1
|
Xiao X, Wang X, Xu F, Liang Y, Luo Y, Li S, Zhou P. Synergistic effects of PA (S184N) and PB2 (E627K) mutations on the increased pathogenicity of H3N2 canine influenza virus infections in mice and dogs. J Virol 2025; 99:e0198424. [PMID: 40183583 PMCID: PMC12090714 DOI: 10.1128/jvi.01984-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
As companion animals, dogs are susceptible to various subtypes of influenza A virus (IAV), with the H3N2 and H3N8 subtypes of canine influenza virus (CIV) stably circulating among canines. Compared to the H3N8 CIV, the H3N2 CIV is more widely prevalent in canine populations and demonstrates increased adaptability to mammals, potentially facilitating cross-species transmission. Therefore, a comprehensive elucidation of the mechanisms underlying H3N2 CIV adaptation to mammals is imperative. In this study, we serially passaged the GD14-WT strain in murine lungs, successfully establishing a lethal H3N2 CIV infection model. From this model, we isolated the lethal strain GD14-MA and identified the key lethal mutations PA(S184N) and PB2(E627K). Moreover, the GD14-ma[PA(S184N)+PB2(E627K)] strain exhibited markedly enhanced pathogenicity in dogs. Viral titers in lung tissues from infected dogs and mice showed that GD14-ma[PA(S184N)+PB2(E627K)] does not increase its pathogenicity to mice and dogs by upregulating viral titers compared to the GD14-WT strain. Notably, sequence alignments across all H3N2 IAVs showed an increasing prevalence of the PA (S184N) and PB2 (E627K) mutations from avian to human hosts. Finally, single-cell RNA sequencing of infected mouse lung tissues showed that GD14-ma[PA(S184N)+PB2(E627K)] effectively evaded host antiviral responses, inducing a robust inflammatory reaction. Considering the recognized role of the PB2 (E627K) mutation in the mammalian adaptation of IAVs, our findings underscore the importance of ongoing surveillance for the PA (S184N) mutation in H3N2 IAVs.IMPORTANCESince the 21st century, zoonotic viruses have frequently crossed species barriers, posing significant global public health challenges. Dogs are susceptible to various influenza A viruses (IAVs), particularly the H3N2 canine influenza virus (CIV), which has stably circulated and evolved to enhance its adaptability to mammals, including an increased affinity for the human-like SAα2,6-Gal receptor, posing a potential public health threat. Here, we simulated H3N2 CIV adaptation in mice, revealed that the synergistic PA(S184N) and PB2(E627K) mutations augment H3N2 CIV pathogenicity in dogs and mice, and elucidated the underlying mechanisms at the single-cell level. Our study provides molecular evidence for adapting the H3N2 CIV to mammals and underscores the importance of vigilant monitoring of genetic variations in H3N2 CIV.
Collapse
Affiliation(s)
- Xiangyu Xiao
- Guangdong Provincial Pet Engineering Technology Research Center, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Xinrui Wang
- Guangdong Provincial Pet Engineering Technology Research Center, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Fengpei Xu
- Guangdong Provincial Pet Engineering Technology Research Center, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Yanting Liang
- Guangdong Provincial Pet Engineering Technology Research Center, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Yi Luo
- Guangdong Provincial Pet Engineering Technology Research Center, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Shoujun Li
- Guangdong Provincial Pet Engineering Technology Research Center, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Pei Zhou
- Guangdong Provincial Pet Engineering Technology Research Center, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
2
|
Ramos-Martínez I, Ramos-Martínez E, Saavedra-Montañez M, Santos-Paniagua S, Segura-Velázquez R, Vicente-Fermín O, Martínez-Aguirre M, Ramos-Martínez JC, Peña-Corona SI, Pastelin-Palacios R, Sánchez-Betancourt JI. Meta-Analysis of Seroprevalence and Prevalence of Influenza A Viruses (Subtypes H3N2, H3N8, and H1N1) in Dogs. Animals (Basel) 2024; 14:3467. [PMID: 39682432 DOI: 10.3390/ani14233467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Influenza A is a zoonotic disease that affects dogs, pigs, horses, poultry, and birds. In this report, a meta-analysis according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) was conducted. Studies of influenza A viruses in dogs providing prevalence or seroprevalence in any location worldwide were included. The results in this study show that the seroprevalence for the H3N8 influenza subtype was 7.96% (95% CI: 2.03-16.8, p < 0.001), for the H3N2 subtype was 7.44% (95% CI: 4.51-10.5, p < 0.001), and for the H1N1 subtype was 3.10% (95% CI: 0.890-6.01, p < 0.001). In the case of the prevalence analysis, a prevalence of 0.395% (95% CI: 0.160-2.44) for the H3N8 subtype. For the H3N2 subtype, a prevalence of 17.8% (95% CI: 6.66-32.6, p < 0.001) was found. No publication bias was observed in the studies evaluating seroprevalence in the H3N2 and H1N1 subtypes. In the H3N8 subtype, Begg's test indicated publication bias, but Egger's test showed no bias. It is essential to know the approximate prevalence and seroprevalence worldwide of canine influenza, so this study reports the presence of influenza subtypes in dogs, placing this species as a reservoir for human, swine, equine, and avian influenza A viruses.
Collapse
Affiliation(s)
- Ivan Ramos-Martínez
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Edgar Ramos-Martínez
- Escuela de Ciencias, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68110, Mexico
| | - Manuel Saavedra-Montañez
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Saraí Santos-Paniagua
- Unidad de Investigación, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - René Segura-Velázquez
- Unidad de Investigación, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Onasis Vicente-Fermín
- Escuela de Enfermería, Instituto Nacional de cardiología "Ignacio Chávez", Ciudad de México 14080, Mexico
| | - Mayte Martínez-Aguirre
- Instituto de Química, Universidad Nacional Autónoma de Mexico, Ciudad de México 04510, Mexico
| | - Juan C Ramos-Martínez
- Departamento de Cardiología, Hospital General Regional "Lic Ignacio Garcia Tellez" IMSS, Mérida 97150, Mexico
| | - Sheila Irais Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de Mexico, Ciudad de México 04510, Mexico
| | - Rodolfo Pastelin-Palacios
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - José Ivan Sánchez-Betancourt
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
3
|
Ashraf MA, Raza MA, Amjad MN, Ud Din G, Yue L, Shen B, Chen L, Dong W, Xu H, Hu Y. A comprehensive review of influenza B virus, its biological and clinical aspects. Front Microbiol 2024; 15:1467029. [PMID: 39296301 PMCID: PMC11408344 DOI: 10.3389/fmicb.2024.1467029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Influenza B virus (IBV) stands as a paradox, often overshadowed by its more notorious counterpart, influenza A virus (IAV). Yet, it remains a captivating and elusive subject of scientific inquiry. Influenza B is important because it causes seasonal flu outbreaks that can lead to severe respiratory illnesses, including bronchitis, pneumonia, and exacerbations of chronic conditions like asthma. Limitations in the influenza B virus's epidemiological, immunological, and etiological evolution must be addressed promptly. This comprehensive review covers evolutionary epidemiology and pathogenesis, host-virus interactions, viral isolation and propagation, advanced molecular detection assays, vaccine composition and no animal reservoir for influenza B virus. Complex viral etiology begins with intranasal transmission of influenza B virus with the release of a segmented RNA genome that attacks host cell machinery for transcription and translation within the nucleus and the release of viral progeny. Influenza B virus prevalence in domesticated and wild canines, sea mammals, and birds is frequent, yet there is no zoonosis. The periodic circulation of influenza B virus indicates a 1-3-year cycle for monophyletic strain replacement within the Victoria strain due to frequent antigenic drift in the HA near the receptor-binding site (RBS), while the antigenic stability of Yamagata viruses portrays a more conservative evolutionary pattern. Additionally, this article outlines contemporary antiviral strategies, including pharmacological interventions and vaccination efforts. This article serves as a resource for researchers, healthcare professionals, and anyone interested in the mysterious nature of the influenza B virus. It provides valuable insights and knowledge essential for comprehending and effectively countering this viral foe, which continues to pose a significant public health threat.
