1
|
Luo SS, Chen XL, Wang AJ, Liu QY, Peng M, Yang CL, Zeng DG, Zhao YZ, Wang HL. Identification, functional analysis of chitin-binding proteins and the association of its single nucleotide polymorphisms with Vibrio parahaemolyticus resistance in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109966. [PMID: 39414097 DOI: 10.1016/j.fsi.2024.109966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Chitin-binding proteins (CBPs) play pivotal roles in numerous biological processes in arthropods, including growth, molting, reproduction, and immune defense. However, their function in the antibacterial immune defense of crustaceans remains relatively underexplored. In this study, twenty CBPs were identified and characterized in Penaeus vannamei. Expression profiling highlighted that the majority of CBPs were highly expressed in the intestine and hepatopancreas and responded to challenge by Vibrio parahaemolyticus. To explore the role of these CBPs in innate immunity, six CBPs (PvPrg4, PvKrtap16, PvPT-1a, PvPT-1b, PvExtensin and PvCP-AM1159) were selected for RNAi experiments. Silencing of only PvPrg4 and PvKrtap16 significantly decreased the cumulative mortality of V. parahaemolyticus-infected shrimp. Further studies demonstrated that inhibition of PvPrg4 and PvKrtap16 resulted in a marked upregulation of genes associated with the NF-κB and JAK-STAT signaling pathways, as well as antimicrobial peptides (AMPs), in both the intestine and hepatopancreas. These results collectively suggested that PvPrg4 and PvKrtap16 potentially promote V. parahaemolyticus invasion by negatively regulating the JAK-STAT and NF-κB pathways, thereby inhibiting the expression of AMPs. In addition, SNP analysis identified three SNPs in the exons of PvPrg4 that were significantly associated with tolerance to V. parahaemolyticus. Taken together, these findings are expected to assist in the molecular marker-assisted breeding of P. vannamei associated with anti-V. parahaemolyticus traits, as well as expand our understanding of CBP functions within the immune regulatory system of crustaceans.
Collapse
Affiliation(s)
- Shuang-Shuang Luo
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan 430070, China
| | - Xiu-Li Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China; China (Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquactic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Ai-Jin Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan 430070, China
| | - Qing-Yun Liu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Chun-Ling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Di-Gang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Yong-Zhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China; China (Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquactic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning 530021, China.
| | - Huan-Ling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Tenriulo A, Parenrengi A, Lante S, Suryati E, Rosmiati R, Nawang A. Application of dsRNA VP24 vaccine by oral administration at different larval stages of Tiger Shrimp Penaeus monodon. IOP CONFERENCE SERIES: EARTH AND ENVIRONMENTAL SCIENCE 2022; 1119:012045. [DOI: 10.1088/1755-1315/1119/1/012045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
This study aimed to evaluate the effect of dsRNA VP24 application on different stages of larvae. For mass production, cloned recombinant bacteria carrying the construction of the promoter T7VP24 are planted in Luria Bertani broth medium. The bacteria were inactivated using the heat-killed bacteria method by immersion in water at 80 °C for 5 minutes. The inactivated bacteria were mixed with larval commercial feed. The nauplii were produced from broodstock from Aceh waters and reared until postlarva 12 (PL12). The feed containing the dsRNA vaccine was applied to a different stage of larva, i.e: starting from zoea 1 (A), mysis 1 (B), PL 1 to PL 12 (C), and control without dsRNA (D). The PL 12 were challenged with WSSV by the immersion method and morphological characters were assessed. Results showed that inactivating bacteria was effectively done by immersion method without damaging the dsRNA construct in the plasmid. The survival rate was significantly influenced by different stages of larvae (P 0.05), in which the highest survival (26.0%) was obtained from mysis. The highest value of morphological characters (92.3) was also inhibited in the mysis. The results suggested that the dsRNA vaccine for larvae could be started to be applied in the mysis stage.
Collapse
|
3
|
Cui C, He L, Tang X, Xing J, Sheng X, Chi H, Zhan W. Monoclonal antibodies (mAbs) and single chain variable fragment (scFv) antibodies targeting envelope protein VP28 of white spot syndrome virus provide protection against viral infection. FISH & SHELLFISH IMMUNOLOGY 2022; 127:508-520. [PMID: 35768048 DOI: 10.1016/j.fsi.2022.06.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
White spot syndrome virus (WSSV) is extremely pathogenic and causes huge economic losses in the shrimp farming industry. Neutralizing antibodies against WSSV is expected to be an effective means of preventing infection with the virus. In the present study, eight monoclonal antibodies (mAbs) against VP28 were developed by immunizing BALB/c mice with WSSV-VP28 recombinant protein. Among them, three mAbs named 3B7, 2G3 and 5D2 were determined to be able to delay the mortality of WSSV-infected shrimp in vivo neutralization assay, suggesting their neutralizing ability against WSSV infection. Immunoblotting results showed that the three mAbs reacted specifically with native VP28 of WSSV, and could also recognize the virions in the gills of WSSV-infected shrimp by IFA. Furthermore, the single chain variable fragment (scFv) genes specific for WSSV-VP28 were cloned from the three hybridoma cells and expressed in Escherichia coli. After purification and refolding, three biologically active scFv recombinant proteins were all capable of recognizing the native VP28 of WSSV and delayed the mortality of WSSV-infected shrimp, indicating their neutralizing capacity against WSSV. Subsequently, the eukaryotic expression plasmids of three scFv genes were constructed and the transcriptional properties of expression vectors in shrimp were analyzed. Animal experiments also proved that the scFv eukaryotic expression plasmids were able to partially neutralize WSSV infection. Thus, the production of neutralizing mAb and recombinant scFv antibodies against WSSV has a promising therapeutic potential in prevention and treatment of white spot disease of shrimp.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Liangyin He
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
4
|
Hsu JCK, Huang HT, Lin HJ, Chou HY, Huang PY, Prachumwat A, Chen LL. Applying Modified VP53A Recombinant Protein as an Anti-White Spot Syndrome Virus Biological Agent in Litopenaeus vannamei Farming. Viruses 2022; 14:v14071353. [PMID: 35891334 PMCID: PMC9324474 DOI: 10.3390/v14071353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Shrimp farming is an important economic activity. However, due to the spread of pathogens, shrimp aquaculture is becoming increasingly difficult. Many studies have confirmed that white spot syndrome virus (WSSV) recombinant proteins can inhibit viral infection. Among them, VP53 recombinant protein has been found to reduce mortality upon WSSV challenge. This study was conducted in Kaohsiung, Taiwan and reports the first field feeding trial to demonstrate that WSSV recombinant proteins can improve shrimp survival rates at a farming scale. Prior to the feeding trial, the shrimp were confirmed to be slightly infected with WSSV, Vibrio parahaemolyticus strains causing acute hepatopancreatic necrosis disease (AHPND), non-AHPND V. parahaemolyticus strains, and Enterocytozoon hepatopenaei (EHP), which are common pathogens that shrimp farmers often face. The shrimp were then divided into two groups: a control group (C group) fed with a commercial diet and a protein group (P group) fed with the same commercial feed with VP53 recombinant protein. Our findings indicated that the survival rate and expression of immune genes of the P group were higher than those of the C group. The intestinal microbiota of the two groups were also analysed. Collectively, our results confirmed that the recombinant WSSV envelope protein derivative can be used as an effective anti-virus biological agent in shrimp farms.
