1
|
Kalamvoki M. HSV-1 virions and related particles: biogenesis and implications in the infection. J Virol 2025; 99:e0107624. [PMID: 39898651 PMCID: PMC11915793 DOI: 10.1128/jvi.01076-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Virion formation and egress are sophisticated processes that rely on the spatial and temporal organization of host cell membranes and the manipulation of host machineries involved in protein sorting, membrane bending, fusion, and fission. These processes result in the formation of infectious virions, defective particles, and various vesicle-like structures. In herpes simplex virus 1 (HSV-1) infections, virions and capsid-less particles, known as light (L)-particles, are formed. HSV-1 infection also stimulates the release of particles that resemble extracellular vesicles (EVs). In productively infected cells, most EVs are generated through the CD63 tetraspanin biogenesis pathway and lack viral components. A smaller subset of EVs, generated through the endosomal sorting complexes required for transport (ESCRT) pathway, contains both viral and host factors. Viral mechanisms tightly regulate EV biogenesis, including the inhibition of autophagy-a process critical for increased production of CD63+ EVs during HSV-1 infection. Mutant viruses that fail to suppress autophagy instead promote microvesicle production from the plasma membrane. Additionally, the viral protein ICP0 (Infected Cell Protein 0) enhances EV biogenesis during HSV-1 infection. The different types of particles can be separated by density gradients due to their distinct biophysical properties. L-particles and ESCRT+ EVs display a pro-viral role, supporting viral replication, whereas CD63+ EVs exhibit antiviral effects. Overall, these studies highlight that HSV-1 infection yields numerous and diverse particles, with their type and composition shaped by the ability of the virus to evade host responses. These particles likely shape the infectious microenvironment and determine disease outcomes.
Collapse
Affiliation(s)
- Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
2
|
Gunasegaran B, Ashley CL, Marsh-Wakefield F, Guillemin GJ, Heng B. Viruses in glioblastoma: an update on evidence and clinical trials. BJC REPORTS 2024; 2:33. [PMID: 39516641 PMCID: PMC11524015 DOI: 10.1038/s44276-024-00051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/13/2024] [Accepted: 02/22/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Glioblastoma (GB) is a lethal and aggressive brain tumour. While molecular characteristics of GB is studied extensively, the aetiology of GB remains uncertain. The interest in exploring viruses as a potential contributor to the development of GB stems from the notion that viruses are known to play a key role in pathogenesis of other human cancers such as cervical cancer. Nevertheless, the role of viruses in GB remains controversial. METHODS This review delves into the current body of knowledge surrounding the presence of viruses in GB as well as provide updates on clinical trials examining the potential inclusion of antiviral therapies as part of the standard of care protocol. CONCLUSIONS The review summarises current evidences and important gaps in our knowledge related to the presence of viruses in GB.
Collapse
Affiliation(s)
- Bavani Gunasegaran
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Caroline L Ashley
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Felix Marsh-Wakefield
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Centenary Institute, Camperdown, NSW, Australia
| | | | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Zheng N, Gui Z, Liu X, Wu Y, Wang H, Cai A, Wu J, Li X, Kaewborisuth C, Zhang Z, Wang Q, Manyande A, Xu F, Wang J. Investigations of brain-wide functional and structural networks of dopaminergic and CamKIIα-positive neurons in VTA with DREADD-fMRI and neurotropic virus tracing technologies. J Transl Med 2023; 21:543. [PMID: 37580725 PMCID: PMC10424380 DOI: 10.1186/s12967-023-04362-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/16/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND The ventral tegmental area (VTA) contains heterogeneous cell populations. The dopaminergic neurons in VTA play a central role in reward and cognition, while CamKIIα-positive neurons, composed mainly of glutamatergic and some dopaminergic neurons, participate in the reward learning and locomotor activity behaviors. The differences in brain-wide functional and structural networks between these two neuronal subtypes were comparatively elucidated. METHODS In this study, we applied a method combining Designer Receptors Exclusively Activated by Designer Drugs (DREADD) and fMRI to assess the cell type-specific modulation of whole-brain neural networks. rAAV encoding the cre-dependent hM3D was injected into the right VTA of DAT-cre or CamKIIα-cre transgenic rats. The global brain activities elicited by DREADD stimulation were then detected using BOLD-fMRI. Furthermore, the cre-dependent antegrade transsynaptic viral tracer H129ΔTK-TT was applied to label the outputs of VTA neurons. RESULTS We found that DREADD stimulation of dopaminergic neurons induced significant BOLD signal changes in the VTA and several VTA-related regions including mPFC, Cg and Septum. More regions responded to selective activation of VTA CamKIIα-positive neurons, resulting in increased BOLD signals in VTA, Insula, mPFC, MC_R (Right), Cg, Septum, Hipp, TH_R, PtA_R, and ViC_R. Along with DREADD-BOLD analysis, further neuronal tracing identified multiple cortical (MC, mPFC) and subcortical (Hipp, TH) brain regions that are structurally and functionally connected by VTA dopaminergic and CamKIIα-positive neurons. CONCLUSIONS Our study dissects brain-wide structural and functional networks of two neuronal subtypes in VTA and advances our understanding of VTA functions.
Collapse
Affiliation(s)
- Ning Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, People's Republic of China
| | - Zhu Gui
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yang Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huadong Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Aoling Cai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, People's Republic of China
| | - Jinfeng Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, People's Republic of China
| | - Xihai Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People's Republic of China
| | - Challika Kaewborisuth
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Zhijian Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qitian Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, People's Republic of China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex, TW8 9GA, UK
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, People's Republic of China.
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Mody PH, Marvin KN, Hynds DL, Hanson LK. Cytomegalovirus infection induces Alzheimer's disease-associated alterations in tau. J Neurovirol 2023; 29:400-415. [PMID: 37436577 DOI: 10.1007/s13365-022-01109-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 07/13/2023]
Abstract
Alzheimer's disease (AD) manifests with loss of neurons correlated with intercellular deposition of amyloid (amyloid plaques) and intracellular neurofibrillary tangles of hyperphosphorylated tau. However, targeting AD hallmarks has not as yet led to development of an effective treatment despite numerous clinical trials. A better understanding of the early stages of neurodegeneration may lead to development of more effective treatments. One underexplored area is the clinical correlation between infection with herpesviruses and increased risk of AD. We hypothesized that similar to work performed with herpes simplex virus 1 (HSV1), infection with the cytomegalovirus (CMV) herpesvirus increases levels and phosphorylation of tau, similar to AD tauopathy. We used murine CMV (MCMV) to infect mouse fibroblasts and rat neuronal cells to test our hypothesis. MCMV infection increased steady-state levels of primarily high molecular weight forms of tau and altered the patterns of tau phosphorylation. Both changes required viral late gene products. Glycogen synthase kinase 3 beta (GSK3β) was upregulated in the HSVI model, but inhibition with lithium chloride suggested that this enzyme is unlikely to be involved in MCMV infection mediated tau phosphorylation. Thus, we confirm that MCMV, a beta herpes virus, like alpha herpes viruses (e.g., HSV1), can promote tau pathology. This suggests that CMV infection can be useful as another model system to study mechanisms leading to neurodegeneration. Since MCMV infects both mice and rats as permissive hosts, our findings from tissue culture can likely be applied to a variety of AD models to study development of abnormal tau pathology.
Collapse
Affiliation(s)
- Prapti H Mody
- Division of Biology, Texas Woman's University, 304 Administration Drive, Denton, TX, 76204, USA
- Current affiliation: University of Texas Southwestern Medical Center, Dallas, USA
| | - Kelsey N Marvin
- Division of Biology, Texas Woman's University, 304 Administration Drive, Denton, TX, 76204, USA
| | - DiAnna L Hynds
- Division of Biology, Texas Woman's University, 304 Administration Drive, Denton, TX, 76204, USA
| | - Laura K Hanson
- Division of Biology, Texas Woman's University, 304 Administration Drive, Denton, TX, 76204, USA.
| |
Collapse
|
5
|
Abbate C. The Adult Neurogenesis Theory of Alzheimer's Disease. J Alzheimers Dis 2023:JAD221279. [PMID: 37182879 DOI: 10.3233/jad-221279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Alzheimer's disease starts in neural stem cells (NSCs) in the niches of adult neurogenesis. All primary factors responsible for pathological tau hyperphosphorylation are inherent to adult neurogenesis and migration. However, when amyloid pathology is present, it strongly amplifies tau pathogenesis. Indeed, the progressive accumulation of extracellular amyloid-β deposits in the brain triggers a state of chronic inflammation by microglia. Microglial activation has a significant pro-neurogenic effect that fosters the process of adult neurogenesis and supports neuronal migration. Unfortunately, this "reactive" pro-neurogenic activity ultimately perturbs homeostatic equilibrium in the niches of adult neurogenesis by amplifying tau pathogenesis in AD. This scenario involves NSCs in the subgranular zone of the hippocampal dentate gyrus in late-onset AD (LOAD) and NSCs in the ventricular-subventricular zone along the lateral ventricles in early-onset AD (EOAD), including familial AD (FAD). Neuroblasts carrying the initial seed of tau pathology travel throughout the brain via neuronal migration driven by complex signals and convey the disease from the niches of adult neurogenesis to near (LOAD) or distant (EOAD) brain regions. In these locations, or in close proximity, a focus of degeneration begins to develop. Then, tau pathology spreads from the initial foci to large neuronal networks along neural connections through neuron-to-neuron transmission.
Collapse
Affiliation(s)
- Carlo Abbate
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| |
Collapse
|
6
|
Lamoureux L, Sajesh B, Slota JA, Medina SJ, Mayor M, Frost KL, Warner B, Manguiat K, Wood H, Kobasa D, Booth SA. Non-Productive Infection of Glial Cells with SARS-CoV-2 in Hamster Organotypic Cerebellar Slice Cultures. Viruses 2022; 14:1218. [PMID: 35746689 PMCID: PMC9227386 DOI: 10.3390/v14061218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
The numerous neurological syndromes associated with COVID-19 implicate an effect of viral pathogenesis on neuronal function, yet reports of direct SARS-CoV-2 infection in the brain are conflicting. We used a well-established organotypic brain slice culture to determine the permissivity of hamster brain tissues to SARS-CoV-2 infection. We found levels of live virus waned after inoculation and observed no evidence of cell-to-cell spread, indicating that SARS-CoV-2 infection was non-productive. Nonetheless, we identified a small number of infected cells with glial phenotypes; however, no evidence of viral infection or replication was observed in neurons. Our data corroborate several clinical studies that have assessed patients with COVID-19 and their association with neurological involvement.
Collapse
Affiliation(s)
- Lise Lamoureux
- One Health Division, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada; (L.L.); (B.S.); (J.A.S.); (S.J.M.); (M.M.); (K.L.F.); (K.M.); (H.W.)
| | - Babu Sajesh
- One Health Division, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada; (L.L.); (B.S.); (J.A.S.); (S.J.M.); (M.M.); (K.L.F.); (K.M.); (H.W.)
| | - Jessy A. Slota
- One Health Division, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada; (L.L.); (B.S.); (J.A.S.); (S.J.M.); (M.M.); (K.L.F.); (K.M.); (H.W.)