Collapse
Affiliation(s)
- Muhammad Awais Ashraf
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Asif Raza
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Nabeel Amjad
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ghayyas Ud Din
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lihuan Yue
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Bei Shen
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Lingdie Chen
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Dong
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Huiting Xu
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Yihong Hu
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Anderson BD, Barnes AN, Umar S, Guo X, Thongthum T, Gray GC. Reverse Zoonotic Transmission (Zooanthroponosis): An Increasing Threat to Animal Health. ZOONOSES: INFECTIONS AFFECTING HUMANS AND ANIMALS 2023:25-87. [DOI: 10.1007/978-3-031-27164-9_59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Kovalenko G, Galat M, Ishchenko L, Halka I. Serological Evidence for Influenza A Viruses Among Domestic Dogs and Cats in Kyiv, Ukraine. Vector Borne Zoonotic Dis 2021; 21:483-489. [PMID: 33877900 PMCID: PMC8252905 DOI: 10.1089/vbz.2020.2746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Influenza A viruses (IAV) are zoonotic pathogens that can cause significant illness in wild and domestic animals, and humans. IAV can infect a broad range of avian and mammalian species, depending on subtype, and avian IAV can be moved over relatively long distances by migratory birds. Although spillover infections from wildlife or domestic animals to humans are an important part of the transmission cycle that can drive outbreaks, the relevance of companion animals, specifically dogs and cats, is not fully understood. A novel pandemic H1N1 reassortant (H1N1pdm09) emerged from swine in 2009, infecting humans, and wild and domestic animals worldwide. During a 2016 human influenza outbreak in Kyiv, subtype H1N1pdm09 predominated and was associated with severe disease and deaths; however, H3N2 and influenza B viruses were also detected. No case of avian influenza in humans was detected. To investigate potential involvement of companion animals, animals in a veterinary hospital (116 cats and 88 dogs) were randomly selected, and sera were tested using a commercially available IAV nucleoprotein enzyme-linked immunosorbent assay. Twelve of 203 serum samples were positive for influenza antibodies (5.7% of dogs and 6.08% cats). These are the first data to demonstrate influenza A infection of pets in Ukraine, highlighting the potential risk of infection of companion animals from close contact with humans.
Collapse
Affiliation(s)
- Ganna Kovalenko
- Institute of Veterinary Medicine, National Academy of Agrarian Sciences of Ukraine, Kyiv, Ukraine.,University of Alaska Anchorage, Anchorage, Alaska, USA
| | - Maryna Galat
- Faculty of Veterinary Medicine, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Lyudmila Ishchenko
- Ukrainian Laboratory of Quality and Safety of Agricultural Products, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Ihor Halka
- Institute of Veterinary Medicine, National Academy of Agrarian Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
6
|
Bui CHT, Yeung HW, Ho JCW, Leung CYH, Hui KPY, Perera RAPM, Webby RJ, Schultz-Cherry SL, Nicholls JM, Peiris JSM, Chan MCW. Tropism of SARS-CoV-2, SARS-CoV and influenza virus in canine tissue explants. J Infect Dis 2021; 224:821-830. [PMID: 33395484 PMCID: PMC7799041 DOI: 10.1093/infdis/jiab002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/04/2021] [Indexed: 01/04/2023] Open
Abstract
Background Human spillovers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to dogs and the emergence of a highly contagious avian-origin H3N2 canine influenza virus have raised concerns on the role of dogs in the spread of SARS-CoV-2 and their susceptibility to existing human and avian influenza viruses, which might result in further reassortment. Methods We systematically studied the replication kinetics of SARS-CoV-2, SARS-CoV, influenza A viruses of H1, H3, H5, H7, and H9 subtypes, and influenza B viruses of Yamagata-like and Victoria-like lineages in ex vivo canine nasal cavity, soft palate, trachea, and lung tissue explant cultures and examined ACE2 and sialic acid (SA) receptor distribution in these tissues. Results There was limited productive replication of SARS-CoV-2 in canine nasal cavity and SARS-CoV in canine nasal cavity, soft palate, and lung, with unexpectedly high ACE2 levels in canine nasal cavity and soft palate. Canine tissues were susceptible to a wide range of human and avian influenza viruses, which matched with the abundance of both human and avian SA receptors. Conclusions Existence of suitable receptors and tropism for the same tissue foster virus adaptation and reassortment. Continuous surveillance in dog populations should be conducted given the many chances for spillover during outbreaks.
Collapse
Affiliation(s)
- Christine H T Bui
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - H W Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - John C W Ho
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Connie Y H Leung
- Centre for Comparative Medicine Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kenrie P Y Hui
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ranawaka A P M Perera
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stacey L Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - John M Nicholls
- Department of Pathology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - J S Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michael C W Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Jurado-Tarifa E, Cano-Terriza D, Daly JM, Arenas A, García-Bocanegra I. Serosurvey of pandemic H1N1 influenza A virus in dogs in Andalusia (southern Spain). Zoonoses Public Health 2020; 67:869-875. [PMID: 32772511 DOI: 10.1111/zph.12758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/23/2020] [Accepted: 07/14/2020] [Indexed: 11/28/2022]
Abstract
In April 2009, a new influenza A virus (IAV) subtype (A(H1N1)pdm09) spread worldwide and triggered the first human influenza pandemic of the 21st century. Since then, exposure to the pandemic H1N1 IAV has been confirmed in different animal species. Serological evidence and clinical infection with A(H1N1)pdm09 have been reported in canines, but the information available about the role of dogs in the epidemiology of this IAV subtype is still very limited in Europe. A cross-sectional study was carried out to determine the seroprevalence of A(H1N1)pdm09 in dogs in southern Spain, a region with endemic seasonal circulation in human. Sera from 750 companion dogs were collected during the period 2013-2016. Antibodies against pandemic H1N1 IAV were analysed using the haemagglutination inhibition test. Positive samples were also tested by single radial haemolysis assay. Seropositivity was only confirmed by both methods in one (0.13%; 95% CI: 0.00-0.38) adult animal sampled in 2013. To the best of the authors' knowledge, this is the first report of A(H1N1)pdm09 exposure in dogs in Spain. The low seroprevalence obtained indicates a limited exposure history to A(H1N1)pdm09 IAV in dogs in this country and suggests a low risk of transmission of this zoonotic IAV subtype between humans and dogs.
