1
|
Kuryshko M, Landmann M, Luttermann C, Ulrich R, Abdelwhab EM. In turkeys, unlike chickens, the non-structural NS1 protein does not play a significant role in the replication and tissue tropism of the H7N1 avian influenza virus. Virulence 2024; 15:2379371. [PMID: 39014540 PMCID: PMC11259080 DOI: 10.1080/21505594.2024.2379371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
The economic losses caused by high pathogenicity (HP) avian influenza viruses (AIV) in the poultry industry worldwide are enormous. Although chickens and turkeys are closely related Galliformes, turkeys are thought to be a bridging host for the adaptation of AIV from wild birds to poultry because of their high susceptibility to AIV infections. HPAIV evolve from low pathogenicity (LP) AIV after circulation in poultry through mutations in different viral proteins, including the non-structural protein (NS1), a major interferon (IFN) antagonist of AIV. At present, it is largely unknown whether the virulence determinants of HPAIV are the same in turkeys and chickens. Previously, we showed that mutations in the NS1 of HPAIV H7N1 significantly reduced viral replication in chickens in vitro and in vivo. Here, we investigated the effect of NS1 on the replication and virulence of HPAIV H7N1 in turkeys after inoculation with recombinant H7N1 carrying a naturally truncated wild-type NS1 (with 224 amino-acid "aa" in length) or an extended NS1 with 230-aa similar to the LP H7N1 ancestor. There were no significant differences in multiple-cycle viral replication or in the efficiency of NS1 in blocking IFN induction in the cell culture. Similarly, all viruses were highly virulent in turkeys and replicated at similar levels in various organs and swabs collected from the inoculated turkeys. These results suggest that NS1 does not play a role in the virulence or replication of HPAIV H7N1 in turkeys and further indicate that the genetic determinants of HPAIV differ in these two closely related galliform species.
Collapse
Affiliation(s)
- Maryna Kuryshko
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Maria Landmann
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Christine Luttermann
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
2
|
Huang Y, Urban C, Hubel P, Stukalov A, Pichlmair A. Protein turnover regulation is critical for influenza A virus infection. Cell Syst 2024; 15:911-929.e8. [PMID: 39368468 DOI: 10.1016/j.cels.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
The abundance of a protein is defined by its continuous synthesis and degradation, a process known as protein turnover. Here, we systematically profiled the turnover of proteins in influenza A virus (IAV)-infected cells using a pulse-chase stable isotope labeling by amino acids in cell culture (SILAC)-based approach combined with downstream statistical modeling. We identified 1,798 virus-affected proteins with turnover changes (tVAPs) out of 7,739 detected proteins (data available at pulsechase.innatelab.org). In particular, the affected proteins were involved in RNA transcription, splicing and nuclear transport, protein translation and stability, and energy metabolism. Many tVAPs appeared to be known IAV-interacting proteins that regulate virus propagation, such as KPNA6, PPP6C, and POLR2A. Notably, our analysis identified additional IAV host and restriction factors, such as the splicing factor GPKOW, that exhibit significant turnover rate changes while their total abundance is minimally affected. Overall, we show that protein turnover is a critical factor both for virus replication and antiviral defense.
Collapse
Affiliation(s)
- Yiqi Huang
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Christian Urban
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Philipp Hubel
- Core Facility Hohenheim, Universität Hohenheim, Stuttgart, Germany
| | - Alexey Stukalov
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany; Institute of Virology, Helmholtz Munich, Munich, Germany; German Centre for Infection Research (DZIF), Partner Site, Munich, Germany.
| |
Collapse
|
3
|
Avanthay R, Garcia-Nicolas O, Ruggli N, Grau-Roma L, Párraga-Ros E, Summerfield A, Zimmer G. Evaluation of a novel intramuscular prime/intranasal boost vaccination strategy against influenza in the pig model. PLoS Pathog 2024; 20:e1012393. [PMID: 39116029 PMCID: PMC11309389 DOI: 10.1371/journal.ppat.1012393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Live-attenuated influenza vaccines (LAIV) offer advantages over the commonly used inactivated split influenza vaccines. However, finding the optimal balance between sufficient attenuation and immunogenicity has remained a challenge. We recently developed an alternative LAIV based on the 2009 pandemic H1N1 virus with a truncated NS1 protein and lacking PA-X protein expression (NS1(1-126)-ΔPAX). This virus showed a blunted replication and elicited a strong innate immune response. In the present study, we evaluated the efficacy of this vaccine candidate in the porcine animal model as a pertinent in vivo system. Immunization of pigs via the nasal route with the novel NS1(1-126)-ΔPAX LAIV did not cause disease and elicited a strong mucosal immune response that completely blocked replication of the homologous challenge virus in the respiratory tract. However, we observed prolonged shedding of our vaccine candidate from the upper respiratory tract. To improve LAIV safety, we developed a novel prime/boost vaccination strategy combining primary intramuscular immunization with a haemagglutinin-encoding propagation-defective vesicular stomatitis virus (VSV) replicon, followed by a secondary immunization with the NS1(1-126)-ΔPAX LAIV via the nasal route. This two-step immunization procedure significantly reduced LAIV shedding, increased the production of specific serum IgG, neutralizing antibodies, and Th1 memory cells, and resulted in sterilizing immunity against homologous virus challenge. In conclusion, our novel intramuscular prime/intranasal boost regimen interferes with virus shedding and transmission, a feature that will help combat influenza epidemics and pandemics.
Collapse
MESH Headings
- Animals
- Swine
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Injections, Intramuscular
- Administration, Intranasal
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Influenza A Virus, H1N1 Subtype/immunology
- Disease Models, Animal
- Antibodies, Viral/immunology
- Immunization, Secondary/methods
- Vaccination/methods
- Influenza, Human/prevention & control
- Influenza, Human/immunology
Collapse
Affiliation(s)
- Robin Avanthay
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Obdulio Garcia-Nicolas
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nicolas Ruggli
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Llorenç Grau-Roma
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Animal Pathology, COMPATH, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ester Párraga-Ros
- Department of Anatomy and Comparative Pathology, Veterinary Faculty, University of Murcia, Murcia, Spain
| | - Artur Summerfield
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Kessler S, Burke B, Andrieux G, Schinköthe J, Hamberger L, Kacza J, Zhan S, Reasoner C, Dutt TS, Kaukab Osman M, Henao-Tamayo M, Staniek J, Villena Ossa JF, Frank DT, Ma W, Ulrich R, Cathomen T, Boerries M, Rizzi M, Beer M, Schwemmle M, Reuther P, Schountz T, Ciminski K. Deciphering bat influenza H18N11 infection dynamics in male Jamaican fruit bats on a single-cell level. Nat Commun 2024; 15:4500. [PMID: 38802391 PMCID: PMC11130286 DOI: 10.1038/s41467-024-48934-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Jamaican fruit bats (Artibeus jamaicensis) naturally harbor a wide range of viruses of human relevance. These infections are typically mild in bats, suggesting unique features of their immune system. To better understand the immune response to viral infections in bats, we infected male Jamaican fruit bats with the bat-derived influenza A virus (IAV) H18N11. Using comparative single-cell RNA sequencing, we generated single-cell atlases of the Jamaican fruit bat intestine and mesentery. Gene expression profiling showed that H18N11 infection resulted in a moderate induction of interferon-stimulated genes and transcriptional activation of immune cells. H18N11 infection was predominant in various leukocytes, including macrophages, B cells, and NK/T cells. Confirming these findings, human leukocytes, particularly macrophages, were also susceptible to H18N11, highlighting the zoonotic potential of this bat-derived IAV. Our study provides insight into a natural virus-host relationship and thus serves as a fundamental resource for future in-depth characterization of bat immunology.
