1
|
Donà MG, Di Bonito P, Chiantore MV, Amici C, Accardi L. Targeting Human Papillomavirus-Associated Cancer by Oncoprotein-Specific Recombinant Antibodies. Int J Mol Sci 2021; 22:ijms22179143. [PMID: 34502053 PMCID: PMC8431386 DOI: 10.3390/ijms22179143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
In recent decades, recombinant antibodies against specific antigens have shown great promise for the therapy of infectious diseases and cancer. Human papillomaviruses (HPVs) are involved in the development of around 5% of all human cancers and HPV16 is the high-risk genotype with the highest prevalence worldwide, playing a dominant role in all HPV-associated cancers. Here, we describe the main biological activities of the HPV16 E6, E7, and E5 oncoproteins, which are involved in the subversion of important regulatory pathways directly associated with all known hallmarks of cancer. We then review the state of art of the recombinant antibodies targeted to HPV oncoproteins developed so far in different formats, and outline their mechanisms of action. We describe the advantages of a possible antibody-based therapy against the HPV-associated lesions and discuss the critical issue of delivery to tumour cells, which must be addressed in order to achieve the desired translation of the antibodies from the laboratory to the clinic.
Collapse
Affiliation(s)
| | - Paola Di Bonito
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.D.B.); (M.V.C.)
| | - Maria Vincenza Chiantore
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.D.B.); (M.V.C.)
| | - Carla Amici
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Luisa Accardi
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.D.B.); (M.V.C.)
- Correspondence:
| |
Collapse
|
2
|
Single-Domain Antibodies Represent Novel Alternatives to Monoclonal Antibodies as Targeting Agents against the Human Papillomavirus 16 E6 Protein. Int J Mol Sci 2019; 20:ijms20092088. [PMID: 31035322 PMCID: PMC6539864 DOI: 10.3390/ijms20092088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 01/18/2023] Open
Abstract
Approximately one fifth of all malignancies worldwide are etiologically associated with a persistent viral or bacterial infection. Thus, there is a particular interest in therapeutic molecules which use components of a natural immune response to specifically inhibit oncogenic microbial proteins, as it is anticipated they will elicit fewer off-target effects than conventional treatments. This concept has been explored in the context of human papillomavirus 16 (HPV16)-related cancers, through the development of monoclonal antibodies and fragments thereof against the viral E6 oncoprotein. Challenges related to the biology of E6 as well as the functional properties of the antibodies themselves appear to have precluded their clinical translation. Here, we addressed these issues by exploring the utility of the variable domains of camelid heavy-chain-only antibodies (denoted as VHHs). Through construction and panning of two llama, immune VHH phage display libraries, a pool of potential VHHs was isolated. The interactions of these with recombinant E6 were further characterized using an enzyme-linked immunosorbent assay (ELISA), Western blotting under denaturing and native conditions, and surface plasmon resonance. Three VHHs were identified that bound recombinant E6 with nanomolar affinities. Our results lead the way for subsequent studies into the ability of these novel molecules to inhibit HPV16-infected cells in vitro and in vivo.
Collapse
|
3
|
Luff J, Mader M, Rowland P, Britton M, Fass J, Yuan H. Viral genome integration of canine papillomavirus 16. PAPILLOMAVIRUS RESEARCH 2019; 7:88-96. [PMID: 30771493 PMCID: PMC6402295 DOI: 10.1016/j.pvr.2019.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/30/2019] [Accepted: 02/12/2019] [Indexed: 01/03/2023]
Abstract
Papillomaviruses infect humans and animals, most often causing benign proliferations on skin or mucosal surfaces. Rarely, these infections persist and progress to cancer. In humans, this transformation most often occurs with high-risk papillomaviruses, where viral integration is a critical event in carcinogenesis. The first aim of this study was to sequence the viral genome of canine papillomavirus (CPV) 16 from a pigmented viral plaque that progressed to metastatic squamous cell carcinoma in a dog. The second aim was to characterize multiple viral genomic deletions and translocations as well as host integration sites. The full viral genome was identified using a combination of PCR and high throughput sequencing. CPV16 is most closely related to chipapillomaviruses CPV4, CPV9, and CPV12 and we propose CPV16 be classified as a chipapillomavirus. Assembly of the full viral genome enabled identification of deletion of portions of the E1 and E2/E4 genes and two viral translocations within the squamous cell carcinoma. Genome walking was performed which identified four sites of viral integration into the host genome. This is the first description of integration of a canine papillomavirus into the host genome, raising the possibility that CPV16 may be a potential canine high-risk papillomavirus type.
Collapse
Affiliation(s)
- Jennifer Luff
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, North Carolina, USA.
| | - Michelle Mader
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Monica Britton
- UC Davis Genome Center-Bioinformatics Core, University of California, Davis, CA, USA
| | - Joseph Fass
- UC Davis Genome Center-Bioinformatics Core, University of California, Davis, CA, USA
| | - Hang Yuan
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
4
|
Lai TO, Boon SS, Law PT, Chen Z, Thomas M, Banks L, Chan PK. Oncogenicitiy Comparison of Human Papillomavirus Type 52 E6 Variants. J Gen Virol 2019; 100:484-496. [PMID: 30676312 DOI: 10.1099/jgv.0.001222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human papillomavirus (HPV) infection contributes to virtually all cases of cervical cancer, the fourth most common cancer affecting women worldwide. The oncogenicity of HPV is mainly attributable to the E6 and E7 oncoproteins. HPV-52 is the seventh most common HPV type globally, but it has a remarkably high prevalence in East Asia. In previous studies it has been speculated that the oncogenicity might vary among different HPV-52 variants. In the present study, we compared the oncogenicity of E6 derived from the HPV-52 prototype and three commonly found variants, V1 (K93R), V2 (E14D/V92L) and V3 (K93R/N122K), through molecular and phenotypic approaches. We demonstrated that cells containing V1 achieved higher colony formation and showed greater cell migration ability when compared to other variants, but no difference in cell immortalization ability was observed. At the molecular level, the three variants formed complexes with E6-associated protein (E6AP) and p53 as efficiently as the prototype. They degraded p53 and PSD95/Dlg/ZO-1(PDZ) proteins, including MAGI-1c and Dlg, to a similar extent. They also exhibited a similar subcellular localization, and shared a half-life of approximately 45 min. Our findings provide a clearer picture of HPV-52 E6 variant oncogenicity, which is important for further studies aiming to understand the unusually high prevalence of HPV-52 among cervical cancers in East Asia.
