1
|
Li M, Zheng H. Insights and progress on epidemic characteristics, pathogenesis, and preventive measures of African swine fever virus: A review. Virulence 2025; 16:2457949. [PMID: 39937724 PMCID: PMC11901552 DOI: 10.1080/21505594.2025.2457949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/16/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025] Open
Abstract
The African swine fever virus (ASFV) is the only giant double-stranded DNA virus known to be transmitted by insect vectors. It can infect pigs and cause clinical signs such as high fever, bleeding, and splenomegaly, which has been classified as a reportable disease by the WOAH. In 2018, African swine fever (ASF) was introduced into China and rapidly spread to several countries in the Asia-Pacific region, with morbidity and mortality rates reaching 100 percent, resulting in significant economic losses to the global pig industry. Because ASFV has large genomes and a complex escape host mechanism, there are currently no safe and effective drugs or vaccines against it. Therefore, it is necessary to optimize vaccination procedures and find effective treatments by studying the epidemiology of ASFV to reduce economic losses. This article reviews research progress on pathogenesis, genome, proteome and transcriptome, pathogenic mechanisms, and comprehensive control measures of ASFV infection.
Collapse
Affiliation(s)
- Mei Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
2
|
Hong SK, Cho KH, Kwon JH, Kim DW, Kim J, Kim DY, Kang HE, Lee JS, Kim YH. Pathological Characterization of African Swine Fever Viruses With Genetic Deletions Detected in South Korea. Transbound Emerg Dis 2025; 2025:9917280. [PMID: 40365486 PMCID: PMC12074837 DOI: 10.1155/tbed/9917280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/01/2025] [Indexed: 05/15/2025]
Abstract
African swine fever virus (ASFV) genotype II has been circulating in South Korea, causing substantial economic losses to the Korean pig industry since 2019. Genetic epidemiological investigations using whole-genome sequencing have been conducted to track the genetic evolution of ASFV. Two ASFV strains were detected in domestic pig farms in South Korea, one with a large deletion in the MGF 360-6L gene and the other in the MGF 360-21R gene. Phylogenetic analysis indicated that all Korean isolates belonged to the Asian subgroup of ASFV genotype II and were further divided into distinct subclusters of Korean African swine fever (ASF) group I. To identify the pathological changes caused by the deletion of MGF 360-6L and MGF 360-21R genes, we evaluated their pathogenicity in experimentally infected domestic pigs. No significant changes in pathogenicity were observed compared to other viruses evaluated in our previous studies. All inoculated pigs died 7-10 days post-inoculation (dpi), showing acute forms of illness with common pathological lesions. These results highlight that large genetic deletions can occur naturally in ASFV, but the deletions in MGF 360-6L and MGF 360-21R genes did not alter pathogenicity in domestic pigs. Further research is needed to understand the roles of these genes, especially in viral replication and pathogenicity in wild boars and ticks.
Collapse
Affiliation(s)
- Seong-Keun Hong
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Ki-Hyun Cho
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea
| | - Jung-Hoon Kwon
- College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Da-Won Kim
- College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jongho Kim
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea
| | - Da-Young Kim
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea
| | - Hae-Eun Kang
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Yeon-Hee Kim
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea
| |
Collapse
|
3
|
Auer A, Yohana AS, Settypalli TBK, Sallu R, Chang’a J, Bitanyi S, Kiambi SG, Meki IK, Dundon WG, Metlin A, Rozstalnyy A, Mbata GH, Okachu JA, Magwisha H, Hamis SA, Choga JT, Chalo SL, Kimutai J, Misinzo G, Nong’ona SW, Lyimo JE, Lamien CE. Farming Practices, Biosecurity Gaps, and Genetic Insights into African Swine Fever Virus in the Iringa and Ruvuma Regions of Tanzania. Animals (Basel) 2025; 15:1007. [PMID: 40218400 PMCID: PMC11987749 DOI: 10.3390/ani15071007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/14/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
African Swine Fever Virus (ASFV) genotype II dominates outbreaks in Tanzania's Southern Highlands, continuing to persist as the dominant strain over a decade after its first incursion in 2010. A total of 205 samples from 120 holdings were collected, with 21 confirmed ASFV-positive animals from 14 holdings. Molecular analysis revealed genetic uniformity among isolates, all clustering within ASFV genotype II. Poor biosecurity measures, such as feeding of untreated swill (80% of holdings) and lack of restrictions on visitors (90% of holdings), were identified as risk factors. Additionally, co-infection with porcine circovirus-2 (PCV-2) further complicates disease management. This study underscores the urgent need for enhanced biosecurity and farmer education to mitigate ASFV outbreaks in endemic regions.
Collapse
Affiliation(s)
- Agathe Auer
- Animal Production and Health Laboratory (APHL) at the Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna, Austria
- Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | | | - Tirumala B. K. Settypalli
- Animal Production and Health Laboratory (APHL) at the Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna, Austria
| | - Raphael Sallu
- Food and Agriculture Organization of the United Nations (FAO), Emergency Centre for Transboundary Animal Diseases, Dar Es Salaam 14111, Tanzania
| | - Jelly Chang’a
- Tanzania Veterinary Laboratory Agency Iringa (TVLA), Iringa P.O. Box 290, Tanzania
| | - Stella Bitanyi
- Tanzania Veterinary Laboratory Agency Iringa (TVLA), Iringa P.O. Box 290, Tanzania
| | - Stella Gaichugi Kiambi
- Food and Agriculture Organization of the United Nations (FAO), Emergency Centre for Transboundary Animal Diseases, Dar Es Salaam 14111, Tanzania
| | - Irene K. Meki
- Animal Production and Health Laboratory (APHL) at the Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna, Austria
| | - William G. Dundon
- Animal Production and Health Laboratory (APHL) at the Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna, Austria
| | - Artem Metlin
- Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Andriy Rozstalnyy
- Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Geofrey Hallan Mbata
- Tanzania Veterinary Laboratory Agency Iringa (TVLA), Iringa P.O. Box 290, Tanzania
| | - James Anset Okachu
- Tanzania Veterinary Laboratory Agency Iringa (TVLA), Iringa P.O. Box 290, Tanzania
| | - Henry Magwisha
- Food and Agriculture Organization of the United Nations (FAO), Emergency Centre for Transboundary Animal Diseases, Dar Es Salaam 14111, Tanzania
| | - Sauda Ally Hamis
- Tanzania Veterinary Laboratory Agency Iringa (TVLA), Iringa P.O. Box 290, Tanzania
| | - Jeremia Theodos Choga
- Zonal Veterinary Investigation Centre (ZVC), Southern Highland Zone, Iringa P.O. Box 290, Tanzania
| | - Stela Lucas Chalo
- Zonal Veterinary Investigation Centre (ZVC), Southern Highland Zone, Iringa P.O. Box 290, Tanzania
| | - Joshua Kimutai
- Food and Agriculture Organization of the United Nations (FAO), Emergency Centre for Transboundary Animal Diseases, Nairobi 00100, Kenya
| | - Gerald Misinzo
- Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019, Morogoro 67152, Tanzania
| | - Solomon Wilson Nong’ona
- Zonal Veterinary Investigation Centre (ZVC), Southern Highland Zone, Iringa P.O. Box 290, Tanzania
| | - Joseph Edmund Lyimo
- Zonal Veterinary Investigation Centre (ZVC), Southern Highland Zone, Iringa P.O. Box 290, Tanzania
| | - Charles E. Lamien
- Animal Production and Health Laboratory (APHL) at the Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna, Austria
| |
Collapse
|
4
|
Fuchs W, Assad-Garcia N, Abkallo HM, Xue Y, Oldfield LM, Fedorova N, Hübner A, Kabuuka T, Pannhorst K, Höper D, Nene V, Gonzalez-Juarbe N, Steinaa L, Vashee S. A synthetic genomics-based African swine fever virus engineering platform. SCIENCE ADVANCES 2025; 11:eadu7670. [PMID: 40138431 PMCID: PMC11939070 DOI: 10.1126/sciadv.adu7670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025]
Abstract
African swine fever (ASF) is a deadly viral disease in domestic pigs that has a large global economic impact for the swine industry. It is present in Africa, Europe, Asia, and in the Caribbean island of Hispaniola. There are no effective treatments or broadly licensed vaccines to prevent disease. Efforts to counteract ASF have been hampered because of the lack of convenient tools to engineer its etiological agent, ASF virus (ASFV), largely due to its large noninfectious genome. Here, we report the use of synthetic genomics methodology to develop a reverse genetics system for ASFV using a CRISPR-Cas9-inhibited self-helper virus to reconstitute live recombinant ASFV from synthetic genomes to rapidly generate a variety of combinatorial mutants of ASFV. The method will substantially facilitate the development of therapeutics or subunit and live-attenuated vaccines for ASF. This synthetic genomics-based approach has wide-ranging impact because it can be applied to rapidly develop reverse genetics tools for emerging viruses with noninfectious genomes.
Collapse
Affiliation(s)
- Walter Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | | | | | - Yong Xue
- J. Craig Venter Institute, Rockville, MD 20850, USA
| | | | | | - Alexandra Hübner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Tonny Kabuuka
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
- National Agricultural Research Organization (NARO), P.O. Box 295, Entebbe, Uganda
| | - Katrin Pannhorst
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Vishvanath Nene
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | | | - Lucilla Steinaa
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | | |
Collapse
|
5
|
Reis AL, Rathakrishnan A, Petrovan V, Islam M, Goatley L, Moffat K, Vuong MT, Lui Y, Davis SJ, Ikemizu S, Dixon LK. From structure prediction to function: defining the domain on the African swine fever virus CD2v protein required for binding to erythrocytes. mBio 2025; 16:e0165524. [PMID: 39688401 PMCID: PMC11796414 DOI: 10.1128/mbio.01655-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
African swine fever virus (ASFV) is a high-consequence pathogen posing a substantial threat to global food security. This large DNA virus encodes more than 150 open reading frames, many of which are uncharacterized. The EP402R gene encodes CD2v, a glycoprotein expressed on the surface of infected cells and the only viral protein known to be present in the virus external envelope. This protein mediates binding of erythrocytes to both cells and virions. This interaction is known to prolong virus persistence in blood thus facilitating viral transmission. The sequence of the extracellular domain of CD2v shows similarity with that of mammalian CD2 proteins and is therefore likely to feature two immunoglobulin (Ig)-like domains. A combination of protein structure modeling and extensive mutagenesis was used to identify residues mediating binding of transiently expressed CD2v to erythrocytes. The N-terminal Ig-like domain AGFCC'C″ β sheet was identified as the putative CD2v erythrocyte-binding area. This region differed from the putative CD58 ligand binding site of host CD2, suggesting that CD2v may bind to a ligand(s) other than CD58. An attenuated genotype I ASFV was constructed by replacing the wild-type EP402R gene for a mutant form expressing CD2v bearing a single amino acid substitution, which abrogated the binding to erythrocytes. Pigs immunized with the recombinant virus developed early antibody and cellular responses, low levels of viremia, mild clinical signs post-immunization, and high levels of protection against challenge. These findings improve our understanding of virus-host interactions and provide a promising approach to modified live vaccine development. IMPORTANCE A better understanding of the interactions between viruses and their hosts is a crucial step in the development of strategies for controlling viral diseases, such as vaccines and antivirals. African swine fever, a pig disease with fatality rates approaching 100%, causes very substantial economic losses in affected countries, and new control measures are clearly needed. In this study, we characterized the interaction between the ASFV CD2v protein and host erythrocytes. The interaction plays a key role in viral persistence in blood since it can allow the virus to "hide" from the host immune system. We identified the amino acids in the viral protein that mediate the interaction with erythrocytes and used this information to construct a mutant virus that is no longer able to bind these cells. This virus induces strong immune responses that provide high levels of protection against infection with the deadly parental virus.
Collapse
Affiliation(s)
- Ana Luisa Reis
- The Pirbright Institute, Woking, Pirbright, Surrey, United Kingdom
| | | | - Vlad Petrovan
- The Pirbright Institute, Woking, Pirbright, Surrey, United Kingdom
| | - Muneeb Islam
- The Pirbright Institute, Woking, Pirbright, Surrey, United Kingdom
| | - Lynnette Goatley
- The Pirbright Institute, Woking, Pirbright, Surrey, United Kingdom
| | - Katy Moffat
- The Pirbright Institute, Woking, Pirbright, Surrey, United Kingdom
| | - Mai Tuyet Vuong
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Yuan Lui
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Simon J. Davis
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Shinji Ikemizu
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Linda K. Dixon
- The Pirbright Institute, Woking, Pirbright, Surrey, United Kingdom
| |
Collapse
|
6
|
Zhu G, Xi F, Zeng W, Zhao Y, Cao W, Liu C, Yang F, Ru Y, Xiao S, Zhang S, Liu H, Tian H, Yang F, Lu B, Sun S, Song H, Sun B, Zhao X, Tang L, Li K, He J, Guo J, Zhu Y, Zhu Z, Sun F, Zheng H. Structural basis of RNA polymerase complexes in African swine fever virus. Nat Commun 2025; 16:501. [PMID: 39779680 PMCID: PMC11711665 DOI: 10.1038/s41467-024-55683-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
African swine fever virus is highly contagious and causes a fatal infectious disease in pigs, resulting in a significant global impact on pork supply. The African swine fever virus RNA polymerase serves as a crucial multifunctional protein complex responsible for genome transcription and regulation. Therefore, it is essential to investigate its structural and functional characteristics for the prevention and control of African swine fever. Here, we determine the structures of endogenous African swine fever virus RNA polymerase in both nucleic acid-free and elongation states. The African swine fever virus RNA polymerase shares similarities with the core of typical RNA polymerases, but possesses a distinct subunit M1249L. Notably, the dynamic binding mode of M1249L with RNA polymerase, along with the C-terminal tail insertion of M1249L in the active center of DNA-RNA scaffold binding, suggests the potential of M1249L to regulate RNA polymerase activity within cells. These results are important for understanding the transcription cycle of the African swine fever virus and for developing antiviral strategies.