Collapse
Affiliation(s)
- Susanne Kessler
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bradly Burke
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Geoffroy Andrieux
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jan Schinköthe
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Lea Hamberger
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes Kacza
- BioImaging Core Facility, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Shijun Zhan
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Clara Reasoner
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Taru S Dutt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maria Kaukab Osman
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Julian Staniek
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
| | - Jose Francisco Villena Ossa
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
| | - Dalit T Frank
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Wenjun Ma
- Department of Veterinary Pathobiology and Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Toni Cathomen
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Reuther
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tony Schountz
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Kevin Ciminski
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Bergant V, Schnepf D, de Andrade Krätzig N, Hubel P, Urban C, Engleitner T, Dijkman R, Ryffel B, Steiger K, Knolle PA, Kochs G, Rad R, Staeheli P, Pichlmair A. mRNA 3'UTR lengthening by alternative polyadenylation attenuates inflammatory responses and correlates with virulence of Influenza A virus. Nat Commun 2023; 14:4906. [PMID: 37582777 PMCID: PMC10427651 DOI: 10.1038/s41467-023-40469-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023] Open
Abstract
Changes of mRNA 3'UTRs by alternative polyadenylation (APA) have been associated to numerous pathologies, but the mechanisms and consequences often remain enigmatic. By combining transcriptomics, proteomics and recombinant viruses we show that all tested strains of IAV, including A/PR/8/34(H1N1) (PR8) and A/Cal/07/2009 (H1N1) (Cal09), cause APA. We mapped the effect to the highly conserved glycine residue at position 184 (G184) of the viral non-structural protein 1 (NS1). Unbiased mass spectrometry-based analyses indicate that NS1 causes APA by perturbing the function of CPSF4 and that this function is unrelated to virus-induced transcriptional shutoff. Accordingly, IAV strain PR8, expressing an NS1 variant with weak CPSF binding, does not induce host shutoff but only APA. However, recombinant IAV (PR8) expressing NS1(G184R) lacks binding to CPSF4 and thereby also the ability to cause APA. Functionally, the impaired ability to induce APA leads to an increased inflammatory cytokine production and an attenuated phenotype in a mouse infection model. Investigating diverse viral infection models showed that APA induction is a frequent ability of many pathogens. Collectively, we propose that targeting of the CPSF complex, leading to widespread alternative polyadenylation of host transcripts, constitutes a general immunevasion mechanism employed by a variety of pathogenic viruses.
Collapse
Affiliation(s)
- Valter Bergant
- Institute of Virology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Max Planck Institute of Biochemistry, Munich, Germany
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | - Niklas de Andrade Krätzig
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Philipp Hubel
- Max Planck Institute of Biochemistry, Munich, Germany
| | - Christian Urban
- Institute of Virology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Max Planck Institute of Biochemistry, Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Ronald Dijkman
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland
- Department of Infectious diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Bernhard Ryffel
- CNRS, UMR7355, Orleans, France
- Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Katja Steiger
- Institut für allgemeine Pathologie und Pathologische Anatomie, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, Munich, Germany
- Department of Medicine II, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Peter Staeheli
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Andreas Pichlmair
- Institute of Virology, TUM School of Medicine, Technical University of Munich, Munich, Germany.
- Max Planck Institute of Biochemistry, Munich, Germany.
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany.
| |
Collapse
|
6
|
Fu C, Zhu W, Cao N, Liu W, Lu Z, Wong Z, Guan K, Hu C, Han B, Zeng S, Fan S. Role of CIV NS1 Protein in Innate Immunity and Viral Replication. Int J Mol Sci 2023; 24:10056. [PMID: 37373204 DOI: 10.3390/ijms241210056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The innate immune pathway serves as the first line of defense against viral infections and plays a crucial role in the host's immune response in clearing viruses. Prior research has indicated that the influenza A virus has developed various strategies to avoid host immune responses. Nevertheless, the role of the NS1 protein of the canine influenza virus (CIV) in the innate immune pathway remains unclear. In this study, eukaryotic plasmids of NS1, NP, PA, PB1, and PB2 were constructed, and it was found that these proteins interact with melanoma differentiation-associated gene 5 (MDA5) and antagonize the activation of IFN-β promoters by MDA5. We selected the NS1 protein for further study and found that NS1 does not affect the interaction between the viral ribonucleoprotein (RNP) subunit and MDA5, but that it downregulates the expression of the laboratory of genetics and physiology 2 (LGP2) and retinoic acid-inducible gene-I (RIG-I) receptors in the RIG-I pathway. Additionally, NS1 was found to inhibit the expression of several antiviral proteins and cytokines, including MX dynamin like GTPase 1 (MX1), 2'-5'oligoadenylate synthetase (OAS), Signal Transducers and Activators of Transcription (STAT1), tripartite motif 25 (TRIM25), interleukin-2 (IL-2), IFN, IL-8, and IL-1β. To further investigate the role of NS1, a recombinant H3N2 virus strain (rH3N2) and an NS1-null virus (rH3N2ΔNS1) were rescued using reverse-genetic technology. The rH3N2ΔNS1 virus exhibited lower viral titers compared to rH3N2, but had a stronger activation effect on the receptors LGP2 and RIG-I. Furthermore, when compared to rH3N2, rH3N2ΔNS1 exhibited a more pronounced activation of antiviral proteins such as MX1, OAS, STAT1, and TRIM25, as well as antiviral cytokines such as IL-6, IFN-β, and IL-1β. These findings suggest a new mechanism by which NS1, a nonstructural protein of CIV, facilitates innate immune signaling and provides new avenues for the development of antiviral strategies.
Collapse
Affiliation(s)
- Cheng Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenhui Zhu
- College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Tianhe District, Guangzhou 510000, China
| | - Nan Cao
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenjun Liu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhier Lu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ziyuan Wong
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Kaiting Guan
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chunyan Hu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Baoting Han
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Tianhe District, Guangzhou 510000, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Tianhe District, Guangzhou 510000, China
| |
Collapse
|
7
|
Lamotte LA, Tafforeau L. Generation of an A549 ISRE-Luciferase Stable Cell Line. J Virol Methods 2023; 316:114731. [PMID: 37059128 DOI: 10.1016/j.jviromet.2023.114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/16/2023]
Abstract
With its human lung origin, A549 cell line is a designated cellular model for viral respiratory infections studies. As such infections are known to lead to innate immune responses, various IFN signaling modifications occur in infected cells and have to be considered in respiratory viruses experiments. Here, we describe the generation of an A549 stable cell line that expresses firefly luciferase upon interferon-β stimulation, as well as upon RIG-I transfection and upon influenza A virus infection. Of the 18 clones generated, the first one, namely A549-RING1, demonstrated appropriate luciferase expression in the different conditions tested. This newly established cell line may therefore be used to decipher the impact of viral respiratory infection on innate immune response depending on IFN stimulation, without any plasmid transfection step. A549-RING1 can be provided upon request.
Collapse
Affiliation(s)
- Laurie-Anne Lamotte
- Cell Biology laboratory, Research Institute for Biosciences, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Lionel Tafforeau
- Cell Biology laboratory, Research Institute for Biosciences, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium.
| |
Collapse
|
8
|
Kelly JN, Laloli L, V’kovski P, Holwerda M, Portmann J, Thiel V, Dijkman R. Comprehensive single cell analysis of pandemic influenza A virus infection in the human airways uncovers cell-type specific host transcriptional signatures relevant for disease progression and pathogenesis. Front Immunol 2022; 13:978824. [PMID: 36268025 PMCID: PMC9576848 DOI: 10.3389/fimmu.2022.978824] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/01/2022] [Indexed: 12/04/2022] Open
Abstract
The respiratory epithelium constitutes the first line of defense against invading respiratory pathogens, such as the 2009 pandemic strain of influenza A virus (IAV, H1N1pdm09), and plays a crucial role in the host antiviral response to infection. Despite its importance, however, it remains unknown how individual cell types within the respiratory epithelium respond to IAV infection or how the latter may influence IAV disease progression and pathogenesis. Here, we used single cell RNA sequencing (scRNA-seq) to dissect the host response to IAV infection in its natural target cells. scRNA-seq was performed on human airway epithelial cell (hAEC) cultures infected with either wild-type pandemic IAV (WT) or with a mutant version of IAV (NS1R38A) that induced a robust innate immune response. We then characterized both the host and viral transcriptomes of more than 19,000 single cells across the 5 major cell types populating the human respiratory epithelium. For all cell types, we observed a wide spectrum of viral burden among single infected cells and a disparate host response between infected and bystander populations. Interestingly, we also identified multiple key differences in the host response to IAV among individual cell types, including high levels of pro-inflammatory cytokines and chemokines in secretory and basal cells and an important role for luminal cells in sensing and restricting incoming virus. Multiple infected cell types were shown to upregulate interferons (IFN), with type III IFNs clearly dominating the antiviral response. Transcriptional changes in genes related to cell differentiation, cell migration, and tissue repair were also identified. Strikingly, we also detected a shift in viral host cell tropism from non-ciliated cells to ciliated cells at later stages of infection and observed major changes in the cellular composition. Microscopic analysis of both WT and NS1R38A virus-infected hAECs at various stages of IAV infection revealed that the transcriptional changes we observed at 18 hpi were likely driving the downstream histopathological alterations in the airway epithelium. To our knowledge, this is the first study to provide a comprehensive analysis of the cell type-specific host antiviral response to influenza virus infection in its natural target cells – namely, the human respiratory epithelium.