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, 730 William Ave., Winnipeg, MB R3E 0W3, Canada;
| | - Sarah J. Medina
- One Health Division, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada; (L.L.); (B.S.); (J.A.S.); (S.J.M.); (M.M.); (K.L.F.); (K.M.); (H.W.)
| | - Matthew Mayor
- One Health Division, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada; (L.L.); (B.S.); (J.A.S.); (S.J.M.); (M.M.); (K.L.F.); (K.M.); (H.W.)
| | - Kathy L. Frost
- One Health Division, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada; (L.L.); (B.S.); (J.A.S.); (S.J.M.); (M.M.); (K.L.F.); (K.M.); (H.W.)
| | - Bryce Warner
- Special Pathogens, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada;
| | - Kathy Manguiat
- One Health Division, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada; (L.L.); (B.S.); (J.A.S.); (S.J.M.); (M.M.); (K.L.F.); (K.M.); (H.W.)
| | - Heidi Wood
- One Health Division, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada; (L.L.); (B.S.); (J.A.S.); (S.J.M.); (M.M.); (K.L.F.); (K.M.); (H.W.)
| | - Darwyn Kobasa
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, 730 William Ave., Winnipeg, MB R3E 0W3, Canada;
- Special Pathogens, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada;
| | - Stephanie A. Booth
- One Health Division, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada; (L.L.); (B.S.); (J.A.S.); (S.J.M.); (M.M.); (K.L.F.); (K.M.); (H.W.)
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, 730 William Ave., Winnipeg, MB R3E 0W3, Canada;
| |
Collapse
|
7
|
Cerebrospinal Fluid Extracellular Vesicles with Distinct Properties in Autoimmune Encephalitis and Herpes Simplex Encephalitis. Mol Neurobiol 2022; 59:2441-2455. [PMID: 35083659 PMCID: PMC9016041 DOI: 10.1007/s12035-021-02705-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Encephalitis mediated by autoantibodies against neuronal antigens and herpes simplex encephalitis (HSE) are seemingly separate causes of encephalopathy in adults. Autoimmune encephalitis (AE) is autoimmune in origin, and herpes simplex encephalitis is infectious. The purpose of this study was to examine the role of cerebrospinal fluid (CSF) exosomes from patients with antibody-positive AE and HSE. Towards this, exosomes were isolated from CSF from 13 patients with anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis, 11 patients with anti-gamma-aminobutyric acid-B (GABAB) receptor encephalitis, 9 patients with anti-leucine-rich glioma-inactivated 1 (LGI1) encephalitis, and 8 patients with anti-contactin-associated protein-like 2 (CASPR2) encephalitis, and 12 control individuals negative of antibodies against neuronal autoantigens. There were ten miRNAs highly expressed in patients with anti-NMDAR encephalitis compared to those in control subjects. Eight miRNAs were found to be lower expressed in anti-NMDAR encephalitis CSF-derived exosomes. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched by AE differential expressed exosomic miRNAs demonstrated that AE-related exosomic miRNAs may participate as a feedback regulation in cancer development. In addition, the exosome concentration in CSF of 9 HSE patients was significantly higher compared to those from 9 HSV( −) patients. This observation was consistent with the results that exosome concentration was found to be higher in the animal model which was inoculated intranasally with HSV-1 compared to controls. Furthermore, western blot demonstrated that the subunits of NMDAR, GABABR, and AMPAR were detected highly expressed in exosomes derived from sera of HSV-1-treated animal model compared to controls. More importantly, exosomes isolated from CSF of HSE patients contained higher expression levels of two miRNAs encoded by HSV, miR-H2-3p, and miR-H4-3p compared to those from HSV( −) patients. In summary, HSV may trigger brain autoimmunity in HSE by presentation of surface autoantigens via exosomes.
Collapse
|
8
|
Mielcarska MB, Skowrońska K, Wyżewski Z, Toka FN. Disrupting Neurons and Glial Cells Oneness in the Brain-The Possible Causal Role of Herpes Simplex Virus Type 1 (HSV-1) in Alzheimer's Disease. Int J Mol Sci 2021; 23:ijms23010242. [PMID: 35008671 PMCID: PMC8745046 DOI: 10.3390/ijms23010242] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Current data strongly suggest herpes simplex virus type 1 (HSV-1) infection in the brain as a contributing factor to Alzheimer's disease (AD). The consequences of HSV-1 brain infection are multilateral, not only are neurons and glial cells damaged, but modifications also occur in their environment, preventing the transmission of signals and fulfillment of homeostatic and immune functions, which can greatly contribute to the development of disease. In this review, we discuss the pathological alterations in the central nervous system (CNS) cells that occur, following HSV-1 infection. We describe the changes in neurons, astrocytes, microglia, and oligodendrocytes related to the production of inflammatory factors, transition of glial cells into a reactive state, oxidative damage, Aβ secretion, tau hyperphosphorylation, apoptosis, and autophagy. Further, HSV-1 infection can affect processes observed during brain aging, and advanced age favors HSV-1 reactivation as well as the entry of the virus into the brain. The host activates pattern recognition receptors (PRRs) for an effective antiviral response during HSV-1 brain infection, which primarily engages type I interferons (IFNs). Future studies regarding the influence of innate immune deficits on AD development, as well as supporting the neuroprotective properties of glial cells, would reveal valuable information on how to harness cytotoxic inflammatory milieu to counter AD initiation and progression.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-59-36063
| | - Katarzyna Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Adolfa Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
| | - Felix Ngosa Toka
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland;
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre 42123, Saint Kitts and Nevis
| |
Collapse
|
9
|
Yong SJ, Yong MH, Teoh SL, Soga T, Parhar I, Chew J, Lim WL. The Hippocampal Vulnerability to Herpes Simplex Virus Type I Infection: Relevance to Alzheimer's Disease and Memory Impairment. Front Cell Neurosci 2021; 15:695738. [PMID: 34483839 PMCID: PMC8414573 DOI: 10.3389/fncel.2021.695738] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) as a possible infectious etiology in Alzheimer’s disease (AD) has been proposed since the 1980s. The accumulating research thus far continues to support the association and a possible causal role of HSV-1 in the development of AD. HSV-1 has been shown to induce neuropathological and behavioral changes of AD, such as amyloid-beta accumulation, tau hyperphosphorylation, as well as memory and learning impairments in experimental settings. However, a neuroanatomical standpoint of HSV-1 tropism in the brain has not been emphasized in detail. In this review, we propose that the hippocampal vulnerability to HSV-1 infection plays a part in the development of AD and amnestic mild cognitive impairment (aMCI). Henceforth, this review draws on human studies to bridge HSV-1 to hippocampal-related brain disorders, namely AD and aMCI/MCI. Next, experimental models and clinical observations supporting the neurotropism or predilection of HSV-1 to infect the hippocampus are examined. Following this, factors and mechanisms predisposing the hippocampus to HSV-1 infection are discussed. In brief, the hippocampus has high levels of viral cellular receptors, neural stem or progenitor cells (NSCs/NPCs), glucocorticoid receptors (GRs) and amyloid precursor protein (APP) that support HSV-1 infectivity, as well as inadequate antiviral immunity against HSV-1. Currently, the established diseases HSV-1 causes are mucocutaneous lesions and encephalitis; however, this review revises that HSV-1 may also induce and/or contribute to hippocampal-related brain disorders, especially AD and aMCI/MCI.
Collapse
Affiliation(s)
- Shin Jie Yong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Min Hooi Yong
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia.,Aging Health and Well-being Research Centre, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health Sciences, Brain Research Institute Monash Sunway, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ishwar Parhar
- Jeffrey Cheah School of Medicine and Health Sciences, Brain Research Institute Monash Sunway, Monash University Malaysia, Subang Jaya, Malaysia
| | - Jactty Chew
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia.,Aging Health and Well-being Research Centre, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| |
Collapse
|
10
|
Slice Culture Modeling of CNS Viral Infection. Methods Mol Biol 2021. [PMID: 34033080 DOI: 10.1007/978-1-0716-1437-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The complexity of the central nervous system (CNS) is not recapitulated in cell culture models. Thin slicing and subsequent culture of CNS tissue has become a valued means to study neuronal and glial biology within the context of the physiologically relevant tissue milieu. Modern membrane-interface slice culturing methodology allows for straightforward access to both CNS tissue and feeding medium, enabling experimental manipulations and analyses that would otherwise be impossible in vivo. CNS slices can be successfully maintained in culture for up to several weeks for investigation of evolving pathology and long-term intervention in models of chronic neurologic disease.Herein, membrane-interface slice culture models for studying viral encephalitis and myelitis are detailed, with emphasis on the use of these models for investigation of pathogenesis and evaluation of novel treatment strategies. We describe techniques to (1) generate brain and spinal cord slices from rodent donors, (2) virally infect slices, (3) monitor viral replication, (4) assess virally induced injury/apoptosis, (5) characterize "CNS-specific" cytokine production, and, (6) treat slices with cytokines/pharmaceuticals. Although our focus is on CNS viral infection, we anticipate that the described methods can be adapted to address a wide range of investigations within the fields of neuropathology, neuroimmunology, and neuropharmacology.
Collapse
|
11
|
Sharma RK, Calderon C, Vivas-Mejia PE. Targeting Non-coding RNA for Glioblastoma Therapy: The Challenge of Overcomes the Blood-Brain Barrier. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:678593. [PMID: 35047931 PMCID: PMC8757885 DOI: 10.3389/fmedt.2021.678593] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant form of all primary brain tumors, and it is responsible for around 200,000 deaths each year worldwide. The standard therapy for GBM treatment includes surgical resection followed by temozolomide-based chemotherapy and/or radiotherapy. With this treatment, the median survival rate of GBM patients is only 15 months after its initial diagnosis. Therefore, novel and better treatment modalities for GBM treatment are urgently needed. Mounting evidence indicates that non-coding RNAs (ncRNAs) have critical roles as regulators of gene expression. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are among the most studied ncRNAs in health and disease. Dysregulation of ncRNAs is observed in virtually all tumor types, including GBMs. Several dysregulated miRNAs and lncRNAs have been identified in GBM cell lines and GBM tumor samples. Some of them have been proposed as diagnostic and prognostic markers, and as targets for GBM treatment. Most ncRNA-based therapies use oligonucleotide RNA molecules which are normally of short life in circulation. Nanoparticles (NPs) have been designed to increase the half-life of oligonucleotide RNAs. An additional challenge faced not only by RNA oligonucleotides but for therapies designed for brain-related conditions, is the presence of the blood-brain barrier (BBB). The BBB is the anatomical barrier that protects the brain from undesirable agents. Although some NPs have been derivatized at their surface to cross the BBB, optimal NPs to deliver oligonucleotide RNA into GBM cells in the brain are currently unavailable. In this review, we describe first the current treatments for GBM therapy. Next, we discuss the most relevant miRNAs and lncRNAs suggested as targets for GBM therapy. Then, we compare the current drug delivery systems (nanocarriers/NPs) for RNA oligonucleotide delivery, the challenges faced to send drugs through the BBB, and the strategies to overcome this barrier. Finally, we categorize the critical points where research should be the focus in order to design optimal NPs for drug delivery into the brain; and thus move the Oligonucleotide RNA-based therapies from the bench to the clinical setting.