Collapse
Affiliation(s)
- Estefanía Jurado-Tarifa
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Córdoba, Spain
| | - David Cano-Terriza
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Córdoba, Spain
| | - Janet M Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Antonio Arenas
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Córdoba, Spain
| | - Ignacio García-Bocanegra
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Córdoba, Spain
| |
Collapse
|
8
|
Choi IJ, Na W, Kang A, Ahn MH, Yeom M, Kim HO, Lim JW, Choi SO, Baek SK, Song D, Park JH. Patchless administration of canine influenza vaccine on dog's ear using insertion-responsive microneedles (IRMN) without removal of hair and its in vivo efficacy evaluation. Eur J Pharm Biopharm 2020; 153:150-157. [PMID: 32544527 PMCID: PMC7293535 DOI: 10.1016/j.ejpb.2020.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/15/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022]
Abstract
Microneedles provide the advantages of convenience and compliance by avoiding the pain and fear of needles that animals often experience. Insertion-responsive microneedles (IRMN) were used for administration to a hairy dog without removing the dog's hair. Canine H3N2 vaccine was administered with IRMN attached to the dog's ears ex vivo and the conventional microneedle system (MN) was administered for 15 min to compare puncture performance and delivery efficiency. The vaccine was also administered to compare antibody formation using IRMN with the use of intramuscular injection. The veterinarian observed the behavior of the dog during the course of the administration and compared the response to IRMN with that of intramuscular administration. The tips of IRMN were separated from the base and delivered into the hairy skin successfully. Puncture performance of IRMN were the same as that of coated microneedles (95%), but delivery efficiency of IRMN were 95% compared to less than 1% for coated microneedles. The H3N2 vaccine inoculated into the dog's ears showed the same antibody formation as the intramuscular injection. The dog appeared to be more comfortable with IRMN administration compared to syringe administration. IRMN are the first microneedle system to deliver a canine vaccine successfully into a hairy dog without removal of the dog's hair. The use of IRMN can provide both convenience and compliance for both the dog and the owner.
Collapse
Affiliation(s)
- In-Jeong Choi
- QuadMedicine R&D Centre, QuadMedicine, Inc., Seongnam, #605, Building B14 Sagimakgol-ro, 45beon-gil, Jungwon-gu, Seongnam-si, Gyeonggi-do 13209, Republic of Korea
| | - Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea
| | - Aram Kang
- College of Pharmacy, Korea University, Sejongro 2511, Sejong 30019, Republic of Korea
| | - Myun-Hwan Ahn
- QuadMedicine R&D Centre, QuadMedicine, Inc., Seongnam, #605, Building B14 Sagimakgol-ro, 45beon-gil, Jungwon-gu, Seongnam-si, Gyeonggi-do 13209, Republic of Korea
| | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejongro 2511, Sejong 30019, Republic of Korea
| | - Hyung-Ouk Kim
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University Yonsei-ro 50, Seoul 03722, Republic of Korea
| | - Seong-O Choi
- QuadMedicine R&D Centre, QuadMedicine, Inc., Seongnam, #605, Building B14 Sagimakgol-ro, 45beon-gil, Jungwon-gu, Seongnam-si, Gyeonggi-do 13209, Republic of Korea
| | - Seung-Ki Baek
- QuadMedicine R&D Centre, QuadMedicine, Inc., Seongnam, #605, Building B14 Sagimakgol-ro, 45beon-gil, Jungwon-gu, Seongnam-si, Gyeonggi-do 13209, Republic of Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejongro 2511, Sejong 30019, Republic of Korea.
| | - Jung-Hwan Park
- Department of BioNano Technology, Gachon University, Sujeong-gu, Seongnam-si Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
9
|
Na W, Xie X, Yeom M, Kang A, Kim HO, Lim JW, Park G, Yoon SW, Jeong DG, Kim HK, Haam S, Liu Y, Song D. Morphological features and pathogenicity of mutated canine influenza viruses from China and South Korea. Transbound Emerg Dis 2020; 67:1607-1613. [PMID: 31978278 DOI: 10.1111/tbed.13494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
The canine influenza virus (CIV) has spread globally from East Asia to the United States and mutated and evolved to generate various CIVs. Since 2010, the mutant CIVs found in China and Korea have presented increased virulence in mice, guinea pigs and ferrets, which has raised concerns about public health and outbreak of a severe canine flu. We analysed and compared the morphology, cellular uptake and pathogenicity of CIV variants in host animals, to determine their characteristics. The Chinese mutant, A/canine/Jiangsu/06/2010[H3N2](JS10), has two amino acid insertions at the distal end of the NA stalk, and A/canine/Korea/01/2007[H3N2](KR07) presented comparable efficiency of cell uptake and a similar morphology to spherical or small ovoid particles. However, KR07M generated from swapping of M segment of the pandemic isolate, A/California/04/2009 [H1N1] (CA04) into KR07 alone accounted for morphologic change and higher efficiency of cell uptake to the wild-type CIV. This study will provide an insight into the pathogenesis, transmission and evolution of CIVs and help determine future countermeasures.
Collapse
Affiliation(s)
- Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Gwangju, Korea.,Animal Medical Institute, Chonnam National University, Gwangju, Korea
| | - Xing Xie
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejong, Korea
| | - Aram Kang
- College of Pharmacy, Korea University, Sejong, Korea
| | - Hyun-Ouk Kim
- College of Pharmacy, Korea University, Sejong, Korea
| | - Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Korea
| | - Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Korea
| | - Sun-Woo Yoon
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Dae Gwin Jeong
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Hye Kwon Kim
- Department of Microbiology, College of Natural Sciences, Chungbuk National University, Cheongju, Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Korea
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong, Korea
| |
Collapse
|
10
|
Saberi M, Tavakkoli H, Najmaddini A, Rezaei M. Serological prevalence of avian H9N2 influenza virus in dogs by hemagglutination inhibition assay in Kerman, southeast of Iran. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2019; 10:249-253. [PMID: 31737235 PMCID: PMC6828164 DOI: 10.30466/vrf.2018.87879.2140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/08/2018] [Indexed: 12/02/2022]
Abstract
Influenza is a highly contagious zoonotic disease in the world. Avian H9N2 influenza virus is a significant pandemic pathogen widely distributed throughout the world. Pet ownership has been documented as a risk factor for infection transmission to human. Considering major public health concern, the prevalence of antibodies against avian H9N2 influenza virus was evaluated in 170 serum samples of dogs by hemagglutination inhibition assay. This study is the first survey to assess the epidemiology of avian H9N2 influenza virus infection in dogs in Kerman, southeast of Iran. Out of 170 samples, 65 (38.23%) were positive for H9N2. Antibodies were higher in farm dogs that were kept with other animals and also in dogs were fed a raw diet. These findings emphasize the importance of close attention to these populations for control and prevention programs. It is important to reduce infection burden, especially in regions with widespread distribution of H9N2.