Collapse
Affiliation(s)
- Jenna N. Kelly
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Laura Laloli
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Philip V’kovski
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Melle Holwerda
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Jasmine Portmann
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Ronald Dijkman
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center (EVBC), Jena, Germany
- *Correspondence: Ronald Dijkman,
| |
Collapse
|
9
|
Avian Influenza NS1 Proteins Inhibit Human, but Not Duck, RIG-I Ubiquitination and Interferon Signaling. J Virol 2022; 96:e0077622. [PMID: 36069546 PMCID: PMC9517716 DOI: 10.1128/jvi.00776-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nonstructural protein 1 (NS1) of influenza A viruses is an important virulence factor that controls host cell immune responses. In human cells, NS1 proteins inhibit the induction of type I interferon by several mechanisms, including potentially, by preventing the activation of the retinoic acid-inducible gene I (RIG-I) receptor by the ubiquitin ligase tripartite motif-containing protein 25 (TRIM25). It is unclear whether the inhibition of human TRIM25 is a universal function of all influenza A NS1 proteins or is strain dependent. It is also unclear if NS1 proteins similarly target the TRIM25 of mallard ducks, a natural reservoir host of avian influenza viruses with a long coevolutionary history and unique disease dynamics. To answer these questions, we compared the ability of five different NS1 proteins to interact with human and duck TRIM25 using coimmunoprecipitation and microscopy and assessed the consequence of this on RIG-I ubiquitination and signaling in both species. We show that NS1 proteins from low-pathogenic and highly pathogenic avian influenza viruses potently inhibit RIG-I ubiquitination and reduce interferon promoter activity and interferon-beta protein secretion in transfected human cells, while the NS1 of the mouse-adapted PR8 strain does not. However, all the NS1 proteins, when cloned into recombinant viruses, suppress interferon in infected alveolar cells. In contrast, avian NS1 proteins do not suppress duck RIG-I ubiquitination and interferon promoter activity, despite interacting with duck TRIM25. IMPORTANCE Influenza A viruses are a major cause of human and animal disease. Periodically, avian influenza viruses from wild waterfowl, such as ducks, pass through intermediate agricultural hosts and emerge into the human population as zoonotic diseases with high mortality rates and epidemic potential. Because of their coevolution with influenza A viruses, ducks are uniquely resistant to influenza disease compared to other birds, animals, and humans. Here, we investigate a mechanism of influenza A virus interference in an important antiviral signaling pathway that is orthologous in humans and ducks. We show that NS1 proteins from four avian influenza strains can block the coactivation and signaling of the human RIG-I antiviral receptor, while none block the coactivation and signaling of duck RIG-I. Understanding host-pathogen dynamics in the natural reservoir will contribute to our understanding of viral disease mechanisms, viral evolution, and the pressures that drive it, which benefits global surveillance and outbreak prevention.
Collapse
|
10
|
Liu H, Bergant V, Frishman G, Ruepp A, Pichlmair A, Vincendeau M, Frishman D. Influenza A Virus Infection Reactivates Human Endogenous Retroviruses Associated with Modulation of Antiviral Immunity. Viruses 2022; 14:1591. [PMID: 35891571 PMCID: PMC9320126 DOI: 10.3390/v14071591] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
Human endogenous retrovirus (HERVs), normally silenced by methylation or mutations, can be reactivated by multiple environmental factors, including infections with exogenous viruses. In this work, we investigated the transcriptional activity of HERVs in human A549 cells infected by two wild-type (PR8M, SC35M) and one mutated (SC35MΔNS1) strains of Influenza A virus (IAVs). We found that the majority of differentially expressed HERVs (DEHERVS) and genes (DEGs) were up-regulated in the infected cells, with the most significantly enriched biological processes associated with the genes differentially expressed exclusively in SC35MΔNS1 being linked to the immune system. Most DEHERVs in PR8M and SC35M are mammalian apparent LTR retrotransposons, while in SC35MΔNS1, more HERV loci from the HERVW9 group were differentially expressed. Furthermore, up-regulated pairs of HERVs and genes in close chromosomal proximity to each other tended to be associated with immune responses, which implies that specific HERV groups might have the potential to trigger specific gene networks and influence host immunological pathways.
Collapse
Affiliation(s)
- Hengyuan Liu
- Department of Bioinformatics, Technical University of Munich, 85354 Freising, Germany;
| | - Valter Bergant
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (V.B.); (A.P.)
| | - Goar Frishman
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (G.F.); (A.R.)
| | - Andreas Ruepp
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (G.F.); (A.R.)
| | - Andreas Pichlmair
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (V.B.); (A.P.)
- German Center for Infection Research (DZIF), Munich Partner Site, 81675 Munich, Germany
| | - Michelle Vincendeau
- Research Group Endogenous Retroviruses, Institute of Virology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Technical University of Munich, 85354 Freising, Germany;
| |
Collapse
|
11
|
Vandoorn E, Stadejek W, Parys A, Chepkwony S, Chiers K, Van Reeth K. Pathobiology of an NS1-Truncated H3N2 Swine Influenza Virus Strain in Pigs. J Virol 2022; 96:e0051922. [PMID: 35546120 PMCID: PMC9175629 DOI: 10.1128/jvi.00519-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Virus strains in the live attenuated influenza vaccine (LAIV) for swine in the United States that was on the market until 2020 encode a truncated nonstructural protein 1 of 126 amino acids (NS1del126). Their attenuation is believed to be due to an impaired ability to counteract the type I interferon (IFN)-mediated antiviral host response. However, this mechanism has been documented only in vitro for H3N2 strain A/swine/Texas/4199-2/98 NS1del126 (lvTX98), and several cases of clinical respiratory disease in the field were associated with the LAIV strains. We therefore further examined the pathobiology, including type I IFN induction, of lvTX98 in pigs and compared it with IFN induction in pig kidney-15 (PK-15) cells. lvTX98 induced up to 3-fold-higher type I IFN titers than wild-type TX98 (wtTX98) after inoculation of PK-15 cells at a high multiplicity of infection, while virus replication kinetics were similar. Mean nasal lvTX98 excretion by intranasally inoculated pigs was on average 50 times lower than that for wtTX98 but still reached titers of up to 4.3 log10 50% tissue culture infective doses/mL. After intratracheal inoculation, mean lvTX98 titers in the lower respiratory tract were significantly reduced at 18 to 48 h postinoculation (hpi) but similar to wtTX98 titers at 72 hpi. lvTX98 caused milder clinical signs than wtTX98 but induced comparable levels of microscopic and macroscopic lung lesions, peak neutrophil infiltration, and peak type I IFN. Thus, lvTX98 was partly attenuated in pigs, but this could not be associated with higher type I IFN levels. IMPORTANCE Swine influenza A viruses (swIAVs) with a truncated NS1del126 protein were strongly attenuated in previous laboratory-based safety studies and therefore approved for use as LAIVs for swine in the United States. In the field, however, the LAIV strains were detected in diagnostic samples and could regain a wild-type NS1 via reassortment with endemic swIAVs. This suggests a significant degree of LAIV replication and urges further investigation of the level and mechanism of attenuation of these LAIV strains in vivo. Here, we show that H3N2 LAIV strain lvTX98 is only partly attenuated in pigs and is excreted at significant titers after intranasal vaccination. Attenuation and restricted replication of lvTX98 in vivo seemed to be associated with the loss of NS1 functions other than type I IFN antagonism. Our findings can help to explain the occurrence of clinical respiratory disease and reassortment events associated with NS1del126-based LAIV strains in the field.