Collapse
Affiliation(s)
- Rohit K. Sharma
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, United States
| | - Carlos Calderon
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, United States
| | - Pablo E. Vivas-Mejia
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, United States
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, United States
| |
Collapse
|
12
|
Bocharova O, Pandit NP, Molesworth K, Fisher A, Mychko O, Makarava N, Baskakov IV. Alzheimer's disease-associated β-amyloid does not protect against herpes simplex virus 1 infection in the mouse brain. J Biol Chem 2021; 297:100845. [PMID: 34052228 PMCID: PMC8214219 DOI: 10.1016/j.jbc.2021.100845] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating fatal neurodegenerative disease. An alternative to the amyloid cascade hypothesis is that a viral infection is key to the etiology of late-onset AD, with β-amyloid (Aβ) peptides playing a protective role. In the current study, young 5XFAD mice that overexpress mutant human amyloid precursor protein with the Swedish, Florida, and London familial AD mutations were infected with one of two strains of herpes simplex virus 1 (HSV-1), 17syn+ and McKrae, at three different doses. Contrary to previous work, 5XFAD genotype failed to protect mice against HSV-1 infection. The region- and cell-specific tropisms of HSV-1 were not affected by the 5XFAD genotype, indicating that host–pathogen interactions were not altered. Seven- to ten-month-old 5XFAD animals in which extracellular Aβ aggregates were abundant showed slightly better survival rate relative to their wild-type (WT) littermates, although the difference was not statistically significant. In these 5XFAD mice, HSV-1 replication centers were partially excluded from the brain areas with high densities of Aβ aggregates. Aβ aggregates were free of HSV-1 viral particles, and the limited viral invasion to areas with a high density of Aβ aggregates was attributed to phagocytic activity of reactive microglia. In the oldest mice (12–15 months old), the survival rate did not differ between 5XFAD and WT littermates. While the current study questions the antiviral role of Aβ, it neither supports nor refutes the viral etiology hypothesis of late-onset AD.
Collapse
Affiliation(s)
- Olga Bocharova
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Narayan P Pandit
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kara Molesworth
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aidan Fisher
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Olga Mychko
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
13
|
El-Khayat SM, Arafat WO. Therapeutic strategies of recurrent glioblastoma and its molecular pathways 'Lock up the beast'. Ecancermedicalscience 2021; 15:1176. [PMID: 33680090 PMCID: PMC7929780 DOI: 10.3332/ecancer.2021.1176] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) has a poor prognosis-despite aggressive primary treatment composed of surgery, radiotherapy and chemotherapy, median survival is still around 15 months. It starts to grow again after a year of treatment and eventually nothing is effective at this stage. Recurrent GBM is one of the most disappointing fields for researchers in which their efforts have gained no benefit for patients. They were directed for a long time towards understanding the molecular basis that leads to the development of GBM. It is now known that GBM is a heterogeneous disease and resistance comes mainly from the regrowth of malignant cells after eradicating specific clones by targeted treatment. Epidermal growth factor receptor, platelet derived growth factor receptor, vascular endothelial growth factor receptor are known to be highly active in primary and recurrent GBM through different underlying pathways, despite this bevacizumab is the only Food and Drug Administration (FDA) approved drug for recurrent GBM. Immunotherapy is another important promising modality of treatment of GBM, after proper understanding of the microenvironment of the tumour and overcoming the reasons that historically stigmatise GBM as an 'immunologically cold tumour'. Radiotherapy can augment the effect of immunotherapy by different mechanisms. Also, dual immunotherapy which targets immune pathways at different stages and through different receptors further enhances immune stimulation against GBM. Delivery of pro-drugs to be activated at the tumour site and suicidal genes by gene therapy using different vectors shows promising results. Despite using neurotropic viral vectors specifically targeting glial cells (which are the cells of origin of GBM), no significant improvement of overall-survival has been seen as yet. Non-viral vectors 'polymeric and non-polymeric' show significant tumour shrinkage in pre-clinical trials and now at early-stage clinical trials. To this end, in this review, we aim to study the possible role of different molecular pathways that are involved in GBM's recurrence, we will also review the most relevant and recent clinical experience with targeted treatments and immunotherapies. We will discuss trials utilised tyrosine receptor kinase inhibitors, immunotherapy and gene therapy in recurrent GBM pointing to the causes of potential disappointing preliminary results of some of them. Additionally, we are suggesting a possible future treatment based on recent successful clinical data that could alter the outcome for GBM patients.
Collapse
Affiliation(s)
- Shaimaa M El-Khayat
- Cancer Management and Research Department, Medical Research Institute, Alexandria University, Alexandria 21568, Egypt
| | - Waleed O Arafat
- Alexandria Clinical Oncology Department, Alexandria University, Alexandria 21568, Egypt
| |
Collapse
|
14
|
Toscano ECDB, Sousa LFDC, Lima GK, Mesquita LA, Vilela MC, Rodrigues DH, Ferreira RN, Soriani FM, Campos MA, Kroon EG, Teixeira MM, de Miranda AS, Rachid MA, Teixeira AL. Neuroinflammation is associated with reduced SOCS2 and SOCS3 expression during intracranial HSV-1 infection. Neurosci Lett 2020; 736:135295. [PMID: 32800922 DOI: 10.1016/j.neulet.2020.135295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is the main etiological agent of acute and sporadic encephalitis. Proteins of the suppressor of cytokine signaling (SOCS) family have shown to regulate the inflammation during HSV-1 infection in the brain. However, the effects of SOCS2 and SOCS3 in viral encephalitis remain unclear. The aim of the current study is to investigate the potential association between SOCS2, SOCS3, cytokines, and hippocampal damage, especially neuronal apoptosis, during acute intracranial HSV-1 infection in mice. Male C57BL/6 mice were infected by intracranial route with 102 plaque-forming units (PFU) inoculum of purified HSV-1. At three days post-infection (3 d.p.i.), mice were euthanized and their hippocampi were collected for histopathological analysis, immunohistochemical reaction against active caspase-3 and quantification of SOCS2, SOCS3 and cytokines (tumoral necrosis factor (TNF), interleukin (IL) 1β, IL-6, IL-10; interferon (IFN) -α, IFN-β, IFN-γ) mRNA expression. Infected mice exhibited neuronal loss and hemorrhagic focus in Cornu Ammonis (CA) region. The apoptotic index was higher in infected mice compared to controls. HSV-1 infection was associated with increased hippocampal expression of TNF, IL1-β, IL-6 and IFNα/IFNβ and decreased expression of IL-10, IFN-γ, SOCS2 and SOCS3. Our results suggest that down regulation of SOCS2 and SOCS3 contributes to a pro-inflammatory environment associated with hippocampal damage and neuronal apoptosis during acute HSV-1 infection in mice.
Collapse
Affiliation(s)
| | | | - Graciela Kunrath Lima
- Departamento De Morfologia, Instituto De Ciências Biológicas, Universidade Federal De Minas Gerais, Brazil
| | - Leonardo Antunes Mesquita
- Departamento De Microbiologia, Instituto De Ciências Biológicas, Universidade Federal De Minas Gerais, Brazil
| | | | | | - Rodrigo Novaes Ferreira
- Departamento De Morfologia, Instituto De Ciências Biológicas, Universidade Federal De Minas Gerais, Brazil
| | | | | | - Erna Geessien Kroon
- Departamento De Microbiologia, Instituto De Ciências Biológicas, Universidade Federal De Minas Gerais, Brazil
| | - Mauro Martins Teixeira
- Departamento De Bioquímica e Imunologia, Instituto De Ciências Biológicas, Universidade Federal De Juiz De Fora, Brazil
| | - Aline Silva de Miranda
- Departamento De Morfologia, Instituto De Ciências Biológicas, Universidade Federal De Minas Gerais, Brazil
| | - Milene Alvarenga Rachid
- Departamento De Patologia Geral, Instituto De Ciências Biológicas, Universidade Federal De Minas Gerais, Brazil.
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Texas Health Science Center at Houston, TX, United States
| |
Collapse
|
15
|
Baggiani M, Dell’Anno MT, Pistello M, Conti L, Onorati M. Human Neural Stem Cell Systems to Explore Pathogen-Related Neurodevelopmental and Neurodegenerative Disorders. Cells 2020; 9:E1893. [PMID: 32806773 PMCID: PMC7464299 DOI: 10.3390/cells9081893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/18/2022] Open
Abstract
Building and functioning of the human brain requires the precise orchestration and execution of myriad molecular and cellular processes, across a multitude of cell types and over an extended period of time. Dysregulation of these processes affects structure and function of the brain and can lead to neurodevelopmental, neurological, or psychiatric disorders. Multiple environmental stimuli affect neural stem cells (NSCs) at several levels, thus impairing the normal human neurodevelopmental program. In this review article, we will delineate the main mechanisms of infection adopted by several neurotropic pathogens, and the selective NSC vulnerability. In particular, TORCH agents, i.e., Toxoplasma gondii, others (including Zika virus and Coxsackie virus), Rubella virus, Cytomegalovirus, and Herpes simplex virus, will be considered for their devastating effects on NSC self-renewal with the consequent neural progenitor depletion, the cellular substrate of microcephaly. Moreover, new evidence suggests that some of these agents may also affect the NSC progeny, producing long-term effects in the neuronal lineage. This is evident in the paradigmatic example of the neurodegeneration occurring in Alzheimer's disease.
Collapse
Affiliation(s)
- Matteo Baggiani
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Maria Teresa Dell’Anno
- Cellular Engineering Laboratory, Fondazione Pisana per la Scienza ONLUS, 56017 Pisa, Italy;
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa and Virology Division, Pisa University Hospital, 56100 Pisa, Italy;
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38122 Trento, Italy;
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
16
|
Mody PH, Pathak S, Hanson LK, Spencer JV. Herpes Simplex Virus: A Versatile Tool for Insights Into Evolution, Gene Delivery, and Tumor Immunotherapy. Virology (Auckl) 2020; 11:1178122X20913274. [PMID: 34093008 PMCID: PMC8142529 DOI: 10.1177/1178122x20913274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
Herpesviruses are prevalent throughout the animal kingdom, and they have coexisted and coevolved along with their host species for millions of years. Herpesviruses carry a large (120-230 kb) double-stranded DNA genome surrounded by a protein capsid, a tegument layer consisting of viral and host proteins, and a lipid bilayer envelope with surface glycoproteins. A key characteristic of these viruses is their ability to enter a latent state following primary infection, allowing them to evade the host's immune system and persist permanently. Herpesviruses can reactivate from their dormant state, usually during times of stress or when the host's immune responses are impaired. While herpesviruses can cause complications with severe disease in immune-compromised people, most of the population experiences few ill effects from herpesvirus infections. Indeed, herpes simplex virus 1 (HSV-1) in particular has several features that make it an attractive tool for therapeutic gene delivery. Herpes simplex virus 1 targets and infects specific cell types, such as epithelial cells and neurons. The HSV-1 genome can also accommodate large insertions of up to 14 kb. The HSV-1-based vectors have already achieved success for the oncolytic treatment of melanoma. In addition to serving as a vehicle for therapeutic gene delivery and targeted cell lysis, comparative genomics of herpesviruses HSV-1 and 2 has revealed valuable information about the evolutionary history of both viruses and their hosts. This review focuses on the adaptability of HSV-1 as an instrument for gene delivery and an evolutionary marker. Overall, HSV-1 shows great promise as a tool for treating human disease and studying human migration patterns, disease outbreaks, and evolution.