Collapse
Affiliation(s)
- Jeff Chia-Kai Hsu
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Innocreate Bioscience Co., Ltd., Zhonghe District, New Taipei City 23557, Taiwan
| | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; (H.-T.H.); (H.-Y.C.)
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Hsin-Yiu Chou
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; (H.-T.H.); (H.-Y.C.)
| | - Po-Yu Huang
- Department of Life Science, National Taitung University, Taitung 95092, Taiwan;
| | - Anuphap Prachumwat
- Aquatic Animal Health Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (A.P.); (L.-L.C.)
| | - Li-Li Chen
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- Correspondence: (A.P.); (L.-L.C.)
| |
Collapse
|
5
|
Tran NT, Liang H, Zhang M, Bakky MAH, Zhang Y, Li S. Role of Cellular Receptors in the Innate Immune System of Crustaceans in Response to White Spot Syndrome Virus. Viruses 2022; 14:v14040743. [PMID: 35458473 PMCID: PMC9028835 DOI: 10.3390/v14040743] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 01/27/2023] Open
Abstract
Innate immunity is the only defense system for resistance against infections in crustaceans. In crustaceans, white spot diseases caused by white spot syndrome virus (WSSV) are a serious viral disease with high accumulative mortality after infection. Attachment and entry into cells have been known to be two initial and important steps in viral infection. However, systematic information about the mechanisms related to WSSV infection in crustaceans is still limited. Previous studies have reported that cellular receptors are important in the innate immune system and are responsible for the recognition of foreign microorganisms and in the stimulation of the immune responses during infections. In this review, we summarize the current understanding of the functions of cellular receptors, including Toll, C-type lectin, scavenger receptor, β-integrin, polymeric immunoglobulin receptor, laminin receptor, globular C1q receptor, lipopolysaccharide-and β-1,3-glucan-binding protein, chitin-binding protein, Ras-associated binding, and Down syndrome cell adhesion molecule in the innate immune defense of crustaceans, especially shrimp and crabs, in response to WSSV infection. The results of this study provide information on the interaction between viruses and hosts during infections, which is important in the development of preventative strategies and antiviral targets in cultured aquatic animals.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Huifen Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Md. Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
- Correspondence: ; Tel.: +86-754-86502485; Fax: +86-754-86503473
| |
Collapse
|
6
|
Mekata T. Strategy for understanding the biological defense mechanism involved in immune priming in kuruma shrimp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104228. [PMID: 34363834 DOI: 10.1016/j.dci.2021.104228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Since the 1970s, individuals that survive a specific infectious disease among crustaceans reportedly develop resistance to the given virulence factors. Quasi-immune response is a similar phenomenon of acquired resistance against white spot syndrome virus, also found in kuruma shrimp. This phenomenon, resembling immunological memory, is collectively called immune priming and recently attracts increasing attention. In this study, I review, along with recent findings, past attempts to immunize shrimp by administration of the pathogen itself or recombinant proteins of viral constituent factors. Moreover, I aimed at investigating the diversity of pattern recognition receptors in kuruma shrimp from the currently available information that allows for a better understanding of immune priming. This review would potentially help to elucidate the underlying mechanisms of immune priming in the future.
Collapse
Affiliation(s)
- Tohru Mekata
- Pathology Division, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Mie, Japan.
| |
Collapse
|
7
|
Parenrengi A, Tenriulo A, Mulyaningrum SRH, Suryati E, Rosmiati R, Lante S, Nawang A. Effect of different doses of dsRNA VP15 vaccine for controlling white spot syndrome virus infection in tiger shrimp Penaeus monodon. IOP CONFERENCE SERIES: EARTH AND ENVIRONMENTAL SCIENCE 2021; 860:012031. [DOI: 10.1088/1755-1315/860/1/012031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Somsoros W, Sangawa T, Takebe K, Attarataya J, Wongprasert K, Senapin S, Rattanarojpong T, Suzuki M, Khunrae P. Crystal structure of the C-terminal domain of envelope protein VP37 from white spot syndrome virus reveals sulphate binding sites responsible for heparin binding. J Gen Virol 2021; 102. [PMID: 34106826 DOI: 10.1099/jgv.0.001611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
White spot syndrome virus (WSSV) is the most virulent pathogen causing high mortality and economic loss in shrimp aquaculture and various crustaceans. Therefore, the understanding of molecular mechanisms of WSSV infection is important to develop effective therapeutics to control the spread of this viral disease. In a previous study, we found that VP37 could bind with shrimp haemocytes through the interaction between its C-terminal domain and heparin-like molecules on the shrimp cells, and this interaction can also be inhibited by sulphated galactan. In this study, we present the crystal structure of C-terminal domain of VP37 from WSSV at a resolution of 2.51 Å. The crystal structure contains an eight-stranded β-barrel fold with an antiparallel arrangement and reveals a trimeric assembly. Moreover, there are two sulphate binding sites found in the position corresponding to R213 and K257. In order to determine whether these sulphate binding sites are involved in binding of VP37 to heparin, mutagenesis was performed to replace these residues with alanine (R213A and K257A), and the Surface Plasmon Resonance (SPR) system was used to study the interaction of each mutated VP37 with heparin. The results showed that mutants R213A and K257A exhibited a significant loss in heparin binding activity. These findings indicated that the sites of R213 and K257 on the C-terminal domain of envelope protein VP37 are essential for binding to sulphate molecules of heparin. This study provides further insight into the structure of C-terminal domain of VP37 and it is anticipated that the structure of VP37 might be used as a guideline for development of antivirus agent targeting on the VP37 protein.