Collapse
Affiliation(s)
- Elien Vandoorn
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Wojciech Stadejek
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Anna Parys
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sharon Chepkwony
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Koen Chiers
- Laboratory of Veterinary Pathology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kristien Van Reeth
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
12
|
How Influenza A Virus NS1 Deals with the Ubiquitin System to Evade Innate Immunity. Viruses 2021; 13:v13112309. [PMID: 34835115 PMCID: PMC8619935 DOI: 10.3390/v13112309] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
Ubiquitination is a post-translational modification regulating critical cellular processes such as protein degradation, trafficking and signaling pathways, including activation of the innate immune response. Therefore, viruses, and particularly influenza A virus (IAV), have evolved different mechanisms to counteract this system to perform proper infection. Among IAV proteins, the non-structural protein NS1 is shown to be one of the main virulence factors involved in these viral hijackings. NS1 is notably able to inhibit the host's antiviral response through the perturbation of ubiquitination in different ways, as discussed in this review.
Collapse
|
13
|
Evseev D, Magor KE. Molecular Evolution of the Influenza A Virus Non-structural Protein 1 in Interspecies Transmission and Adaptation. Front Microbiol 2021; 12:693204. [PMID: 34671321 PMCID: PMC8521145 DOI: 10.3389/fmicb.2021.693204] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/06/2021] [Indexed: 12/03/2022] Open
Abstract
The non-structural protein 1 (NS1) of influenza A viruses plays important roles in viral fitness and in the process of interspecies adaptation. It is one of the most polymorphic and mutation-tolerant proteins of the influenza A genome, but its evolutionary patterns in different host species and the selective pressures that underlie them are hard to define. In this review, we highlight some of the species-specific molecular signatures apparent in different NS1 proteins and discuss two functions of NS1 in the process of viral adaptation to new host species. First, we consider the ability of NS1 proteins to broadly suppress host protein expression through interaction with CPSF4. This NS1 function can be spontaneously lost and regained through mutation and must be balanced against the need for host co-factors to aid efficient viral replication. Evidence suggests that this function of NS1 may be selectively lost in the initial stages of viral adaptation to some new host species. Second, we explore the ability of NS1 proteins to inhibit antiviral interferon signaling, an essential function for viral replication without which the virus is severely attenuated in any host. Innate immune suppression by NS1 not only enables viral replication in tissues, but also dampens the adaptive immune response and immunological memory. NS1 proteins suppress interferon signaling and effector functions through a variety of protein-protein interactions that may differ from host to host but must achieve similar goals. The multifunctional influenza A virus NS1 protein is highly plastic, highly versatile, and demonstrates a diversity of context-dependent solutions to the problem of interspecies adaptation.
Collapse
Affiliation(s)
| | - Katharine E. Magor
- Department of Biological Sciences, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
Anzaghe M, Kronhart S, Niles MA, Höcker L, Dominguez M, Kochs G, Waibler Z. Type I interferon receptor-independent interferon-α induction upon infection with a variety of negative-strand RNA viruses. J Gen Virol 2021; 102. [PMID: 34269676 DOI: 10.1099/jgv.0.001616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Type I interferons (IFNs) are a first line of defence against viral infections. Upon infection, a first small wave of early type I IFN, mainly IFN-β and particularly IFN-α4, are induced and bind to the type I IFN receptor (IFNAR) to amplify the IFN response. It was shown for several viruses that robust type I IFN responses require this positive feedback loop via the IFNAR. Recently, we showed that infection of IFNAR knockout mice with the orthomyxovirus Thogoto virus lacking the ML open reading frame (THOV(ML-)) results in the expression of unexpected high amounts of type I IFN. To investigate if IFNAR-independent IFN responses are unique for THOV(ML-), we performed infection experiments with several negative-strand RNA viruses using different routes and dosages for infection. A variety of these viruses induced type I IFN responses IFNAR-independently when using the intraperitoneal (i.p.) route for infection. In vitro studies demonstrated that myeloid dendritic cells (mDC) are capable of producing IFNAR-independent IFN-α responses that are dependent on the expression of the adaptor protein mitochondrial antiviral-signalling protein (MAVS) whereas pDC where entirely depending on the IFNAR feedback loop in vitro. Thus, depending on dose and route of infection, the IFNAR feedback loop is not strictly necessary for robust type I IFN expression and an IFNAR-independent type I IFN production might be the rule rather than the exception for infections with numerous negative-strand RNA viruses.
Collapse
Affiliation(s)
- Martina Anzaghe
- Section 3/1 "Product Testing of Immunological Biomedicines", Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Stefanie Kronhart
- Section 3/1 "Product Testing of Immunological Biomedicines", Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Marc A Niles
- Section 3/1 "Product Testing of Immunological Biomedicines", Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Lena Höcker
- Section 3/1 "Product Testing of Immunological Biomedicines", Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Monica Dominguez
- Section 3/1 "Product Testing of Immunological Biomedicines", Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Zoe Waibler
- Section 3/1 "Product Testing of Immunological Biomedicines", Paul-Ehrlich-Institut, D-63225 Langen, Germany
| |
Collapse
|
15
|
Structure and Activities of the NS1 Influenza Protein and Progress in the Development of Small-Molecule Drugs. Int J Mol Sci 2021; 22:ijms22084242. [PMID: 33921888 PMCID: PMC8074201 DOI: 10.3390/ijms22084242] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/18/2021] [Accepted: 04/18/2021] [Indexed: 11/30/2022] Open
Abstract
The influenza virus causes human disease on a global scale and significant morbidity and mortality. The existing vaccination regime remains vulnerable to antigenic drift, and more seriously, a small number of viral mutations could lead to drug resistance. Therefore, the development of a new additional therapeutic small molecule-based anti-influenza virus is urgently required. The NS1 influenza gene plays a pivotal role in the suppression of host antiviral responses, especially by inhibiting interferon (IFN) production and the activities of antiviral proteins, such as dsRNA-dependent serine/threonine-protein kinase R (PKR) and 2′-5′-oligoadenylate synthetase (OAS)/RNase L. NS1 also modulates important aspects of viral RNA replication, viral protein synthesis, and virus replication cycle. Taken together, small molecules that target NS1 are believed to offer a means of developing new anti-influenza drugs.
Collapse
|
16
|
Molecular Dynamics Simulations of Influenza A Virus NS1 Reveal a Remarkably Stable RNA-Binding Domain Harboring Promising Druggable Pockets. Viruses 2020; 12:v12050537. [PMID: 32422922 PMCID: PMC7290946 DOI: 10.3390/v12050537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
The non-structural protein NS1 of influenza A viruses is considered to be the major antagonist of the interferon system and antiviral defenses of the cell. It could therefore represent a suitable target for novel antiviral strategies. As a first step towards the identification of small compounds targeting NS1, we here investigated the druggable potential of its RNA-binding domain since this domain is essential to the biological activities of NS1. We explored the flexibility of the full-length protein by running molecular dynamics simulations on one of its published crystal structures. While the RNA-binding domain structure was remarkably stable along the simulations, we identified a flexible site at the two extremities of the “groove” that is delimited by the antiparallel α-helices that make up its RNA-binding interface. This groove region is able to form potential binding pockets, which, in 60% of the conformations, meet the druggability criteria. We characterized these pockets and identified the residues that contribute to their druggability. All the residues involved in the druggable pockets are essential at the same time to the stability of the RNA-binding domain and to the biological activities of NS1. They are also strictly conserved across the large sequence diversity of NS1, emphasizing the robustness of this search towards the identification of broadly active NS1-targeting compounds.
Collapse
|
17
|
The alternative cap-binding complex is required for antiviral defense in vivo. PLoS Pathog 2019; 15:e1008155. [PMID: 31856218 PMCID: PMC6946169 DOI: 10.1371/journal.ppat.1008155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/07/2020] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Cellular response to environmental challenges requires immediate and precise regulation of transcriptional programs. During viral infections, this includes the expression of antiviral genes that are essential to combat the pathogen. Transcribed mRNAs are bound and escorted to the cytoplasm by the cap-binding complex (CBC). We recently identified a protein complex consisting of NCBP1 and NCBP3 that, under physiological conditions, has redundant function to the canonical CBC, consisting of NCBP1 and NCBP2. Here, we provide evidence that NCBP3 is essential to mount a precise and appropriate antiviral response. Ncbp3-deficient cells allow higher virus growth and elicit a reduced antiviral response, a defect happening on post-transcriptional level. Ncbp3-deficient mice suffered from severe lung pathology and increased morbidity after influenza A virus challenge. While NCBP3 appeared to be particularly important during viral infections, it may be more broadly involved to ensure proper protein expression.