Collapse
Affiliation(s)
- Prapti H Mody
- Department of Biology, Texas Woman’s University, Denton, TX, USA
| | - Sushila Pathak
- Department of Biology, Texas Woman’s University, Denton, TX, USA
| | - Laura K Hanson
- Department of Biology, Texas Woman’s University, Denton, TX, USA
| | - Juliet V Spencer
- Department of Biology, Texas Woman’s University, Denton, TX, USA
| |
Collapse
|
17
|
Hamdi H, Robin E, Stahl JP, Doche E, Azulay JP, Chabardes S, Bartolomei F, Regis J. Anterior Thalamic Stimulation Induced Relapsing Encephalitis. Stereotact Funct Neurosurg 2019; 97:132-136. [PMID: 31055582 DOI: 10.1159/000499072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/08/2019] [Indexed: 11/19/2022]
Abstract
Deep brain stimulation of the anterior thalamic nucleus is one of the promising therapeutic options for epilepsy. Several studies are still under way to further strengthen and clarify the mechanism, efficacy, and complications. Contrary to hardware-related and operation-related events, the stimulation-related adverse effect is mild, target-dependent, and adjustable. We present a case of relapsing herpes simplex encephalitis (HSE) as a newly reported and potentially fatal stimulation-related adverse effect following stimulation of the anterior thalamic nucleus (ANT-DBS) accompanied by fever, confusion, and cognitive impairment in a 32-year-old epileptic patient with a history of herpes meningoencephalitis 31 years earlier. The T2-weighted/FLAIR high-signal intensity in the temporal lobe developed at a "distance" from the stimulation target. The positive polymerase chain reaction of herpes virus deoxyribonucleic acid in the cerebrospinal fluid confirmed the diagnosis. The condition improved partially on acyclovir and stimulation stopped. Seizures disappeared and then returned after few months. The unique case report presents a rationale for considering history of herpes encephalitis as a relative contraindication for ANT-DBS, and HSE relapse should be suspected in patients with post-stimulation fever and/or altered consciousness.
Collapse
Affiliation(s)
- Hussein Hamdi
- Service de Neurochirurgie Fonctionnelle et Stéréotaxique, INSERM, UMR 1106, Hôpital d'adulte de la Timone, Aix-Marseille Université, Marseille, France, .,Functional Neurosurgery and Stereotaxy Unit, Neurological Surgery Department, Tanta University, Tanta, Egypt,
| | - Elsa Robin
- Service de Neurologie et pathologie du mouvement, Hôpital d'adulte de la Timone, Aix-Marseille Université, Marseille, France
| | - Jean-Paul Stahl
- Service de Maladies infectieuses et tropicales, Centre Hospitalier Universitaire Grenoble, Grenoble, France
| | - Emilie Doche
- Service de Neurologie et Unité Neurovasculaire, Hôpital d'adulte de la Timone, Aix-Marseille Université, Marseille, France
| | - Jean-Philippe Azulay
- Service de Neurologie et pathologie du mouvement, Hôpital d'adulte de la Timone, Aix-Marseille Université, Marseille, France
| | - Stephan Chabardes
- Service de Neurochirurgie, INSERM, U836, Centre Hospitalier Universitaire Grenoble, Grenoble, France
| | - Fabrice Bartolomei
- Service de Neurophysiologie Clinique, INSERM, UMR 1106, Hôpital d'adulte de la Timone, Aix-Marseille Université, Marseille, France
| | - Jean Regis
- Service de Neurochirurgie Fonctionnelle et Stéréotaxique, INSERM, UMR 1106, Hôpital d'adulte de la Timone, Aix-Marseille Université, Marseille, France
| |
Collapse
|
18
|
Linnoila J, Pulli B, Armangué T, Planagumà J, Narsimhan R, Schob S, Zeller MWG, Dalmau J, Chen J. Mouse model of anti-NMDA receptor post-herpes simplex encephalitis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e529. [PMID: 30697582 PMCID: PMC6340334 DOI: 10.1212/nxi.0000000000000529] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/16/2018] [Indexed: 11/17/2022]
Abstract
Objective To develop an endogenous rodent model of postinfectious anti-NMDA receptor (NMDAR) encephalitis. Methods Six mice were inoculated intranasally with herpes simplex virus (HSV) 1 and subsequently treated with acyclovir for 2 weeks. Serum was collected at 3, 6, and 8 weeks postinoculation and tested for NMDAR antibodies through a cell-based assay. Eight weeks postinoculation, mice were killed and their brains were sectioned and immunostained with antibodies to postsynaptic density (PSD)-95 and NMDARs. Colocalization of hippocampal PSD-95 and NMDAR clusters, representing postsynaptic membrane NMDARs, was quantified via confocal imaging. Hippocampi were additionally analyzed for NMDAR and PSD-95 protein using Western blot analysis. Results Four of 6 mice (67%) developed serum antibodies to NMDARs: 1 at 3 weeks, 1 at 6 weeks, and 2 at 8 weeks postinoculation. As compared to inoculated mice that did not develop NMDAR antibodies, immunofluorescence staining revealed decreased hippocampal postsynaptic membrane NMDARs in mice with serum antibodies at 8 weeks postinoculation. Western blot analysis showed that mice that had NMDAR antibodies at 8 weeks had decreased total NMDAR but not PSD-95 protein in hippocampal extracts (p < 0.05). Conclusions Mice inoculated intranasally with HSV-1 developed serum NMDAR antibodies. These antibodies were associated with reduced hippocampal NMDARs, as has been shown in previous models where antibodies from patients with anti-NMDAR encephalitis were infused into mice, paving the way for future studies into the pathophysiology of autoimmune encephalitides.
Collapse
Affiliation(s)
- Jenny Linnoila
- Center for Systems Biology (CSB), Department of Neurology (J.L., R.N.), Massachusetts General Hospital (MGH); CSB, Department of Radiology (B.P., S.S., M.Z.), MGH, Boston; Neuroimmunology Program (T.A.), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Neuroimmunology Program (J.P., J.D.), IDIBAPS, Barcelona, Spain; Department of Neurology (J.D.), University of Pennsylvania, PA; Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain; and Institute for Innovation in Imaging (J.C.), Department of Radiology, MGH, Boston
| | - Benjamin Pulli
- Center for Systems Biology (CSB), Department of Neurology (J.L., R.N.), Massachusetts General Hospital (MGH); CSB, Department of Radiology (B.P., S.S., M.Z.), MGH, Boston; Neuroimmunology Program (T.A.), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Neuroimmunology Program (J.P., J.D.), IDIBAPS, Barcelona, Spain; Department of Neurology (J.D.), University of Pennsylvania, PA; Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain; and Institute for Innovation in Imaging (J.C.), Department of Radiology, MGH, Boston
| | - Thaís Armangué
- Center for Systems Biology (CSB), Department of Neurology (J.L., R.N.), Massachusetts General Hospital (MGH); CSB, Department of Radiology (B.P., S.S., M.Z.), MGH, Boston; Neuroimmunology Program (T.A.), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Neuroimmunology Program (J.P., J.D.), IDIBAPS, Barcelona, Spain; Department of Neurology (J.D.), University of Pennsylvania, PA; Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain; and Institute for Innovation in Imaging (J.C.), Department of Radiology, MGH, Boston
| | - Jesús Planagumà
- Center for Systems Biology (CSB), Department of Neurology (J.L., R.N.), Massachusetts General Hospital (MGH); CSB, Department of Radiology (B.P., S.S., M.Z.), MGH, Boston; Neuroimmunology Program (T.A.), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Neuroimmunology Program (J.P., J.D.), IDIBAPS, Barcelona, Spain; Department of Neurology (J.D.), University of Pennsylvania, PA; Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain; and Institute for Innovation in Imaging (J.C.), Department of Radiology, MGH, Boston
| | - Radha Narsimhan
- Center for Systems Biology (CSB), Department of Neurology (J.L., R.N.), Massachusetts General Hospital (MGH); CSB, Department of Radiology (B.P., S.S., M.Z.), MGH, Boston; Neuroimmunology Program (T.A.), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Neuroimmunology Program (J.P., J.D.), IDIBAPS, Barcelona, Spain; Department of Neurology (J.D.), University of Pennsylvania, PA; Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain; and Institute for Innovation in Imaging (J.C.), Department of Radiology, MGH, Boston
| | - Stefan Schob
- Center for Systems Biology (CSB), Department of Neurology (J.L., R.N.), Massachusetts General Hospital (MGH); CSB, Department of Radiology (B.P., S.S., M.Z.), MGH, Boston; Neuroimmunology Program (T.A.), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Neuroimmunology Program (J.P., J.D.), IDIBAPS, Barcelona, Spain; Department of Neurology (J.D.), University of Pennsylvania, PA; Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain; and Institute for Innovation in Imaging (J.C.), Department of Radiology, MGH, Boston
| | - Matthias W G Zeller
- Center for Systems Biology (CSB), Department of Neurology (J.L., R.N.), Massachusetts General Hospital (MGH); CSB, Department of Radiology (B.P., S.S., M.Z.), MGH, Boston; Neuroimmunology Program (T.A.), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Neuroimmunology Program (J.P., J.D.), IDIBAPS, Barcelona, Spain; Department of Neurology (J.D.), University of Pennsylvania, PA; Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain; and Institute for Innovation in Imaging (J.C.), Department of Radiology, MGH, Boston
| | - Josep Dalmau
- Center for Systems Biology (CSB), Department of Neurology (J.L., R.N.), Massachusetts General Hospital (MGH); CSB, Department of Radiology (B.P., S.S., M.Z.), MGH, Boston; Neuroimmunology Program (T.A.), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Neuroimmunology Program (J.P., J.D.), IDIBAPS, Barcelona, Spain; Department of Neurology (J.D.), University of Pennsylvania, PA; Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain; and Institute for Innovation in Imaging (J.C.), Department of Radiology, MGH, Boston
| | - John Chen
- Center for Systems Biology (CSB), Department of Neurology (J.L., R.N.), Massachusetts General Hospital (MGH); CSB, Department of Radiology (B.P., S.S., M.Z.), MGH, Boston; Neuroimmunology Program (T.A.), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Neuroimmunology Program (J.P., J.D.), IDIBAPS, Barcelona, Spain; Department of Neurology (J.D.), University of Pennsylvania, PA; Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain; and Institute for Innovation in Imaging (J.C.), Department of Radiology, MGH, Boston
| |
Collapse
|
19
|
Caffery B, Lee JS, Alexander-Bryant AA. Vectors for Glioblastoma Gene Therapy: Viral & Non-Viral Delivery Strategies. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E105. [PMID: 30654536 PMCID: PMC6359729 DOI: 10.3390/nano9010105] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme is the most common and aggressive primary brain tumor. Even with aggressive treatment including surgical resection, radiation, and chemotherapy, patient outcomes remain poor, with five-year survival rates at only 10%. Barriers to treatment include inefficient drug delivery across the blood brain barrier and development of drug resistance. Because gliomas occur due to sequential acquisition of genetic alterations, gene therapy represents a promising alternative to overcome limitations of conventional therapy. Gene or nucleic acid carriers must be used to deliver these therapies successfully into tumor tissue and have been extensively studied. Viral vectors have been evaluated in clinical trials for glioblastoma gene therapy but have not achieved FDA approval due to issues with viral delivery, inefficient tumor penetration, and limited efficacy. Non-viral vectors have been explored for delivery of glioma gene therapy and have shown promise as gene vectors for glioma treatment in preclinical studies and a few non-polymeric vectors have entered clinical trials. In this review, delivery systems including viral, non-polymeric, and polymeric vectors that have been used in glioblastoma multiforme (GBM) gene therapy are discussed. Additionally, advances in glioblastoma gene therapy using viral and non-polymeric vectors in clinical trials and emerging polymeric vectors for glioma gene therapy are discussed.