Collapse
Affiliation(s)
- Tsz On Lai
- 1Department of Microbiology, Faulty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Siaw Shi Boon
- 1Department of Microbiology, Faulty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Priscilla Ty Law
- 1Department of Microbiology, Faulty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Zigui Chen
- 1Department of Microbiology, Faulty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Miranda Thomas
- 2International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lawrence Banks
- 2International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Paul Ks Chan
- 1Department of Microbiology, Faulty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|
5
|
Jia XY, Xue YR, Zhang CX, Luo Q, Wu Y. Highly sensitive detection of the human papillomavirus E6 protein by DNA-protected silver nanoclusters and the intrinsic mechanism. NEW J CHEM 2019. [DOI: 10.1039/c9nj03241j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study not only supplies a good approach for the early diagnosis of HPV-related cancer but also enriches the biological application of AgNCs–dsDNA.
Collapse
Affiliation(s)
- Xiang-Yu Jia
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Ya-Rong Xue
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Chun-Xia Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
6
|
Makii C, Oda K, Ikeda Y, Sone K, Hasegawa K, Uehara Y, Nishijima A, Asada K, Koso T, Fukuda T, Inaba K, Oki S, Machino H, Kojima M, Kashiyama T, Mori-Uchino M, Arimoto T, Wada-Hiraike O, Kawana K, Yano T, Fujiwara K, Aburatani H, Osuga Y, Fujii T. MDM2 is a potential therapeutic target and prognostic factor for ovarian clear cell carcinomas with wild type TP53. Oncotarget 2018; 7:75328-75338. [PMID: 27659536 PMCID: PMC5342744 DOI: 10.18632/oncotarget.12175] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/02/2016] [Indexed: 01/10/2023] Open
Abstract
MDM2, a ubiquitin ligase, suppresses wild type TP53 via proteasome-mediated degradation. We evaluated the prognostic and therapeutic value of MDM2 in ovarian clear cell carcinoma. MDM2 expression in ovarian cancer tissues was analyzed by microarray and real-time PCR, and its relationship with prognosis was evaluated by Kaplan-Meier method and log-rank test. The anti-tumor activities of MDM2 siRNA and the MDM2 inhibitor RG7112 were assessed by cell viability assay, western blotting, and flow cytometry. The anti-tumor effects of RG7112 in vivo were examined in a mouse xenograft model. MDM2 expression was significantly higher in clear cell carcinoma than in ovarian high-grade serous carcinoma (P = 0.0092) and normal tissues (P = 0.035). High MDM2 expression determined by microarray was significantly associated with poor progression-free survival and poor overall survival (P = 0.0002, and P = 0.0008, respectively). Notably, RG7112 significantly suppressed cell viability in clear cell carcinoma cell lines with wild type TP53. RG7112 also strongly induced apoptosis, increased TP53 phosphorylation, and stimulated expression of the proapoptotic protein PUMA. Similarly, siRNA knockdown of MDM2 induced apoptosis. Finally, RG7112 significantly reduced the tumor volume of xenografted RMG-I clear cell carcinoma cells (P = 0.033), and the density of microvessels (P = 0.011). Our results highlight the prognostic value of MDM2 expression in clear cell carcinoma. Thus, MDM2 inhibitors such as RG7112 may constitute a class of potential therapeutics.
Collapse
Affiliation(s)
- Chinami Makii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Yuji Ikeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Yuriko Uehara
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan.,Division of Genome Science, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Akira Nishijima
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan.,Division of Genome Science, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kayo Asada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan.,Division of Genome Science, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Takahiro Koso
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan.,Division of Genome Science, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tomohiko Fukuda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Kanako Inaba
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Shinya Oki
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Hidenori Machino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Machiko Kojima
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Tomoko Kashiyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Mayuyo Mori-Uchino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Takahide Arimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Tetsu Yano
- Department of Obstetrics and Gynecology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Keiichi Fujiwara
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Hiroyuki Aburatani
- Division of Genome Science, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
7
|
Liu Y, Yuan X, Wang W, Wu Y, Wu L. High-affinity binding with specific peptides endows EuW10a good luminescence probe for HPV E6 detection. NEW J CHEM 2018. [DOI: 10.1039/c8nj03981j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
EuW10is applied as a sensitive biological probe, which is the first fluorescence detector of HPV E6in vitro.