Collapse
Grants
- the Fundamental Research Funds for the Central Universities (awarded to H.-X. Zheng and F. Yang), the Open Competition Program of Top Ten Critical Priorities of Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Province (2024KJ14, awarded to H.-X. Zheng), the China Agriculture Research System of Ministry of Finance and Ministry of Agriculture and Rural Affairs (CARS-35, awarded to H.-X. Zheng), the Project of National Center of Technology Innovation for Pigs (NCTIP-XD/C03, awarded to H.-X. Zheng), the Major Science and Technology Project of Gansu Province (22ZD6NA001 and 22ZD6NA012, awarded to H.-X. Zheng), and the Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-CSLPDCP-202302 and CAAS-ASTIP-2024-LVRI, awarded to H.-X. Zheng)
- the Joint Research Foundation of Gansu Province (24JRRA813, awarded to G.-L. Zhu)
- the National Key R&D Program of China (2021YFD1800100, awarded to Z.-X. Zhu),the Innovation Group of Gansu Province (23JRRA1515, awarded to J.-J. He; 23JRRA546, awarded to Z.-X. Zhu)
Collapse
Affiliation(s)
- Guoliang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fei Xi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wuxia Zeng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yifei Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chen Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yi Ru
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shuqi Xiao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shilei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huanan Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fayu Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Biao Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shukai Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haiyang Song
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bozhang Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyi Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lijie Tang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Kangli Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jijun He
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianhong Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yun Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Fei Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China.
| |
Collapse
|
7
|
Koltsov A, Sukher M, Krutko S, Belov S, Korotin A, Rudakova S, Morgunov S, Koltsova G. Construction of the First Russian Recombinant Live Attenuated Vaccine Strain and Evaluation of Its Protection Efficacy Against Two African Swine Fever Virus Heterologous Strains of Serotype 8. Vaccines (Basel) 2024; 12:1443. [PMID: 39772103 PMCID: PMC11680325 DOI: 10.3390/vaccines12121443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The spread of African swine fever virus (ASFV) has led to major economic losses to pork worldwide. In Russia, there are no developed or registered vaccines against ASFV genotype II, which is associated with numerous ASFV outbreaks in populations of domestic pigs and wild boars in the country. Methods: We introduced deletions of the six MGF360 and MGF505 genes of the ASFV virulent Stavropol_01/08 strain, isolated in Russia in 2008. Results: We show here that this deletion did lead to full attenuation of the ASFV virulent Stavropol_01/08 strain. Animals intramuscularly inoculated with 104 HAD50 of ΔMGF360/505_Stav developed a strong immune response and short period of viremia (at 3-7 days post-inoculation). Recombinant ΔMGF360/505_Stav strain provides complete protection of pigs against the ASFV parental Stavropol_01/08 strain (103 HAD50). Therefore, in our experiment, we did not detect the genome of both the virulent and the recombinant strains in the blood and organs post-challenge with the Stavropol_01/08. In contrast, we found only partial protection (40%) of the ΔMGF360/505_Stav-immunized pigs against challenge with the ASFV heterologous Rhodesia strain. Additionally, the surviving animals had a prolonged fever, and their condition was depressed for most of the experiment. Conclusions: Thus, the ASFV recombinant ΔMGF360/505_Stav strain is the first live attenuated vaccine (LAV) in Russia that induces complete protection in pigs challenged with the highly virulent, epidemiologically relevant strains genotype II and serotype 8. However, this ASF LAV is not able to provide a high level of protection against other variants of serotype 8.
Collapse
Affiliation(s)
- Andrey Koltsov
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia (S.K.); (A.K.)
| | | | | | | | | | | | | | - Galina Koltsova
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia (S.K.); (A.K.)
| |
Collapse
|
8
|
Wang Z, Zhang J, Li F, Zhang Z, Chen W, Zhang X, Sun E, Zhu Y, Liu R, He X, Bu Z, Zhao D. The attenuated African swine fever vaccine HLJ/18-7GD provides protection against emerging prevalent genotype II variants in China. Emerg Microbes Infect 2024; 13:2300464. [PMID: 38164797 PMCID: PMC10810661 DOI: 10.1080/22221751.2023.2300464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Genetic changes have occurred in the genomes of prevalent African swine fever viruses (ASFVs) in the field in China, which may change their antigenic properties and result in immune escape. There is usually poor cross-protection between heterogonous isolates, and, therefore, it is important to test the cross-protection of the live attenuated ASFV vaccines against current prevalent heterogonous isolates. In this study, we evaluated the protective efficacy of the ASFV vaccine candidate HLJ/18-7GD against emerging isolates. HLJ/18-7GD provided protection against a highly virulent variant and a lower lethal isolate, both derived from genotype II Georgia07-like ASFV and isolated in 2020. HLJ/18-7GD vaccination prevented pigs from developing ASF-specific clinical signs and death, decreased viral shedding via the oral and rectal routes, and suppressed viral replication after challenges. However, HLJ/18-7GD vaccination did not provide solid cross-protection against genotype I NH/P68-like ASFV challenge in pigs. HLJ/18-7GD vaccination thus shows great promise as an alternative strategy for preventing and controlling genotype II ASFVs, but vaccines providing cross-protection against different ASFV genotypes may be needed in China.
Collapse
Affiliation(s)
- Zilong Wang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jiwen Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Fang Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Zhenjiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Weiye Chen
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xianfeng Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Encheng Sun
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yuanmao Zhu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Renqiang Liu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xijun He
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Zhigao Bu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Dongming Zhao
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| |
Collapse
|
9
|
Ruedas-Torres I, Thi to Nga B, Salguero FJ. Pathogenicity and virulence of African swine fever virus. Virulence 2024; 15:2375550. [PMID: 38973077 PMCID: PMC11232652 DOI: 10.1080/21505594.2024.2375550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024] Open
Abstract
African swine fever (ASF) is a devastating disease with a high impact on the pork industry worldwide. ASF virus (ASFV) is a very complex pathogen, the sole member of the family Asfaviridae, which induces a state of immune suppression in the host through infection of myeloid cells and apoptosis of lymphocytes. Moreover, haemorrhages are the other main pathogenic effect of ASFV infection in pigs, related to the infection of endothelial cells, as well as the activation and structural changes of this cell population by proinflammatory cytokine upregulation within bystander monocytes and macrophages. There are still many gaps in the knowledge of the role of proteins produced by the ASFV, which is related to the difficulty in producing a safe and effective vaccine to combat the disease, although few candidates have been approved for use in Southeast Asia in the past couple of years.
Collapse
Affiliation(s)
- Ines Ruedas-Torres
- Vaccine Development and Evaluation Centre (VDEC), United Kingdom Health Security Agency, Salisbury, UK
| | - Bui Thi to Nga
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Francisco J. Salguero
- Vaccine Development and Evaluation Centre (VDEC), United Kingdom Health Security Agency, Salisbury, UK
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
10
|
Chu X, Ge S, Zuo Y, Cui J, Sha Z, Han N, Wu B, Ni B, Zhang H, Lv Y, Wang Z, Xiao Y. Thoughts on the research of African swine fever live-attenuated vaccines. Vaccine 2024; 42:126052. [PMID: 38906762 DOI: 10.1016/j.vaccine.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/05/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
African swine fever (ASF) is a contagious and fatal disease caused by the African swine fever virus (ASFV), which can infect pigs of all breeds and ages. Most infected pigs have poor prognosis, leading to substantial economic losses for the global pig industry. Therefore, it is imperative to develop a safe and efficient commercial vaccine against ASF. The development of ASF vaccine can be traced back to 1960. However, because of its large genome, numerous encoded proteins, and complex virus particle structure, currently, no effective commercial vaccine is available. Several strategies have been applied in vaccine design, some of which are potential candidates for vaccine development. This review provides a comprehensive analysis on the safety and effectiveness, suboptimal immunization effects at high doses, absence of standardized evaluation criteria, notable variations among strains of the same genotype, and the substantial impact of animal health on the protective efficacy against viral challenge. All the information will be helpful to the ASF vaccine development.
Collapse
Affiliation(s)
- Xuefei Chu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province 271018, China
| | - Shengqiang Ge
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China; Qingdao Key Laboratory of Modern Bioengineering and Animal Disease Research, Qingdao 266032, China; Key Laboratory of Animal Biosafety Risk Warning Prevention and Control (South China), Ministry of Agriculture and Rural Affairs, Qingdao, Shandong 266032, China
| | - Yuanyuan Zuo
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Jin Cui
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Zhou Sha
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Naijun Han
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Bingrong Wu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province 271018, China
| | - Bo Ni
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Hui Zhang
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Yan Lv
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Zhiliang Wang
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China.
| | - Yihong Xiao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province 271018, China.
| |
Collapse
|
11
|
Domelevo Entfellner JB, Okoth EA, Onzere CK, Upton C, Njau EP, Höper D, Henson SP, Oyola SO, Bochere E, Machuka EM, Bishop RP. Complete Genome Sequencing and Comparative Phylogenomics of Nine African Swine Fever Virus (ASFV) Isolates of the Virulent East African p72 Genotype IX without Viral Sequence Enrichment. Viruses 2024; 16:1466. [PMID: 39339942 PMCID: PMC11437432 DOI: 10.3390/v16091466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
African swine fever virus (ASFV) is endemic to African wild pigs (Phacochoerus and Potamochoerus), in which viral infection is asymptomatic, and Ornithodoros soft ticks. However, ASFV causes a lethal disease in Eurasian domestic pigs (Sus scrofa). While Sub-Saharan Africa is believed to be the original home of ASFV, publicly available whole-genome ASFV sequences show a strong bias towards p72 Genotypes I and II, which are responsible for domestic pig pandemics outside Africa. To reduce this bias, we hereby describe nine novel East African complete genomes in p72 Genotype IX and present the phylogenetic analysis of all 16 available Genotype IX genomes compared with other ASFV p72 clades. We also document genome-level differences between one specific novel Genotype IX genome sequence (KE/2013/Busia.3) and a wild boar cell-passaged derivative. The Genotype IX genomes clustered with the five available Genotype X genomes. By contrast, Genotype IX and X genomes were strongly phylogenetically differentiated from all other ASFV genomes. The p72 gene region, on which the p72-based virus detection primers are derived, contains consistent SNPs in Genotype IX, potentially resulting in reduced sensitivity of detection. In addition to the abovementioned cell-adapted variant, eight novel ASFV Genotype IX genomes were determined: five from viruses passaged once in primary porcine peripheral blood monocytes and three generated from DNA isolated directly from field-sampled kidney tissues. Based on this methodological simplification, genome sequencing of ASFV field isolates should become increasingly routine and result in a rapid expansion of knowledge pertaining to the diversity of African ASFV at the whole-genome level.
Collapse
Affiliation(s)
- Jean-Baka Domelevo Entfellner
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya; (E.A.O.); (S.P.H.); (S.O.O.); (E.B.); (E.M.M.)
| | - Edward Abworo Okoth
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya; (E.A.O.); (S.P.H.); (S.O.O.); (E.B.); (E.M.M.)
| | - Cynthia Kavulani Onzere
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-1067, USA; (C.K.O.); (R.P.B.)
| | - Chris Upton
- Viral Bioinformatics Research Centre, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Emma Peter Njau
- Department of Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Morogoro P.O. Box 3019, Tanzania;
| | - Dirk Höper
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany;
| | - Sonal P. Henson
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya; (E.A.O.); (S.P.H.); (S.O.O.); (E.B.); (E.M.M.)
| | - Samuel O. Oyola
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya; (E.A.O.); (S.P.H.); (S.O.O.); (E.B.); (E.M.M.)
| | - Edwina Bochere
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya; (E.A.O.); (S.P.H.); (S.O.O.); (E.B.); (E.M.M.)
| | - Eunice M. Machuka
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya; (E.A.O.); (S.P.H.); (S.O.O.); (E.B.); (E.M.M.)
| | - Richard P. Bishop
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-1067, USA; (C.K.O.); (R.P.B.)
| |
Collapse
|
12
|
Spinard E, Dinhobl M, Fenster J, Davis C, Borca MV, Gladue DP. Analysis of the Unique Historical Isolate of African Swine Fever Virus Isolate Spencer from Outbreaks in 1951. Viruses 2024; 16:1175. [PMID: 39205149 PMCID: PMC11359474 DOI: 10.3390/v16081175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 09/04/2024] Open
Abstract
African swine fever (ASF) is a deadly hemorrhagic disease of domestic and wild swine that was first described in the early 20th century after the introduction of European pigs to Kenya. The etiological agent, the African swine fever virus (ASFV), is a large DNA virus within the Asfarviridae family that is broadly categorized epidemiologically into genotypes based on the nucleotide sequence of B646L, the gene encoding the major capsid protein p72. ASF outbreaks in Africa have been linked historically to 25 genotypes by p72 nucleotide analysis and, recently, to 6 genotypes by amino acid comparison, whereas global outbreaks of ASF outside of Africa have only been linked to 2 genotypes: genotype I, which led to an outbreak in Europe during the 1960s that later spread to South America, and genotype II, responsible for the current pandemic that began in Georgia in 2007 and has since spread to Europe, Asia, and Hispaniola. Here, we present an analysis of the genome of ASFV Spencer, an isolate that was collected in 1951 near Johannesburg, South Africa. While nucleotide analysis of Spencer indicates the p72 coding sequence is unique, differentiating from the closest reference by five nucleotides, the predicted amino acid sequence indicates that it is 100% homologous to contemporary genotype 1. Full genome analysis reveals it is more similar to Mkuzi1979 and encodes genes that share similarity with either genotype 1 or genotype 2 outbreak strains.