Collapse
Affiliation(s)
- Mehdi Saberi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hadi Tavakkoli
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ali Najmaddini
- DVM Graduate,Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mahdieh Rezaei
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
11
|
Insertion-responsive microneedles for rapid intradermal delivery of canine influenza vaccine. J Control Release 2018; 286:460-466. [DOI: 10.1016/j.jconrel.2018.08.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/22/2018] [Accepted: 08/10/2018] [Indexed: 11/17/2022]
|
12
|
Novel Flu Viruses in Bats and Cattle: "Pushing the Envelope" of Influenza Infection. Vet Sci 2018; 5:vetsci5030071. [PMID: 30082582 PMCID: PMC6165133 DOI: 10.3390/vetsci5030071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 11/17/2022] Open
Abstract
Influenza viruses are among the major infectious disease threats of animal and human health. This review examines the recent discovery of novel influenza viruses in bats and cattle, the evolving complexity of influenza virus host range including the ability to cross species barriers and geographic boundaries, and implications to animal and human health.
Collapse
|
13
|
Comparative pathogenesis of H3N2 canine influenza virus in beagle dogs challenged by intranasal and intratracheal inoculation. Virus Res 2018; 255:147-153. [PMID: 29860092 DOI: 10.1016/j.virusres.2018.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 01/18/2023]
Abstract
As important companion animals, dogs may serve as intermediate hosts for transmitting influenza virus to humans. However, knowledge regarding H3N2 canine influenza virus (CIV) pathogenicity is not comprehensive, which directly affects the animal models of pathogenicity in H3N2 CIV vaccine research. Here, to assess H3N2 CIV pathogenicity, we utilized 30 ten-week-old purpose-bred beagles intratracheally or intranasally inoculated with 106 50% egg-infectious dose. Intratracheal inoculation was more virulent to dogs than intranasal inoculation as shown by lung pathology score, histopathological changes, clinical symptoms, and body temperature. More intense virus replication was observed in the upper and lower respiratory tracts by intratracheal than intranasal inoculation according to nasal swabs, various organ virus titers, and antigen expression. These results may enhance the H3N2 CIV infection model, providing a more complete experimental basis for studying intrinsic H3N2 CIV pathogenic mechanism, and also serving a reference role for CIV prevention and treatment.
Collapse
|
14
|
Xie X, Na W, Kang A, Yeom M, Yuk H, Moon H, Kim SJ, Kim HW, Kim JK, Pang M, Wang Y, Liu Y, Song D. Comparison of the virulence of three H3N2 canine influenza virus isolates from Korea and China in mouse and Guinea pig models. BMC Vet Res 2018; 14:149. [PMID: 29716608 PMCID: PMC5930860 DOI: 10.1186/s12917-018-1469-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022] Open
Abstract
Background Avian-origin H3N2 canine influenza virus (CIV) has been the most common subtype in Korea and China since 2007. Here, we compared the pathogenicity and transmissibility of three H3N2 CIV strains [Chinese CIV (JS/10), Korean CIV (KR/07), and Korean recombinant CIV between the classic H3N2 CIV and the pandemic H1N1 virus (MV/12)] in BALB/c mouse and guinea pig models. The pandemic H1N1 (CA/09) strain served as the control. Results BALB/c mice infected with H1N1 had high mortality and obvious body weight loss, whereas no overt disease symptoms were observed in mice inoculated with H3N2 CIV strains. The viral titers were higher in the group MV/12 than those in groups JS/10 and KR/07, while the mice infected with JS/10 showed higher viral titers in all tissues (except for the lung) than the mice infected with KR/07. The data obtained in guinea pigs also demonstrated that group MV/12 presented the highest loads in most of the tissues, followed by group JS/10 and KR/07. Also, direct contact transmissions of all the three CIV strains could be observed in guinea pigs, and for the inoculated and the contact groups, the viral titer of group MV/12 and KR/07 was higher than that of group JS/10 in nasal swabs. These findings indicated that the matrix (M) gene obtained from the pandemic H1N1 may enhance viral replication of classic H3N2 CIV; JS/10 has stronger viral replication ability in tissues as compared to KR/07, whereas KR/07 infected guinea pigs have more viral shedding than JS/10 infected guinea pigs. Conclusions There exists a discrepancy in pathobiology among CIV isolates. Reverse genetics regarding the genomes of CIV isolates will be helpful to further explain the virus characteristics.
Collapse
Affiliation(s)
- Xing Xie
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, No.50 Zhongling Street, Nanjing, 210014, China
| | - Woonsung Na
- College of Pharmacy, Korea University, Sejong, 339-700, South Korea
| | - Aram Kang
- College of Pharmacy, Korea University, Sejong, 339-700, South Korea
| | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejong, 339-700, South Korea
| | - Heejun Yuk
- College of Pharmacy, Korea University, Sejong, 339-700, South Korea
| | - Hyoungjoon Moon
- Research Unit, Green Cross Veterinary Products, Yong-in, 17066, South Korea
| | - Sung-Jae Kim
- Research Unit, Green Cross Veterinary Products, Yong-in, 17066, South Korea.,Department of Veterinary Medicine, Virology Lab, College of Veterinary Medicine, and School of Agricultural Biotechnology, BK21 Program for Veterinary Science, Seoul National University, Kwanak-gu, Seoul, 08826, South Korea
| | - Hyun-Woo Kim
- Research Unit, Green Cross Veterinary Products, Yong-in, 17066, South Korea.,Department of Veterinary Pathology, Small Animal Tumor Diagnostic Center, College of Veterinary Medicine, Konkuk University, 120 Neundong-ro, Seoul, 143-701, South Korea
| | - Jeong-Ki Kim
- College of Pharmacy, Korea University, Sejong, 339-700, South Korea
| | - Maoda Pang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No.50 Zhongling Street, Nanjing, 210014, China
| | - Yongshan Wang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, No.50 Zhongling Street, Nanjing, 210014, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong, 339-700, South Korea.