Collapse
Affiliation(s)
- Yuxue Liu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xinxin Yuan
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Weixian Wang
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
8
|
E6^E7, a novel splice isoform protein of human papillomavirus 16, stabilizes viral E6 and E7 oncoproteins via HSP90 and GRP78. mBio 2015; 6:e02068-14. [PMID: 25691589 PMCID: PMC4337564 DOI: 10.1128/mbio.02068-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcripts of human papillomavirus 16 (HPV16) E6 and E7 oncogenes undergo alternative RNA splicing to produce multiple splice isoforms. However, the importance of these splice isoforms is poorly understood. Here we report a critical role of E6^E7, a novel isoform containing the 41 N-terminal amino acid (aa) residues of E6 and the 38 C-terminal aa residues of E7, in the regulation of E6 and E7 stability. Through mass spectrometric analysis, we identified that HSP90 and GRP78, which are frequently upregulated in cervical cancer tissues, are two E6^E7-interacting proteins responsible for the stability and function of E6^E7, E6, and E7. Although GRP78 and HSP90 do not bind each other, GRP78, but not HSP90, interacts with E6 and E7. E6^E7 protein, in addition to self-binding, interacts with E6 and E7 in the presence of GRP78 and HSP90, leading to the stabilization of E6 and E7 by prolonging the half-life of each protein. Knocking down E6^E7 expression in HPV16-positive CaSki cells by a splice junction-specific small interfering RNA (siRNA) destabilizes E6 and E7 and prevents cell growth. The same is true for the cells with a GRP78 knockdown or in the presence of an HSP90 inhibitor. Moreover, mapping and alignment analyses for splicing elements in 36 alpha-HPVs (α-HPVs) suggest the possible expression of E6^E7 mostly by other oncogenic or possibly oncogenic α-HPVs (HPV18, -30, -31, -39, -42, -45, -56, -59, -70, and -73). HPV18 E6^E7 is detectable in HPV18-positive HeLa cells and HPV18-infected raft tissues. All together, our data indicate that viral E6^E7 and cellular GRP78 or HSP90 might be novel targets for cervical cancer therapy. HPV16 is the most prevalent HPV genotype, being responsible for 60% of invasive cervical cancer cases worldwide. What makes HPV16 so potent in the development of cervical cancer remains a mystery. We discovered in this study that, besides producing two well-known oncoproteins, E6 and E7, seen in other high-risk HPVs, HPV16 produces E6^E7, a novel splice isoform of E6 and E7. E6^E7, in addition to self-interacting, binds cellular chaperone proteins, HSP90 and GRP78, and viral E6 and E7 to increase the steady-state levels and half-lives of viral oncoproteins, leading to cell proliferation. The splicing cis elements in the regulation of HPV16 E6^E7 production are highly conserved in 11 oncogenic or possibly oncogenic HPVs, and we confirmed the production of HPV18 E6^E7 in HPV18-infected cells. This study provides new insight into the mechanism of splicing, the interplay between different products of the polycistronic viral message, and the role of the host chaperones as they function.
Collapse
|
9
|
Ronchi VP, Klein JM, Edwards DJ, Haas AL. The active form of E6-associated protein (E6AP)/UBE3A ubiquitin ligase is an oligomer. J Biol Chem 2013; 289:1033-48. [PMID: 24273172 DOI: 10.1074/jbc.m113.517805] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Employing 125I-polyubiquitin chain formation as a functional readout of ligase activity, biochemical and biophysical evidence demonstrates that catalytically active E6-associated protein (E6AP)/UBE3A is an oligomer. Based on an extant structure previously discounted as an artifact of crystal packing forces, we propose that the fully active form of E6AP is a trimer, analysis of which reveals a buried surface of 7508Å2 and radially symmetric interacting residues that are conserved within the Hect (homologous to E6AP C terminus) ligase superfamily. An absolutely conserved interaction between Phe(727) and a hydrophobic pocket present on the adjacent subunit is critical for trimer stabilization because mutation disrupts the oligomer and decreases kcat 62-fold but fails to affect E2 ubiquitin binding or subsequent formation of the Hect domain Cys(820) ubiquitin thioester catalytic intermediate. Exogenous N-acetylphenylalanylamide reversibly antagonizes Phe(727)-dependent trimer formation and catalytic activity (Ki12 mM), as does a conserved-helical peptide corresponding to residues 474–490 of E6A Pisoform 1 (Ki22M) reported to bind the hydrophobic pocket of other Hect ligases, presumably blocking Phe(727) intercalation and trimer formation. Conversely, oncogenic human papillomavirus-16/18 E6 protein significantly enhances E6AP catalytic activity by promoting trimer formation (Kactivation 1.5 nM) through the ability of E6 to form homodimers. Recombinant E6 protein additionally rescues the kcat defect of the Phe(727) mutation and that of a specific loss-of-function Angelman syndrome mutation that promotes trimer destabilization. The present findings codify otherwise disparate observations regarding the mechanism of E6AP and related Hect ligases in addition to suggesting therapeutic approaches for modulating ligase activity.
Collapse
|
10
|
Jackson R, Togtema M, Zehbe I. Subcellular localization and quantitation of the human papillomavirus type 16 E6 oncoprotein through immunocytochemistry detection. Virology 2013; 435:425-32. [DOI: 10.1016/j.virol.2012.09.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/11/2012] [Accepted: 09/26/2012] [Indexed: 11/28/2022]
|
11
|
Singhania R, Khairuddin N, Clarke D, McMillan NA. RNA interference for the treatment of papillomavirus disease. Open Virol J 2012; 6:204-15. [PMID: 23341856 PMCID: PMC3547394 DOI: 10.2174/1874357901206010204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/10/2012] [Accepted: 08/15/2012] [Indexed: 02/06/2023] Open
Abstract
Human Papillomavirus (HPV)-induced diseases are a significant burden on our healthcare system and current therapies are not curative. Vaccination provides significant prophylactic protection but effective therapeutic treatments will still be required. RNA interference (RNAi) has great promise in providing highly specific therapies for all HPV diseases yet this promise has not been realised. Here we review the research into RNAi therapy for HPV in vitro and in vivo and examine the various targets and outcomes. We discuss the idea of using RNAi with current treatments and address delivery of RNAi, the major issue holding back clinical adoption. Finally, we present our view of a potential path to the clinic.