Collapse
Affiliation(s)
- Edward Spinard
- Plum Island Animal Disease Center (PIADC), ARS, USDA, P.O. Box 848, Greenport, NY 11944, USA; (E.S.); (M.D.); (J.F.)
- National Bio and Agro-Defense Facility, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA
| | - Mark Dinhobl
- Plum Island Animal Disease Center (PIADC), ARS, USDA, P.O. Box 848, Greenport, NY 11944, USA; (E.S.); (M.D.); (J.F.)
- National Bio and Agro-Defense Facility, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA
| | - Jacob Fenster
- Plum Island Animal Disease Center (PIADC), ARS, USDA, P.O. Box 848, Greenport, NY 11944, USA; (E.S.); (M.D.); (J.F.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Charronne Davis
- American Type Culture Collection, 0801 University Blvd, Manassas, VA 20108, USA;
| | - Manuel V. Borca
- Plum Island Animal Disease Center (PIADC), ARS, USDA, P.O. Box 848, Greenport, NY 11944, USA; (E.S.); (M.D.); (J.F.)
- National Bio and Agro-Defense Facility, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA
| | - Douglas P. Gladue
- Plum Island Animal Disease Center (PIADC), ARS, USDA, P.O. Box 848, Greenport, NY 11944, USA; (E.S.); (M.D.); (J.F.)
- National Bio and Agro-Defense Facility, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA
| |
Collapse
|
13
|
Shi R, Zhang Y. Stability Analysis of a Fractional-Order African Swine Fever Model with Saturation Incidence. Animals (Basel) 2024; 14:1929. [PMID: 38998040 PMCID: PMC11240423 DOI: 10.3390/ani14131929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
This article proposes and analyzes a fractional-order African Swine Fever model with saturation incidence. Firstly, the existence and uniqueness of a positive solution is proven. Secondly, the basic reproduction number and the sufficient conditions for the existence of two equilibriums are obtained. Thirdly, the local and global stability of disease-free equilibrium is studied using the LaSalle invariance principle. Next, some numerical simulations are conducted based on the Adams-type predictor-corrector method to verify the theoretical results, and sensitivity analysis is performed on some parameters. Finally, discussions and conclusions are presented. The theoretical results show that the value of the fractional derivative α will affect both the coordinates of the equilibriums and the speed at which the equilibriums move towards stabilization. When the value of α becomes larger or smaller, the stability of the equilibriums will be changed, which shows the difference between the fractional-order systems and the classical integer-order system.
Collapse
Affiliation(s)
- Ruiqing Shi
- School of Mathematics and Computer Science, Shanxi Normal University, Taiyuan 030031, China
| | - Yihong Zhang
- School of Mathematics and Computer Science, Shanxi Normal University, Taiyuan 030031, China
| |
Collapse
|
14
|
Chen S, Wang T, Luo R, Lu Z, Lan J, Sun Y, Fu Q, Qiu HJ. Genetic Variations of African Swine Fever Virus: Major Challenges and Prospects. Viruses 2024; 16:913. [PMID: 38932205 PMCID: PMC11209373 DOI: 10.3390/v16060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
African swine fever (ASF) is a contagious viral disease affecting pigs and wild boars. It typically presents as a hemorrhagic fever but can also manifest in various forms, ranging from acute to asymptomatic. ASF has spread extensively globally, significantly impacting the swine industry. The complex and highly variable character of the ASFV genome makes vaccine development and disease surveillance extremely difficult. The overall trend in ASFV evolution is towards decreased virulence and increased transmissibility. Factors such as gene mutation, viral recombination, and the strain-specificity of virulence-associated genes facilitate viral variations. This review deeply discusses the influence of these factors on viral immune evasion, pathogenicity, and the ensuing complexities encountered in vaccine development, disease detection, and surveillance. The ultimate goal of this review is to thoroughly explore the genetic evolution patterns and variation mechanisms of ASFV, providing a theoretical foundation for advancement in vaccine and diagnostic technologies.
Collapse
Affiliation(s)
- Shengmei Chen
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Rui Luo
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhanhao Lu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jing Lan
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Sciences, Yangtze University, Jingzhou 434023, China
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Qiang Fu
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Hua-Ji Qiu
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Sciences, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
15
|
Hu Z, Lai R, Tian X, Guan R, Li X. A duplex fluorescent quantitative PCR assay to distinguish the genotype I, II and I/II recombinant strains of African swine fever virus in China. Front Vet Sci 2024; 11:1422757. [PMID: 38895720 PMCID: PMC11183790 DOI: 10.3389/fvets.2024.1422757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
African swine fever (ASF) is a severe, hemorrhagic, and highly contagious disease caused by the African swine fever virus (ASFV) in both domestic pigs and wild boars. In China, ASFV has been present for over six years, with three genotypes of strains prevalent in field conditions: genotype I, genotype II, and genotype I/II recombinant strains. In order to differentiate among these three ASFV genotypes, a duplex fluorescent quantitative PCR method was established using specific probes and primers designed based on viral genes MGF_110-1L and O61R from ASFV strains reported in the GenBank database. Following optimization of reaction conditions, a duplex fluorescent quantitative PCR method was successfully developed. This method demonstrated no cross-reactivity with porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine reproductive and respiratory syndrome virus (PRRSV), classic swine fever virus (CSFV), porcine pseudorabies virus (PRV), porcine circovirus 2 (PCV2), porcine circovirus 3 (PCV3), highlighting its specificity. Sensitivity analysis revealed that the limits of detection (LODs) of this method were 2.95 × 10-1 copies/μL for the MGF_110-1L gene and 2.95 × 100 copies/μL for the O61R gene. The inter- and intra-group coefficients of variation were both <1%, indicating high reproducibility. In summary, the establishment of this duplex fluorescent quantitative PCR method not only addresses the identification of the ASFV recombinant strains but also allows for simultaneous identification of the three epidemic genotype strains.
Collapse
Affiliation(s)
- Zhiqiang Hu
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- College of Animal Science, Xichang University, Xichang, China
| | - Ranran Lai
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
| | - Xiaogang Tian
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
| | - Ran Guan
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- College of Animal Science, Xichang University, Xichang, China
| | - Xiaowen Li
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- China Agriculture Research System-Yangling Comprehensive Test Station, Yangling Besun Agricultural Industry Group Corporation Co., Ltd., Xianyang, China
| |
Collapse
|
16
|
Noll JCG, Rani R, Butt SL, Fernandes MHV, do Nascimento GM, Martins M, Caserta LC, Covaleda L, Diel DG. Identification of an Immunodominant B-Cell Epitope in African Swine Fever Virus p30 Protein and Evidence of p30 Antibody-Mediated Antibody Dependent Cellular Cytotoxicity. Viruses 2024; 16:758. [PMID: 38793639 PMCID: PMC11125664 DOI: 10.3390/v16050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
African Swine Fever Virus (ASFV) is a large dsDNA virus that encodes at least 150 proteins. The complexity of ASFV and lack of knowledge of effector immune functions and protective antigens have hindered the development of safe and effective ASF vaccines. In this study, we constructed four Orf virus recombinant vectors expressing individual ASFV genes B602L, -CP204L, E184L, and -I73R (ORFVΔ121-ASFV-B602L, -CP204L, -E184L, and -I73R). All recombinant viruses expressed the heterologous ASFV proteins in vitro. We then evaluated the immunogenicity of the recombinants by immunizing four-week-old piglets. In two independent animal studies, we observed high antibody titers against ASFV p30, encoded by CP204L gene. Using Pepscan ELISA, we identified a linear B-cell epitope of 12 amino acids in length (Peptide 15) located in an exposed loop region of p30 as an immunodominant ASFV epitope. Additionally, antibodies elicited against ASFV p30 presented antibody-dependent cellular cytotoxicity (ADCC) activity. These results underscore the role of p30 on antibody responses elicited against ASFV and highlight an important functional epitope that contributes to p30-specific antibody responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA (S.L.B.); (M.H.V.F.); (M.M.); (L.C.C.); (L.C.)
| |
Collapse
|
17
|
Goatley LC, Freimanis G, Tennakoon C, Foster TJ, Quershi M, Dixon LK, Batten C, Forth JH, Wade A, Netherton C. Full genome sequence analysis of African swine fever virus isolates from Cameroon. PLoS One 2024; 19:e0293049. [PMID: 38512923 PMCID: PMC10956809 DOI: 10.1371/journal.pone.0293049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
African swine fever (ASF) is a devastating disease of domestic pigs that has spread across the globe since its introduction into Georgia in 2007. The etiological agent is a large double-stranded DNA virus with a genome of 170 to 180 kb in length depending on the isolate. Much of the differences in genome length between isolates are due to variations in the copy number of five different multigene families that are encoded in repetitive regions that are towards the termini of the covalently closed ends of the genome. Molecular epidemiology of African swine fever virus (ASFV) is primarily based on Sanger sequencing of a few conserved and variable regions, but due to the stability of the dsDNA genome changes in the variable regions occur relatively slowly. Observations in Europe and Asia have shown that changes in other genetic loci can occur and that this could be useful in molecular tracking. ASFV has been circulating in Western Africa for at least forty years. It is therefore reasonable to assume that changes may have accumulated in regions of the genome other than the standard targets over the years. At present only one full genome sequence is available for an isolate from Western Africa, that of a highly virulent isolate collected from Benin during an outbreak in 1997. In Cameroon, ASFV was first reported in 1981 and outbreaks have been reported to the present day and is considered endemic. Here we report three full genome sequences from Cameroon isolates of 1982, 1994 and 2018 outbreaks and identify novel single nucleotide polymorphisms and insertion-deletions that may prove useful for molecular epidemiology studies in Western Africa and beyond.
Collapse
Affiliation(s)
- Lynnette C. Goatley
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom
| | - Graham Freimanis
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom
| | - Chandana Tennakoon
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom
| | - Thomas J. Foster
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom
| | - Mehnaz Quershi
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom
| | - Linda K. Dixon
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom
| | - Carrie Batten
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom
| | - Jan Hendrik Forth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Abel Wade
- National Veterinary Laboratory (LANAVET), Garoua, Cameroon
| | | |
Collapse
|
18
|
Vu HLX, McVey DS. Recent progress on gene-deleted live-attenuated African swine fever virus vaccines. NPJ Vaccines 2024; 9:60. [PMID: 38480758 PMCID: PMC10937926 DOI: 10.1038/s41541-024-00845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
African Swine Fever (ASF) is a highly lethal viral disease in swine, with mortality rates approaching 100%. The disease has spread to many swine-producing countries, leading to significant economic losses and adversely impacting global food security. Extensive efforts have been directed toward developing effective ASF vaccines. Among the vaccinology approaches tested to date, live-attenuated virus (LAV) vaccines produced by rational deleting virulence genes from virulent African Swine Fever Virus (ASFV) strains have demonstrated promising safety and efficacy in experimental and field conditions. Many gene-deleted LAV vaccine candidates have been generated in recent years. The virulence genes targeted for deletion from the genome of virulent ASFV strains can be categorized into four groups: Genes implicated in viral genome replication and transcription, genes from the multigene family located at both 5' and 3' termini, genes participating in mediating hemadsorption and putative cellular attachment factors, and novel genes with no known functions. Some promising LAV vaccine candidates are generated by deleting a single viral virulence gene, whereas others are generated by simultaneously deleting multiple genes. This article summarizes the recent progress in developing and characterizing gene-deleted LAV vaccine candidates.
Collapse
Affiliation(s)
- Hiep L X Vu
- Department of Animal Science, and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - D Scott McVey
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
19
|
Dupré J, Le Dimna M, Hutet E, Dujardin P, Fablet A, Leroy A, Fleurot I, Karadjian G, Roesch F, Caballero I, Bourry O, Vitour D, Le Potier MF, Caignard G. Exploring type I interferon pathway: virulent vs. attenuated strain of African swine fever virus revealing a novel function carried by MGF505-4R. Front Immunol 2024; 15:1358219. [PMID: 38529285 PMCID: PMC10961335 DOI: 10.3389/fimmu.2024.1358219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
African swine fever virus represents a significant reemerging threat to livestock populations, as its incidence and geographic distribution have surged over the past decade in Europe, Asia, and Caribbean, resulting in substantial socio-economic burdens and adverse effects on animal health and welfare. In a previous report, we described the protective properties of our newly thermo-attenuated strain (ASFV-989) in pigs against an experimental infection of its parental Georgia 2007/1 virulent strain. In this new study, our objective was to characterize the molecular mechanisms underlying the attenuation of ASFV-989. We first compared the activation of type I interferon pathway in response to ASFV-989 and Georgia 2007/1 infections, employing both in vivo and in vitro models. Expression of IFN-α was significantly increased in porcine alveolar macrophages infected with ASFV-989 while pigs infected with Georgia 2007/1 showed higher IFN-α than those infected by ASFV-989. We also used a medium-throughput transcriptomic approach to study the expression of viral genes by both strains, and identified several patterns of gene expression. Subsequently, we investigated whether proteins encoded by the eight genes deleted in ASFV-989 contribute to the modulation of the type I interferon signaling pathway. Using different strategies, we showed that MGF505-4R interfered with the induction of IFN-α/β pathway, likely through interaction with TRAF3. Altogether, our data reveal key differences between ASFV-989 and Georgia 2007/1 in their ability to control IFN-α/β signaling and provide molecular mechanisms underlying the role of MGF505-4R as a virulence factor.