Collapse
Affiliation(s)
- Wasusit Somsoros
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Takeshi Sangawa
- Institute for Protein Research, Osaka University; 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Katsuki Takebe
- Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jakrada Attarataya
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Saengchan Senapin
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Bangkok, 10400, Thailand.,National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Triwit Rattanarojpong
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Mamoru Suzuki
- Institute for Protein Research, Osaka University; 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| |
Collapse
|
9
|
Huang PY, Huang YH, Leu JH, Chen LL. Feasibility Study on the Use of Fly Maggots ( Musca domestica) as Carriers to Inhibit Shrimp White Spot Syndrome. Life (Basel) 2021; 11:life11080818. [PMID: 34440562 PMCID: PMC8402094 DOI: 10.3390/life11080818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
The shrimp aquaculture industry has encountered many diseases that have caused significant losses, with the most serious being white spot syndrome (WSS). Until now, no cures, vaccines, or drugs have been found to counteract the WSS virus (WSSV). The purpose of this study was to develop an oral delivery system to transport recombinant proteinaceous antigens into shrimp. To evaluate the feasibility of the oral delivery system, we used white shrimp as the test species and maggots as protein carriers. The results indicated that the target protein was successfully preserved in the maggot, and the protein was detected in the gastrointestinal tract of the shrimp, showing that this oral delivery system could deliver the target protein to the shrimp intestine, where it was absorbed. In addition, the maggots were found to increase the total haemocyte count and phenoloxidase activity of the shrimp, and feeding shrimp rVP24-fed maggots significantly induced the expression of penaeidins 2. In the WSSV challenge, the survival rate of rVP24-fed maggots was approximately 43%. This study showed that maggots can be used as effective oral delivery systems for aquatic products and may provide a new method for aquatic vaccine delivery systems.
Collapse
Affiliation(s)
- Po-Yu Huang
- Centre of Excellence for the Oceans, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan;
| | - Yi-Hsuan Huang
- Institute of Marine Biology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan; (Y.-H.H.); (J.-H.L.)
| | - Jiann-Horng Leu
- Institute of Marine Biology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan; (Y.-H.H.); (J.-H.L.)
| | - Li-Li Chen
- Centre of Excellence for the Oceans, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan;
- Institute of Marine Biology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan; (Y.-H.H.); (J.-H.L.)
- Correspondence: ; Tel.: +886-2-2462-2192 (ext. 5302)
| |
Collapse
|
10
|
Boonyakida J, Xu J, Satoh J, Nakanishi T, Mekata T, Kato T, Park EY. Identification of antigenic domains and peptides from VP15 of white spot syndrome virus and their antiviral effects in Marsupenaeus japonicus. Sci Rep 2021; 11:12766. [PMID: 34140570 PMCID: PMC8211838 DOI: 10.1038/s41598-021-92002-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
White spot syndrome virus (WSSV) is one of the most devastating pathogens in penaeid shrimp and can cause massive damage in shrimp aquaculture industries. Previously, the WSSV structural protein VP15 was identified as an antigenic reagent against WSSV infections. In this study, we truncated this protein into VP15(1–25), VP15(26–57), VP15(58–80), and VP15(1–25,58–80). The purified proteins from the E. coli expression system were assayed as potential protective agents in Kuruma shrimp (Marsupenaeus japonicus) using the prime-and-boost strategy. Among the four truncated constructs, VP15(26–57) provided a significant improvement in the shrimp survival rate after 20 days of viral infection. Subsequently, four peptides (KR11, SR11, SK10, and KK13) from VP15(26–57) were synthesized and applied in an in vivo assay. Our results showed that SR11 could significantly enhance the shrimp survival rate, as determined from the accumulated survival rate. Moreover, a multiligand binding protein with a role in the host immune response and a possible VP15-binding partner, MjgC1qR, from the host M. japonicus were employed to test its binding with the VP15 protein. GST pull-down assays revealed that MjgC1qR binds with VP15, VP15(26–57), and SR11. Taken together, we conclude that SR11 is a determinant antigenic peptide of VP15 conferring antiviral activity against WSSV.
Collapse
Affiliation(s)
- Jirayu Boonyakida
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Jian Xu
- Institute of Biology and Information Science, Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Jun Satoh
- Fisheries Technology Institute of National Research and Development Agency, Japan Fisheries Research and Education Agency, Tamaki Field Station, Mie, 519-0423, Japan
| | - Takafumi Nakanishi
- Department of Applied Biological Chemistry, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Tohru Mekata
- Fisheries Technology Institute of National Research and Development Agency, Japan Fisheries Research and Education Agency, Namsei Field Station, Mie, 516-0193, Japan
| | - Tatsuya Kato
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.,Department of Applied Biological Chemistry, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan. .,Department of Applied Biological Chemistry, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan. .,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
11
|
Wu J, Wang X, Xiao L, Wang F, Zhang Y, Li X. Synthetic Protein Scaffolds for Improving R-(-)-Linalool Production in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5663-5670. [PMID: 33983023 DOI: 10.1021/acs.jafc.1c01101] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
R-(-)-Linalool is widely used in the pharmaceutical, agrochemical, and fragrance industries; however, its applications are limited owing to low yield and high cost of production. To improve the production efficiency of R-(-)-linalool in Escherichia coli, three enzymes [E. coli-derived isopentenyl diphosphate isomerase, Abies grandis-derived geranyl diphosphate synthase, and Streptomyces clavuligerus-derived (3R)-linalool synthases] were physically colocalized to synthetic complexes using synthetic protein scaffolds of GTPase-binding domain, Src homology 3, and PSD95/DlgA/Zo-1. R-(-)-Linalool was produced at the highest concentration in the strain IGL114 containing a scaffold ratio of 1:1:4. By further optimizing the inducer, temperature, and glycerol concentration, the production titer of R-(-)-linalool in the shake flask was increased by approximately 10 times compared with that of the scaffold-free control and was 2.78 times the previously reported yield. The production in the fermenter was about 1.5 times the previous highest production. In general, the final strain accumulated 277.8 and 1523.2 mg/L R-(-)-linalool under the conditions of shake-flask and fed-batch fermentation, respectively. This study provides a foundation for the assembly of bacterial intracellular protein scaffolds.
Collapse
Affiliation(s)
- Jing Wu
- Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Xun Wang
- Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Longjie Xiao
- Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Fei Wang
- Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Zhang
- Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Xun Li
- Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
12
|
Liu WJ, Chang YS, Chen PY, Wu SP. F1 ATP synthase β subunit is a putative receptor involved in white spot syndrome virus infection in shrimp by binding with viral envelope proteins VP51B and VP150. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103810. [PMID: 32750398 DOI: 10.1016/j.dci.2020.103810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
White spot syndrome virus (WSSV) is highly virulent toward shrimp, and F1 ATP synthase β subunit (ATPsyn-β) has been suggested to be involved in WSSV infection. Therefore, in this study, interactions between Penaeus monodon ATPsyn-β (PmATPsyn-β) and WSSV structural proteins were characterized. Based on the results of yeast two-hybrid, co-immunoprecipitation, and protein pull-down assays, WSSV VP51B and VP150 were identified as being able to interact with PmATPsyn-β. Membrane topology assay results indicated that VP51B and VP150 are envelope proteins with large portions exposed outside the WSSV virion. Cellular localization assay results demonstrated that VP51B and VP150 co-localize with PmATPsyn-β on the membranes of transfected cells. Enzyme-linked immunosorbent assay (ELISA) and competitive ELISA results demonstrated that VP51B and VP150 bound to PmATPsyn-β in a dose-dependent manner, which could be competitively inhibited by the addition of WSSV virions. In vivo neutralization assay results further showed that both recombinant VP51B and VP150 could delay mortality in shrimp challenged with WSSV.