Collapse
Affiliation(s)
- Richa Singhania
- The University of Queensland Diamantina Institute, Brisbane, Australia
| | | | | | | |
Collapse
|
12
|
Togtema M, Pichardo S, Jackson R, Lambert PF, Curiel L, Zehbe I. Sonoporation delivery of monoclonal antibodies against human papillomavirus 16 E6 restores p53 expression in transformed cervical keratinocytes. PLoS One 2012; 7:e50730. [PMID: 23226365 PMCID: PMC3511358 DOI: 10.1371/journal.pone.0050730] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/24/2012] [Indexed: 01/08/2023] Open
Abstract
High-risk types of human papillomavirus (HPV), such as HPV16, have been found in nearly all cases of cervical cancer. Therapies targeted at blocking the HPV16 E6 protein and its deleterious effects on the tumour suppressor pathways of the cell can reverse the malignant phenotype of affected keratinocytes while sparing uninfected cells. Through a strong interdisciplinary collaboration between engineering and biology, a novel, non-invasive intracellular delivery method for the HPV16 E6 antibody, F127-6G6, was developed. The method employs high intensity focused ultrasound (HIFU) in combination with microbubbles, in a process known as sonoporation. In this proof of principle study, it was first demonstrated that sonoporation antibody delivery into the HPV16 positive cervical carcinoma derived cell lines CaSki and SiHa was possible, using chemical transfection as a baseline for comparison. Delivery of the E6 antibody using sonoporation significantly restored p53 expression in these cells, indicating the antibody is able to enter the cells and remains active. This delivery method is targeted, non-cytotoxic, and non-invasive, making it more easily translatable for in vivo experiments than other transfection methods.
Collapse
Affiliation(s)
- Melissa Togtema
- Probe Development and Biomarker Exploration, Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Pierri CL, Parisi G, Porcelli V. Computational approaches for protein function prediction: a combined strategy from multiple sequence alignment to molecular docking-based virtual screening. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1695-712. [PMID: 20433957 DOI: 10.1016/j.bbapap.2010.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/04/2010] [Accepted: 04/14/2010] [Indexed: 12/12/2022]
Abstract
The functional characterization of proteins represents a daily challenge for biochemical, medical and computational sciences. Although finally proved on the bench, the function of a protein can be successfully predicted by computational approaches that drive the further experimental assays. Current methods for comparative modeling allow the construction of accurate 3D models for proteins of unknown structure, provided that a crystal structure of a homologous protein is available. Binding regions can be proposed by using binding site predictors, data inferred from homologous crystal structures, and data provided from a careful interpretation of the multiple sequence alignment of the investigated protein and its homologs. Once the location of a binding site has been proposed, chemical ligands that have a high likelihood of binding can be identified by using ligand docking and structure-based virtual screening of chemical libraries. Most docking algorithms allow building a list sorted by energy of the lowest energy docking configuration for each ligand of the library. In this review the state-of-the-art of computational approaches in 3D protein comparative modeling and in the study of protein-ligand interactions is provided. Furthermore a possible combined/concerted multistep strategy for protein function prediction, based on multiple sequence alignment, comparative modeling, binding region prediction, and structure-based virtual screening of chemical libraries, is described by using suitable examples. As practical examples, Abl-kinase molecular modeling studies, HPV-E6 protein multiple sequence alignment analysis, and some other model docking-based characterization reports are briefly described to highlight the importance of computational approaches in protein function prediction.
Collapse
Affiliation(s)
- Ciro Leonardo Pierri
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Va E. Orabona, 4 - 70125 Bari, Italy.
| | | | | |
Collapse
|
14
|
Zhou F. Molecular mechanisms of IFN-gamma to up-regulate MHC class I antigen processing and presentation. Int Rev Immunol 2009; 28:239-60. [PMID: 19811323 DOI: 10.1080/08830180902978120] [Citation(s) in RCA: 310] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
IFN-gamma up-regulates MHC class I expression and antigen processing and presentation on cells, since IFN-gamma can induce multiple gene expressions that are related to MHC class I antigen processing and presentation. MHC class I antigen presentation-associated gene expression is initiated by IRF-1. IRF-1 expression is initiated by phosphorylated STAT1. IFN-gamma binds to IFN receptors, and then activates JAK1/JAK2/STAT1 signal transduction via phosphorylation of JAK and STAT1 in cells. IFN-gamma up-regulates MHC class I antigen presentation via activation of JAK/STAT1 signal transduction pathway. Mechanisms of IFN-gamma to enhance MHC class I antigen processing and presentation were summarized in this literature review.
Collapse
Affiliation(s)
- Fang Zhou
- Diamantina Institute for Cancer Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
15
|
Zanier K, Ruhlmann C, Melin F, Masson M, Ould M'hamed Ould Sidi A, Bernard X, Fischer B, Brino L, Ristriani T, Rybin V, Baltzinger M, Vande Pol S, Hellwig P, Schultz P, Travé G. E6 proteins from diverse papillomaviruses self-associate both in vitro and in vivo. J Mol Biol 2009; 396:90-104. [PMID: 19917295 DOI: 10.1016/j.jmb.2009.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Revised: 11/08/2009] [Accepted: 11/09/2009] [Indexed: 11/18/2022]
Abstract
Papillomavirus E6 oncoproteins bind and often provoke the degradation of many cellular proteins important for the control of cell proliferation and/or cell death. Structural studies on E6 proteins have long been hindered by the difficulties of obtaining highly concentrated samples of recombinant E6. Here, we show that recombinant E6 proteins from eight human papillomavirus strains and one bovine papillomavirus strain exist as oligomeric and multimeric species. These species were characterized using a variety of biochemical and biophysical techniques, including analytical gel filtration, activity assays, surface plasmon resonance, electron microscopy and Fourier transform infrared spectroscopy. The characterization of E6 oligomers is facilitated by the fusion to the maltose binding protein, which slows the formation of higher-order multimeric species. The proportion of each oligomeric form varies depending on the viral strain considered. Oligomers appear to consist of folded units, which, in the case of high-risk mucosal human papillomavirus E6, retain binding to the ubiquitin ligase E6-associated protein and the capacity to degrade the proapoptotic protein p53. In addition to the small-size oligomers, E6 proteins spontaneously assemble into large organized multimeric structures, a process that is accompanied by a significant increase in the beta-sheet secondary structure content. Finally, co-localisation experiments using E6 equipped with different tags further demonstrate the occurrence of E6 self-association in eukaryotic cells. The ensemble of these data suggests that self-association is a general property of E6 proteins that occurs both in vitro and in vivo and might therefore be functionally relevant.