Collapse
Affiliation(s)
- Juliette Dupré
- Unité Mixte de Recherche (UMR) VIROLOGIE, Institut National Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), École Nationale Vétérinaire d’Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES) Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
- Unité Virologie Immunologie Porcines, Laboratoire de Ploufragan-Plouzané-Niort, ANSES, Ploufragan, France
| | - Mireille Le Dimna
- Unité Virologie Immunologie Porcines, Laboratoire de Ploufragan-Plouzané-Niort, ANSES, Ploufragan, France
| | - Evelyne Hutet
- Unité Virologie Immunologie Porcines, Laboratoire de Ploufragan-Plouzané-Niort, ANSES, Ploufragan, France
| | - Pascal Dujardin
- Unité Mixte de Recherche (UMR) VIROLOGIE, Institut National Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), École Nationale Vétérinaire d’Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES) Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Aurore Fablet
- Unité Mixte de Recherche (UMR) VIROLOGIE, Institut National Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), École Nationale Vétérinaire d’Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES) Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Aurélien Leroy
- UMR 1282 Infectiologie et santé publique (ISP), INRAE Centre Val de Loire, Nouzilly, France
| | - Isabelle Fleurot
- UMR 1282 Infectiologie et santé publique (ISP), INRAE Centre Val de Loire, Nouzilly, France
| | - Grégory Karadjian
- UMR Biologie moléculaire et Immunologie Parasitaires (BIPAR), ENVA-INRAE-ANSES, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Ferdinand Roesch
- UMR 1282 Infectiologie et santé publique (ISP), INRAE Centre Val de Loire, Nouzilly, France
| | - Ignacio Caballero
- UMR 1282 Infectiologie et santé publique (ISP), INRAE Centre Val de Loire, Nouzilly, France
| | - Olivier Bourry
- Unité Virologie Immunologie Porcines, Laboratoire de Ploufragan-Plouzané-Niort, ANSES, Ploufragan, France
| | - Damien Vitour
- Unité Mixte de Recherche (UMR) VIROLOGIE, Institut National Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), École Nationale Vétérinaire d’Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES) Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Marie-Frédérique Le Potier
- Unité Virologie Immunologie Porcines, Laboratoire de Ploufragan-Plouzané-Niort, ANSES, Ploufragan, France
| | - Grégory Caignard
- Unité Mixte de Recherche (UMR) VIROLOGIE, Institut National Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), École Nationale Vétérinaire d’Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES) Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
20
|
Johnston CM, Olesen AS, Lohse L, le Maire Madsen A, Bøtner A, Belsham GJ, Rasmussen TB. A Deep Sequencing Strategy for Investigation of Virus Variants within African Swine Fever Virus-Infected Pigs. Pathogens 2024; 13:154. [PMID: 38392892 PMCID: PMC10893071 DOI: 10.3390/pathogens13020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
African swine fever virus (ASFV) is the causative agent of African swine fever, an economically important disease of pigs, often with a high case fatality rate. ASFV has demonstrated low genetic diversity among isolates collected within Eurasia. To explore the influence of viral variants on clinical outcomes and infection dynamics in pigs experimentally infected with ASFV, we have designed a deep sequencing strategy. The variant analysis revealed unique SNPs at <10% frequency in several infected pigs as well as some SNPs that were found in more than one pig. In addition, a deletion of 10,487 bp (resulting in the complete loss of 21 genes) was present at a nearly 100% frequency in the ASFV DNA from one pig at position 6362-16849. This deletion was also found to be present at low levels in the virus inoculum and in two other infected pigs. The current methodology can be used for the currently circulating Eurasian ASFVs and also adapted to other ASFV strains and genotypes. Comprehensive deep sequencing is critical for following ASFV molecular evolution, especially for the identification of modifications that affect virus virulence.
Collapse
Affiliation(s)
- Camille Melissa Johnston
- Section for Veterinary Virology, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen, Denmark; (C.M.J.); (A.S.O.); (L.L.); (A.l.M.M.)
| | - Ann Sofie Olesen
- Section for Veterinary Virology, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen, Denmark; (C.M.J.); (A.S.O.); (L.L.); (A.l.M.M.)
| | - Louise Lohse
- Section for Veterinary Virology, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen, Denmark; (C.M.J.); (A.S.O.); (L.L.); (A.l.M.M.)
| | - Agnete le Maire Madsen
- Section for Veterinary Virology, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen, Denmark; (C.M.J.); (A.S.O.); (L.L.); (A.l.M.M.)
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, DK-1353 København, Denmark
| | - Anette Bøtner
- Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg, Denmark; (A.B.); (G.J.B.)
| | - Graham J. Belsham
- Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg, Denmark; (A.B.); (G.J.B.)
| | - Thomas Bruun Rasmussen
- Section for Veterinary Virology, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen, Denmark; (C.M.J.); (A.S.O.); (L.L.); (A.l.M.M.)
| |
Collapse
|
21
|
Kürschner T, Scherer C, Radchuk V, Blaum N, Kramer‐Schadt S. Resource asynchrony and landscape homogenization as drivers of virulence evolution: The case of a directly transmitted disease in a social host. Ecol Evol 2024; 14:e11065. [PMID: 38380064 PMCID: PMC10877554 DOI: 10.1002/ece3.11065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Throughout the last decades, the emergence of zoonotic diseases and the frequency of disease outbreaks have increased substantially, fuelled by habitat encroachment and vectors overlapping with more hosts due to global change. The virulence of pathogens is one key trait for successful invasion. In order to understand how global change drivers such as habitat homogenization and climate change drive pathogen virulence evolution, we adapted an established individual-based model of host-pathogen dynamics. Our model simulates a population of social hosts affected by a directly transmitted evolving pathogen in a dynamic landscape. Pathogen virulence evolution results in multiple strains in the model that differ in their transmission capability and lethality. We represent the effects of global change by simulating environmental changes both in time (resource asynchrony) and space (homogenization). We found an increase in pathogenic virulence and a shift in strain dominance with increasing landscape homogenization. Our model further indicated that lower virulence is dominant in fragmented landscapes, although pulses of highly virulent strains emerged under resource asynchrony. While all landscape scenarios favoured co-occurrence of low- and high-virulent strains, the high-virulence strains capitalized on the possibility for transmission when host density increased and were likely to become dominant. With asynchrony likely to occur more often due to global change, our model showed that a subsequent evolution towards lower virulence could lead to some diseases becoming endemic in their host populations.
Collapse
Affiliation(s)
- Tobias Kürschner
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Cédric Scherer
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Viktoriia Radchuk
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Niels Blaum
- Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
| | - Stephanie Kramer‐Schadt
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Institute of EcologyTechnische Universität BerlinBerlinGermany
| |
Collapse
|
22
|
Yoon SY, Jang YS, Kim SJ, Krishnan R, Oh MJ. Determination of the minimum infective dose of viral hemorrhagic septicemia virus (VHSV) in juvenile olive flounder, Paralichthys olivaceus using an immersion challenge model. Virus Res 2024; 340:199305. [PMID: 38158128 PMCID: PMC10792560 DOI: 10.1016/j.virusres.2023.199305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Viral hemorrhagic septicemia virus (VHSV) affects over 80 fish species, leading to viral hemorrhagic septicemia (VHS). Horizontal VHSV transmission is widely studied, with researchers utilizing various doses to establish infection models. Infected hosts shed the virus into the environment, elevating the risk of transmission to naïve fish within the same system. This study aimed to ascertain the minimum infective dose of VHSV in olive flounder (Paralichthys olivaceus). In olive flounder, the detection of VHSV within the kidney exhibited the highest infection rate on the third day among days 1, 3 and 5. Doses of 103.0 to 104.7 TCID50/ml were administered to juvenile olive flounder across three farms. Results showed resistance to infection below 103.4 TCID50/ml at 15 °C. While infection frequency varied by concentration, higher concentrations correlated with more infections. Nonetheless, viral copy numbers did not differ significantly among infected fish at varying concentrations. This study underscores the need for early VHSV management and contributes essential data for pathogenicity assessment and foundational knowledge.
Collapse
Affiliation(s)
- Su-Young Yoon
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea
| | - Yo-Seb Jang
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea
| | - Soo-Jin Kim
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea; Pathology Division, National Institute of Fisheries Science (NIFS), Busan, Republic of Korea
| | - Rahul Krishnan
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea; Department of Aquatic Animal Health Management, Faculty of Fisheries, Kerala University of Fisheries and Ocean Studies, Kerala, India
| | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea.
| |
Collapse
|
23
|
Kwon OK, Kim DW, Heo JH, Kim JY, Nah JJ, Choi JD, Lee DW, Cho KH, Hong SK, Kim YH, Kang HE, Kwon JH, Shin YK. Genomic Epidemiology of African Swine Fever Virus Identified in Domestic Pig Farms in South Korea during 2019-2021. Transbound Emerg Dis 2024; 2024:9077791. [PMID: 40303146 PMCID: PMC12016747 DOI: 10.1155/2024/9077791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 05/02/2025]
Abstract
African swine fever (ASF), a contagious viral disease, poses a significant threat to the global swine industry. In South Korea, ASF outbreaks have occurred since 2019, highlighting the need for a comprehensive understanding of the epidemiology and genetic characterization of the circulating African swine fever viruses (ASFVs). We obtained 21 ASFV isolates from domestic pig farms and analyzed their whole-genome sequences using the Illumina MiniSeq. Phylogenetic analysis was conducted using the maximum likelihood and time-scaled approaches to determine the genetic relationships and evolutionary dynamics of the Korean ASFV isolates. Comparative analysis of the 21 ASFV genomes with the reference strain Georgia 2007/1 revealed that while Korean isolates shared 11 mutations, they also had 22 discrete mutations, including single nucleotide polymorphisms and insertion/deletion polymorphisms (Indels). Phylogenetic analysis indicated that all Korean isolates were within the Asian subgroup of ASFV genotype II but were further divided into at least three distinct subclusters. Spatiotemporal analysis indicated multiple introductions of ASFVs into South Korea, crossing the national border with North Korea. In addition, we observed putative self-recombination between MGF 505-9R and MGF 505-10R genes in the ASFV/Korea/Pig/Inje2/2021 strain. Our findings provide insights into the genetic variations and evolution of ASFVs on South Korean pig farms from 2019 to 2021, uncovering multiple introductions of ASFVs across the national border, and highlighting the need for enhanced disease control strategies.
Collapse
Affiliation(s)
- Oh-Kyu Kwon
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Da-Won Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jin-Hwa Heo
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Ji-Yun Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jin-Ju Nah
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Ji-Da Choi
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Dong-Wook Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ki-Hyun Cho
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Seong-Keun Hong
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Yeon-Hee Kim
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Hae-Eun Kang
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Jung-Hoon Kwon
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yeun-Kyung Shin
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
24
|
Desmet C, Coelho-Cruz B, Mehn D, Colpo P, Ruiz-Moreno A. ASFV epitope mapping by high density peptides microarrays. Virus Res 2024; 339:199287. [PMID: 38029799 PMCID: PMC10711508 DOI: 10.1016/j.virusres.2023.199287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
African swine fever (ASF) is an acute, highly contagious and deadly infectious disease. It is a threat to animal health with major potential economic and societal impact. Despite decades of ASF vaccine research, still some gaps in knowledge are hindering the development of a functional vaccine. Worth mentioning are gaps in understanding the mechanism of ASF infection and immunity, as well as the fact that - in case of this disease - virus proteins, so-called protective antigens, responsible for inducing protective immune responses in pigs are not identified yet. In this paper we elaborate on a methodology to identify protective antigens based on epitope mapping by microarray technology. High density peptide microarrays, combined with fluorescence scanning, have been used to analyze the interaction of peptide sequences of African swine fever virus (ASFV) proteins with antibodies present in inactivated serum from infected and healthy animals. The study evidenced ASFV proteins already under the radar for vaccine development, such as p54, and identified specific sequences in those proteins that may become the focus for future vaccine candidates. Such methodology is amenable to automation and high-throughput and may help developing better targeting for next generation vaccines.
Collapse
Affiliation(s)
- Cloé Desmet
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Pascal Colpo
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Ana Ruiz-Moreno
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
25
|
Zhang X, Guan X, Wang Q, Wang X, Yang X, Li S, Zhao XT, Yuan M, Liu X, Qiu HJ, Li Y. Identification of the p34 Protein of African Swine Fever Virus as a Novel Viral Antigen with Protection Potential. Viruses 2023; 16:38. [PMID: 38257738 PMCID: PMC10818326 DOI: 10.3390/v16010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
African swine fever (ASF) is a highly contagious disease caused by African swine fever virus (ASFV), affecting domestic and wild boars. The polyprotein pp220 of ASFV is responsible for producing the major structural proteins p150, p37, p14, p34, and p5 via proteolytic processing. The p34 protein is the main component of the ASFV core shell. However, the immunologic properties of the p34 protein in vitro and in vivo remain unclear. The results showed that the recombinant p34 protein expressed in prokaryotes and eukaryotes could react with convalescent swine sera to ASFV, suggesting that p34 is an immunogenic protein. Significantly, anti-p34 antibodies were found to inhibit the replication of ASFV in target cells. Furthermore, rabbits immunized with the recombinant C-strain of classical swine fever virus containing p34 produced both anti-p34 humoral and cellular immune responses. In addition, the p34 protein could induce a cell-mediated immune response, and a T-cell epitope on the p34 protein was identified using immunoinformatics and enzyme-linked immunospot (ELIspot) assay. Our study demonstrates that the p34 protein is a novel antigen of ASFV with protective potential.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.Z.); (X.G.); (X.Y.); (S.L.); (X.-T.Z.); (M.Y.)