Collapse
Affiliation(s)
- Breanne Caffery
- Drug Design, Development, and Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA.
| | - Jeoung Soo Lee
- Drug Design, Development, and Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA.
| | - Angela A Alexander-Bryant
- Drug Design, Development, and Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA.
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
20
|
Welsch JC, Lionnet C, Terzian C, Horvat B, Gerlier D, Mathieu C. Organotypic Brain Cultures: A Framework for Studying CNS Infection by Neurotropic Viruses and Screening Antiviral Drugs. Bio Protoc 2017; 7:e2605. [PMID: 34595280 DOI: 10.21769/bioprotoc.2605] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 01/23/2023] Open
Abstract
According to the World Health Organization (WHO), at least 50% of emerging viruses endowed with pathogenicity in humans can infect the Central Nervous System (CNS) with induction of encephalitis and other neurologic diseases ( Taylor et al., 2001 ; Olival and Daszak, 2005). While neurological diseases are progressively documented, the underlying cellular and molecular mechanisms involved in virus infection and dissemination within the CNS are still poorly understood (Swanson and McGavern, 2015; Ludlow et al., 2016 ). For example, measles virus (MeV) can infect neural cells, and cause a persistent brain infections leading to lethal encephalitis from several months to years after primary infection with no available treatment (Reuter and Schneider-Schaulies, 2010; Laksono et al., 2016 ). The Organotypic Brain Culture (OBC) is a suitable model for the virology field to better understand the CNS infections. Indeed, it allows not only studying the infection and the dissemination of neurotropic viruses within the CNS but it could also serve as screening model of innovative antiviral strategies or molecules, such as our recently published studies about fusion inhibitory peptides and the HSP90 chaperone activity inhibitor, 17-DMAG ( Welsch et al., 2013 ; Bloyet et al., 2016 ). Based on our previous work, we propose here an optimized method to prepare OBC of hippocampi and cerebellums which are suitable for small rodent models based virus studies, including mice, rats as well as hamsters at a post-natal stage, between P6 to P10. We notably took into account the stress of the slice procedure on the tissue and the subsequent cellular reactions, which is essential to fully characterize the model prior to any use in infectious conditions. With this knowledge, we propose a protocol highlighting the requirements, including potential trouble shootings of the slicing parameters, to consider the variations we observed according to the structure and animal studied. This framework should facilitate the use of OBC for better conclusive studies of neurotropic viruses.
Collapse
Affiliation(s)
- Jeremy Charles Welsch
- CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Université de Lyon, LYON, France.,LabEx Ecofect, Université de Lyon, Lyon, France
| | - Claire Lionnet
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, Lyon, France.,Lyon Bio-Image, Plateau Technique d'Imagerie/Microscopie (PLATIM), UMS3444/US8 BioSciences Gerland-Lyon Sud, ENS de Lyon, Lyon, France
| | - Christophe Terzian
- Retrovirus and Comparative Pathology, Institut National de la Recherche Agronomique, Université de Lyon, Unité Mixte de Recherche 754, Unité Mixte de Service 3444, Lyon, France.,École Pratique des Hautes Etudes, Paris, France
| | - Branka Horvat
- CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Université de Lyon, LYON, France.,LabEx Ecofect, Université de Lyon, Lyon, France
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Université de Lyon, LYON, France.,LabEx Ecofect, Université de Lyon, Lyon, France
| | - Cyrille Mathieu
- CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Université de Lyon, LYON, France.,LabEx Ecofect, Université de Lyon, Lyon, France
| |
Collapse
|
21
|
Devakumar D, Bamford A, Ferreira MU, Broad J, Rosch RE, Groce N, Breuer J, Cardoso MA, Copp AJ, Alexandre P, Rodrigues LC, Abubakar I. Infectious causes of microcephaly: epidemiology, pathogenesis, diagnosis, and management. THE LANCET. INFECTIOUS DISEASES 2017; 18:e1-e13. [PMID: 28844634 DOI: 10.1016/s1473-3099(17)30398-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 06/02/2017] [Accepted: 06/15/2017] [Indexed: 01/08/2023]
Abstract
Microcephaly is an important sign of neurological malformation and a predictor of future disability. The 2015-16 outbreak of Zika virus and congenital Zika infection brought the world's attention to links between Zika infection and microcephaly. However, Zika virus is only one of the infectious causes of microcephaly and, although the contexts in which they occur vary greatly, all are of concern. In this Review, we summarise important aspects of major congenital infections that can cause microcephaly, and describe the epidemiology, transmission, clinical features, pathogenesis, management, and long-term consequences of these infections. We include infections that cause substantial impairment: cytomegalovirus, herpes simplex virus, rubella virus, Toxoplasma gondii, and Zika virus. We highlight potential issues with classification of microcephaly and show how some infants affected by congenital infection might be missed or incorrectly diagnosed. Although Zika virus has brought the attention of the world to the problem of microcephaly, prevention of all infectious causes of microcephaly and appropriately managing its consequences remain important global public health priorities.
Collapse
Affiliation(s)
- Delan Devakumar
- Institute for Global Health, University College London, London, UK.
| | - Alasdair Bamford
- Infectious Diseases Department, Great Ormond Street Hospital, London, UK; Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Marcelo U Ferreira
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jonathan Broad
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Richard E Rosch
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Nora Groce
- Leonard Cheshire Disability and Inclusive Development Centre, University College London, London, UK
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK
| | - Marly A Cardoso
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Andrew J Copp
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paula Alexandre
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Laura C Rodrigues
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Ibrahim Abubakar
- Institute for Global Health, University College London, London, UK
| |
Collapse
|
22
|
D'Aiuto L, Williamson K, Dimitrion P, McNulty J, Brown CE, Dokuburra CB, Nielsen AJ, Lin WJ, Piazza P, Schurdak ME, Wood J, Yolken RH, Kinchington PR, Bloom DC, Nimgaonkar VL. Comparison of three cell-based drug screening platforms for HSV-1 infection. Antiviral Res 2017; 142:136-140. [PMID: 28342892 DOI: 10.1016/j.antiviral.2017.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Acyclovir (ACV) and its derivatives have been highly effective for treating recurrent, lytic infections with Herpes Simplex Virus, type 1 (HSV-1), but searches for additional antiviral drugs are motivated by recent reports of resistance to ACV, particularly among immunocompromised patients. In addition, the relative neurotoxicity of ACV and its inability to prevent neurological sequelae among HSV-1 encephalitis survivors compel searches for new drugs to treat HSV-1 infections of the central nervous system (CNS). Primary drug screens for neurotropic viruses like HSV-1 typically utilize non-neuronal cell lines, but they may miss drugs that have neuron specific antiviral effects. Therefore, we compared the effects of a panel of conventional and novel anti-herpetic compounds in monkey epithelial (Vero) cells, human induced pluripotent stem cells (hiPSCs)-derived neural progenitor cells (NPCs) and hiPSC-derived neurons (N = 73 drugs). While the profiles of activity for the majority of the drugs were similar in all three tissues, Vero cells were less likely than NPCs to identify drugs with substantial inhibitory activity in hiPSC-derived neurons. We discuss the relative merits of each cell type for antiviral drug screens against neuronal infections with HSV-1.
Collapse
Affiliation(s)
- Leonardo D'Aiuto
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Kelly Williamson
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter Dimitrion
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Chemistry and Departments of Biological Sciences, University of Pittsburgh, PA, USA
| | - James McNulty
- Department of Chemistry and Chemical-Biology, McMaster University, Canada
| | - Carla E Brown
- Department of Chemistry and Chemical-Biology, McMaster University, Canada
| | | | | | - Wen Jing Lin
- Department of Chemistry and Chemical-Biology, McMaster University, Canada
| | - Paolo Piazza
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, USA
| | - Mark E Schurdak
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joel Wood
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert H Yolken
- Division of Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Molecular Genetics & Biochemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - David C Bloom
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, USA
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, USA
| |
Collapse
|
23
|
Menendez CM, Carr DJJ. Defining nervous system susceptibility during acute and latent herpes simplex virus-1 infection. J Neuroimmunol 2017; 308:43-49. [PMID: 28302316 DOI: 10.1016/j.jneuroim.2017.02.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
Herpes simplex viruses are neurotropic human pathogens that infect and establish latency in peripheral sensory neurons of the host. Herpes Simplex Virus-1 (HSV-1) readily infects the facial mucosa that can result in the establishment of a latent infection in the sensory neurons of the trigeminal ganglia (TG). From latency, HSV-1 can reactivate and cause peripheral pathology following anterograde trafficking from sensory neurons. Under rare circumstances, HSV-1 can migrate into the central nervous system (CNS) and cause Herpes Simplex Encephalitis (HSE), a devastating disease of the CNS. It is unclear whether HSE is the result of viral reactivation within the TG, from direct primary infection of the olfactory mucosa, or from other infected CNS neurons. Areas of the brain that are susceptible to HSV-1 during acute infection are ill-defined. Furthermore, whether the CNS is a true reservoir of viral latency following clearance of virus during acute infection is unknown. In this context, this review will identify sites within the brain that are susceptible to acute infection and harbor latent virus. In addition, we will also address findings of HSV-1 lytic gene expression during latency and comment on the pathophysiological consequences HSV-1 infection may have on long-term neurologic performance in animal models and humans.
Collapse
Affiliation(s)
- Chandra M Menendez
- Department of Microbiology, Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Daniel J J Carr
- Department of Microbiology, Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. USA.
| |
Collapse
|
24
|
Kulkarni A, Ganesan P, O'Donnell LA. Interferon Gamma: Influence on Neural Stem Cell Function in Neurodegenerative and Neuroinflammatory Disease. Clin Med Insights Pathol 2016; 9:9-19. [PMID: 27774000 PMCID: PMC5065109 DOI: 10.4137/cpath.s40497] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 01/05/2023] Open
Abstract
Interferon-gamma (IFNγ), a pleiotropic cytokine, is expressed in diverse neurodegenerative and neuroinflammatory conditions. Its protective mechanisms are well documented during viral infections in the brain, where IFNγ mediates non-cytolytic viral control in infected neurons. However, IFNγ also plays both protective and pathological roles in other central nervous system (CNS) diseases. Of the many neural cells that respond to IFNγ, neural stem/progenitor cells (NSPCs), the only pluripotent cells in the developing and adult brain, are often altered during CNS insults. Recent studies highlight the complex effects of IFNγ on NSPC activity in neurodegenerative diseases. However, the mechanisms that mediate these effects, and the eventual outcomes for the host, are still being explored. Here, we review the effects of IFNγ on NSPC activity during different pathological insults. An improved understanding of the role of IFNγ would provide insight into the impact of immune responses on the progression and resolution of neurodegenerative diseases.