Collapse
Affiliation(s)
- Katia Zanier
- Ecole Supérieure de Biotechnologie de Strasbourg (IREBS, FRE 3211), Boulevard Sébastien Brant, BP 10413, 67412 Illkirch Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Van Doorslaer K, Sidi AOMO, Zanier K, Rybin V, Deryckère F, Rector A, Burk RD, Lienau EK, van Ranst M, Travé G. Identification of unusual E6 and E7 proteins within avian papillomaviruses: cellular localization, biophysical characterization, and phylogenetic analysis. J Virol 2009; 83:8759-70. [PMID: 19553340 PMCID: PMC2738182 DOI: 10.1128/jvi.01777-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 05/12/2009] [Indexed: 11/20/2022] Open
Abstract
Papillomaviruses (PVs) are a large family of small DNA viruses infecting mammals, reptiles, and birds. PV infection induces cell proliferation that may lead to the formation of orogenital or skin tumors. PV-induced cell proliferation has been related mainly to the expression of two small oncoproteins, E6 and E7. In mammalian PVs, E6 contains two 70-residue zinc-binding repeats, whereas E7 consists of a natively unfolded N-terminal region followed by a zinc-binding domain which folds as an obligate homodimer. Here, we show that both the novel francolin bird PV Francolinus leucoscepus PV type 1 (FlPV-1) and the chaffinch bird PV Fringilla coelebs PV contain unusual E6 and E7 proteins. The avian E7 proteins contain an extended unfolded N terminus and a zinc-binding domain of reduced size, whereas the avian E6 proteins consist of a single zinc-binding domain. A comparable single-domain E6 protein may have existed in a common ancestor of mammalian and avian PVs. Mammalian E6 C-terminal domains are phylogenetically related to those of single-domain avian E6, whereas mammalian E6 N-terminal domains seem to have emerged by duplication and subsequently diverged from the original ancestral domain. In avian and mammalian cells, both FlPV-1 E6 and FlPV-1 E7 were evenly expressed in the cytoplasm and the nucleus. Finally, samples of full-length FlPV-1 E6 and the FlPV-1 E7 C-terminal zinc-binding domain were prepared for biophysical analysis. Both constructs were highly soluble and well folded, according to nuclear magnetic resonance spectroscopy measurements.
Collapse
Affiliation(s)
- Koenraad Van Doorslaer
- Laboratory of Clinical Virology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zehbe I, Richard C, DeCarlo CA, Shai A, Lambert PF, Lichtig H, Tommasino M, Sherman L. Human papillomavirus 16 E6 variants differ in their dysregulation of human keratinocyte differentiation and apoptosis. Virology 2009; 383:69-77. [PMID: 18986660 PMCID: PMC2945146 DOI: 10.1016/j.virol.2008.09.036] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/25/2008] [Accepted: 09/23/2008] [Indexed: 11/15/2022]
Abstract
L83V-related variants of human papillomavirus (HPV) 16 E6, exemplified by the Asian-American variant Q14H/H78Y/L83V, were shown to be more prevalent than E6 prototype in progressing lesions and cervical cancer. We evaluated functions relevant to carcinogenesis for the E6 variants L83V, R10/L83V and Q14H/H78Y/L83V as well as the prototype in a model of human normal immortalized keratinocytes (NIKS). All E6 expressing NIKS equally abrogated growth arrest and DNA damage responses. Organotypic cultures derived from these keratinocytes demonstrated hyperplasia and aberrantly expressed keratin 5 in the suprabasal compartment. In contrast, differentiation and induction of apoptosis varied. The E6 variant rafts expressed keratin 10 in nearly all suprabasal cells while the prototype raft showed keratin 10 staining in a subset of suprabasal cells only. In addition, E6 variant NIKS expressing R10G/L83V and Q14H/H78Y/L83V were more prone to undergo cell-detachment-induced apoptosis (anoikis) than NIKS expressing E6 prototype. The combined differentiation and apoptosis pattern of high-risk E6 variants, especially of Q14H/H78Y/L83V, may reflect a phenotype beneficial to carcinogenesis and viral life cycle.
Collapse
Affiliation(s)
- Ingeborg Zehbe
- Thunder Bay Regional Health Sciences Centre, Regional Cancer Care, Thunder Bay, Ontario, Canada P7B 6V4.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
A novel adenovirus vector for easy cloning in the E3 region downstream of the CMV promoter. Virol J 2008; 5:73. [PMID: 18538014 PMCID: PMC2427025 DOI: 10.1186/1743-422x-5-73] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 06/06/2008] [Indexed: 11/11/2022] Open
Abstract
The construction of expression vectors derived from the human adenovirus type 5 (Ad5), usually based on homologous recombination, is time consuming as a shuttle plasmid has to be selected before recombination with the viral genome. Here, we describe a method allowing direct cloning of a transgene in the E3 region of the Ad5 genome already containing the immediate early CMV promoter upstream of three unique restriction sites. This allowed the construction of recombinant adenoviral genomes in just one step, reducing considerably the time of selection and, of course, production of the corresponding vectors. Using this vector, we produced recombinant adenoviruses, each giving high-level expression of the transgene in the transduced cells.