Collapse
Affiliation(s)
- Wang-Jing Liu
- Department of Earth and Life Science, University of Taipei, Taipei, Taiwan.
| | - Yun-Shiang Chang
- Department of Biomedical Sciences, Da-Yeh University, Changhua, Taiwan
| | - Pin-Yu Chen
- Department of Earth and Life Science, University of Taipei, Taipei, Taiwan
| | - Shu-Ping Wu
- Department of Earth and Life Science, University of Taipei, Taipei, Taiwan
| |
Collapse
|
13
|
In silico studies on the interaction of phage displayed biorecognition element (TFQAFDLSPFPS) with the structural protein VP28 of white spot syndrome virus. J Mol Model 2020; 26:264. [PMID: 32914310 DOI: 10.1007/s00894-020-04524-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/26/2020] [Indexed: 01/21/2023]
Abstract
White spot disease caused by the white spot syndrome virus (WSSV) incurs a huge loss to the shrimp farming industry. Since no effective therapeutic measures are available, early detection and prevention of the disease are indispensable. Towards this goal, we previously identified a 12-mer phage displayed peptide (designated as pep28) with high affinity for VP28, the structural protein of the white spot syndrome virus (WSSV). The peptide pep28 was successfully used as a biorecognition probe in the lateral flow assay developed for rapid, on-site detection of WSSV. To unravel the structural determinants for the selective binding between VP28 and pep28, we used bioinformatics, structural modeling, protein-protein docking, and binding-free energy studies. We performed atomistic molecular dynamics simulations of pep28-pIII model totaling 300 ns timescale. The most representative pep28-pIII structure from the simulation was used for docking with the crystal structure of VP28. Our results reveal that pep28 binds in a surface groove of the monomeric VP28 β-barrel and makes several hydrogen bonds and non-polar interactions. Ensemble-based binding-free energy studies reveal that the binding is dominated by non-polar interactions. Our studies provide molecular level insights into the binding mechanism of pep28 with VP28, which explain why the peptide is selective and can assist in modifying pep28 for its practical use, both as a biorecognition probe and a therapeutic.
Collapse
|
14
|
Boonyakida J, Xu J, Satoh J, Nakanishi T, Mekata T, Kato T, Park EY. Antigenic properties of VP15 from white spot syndrome virus in kuruma shrimp Marsupenaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2020; 101:152-158. [PMID: 32234560 DOI: 10.1016/j.fsi.2020.03.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
White spot syndrome virus (WSSV) is known as one of the most lethal pathogenic viruses in shrimp causing massive damage to shrimp aquaculture industries. To date, no effective treatment or prevention has been found. In this study, five recombinant viral proteins VP15, VP19, VP24, VP26, and VP28 were expressed and purified in E. coli, which were employed as candidates against WSSV in Kuruma shrimp Marsupenaeus japonicus. In vivo antiviral assay in this study newly revealed that VP15 of major nucleocapsid protein, being known as a DNA-binding protein provided the substantial protection against the viral infection when pre-injected into shrimps. Furthermore, we also verified the immunogenic effects of purified VP15 and VP19 proteins produced in a silkworm-bacmid expression system. Taken together, our study identified VP15 as an effective candidate against WSSV infection in the Kuruma shrimp. It is interesting to uncover why and how VP15 is involved in the immune memory in shrimp in the future study.
Collapse
Affiliation(s)
- Jirayu Boonyakida
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Jian Xu
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Jun Satoh
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Saiki, Oita, Japan.
| | - Takafumi Nakanishi
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Toru Mekata
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Saiki, Oita, Japan.
| | - Tatsuya Kato
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
15
|
Zhang H, Cheng W, Zheng J, Wang P, Liu Q, Li Z, Shi T, Zhou Y, Mao Y, Yu X. Identification and Molecular Characterization of a Pellino Protein in Kuruma Prawn ( Marsupenaeus Japonicus) in Response to White Spot Syndrome Virus and Vibrio Parahaemolyticus Infection. Int J Mol Sci 2020; 21:ijms21041243. [PMID: 32069894 PMCID: PMC7072872 DOI: 10.3390/ijms21041243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
Kuruma prawn, Marsupenaeus japonicus, has the third largest annual yield among shrimp species with vital economic significance in China. White spot syndrome virus (WSSV) is a great threat to the global shrimp farming industry and results in high mortality. Pellino, a highly conserved E3 ubiquitin ligase, has been found to be an important modulator of the Toll-like receptor (TLR) signaling pathways that participate in the innate immune response and ubiquitination. In the present study, the Pellino gene from Marsupenaeus japonicus was identified. A qRT-PCR assay showed the presence of MjPellino in all the tested tissues and revealed that the transcript level of this gene was significantly upregulated in both the gills and hemocytes after challenge with WSSV and Vibrio parahaemolyticus. The function of MjPellino was further verified at the protein level. The results of the three-dimensional modeling and protein-protein docking analyses and a GST pull-down assay revealed that the MjPellino protein was able to bind to the WSSV envelope protein VP26. In addition, the knockdown of MjPellino in vivo significantly decreased the expression of MjAMPs. These results suggest that MjPellino might play an important role in the immune response of kuruma prawn.
Collapse
Affiliation(s)
- Heqian Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (Q.L.); (Z.L.)
| | - Wenzhi Cheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Jinbin Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Panpan Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Qinghui Liu
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (Q.L.); (Z.L.)
| | - Zhen Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (Q.L.); (Z.L.)
| | - Tianyi Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Yijian Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
- Correspondence: (Y.M.); (X.Y.)
| | - Xiangyong Yu
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (Q.L.); (Z.L.)
- Correspondence: (Y.M.); (X.Y.)
| |
Collapse
|
16
|
Yang F, Li X, Li S, Xiang J, Li F. A novel cuticle protein involved in WSSV infection to the Pacific white shrimp Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103491. [PMID: 31494218 DOI: 10.1016/j.dci.2019.103491] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
As the most productive crustacean species in aquaculture, Litopenaeus vannamei is seriously threatened by white spot syndrome virus (WSSV), which has caused huge economic damage in the past decades. Shrimp cuticle proteins are the important components in the frontier target tissues, including cuticle and the chitinous lining of the digestive tract. In present study, a novel cuticle protein gene, named LvCPAP1, was isolated and demonstrated to play an important role in WSSV infection. The deduced amino acid sequence of LvCPAP1 contained a signal peptide and a conserved chitin-binding domain type 2 (ChBD2). Tissue distribution analysis revealed that LvCPAP1 was predominantly expressed in epidermis and stomach. The transcription levels of LvCPAP1 in epidermis and stomach were significantly regulated upon WSSV challenge. DsRNA silencing of LvCPAP1 decreased the in vivo WSSV copy numbers and the death rate of shrimp after WSSV infection, indicating that LvCPAP1 might facilitate WSSV invasion. In addition, the interaction between LvCPAP1 and the major envelop protein VP24 of WSSV was revealed by yeast two-hybrid system and further confirmed by dot blot and pull-down assays. The present study implied that cuticle protein LvCPAP1 might favor the entry process of WSSV, which provided new clues for understanding the role of cuticle proteins during virus infection.