Collapse
|
18
|
Innate Immune Responses to Avian Influenza Viruses in Ducks and Chickens. Vet Sci 2019; 6:vetsci6010005. [PMID: 30634569 PMCID: PMC6466002 DOI: 10.3390/vetsci6010005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Mallard ducks are important natural hosts of low pathogenic avian influenza (LPAI) viruses and many strains circulate in this reservoir and cause little harm. Some strains can be transmitted to other hosts, including chickens, and cause respiratory and systemic disease. Rarely, these highly pathogenic avian influenza (HPAI) viruses cause disease in mallards, while chickens are highly susceptible. The long co-evolution of mallard ducks with influenza viruses has undoubtedly fine-tuned many immunological host–pathogen interactions to confer resistance to disease, which are poorly understood. Here, we compare innate responses to different avian influenza viruses in ducks and chickens to reveal differences that point to potential mechanisms of disease resistance. Mallard ducks are permissive to LPAI replication in their intestinal tissues without overtly compromising their fitness. In contrast, the mallard response to HPAI infection reflects an immediate and robust induction of type I interferon and antiviral interferon stimulated genes, highlighting the importance of the RIG-I pathway. Ducks also appear to limit the duration of the response, particularly of pro-inflammatory cytokine expression. Chickens lack RIG-I, and some modulators of the signaling pathway and may be compromised in initiating an early interferon response, allowing more viral replication and consequent damage. We review current knowledge about innate response mediators to influenza infection in mallard ducks compared to chickens to gain insight into protective immune responses, and open questions for future research.
Collapse
|
19
|
Nogales A, Martinez-Sobrido L, Topham DJ, DeDiego ML. Modulation of Innate Immune Responses by the Influenza A NS1 and PA-X Proteins. Viruses 2018; 10:v10120708. [PMID: 30545063 PMCID: PMC6315843 DOI: 10.3390/v10120708] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 12/14/2022] Open
Abstract
Influenza A viruses (IAV) can infect a broad range of animal hosts, including humans. In humans, IAV causes seasonal annual epidemics and occasional pandemics, representing a serious public health and economic problem, which is most effectively prevented through vaccination. The defense mechanisms that the host innate immune system provides restrict IAV replication and infection. Consequently, to successfully replicate in interferon (IFN)-competent systems, IAV has to counteract host antiviral activities, mainly the production of IFN and the activities of IFN-induced host proteins that inhibit virus replication. The IAV multifunctional proteins PA-X and NS1 are virulence factors that modulate the innate immune response and virus pathogenicity. Notably, these two viral proteins have synergistic effects in the inhibition of host protein synthesis in infected cells, although using different mechanisms of action. Moreover, the control of innate immune responses by the IAV NS1 and PA-X proteins is subject to a balance that can determine virus pathogenesis and fitness, and recent evidence shows co-evolution of these proteins in seasonal viruses, indicating that they should be monitored for enhanced virulence. Importantly, inhibition of host gene expression by the influenza NS1 and/or PA-X proteins could be explored to develop improved live-attenuated influenza vaccines (LAIV) by modulating the ability of the virus to counteract antiviral host responses. Likewise, both viral proteins represent a reasonable target for the development of new antivirals for the control of IAV infections. In this review, we summarize the role of IAV NS1 and PA-X in controlling the antiviral response during viral infection.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, NY 14642, USA.
- Centro de Investigación en Sanidad Animal (CISA)-INIA, Valdeolmos, 28130 Madrid, Spain.
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, NY 14642, USA.
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, NY 14642, USA.
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, NY 14642, USA.
| | - Marta L DeDiego
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, NY 14642, USA.
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, NY 14642, USA.
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
20
|
Hsu ACY. Influenza Virus: A Master Tactician in Innate Immune Evasion and Novel Therapeutic Interventions. Front Immunol 2018; 9:743. [PMID: 29755452 PMCID: PMC5932403 DOI: 10.3389/fimmu.2018.00743] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/26/2018] [Indexed: 12/18/2022] Open
Abstract
Influenza is a contagion that has plagued mankind for many decades, and continues to pose concerns every year, with millions of infections globally. The frequent mutations and recombination of the influenza A virus (IAV) cast a looming threat that antigenically novel strains/subtypes will rise with unpredictable pathogenicity and fear of it evolving into a pandemic strain. There have been four major influenza pandemics, since the beginning of twentieth century, with the great 1918 pandemic being the most severe, killing more than 50 million people worldwide. The mechanisms of IAV infection, host immune responses, and how viruses evade from such defensive responses at the molecular and structural levels have been greatly investigated in the past 30 years. While this has advanced our understanding of virus–host interactions and human immunology, and has led to the development of several antiviral drugs, they have minimal impact on the clinical outcomes of infection. The heavy use of these drugs has also imposed selective pressure on IAV to evolve and develop resistance. Vaccination remains the cornerstone of public health efforts to protect against influenza; however, rapid mass-production of sufficient vaccines is unlikely to occur immediately after the beginning of a pandemic. This, therefore, requires novel therapeutic strategies against this continually emerging infectious virus with higher specificity and cross-reactivity against multiple strains/subtypes of IAVs. This review discusses essential virulence factors of IAVs that determine sustainable human-to-human transmission, the mechanisms of viral hijacking of host cells and subversion of host innate immune responses, and novel therapeutic interventions that demonstrate promising antiviral properties against IAV. This hopefully will promote discussions and investigations on novel avenues of prevention and treatment strategies of influenza, that are effective and cross-protective against multiple strains/subtypes of IAV, in preparation for the advent of future IAVs and pandemics.
Collapse
Affiliation(s)
- Alan Chen-Yu Hsu
- Viruses, Infections/Immunity, Vaccines & Asthma, Hunter Medical Research Institute, Newcastle, NSW, Australia.,Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
21
|
Trapp S, Soubieux D, Lidove A, Esnault E, Lion A, Guillory V, Wacquiez A, Kut E, Quéré P, Larcher T, Ledevin M, Nadan V, Camus-Bouclainville C, Marc D. Major contribution of the RNA-binding domain of NS1 in the pathogenicity and replication potential of an avian H7N1 influenza virus in chickens. Virol J 2018; 15:55. [PMID: 29587792 PMCID: PMC5870492 DOI: 10.1186/s12985-018-0960-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/11/2018] [Indexed: 11/10/2022] Open
Abstract
Background Non-structural protein NS1 of influenza A viruses harbours several determinants of pathogenicity and host-range. However it is still unclear to what extent each of its two structured domains (i.e. RNA-binding domain, RBD, and effector domain, ED) contribute to its various activities. Methods To evaluate the respective contributions of the two domains, we genetically engineered two variants of an H7N1 low pathogenicity avian influenza virus harbouring amino-acid substitutions that impair the functionality of either domain. The RBD- and ED-mutant viruses were compared to their wt- counterpart in vivo and in vitro, notably in chicken infection and avian cell culture models. Results The double substitution R38A-K41A in the RBD dramatically reduced the pathogenicity and replication potential of the virus, whereas the substitution A149V that was considered to abrogate the IFN-antagonistic activity of the effector domain entailed much less effects. While all three viruses initiated the viral life cycle in avian cells, replication of the R38A-K41A virus was severely impaired. This defect was associated with a delayed synthesis of nucleoprotein NP and a reduced accumulation of NS1, which was found to reach a concentration of about 30 micromol.L− 1 in wt-infected cells at 8 h post-infection. When overexpressed in avian lung epithelial cells, both the wt-NS1 and 3841AA-NS1, but not the A149V-NS1, reduced the poly(I:C)-induced activation of the IFN-sensitive chicken Mx promoter. Unexpectedly, the R38A-K41A substitution in the recombinant RBD did not alter its in vitro affinity for a model dsRNA. When overexpressed in avian cells, both the wt- and A149V-NS1s, as well as the individually expressed wt-RBD to a lesser extent, enhanced the activity of the reconstituted viral RNA-polymerase in a minireplicon assay. Conclusions Collectively, our data emphasized the critical importance and essential role of the RNA-binding domain in essential steps of the virus replication cycle, notably expression and translation of viral mRNAs.