Collapse
|
19
|
Thomas M, Dasgupta J, Zhang Y, Chen X, Banks L. Analysis of specificity determinants in the interactions of different HPV E6 proteins with their PDZ domain-containing substrates. Virology 2008; 376:371-8. [PMID: 18452965 DOI: 10.1016/j.virol.2008.03.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 02/14/2008] [Accepted: 03/10/2008] [Indexed: 11/30/2022]
Abstract
The E6 oncoproteins of the cancer-associated human papillomaviruses (high-risk HPV types) characteristically have a PDZ-binding motif at their extreme carboxy-termini. However, they interact with only some of the PDZ domain-containing proteins in the human proteome and, despite many of these proteins having multiple PDZ domains, they interact specifically through only one of those domains. Previous work has shown that the exact sequence of the C-terminal PDZ-binding motif of E6 affects substrate selection, and recently we have shown that an E6 residue peripheral to the binding motif also contributes to the specificity of binding. Here we show that substrate specificity of the HPV E6 PDZ binding is modulated both by the amino acid residues upstream of the binding domain and by the non-canonical residues within it. Using this data we have begun to construct a scheme of substrate preferences for E6 proteins from different HPV types.
Collapse
Affiliation(s)
- Miranda Thomas
- Tumour Virology Laboratory, I.C.G.E.B., Padriciano 99, 34012 Trieste, Italy.
| | | | | | | | | |
Collapse
|
20
|
Tungteakkhun SS, Duerksen-Hughes PJ. Cellular binding partners of the human papillomavirus E6 protein. Arch Virol 2008; 153:397-408. [PMID: 18172569 PMCID: PMC2249614 DOI: 10.1007/s00705-007-0022-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 12/13/2007] [Indexed: 11/25/2022]
Abstract
The high-risk strains of human papillomavirus (HR-HPV) are known to be causative agents of cervical cancer and have recently also been implicated in cancers of the oropharynx. E6 is a potent oncogene of HR-HPVs, and its role in the progression to malignancy has been and continues to be explored. E6 is known to interact with and subsequently inactivate numerous cellular proteins pivotal in the mediation of apoptosis, transcription of tumor suppressor genes, maintenance of epithelial organization, and control of cell proliferation. Binding of E6 to these proteins cumulatively contributes to the oncogenic potential of HPV. This paper provides an overview of these cellular protein partners of HR-E6, the motifs known to mediate oncoprotein binding, and the agents that have the potential to interfere with E6 expression and activity and thus prevent the subsequent progression to oncogenesis.
Collapse
Affiliation(s)
- Sandy S. Tungteakkhun
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354 USA
| | | |
Collapse
|
21
|
Cooper B, Brimer N, Vande Pol SB. Human papillomavirus E6 regulates the cytoskeleton dynamics of keratinocytes through targeted degradation of p53. J Virol 2007; 81:12675-9. [PMID: 17804489 PMCID: PMC2168984 DOI: 10.1128/jvi.01083-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Accepted: 08/27/2007] [Indexed: 11/20/2022] Open
Abstract
The attachment and spreading of keratinocyte cells result from interactions between integrins and immobilized extracellular matrix molecules. Human papillomavirus type 16 (HPV-16) E6 augmented the kinetics of cell spreading, while E6 genes from HPV-11 or bovine papillomavirus type 1 did not. The ability of E6 to interact with the E6AP ubiquitin ligase and target p53 degradation was required to augment cell-spreading kinetics; dominant negative p53 alleles also enhanced the kinetics of cell spreading and the level of attachment of cells to hydrophobic surfaces. The targeted degradation of p53 by E6 may contribute to the invasive phenotype exhibited by cervical cells that contain high-risk HPV types.
Collapse
Affiliation(s)
- Brooke Cooper
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
22
|
Courtête J, Sibler AP, Zeder-Lutz G, Dalkara D, Oulad-Abdelghani M, Zuber G, Weiss E. Suppression of cervical carcinoma cell growth by intracytoplasmic codelivery of anti-oncoprotein E6 antibody and small interfering RNA. Mol Cancer Ther 2007; 6:1728-35. [PMID: 17575104 DOI: 10.1158/1535-7163.mct-06-0808] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cervical cancer is caused by high-risk types of human papillomaviruses (HPV) that encode the E6 and E7 oncogenes. Silencing of E6 gene expression in HPV-positive cell lines by transfection of small interfering RNA (siRNA) with cationic lipids restores the dormant p53 tumor suppressor pathway. Because cationic lipids can also be used for intracytoplasmic delivery of proteins, we tested whether the delivery of monoclonal antibodies that bind to HPV16 E6 and neutralize its biological activity in vitro could restore p53 function in tumor cells. Here, we show that the 4C6 antibody is efficiently delivered into the cell cytoplasm using a lipidic reagent used for siRNA transfection. The delivery of 4C6 resulted in the nuclear accumulation of p53 protein in CaSki and SiHa cells but not in HeLa cells. Furthermore, the antibody-mediated p53 response was dramatically increased when a peptide corresponding to the 4C6 epitope and bearing a COOH-terminal cysteine residue was added to the transduction mixture. We found that a fraction of the added peptides were dimers that allowed the formation of antibody polymers adsorbed onto the lipidic matrix. With this system, the proliferation of CaSki and SiHa cells was strongly diminished, but no apoptosis was detectable. Remarkably, cell growth was almost totally suppressed by the addition of E6-specific siRNA to the transduction complex. The results indicate that the activity of E6 oncoprotein can be down-regulated in vivo by lipid-mediated antibody delivery and that antibodies and siRNA act synergistically when codelivered. This novel targeting strategy is simple to implement and may find therapeutic applications.