Collapse
Affiliation(s)
- Apurva Kulkarni
- Mylan School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Priya Ganesan
- Mylan School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Lauren A O'Donnell
- Mylan School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Menendez CM, Jinkins JK, Carr DJJ. Resident T Cells Are Unable To Control Herpes Simplex Virus-1 Activity in the Brain Ependymal Region during Latency. THE JOURNAL OF IMMUNOLOGY 2016; 197:1262-75. [PMID: 27357149 DOI: 10.4049/jimmunol.1600207] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/07/2016] [Indexed: 02/05/2023]
Abstract
HSV type 1 (HSV-1) is one of the leading etiologies of sporadic viral encephalitis. Early antiviral intervention is crucial to the survival of herpes simplex encephalitis patients; however, many survivors suffer from long-term neurologic deficits. It is currently understood that HSV-1 establishes a latent infection within sensory peripheral neurons throughout the life of the host. However, the tissue residence of latent virus, other than in sensory neurons, and the potential pathogenic consequences of latency remain enigmatic. In the current study, we characterized the lytic and latent infection of HSV-1 in the CNS in comparison with the peripheral nervous system following ocular infection in mice. We used RT-PCR to detect latency-associated transcripts and HSV-1 lytic cycle genes within the brain stem, the ependyma (EP), containing the limbic and cortical areas, which also harbor neural progenitor cells, in comparison with the trigeminal ganglia. Unexpectedly, HSV-1 lytic genes, usually identified during acute infection, are uniquely expressed in the EP 60 d postinfection when animals are no longer suffering from encephalitis. An inflammatory response was also mounted in the EP by the maintenance of resident memory T cells. However, EP T cells were incapable of controlling HSV-1 infection ex vivo and secreted less IFN-γ, which correlated with expression of a variety of exhaustion-related inhibitory markers. Collectively, our data suggest that the persistent viral lytic gene expression during latency is the cause of the chronic inflammatory response leading to the exhaustion of the resident T cells in the EP.
Collapse
Affiliation(s)
- Chandra M Menendez
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Jeremy K Jinkins
- Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Daniel J J Carr
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
26
|
Tsalenchuck Y, Steiner I, Panet A. Innate defense mechanisms against HSV-1 infection in the target tissues, skin and brain. J Neurovirol 2016; 22:641-649. [PMID: 27098517 DOI: 10.1007/s13365-016-0440-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 11/25/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) initiates productive infection in mucocutaneous tissues to cause cold sores and establishes latent infection in the trigeminal ganglia. Under certain circumstances, HSV-1 may cause encephalitis. Here, we compared host innate defenses against HSV-1 in the two clinically relevant tissues, skin and brain, using a unique ex vivo system of organ culture. Upon HSV-1 infection and spread, apoptosis induction was observed in the skin, but not in brain tissues. While the two tissues elicited interferon (IFN-β) response upon HSV1 infection, IFN induction was more robust in the skin compared to the brain. Moreover, antiviral response to exogenous IFNβ treatment was much stronger in the skin compared to brain tissues. This observation was not related to the availability of the IFN receptor on cells' surface. Taken together, our study demonstrates differential innate antiviral responses to HSV-1 infection that may be exploited in future development of selective and tissue-specific anti-viral treatments.
Collapse
Affiliation(s)
- Yael Tsalenchuck
- Department of Biochemistry, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Israel Steiner
- Department of Neurology, Rabin Medical Center, Campus Beilinson, Petach Tikva, Israel
| | - Amos Panet
- Department of Biochemistry, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
27
|
The Type I Interferon Response Determines Differences in Choroid Plexus Susceptibility between Newborns and Adults in Herpes Simplex Virus Encephalitis. mBio 2016; 7:e00437-16. [PMID: 27073094 PMCID: PMC4959527 DOI: 10.1128/mbio.00437-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Newborns are significantly more susceptible to severe viral encephalitis than adults, with differences in the host response to infection implicated as a major factor. However, the specific host signaling pathways responsible for differences in susceptibility and neurologic morbidity have remained unknown. In a murine model of HSV encephalitis, we demonstrated that the choroid plexus (CP) is susceptible to herpes simplex virus 1 (HSV-1) early in infection of the newborn but not the adult brain. We confirmed susceptibility of the CP to HSV infection in a human case of newborn HSV encephalitis. We investigated components of the type I interferon (IFN) response in the murine brain that might account for differences in cell susceptibility and found that newborns have a dampened interferon response and significantly lower basal levels of the alpha/beta interferon (IFN-α/β) receptor (IFNAR) than do adults. To test the contribution of IFNAR to restricting infection from the CP, we infected IFNAR knockout (KO) adult mice, which showed restored CP susceptibility to HSV-1 infection in the adult. Furthermore, reduced IFNAR levels did not account for differences we found in the basal levels of several other innate signaling proteins in the wild-type newborn and the adult, including protein kinase R (PKR), that suggested specific regulation of innate immunity in the developing brain. Viral targeting of the CP, a region of the brain that plays a critical role in neurodevelopment, provides a link between newborn susceptibility to HSV and long-term neurologic morbidity among survivors of newborn HSV encephalitis. Compared to adults, newborns are significantly more susceptible to severe disease following HSV infection. Over half of newborn HSV infections result in disseminated disease or encephalitis, with long-term neurologic morbidity in 2/3 of encephalitis survivors. We investigated differences in host cell susceptibility between newborns and adults that contribute to severe central nervous system disease in the newborn. We found that, unlike the adult brain, the newborn choroid plexus (CP) was susceptible early in HSV-1 infection. We demonstrated that IFN-α/β receptor levels are lower in the newborn brain than in the adult brain and that deletion of this receptor restores susceptibility of the CP in the adult brain. The CP serves as a barrier between the blood and the cerebrospinal fluid and plays a role in proper neurodevelopment. Susceptibility of the newborn choroid plexus to HSV-1 has important implications in viral spread to the brain and, also, in the neurologic morbidity following HSV encephalitis.
Collapse
|
28
|
HSV targeting of the host phosphatase PP1α is required for disseminated disease in the neonate and contributes to pathogenesis in the brain. Proc Natl Acad Sci U S A 2015; 112:E6937-44. [PMID: 26621722 DOI: 10.1073/pnas.1513045112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Newborns are significantly more susceptible to severe disease after infection with herpes simplex virus (HSV) compared with adults, with differences in the host response implicated as a major factor. To understand host response differences between these age groups, we investigated the shutoff of protein synthesis by the host and the retargeting of host phosphatase PP1α by the HSV-1 protein γ34.5 for reversal of translational arrest. In a murine newborn model of viral dissemination, infection with the HSV-1 mutant for PP1α binding resulted in complete absence of disease. PP1α-binding mutant HSV-1 replicated in visceral organs early after inoculation, demonstrating that HSV-1 replication requires PP1α-targeting only later in infection. Newborn mice deficient in type I IFN signaling partially rescued the virulence of the PP1α-binding mutant virus, suggesting an IFN-independent role for eIF2α kinases during infection. When we investigated the contribution of PP1α targeting to pathogenesis in the brain, we found that the inability of HSV-1 to bind PP1α increased survival time in both newborn and adult mice. Unlike disseminated disease, type I IFN signaling in the brain was required to attenuate disease following PP1α-mutant virus infection. Furthermore, pharmacologic inhibition of eIF2α dephosphorylation reduced HSV-1 replication in a brain slice culture model of encephalitis. Our findings reveal age-dependent differences in γ34.5 function and tissue-specific reliance on the type I IFN response for protection from HSV disease. These results define an important role for γ34.5 in neonatal infections in contrast to other studies indicating that the autophagy-inhibiting function of γ34.5 is dispensable for pathogenesis in the newborn brain.
Collapse
|
29
|
Weisblum Y, Panet A, Zakay-Rones Z, Vitenshtein A, Haimov-Kochman R, Goldman-Wohl D, Oiknine-Djian E, Yamin R, Meir K, Amsalem H, Imbar T, Mandelboim O, Yagel S, Wolf DG. Human cytomegalovirus induces a distinct innate immune response in the maternal-fetal interface. Virology 2015; 485:289-96. [PMID: 26318261 DOI: 10.1016/j.virol.2015.06.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 11/16/2022]
Abstract
The initial interplay between human cytomegalovirus (HCMV) and innate tissue response in the human maternal-fetal interface, though crucial for determining the outcome of congenital HCMV infection, has remained unknown. We studied the innate response to HCMV within the milieu of the human decidua, the maternal aspect of the maternal-fetal interface, maintained ex vivo as an integral tissue. HCMV infection triggered a rapid and robust decidual-tissue innate immune response predominated by interferon (IFN)γ and IP-10 induction, dysregulating the decidual cytokine/chemokine environment in a distinctive fashion. The decidual-tissue response was already elicited during viral-tissue contact, and was not affected by neutralizing HCMV antibodies. Of note, IFNγ induction, reflecting immune-cell activation, was distinctive to the maternal decidua, and was not observed in concomitantly-infected placental (fetal) villi. Our studies in a clinically-relevant surrogate human model, provide a novel insight into the first-line decidual tissue response which could affect the outcome of congenital infection.
Collapse
Affiliation(s)
- Yiska Weisblum
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Biochemistry and the Chanock Center for Virology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Amos Panet
- Department of Biochemistry and the Chanock Center for Virology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Zichria Zakay-Rones
- Department of Biochemistry and the Chanock Center for Virology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Alon Vitenshtein
- The Lautenberg Center for General and Tumor Immunology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Ronit Haimov-Kochman
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Debra Goldman-Wohl
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Esther Oiknine-Djian
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Biochemistry and the Chanock Center for Virology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Rachel Yamin
- The Lautenberg Center for General and Tumor Immunology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Karen Meir
- Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Hagai Amsalem
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Tal Imbar
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Simcha Yagel
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Dana G Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
30
|
Herpes Simplex Virus (HSV-1) Encephalitis Mimicking Glioblastoma: Case Report and Review of the Literature. J Clin Med 2014; 3:1392-401. [PMID: 26237609 PMCID: PMC4470191 DOI: 10.3390/jcm3041392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/13/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) often presents as a brain mass with encephalitis. In a patient with GBM, subsequent presentation with new onset encephalitis may be due to another GBM or Herpes simplex virus 1 (HSV-1) encephalitis. We present a case of HSV-1 encephalitis mimicking GBM in a patient with previous GBM.