Collapse
Affiliation(s)
- Feifei Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xuechun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| |
Collapse
|
17
|
Zheng SC, Xu JY, Liu HP. Cellular entry of white spot syndrome virus and antiviral immunity mediated by cellular receptors in crustaceans. FISH & SHELLFISH IMMUNOLOGY 2019; 93:580-588. [PMID: 31398395 DOI: 10.1016/j.fsi.2019.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/06/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Enveloped virus usually utilizes the receptor-mediated multiple endocytic routes to enter permissive host cells for successful infection. Cellular receptors are cell surface molecules, either by helping viral attachment to cell surface followed by internalization or by triggering antiviral immunity, participate in the viral-host interaction. White spot syndrome virus (WSSV), the most lethally viral pathogen with envelope and double strand DNA genome in crustacean farming, including shrimp and crayfish, has been recently found to recruit various endocytic routes for cellular entry into host cells. Meanwhile, other than the typical pattern recognition receptors for recognition of WSSV, more and more putative cellular receptors have lately been characterized to facilitate or inhibit WSSV entry. In this review, recent findings on the endocytosis-dependent WSSV entry, viral entry mediated by putative cellular receptors, the molecular interplay between WSSV and cellular receptors, and the following anti-WSSV immunity are summarized and discussed, which may provide us a better understanding of the WSSV pathogenesis and further possible antiviral control of white spot disease in crustacean farming.
Collapse
Affiliation(s)
- Shu-Cheng Zheng
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jiao-Yang Xu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
18
|
Li L, Hong Y, Qiu H, Yang F, Li F. VP19 is important for the envelope coating of white spot syndrome virus. Virus Res 2019; 270:197666. [PMID: 31306682 DOI: 10.1016/j.virusres.2019.197666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
VP19 is a major envelope protein of white spot syndrome virus (WSSV), an important pathogen of farmed shrimp. However, the exact function of VP19 in WSSV assembly and infection is unknown. To understand the function of VP19, the gene was knocked down by RNA interference. We found that the dsRNA specific for vp19 gene dramatically reduced the replication of WSSV genomic DNA in infected animals. Further investigation by transmission electron microscopy showed that inhibition of VP19 prevented envelope coating of progeny virions, resulting in a high amount of immature virus particles without outer layer (envelope) in the host cells. This finding was further confirmed by SDS-PAGE analysis, which showed the loss of VP19 and other envelope proteins from the improperly assembled virions. These results suggest that VP19 is essential for WSSV envelope coating.
Collapse
Affiliation(s)
- Li Li
- College of Tea and Food Science, Wuyi University, Wuyishan, Fujian, China
| | - Yongcong Hong
- College of Tea and Food Science, Wuyi University, Wuyishan, Fujian, China
| | - Huaina Qiu
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fang Li
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
| |
Collapse
|
19
|
Lu Y, Qiu Q, Li C, Cheng L, Liu J. Computational identification of self-inhibitory peptides from white spot syndrome virus envelope protein VP28. AQUACULTURE REPORTS 2019; 14:100195. [PMID: 32289063 PMCID: PMC7104047 DOI: 10.1016/j.aqrep.2019.100195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/31/2019] [Accepted: 04/08/2019] [Indexed: 06/11/2023]
Abstract
Since effective chemotherapeutics or preventive measures are still unavailable, finding feasible approaches against white spot syndrome virus (WSSV) has always been the vital subject in shrimp farming field. Envelope proteins are the ideal targets for antiviral strategies development due to their indispensable roles in virus entry, and inhibitory peptides targeting them have been proved to be promising in blocking virus infection. In this study, the Wimley-White interfacial hydrophobicity scale (WWIHS) in combination with known structural data was applied to identify potential inhibitory peptides that targeted the envelope protein VP28 of WSSV. Results showed that two potential inhibitory peptides were identified, one of which exhibited not only obvious antiviral activity, but also broad-spectrum antimicrobial activity. The inhibitory peptide identified here can serve as a lead compound for anti-WSSV strategies development.
Collapse
Affiliation(s)
- Yongzhong Lu
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, No. 53, Zhengzhou Road, 266042, Qingdao, China
| | - Qian Qiu
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, No. 53, Zhengzhou Road, 266042, Qingdao, China
| | - Chen Li
- Yellow Sea Fisheries Research Institute, Chinese Academy Of Fishery Sciences, No. 106, Nanjing Road, 266071, Qingdao, China
| | - Linyue Cheng
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, No. 53, Zhengzhou Road, 266042, Qingdao, China
| | - Jie Liu
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, No. 53, Zhengzhou Road, 266042, Qingdao, China
| |
Collapse
|
20
|
Thipwong J, Saelim H, Panrat T, Phongdara A. Penaeus monodon GILT enzyme restricts WSSV infectivity by reducing disulfide bonds in WSSV proteins. DISEASES OF AQUATIC ORGANISMS 2019; 135:59-70. [PMID: 31244485 DOI: 10.3354/dao03377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gamma-interferon-inducible lysosomal thiol reductase (GILT) is involved in the adaptive immune response via its effects on major histocompatibility complex (MHC)-restricted antigen presentation. In addition to antigen presentation, GILT exerts its antiviral activity by reducing disulfide bonds in proteins involved in viral infection and assembly, thereby inhibiting viral envelope-mediated infection and viral progeny production. In black tiger shrimp, Penaeus monodon GILT (PmGILT) was cloned and characterized, and found to be involved in the shrimp innate immune response and to exert neutralizing activity against white spot syndrome virus (WSSV) infection. However, the anti-WSSV mechanism of PmGILT in the shrimp innate immune response has not been defined. To explore the anti-WSSV activity of PmGILT, a yeast 2-hybrid (Y2H) assay was performed to identify WSSV proteins targeted by PmGILT. The assay revealed 4 potential PmGILT-interacting WSSV proteins: WSSV002, WSSV164, WSSV189, and WSSV471. Three of these 4 WSSV proteins (WSSV002, WSSV164 and WSSV189) were successfully produced and confirmed to interact with PmGILT in in vitro pull-down assays. WSSV189 and WSSV471 were previously identified as structural proteins, whereas WSSV164 is an immediate-early protein which has anti-melanization activity, and WSSV002 is an unknown. Because of the thiol reductase activity of PmGILT, WSSV164 and WSSV189, both of which are cysteine-containing WSSV proteins, were chosen for disulfide bond reduction assays. PmGILT reduced intrachain disulfide bonds in both WSSV proteins, suggesting that PmGILT exerts its anti-WSSV activity via its thiol reductase activity to disrupt the WSSV protein complex and restore the melanization activity of PmproPO1 and PmproPO2.