Collapse
Affiliation(s)
- Jérôme Courtête
- Institut Gilbert-Laustriat, UMR 7175, ESBS, Illkirch Cedex, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Lagrange M, Boulade-Ladame C, Mailly L, Weiss E, Orfanoudakis G, Deryckere F. Intracellular scFvs against the viral E6 oncoprotein provoke apoptosis in human papillomavirus-positive cancer cells. Biochem Biophys Res Commun 2007; 361:487-92. [PMID: 17658466 DOI: 10.1016/j.bbrc.2007.07.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 07/11/2007] [Indexed: 12/01/2022]
Abstract
The E6 protein of human papillomavirus type 16 (16E6) is involved in the tumorigenesis of human cervical cells by targeting numerous cellular proteins. We have designed a strategy for neutralizing 16E6 based on the intracellular expression of single-chain Fv antibodies (scFvs) specific to 16E6. Recombinant adenovirus vectors were constructed to allow expression of two 16E6-binding scFvs and one 16E6-non-binding scFv in HPV16-positive and -negative cells. Expression of the scFvs provoked two types of effects: (i) inhibition of proliferation of all cell lines tested, this aspecific toxicity being likely due to the aggregation of unfolded scFvs; and (ii) apoptosis observed only in HPV16-positive cervical cancer cell lines after expression of 16E6-binding scFvs, this specific effect being proportional to the intracellular solubility of the scFvs. These data demonstrate the feasibility of intracellular immunization with anti-16E6 scFvs and highlight the importance of the solubility of the intracellular antibodies.
Collapse
Affiliation(s)
- Magali Lagrange
- UMR 7175-LC1, CNRS, Université Louis Pasteur (Strasbourg I), ESBS, Boulevard Sébastien Brant, BP 10413, 67412 Illkirch Cedex, France
| | | | | | | | | | | |
Collapse
|
24
|
Camus S, Menéndez S, Cheok CF, Stevenson LF, Laín S, Lane DP. Ubiquitin-independent degradation of p53 mediated by high-risk human papillomavirus protein E6. Oncogene 2007; 26:4059-70. [PMID: 17224909 PMCID: PMC2742713 DOI: 10.1038/sj.onc.1210188] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 11/02/2006] [Accepted: 11/06/2006] [Indexed: 11/09/2022]
Abstract
In vitro, high-risk human papillomavirus E6 proteins have been shown, in conjunction with E6-associated protein (E6AP), to mediate ubiquitination of p53 and its degradation by the 26S proteasome by a pathway that is thought to be analogous to Mdm2-mediated p53 degradation. However, differences in the requirements of E6/E6AP and Mdm2 to promote the degradation of p53, both in vivo and in vitro, suggest that these two E3 ligases may promote p53 degradation by distinct pathways. Using tools that disrupt ubiquitination and degradation, clear differences between E6- and Mdm2-mediated p53 degradation are presented. The consistent failure to fully protect p53 protein from E6-mediated degradation by disrupting the ubiquitin-degradation pathway provides the first evidence of an E6-dependent, ubiquitin-independent, p53 degradation pathway in vivo.
Collapse
Affiliation(s)
- S Camus
- Department of Cell Cycle Control, Institute of Molecular and Cell Biology, Proteos, Singapore.
| | | | | | | | | | | |
Collapse
|
25
|
Jing M, Bohl J, Brimer N, Kinter M, Vande Pol SB. Degradation of tyrosine phosphatase PTPN3 (PTPH1) by association with oncogenic human papillomavirus E6 proteins. J Virol 2007; 81:2231-9. [PMID: 17166906 PMCID: PMC1865939 DOI: 10.1128/jvi.01979-06] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 12/01/2006] [Indexed: 11/20/2022] Open
Abstract
Oncoproteins from DNA tumor viruses associate with critical cellular proteins to regulate cell proliferation, survival, and differentiation. Human papillomavirus (HPV) E6 oncoproteins have been previously shown to associate with a cellular HECT domain ubiquitin ligase termed E6AP (UBE3A). Here we show that the E6-E6AP complex associates with and targets the degradation of the protein tyrosine phosphatase PTPN3 (PTPH1) in vitro and in living cells. PTPN3 is a membrane-associated tyrosine phosphatase with FERM, PDZ, and PTP domains previously implicated in regulating tyrosine phosphorylation of growth factor receptors and p97 VCP (valosin-containing protein, termed Cdc48 in Saccharomyces cerevisiae) and is mutated in a subset of colon cancers. Degradation of PTPN3 by E6 requires E6AP, the proteasome, and an interaction between the carboxy terminus of E6 and the PDZ domain of PTPN3. In transduced keratinocytes, E6 confers reduced growth factor requirements, a function that requires the PDZ ligand of E6 and that can in part be replicated by inhibiting the expression of PTPN3. This report demonstrates the potential of E6 to regulate phosphotyrosine metabolism through the targeted degradation of a tyrosine phosphatase.