Collapse
|
31
|
Different modes of herpes simplex virus type 1 spread in brain and skin tissues. J Neurovirol 2014; 20:18-27. [PMID: 24408306 DOI: 10.1007/s13365-013-0224-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/21/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) initially infects the skin and subsequently spreads to the nervous system. To investigate and compare HSV-1 mode of propagation in the two clinically relevant tissues, we have established ex vivo infection models, using native tissues of mouse and human skin, as well as mouse brain, maintained in organ cultures. HSV-1, which is naturally restricted to the human, infects and spreads in the mouse and human skin tissues in a similar fashion, thus validating the mouse model. The spread of HSV-1 in the skin was concentric to form typical plaques of limited size, predominantly of cytopathic cells. By contrast, HSV-1 spread in the brain tissue was directed along specific neuronal networks with no apparent cytopathic effect. Two additional differences were noted following infection of the skin and brain tissues. First, only a negligible amount of extracellular progeny virus was produced of the infected brain tissues, while substantial quantity of infectious progeny virus was released to the media of the infected skin. Second, antibodies against HSV-1, added following the infection, effectively restricted viral spread in the skin but have no effect on viral spread in the brain tissue. Taken together, these results reveal that HSV-1 spread within the brain tissue mostly by direct transfer from cell to cell, while in the skin the progeny extracellular virus predominates, thus facilitating the infection to new individuals.
Collapse
|
32
|
Conrad SJ, Essani K. Oncoselectivity in Oncolytic Viruses against Colorectal Cancer. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jct.2014.513118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Abstract
The complexity of the central nervous system (CNS) is not recapitulated in cell culture models. Thin slicing and subsequent culture of CNS tissue has become a valued means to study neuronal and glial biology within the context of the physiologically relevant tissue milieu. Modern membrane-interface slice culturing methodology allows straightforward access to both CNS tissue and feeding medium, enabling experimental manipulations and analyses that would otherwise be impossible in vivo. CNS slices can be successfully maintained in culture for up to several weeks for investigation of evolving pathology and long-term intervention in models of chronic neurologic disease.Herein, membrane-interface slice culture models for studying viral encephalitis and myelitis are detailed, with emphasis on the use of these models for investigation of pathogenesis and evaluation of novel treatment strategies. We describe techniques to (1) generate brain and spinal cord slices from rodent donors, (2) virally infect slices, (3) assess virally induced injury/apoptosis, (4) characterize "CNS-specific" cytokine production, and (5) treat slices with cytokines/pharmaceuticals. Although our focus is on CNS viral infection, we anticipate that the described methods can be adapted to address a wide range of investigations within the fields of neuropathology, neuroimmunology, and neuropharmacology.
Collapse
|
34
|
Modeling of human cytomegalovirus maternal-fetal transmission in a novel decidual organ culture. J Virol 2011; 85:13204-13. [PMID: 21976654 DOI: 10.1128/jvi.05749-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human cytomegalovirus (HCMV) is the leading cause of congenital infection, associated with severe birth defects and intrauterine growth retardation. The mechanism of HCMV transmission via the maternal-fetal interface is largely unknown, and there are no animal models for HCMV. The initial stages of infection are believed to occur in the maternal decidua. Here we employed a novel decidual organ culture, using both clinically derived and laboratory-derived viral strains, for the ex vivo modeling of HCMV transmission in the maternal-fetal interface. Viral spread in the tissue was demonstrated by the progression of infected-cell foci, with a 1.3- to 2-log increase in HCMV DNA and RNA levels between days 2 and 9 postinfection, the expression of immediate-early and late proteins, the appearance of typical histopathological features of natural infection, and dose-dependent inhibition of infection by ganciclovir and acyclovir. HCMV infected a wide range of cells in the decidua, including invasive cytotrophoblasts, macrophages, and endothelial, decidual, and dendritic cells. Cell-to-cell viral spread was revealed by focal extension of infected-cell clusters, inability to recover infectious extracellular virus, and high relative proportions (88 to 93%) of cell-associated viral DNA. Intriguingly, neutralizing HCMV hyperimmune globulins exhibited inhibitory activity against viral spread in the decidua even when added at 24 h postinfection-providing a mechanistic basis for their clinical use in prenatal prevention. The ex vivo-infected decidual cultures offer unique insight into patterns of viral tropism and spread, defining initial stages of congenital HCMV transmission, and can facilitate evaluation of the effects of new antiviral interventions within the maternal-fetal interface milieu.
Collapse
|
35
|
Cohen M, Braun E, Tsalenchuck Y, Panet A, Steiner I. Restrictions that control herpes simplex virus type 1 infection in mouse brain ex vivo. J Gen Virol 2011; 92:2383-2393. [DOI: 10.1099/vir.0.031013-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Elucidating the cellular and molecular factors governing herpes simplex virus type 1 (HSV-1) neurotropism is a prerequisite for understanding HSV-1 encephalitis and for targeting HSV-1-derived vectors for gene transfer to the brain. Earlier we had described an ex vivo system of mouse brain slices and demonstrated a selective and unique infection pattern, mostly around the ventricles. Here, we examined tissue factors controlling HSV-1 infection of brain slices. We demonstrated that heparan sulphate, while an important factor, does not determine the infection pattern. Hyaluronic acid, but not collagen, appears to enhance HSV-1 brain infection. To investigate whether tissue distribution of viral receptors determines the infection pattern, we examined transcription of herpes virus entry mediator and nectin-1 receptor genes in infected and uninfected brain regions. Both the infected and the uninfected regions express the receptors. We also explored the influence of intra-cellular factors. HSV-1 does not preferentially infect proliferating cells in the brain slices, despite its predilection to the ventricular zones. To delineate the step at which the HSV-1 infection cascade is restricted, mRNA was isolated following tissue infection, and transcription of the immediate-early and late viral genes was evaluated. The results indicated that HSV-1 genes are not expressed in regions that do not express a viral reporter gene. Therefore, we conclude that tissue resistance to infection is associated with a block at or prior to the immediate-early mRNA synthesis. Taken together, using the ex vivo system of organotypic culture we describe here extra-cellular and intra-cellular restriction levels of HSV-1 brain infection.
Collapse
Affiliation(s)
- Meytal Cohen
- Department of Biochemistry, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Laboratory of Neurovirology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Efrat Braun
- Department of Biochemistry, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Laboratory of Neurovirology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yael Tsalenchuck
- Department of Biochemistry, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Laboratory of Neurovirology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Amos Panet
- Department of Biochemistry, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Israel Steiner
- Department of Neurology, Rabin Medical Center, Campus Beilinson, Petach Tikva, Israel
- Laboratory of Neurovirology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
36
|
Dionne KR, Leser JS, Lorenzen KA, Beckham JD, Tyler KL. A brain slice culture model of viral encephalitis reveals an innate CNS cytokine response profile and the therapeutic potential of caspase inhibition. Exp Neurol 2011; 228:222-31. [PMID: 21241693 PMCID: PMC3060973 DOI: 10.1016/j.expneurol.2011.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/30/2010] [Accepted: 01/08/2011] [Indexed: 01/04/2023]
Abstract
Viral encephalitis is a significant cause of human morbidity and mortality in large part due to suboptimal diagnosis and treatment. Murine reovirus infection serves as a classic experimental model of viral encephalitis. Infection of neonatal mice with T3 reoviruses results in lethal encephalitis associated with neuronal infection, apoptosis, and CNS tissue injury. We have developed an ex vivo brain slice culture (BSC) system that recapitulates the basic pathological features and kinetics of viral replication seen in vivo. We utilize the BSC model to identify an innate, brain-tissue specific inflammatory cytokine response to reoviral infection, which is characterized by the release of IL6, CXCL10, RANTES, and murine IL8 analog (KC). Additionally, we demonstrate the potential utility of this system as a pharmaceutical screening platform by inhibiting reovirus-induced apoptosis and CNS tissue injury with the pan-caspase inhibitor, Q-VD-OPh. Cultured brain slices not only serve to model events occurring during viral encephalitis, but can also be utilized to investigate aspects of pathogenesis and therapy that are not experimentally accessible in vivo.
Collapse
Affiliation(s)
- Kalen R. Dionne
- Medical Scientist Training Program, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045
- Neuroscience Program, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045
| | - J. Smith Leser
- Department of Neurology, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045
| | - Kristi A. Lorenzen
- Department of Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045
| | - J. David Beckham
- Department of Neurology, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045
- Department of Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045
- Department of Microbiology, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045
| | - Kenneth L. Tyler
- Medical Scientist Training Program, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045
- Neuroscience Program, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045
- Department of Neurology, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045
- Department of Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045
- Department of Microbiology, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045
- Denver Veterans Affairs Medical Center, Denver, CO 80220
| |
Collapse
|
37
|
Massler A, Kolodkin-Gal D, Meir K, Khalaileh A, Falk H, Izhar U, Shufaro Y, Panet A. Infant lungs are preferentially infected by adenovirus and herpes simplex virus type 1 vectors: role of the tissue mesenchymal cells. J Gene Med 2011; 13:101-13. [DOI: 10.1002/jgm.1544] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
38
|
Hochberg M, Kunicher N, Gilead L, Maly A, Falk H, Ingber A, Panet A. Tropism of herpes simplex virus type 1 to nonmelanoma skin cancers. Br J Dermatol 2011; 164:273-81. [DOI: 10.1111/j.1365-2133.2010.10094.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
France MR, Thomas DL, Liu J, McFadden G, MacNeill AL, Roy EJ. Intraventricular injection of myxoma virus results in transient expression of viral protein in mouse brain ependymal and subventricular cells. J Gen Virol 2011; 92:195-9. [PMID: 20861319 DOI: 10.1099/vir.0.026690-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Oncolytic viruses that selectively infect and lyse cancer cells have potential as therapeutic agents. Myxoma virus, a poxvirus that is known to be pathogenic only in rabbits, has not been reported to infect normal tissues in humans or mice. We observed that when recombinant virus was injected directly into the lateral ventricle of the mouse brain, virally encoded red fluorescent protein was expressed in ependymal and subventricular cells. Cells were positive for nestin, a marker of neural stem cells. Rapamycin increased the number of cells expressing the virally encoded protein. However, protein expression was transient. Cells expressing the virally encoded protein did not undergo apoptosis and the ependymal lining remained intact. Myxoma virus appears to be safe when injected into the brain despite the transient expression of virally derived protein in a small population of periventricular cells.
Collapse
Affiliation(s)
- Megan R France
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Platforms for pathogen discovery have improved since the days of Koch and Pasteur; nonetheless, the challenges of proving causation are at least as daunting as they were in the late 1800 s. Although we will almost certainly continue to accumulate low-hanging fruit, where simple relationships will be found between the presence of a cultivatable agent and a disease, these successes will be increasingly infrequent. The future of the field rests instead in our ability to follow footprints of infectious agents that cannot be characterized using classical microbiological techniques and to develop the laboratory and computational infrastructure required to dissect complex host-microbe interactions. I have tried to refine the criteria used by Koch and successors to prove linkage to disease. These refinements are working constructs that will continue to evolve in light of new technologies, new models, and new insights. What will endure is the excitement of the chase. Happy hunting!