Collapse
Affiliation(s)
- Jaturon Thipwong
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | | | | | | |
Collapse
|
21
|
Yuan Z, Chen M, Wang J, Li Z, Geng X, Sun J. Identification of Litopenaeus vannamei BiP as a novel cellular attachment protein for white spot syndrome virus by using a biotinylation based affinity chromatography method. FISH & SHELLFISH IMMUNOLOGY 2018; 79:130-139. [PMID: 29738871 DOI: 10.1016/j.fsi.2018.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/09/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
White spot syndrome virus (WSSV) is a dangerous threat to shrimp farming that also attacks a wide range of crustaceans. Knowledge of the surface protein-protein interactions between the pathogen and host is very crucial to unraveling the molecular pathogenesis mechanisms of WSSV. In this study, LvBiP (Litopenaeus vannamei immunoglobulin heavy-chain-binding protein) was identified as a novel WSSV binding protein of L. vannamei by a biotinylation based affinity chromatography method. By using pull-down and ELISA assays, the binding of recombinant LvBiP to WSSV was proved to be specific and ATP- dependent. The interaction was also confirmed by the result of co-immunoprecipitation assay. Immunofluorescence studies revealed the co-localization of LvBiP with WSSV on the cell surface of shrimp haemocytes. Additionally, LvBiP is likely to play an important role in WSSV infection. Treatment of gill cellular membrane proteins (CMPs) with purified rLvBiP and antibody that specifically recognizes LvBiP, led to a significant reduction in the binding of WSSV to gill CMPs. In the in vivo neutralization assay, rLvBiP and anti-LvBiP polyclonal antibody partially blocked the infection of WSSV. Taken together, the results indicate that LvBiP, a molecular chaperon of the HSP70 family, is a novel host factor involved at the step of attachment of the WSSV to the host cells and a potential candidate of therapeutic target.
Collapse
Affiliation(s)
- Zengzhi Yuan
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin, 300387, PR China; College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, PR China
| | - Meng Chen
- College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, PR China
| | - Jingting Wang
- College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, PR China
| | - Zhuoyu Li
- College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, PR China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, 442 South Jiefang Road, Hexi District, Tianjin 300221, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin, 300387, PR China; College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, PR China.
| |
Collapse
|
22
|
Sotanon N, Saleeart A, Rattanarojpong T, Thanh Dong H, Senapin S, Wongprasert K, Sarikavanij S, Khunrae P. C-terminal domain of WSSV VP37 is responsible for shrimp haemocytes binding which can be inhibited by sulfated galactan. FISH & SHELLFISH IMMUNOLOGY 2018; 77:312-318. [PMID: 29601994 DOI: 10.1016/j.fsi.2018.03.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/15/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Viral envelope proteins play an important role in facilitating the attachment of viruses to the surface of host cells. Here, we investigated the binding of White Spot Syndrome Virus (WSSV) VP37 to haemocytes of whiteleg shrimp, Litopenaeus vannamei. Three versions of recombinant VP37 proteins, including full length VP37 (VP37(1-281)), C-terminal domain VP37 (VP37(111-281)) and C-terminal domain disrupted VP37 (VP37(1-250)) were individually expressed and tested for their haemocytes binding ability. Through an ELISA-based binding assay, we found that VP37(111-281) bound to shrimp haemocytes in a similar way to VP37(1-281), while VP37(1-250) exhibited a significantly weaker binding. This suggests that the C-terminal domain of VP37 is required for the binding of VP37 to shrimp haemocytes. Furthermore, we found that the binding of VP37 to shrimp haemocytes was impaired by pre-incubation of VP37 with sulfated galactan (SG), a sulfated polysaccharide derived from red seaweed (Gracilaria fisheri). Previously, it has been shown that a type of sulfated polysaccharide, heparin, is also present in L. vannamei. To investigate the role of heparin as a receptor for VP37, the binding of VP37 to porcine heparin, whose structure is similar to that found in L.vannamei, was investigated in a Surface Plasmon Resonance (SPR) system. The results showed that VP37 bound strongly to heparin with binding affinity (KD) of 1.0 μM and the binding was significantly blocked by SG. These findings have lead us to propose that the attachment of WSSV might be mediated by the interaction between VP37 and a heparin-like molecule presented on the shrimp cells.
Collapse
Affiliation(s)
- Nantharat Sotanon
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
| | - Anchulee Saleeart
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
| | - Triwit Rattanarojpong
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
| | - Ha Thanh Dong
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Bangkok, 10400, Thailand
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd, Rajdhevi, Bangkok 10400, Thailand
| | - Sukuman Sarikavanij
- Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand.
| |
Collapse
|
23
|
Yang F, Li S, Li F, Xiang J. A cuticle protein from the Pacific white shrimp Litopenaeus vannamei involved in WSSV infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:303-311. [PMID: 29274789 DOI: 10.1016/j.dci.2017.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
White spot syndrome virus (WSSV) is a major viral pathogen in global shrimp farming, causing huge economic damage. Through penetrating the outer surface of the target tissues, WSSV enters into the cells of the target tissue to complete the replication process in the host. In the present study, a cuticle protein gene from Litopenaeus vannamei, designated as LvAMP13.4, was identified and proved to be involved in WSSV invasion. The deduced amino acid sequence of LvAMP13.4 contained a signal peptide and a conserved chitin-binding domain type 4 (ChBD4). This cuticle protein gene was mainly expressed in stomach, gill and epidermis. The expression level of LvAMP13.4 was significantly changed during WSSV infection. Silencing of LvAMP13.4 by dsRNA interference apparently reduced the mortality rate and the WSSV copy number in shrimp upon WSSV infection. Furthermore, yeast two-hybrid system and Co-IP assay were performed to confirm that LvAMP13.4 could interact with the major envelop protein VP24 of WSSV. These data indicated that LvAMP13.4 was involved in the invasion process of WSSV through interaction with VP24. The present results could provide new insights for us in understanding the role of host cuticle proteins during virus invasion.