Collapse
Affiliation(s)
- Sascha Trapp
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Denis Soubieux
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Alexandra Lidove
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Evelyne Esnault
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Adrien Lion
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Vanaique Guillory
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Alan Wacquiez
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Emmanuel Kut
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Pascale Quéré
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Thibaut Larcher
- INRA UMR 703, APEX, Oniris-La Chantrerie, F-44307, Nantes, France.,LUNAM Université, École Nationale Vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Nantes, France
| | - Mireille Ledevin
- INRA UMR 703, APEX, Oniris-La Chantrerie, F-44307, Nantes, France.,LUNAM Université, École Nationale Vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Nantes, France
| | - Virginie Nadan
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | | | - Daniel Marc
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France. .,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France.
| |
Collapse
|
22
|
Functional Evolution of Influenza Virus NS1 Protein in Currently Circulating Human 2009 Pandemic H1N1 Viruses. J Virol 2017. [PMID: 28637754 DOI: 10.1128/jvi.00721-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 2009, a novel H1N1 influenza virus emerged in humans, causing a global pandemic. It was previously shown that the NS1 protein from this human 2009 pandemic H1N1 (pH1N1) virus was an effective interferon (IFN) antagonist but could not inhibit general host gene expression, unlike other NS1 proteins from seasonal human H1N1 and H3N2 viruses. Here we show that the NS1 protein from currently circulating pH1N1 viruses has evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) with respect to the original protein. Notably, these 6 residue changes restore the ability of pH1N1 NS1 to inhibit general host gene expression, mainly by their ability to restore binding to the cellular factor CPSF30. This is the first report describing the ability of the pH1N1 NS1 protein to naturally acquire mutations that restore this function. Importantly, a recombinant pH1N1 virus containing these 6 amino acid changes in the NS1 protein (pH1N1/NSs-6mut) inhibited host IFN and proinflammatory responses to a greater extent than that with the parental virus (pH1N1/NS1-wt), yet virus titers were not significantly increased in cell cultures or in mouse lungs, and the disease was partially attenuated. The pH1N1/NSs-6mut virus grew similarly to pH1N1/NSs-wt in mouse lungs, but infection with pH1N1/NSs-6mut induced lower levels of proinflammatory cytokines, likely due to a general inhibition of gene expression mediated by the mutated NS1 protein. This lower level of inflammation induced by the pH1N1/NSs-6mut virus likely accounts for the attenuated disease phenotype and may represent a host-virus adaptation affecting influenza virus pathogenesis.IMPORTANCE Seasonal influenza A viruses (IAVs) are among the most common causes of respiratory infections in humans. In addition, occasional pandemics are caused when IAVs circulating in other species emerge in the human population. In 2009, a swine-origin H1N1 IAV (pH1N1) was transmitted to humans, infecting people then and up to the present. It was previously shown that the NS1 protein from the 2009 pandemic H1N1 (pH1N1) virus is not able to inhibit general gene expression. However, currently circulating pH1N1 viruses have evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) that allow the NS1 protein of contemporary pH1N1 strains to inhibit host gene expression, which correlates with its ability to interact with CPSF30. Infection with a recombinant pH1N1 virus encoding these 6 amino acid changes (pH1N1/NSs-6mut) induced lower levels of proinflammatory cytokines, resulting in viral attenuation in vivo This might represent an adaptation of pH1N1 virus to humans.
Collapse
|
23
|
Nogales A, Martinez-Sobrido L, Topham DJ, DeDiego ML. NS1 Protein Amino Acid Changes D189N and V194I Affect Interferon Responses, Thermosensitivity, and Virulence of Circulating H3N2 Human Influenza A Viruses. J Virol 2017; 91:e01930-16. [PMID: 28003482 PMCID: PMC5309952 DOI: 10.1128/jvi.01930-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/11/2016] [Indexed: 11/20/2022] Open
Abstract
Influenza virus NS1 protein is a nonstructural, multifunctional protein that counteracts host innate immune responses, modulating virus pathogenesis. NS1 protein variability in subjects infected with H3N2 influenza A viruses (IAVs) during the 2010/2011 season was analyzed, and amino acid changes in residues 86, 189, and 194 were found. The consequences of these mutations for the NS1-mediated inhibition of IFN responses and the pathogenesis of the virus were evaluated, showing that NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, most probably because these mutations decreased the binding of NS1 to the cleavage and polyadenylation specificity factor 30 (CPSF30). A recombinant A/Puerto Rico/8/34 (PR8) H1N1 virus encoding the H3N2 NS1-D189N protein was slightly attenuated, whereas the virus encoding the H3N2 NS1-V194I protein was further attenuated in mice. The higher attenuation of this virus could not be explained by differences in the ability of the two NS1 proteins to counteract host innate immune responses, indicating that another factor must be responsible. In fact, we showed that the virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive (ts) phenotype, providing a most likely explanation for the stronger attenuation observed. As far as we know, this is the first description of a mutation in NS1 residue 194 conferring a ts phenotype. These studies are relevant in order to identify new residues important for NS1 functions and in human influenza virus surveillance to assess mutations affecting the pathogenicity of circulating viruses.IMPORTANCE Influenza viral infections represent a serious public health problem, with influenza virus causing a contagious respiratory disease that is most effectively prevented through vaccination. The multifunctional nonstructural protein 1 (NS1) is the main viral factor counteracting the host antiviral response. Therefore, influenza virus surveillance to identify new mutations in the NS1 protein affecting the pathogenicity of the circulating viruses is highly important. In this work, we evaluated amino acid variability in the NS1 proteins from H3N2 human seasonal viruses and the effect of the mutations on innate immune responses and virus pathogenesis. NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, and recombinant viruses harboring these mutations were attenuated in a mouse model of influenza infection. Interestingly, a virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive phenotype, further attenuating the virus in vivo.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Marta L DeDiego
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
24
|
Killip MJ, Jackson D, Pérez-Cidoncha M, Fodor E, Randall RE. Single-cell studies of IFN-β promoter activation by wild-type and NS1-defective influenza A viruses. J Gen Virol 2017; 98:357-363. [PMID: 27983470 PMCID: PMC5721924 DOI: 10.1099/jgv.0.000687] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Deletion or truncation of NS1, the principal IFN antagonist of influenza viruses, leads to increased IFN induction during influenza virus infection. We have studied activation of the IFN induction cascade by both wild-type and NS1-defective viruses at the single-cell level using a cell line expressing GFP under the control of the IFN-β promoter and by examining MxA expression. The IFN-β promoter was not activated in all infected cells even during NS1-defective virus infections. Loss of NS1 expression is therefore insufficient per se to induce IFN in an infected cell, and factors besides NS1 expression status must dictate whether the IFN response is activated. The IFN response was efficiently stimulated in these cells following infection with other viruses; the differential IFN response we observe with influenza viruses is therefore not cell specific but is likely due to differences in the nature of the infecting virus particles and their subsequent replication.