Collapse
|
41
|
Herpes simplex virus delivery to orthotopic rectal carcinoma results in an efficient and selective antitumor effect. Gene Ther 2009; 16:905-15. [PMID: 19440231 DOI: 10.1038/gt.2009.44] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cancer of the rectum poses a complex therapeutic challenge because of its proximity to adjacent organs and anal sphincters. The addition of radiotherapy before surgical resection has been shown to confer good survival rates while preserving sphincter function. Nevertheless, radiation is associated with significant side effects. On the basis of our previous work showing that herpes simplex virus type-1 (HSV-1) preferentially infects human colon cancer, we set out to examine the oncolytic effect of HSV-1 on orthotopic rectal tumors in mice. Two vectors were compared for oncolytic activity, HSV-1(Gbeta) with wild-type replication and an attenuated HSV-1 vector (HSV-G47Delta). Intratumoral injection of HSV-1(Gbeta) and HSV-G47Delta resulted in a significant reduction or disappearance of the tumors and increased survival of mice. Although the use of HSV-1(Gbeta) was associated with systemic toxicity, HSV-G47Delta appears to possess a selective oncolytic activity. Moreover, infection with HSV-G47Delta resulted in the activation of the double-stranded RNA-dependent protein kinase (PKR) pathway. A significant improvement in viral replication and the antitumor effect was observed when the PKR inhibitor 2-aminopurine was coadministered with HSV-G47Delta to the tumor. In conclusion, the efficacy of local delivery of HSV-G47Delta combined with a specific chemical inhibitor of antiviral activity points to a novel therapeutic modality for rectal cancer and other solid tumors.
Collapse
|
42
|
Ando Y, Kitayama H, Kawaguchi Y, Koyanagi Y. Primary target cells of herpes simplex virus type 1 in the hippocampus. Microbes Infect 2008; 10:1514-23. [PMID: 18852062 DOI: 10.1016/j.micinf.2008.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 11/15/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) causes fatal and sporadic encephalitis in human. The encephalitis-survivors frequently suffer from symptoms of memory deficits. It remains unclear how HSV-1 induces tissue damages in memory formation-associated brain tissues such as the hippocampus. In this study, we examined HSV-1 infection in the hippocampus using a rat HSV-1 infection model. We found profound pathological changes in the hippocampus and large numbers of HSV-1 antigen-positive cells in the dentate gyrus (DG) subfield of HSV-1-infected rats. To understand the precise mechanism of HSV-1-induced tissue damages in the hippocampus, we employed rat organotypic hippocampal slice cultures (OHC) as an in vitro HSV-1 infection model. In OHC, HSV-1 infection predominated in neuronal cells and the infected neuronal cells were severely damaged. Longitudinal analysis indicated that granule cells in DG subfield were extremely vulnerable to HSV-1 infection among neuronal cells in the hippocampus. Since DG granule cells play a crucial role in memory formation, disruption of these cells may be a primary step leading to memory deficits.
Collapse
Affiliation(s)
- Yoshinori Ando
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, 53 Shogoin-kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
43
|
Tyler MA, Sonabend AM, Ulasov IV, Lesniak MS. Vector therapies for malignant glioma: shifting the clinical paradigm. Expert Opin Drug Deliv 2008; 5:445-58. [PMID: 18426385 DOI: 10.1517/17425247.5.4.445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Malignant glioma represents one of the most aggressive and devastating forms of human cancer. At present, there exists no successful treatment for this disease. Gene therapy, or vector therapy, has emerged as a viable experimental treatment method for intracranial malignancies. OBJECTIVE Vector therapy paradigms that have entered the clinical arena have shown adequate safety; however, the majority of the studies failed to observe significant clinical benefits. As such, researchers have refocused their efforts on developing novel vectors as well as new delivery methods to enhance the therapeutic effect of a particular vector. In this review, we discuss common vector therapy approaches used in clinical trials, their drawbacks and potential ways of overcoming these challenges. METHODS We focus on the experimental evaluation of cell-based vector therapies and adenoviral and herpes simplex virus type 1 vectors in the treatment of malignant glioma. CONCLUSION Vector therapy remains a promising treatment strategy for malignant glioma. Although significant questions remain to be answered, early clinical data suggest safety of this approach and future studies will likely address the efficacy of the proposed therapy.
Collapse
Affiliation(s)
- Matthew A Tyler
- University of Chicago, The Brain Tumor Center, 5841 S. Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
44
|
Dixit R, Tiwari V, Shukla D. Herpes simplex virus type 1 induces filopodia in differentiated P19 neural cells to facilitate viral spread. Neurosci Lett 2008; 440:113-8. [PMID: 18554796 PMCID: PMC2519889 DOI: 10.1016/j.neulet.2008.05.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 04/28/2008] [Accepted: 05/03/2008] [Indexed: 11/24/2022]
Abstract
Herpes simplex virus type-1 (HSV-1) is a neurotropic virus with significant potential as a viral vector for central nervous system (CNS) gene therapy. This study provides visual evidence that recombinant green fluorescent protein (GFP)-expressing HSV-1 travel down dendrites in differentiated P19 neuronal-like cells to efficiently reach the soma. The virus also promotes cytoskeletal rearrangements which facilitate viral spread in vitro, including often dramatic increases in dendritic filopodia. Viral movements, cell infection and filopodia induction were each reduced with the actin polymerization inhibitor cytochalasin D, suggesting the involvement of the actin cortex in these processes. The observation of neural cytoskeletal reorganization in response to HSV-1 may shed light on the mechanisms by which acute viral infection associated with herpes encephalitis produces cognitive deficits in patients.
Collapse
Affiliation(s)
- Rohan Dixit
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612
| | - Vaibhav Tiwari
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612
| |
Collapse
|
45
|
Prandovszky E, Horváth S, Gellért L, Kovács SK, Janka Z, Toldi J, Shukla D, Vályi-Nagy T. Nectin-1 (HveC) is expressed at high levels in neural subtypes that regulate radial migration of cortical and cerebellar neurons of the developing human and murine brain. J Neurovirol 2008; 14:164-72. [PMID: 18444088 DOI: 10.1080/13550280801898672] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Herpes simplex viruses (HSV) produce age-dependent encephalitis characterized by more severe involvement of the cerebral cortex in younger hosts. To elucidate the potential role of the major neural entry receptor of HSV, nectin-1, in age-dependent susceptibility of cortical neurons to viral encephalitis, the authors examined the anatomical distribution of the receptor protein in the developing human and mouse cerebral cortex, hippocampus, and cerebellum by immunohistochemistry. Nectin-1 is expressed at high levels in guiding cells (radial glial cells and Cajal-Retzius cells) that regulate radial migration of neurons in cortical lamination, at lower levels in migrating neurons, and at variable levels in the transient ventricular and marginal zones of the cerebral cortical wall. These results may have implications regarding the selective spatiotemporal tropism of HSV to specific neuronal populations, and for the better understanding of neurodevelopmental defects caused by fetal HSV infections.
Collapse
|
46
|
Abstract
Cytomegalovirus (CMV) is the most significant infectious cause of brain disorders in humans. Although the brain is the principal target organ for CMV infection in infants with congenital infection and in immunocompromised patients, little has been known about cellular events in pathogenesis of the brain disorders. Mouse models have been developed by the authors for studying the cell tropism, infectious dynamics of CMV infection and the effects of CMV infection on proliferation, regeneration and differentiation of neural cells. It has been shown, using brain slice cultures and neurospheres, that neural stem progenitor (NSP) cells are the most susceptible to CMV infection in developing brains. The NSP cells are also susceptible to CMV infection in adult and aged brains. The susceptibility can be enhanced by stimulation of neurogenesis. It was shown that latent murine CMV infection occurs in NSP cells by demonstrating the reactivation in brain slice culture or neurospheres. It is hypothesized that CMV brain disorder such as microcephaly is caused by disturbance of cellular events in the ventricular regions, including proliferation and differentiation of the neural stem cells, whereas neurons are also targets in persistent CMV infection, presumably resulting in functional disorders such as mental retardation.
Collapse
|
47
|
Kunicher N, Falk H, Yaacov B, Tzur T, Panet A. Tropism of Lentiviral Vectors in Skin Tissue. Hum Gene Ther 2008; 19:255-66. [DOI: 10.1089/hum.2007.121] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nikolai Kunicher
- Department of Virology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Haya Falk
- Department of Virology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Barak Yaacov
- Department of Virology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Tomer Tzur
- Department of Plastic and Reconstructive Surgery, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Amos Panet
- Department of Virology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
48
|
Herpes simplex virus type 1 preferentially targets human colon carcinoma: role of extracellular matrix. J Virol 2007; 82:999-1010. [PMID: 17977977 DOI: 10.1128/jvi.01769-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Viral therapy of cancer (viral oncolysis) is dependent on selective destruction of the tumor tissue compared with healthy tissues. Several factors, including receptor expression, extracellular components, and intracellular mechanisms, may influence viral oncolysis. In the present work, we studied the potential oncolytic activity of herpes simplex virus type 1 (HSV-1), using an organ culture system derived from colon carcinoma and healthy colon tissues of mouse and human origin. HSV-1 infected normal colons ex vivo at a very low efficiency, in contrast to high-efficiency infection of colon carcinoma tissue. In contrast, adenoviral and lentiviral vectors infected both tissues equally well. To investigate the mechanisms underlying the preferential affinity of HSV-1 for the carcinoma tissue, intracellular and extracellular factors were investigated. Two extracellular components, collagen and mucin molecules, were found to restrict HSV-1 infectivity in the healthy colon. The mucin layer of the healthy colon binds to HSV-1 and thereby blocks viral interaction with the epithelial cells of the tissue. In contrast, colon carcinomas express small amounts of collagen and mucin molecules and are thus permissive to HSV-1 infection. In agreement with the ex vivo system, HSV-1 injected into a mouse colon carcinoma in vivo significantly reduced the volume of the tumor. In conclusion, we describe a novel mechanism of viral selectivity for malignant tissues that is based on variance of the extracellular matrix between tumor and healthy tissues. These insights may facilitate new approaches to the application of HSV-1 as an oncolytic virus.
Collapse
|
49
|
Han GP, Li L, Kosugi I, Kawasaki H, Tsuchida T, Miura K, Tsutsui Y. Enhancement of susceptibility of adult mouse brain to cytomegalovirus infection by infusion of epidermal growth factor. J Neurosci Res 2007; 85:2981-90. [PMID: 17600840 DOI: 10.1002/jnr.21410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neural precursor cells, including neural stem and progenitor cells, in the subventricular zone (SVZ) are the main targets for cytomegalovirus (CMV) infection in developing brains. The neural precursor cells in the SVZ of the adult brain have been reported to respond by proliferating after infusion with epidermal growth factor (EGF). Here we report the susceptibility of the precursor cells in the adult mouse brain to murine CMV (MCMV) infection. Adult mouse brains from 10-, 25-, and 70-week-old (W) mice were infused with either phosphate-buffered saline or EGF into the brain for 3 days, and then intracerebrally infected with MCMV for 5 days. The susceptibility of the adult brains to MCMV was significantly increased by infusion of EGF in terms of viral titers and viral antigen-positive cells. The susceptibility of the young adult brain from 10-week-old mice to MCMV was higher than that of the adult brains from 25-week-old or 70-week-old mice. Both the ependymal and the SVZ cells were susceptible to MCMV infection. The number of virus-infected cells in the SVZ was significantly increased by infusion of EGF, whereas the number of infected ependymal cells was not significantly increased. Among the virus-infected cells in the SVZ, 73% were positive for nestin, 87% were positive for Musashi, 86% were positive for GFAP, and 96% were positive for PCNA. These results indicate that the susceptibility of the adult brain to MCMV is correlated with the proliferative ability of the neural precursor cells in the SVZ of the adult brain.
Collapse
Affiliation(s)
- Gui-Ping Han
- Department of Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | | | | | |
Collapse
|