Collapse
Affiliation(s)
- Feifei Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
24
|
Han Y, Li F, Xu L, Yang F. A VP24-truncated isolate of white spot syndrome virus is inefficient in per os infection. Vet Res 2017; 48:87. [PMID: 29228988 PMCID: PMC5725807 DOI: 10.1186/s13567-017-0492-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/11/2017] [Indexed: 11/10/2022] Open
Abstract
White spot syndrome virus (WSSV) is a major pathogen of penaeid shrimp. Here we identified a new WSSV strain, WSSV-CN04, from naturally infected Marsupenaeus japonicus. Whole genomic sequencing results indicate that the WSSV-CN04 genome was 281 054 bp in length, and encoded 157 hypothetic proteins. The genome sequence of WSSV-CN04 was most closely related to the low-virulent strain WSSV-CN03, sharing 97.5% sequence identity. Notably, in WSSV-CN04, the major envelop protein VP24 was not only truncated but also absent in the virions. Since VP24 was previously reported to be essential for WSSV per os infection by mediating WSSV-chitin interaction, we further analyzed the peroral infection of WSSV-CN03 and -CN04 in Litopenaeus vannamei, and show that the infectivity of WSSV-CN04 was significantly lower than that of WSSV-CN03. When compared with WSSV-CN03-infected shrimp, fewer virions were detected in the digestive tract tissues of WSSV-CN04-infected shrimp at 4 hours post-infection (hpi), and the viral titers in the animals at 24 hpi were much lower. Moreover, a peptide corresponding to VP24 chitin-binding domain reduced the amount of WSSV-CN03 in the midgut to a level similar to that of WSSV-CN04 at 4 hpi. These findings indicate that the truncation of VP24 may attenuate the peroral infectivity of WSSV-CN04, and therefore verify the important role of VP24 in WSSV per os infection.
Collapse
Affiliation(s)
- Yali Han
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, China.,Fujian Key Laboratory of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
| | - Fang Li
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, China. .,Fujian Key Laboratory of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, China. .,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.
| | - Limei Xu
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, China.,Fujian Key Laboratory of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. .,Fujian Key Laboratory of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, China. .,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.
| |
Collapse
|
25
|
Verma AK, Gupta S, Singh SP, Nagpure NS. An update on mechanism of entry of white spot syndrome virus into shrimps. FISH & SHELLFISH IMMUNOLOGY 2017; 67:141-146. [PMID: 28587833 DOI: 10.1016/j.fsi.2017.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/29/2017] [Accepted: 06/03/2017] [Indexed: 05/19/2023]
Abstract
Host-parasite relationships can be best understood at the level of protein-protein interaction between host and pathogen. Such interactions are instrumental in understanding the important stages of life cycle of pathogen such as adsorption of the pathogen on host surface followed by effective entry of pathogen into the host body, movement of the pathogen across the host cytoplasm to reach the host nucleus and replication of the pathogen within the host. White Spot Disease (WSD) is a havoc for shrimps and till date no effective treatment is available against the disease. Moreover information regarding the mechanism of entry of White Spot Syndrome Virus (WSSV) into shrimps, as well as knowledge about the protein interactions occurring between WSSV and shrimp during viral entry are still at very meagre stage. A cumulative and critically assessed information on various viral-shrimp interactions occurring during viral entry can help to understand the exact pathway of entry of WSSV into the shrimp which in turn can be used to device drugs that can stop the entry of virus into the host. In this context, we highlight various WSSV and shrimp proteins that play role in the entry mechanism along with the description of the interaction between host and pathogen proteins.
Collapse
Affiliation(s)
- Arunima Kumar Verma
- Department of Zoology, Autonomous Government P.G. College, Satna, Madhya Pradesh, India.
| | - Shipra Gupta
- Bioinformatics Centre, Biotech Park, Sector-G, Jankipuram, Lucknow, 226021, Uttar Pradesh, India
| | - Shivesh Pratap Singh
- Department of Zoology, Autonomous Government P.G. College, Satna, Madhya Pradesh, India
| | - Naresh Sahebrao Nagpure
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Mumbai, 40006, India
| |
Collapse
|
26
|
Recent progress in the development of white spot syndrome virus vaccines for protecting shrimp against viral infection. Arch Virol 2017. [DOI: 10.1007/s00705-017-3450-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Lee YJ, Chen LL. WSSV envelope protein VP51B links structural protein complexes and may mediate virus infection. JOURNAL OF FISH DISEASES 2017; 40:571-581. [PMID: 27454323 DOI: 10.1111/jfd.12538] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 05/08/2023]
Abstract
White spot syndrome virus (WSSV), an enveloped double-stranded DNA virus, is the causative agent of a disease that has led to severe mortalities of cultured shrimps in Taiwan and many other countries. In the previous study, Penaeus monodon chitin-binding protein (CBP) and glucose transporter 1 (Glut1), two cell membrane proteins, were found to at least interact with other 10 WSSV envelope proteins including VP51B. These envelope proteins might form a protein complex. According to the known information, VP51B was used to identify its role in the protein complex. Western blotting of the intact viral particles and fractionation of the viral components confirmed that VP51B is one of WSSV envelope proteins. In this study, the protein-protein interaction between VP51B and other WSSV envelope proteins was identified by far-western blot experiment and VP51B was found to interact with VP24, VP31, VP32, VP39B and VP41A. Furthermore, the in vivo neutralization experiment using recombinant VP51B plus with VP39B showed the best inhibition. These data indicate that VP51B participates in the WSSV protein complex and plays an important role in WSSV infection.
Collapse
Affiliation(s)
- Y J Lee
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - L L Chen
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan, ROC
| |
Collapse
|
28
|
Methatham T, Boonchuen P, Jaree P, Tassanakajon A, Somboonwiwat K. Antiviral action of the antimicrobial peptide ALFPm3 from Penaeus monodon against white spot syndrome virus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 69:23-32. [PMID: 27919648 DOI: 10.1016/j.dci.2016.11.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
The anti-lipopolysaccharide factor isoform 3 (ALFPm3), the antimicrobial peptide from Penaeus monodon, possesses antibacterial and antiviral activities. Although the mechanism of action of ALFPm3 against bacteria has been revealed but its antiviral mechanism is still unclear. To further study how the ALFPm3 exhibits antiviral activity against the enveloped virus, white spot syndrome virus (WSSV), the ALFPm3-interacting proteins from WSSV were sought and identified five ALFPm3-interacting proteins, WSSV186, WSSV189, WSSV395, WSSV458, and WSSV471. Only the interaction between ALFPm3 and WSSV189, however, has been confirmed to be involved in anti-WSSV activity of ALFPm3. Herein, the interactions between ALFPm3 and rWSSV186, rWSSV395, rWSSV458, or rWSSV471 were further analyzed and confirmed by in vitro pull-down assay. Western blot analysis and immunoelectron microscopy showed that the uncharacterized proteins, WSSV186 and WSSV471, were nucleocapsid and envelope proteins, respectively. The decrease of shrimp survival after injection the shrimp with mixtures of each rWSSV protein, rALFPm3 and WSSV as compared to those injected with rALFPm3-neutralizing WSSV was clearly observed indicating that all rWSSV proteins could interfere with the neutralization effect of rALFPm3 on WSSV similar to that reported previously for WSSV189. Morphological change on WSSV after incubation with rALFPm3 was observed by TEM. The lysed WSSV virions were clearly observed where both viral envelope and nucleocapsid were dismantled. The results lead to the conclusion that the ALFPm3 displays direct effect on the viral structural proteins resulting in destabilization and breaking up of WSSV virions.