Collapse
Affiliation(s)
- M. J Killip
- School of Biology, Biomedical Sciences Research Complex, North Haugh, University of St. Andrews, Fife KY16 9ST, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- *Correspondence: M. J. Killip,
| | - D Jackson
- School of Biology, Biomedical Sciences Research Complex, North Haugh, University of St. Andrews, Fife KY16 9ST, UK
| | - M Pérez-Cidoncha
- School of Biology, Biomedical Sciences Research Complex, North Haugh, University of St. Andrews, Fife KY16 9ST, UK
| | - E Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - R. E Randall
- School of Biology, Biomedical Sciences Research Complex, North Haugh, University of St. Andrews, Fife KY16 9ST, UK
- R. E. Randall,
| |
Collapse
|
25
|
Na W, Lyoo KS, Yoon SW, Yeom M, Kang B, Moon H, Kim HK, Jeong DG, Kim JK, Song D. Attenuation of the virulence of a recombinant influenza virus expressing the naturally truncated NS gene from an H3N8 equine influenza virus in mice. Vet Res 2016; 47:115. [PMID: 27846859 PMCID: PMC5111206 DOI: 10.1186/s13567-016-0400-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/10/2016] [Indexed: 11/29/2022] Open
Abstract
Equine influenza virus (EIV) causes a highly contagious disease in horses and other equids. Recently, we isolated an H3N8 EIV (A/equine/Kyonggi/SA1/2011) from a domestic horse in South Korea that exhibited symptoms of respiratory disease, and found that the EIV strain contained a naturally mutated NS gene segment encoding a truncated NS1 protein. In order to determine whether there was an association between the NS gene truncation and viral virulence, a reverse genetics system was applied to generate various NS gene recombinant viruses using the backbone of the H1N1 A/Puerto Rico/8/1934 (PR/8) virus. In a mouse model, the recombinant PR/8 virus containing the mutated NS gene of the Korean H3N8 EIV strain showed a dramatically reduced virulence: it induced no weight loss, no clinical signs and no histopathological lesions. However, the mice infected with the recombinant viruses with NS genes of PR/8 and H3N8 A/equine/2/Miami/1963 showed severe clinical signs including significant weight loss and 100% mortality. In addition, the levels of the pro-inflammatory cytokines; IL-6, CCL5, and IFN-γ, in the lungs of mice infected with the recombinant viruses expressing a full-length NS1 were significantly higher than those of mice infected with the virus with the NS gene from the Korean H3N8 EIV strain. In this study, our results suggest that the C-terminal moiety of NS1 contains a number of virulence determinants and might be a suitable target for the development of a vaccine candidate against equine influenza.
Collapse
Affiliation(s)
- Woonsung Na
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Kwang-Soo Lyoo
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Republic of Korea
| | - Sun-Woo Yoon
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Bokyu Kang
- Research Unit, Green Cross Veterinary Products, Yong-in, Republic of Korea
| | - Hyoungjoon Moon
- Research Unit, Green Cross Veterinary Products, Yong-in, Republic of Korea
| | - Hye Kwon Kim
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Republic of Korea
| | - Dae Gwin Jeong
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Republic of Korea
| | - Jeong-Ki Kim
- College of Pharmacy, Korea University, Sejong, Republic of Korea.
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong, Republic of Korea.
| |
Collapse
|
26
|
DeDiego ML, Nogales A, Lambert-Emo K, Martinez-Sobrido L, Topham DJ. NS1 Protein Mutation I64T Affects Interferon Responses and Virulence of Circulating H3N2 Human Influenza A Viruses. J Virol 2016; 90:9693-9711. [PMID: 27535054 PMCID: PMC5068522 DOI: 10.1128/jvi.01039-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/07/2016] [Indexed: 01/03/2023] Open
Abstract
Influenza NS1 protein is the main viral protein counteracting host innate immune responses, allowing the virus to efficiently replicate in interferon (IFN)-competent systems. In this study, we analyzed NS1 protein variability within influenza A (IAV) H3N2 viruses infecting humans during the 2012-2013 season. We also evaluated the impact of the mutations on the ability of NS1 proteins to inhibit host innate immune responses and general gene expression. Surprisingly, a previously unidentified mutation in the double-stranded RNA (dsRNA)-binding domain (I64T) decreased NS1-mediated general inhibition of host protein synthesis by decreasing its interaction with cleavage and polyadenylation specificity factor 30 (CPSF30), leading to increased innate immune responses after viral infection. Notably, a recombinant A/Puerto Rico/8/34 H1N1 virus encoding the H3N2 NS1-T64 protein was highly attenuated in mice, most likely because of its ability to induce higher antiviral IFN responses at early times after infection and because this virus is highly sensitive to the IFN-induced antiviral state. Interestingly, using peripheral blood mononuclear cells (PBMCs) collected at the acute visit (2 to 3 days after infection), we show that the subject infected with the NS1-T64 attenuated virus has diminished responses to interferon and to interferon induction, suggesting why this subject could be infected with this highly IFN-sensitive virus. These data demonstrate the importance of influenza virus surveillance in identifying new mutations in the NS1 protein, affecting its ability to inhibit innate immune responses and, as a consequence, the pathogenicity of the virus. IMPORTANCE Influenza A and B viruses are one of the most common causes of respiratory infections in humans, causing 1 billion infections and between 300,000 and 500,000 deaths annually. Influenza virus surveillance to identify new mutations in the NS1 protein affecting innate immune responses and, as a consequence, the pathogenicity of the circulating viruses is highly relevant. Here, we analyzed amino acid variability in the NS1 proteins from human seasonal viruses and the effect of the mutations in innate immune responses and virus pathogenesis. A previously unidentified mutation in the dsRNA-binding domain decreased NS1-mediated general inhibition of host protein synthesis and the interaction of the protein with CPSF30. This mutation led to increased innate immune responses after viral infection, augmented IFN sensitivity, and virus attenuation in mice. Interestingly, using PBMCs, the subject infected with the virus encoding the attenuating mutation induced decreased antiviral responses, suggesting why this subject could be infected with this virus.
Collapse
MESH Headings
- A549 Cells
- Animals
- Antiviral Agents/pharmacology
- Cell Line
- Cell Line, Tumor
- Chlorocebus aethiops
- Cleavage And Polyadenylation Specificity Factor/genetics
- HEK293 Cells
- Humans
- Immune Evasion/drug effects
- Immune Evasion/genetics
- Immunity, Innate/genetics
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H3N2 Subtype/drug effects
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/pathogenicity
- Influenza, Human/virology
- Interferons/pharmacology
- Leukocytes, Mononuclear/virology
- Mutation/genetics
- RNA, Double-Stranded/genetics
- Vero Cells
- Viral Nonstructural Proteins/genetics
- Virulence/drug effects
Collapse
Affiliation(s)
- Marta L DeDiego
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, USA Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Kris Lambert-Emo
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, USA Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, USA Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
27
|
Fluorescence-Activated Cell Sorting-Based Analysis Reveals an Asymmetric Induction of Interferon-Stimulated Genes in Response to Seasonal Influenza A Virus. J Virol 2015; 89:6982-93. [PMID: 25903337 DOI: 10.1128/jvi.00857-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/18/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Influenza A virus (IAV) infection provokes an antiviral response involving the expression of type I and III interferons (IFN) and IFN-stimulated genes (ISGs) in infected cell cultures. However, the spatiotemporal dynamics of the IFN reaction are incompletely understood, as previous studies investigated mainly the population responses of virus-infected cultures, although substantial cell-to-cell variability has been documented. We devised a fluorescence-activated cell sorting-based assay to simultaneously quantify expression of viral antigens and ISGs, such as ISG15, MxA, and IFIT1, in IAV-infected cell cultures at the single-cell level. This approach revealed that seasonal IAV triggers an unexpected asymmetric response, as the major cell populations expressed either viral antigen or ISG, but rarely both. Further investigations identified a role of the viral NS1 protein in blocking ISG expression in infected cells, which surprisingly did not reduce paracrine IFN signaling to noninfected cells. Interestingly, viral ISG control was impaired in cultures infected with avian-origin IAV, including the H7N9 virus from eastern China. This phenotype was traced back to polymorphic NS1 amino acids known to be important for stable binding of the polyadenylation factor CPSF30 and concomitant suppression of host cell gene expression. Most significantly, mutation of two amino acids within the CPSF30 attachment site of NS1 from seasonal IAV diminished the strict control of ISG expression in infected cells and substantially attenuated virus replication. In conclusion, our approach revealed an asymmetric, NS1-dependent ISG induction in cultures infected with seasonal IAV, which appears to be essential for efficient virus propagation. IMPORTANCE Interferons are expressed by infected cells in response to IAV infection and play important roles in the antiviral immune response by inducing hundreds of interferon-stimulated genes (ISGs). Unlike many previous studies, we investigated the ISG response at the single-cell level, enabling novel insights into this virus-host interaction. Hence, cell cultures infected with seasonal IAV displayed an asymmetric ISG induction that was confined almost exclusively to noninfected cells. In comparison, ISG expression was observed in larger cell populations infected with avian-origin IAV, suggesting a more resolute antiviral response to these strains. Strict control of ISG expression by seasonal IAV was explained by the binding of the viral NS1 protein to the polyadenylation factor CPSF30, which reduces host cell gene expression. Mutational disruption of CPSF30 binding within NS1 concomitantly attenuated ISG control and replication of seasonal IAV, illustrating the importance of maintaining an asymmetric ISG response for efficient virus propagation.