| |
Collapse
|
15
|
Zoonotic Risk, Pathogenesis, and Transmission of Avian-Origin H3N2 Canine Influenza Virus. J Virol 2017; 91:JVI.00637-17. [PMID: 28814512 DOI: 10.1128/jvi.00637-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/04/2017] [Indexed: 11/20/2022] Open
Abstract
Two subtypes of influenza A virus (IAV), avian-origin canine influenza virus (CIV) H3N2 (CIV-H3N2) and equine-origin CIV H3N8 (CIV-H3N8), are enzootic in the canine population. Dogs have been demonstrated to seroconvert in response to diverse IAVs, and naturally occurring reassortants of CIV-H3N2 and the 2009 H1N1 pandemic virus (pdmH1N1) have been isolated. We conducted a thorough phenotypic evaluation of CIV-H3N2 in order to assess its threat to human health. Using ferret-generated antiserum, we determined that CIV-H3N2 is antigenically distinct from contemporary human H3N2 IAVs, suggesting that there may be minimal herd immunity in humans. We assessed the public health risk of CIV-H3N2 × pandemic H1N1 (pdmH1N1) reassortants by characterizing their in vitro genetic compatibility and in vivo pathogenicity and transmissibility. Using a luciferase minigenome assay, we quantified the polymerase activity of all possible 16 ribonucleoprotein (RNP) complexes (PB2, PB1, PA, NP) between CIV-H3N2 and pdmH1N1, identifying some combinations that were more active than either parental virus complex. Using reverse genetics and fixing the CIV-H3N2 hemagglutinin (HA), we found that 51 of the 127 possible reassortant viruses were viable and able to be rescued. Nineteen of these reassortant viruses had high-growth phenotypes in vitro, and 13 of these replicated in mouse lungs. A single reassortant with the NP and HA gene segments from CIV-H3N2 was selected for characterization in ferrets. The reassortant was efficiently transmitted by contact but not by the airborne route and was pathogenic in ferrets. Our results suggest that CIV-H3N2 reassortants may pose a moderate risk to public health and that the canine host should be monitored for emerging IAVs.IMPORTANCE IAV pandemics are caused by the introduction of novel viruses that are capable of efficient and sustained transmission into a human population with limited herd immunity. Dogs are a a potential mixing vessel for avian and mammalian IAVs and represent a human health concern due to their susceptibility to infection, large global population, and close physical contact with humans. Our results suggest that humans are likely to have limited preexisting immunity to CIV-H3N2 and that CIV-H3N2 × pdmH1N1 reassortants have moderate genetic compatibility and are transmissible by direct contact in ferrets. Our study contributes to the increasing evidence that surveillance of the canine population for IAVs is an important component of pandemic preparedness.
Collapse
|
16
|
Lyoo KS, Na W, Phan LV, Yoon SW, Yeom M, Song D, Jeong DG. Experimental infection of clade 1.1.2 (H5N1), clade 2.3.2.1c (H5N1) and clade 2.3.4.4 (H5N6) highly pathogenic avian influenza viruses in dogs. Transbound Emerg Dis 2017; 64:1669-1675. [PMID: 29024492 DOI: 10.1111/tbed.12731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Indexed: 12/23/2022]
Abstract
Since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in Asia, the haemagglutinin (HA) gene of this virus lineage has continued to evolve in avian populations, and H5N1 lineage viruses now circulate concurrently worldwide. Dogs may act as an intermediate host, increasing the potential for zoonotic transmission of influenza viruses. Virus transmission and pathologic changes in HPAI clade 1.1.2 (H5N1)-, 2.3.2.1c (H5N1)- and 2.3.4.4 (H5N6)-infected dogs were investigated. Mild respiratory signs and antibody response were shown in dogs intranasally infected with the viruses. Lung histopathology showed lesions that were associated with moderate interstitial pneumonia in the infected dogs. In this study, HPAI H5N6 virus replication in dogs was demonstrated for the first time. Dogs have been suspected as a "mixing vessel" for reassortments between avian and human influenza viruses to occur. The replication of these three subtypes of the H5 lineage of HPAI viruses in dogs suggests that dogs could serve as intermediate hosts for avian-human influenza virus reassortment if they are also co-infected with human influenza viruses.
Collapse
Affiliation(s)
- K S Lyoo
- Zoonosis Research Institute, Chonbuk National University, Iksan, Korea
| | - W Na
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong, Korea
| | - L V Phan
- Department of Microbiology and Infectious Diseases, College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - S W Yoon
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - M Yeom
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong, Korea
| | - D Song
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong, Korea
| | - D G Jeong
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| |
Collapse
|
17
|
Pulit-Penaloza JA, Simpson N, Yang H, Creager HM, Jones J, Carney P, Belser JA, Yang G, Chang J, Zeng H, Thor S, Jang Y, Killian ML, Jenkins-Moore M, Janas-Martindale A, Dubovi E, Wentworth DE, Stevens J, Tumpey TM, Davis CT, Maines TR. Assessment of Molecular, Antigenic, and Pathological Features of Canine Influenza A(H3N2) Viruses That Emerged in the United States. J Infect Dis 2017; 216:S499-S507. [PMID: 28934454 DOI: 10.1093/infdis/jiw620] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background A single subtype of canine influenza virus (CIV), A(H3N8), was circulating in the United States until a new subtype, A(H3N2), was detected in Illinois in spring 2015. Since then, this CIV has caused thousands of infections in dogs in multiple states. Methods In this study, genetic and antigenic properties of the new CIV were evaluated. In addition, structural and glycan array binding features of the recombinant hemagglutinin were determined. Replication kinetics in human airway cells and pathogenesis and transmissibility in animal models were also assessed. Results A(H3N2) CIVs maintained molecular and antigenic features related to low pathogenicity avian influenza A(H3N2) viruses and were distinct from A(H3N8) CIVs. The structural and glycan array binding profile confirmed these findings and revealed avian-like receptor-binding specificity. While replication kinetics in human airway epithelial cells was on par with that of seasonal influenza viruses, mild-to-moderate disease was observed in infected mice and ferrets, and the virus was inefficiently transmitted among cohoused ferrets. Conclusions Further adaptation is needed for A(H3N2) CIVs to present a likely threat to humans. However, the potential for coinfection of dogs and possible reassortment of human and other animal influenza A viruses presents an ongoing risk to public health.