Collapse
Affiliation(s)
- Thanachai Methatham
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand
| | - Pakpoom Boonchuen
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand
| | - Phattarunda Jaree
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand.
| |
Collapse
|
29
|
Sun L, Su Y, Zhao Y, Fu ZQ, Wu Y. Crystal Structure of Major Envelope Protein VP24 from White Spot Syndrome Virus. Sci Rep 2016; 6:32309. [PMID: 27572278 PMCID: PMC5004148 DOI: 10.1038/srep32309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/01/2016] [Indexed: 12/03/2022] Open
Abstract
White spot syndrome virus (WSSV) is one of the major and most serious pathogen in the shrimp industry. As one of the most abundant envelope protein, VP24 acts as a core protein interacting with other structure proteins and plays an important role in virus assembly and infection. Here, we have presented the crystal structure of VP24 from WSSV. In the structure, VP24 consists of a nine-stranded β–barrel fold with mostly antiparallel β-strands, and the loops extending out the β–barrel at both N-terminus and C-terminus, which is distinct to those of the other two major envelope proteins VP28 and VP26. Structural comparison of VP24 with VP26 and VP28 reveals opposite electrostatic surface potential properties of them. These structural differences could provide insight into their differential functional mechanisms and roles for virus assembly and infection. Moreover, the structure reveals a trimeric assembly, suggesting a likely natural conformation of VP24 in viral envelope. Therefore, in addition to confirming the evolutionary relationship among the three abundant envelope proteins of WSSV, our structural studies also facilitate a better understanding of the molecular mechanism underlying special roles of VP24 in WSSV assembly and infection.
Collapse
Affiliation(s)
- Lifang Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yintao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yanhe Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zheng-Qing Fu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Yunkun Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
30
|
Laminin Receptor in Shrimp Is a Cellular Attachment Receptor for White Spot Syndrome Virus. PLoS One 2016; 11:e0156375. [PMID: 27257954 PMCID: PMC4892510 DOI: 10.1371/journal.pone.0156375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/13/2016] [Indexed: 12/31/2022] Open
Abstract
White spot syndrome virus (WSSV, genus Whispovirus, family Nimaviridae) is causing huge economic losses in global shrimp farming, but there is no effective control. Shrimp cell laminin receptor (Lamr) may have a role in WSSV infection. The objective was to characterize interactions between Penaeus monodon Lamr (PmLamr) and WSSV structural proteins. In this study, PmLamr interacted with nine WSSV structural proteins (based on yeast two-hybrid screening), of which one (VP31) was characterized. Protein pull-down assay confirmed the interaction between PmLamr and VP31; the latter was an envelope protein exposed outside the WSSV virion (based on membrane topology assays). Furthermore, similar to mammalian Lamr, there were two major protein bands in shrimp cells. Cellular localization assay demonstrated VP31 co-localized with PmLamr on transfected cells. Enzyme-link immunosorbent assay (ELISA) and competitive ELISA demonstrated binding of VP31 on PmLamr was dose-dependent; however, addition of WSSV virion competed for binding affinity. Furthermore, based on an in vivo neutralization assay, both VP31 and PmLamr delayed mortality in shrimp challenged with WSSV. We concluded Lamr was an important receptor for WSSV infection and the viral envelope protein VP31 may have a role in host cell recognition and binding. These data contributed to elucidating pathogenesis of WSSV infection and may help in controlling this disease.
Collapse
|
31
|
Li Z, Li F, Han Y, Xu L, Yang F. VP24 Is a Chitin-Binding Protein Involved in White Spot Syndrome Virus Infection. J Virol 2016; 90:842-50. [PMID: 26512091 PMCID: PMC4702682 DOI: 10.1128/jvi.02357-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Oral ingestion is the major route of infection for the white spot syndrome virus (WSSV). However, the mechanism by which virus particles in the digestive tract invade host cells is unknown. In the present study, we demonstrate that WSSV virions can bind to chitin through one of the major envelope proteins (VP24). Mutagenesis analysis indicated that amino acids (aa) 186 to 200 in the C terminus of VP24 were required for chitin binding. Moreover, the P-VP24186-200 peptide derived from the VP24 chitin binding region significantly inhibited the VP24-chitin interaction and the WSSV-chitin interaction, implying that VP24 participates in WSSV binding to chitin. Oral inoculation experiments showed that P-VP24186-200 treatment reduced the number of virus particles remaining in the digestive tract during the early stage of infection and greatly hindered WSSV proliferation in shrimp. These data indicate that binding of WSSV to chitin through the viral envelope protein VP24 is essential for WSSV per os infection and provide new ideas for preventing WSSV infection in shrimp farms. IMPORTANCE In this study, we show that WSSV can bind to chitin through the envelope protein VP24. The chitin-binding domain of VP24 maps to amino acids 186 to 200 in the C terminus. Binding of WSSV to chitin through the viral envelope protein VP24 is essential for WSSV per os infection. These findings not only extend our knowledge of WSSV infection but also provide new insights into strategies to prevent WSSV infection in shrimp farms.
Collapse
Affiliation(s)
- Zaipeng Li
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Fang Li
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Yali Han
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Limei Xu
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| |
Collapse
|
32
|
Huang HT, Chan HL, Shih TY, Chen LL. A study of the role of glucose transporter 1 (Glut1) in white spot syndrome virus (WSSV) infection. FISH & SHELLFISH IMMUNOLOGY 2015; 46:305-314. [PMID: 26142142 DOI: 10.1016/j.fsi.2015.06.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 06/04/2023]
Abstract
White spot syndrome virus (WSSV) is a large enveloped DNA virus, and it causes a serious disease that has led to severe mortalities of cultured shrimps in many countries. To determine the mechanism of virus entry into the cell and to establish an antiviral strategy, the cell receptor for virus entry and receptor binding protein should be identified. A shrimp cell surface protein, glucose transporter1 (Glut1), was found to interact with WSSV in previous study. In this study, this Glut1 was confirmed to have the ability of transporting glucose, and this gene can also be found in other shrimp species. The interaction between Glut1 and some other WSSV envelope proteins in the infectome structure was verified by far western blot and His pull down assay. In vitro and in vivo neutralization using recombinant partial Glut1 revealed that the large extracellular portion of Glut1 could delay WSSV infection. Also, shrimps which were knocked-down Glut1 gene by treated with dsRNA before WSSV challenge showed decreased mortality. These results indeed provide a direction to develop efficient antiviral strategies or therapeutic methods by using Glut1.
Collapse
Affiliation(s)
- Huai-Ting Huang
- Institute of Marine Biology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan
| | - Hoi-Ling Chan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan
| | - Tsai-Yen Shih
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan
| | - Li-Li Chen
- Institute of Marine Biology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan; Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan.
| |
Collapse
|