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Q.W.); (X.L.)
| | - Xiangyu Guan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.Z.); (X.G.); (X.Y.); (S.L.); (X.-T.Z.); (M.Y.)
| | - Qiuxia Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Q.W.); (X.L.)
| | - Xiao Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China;
| | - Xiaoke Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.Z.); (X.G.); (X.Y.); (S.L.); (X.-T.Z.); (M.Y.)
| | - Shuwen Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.Z.); (X.G.); (X.Y.); (S.L.); (X.-T.Z.); (M.Y.)
| | - Xiao-Tian Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.Z.); (X.G.); (X.Y.); (S.L.); (X.-T.Z.); (M.Y.)
| | - Mengqi Yuan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.Z.); (X.G.); (X.Y.); (S.L.); (X.-T.Z.); (M.Y.)
| | - Xingyou Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Q.W.); (X.L.)
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.Z.); (X.G.); (X.Y.); (S.L.); (X.-T.Z.); (M.Y.)
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.Z.); (X.G.); (X.Y.); (S.L.); (X.-T.Z.); (M.Y.)
| |
Collapse
|
26
|
Petrini S, Righi C, Mészáros I, D’Errico F, Tamás V, Pela M, Olasz F, Gallardo C, Fernandez-Pinero J, Göltl E, Magyar T, Feliziani F, Zádori Z. The Production of Recombinant African Swine Fever Virus Lv17/WB/Rie1 Strains and Their In Vitro and In Vivo Characterizations. Vaccines (Basel) 2023; 11:1860. [PMID: 38140263 PMCID: PMC10748256 DOI: 10.3390/vaccines11121860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Lv17/WB/Rie1-Δ24 was produced via illegitimate recombination mediated by low-dilution serial passage in the Cos7 cell line and isolated on PAM cell culture. The virus contains a huge ~26.4 Kb deletion in the left end of its genome. Lv17/WB/Rie1-ΔCD-ΔGL was generated via homologous recombination, crossing two ASFV strains (Lv17/WB/Rie1-ΔCD and Lv17/WB/Rie1-ΔGL containing eGFP and mCherry markers) during PAM co-infection. The presence of unique parental markers in the Lv17/WB/Rie1-ΔCD-ΔGL genome indicates at least two recombination events during the crossing, suggesting that homologous recombination is a relatively frequent event in the ASFV genome during replication in PAM. Pigs infected with Lv17/WB/Rie1-Δ24 and Lv17/WB/Rie1/ΔCD-ΔGL strains have shown mild clinical signs despite that ASFV could not be detected in their sera until a challenge infection with the Armenia/07 ASFV strain. The two viruses were not able to induce protective immunity in pigs against a virulent Armenia/07 challenge.
Collapse
Affiliation(s)
- Stefano Petrini
- National Reference Centre for Pestiviruses and Asfivirus, Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, Via Gaetano Salvemini, 1, 06126 Perugia, Italy; (S.P.); (C.R.); (F.D.); (M.P.)
| | - Cecilia Righi
- National Reference Centre for Pestiviruses and Asfivirus, Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, Via Gaetano Salvemini, 1, 06126 Perugia, Italy; (S.P.); (C.R.); (F.D.); (M.P.)
| | - István Mészáros
- HUN-REN Veterinary Medical Research Institute (VMRI), Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (V.T.); (F.O.); (E.G.); (T.M.)
| | - Federica D’Errico
- National Reference Centre for Pestiviruses and Asfivirus, Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, Via Gaetano Salvemini, 1, 06126 Perugia, Italy; (S.P.); (C.R.); (F.D.); (M.P.)
| | - Vivien Tamás
- HUN-REN Veterinary Medical Research Institute (VMRI), Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (V.T.); (F.O.); (E.G.); (T.M.)
| | - Michela Pela
- National Reference Centre for Pestiviruses and Asfivirus, Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, Via Gaetano Salvemini, 1, 06126 Perugia, Italy; (S.P.); (C.R.); (F.D.); (M.P.)
| | - Ferenc Olasz
- HUN-REN Veterinary Medical Research Institute (VMRI), Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (V.T.); (F.O.); (E.G.); (T.M.)
| | - Carmina Gallardo
- European Union Reference Laboratory for ASF (EURL-ASF), Centro de Investigación en Sanidad Animal (CISA-INIA, CSIC), Valdeolmos, 28130 Madrid, Spain; (C.G.)
| | - Jovita Fernandez-Pinero
- European Union Reference Laboratory for ASF (EURL-ASF), Centro de Investigación en Sanidad Animal (CISA-INIA, CSIC), Valdeolmos, 28130 Madrid, Spain; (C.G.)
| | - Eszter Göltl
- HUN-REN Veterinary Medical Research Institute (VMRI), Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (V.T.); (F.O.); (E.G.); (T.M.)
| | - Tibor Magyar
- HUN-REN Veterinary Medical Research Institute (VMRI), Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (V.T.); (F.O.); (E.G.); (T.M.)
| | - Francesco Feliziani
- National Reference Centre for Pestiviruses and Asfivirus, Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, Via Gaetano Salvemini, 1, 06126 Perugia, Italy; (S.P.); (C.R.); (F.D.); (M.P.)
| | - Zoltán Zádori
- HUN-REN Veterinary Medical Research Institute (VMRI), Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (V.T.); (F.O.); (E.G.); (T.M.)
| |
Collapse
|
27
|
Hu Z, Tian X, Lai R, Wang X, Li X. Current detection methods of African swine fever virus. Front Vet Sci 2023; 10:1289676. [PMID: 38144466 PMCID: PMC10739333 DOI: 10.3389/fvets.2023.1289676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
African swine fever (ASF), caused by the African swine fever virus (ASFV), is a highly contagious and notifiable animal disease in domestic pigs and wild boars, as designated by the World Organization for Animal Health (WOAH). The effective diagnosis of ASF holds great importance in promptly controlling its spread due to its increasing prevalence and the continuous emergence of variant strains. This paper offers a comprehensive review of the most common and up-to-date methods established for various genes/proteins associated with ASFV. The discussed methods primarily focus on the detection of viral genomes or particles, as well as the detection of ASFV associated antibodies. It is anticipated that this paper will serve as a reference for choosing appropriate diagnostic methods in diverse application scenarios, while also provide direction for the development of innovative technologies in the future.
Collapse
Affiliation(s)
- Zhiqiang Hu
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- Shandong New Hope Liuhe Co., Ltd., Qingdao, China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd., (NHLH Academy of Swine Research), Dezhou, China
- China Agriculture Research System-Yangling Comprehensive Test Station, Xianyang, China
| | - Xiaogang Tian
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- Shandong New Hope Liuhe Co., Ltd., Qingdao, China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd., (NHLH Academy of Swine Research), Dezhou, China
| | - Ranran Lai
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- Shandong New Hope Liuhe Co., Ltd., Qingdao, China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd., (NHLH Academy of Swine Research), Dezhou, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xiaowen Li
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- Shandong New Hope Liuhe Co., Ltd., Qingdao, China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd., (NHLH Academy of Swine Research), Dezhou, China
- China Agriculture Research System-Yangling Comprehensive Test Station, Xianyang, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, New Hope Liuhe Co., Ltd., Chengdu, China
| |
Collapse
|
28
|
Reis AL, Rathakrishnan A, Goulding LV, Barber C, Goatley LC, Dixon LK. Deletion of the gene for the African swine fever virus BCL-2 family member A179L increases virus uptake and apoptosis but decreases virus spread in macrophages and reduces virulence in pigs. J Virol 2023; 97:e0110623. [PMID: 37796125 PMCID: PMC10617521 DOI: 10.1128/jvi.01106-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE African swine fever virus (ASFV) causes a lethal disease of pigs with high economic impact in affected countries in Africa, Europe, and Asia. The virus encodes proteins that inhibit host antiviral defenses, including the type I interferon response. Host cells also activate cell death through a process called apoptosis to limit virus replication. We showed that the ASFV A179L protein, a BCL-2 family apoptosis inhibitor, is important in reducing apoptosis in infected cells since deletion of this gene increased cell death and reduced virus replication in cells infected with the A179L gene-deleted virus. Pigs immunized with the BeninΔA179L virus showed no clinical signs and a weak immune response but were not protected from infection with the deadly parental virus. The results show an important role for the A179L protein in virus replication in macrophages and virulence in pigs and suggest manipulation of apoptosis as a possible route to control infection.
Collapse
Affiliation(s)
| | | | | | - Claire Barber
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | | | | |
Collapse
|
29
|
Ankhanbaatar U, Auer A, Ulziibat G, Settypalli TBK, Gombo-Ochir D, Basan G, Takemura T, Tseren-Ochir EO, Ouled Ahmed H, Meki IK, Datta S, Soumare B, Metlin A, Cattoli G, Lamien CE. Comparison of the Whole-Genome Sequence of the African Swine Fever Virus from a Mongolian Wild Boar with Genotype II Viruses from Asia and Europe. Pathogens 2023; 12:1143. [PMID: 37764951 PMCID: PMC10536492 DOI: 10.3390/pathogens12091143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
African swine fever (ASF) is a highly contagious and severe viral hemorrhagic disease in domestic and wild pigs. ASF seriously affects the global swine industry as the mortality rate can reach 100% with highly virulent strains. In 2007, ASF was introduced into the Caucasus and spread to Russia and later into other European and Asian countries. This study reported the first whole-genome sequence (WGS) of the ASF virus (ASFV) that was detected in a Mongolian wild boar. This sequence was then compared to other WGS samples from Asia and Europe. Results show that the ASFV Genotype II from Mongolia is similar to the Asian Genotype II WGS. However, there were three nucleotide differences found between the Asian and European genome sequences, two of which were non-synonymous. It was also observed that the European Genotype II ASFV WGS was more diverse than that of the Asian counterparts. The study demonstrates that the ASFV Genotype II variants found in wild boars and domestic pigs are highly similar, suggesting these animals might have had direct or indirect contact, potentially through outdoor animal breeding. In conclusion, this study provides a WGS and mutation spectrum of the ASFV Genotype II WGS in Asia and Europe and thus provides important insights into the origin and spread of ASFV in Mongolia.
Collapse
Affiliation(s)
- Ulaankhuu Ankhanbaatar
- Laboratory of Viral Animal Diseases Diagnostic and Surveillance, State Central Veterinary Laboratory, Ulaanbaatar 17029, Mongolia
- School of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17029, Mongolia
| | - Agathe Auer
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
- Food and Agriculture Organization of the United Nations (FAO-UN), Viale delle Terme di Caracalla, 00153 Rome, Italy
| | - Gerelmaa Ulziibat
- Laboratory of Viral Animal Diseases Diagnostic and Surveillance, State Central Veterinary Laboratory, Ulaanbaatar 17029, Mongolia
| | - Tirumala B. K. Settypalli
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
| | - Delgerzul Gombo-Ochir
- Laboratory of Viral Animal Diseases Diagnostic and Surveillance, State Central Veterinary Laboratory, Ulaanbaatar 17029, Mongolia
| | - Ganzorig Basan
- Laboratory of Viral Animal Diseases Diagnostic and Surveillance, State Central Veterinary Laboratory, Ulaanbaatar 17029, Mongolia
| | - Taichiro Takemura
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
| | | | - Hatem Ouled Ahmed
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
| | - Irene Kasindi Meki
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
| | - Sneha Datta
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
| | - Baba Soumare
- Food and Agriculture Organization of the United Nations (FAO-UN), Viale delle Terme di Caracalla, 00153 Rome, Italy
| | - Artem Metlin
- Food and Agriculture Organization of the United Nations (FAO-UN), Viale delle Terme di Caracalla, 00153 Rome, Italy
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
| | - Charles E. Lamien
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
| |
Collapse
|
30
|
Lu P, Zhou J, Wei S, Takada K, Masutani H, Okuda S, Okamoto K, Suzuki M, Kitamura T, Masujin K, Kokuho T, Itoh H, Nagata K. Comparative genomic and transcriptomic analyses of African swine fever virus strains. Comput Struct Biotechnol J 2023; 21:4322-4335. [PMID: 37711186 PMCID: PMC10497913 DOI: 10.1016/j.csbj.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/27/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023] Open
Abstract
African swine fever (ASF) is the most devastating disease caused by the African swine fever virus (ASFV), impacting the pig industry worldwide and threatening food security and biodiversity. Although two vaccines have been approved in Vietnam to combat ASFV, the complexity of the virus, with its numerous open reading frames (ORFs), necessitates a more diverse vaccine strategy. Therefore, we focused on identifying and investigating the potential vaccine targets for developing a broad-spectrum defense against the virus. This study collected the genomic and/or transcriptomic data of different ASFV strains, specifically from in vitro studies, focusing on comparisons between genotypes I, II, and X, from the National Center for Biotechnology Information (NCBI) database. The comprehensive analysis of the genomic and transcriptomic differences between high- and low-virulence strains revealed six early genes, 13 late genes, and six short genes as potentially essential ORFs associated with high-virulence. In addition, many other ORFs (e.g., 14 multigene family members) are worth investigating. The results of this study provided candidate ORFs for developing ASF vaccines and therapies.