Collapse
Affiliation(s)
- Joanna A Pulit-Penaloza
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Natosha Simpson
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Hua Yang
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Hannah M Creager
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Joyce Jones
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Paul Carney
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Genyan Yang
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessie Chang
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Hui Zeng
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sharmi Thor
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Yunho Jang
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mary Lea Killian
- Diagnostic Virology Laboratory, National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, US Department of Agriculture, Ames, Iowa
| | - Melinda Jenkins-Moore
- Diagnostic Virology Laboratory, National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, US Department of Agriculture, Ames, Iowa
| | - Alicia Janas-Martindale
- Diagnostic Virology Laboratory, National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, US Department of Agriculture, Ames, Iowa
| | - Edward Dubovi
- Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - David E Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - C Todd Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
18
|
A bivalent live-attenuated influenza vaccine for the control and prevention of H3N8 and H3N2 canine influenza viruses. Vaccine 2017; 35:4374-4381. [PMID: 28709557 DOI: 10.1016/j.vaccine.2017.06.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/05/2017] [Accepted: 06/20/2017] [Indexed: 11/22/2022]
Abstract
Canine influenza viruses (CIVs) cause a contagious respiratory disease in dogs. CIV subtypes include H3N8, which originated from the transfer of H3N8 equine influenza virus (EIV) to dogs; and the H3N2, which is an avian-origin virus adapted to infect dogs. Only inactivated influenza vaccines (IIVs) are currently available against the different CIV subtypes. However, the efficacy of these CIV IIVs is not optimal and improved vaccines are necessary for the efficient prevention of disease caused by CIVs in dogs. Since live-attenuated influenza vaccines (LAIVs) induce better immunogenicity and protection efficacy than IIVs, we have combined our previously described H3N8 and H3N2 CIV LAIVs to create a bivalent vaccine against both CIV subtypes. Our findings show that, in a mouse model of infection, the bivalent CIV LAIV is safe and able to induce, upon a single intranasal immunization, better protection than that induced by a bivalent CIV IIV against subsequent challenge with H3N8 or H3N2 CIVs. These protection results also correlated with the ability of the bivalent CIV LAIV to induce better humoral immune responses. This is the first description of a bivalent LAIV for the control and prevention of H3N8 and H3N2 CIV infections in dogs.
Collapse
|
19
|
Rodriguez L, Nogales A, Reilly EC, Topham DJ, Murcia PR, Parrish CR, Martinez Sobrido L. A live-attenuated influenza vaccine for H3N2 canine influenza virus. Virology 2017; 504:96-106. [PMID: 28167384 DOI: 10.1016/j.virol.2017.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 11/24/2022]
Abstract
Canine influenza is a contagious respiratory disease in dogs caused by two subtypes (H3N2 and H3N8) of canine influenza virus (CIV). Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIVs. Historically, live-attenuated influenza vaccines (LAIVs) have been shown to produce better immunogenicity and protection efficacy than IIVs. Here, we have engineered a CIV H3N2 LAIV by using the internal genes of a previously described CIV H3N8 LAIV as a master donor virus (MDV) and the surface HA and NA genes of a circulating CIV H3N2 strain. Our findings show that CIV H3N2 LAIV replicates efficiently at low temperature but its replication is impaired at higher temperatures. The CIV H3N2 LAIV was attenuated in vivo but induced better protection efficacy in mice against challenge with wild-type CIV H3N2 than a commercial CIV H3N2 IIV. This is the first description of a LAIV for the prevention of CIV H3N2 in dogs.
Collapse
Affiliation(s)
- Laura Rodriguez
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US
| | - Emma C Reilly
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US; David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, US
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US; David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, US
| | - Pablo R Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, US
| | - Luis Martinez Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US.
| |
Collapse
|
20
|
Temperature-Sensitive Live-Attenuated Canine Influenza Virus H3N8 Vaccine. J Virol 2017; 91:JVI.02211-16. [PMID: 27928017 DOI: 10.1128/jvi.02211-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022] Open
Abstract
Canine influenza is a respiratory disease of dogs caused by canine influenza virus (CIV). CIV subtypes responsible for influenza in dogs include H3N8, which originated from the transfer of H3N8 equine influenza virus to dogs; and the H3N2 CIV, which is an avian-origin virus that adapted to infect dogs. Influenza infections are most effectively prevented through vaccination to reduce transmission and future infection. Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIV in dogs. However, the efficacy of IIVs is suboptimal, and novel approaches are necessary for the prevention of disease caused by this canine respiratory pathogen. Using reverse genetics techniques, we have developed a live-attenuated CIV vaccine (LACIV) for the prevention of H3N8 CIV. The H3N8 LACIV replicates efficiently in canine cells at 33°C but is impaired at temperatures of 37 to 39°C and was attenuated compared to wild-type H3N8 CIV in vivo and ex vivo The LACIV was able to induce protection against H3N8 CIV challenge with a single intranasal inoculation in mice. Immunogenicity and protection efficacy were better than that observed with a commercial CIV H3N8 IIV but provided limited cross-reactive immunity and heterologous protection against H3N2 CIV. These results demonstrate the feasibility of implementing a LAIV approach for the prevention and control of H3N8 CIV in dogs and suggest the need for a new LAIV for the control of H3N2 CIV. IMPORTANCE Two influenza A virus subtypes has been reported in dogs in the last 16 years: the canine influenza viruses (CIV) H3N8 and H3N2 of equine and avian origins, respectively. To date, only inactivated influenza vaccines (IIVs) are available to prevent CIV infections. Here, we report the generation of a recombinant, temperature-sensitive H3N8 CIV as a live-attenuated influenza vaccine (LAIV), which was attenuated in mice and dog tracheal, explants compared to CIV H3N8 wild type. A single dose of H3N8 LACIV showed immunogenicity and protection against a homologous challenge that was better than that conferred with an H3N8 IIV, demonstrating the feasibility of implementing a LAIV approach for the improved control of H3N8 CIV infections in dogs.
