivalent influenza vaccines.
Collapse
|