Collapse
Affiliation(s)
- Ming Jing
- Department of Pathology, University of Virginia, P.O. Box 800904, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
26
|
Baleja JD, Cherry JJ, Liu Z, Gao H, Nicklaus MC, Voigt JH, Chen JJ, Androphy EJ. Identification of inhibitors to papillomavirus type 16 E6 protein based on three-dimensional structures of interacting proteins. Antiviral Res 2006; 72:49-59. [PMID: 16690141 PMCID: PMC2776632 DOI: 10.1016/j.antiviral.2006.03.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 03/22/2006] [Accepted: 03/24/2006] [Indexed: 11/25/2022]
Abstract
Human papillomaviruses (HPV) cause cutaneous and genital warts. A subset of HPV types is associated with a high-risk for progression to malignancy. The E6 protein from the high-risk HPV types represents an attractive target for intervention because of its roles in viral propagation and cellular transformation. E6 functions in part by interaction with human cellular proteins, several of which possess a helical E6-binding motif. The role for each amino acid in this motif for binding E6 has been tested through structure determination and site-directed mutagenesis. These structural and molecular biological approaches defined the spatial geometry of functional groups necessary for binding to E6. This E6-binding information (the E6-binding pharmacophore) was transferred into a three-dimensional query format suitable for computational screening of large chemical databases. Compounds were identified and tested using in vitro and cell culture-based assays. Several compounds selectively inhibited E6 interaction with the E6-binding protein E6AP and interfered with the ability of E6 to promote p53 degradation. Such compounds provide leads for the development of new pharmacologic agents to treat papillomavirus infections and their associated cancers.
Collapse
Affiliation(s)
- James D. Baleja
- Dept. of Biochemistry, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111 U.S.A
| | - Jonathan J. Cherry
- Dept. of Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, U.S.A
| | - Zhiguo Liu
- Dept. of Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, U.S.A
| | - Hua Gao
- Dept. of Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, U.S.A
| | - Marc C. Nicklaus
- Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute, 376 Boyles Street, Frederick, MD 21702 U.S.A
| | - Johannes H. Voigt
- Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute, 376 Boyles Street, Frederick, MD 21702 U.S.A
| | - Jason J. Chen
- Dept. of Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, U.S.A
| | - Elliot J. Androphy
- Dept. of Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, U.S.A
| |
Collapse
|
27
|
Nominé Y, Masson M, Charbonnier S, Zanier K, Ristriani T, Deryckère F, Sibler AP, Desplancq D, Atkinson RA, Weiss E, Orfanoudakis G, Kieffer B, Travé G. Structural and functional analysis of E6 oncoprotein: insights in the molecular pathways of human papillomavirus-mediated pathogenesis. Mol Cell 2006; 21:665-78. [PMID: 16507364 DOI: 10.1016/j.molcel.2006.01.024] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2005] [Revised: 10/26/2005] [Accepted: 01/19/2006] [Indexed: 10/25/2022]
Abstract
Oncoprotein E6 is essential for oncogenesis induced by human papillomaviruses (HPVs). The solution structure of HPV16-E6 C-terminal domain reveals a zinc binding fold. A model of full-length E6 is proposed and analyzed in the context of HPV evolution. E6 appears as a chameleon protein combining a conserved structural scaffold with highly variable surfaces participating in generic or specialized HPV functions. We investigated surface residues involved in two specialized activities of high-risk genital HPV E6: p53 tumor suppressor degradation and nucleic acid binding. Screening of E6 surface mutants identified an in vivo p53 degradation-defective mutant that fails to recruit p53 to ubiquitin ligase E6AP and restores high p53 levels in cervical carcinoma cells by competing with endogeneous E6. We also mapped the nucleic acid binding surface of E6, the positive potential of which correlates with genital oncogenicity. E6 structure-function analysis provides new clues for understanding and counteracting the complex pathways of HPV-mediated pathogenesis.
Collapse
Affiliation(s)
- Yves Nominé
- Equipe Oncoprotéine, UMR CNRS 7100, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sebastien Brant, BP 10413, 67412 Illkirch Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Griffin H, Elston R, Jackson D, Ansell K, Coleman M, Winter G, Doorbar J. Inhibition of papillomavirus protein function in cervical cancer cells by intrabody targeting. J Mol Biol 2006; 355:360-78. [PMID: 16324714 DOI: 10.1016/j.jmb.2005.10.077] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 10/19/2005] [Accepted: 10/28/2005] [Indexed: 01/08/2023]
Abstract
Papillomaviruses (HPVs) are a major cause of human disease, and are responsible for approximately half a million cases of cervical cancer each year. HPVs also cause genital warts, and are the most common sexually transmitted disease in many countries. Despite their importance, there are currently no specific antivirals that are active against HPVs. Papillomavirus protein function is mediated largely by protein-protein interactions, which are difficult to inhibit using conventional approaches. To circumvent these problems, we have prepared an scFv library, and have used this to isolate high-affinity binding molecules that may stearically hinder the association of E6 with p53 and prevent E6-mediated p53 degradation in cervical cancer cells. One of the molecules isolated from the library (GTE6-1), had an affinity for 16E6 of 60nM, and bound within the first zinc finger of the protein. GTE6-1 was able to associate with non-denatured E6 following expression in mammalian cells and could inhibit E6-mediated p53 degradation in in vitro assays. E6-mediated p53 degradation is essential for the continuous growth of cervical cancer cells caused by HPV16. To examine the potential of GTE6-1 as an inhibitor of E6 function in such cells, the molecule was expressed in scFv, diabody and triabody formats in a number of cell lines that are driven to proliferate by the HPV16 oncogenes E6 and E7, including the cervical cancer cell line SiHa. In contrast to small E6-binding peptides containing the ELLG E6-binding motif, GTE6-1 expression lead to changes in nuclear structure, the appearance of apoptosis markers, and an elevation in the levels of p53. No effects were seen with a control scFv molecule, or when GTE6-1 was expressed in cells that are driven to proliferate by simian virus 40 (SV40) T-antigen. Given the accessibility of HPV-associated lesions to topical therapy, our results suggest that large interfering molecules such as intrabodies may be useful inhibitors of viral protein-protein interactions and be particularly appropriate for the treatment of HPV-associated disease.
Collapse
Affiliation(s)
- Heather Griffin
- Division of Virology, National Institute for Medical Research, London NW7 1AA, UK
| | | | | | | | | | | | | |
Collapse
|