Collapse
|
21
|
Nogales A, Huang K, Chauché C, DeDiego ML, Murcia PR, Parrish CR, Martínez-Sobrido L. Canine influenza viruses with modified NS1 proteins for the development of live-attenuated vaccines. Virology 2016; 500:1-10. [PMID: 27750071 DOI: 10.1016/j.virol.2016.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/06/2016] [Accepted: 10/08/2016] [Indexed: 12/24/2022]
Abstract
Canine Influenza Virus (CIV) H3N8 is the causative agent of canine influenza, a common and contagious respiratory disease of dogs. Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIV H3N8. However, live-attenuated influenza vaccines (LAIVs) are known to provide better immunogenicity and protection efficacy than IIVs. Influenza NS1 is a virulence factor that offers an attractive target for the preparation of attenuated viruses as LAIVs. Here we generated recombinant H3N8 CIVs containing truncated or a deleted NS1 protein to test their potential as LAIVs. All recombinant viruses were attenuated in mice and showed reduced replication in cultured canine tracheal explants, but were able to confer complete protection against challenge with wild-type CIV H3N8 after a single intranasal immunization. Immunogenicity and protection efficacy was better than that observed with an IIV. This is the first description of a LAIV for the prevention of H3N8 CIV in dogs.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Kai Huang
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Caroline Chauché
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Marta L DeDiego
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA; Center for Vaccine Biology and Immunology (CVBI), University of Rochester, Rochester, NY, USA
| | - Pablo R Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
22
|
Takemae N, Shobugawa Y, Nguyen PT, Nguyen T, Nguyen TN, To TL, Thai PD, Nguyen TD, Nguyen DT, Nguyen DK, Do HT, Le TQA, Hua PT, Van Vo H, Nguyen DT, Nguyen DH, Uchida Y, Saito R, Saito T. Effect of herd size on subclinical infection of swine in Vietnam with influenza A viruses. BMC Vet Res 2016; 12:227. [PMID: 27724934 PMCID: PMC5057248 DOI: 10.1186/s12917-016-0844-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/18/2016] [Indexed: 01/14/2023] Open
Abstract
Background Influenza A viruses of swine (IAV-S) cause acute and subclinical respiratory disease. To increase our understanding of the etiology of the subclinical form and thus help prevent the persistence of IAV-S in pig populations, we conducted active virologic surveillance in Vietnam, the second-largest pig-producing country in Asia, from February 2010 to December 2013. Results From a total of 7034 nasal swabs collected from clinically healthy pigs at 250 farms and 10 slaughterhouses, we isolated 172 IAV-S from swine at the weaning and early-fattening stages. The isolation rate of IAV-S was significantly higher among pigs aged 3 weeks to 4.5 months than in older and younger animals. IAV-S were isolated from 16 large, corporate farms and 6 family-operated farms from among the 250 farms evaluated. Multivariate logistic regression analysis revealed that “having more than 1,000 pigs” was the most influential risk factor for IAV-S positivity. Farms affected by reassortant IAV-S had significantly larger pig populations than did those where A(H1N1)pdm09 viruses were isolated, thus suggesting that large, corporate farms serve as sites of reassortment events. Conclusions We demonstrate the asymptomatic circulation of IAV-S in the Vietnamese pig population. Raising a large number of pigs on a farm has the strongest impact on the incidence of subclinical IAV-S infection. Given that only some of the corporate farms surveyed were IAV-S positive, further active monitoring is necessary to identify additional risk factors important in subclinical infection of pigs with IAV-S in Vietnam. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0844-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nobuhiro Takemae
- Influenza and Prion Diseases Research Center, National Institute of Animal Health, NARO, Ibaraki, Japan.,Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand
| | - Yugo Shobugawa
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Phuong Thanh Nguyen
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Tung Nguyen
- Department of Animal Health, Epidemiology Division, Hanoi, Vietnam
| | - Tien Ngoc Nguyen
- Department of Animal Health, Epidemiology Division, Hanoi, Vietnam
| | - Thanh Long To
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - Phuong Duy Thai
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Tho Dang Nguyen
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - Duy Thanh Nguyen
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Dung Kim Nguyen
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Hoa Thi Do
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - Thi Quynh Anh Le
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Phan Truong Hua
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Hung Van Vo
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Diep Thi Nguyen
- Department of Animal Health, Epidemiology Division, Hanoi, Vietnam
| | - Dang Hoang Nguyen
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - Yuko Uchida
- Influenza and Prion Diseases Research Center, National Institute of Animal Health, NARO, Ibaraki, Japan.,Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand
| | - Reiko Saito
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takehiko Saito
- Influenza and Prion Diseases Research Center, National Institute of Animal Health, NARO, Ibaraki, Japan. .,Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand. .,United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.
| |
Collapse
|
23
|
Na W, Yeom M, Yuk H, Moon H, Kang B, Song D. Influenza virus vaccine for neglected hosts: horses and dogs. Clin Exp Vaccine Res 2016; 5:117-24. [PMID: 27489801 PMCID: PMC4969275 DOI: 10.7774/cevr.2016.5.2.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/20/2016] [Accepted: 06/25/2016] [Indexed: 11/24/2022] Open
Abstract
This study provides information regarding vaccine research and the epidemiology of influenza virus in neglected hosts (horses and dogs). Equine influenza virus (EIV) causes a highly contagious disease in horses and other equids, and outbreaks have occurred worldwide. EIV has resulted in costly damage to the horse industry and has the ability of cross the host species barrier from horses to dogs. Canine influenza is a virus of equine or avian origin and infects companion animals that live in close contact with humans; this results in possible exposure to the seasonal epizootic influenza virus. There have been case reports of genetic reassortment between human and canine influenza viruses, which results in high virulence and the ability of transmission to ferrets. This emphasizes the need for vaccine research on neglected hosts to update knowledge on current strains and to advance technology for controlling influenza outbreaks for public health.
Collapse
Affiliation(s)
- Woonsung Na
- College of Pharmacy, Korea University, Sejong, Korea
| | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejong, Korea
| | - Huijoon Yuk
- College of Pharmacy, Korea University, Sejong, Korea
| | - Hyoungjoon Moon
- Research Unit, Green Cross Veterinary Products, Yongin, Korea
| | - Bokyu Kang
- Research Unit, Green Cross Veterinary Products, Yongin, Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong, Korea
| |
Collapse
|
24
|
Lyoo KS, Na W, Yeom M, Jeong DG, Kim CU, Kim JK, Song D. Virulence of a novel reassortant canine H3N2 influenza virus in ferret, dog and mouse models. Arch Virol 2016; 161:1915-23. [PMID: 27138550 DOI: 10.1007/s00705-016-2868-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022]
Abstract
An outbreak of a canine influenza virus (CIV) H3N2 reassortant derived from pandemic (pdm) H1N1 and CIV H3N2 in companion animals has underscored the urgent need to monitor CIV infections for potential zoonotic transmission of influenza viruses to humans. In this study, we assessed the virulence of a novel CIV H3N2 reassortant, VC378, which was obtained from a dog that was coinfected with pdm H1N1 and CIV H3N2, in ferrets, dogs, and mice. Significantly enhanced virulence of VC378 was demonstrated in mice, although the transmissibility and pathogenicity of VC378 were similar to those of classical H3N2 in ferrets and dogs. This is notable because mice inoculated with an equivalent dose of classical CIV H3N2 showed no clinical signs and no lethality. We found that the PA and NS gene segments of VC378 were introduced from pdmH1N1, and these genes included the amino acid substitutions PA-P224S and NS-I123V, which were previously found to be associated with increased virulence in mice. Thus, we speculate that the natural reassortment between pdm H1N1 and CIV H3N2 can confer virulence and that continuous surveillance is needed to monitor the evolution of CIV in companion animals.