Collapse
Affiliation(s)
- Peng Lu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jiaqiao Zhou
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Sibo Wei
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Konosuke Takada
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hayato Masutani
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Suguru Okuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ken Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomoya Kitamura
- African Swine Fever Unit, National Institute of Animal Health, National A griculture and Food Research Organization (NARO), 6-20-1 Josuihoncho, Kodaira, Tokyo, Japan
| | - Kentaro Masujin
- African Swine Fever Unit, National Institute of Animal Health, National A griculture and Food Research Organization (NARO), 6-20-1 Josuihoncho, Kodaira, Tokyo, Japan
| | - Takehiro Kokuho
- African Swine Fever Unit, National Institute of Animal Health, National A griculture and Food Research Organization (NARO), 6-20-1 Josuihoncho, Kodaira, Tokyo, Japan
| | - Hideaki Itoh
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
31
|
Kim G, Kim SJ, Kim WJ, Kim JH, Kim JC, Lee SG, Kim ES, Lee SH, Jheong WH. Emergence and Prevalence of an African Swine Fever Virus Variant in Wild Boar Populations in South Korea from 2019 to 2022. Viruses 2023; 15:1667. [PMID: 37632010 PMCID: PMC10459476 DOI: 10.3390/v15081667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
African swine fever (ASF), a viral disease caused by the African swine fever virus (ASFV), is associated with high mortality rates in domestic pigs and wild boars. ASF has been spreading since its discovery in wild boars in Korea in October 2019. Genomic analyses have provided insights into the genetic diversity of the ASFV isolated from various regions, enabling a better understanding of the virus origin and transmission patterns. We conducted a genome analysis to evaluate the diversity and mutations of ASFV spreading among wild boars in Korea during 2019-2022. We compared the genomes of ASFV strains isolated from Korean wild boars and publicly available ASFV genomes. Genomic analysis revealed several single-nucleotide polymorphisms within multigene families (MGFs) 360-1La and 360-4L in Korean ASFV. MGF 360-1La and 360-4L variations were not observed in other ASFV strains, including those of genotype II. Finally, we partially analyzed MGFs 360-1La and 360-4L in ASFV-positive samples between 2019 and 2022, confirming the geographical distribution of the variants. Our findings can help identify new genetic markers for epidemiological ASFV analysis and provide essential information for effective disease management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Weon-Hwa Jheong
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention (NIWDC), 1 Songam-gil, Gwangsan-gu, Gwangju 62407, Republic of Korea; (G.K.); (S.-J.K.); (W.-J.K.); (J.-H.K.); (J.-C.K.); (S.-G.L.); (E.-S.K.); (S.-H.L.)
| |
Collapse
|
32
|
Shi R, Zhang Y, Wang C. Dynamic Analysis and Optimal Control of Fractional Order African Swine Fever Models with Media Coverage. Animals (Basel) 2023; 13:2252. [PMID: 37508030 PMCID: PMC10376020 DOI: 10.3390/ani13142252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
African swine fever is a highly contagious virus that causes pig disease. Its onset process is short, but the mortality rate is as high as 100%. There are still no effective drugs that have been developed to treat African swine fever, and prevention and control measures are currently the best means to avoid infection in pig herds. In this paper, two fractional order mathematical models with media coverage are constructed to describe the transmission of African swine fever. The first model is a basic model with media coverage, and no control measures are considered. For this model, the reproduction number is obtained by using the next generation matrix method. Then, the sufficient conditions for the existence and stability of two equilibriums are obtained. Based on the first model, the second model is established incorporating two control measures. By using Pontryagin's maximal principle, the optimal control solution is derived. After that, some numerical simulations are performed for the two models to verify the theoretical results. Both the qualitative analysis and numerical results indicate that timely media coverage combined with disinfection control measures is crucial to preventing the spread of disease.
Collapse
Affiliation(s)
- Ruiqing Shi
- School of Mathematics and Computer Science, Shanxi Normal University, Taiyuan 030031, China
| | - Yihong Zhang
- School of Mathematics and Computer Science, Shanxi Normal University, Taiyuan 030031, China
| | - Cuihong Wang
- School of Mathematics and Computer Science, Shanxi Normal University, Taiyuan 030031, China
| |
Collapse
|
33
|
Koltsov A, Krutko S, Kholod N, Sukher M, Belov S, Korotin A, Koltsova G. Deletion of the CD2 Gene in the Virulent ASFV Congo Strain Affects Viremia in Domestic Swine, but Not the Virulence. Animals (Basel) 2023; 13:2002. [PMID: 37370512 DOI: 10.3390/ani13122002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
African swine fever (ASF) is an infectious disease that causes the most significant losses to the pig industry. One of the effective methods for combating this disease could be the development of vaccines. To date, experimental vaccines based on the use of live attenuated strains of the ASF virus (ASFV) obtained by the deletion of viral genes responsible for virulence are the most effective. Deletion of the EP402R gene encoding a CD2-like protein led to the attenuation of various strains of the ASFV, although the degree of attenuation varies among different isolates. Here we have shown that the deletion of the EP402R gene from the genome of a high-virulent Congo isolate did not change either the virulence of the virus or its ability to replicate in the swine macrophage cell cultures in vitro. However, in vivo, animals infected with ΔCongo-v_CD2v had a delay in the onset of the disease and viremia compared to animals infected with the parental strain. Thus, deletion of the CD2 gene in different isolates of the ASFV has a different effect on the virulence of the virus, depending on its genetic background.
Collapse
Affiliation(s)
- Andrey Koltsov
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia
| | - Sergey Krutko
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia
| | - Natalia Kholod
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia
| | - Mikhail Sukher
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia
| | - Sergey Belov
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia
| | - Alexey Korotin
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia
| | - Galina Koltsova
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia
| |
Collapse
|
34
|
Li D, Ren J, Zhu G, Wu P, Yang W, Ru Y, Feng T, Liu H, Zhang J, Peng J, Tian H, Liu X, Zheng H. Deletions of MGF110-9L and MGF360-9L from African swine fever virus are highly attenuated in swine and confer protection against homologous challenge. J Biol Chem 2023; 299:104767. [PMID: 37142221 PMCID: PMC10236468 DOI: 10.1016/j.jbc.2023.104767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
African swine fever, caused by a large icosahedral DNA virus (African swine fever virus, ASFV), is a highly contagious disease in domestic and feral swine, thus posing a significant economic threat to the global swine industry. Currently, there are no effective vaccines or the available methods to control ASFV infection. Attenuated live viruses with deleted virulence factors are considered to be the most promising vaccine candidates; however, the mechanism by which these attenuated viruses confer protection is unclear. Here, we used the Chinese ASFV CN/GS/2018 as a backbone and used homologous recombination to generate a virus in which MGF110-9L and MGF360-9L, two genes antagonize host innate antiviral immune response, were deleted (ASFV-ΔMGF110/360-9L). This genetically modified virus was highly attenuated in pigs and provided effective protection of pigs against parental ASFV challenge. Importantly, we found ASFV-ΔMGF110/360-9L infection induced higher expression of Toll-like receptor 2 (TLR2) mRNA compared with parental ASFV as determined by RNA-Seq and RT-PCR analysis. Further immunoblotting results showed that parental ASFV and ASFV-ΔMGF110/360-9L infection inhibited Pam3CSK4-triggered activating phosphorylation of proinflammatory transcription factor NF-κB subunit p65 and phosphorylation of NF-κB inhibitor IκBα levels, although NF-κB activation was higher in ASFV-ΔMGF110/360-9L-infected cells compared with parental ASFV-infected cells. Additionally, we show overexpression of TLR2 inhibited ASFV replication and the expression of ASFV p72 protein, whereas knockdown of TLR2 had the opposite effect. Our findings suggest that the attenuated virulence of ASFV-ΔMGF110/360-9L might be mediated by increased NF-κB and TLR2 signaling.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jingjing Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guoqiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Panxue Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenping Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yi Ru
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tao Feng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huanan Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jiangling Peng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
35
|
Zhao D, Sun E, Huang L, Ding L, Zhu Y, Zhang J, Shen D, Zhang X, Zhang Z, Ren T, Wang W, Li F, He X, Bu Z. Highly lethal genotype I and II recombinant African swine fever viruses detected in pigs. Nat Commun 2023; 14:3096. [PMID: 37248233 DOI: 10.1038/s41467-023-38868-w] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
African swine fever virus (ASFV) poses a great threat to the global pig industry and food security. Currently, 24 ASFV genotypes have been reported but it is unclear whether recombination of different genotype viruses occurs in nature. In this study, we detect three recombinants of genotype I and II ASFVs in pigs in China. These recombinants are genetically similar and classified as genotype I according to their B646L gene, yet 10 discrete fragments accounting for over 56% of their genomes are derived from genotype II virus. Animal studies with one of the recombinant viruses indicate high lethality and transmissibility in pigs, and deletion of the virulence-related genes MGF_505/360 and EP402R derived from virulent genotype II virus highly attenuates its virulence. The live attenuated vaccine derived from genotype II ASFV is not protective against challenge of the recombinant virus. These naturally occurring recombinants of genotype I and II ASFVs have the potential to pose a challenge to the global pig industry.
Collapse
Affiliation(s)
- Dongming Zhao
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Encheng Sun
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Lianyu Huang
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Leilei Ding
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yuanmao Zhu
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jiwen Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Dongdong Shen
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xianfeng Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Zhenjiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Tao Ren
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Wan Wang
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Fang Li
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xijun He
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Zhigao Bu
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China.
| |
Collapse
|
36
|
Huang M, Zheng H, Tan W, Xiang C, Fang N, Xie W, Wen L, Liu D, Chen R. Molecular Signatures in Swine Innate and Adaptive Immune Responses to African Swine Fever Virus Antigens p30/p54/CD2v Expressed Using a Highly Efficient Semliki Forest Virus Replicon System. Int J Mol Sci 2023; 24:ijms24119316. [PMID: 37298266 DOI: 10.3390/ijms24119316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
African swine fever virus (ASFV) causes a devastating viral hemorrhagic disease in domestic pigs and Eurasian wild boars, posing a foremost threat to the swine industry and pig farming. The development of an effective vaccine is urgently needed, but has been hampered by the lack of an in-depth, mechanistic understanding of the host immune response to ASFV infection and the induction of protective immunity. In this study, we report that immunization of pigs with Semliki Forest Virus (SFV) replicon-based vaccine candidates expressing ASFV p30, p54, and CD2v, as well as their ubiquitin-fused derivatives, elicits T cell differentiation and expansion, promoting specific T cell and humoral immunity. Due to significant variations in the individual non-inbred pigs in response to the vaccination, a personalized analysis was conducted. Using integrated analysis of differentially expressed genes (DEGs), Venn, KEGG and WGCNA, Toll-like receptor, C-type lectin receptor, IL17 receptor, NOD-like receptor and nucleic acid sensor-mediated signaling pathways were demonstrated to be positively correlated to the antigen-stimulated antibody production and inversely correlated to the IFN-γ secreting cell counts in peripheral blood mononuclear cells (PBMCs). An up-regulation of CIQA, CIQB, CIQC, C4BPA, SOSC3, S100A8 and S100A9, and down-regulation of CTLA4, CXCL2, CXCL8, FOS, RGS1, EGR1 and SNAI1 are general in the innate immune response post-the second boost. This study reveals that pattern recognition receptors TLR4, DHX58/DDX58 and ZBP1, and chemokines CXCL2, CXCL8 and CXCL10 may play important roles in regulating this vaccination-stimulated adaptive immune response.
Collapse
Affiliation(s)
- Mei Huang
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526238, China
| | - Hanghui Zheng
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526238, China
| | - Weixiong Tan
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526238, China
| | - Chengwei Xiang
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Niran Fang
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526238, China
| | - Wenting Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lianghai Wen
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526238, China
| | - Dingxiang Liu
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, China
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Ruiai Chen
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526238, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
37
|
Zhang H, Zhao S, Zhang H, Qin Z, Shan H, Cai X. Vaccines for African swine fever: an update. Front Microbiol 2023; 14:1139494. [PMID: 37180260 PMCID: PMC10173882 DOI: 10.3389/fmicb.2023.1139494] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
African swine fever (ASF) is a fatal infectious disease of swine caused by the African swine fever virus (ASFV). Currently, the disease is listed as a legally notifiable disease that must be reported to the World Organization for Animal Health (WOAH). The economic losses to the global pig industry have been insurmountable since the outbreak of ASF. Control and eradication of ASF are very critical during the current pandemic. Vaccination is the optimal strategy to prevent and control the ASF epidemic, but since inactivated ASFV vaccines have poor immune protection and there aren't enough cell lines for efficient in vitro ASFV replication, an ASF vaccine with high immunoprotective potential still remains to be explored. Knowledge of the course of disease evolution, the way of virus transmission, and the breakthrough point of vaccine design will facilitate the development of an ASF vaccine. In this review, the paper aims to highlight the recent advances and breakthroughs in the epidemic and transmission of ASF, virus mutation, and the development of vaccines in recent years, focusing on future directions and trends.