Collapse
Affiliation(s)
- Kwang-Soo Lyoo
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Jeonbuk, 561-756, Republic of Korea
| | - Woonsung Na
- Korea Research Institute of Bioscience and Biotechnology, Taejon, 305-806, Republic of Korea.,Department of Pharmacy, College of Pharmacy, Korea University, Sejong, 339-700, Republic of Korea
| | - Minjoo Yeom
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong, 339-700, Republic of Korea
| | - Dae-Gwin Jeong
- Korea Research Institute of Bioscience and Biotechnology, Taejon, 305-806, Republic of Korea
| | - Chang-Ung Kim
- Korea Research Institute of Bioscience and Biotechnology, Taejon, 305-806, Republic of Korea
| | - Jeong-Ki Kim
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong, 339-700, Republic of Korea.
| | - Daesub Song
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong, 339-700, Republic of Korea.
| |
Collapse
|
25
|
Molecular analyses of H3N2 canine influenza viruses isolated from Korea during 2013-2014. Virus Genes 2016; 52:204-17. [PMID: 26810402 PMCID: PMC4792367 DOI: 10.1007/s11262-015-1274-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/10/2015] [Indexed: 11/12/2022]
Abstract
Canine influenza A virus (CIV) causes a respiratory disease among dog populations and is prevalent in North America and Asia. Recently, Asian H3N2 CIV infection has been of particular concern, with recent reports related to reassortants with pandemic 2009 strains, direct transmission from a human H3N2, a possibility of H3N2 CIV transmission to other mammals, and even the first outbreak of H3N2 CIVs in North America in April 2015. However, despite these global concerns, our understanding of how influenza A virus transmission impacts the overall populations of H3N2 CIVs remains incomplete. Hence, we investigated the evolutionary history of the most recent two Korean CIV isolates, A/canine/Korea/BD-1/2013 and A/canine/Korea/DG1/2014, along with 57 worldwide CIVs, using comprehensive molecular analyses based on genomic genotyping. This study presents that the new Korean CIV isolates are closely related to the predominantly circulating H3N2 CIVs with genotypes K, G, E, 3B, F, 2D, F, and 1E, carrying several mutations in antigenic and host determinant sites. Also, our findings show that the genome-wide genetic variations within the H3N2 CIVs are low; however, two antigenic protein (HA and NA) analysis demonstrates genetic diversification of the H3N2 CIVs, which evolves independently between Korea and China.
Collapse
|
26
|
Lee E, Kim EJ, Kim BH, Song JY, Cho IS, Shin YK. Multiplex RT-PCR detection of H3N2 influenza A virus in dogs. Mol Cell Probes 2016; 30:56-60. [PMID: 26738688 DOI: 10.1016/j.mcp.2015.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/24/2015] [Accepted: 12/24/2015] [Indexed: 01/19/2023]
Abstract
A multiplex RT-PCR (mRT-PCR) assay to detect H3N2 CIV genomic segments was developed as a rapid and cost-effective method. Its performance was evaluated with forty-six influenza A viruses from different hosts using three primer sets which amplify four segments of H3N2 CIV simultaneously. The mRT-PCR has been successful in detecting the viral segments, indicating that it can improve the speed of diagnosis for H3N2 CIV and its reassortants.
Collapse
Affiliation(s)
- EunJung Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggido, Republic of Korea
| | - Eun-Ju Kim
- Viral Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggido, Republic of Korea
| | - Bo-Hye Kim
- Viral Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggido, Republic of Korea
| | - Jae-Young Song
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggido, Republic of Korea
| | - In-Soo Cho
- Viral Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggido, Republic of Korea
| | - Yeun-Kyung Shin
- Viral Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggido, Republic of Korea.
| |
Collapse
|
27
|
van de Sandt CE, Bodewes R, Rimmelzwaan GF, de Vries RD. Influenza B viruses: not to be discounted. Future Microbiol 2015; 10:1447-65. [PMID: 26357957 DOI: 10.2217/fmb.15.65] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In contrast to influenza A viruses, which have been investigated extensively, influenza B viruses have attracted relatively little attention. However, influenza B viruses are an important cause of morbidity and mortality in the human population and full understanding of their biological and epidemiological properties is imperative to better control this important pathogen. However, some of its characteristics are still elusive and warrant investigation. Here, we review evolution, epidemiology, pathogenesis and immunity and identify gaps in our knowledge of influenza B viruses. The divergence of two antigenically distinct influenza B viruses is highlighted. The co-circulation of viruses of these two lineages necessitated the development of quadrivalent influenza vaccines, which is discussed in addition to possibilities to develop universal vaccination strategies.
Collapse
Affiliation(s)
- Carolien E van de Sandt
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Rogier Bodewes
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Guus F Rimmelzwaan
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,ViroClinics Biosciences BV, Rotterdam Science Tower, Marconistraat 16, 3029 AK Rotterdam, The Netherlands
| | - Rory D de Vries
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
28
|
Analysis of cytokine production in a newly developed canine tracheal epithelial cell line infected with H3N2 canine influenza virus. Arch Virol 2015; 160:1397-405. [DOI: 10.1007/s00705-015-2395-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/08/2015] [Indexed: 12/14/2022]
|
29
|
Origins and Evolutionary Dynamics of H3N2 Canine Influenza Virus. J Virol 2015; 89:5406-18. [PMID: 25740996 DOI: 10.1128/jvi.03395-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Influenza A viruses (IAVs) are maintained mainly in wild birds, and despite frequent spillover infections of avian IAVs into mammals, only a small number of viruses have become established in mammalian hosts. A new H3N2 canine influenza virus (CIV) of avian origin emerged in Asia in the mid-2000s and is now circulating in dog populations of China and South Korea, and possibly in Thailand. The emergence of CIV provides new opportunities for zoonotic infections and interspecies transmission. We examined 14,764 complete IAV genomes together with all CIV genomes publicly available since its first isolation until 2013. We show that CIV may have originated as early as 1999 as a result of segment reassortment among Eurasian and North American avian IAV lineages. We also identified amino acid changes that might have played a role in CIV emergence, some of which have not been previously identified in other cross-species jumps. CIV evolves at a lower rate than H3N2 human influenza viruses do, and viral phylogenies exhibit geographical structure compatible with high levels of local transmission. We detected multiple intrasubtypic and heterosubtypic reassortment events, including the acquisition of the NS segment of an H5N1 avian influenza virus that had previously been overlooked. In sum, our results provide insight into the adaptive changes required by avian viruses to establish themselves in mammals and also highlight the potential role of dogs to act as intermediate hosts in which viruses with zoonotic and/or pandemic potential could originate, particularly with an estimated dog population of ∼ 700 million. IMPORTANCE Influenza A viruses circulate in humans and animals. This multihost ecology has important implications, as past pandemics were caused by IAVs carrying gene segments of both human and animal origin. Adaptive evolution is central to cross-species jumps, and this is why understanding the evolutionary processes that shape influenza A virus genomes is key to elucidating the mechanisms underpinning viral emergence. An avian-origin canine influenza virus (CIV) has recently emerged in dogs and is spreading in Asia. We reconstructed the evolutionary history of CIV and show that it originated from both Eurasian and North American avian lineages. We also identified the mutations that might have been responsible for the cross-species jump. Finally, we provide evidence of multiple reassortment events between CIV and other influenza viruses (including an H5N1 avian virus). This is a cause for concern, as there is a large global dog population to which humans are highly exposed.
Collapse
|