Collapse
Affiliation(s)
- Hongliang Zhang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Saisai Zhao
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| | - Haojie Zhang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhihua Qin
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hu Shan
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xiulei Cai
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
38
|
PI3K-Akt pathway-independent PIK3AP1 identified as a replication inhibitor of the African swine fever virus based on iTRAQ proteomic analysis. Virus Res 2023; 327:199052. [PMID: 36775023 DOI: 10.1016/j.virusres.2023.199052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 02/14/2023]
Abstract
African swine fever (ASF) is a severe infectious disease that has a high global prevalence. The fatality rate of pigs infected with ASF virus (ASFV) is close to 100%; in the absence of a safe and reliable commercial vaccine, this poses a threat to the global pig industry and public health. To better understand the interaction of ASFV with its host, isobaric tags for relative and absolute quantitation combined with liquid chromatography-mass spectrometry was used to conduct quantitative proteomic analysis of bone marrow-derived macrophage cells infected with ASFV. Overall, 4579 proteins were identified; 286 of these were significantly upregulated and 69 were significantly downregulated after ASFV infection. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and protein-protein interaction network analyses were used to obtain insights into the dynamics and complexity of the ASFV-host interaction. In addition, immunoblotting revealed that the expression of PIK3AP1, RNF114, and FABP5 was upregulated and that of TRAM1 was downregulated after ASFV infection. Overexpression of PIK3AP1 and RNF114 significantly inhibited ASFV replication in vitro, but the suppressive effect of PIK3AP1 on ASFV replication was independent of the PI3K-Akt pathway. Further studies confirmed that ASFV MGF360-9L interacts with PIK3AP1 to reduce its protein expression level. Moreover, LY294002, an inhibitor of the PI3K-Akt pathway, inhibited ASFV replication, indicating the importance of the PI3K-Akt pathway in ASFV infection. This study identified the network of interactions between ASFV and host cells and provides a reference for the development of anti-ASFV strategies and for studying the potential mechanisms and pathogenesis of ASFV infection.
Collapse
|
39
|
Giammarioli M, Alessandro D, Cammà C, Masoero L, Torresi C, Marcacci M, Zoppi S, Curini V, Rinaldi A, Rossi E, Casciari C, Pela M, Pellegrini C, Iscaro C, Feliziani F. Molecular Characterization of the First African Swine Fever Virus Genotype II Strains Identified from Mainland Italy, 2022. Pathogens 2023; 12:pathogens12030372. [PMID: 36986294 PMCID: PMC10055901 DOI: 10.3390/pathogens12030372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
African swine fever (ASF) is responsible for important socio-economic effects in the global pig industry, especially for countries with large-scale piggery sectors. In January 2022, the African swine fever virus (ASFV) genotype II was identified in a wild boar population in mainland Italy (Piedmont region). This study describes the molecular characterization, by Sanger and next-generation sequencing (NGS), of the first index case 632/AL/2022 and of another isolate (2802/AL/2022) reported in the same month, in close proximity to the first, following multiple ASF outbreaks. Phylogenetic analysis based on the B646L gene and NGS clustered the isolates 632/AL/2022 and 2802/AL/2022 within the wide and most homogeneous p72 genotype II that includes viruses from European and Asian countries. The consensus sequence obtained from the ASFV 2802/AL/2022 isolate was 190,598 nucleotides in length and had a mean GC content of 38.38%. At the whole-genome level, ASF isolate 2802/AL/2022 showed a close genetic correlation with the other representative ASFV genotype II strains isolated between April 2007 and January 2022 from wild and domestic pigs in Eastern/Central European (EU) and Asian countries. CVR subtyping clustered the two Italian ASFV strains within the major CVR variant circulating since the first virus introduction in Georgia in 2007. Intergenic region I73R-I329L subtyping placed the Italian ASFV isolates within the variant identical to the strains frequently identified among wild boars and domestic pigs. Presently, given the high sequence similarity, it is impossible to trace the precise geographic origin of the virus at a country level. Moreover, the full-length sequences available in the NCBI are not completely representative of all affected territories.
Collapse
Affiliation(s)
- Monica Giammarioli
- Istituto Zooprofilattico Sperimentale Umbria e Marche "Togo Rosati", 06126 Perugia, Italy
| | - Dondo Alessandro
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Loretta Masoero
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy
| | - Claudia Torresi
- Istituto Zooprofilattico Sperimentale Umbria e Marche "Togo Rosati", 06126 Perugia, Italy
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Simona Zoppi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Antonio Rinaldi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Elisabetta Rossi
- Istituto Zooprofilattico Sperimentale Umbria e Marche "Togo Rosati", 06126 Perugia, Italy
| | - Cristina Casciari
- Istituto Zooprofilattico Sperimentale Umbria e Marche "Togo Rosati", 06126 Perugia, Italy
| | - Michela Pela
- Istituto Zooprofilattico Sperimentale Umbria e Marche "Togo Rosati", 06126 Perugia, Italy
| | - Claudia Pellegrini
- Istituto Zooprofilattico Sperimentale Umbria e Marche "Togo Rosati", 06126 Perugia, Italy
| | - Carmen Iscaro
- Istituto Zooprofilattico Sperimentale Umbria e Marche "Togo Rosati", 06126 Perugia, Italy
| | - Francesco Feliziani
- Istituto Zooprofilattico Sperimentale Umbria e Marche "Togo Rosati", 06126 Perugia, Italy
| |
Collapse
|
40
|
Kim G, Park JE, Kim SJ, Kim Y, Kim W, Kim YK, Jheong W. Complete genome analysis of the African swine fever virus isolated from a wild boar responsible for the first viral outbreak in Korea, 2019. Front Vet Sci 2023; 9:1080397. [PMID: 36713858 PMCID: PMC9875005 DOI: 10.3389/fvets.2022.1080397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
African swine fever (ASF), a highly contagious and severe hemorrhagic viral disease in swine, is emerging as a major threat not only in Korea but also worldwide. The first confirmed case of ASF in Korea was reported in 2019. Despite the occurrence of ASF in Korea, only a few studies have genetically characterized the causative ASF virus (ASFV). In this study, we aimed to genetically characterize the ASFV responsible for the 2019 outbreak in Korea. The genome of the ASFV isolated during the first outbreak in Korea was analyzed. The Korea/YC1/2019 strain has 188,950 base pairs, with a GC content of 38.4%. The complete genome sequence was compared with other ASFV genomes annotated in the NCBI database. The Korea/YC1/2019 strain shared the highest similarity with Georgia 2007, Belgium 2018/1, and ASFV-wbBS01 strains. This study expands our knowledge of the genetic diversity of ASFV, providing valuable information for epidemiology, diagnostics, therapies, and vaccine development.
Collapse
|
41
|
Liu H, Meng F, Nyaruaba R, He P, Hong W, Jiang M, Liu D, Zhou W, Bai D, Yu J, Wei H. A triton X-100 assisted PMAxx-qPCR assay for rapid assessment of infectious African swine fever virus. Front Microbiol 2022; 13:1062544. [PMID: 36545208 PMCID: PMC9760672 DOI: 10.3389/fmicb.2022.1062544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/09/2022] [Indexed: 12/07/2022] Open
Abstract
Introduction African Swine Fever (ASF) is a highly infectious disease of pigs, caused by African swine fever virus (ASFV). The lack of vaccines and drugs makes strict disinfection practices to be one of the main measurements to curb the transmission of ASF. Therefore, it is important to assess if all viruses are inactivated after disinfection or after long time exposure in their natural conditions. Currently, the infectivity of ASFV is determined by virus isolation and culture in a biosafety level 3 (BSL-3) laboratory. However, BSL-3 laboratories are not readily available, need skilled expertise and may be time consuming. Methods In this study, a Triton X-100 assisted PMAxx-qPCR method was developed for rapid assessment of infectious ASFV in samples. PMAxx, an improved version of propidium monoazide (PMA), can covalently cross-link with naked ASFV-DNA or DNA inside inactivated ASFV virions under assistance of 0.1% (v/v) TritonX-100, but not with ASFV-DNA inside live virions. Formation of PMAxx-DNA conjugates prevents PCR amplification, leaving only infectious virions to be detected. Under optimum conditions, the limit of detection of the PMAxx-qPCR assay was 2.32log10HAD50/mL of infectious ASFV. Testing different samples showed that the PMAxx-qPCR assay was effective to evaluate intact ASFV virions after treatment by heat or chemical disinfectants and in simulated samples such as swine tissue homogenate, swine saliva swabs, and environmental swabs. However, whole-blood and saliva need to be diluted before testing because they may inhibit the PCR reaction or the cross-linking of PMAxx with DNA. Conclusion The Triton X-100 assisted PMAxx-qPCR assay took less than 3 h from sample to result, offering an easier and faster way for assessing infectious ASFV in samples from places like pig farms and pork markets.
Collapse
Affiliation(s)
- Huan Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Meng
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,African Swine Fever Regional Laboratory of China (Wuhan), Wuhan, China
| | - Raphael Nyaruaba
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ping He
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Hong
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mengwei Jiang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,African Swine Fever Regional Laboratory of China (Wuhan), Wuhan, China
| | - Dongqing Liu
- Comprehensive Agricultural Law Enforcement Bureau, Wuhan, China
| | - Wenhao Zhou
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dan Bai
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junping Yu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,African Swine Fever Regional Laboratory of China (Wuhan), Wuhan, China,*Correspondence: Junping Yu,
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,African Swine Fever Regional Laboratory of China (Wuhan), Wuhan, China,Hongping Wei,
| |
Collapse
|
42
|
Zhenzhong W, Chuanxiang Q, Shengqiang G, Jinming L, Yongxin H, Xiaoyue Z, Yan L, Naijun H, Xiaodong W, Zhiliang W, Yingjuan Q. Genetic variation and evolution of attenuated African swine fever virus strain isolated in the field: A review. Virus Res 2022; 319:198874. [PMID: 35872281 DOI: 10.1016/j.virusres.2022.198874] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
It has been reported that there were several "mutant isolated in the field " of African swine fever virus (ASFV) since ASFV was reported, which may be the result of the continuous adaptation and evolution of ASFV. The emergence of ASFV field mutants may lead to chronic or asymptomatic "atypical clinical symptoms" in pigs and hinder the development of porcine industry. Here we analyzed the published ASFV "field attenuated strain" gene sequences and reviewed the genetic differences between field attenuated and virulent ASFV strains, hoping for providing a reference for the scientific prevention and control of ASF and the development of new vaccines. In this study we found the deletion of EP153R and EP402R occurred in 4 field attenuated strains, and all the differential genes of field attenuated strains mainly range in regions with low GC content. The evolution of MGF110 family genes was identified by analysis of two field attenuated ASFV strains from Portugal. We also found that some tandem repeat sequence plays an important role in the evolution of strains of NH/P68 and OURT 88/3 but not in strains Estonia 2014, HuB20 and Pig/Heilongjiang/HRB1/2020.
Collapse
Affiliation(s)
- Wang Zhenzhong
- MOE Joint International Research Laboratory for Animal Health and Food Safety/Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Qi Chuanxiang
- MOE Joint International Research Laboratory for Animal Health and Food Safety/Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Ge Shengqiang
- China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China.
| | - Li Jinming
- China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Hu Yongxin
- China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China.
| | - Zhang Xiaoyue
- Shandong Agricultural University, Tai'an, Shandong 271001, China.
| | - Lv Yan
- China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China.
| | - Han Naijun
- China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China.
| | - Wu Xiaodong
- China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China.
| | - Wang Zhiliang
- China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China.
| | - Qian Yingjuan
- MOE Joint International Research Laboratory for Animal Health and Food Safety/Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
43
|
Luo R, Wang T, Sun M, Pan L, Huang S, Sun Y, Qiu HJ. The 24.5-kb Left Variable Region Is Not a Determinant for African Swine Fever Virus to Replicate in Primary Porcine Alveolar Macrophages. Viruses 2022; 14:2119. [PMID: 36298673 PMCID: PMC9607283 DOI: 10.3390/v14102119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 08/13/2023] Open
Abstract
African swine fever (ASF) is a widespread hemorrhagic and highly contagious infectious disease caused by African swine fever virus (ASFV), currently threatening the pig industry worldwide. Here, we demonstrated that the cell-adapted strain ASFV-P121 with a 24.5-kb deletion in the left variable region (LVR) lost the ability to replicate in primary porcine alveolar macrophages (PAMs). To explore whether this deletion determines the inability of ASFV-P121 replication in PAMs, a mutant virus (ASFV-ΔLVR) with the same LVR deletion as ASFV-P121 was constructed based on the wild-type ASFV HLJ/18 (ASFV-WT). However, the growth titer of ASFV-ΔLVR only reduced 10-fold compared with ASFV-WT in PAMs. Furthermore, we found that the large deletion of the LVR does not affect the formation of virus factories and virion morphogenesis. These findings reveal important implications for analyzing the molecular mechanism of ASFV cell tropism change.
Collapse
Affiliation(s)
- Rui Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
- School of Life Science Engineering, Foshan University, Foshan 528231, China
| | - Tao Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
| | - Maowen Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
| | - Li Pan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
| | - Shujian Huang
- School of Life Science Engineering, Foshan University, Foshan 528231, China
| | - Yun Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
- School of Life Science Engineering, Foshan University, Foshan 528231, China
| |
Collapse
|
44
|
Bao J, Zhang Y, Shi C, Wang Q, Wang S, Wu X, Cao S, Xu F, Wang Z. Genome-Wide Diversity Analysis of African Swine Fever Virus Based on a Curated Dataset. Animals (Basel) 2022; 12:ani12182446. [PMID: 36139306 PMCID: PMC9495133 DOI: 10.3390/ani12182446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary African swine fever (ASF) is one of the most important animal diseases affecting the domestic swine population globally. Whole-genome sequence analysis on the circulating African swine fever virus (ASFV) strains would provide valuable information in tracking the outbreaks of the disease. The aim of this study was to prepare a curated dataset of ASFV genome sequences and investigate genome-wide diversity of circulating ASFV strains. We prepared a curated dataset containing 123 high-quality ASFV genome sequences representing 10 genotypes collected from 28 countries between 1949 and 2020. Phylogenetic analysis based on whole-genome sequences provided high-resolution topology in genotyping ASFV isolates, which was supported by pairwise genome sequence similarity comparison. Wide distribution and high variation of tandem repeat sequences were found in ASFV genomes. Structural variation and highly variable poly G or poly C tracts were also identified. This study improved our understanding on the patterns of genetic variation of ASFV and facilitated future studies on ASFV molecular epidemiology. Abstract African swine fever (ASF) is a lethal contagious viral disease of domestic pigs and wild boars caused by the African swine fever virus (ASFV). The pandemic spread of ASF has had serious effects on the global pig industry. Virus genome sequencing and comparison play an important role in tracking the outbreaks of the disease and tracing the transmission of the virus. Although more than 140 ASFV genome sequences have been deposited in the public databases, the genome-wide diversity of ASFV remains unclear. Here we prepared a curated dataset of ASFV genome sequences by filtering genomes with sequencing errors as well as duplicated genomes. A total of 123 ASFV genome sequences were included in the dataset, representing 10 genotypes collected between 1949 and 2020. Phylogenetic analysis based on whole-genome sequences provided high-resolution topology in differentiating closely related ASFV isolates, and drew new clues in the classification of some ASFV isolates. Genome-wide diversity of ASFV genomes was explored by pairwise sequence similarity comparison and ORF distribution comparison. Tandem repeat sequences were found widely distributed and highly varied in ASFV genomes. Structural variation and highly variable poly G or poly C tracts also contributed to the genome diversity. This study expanded our knowledge on the patterns of genetic diversity and evolution of ASFV, and provided valuable information for diagnosis improvement and vaccine development.
Collapse
Affiliation(s)
- Jingyue Bao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Yong Zhang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 518083, China
| | - Chuan Shi
- China Animal Health and Epidemiology Center, Qingdao 266032, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 518083, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Qinghua Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Shujuan Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Xiaodong Wu
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengping Xu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 518083, China
- Correspondence: (F.X.); (Z.W.)
| | - Zhiliang Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
- Correspondence: (F.X.); (Z.W.)
| |
Collapse
|
45
|
Co-Deletion of A238L and EP402R Genes from a Genotype IX African Swine Fever Virus Results in Partial Attenuation and Protection in Swine. Viruses 2022; 14:v14092024. [PMID: 36146830 PMCID: PMC9501025 DOI: 10.3390/v14092024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022] Open
Abstract
African swine fever virus (ASFV) is the causative agent of African swine fever (ASF), resulting in up to 100% mortality in pigs. Although endemic in most sub-Saharan African countries, where all known ASFV genotypes have been reported, the disease has caused pandemics of significant economic impact in Eurasia, and no vaccines or therapeutics are available to date. In endeavors to develop live-attenuated vaccines against ASF, deletions of several of the ~170 ASFV genes have shown contrasting results depending on the genotype of the investigated ASFV. Here, we report the in vivo outcome of a single deletion of the A238L (5EL) gene and double deletions of A238L (5EL) and EP402R (CD2v) genes from the genome of a highly virulent genotype IX ASFV isolate. Domestic pigs were intramuscularly inoculated with (i) ASFV-Ke-ΔA238L to assess the safety of A238L deletion and (ii) ASFV-Ke-ΔEP402RΔA238L to investigate protection against challenge with the virulent wildtype ASFV-Ke virus. While A238L (5EL) gene deletion did not yield complete attenuation, co-deletion of A238L (5EL) and EP402R (CD2v) improved the safety profile of the single deletions, eliciting both humoral and cellular immune responses and conferred partial protection against challenge with the virulent wildtype ASFV-Ke virus.
Collapse
|
46
|
Abstract
African swine fever (ASF) is a lethal and highly contagious viral disease of domestic and wild pigs, listed as a notifiable disease reported to the World Organization for Animal Health (OIE). Despite its limited host range and absent zoonotic potential, the socio-economic and environmental impact of ASF is very high, representing a serious threat to the global swine industry and the many stakeholders involved. Currently, only control and eradication measures based mainly on early detection and strict stamping-out policies are available, however, the rapid spread of the disease in new countries, and in new regions in countries already affected, show these strategies to be lacking. In this review, we discuss approaches to ASF vaccinology, with emphasis on the advances made over the last decade, including the development of virulence-associated gene deleted strains such as the very promising ASFV-G-ΔI177L/ΔLVR, that replicates efficiently in a stable porcine epithelial cell line, and the cross-protecting BA71ΔCD2 capable of stably growing in the commercial COS-1 cell line, or the naturally attenuated Lv17/WB/Rie1 which shows solid protection in wild boar. We also consider the key constraints involved in the scale-up and commercialization of promising live attenuated and virus-vectored vaccine candidates, namely cross-protection, safety, lack of suitable animal models, compatibility with wildlife immunization, availability of established and licensed cell lines, and differentiating infected from vaccinated animals (DIVA) strategy.
Collapse
Affiliation(s)
- Ana Catarina Urbano
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon.,Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS)
| | - Fernando Ferreira
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon.,Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS)
| |
Collapse
|
47
|
Ayanwale A, Trapp S, Guabiraba R, Caballero I, Roesch F. New Insights in the Interplay Between African Swine Fever Virus and Innate Immunity and Its Impact on Viral Pathogenicity. Front Microbiol 2022; 13:958307. [PMID: 35875580 PMCID: PMC9298521 DOI: 10.3389/fmicb.2022.958307] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 12/18/2022] Open
Abstract
The continuous spread of African swine fever virus (ASFV) in Europe and Asia represents a major threat to livestock health, with billions of dollars of income losses and major perturbations of the global pig industry. One striking feature of African swine fever (ASF) is the existence of different forms of the disease, ranging from acute with mortality rates approaching 100% to chronic, with mild clinical manifestations. These differences in pathogenicity have been linked to genomic alterations present in attenuated ASFV strains (and absent in virulent ones) and differences in the immune response of infected animals. In this mini-review, we summarized current knowledge on the connection between ASFV pathogenicity and the innate immune response induced in infected hosts, with a particular focus on the pathways involved in ASFV detection. Indeed, recent studies have highlighted the key role of the DNA sensor cGAS in ASFV sensing. We discussed what other pathways may be involved in ASFV sensing and inflammasome activation and summarized recent findings on the viral ASFV genes involved in the modulation of the interferon (IFN) and nuclear factor kappa B (NF-κB) pathways.
Collapse
Affiliation(s)
| | - Sascha Trapp
- UMR 1282 ISP, INRAE Centre Val de Loire, Nouzilly, France
| | | | | | | |
Collapse
|
48
|
Yang L, Wang L, Lv M, Sun Y, Cao J. Clinical Validation of DNA Extraction-Free qPCR, Visual LAMP, and Fluorescent LAMP Assays for the Rapid Detection of African Swine Fever Virus. Life (Basel) 2022; 12:1067. [PMID: 35888155 PMCID: PMC9320077 DOI: 10.3390/life12071067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023] Open
Abstract
The global pig industry and food safety are seriously threatened by outbreaks of African swine fever (ASF). To permit early diagnosis of African swine fever virus (ASFV), prevent its spread, and limit its outbreaks, a highly sensitive diagnostic method that can be performed at pig farms is required. Herein, we established DNA extraction-free real-time PCR (qPCR), visual loop-mediated isothermal amplification (LAMP), and fluorescent LAMP assays, which were compared with the results of World Organization for Animal Health (OIE) qPCR to assess ASFV-infected clinical samples. Based on plasmid DNA, the limit of detection for the three assays and OIE qPCR were 5.8 copies/μL. All four assays had good ASFV specificity and showed no cross-reactivity with other tested viruses. These assays were used to diagnose 100 clinical samples. The assays showed good diagnostic consistency, with kappa values of 1.0, 0.84, and 0.88, respectively. Compared with OIE qPCR, the diagnostic specificity/sensitivity of DNA extraction-free qPCR, visual LAMP, and fluorescent LAMP assays were 100%/100%, 100%/87.1%, and 100%/90.32%, respectively. The assays eliminated the need for DNA extraction and are more suitable for ASF diagnosis by inexperienced farmers in low-resource environments, making them a good choice for on-site monitoring of pig farms.
Collapse
Affiliation(s)
- Lili Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China; (L.Y.); (M.L.)
| | - Lin Wang
- Beijing Animal Disease Prevention and Control Center, Beijing 102629, China;
| | - Meihui Lv
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China; (L.Y.); (M.L.)
| | - Yu Sun
- China Animal Disease Prevention and Control Center, Beijing 102206, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China; (L.Y.); (M.L.)
| |
Collapse
|
49
|
Goatley LC, Nash RH, Andrews C, Hargreaves Z, Tng P, Reis AL, Graham SP, Netherton CL. Cellular and Humoral Immune Responses after Immunisation with Low Virulent African Swine Fever Virus in the Large White Inbred Babraham Line and Outbred Domestic Pigs. Viruses 2022; 14:v14071487. [PMID: 35891467 PMCID: PMC9322176 DOI: 10.3390/v14071487] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/24/2022] [Accepted: 07/03/2022] [Indexed: 12/15/2022] Open
Abstract
African swine fever virus is currently present in all of the world’s continents apart from Antarctica, and efforts to control the disease are hampered by the lack of a commercially available vaccine. The Babraham large white pig is a highly inbred line that could represent a powerful tool to improve our understanding of the protective immune responses to this complex pathogen; however, previous studies indicated differential vaccine responses after the African swine fever virus challenge of inbred minipigs with different swine leukocyte antigen haplotypes. Lymphocyte numbers and African swine fever virus-specific antibody and T-cell responses were measured in inbred and outbred animals after inoculation with a low virulent African swine fever virus isolate and subsequent challenge with a related virulent virus. Surprisingly, diminished immune responses were observed in the Babraham pigs when compared to the outbred animals, and the inbred pigs were not protected after challenge. Recovery of Babraham pigs after challenge weakly correlated with antibody responses, whereas protective responses in outbred animals more closely correlated with the T-cell response. The Babraham pig may, therefore, represent a useful model for studying the role of antibodies in protection against the African swine fever virus.
Collapse
|
50
|
Mazloum A, Igolkin AS, Shotin AR, Zinyakov NG, Vlasova NN, Aronova EV, Puzankova OS, Gavrilova VL, Shevchenko IV. [Analysis of the whole-genome sequence of an ASF virus (Asfarviridae: Asfivirus: African swine fever virus) isolated from a wild boar (Sus scrofa) at the border between Russian Federation and Mongolia]. Vopr Virusol 2022; 67:153-164. [PMID: 35521988 DOI: 10.36233/0507-4088-104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The causative agent of African swine fever (Asfarviridae: Asfivirus: African swine fever virus) (ASF) is a double-stranded DNA virus of 175-215 nm. To date, 24 of its genotypes are known. Clustering of ASF genotype II isolates is carried out by examining a limited number of selected genome markers. Despite the relatively high rate of mutations in the genome of this infectious agent compared to other DNA viruses, the number of known genome molecular markers for genotype II isolates is still insufficient for detailed subclustering. The aims of this work were the comparative analysis of ASFV/Zabaykali/WB-5314/2020 virus isolate and determination of additional molecular markers which can be used for clustering of viral genotype II sequences. MATERIAL AND METHODS ASF virus isolate ASFV/Zabaykali/WB-5314/2020 was used to extract genomic DNA (gDNA). Sequencing libraries were constructed using the Nextera XT DNA library prepare kit (Illumina, USA) using the methodology of the next generation sequencing (NGS). RESULTS The genome length was 189,380 bp, and the number of open reading frames (ORFs) was 189. In comparison with the genome of reference isolate Georgia 2007/1, 33 single nucleotide polymorphisms (SNPs) were identified, of which 13 were localized in the intergenic region, 10 resulted to the changes in the amino acid sequences of the encoded proteins, and 10 affected the ORF of ASF virus genes. DISCUSSION When analyzing intergenic regions, the ASFV/Zabaykali/WB-5314/2020 isolate is grouped separately from a number of isolates from Poland and three isolates from People's Republic of China (PRC), since it does not harbor additional tandem repeat sequence (TRS). At the same time, the construction of a phylogenetic tree based on DP60R gene sequencing relates ASFV/Zabaykali/WB-5314/2020 to isolates from PRC and Poland. Moreover, phylogenetic analysis of full-genome sequences confirmed previous studies on the grouping of viruses of genotype II, and as for the studied isolate, it was grouped with the variants from China. CONCLUSION A new variable region was identified, the DP60R gene, clustering for which gave a result similar to the analysis of full-length genomes. Probably, further study of the distribution of ASF virus isolates by groups based on the analysis of this gene sequences will reveal its significance for studying the evolution of the virus and its spread.
Collapse
Affiliation(s)
- A Mazloum
- FGBI «Federal Centre for Animal Health» («ARRIAH»)
| | - A S Igolkin
- FGBI «Federal Centre for Animal Health» («ARRIAH»)
| | - A R Shotin
- FGBI «Federal Centre for Animal Health» («ARRIAH»)
| | - N G Zinyakov
- FGBI «Federal Centre for Animal Health» («ARRIAH»)
| | - N N Vlasova
- FGBI «Federal Centre for Animal Health» («ARRIAH»)
| | - E V Aronova
- FGBI «Federal Centre for Animal Health» («ARRIAH»)
| | | | | | | |
Collapse
|