Collapse
|
28
|
Ngunjiri JM, Ali A, Boyaka P, Marcus PI, Lee CW. In vivo assessment of NS1-truncated influenza virus with a novel SLSYSINWRH motif as a self-adjuvanting live attenuated vaccine. PLoS One 2015; 10:e0118934. [PMID: 25790187 PMCID: PMC4366013 DOI: 10.1371/journal.pone.0118934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/07/2015] [Indexed: 12/12/2022] Open
Abstract
Mutants of influenza virus that encode C-terminally truncated NS1 proteins (NS1-truncated mutants) characteristically induce high interferon responses. The dual activity of interferon in blocking virus replication and enhancing the development of adaptive immune responses makes these mutants promising as self-adjuvanting live-attenuated influenza vaccine (LAIV) candidates. Yet, among the NS1-truncated mutants, the length of NS1 is not directly correlated with the interferon-inducing efficiency, the level of attenuation, or effectiveness as LAIV. Using quantitative in vitro biologically active particle subpopulation analysis as a tool to identify potential LAIV candidates from a pool of NS1-truncated mutants, we previously predicted that a NS1-truncated mutant pc2, which was less effective as a LAIV in chickens, would be sufficiently effective as a LAIV in mammalian hosts. In this study, we confirmed that pc2 protected mice and pigs against heterologous virus challenge in terms of preventing clinical signs and reducing virus shedding. pc2 expresses a unique SLSYSINWRH motif at the C-terminus of its truncated NS1. Deletion of the SLSYSINWRH motif led to ~821-fold reduction in the peak yield of type I interferon induced in murine cells. Furthermore, replacement of the SLSYSINWRH motif with the wildtype MVKMDQAIMD sequence did not restore the interferon-inducing efficiency. The diminished interferon induction capacity in the absence of the SLSYSINWRH motif was similar to that observed in other mutants which are less effective LAIV candidates. Remarkably, pc2 induced 16-fold or more interferon in human lung and monkey kidney cells compared to the temperature-sensitive, cold-adapted Ann Arbor virus that is currently used as a master backbone for LAIVs such as FluMist. Although the mechanism by which the SLSYSINWRH motif regulates the vaccine properties of pc2 has not been elucidated, this motif has potential use in engineering self-adjuvanting NS1-truncated-based LAIVs.
Collapse
Affiliation(s)
- John M Ngunjiri
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States of America; Food Animal Health Research Program, The Ohio State University, Wooster, OH, United States of America
| | - Ahmed Ali
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt; Department of Preventive Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Prosper Boyaka
- Department of Veterinary Bioscience, The Ohio State University, Columbus, OH, United States of America
| | - Philip I Marcus
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States of America
| | - Chang-Won Lee
- Food Animal Health Research Program, The Ohio State University, Wooster, OH, United States of America; Department of Preventive Medicine, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
29
|
Tawaratsumida K, Phan V, Hrincius ER, High AA, Webby R, Redecke V, Häcker H. Quantitative proteomic analysis of the influenza A virus nonstructural proteins NS1 and NS2 during natural cell infection identifies PACT as an NS1 target protein and antiviral host factor. J Virol 2014; 88:9038-48. [PMID: 24899174 PMCID: PMC4136281 DOI: 10.1128/jvi.00830-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/24/2014] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Influenza A virus (IAV) replication depends on the interaction of virus proteins with host factors. The viral nonstructural protein 1 (NS1) is essential in this process by targeting diverse cellular functions, including mRNA splicing and translation, cell survival, and immune defense, in particular the type I interferon (IFN-I) response. In order to identify host proteins targeted by NS1, we established a replication-competent recombinant IAV that expresses epitope-tagged forms of NS1 and NS2, which are encoded by the same gene segment, allowing purification of NS proteins during natural cell infection and analysis of interacting proteins by quantitative mass spectrometry. We identified known NS1- and NS2-interacting proteins but also uncharacterized proteins, including PACT, an important cofactor for the IFN-I response triggered by the viral RNA-sensor RIG-I. We show here that NS1 binds PACT during virus replication and blocks PACT/RIG-I-mediated activation of IFN-I, which represents a critical event for the host defense. Protein interaction and interference with IFN-I activation depended on the functional integrity of the highly conserved RNA binding domain of NS1. A mutant virus with deletion of NS1 induced high levels of IFN-I in control cells, as expected; in contrast, shRNA-mediated knockdown of PACT compromised IFN-I activation by the mutant virus, but not wild-type virus, a finding consistent with the interpretation that PACT (i) is essential for IAV recognition and (ii) is functionally compromised by NS1. Together, our data describe a novel approach to identify virus-host protein interactions and demonstrate that NS1 interferes with PACT, whose function is critical for robust IFN-I production. IMPORTANCE Influenza A virus (IAV) is an important human pathogen that is responsible for annual epidemics and occasional devastating pandemics. Viral replication and pathogenicity depends on the interference of viral factors with components of the host defense system, particularly the type I interferon (IFN-I) response. The viral NS1 protein is known to counteract virus recognition and IFN-I production, but the molecular mechanism is only partially defined. We used a novel proteomic approach to identify host proteins that are bound by NS1 during virus replication and identified the protein PACT, which had previously been shown to be involved in virus-mediated IFN-I activation. We find that NS1 prevents PACT from interacting with an essential component of the virus recognition pathway, RIG-I, thereby disabling efficient IFN-I production. These observations provide an important piece of information on how IAV efficiently counteracts the host immune defense.
Collapse
Affiliation(s)
- Kazuki Tawaratsumida
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Van Phan
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Eike R Hrincius
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anthony A High
- Proteomics Core Facility, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Vanessa Redecke
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Hans Häcker
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
30
|
Duck MDA5 functions in innate immunity against H5N1 highly pathogenic avian influenza virus infections. Vet Res 2014; 45:66. [PMID: 24939427 PMCID: PMC4079828 DOI: 10.1186/1297-9716-45-66] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 05/27/2014] [Indexed: 02/08/2023] Open
Abstract
Melanoma differentiation-associated gene 5 (MDA5) is an important intracellular receptor that recognizes long molecules of viral double-stranded RNA in innate immunity. To understand the mechanism of duck MDA5-mediated innate immunity, we cloned the MDA5 cDNA from the Muscovy duck (Cairina moschata). Quantitative real-time PCR analysis indicates that duck MDA5 mRNA was constitutively expressed in all sampled tissues. A significant increase of MDA5 mRNA was detected in the brain, spleen and lungs of ducks after infection with an H5N1 highly pathogenic avian influenza virus (HPAIV). We investigated the role of the predicted functional domains of MDA5. The results indicate the caspase activation and recruitment domain (CARD) of duck MDA5 had a signal transmission function through IRF-7-dependent signaling pathway. Overexpression of the CARD strongly activated the chicken IFN-β promoter and upregulated the mRNA expression of antiviral molecules (such as OAS, PKR and Mx), proinflammatory cytokines (such as IL-2, IL-6, IFN-α and IFN-γ, but not IL-1β and IL-8) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLR) (RIG-I and LGP2) without exogenous stimulation. We also demonstrate the NS1 of the H5N1 HPAIV inhibited the duck MDA5-mediated signaling pathway in vitro. These results suggest that duck MDA5 is an important receptor for inducing antiviral activity in the host immune response of ducks.
Collapse
|
31
|
Pérez-Cidoncha M, Killip MJ, Asensio VJ, Fernández Y, Bengoechea JA, Randall RE, Ortín J. Generation of replication-proficient influenza virus NS1 point mutants with interferon-hyperinducer phenotype. PLoS One 2014; 9:e98668. [PMID: 24887174 PMCID: PMC4041880 DOI: 10.1371/journal.pone.0098668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/05/2014] [Indexed: 12/24/2022] Open
Abstract
The NS1 protein of influenza A viruses is the dedicated viral interferon (IFN)-antagonist. Viruses lacking NS1 protein expression cannot multiply in normal cells but are viable in cells deficient in their ability to produce or respond to IFN. Here we report an unbiased mutagenesis approach to identify positions in the influenza A NS1 protein that modulate the IFN response upon infection. A random library of virus ribonucleoproteins containing circa 40 000 point mutants in NS1 were transferred to infectious virus and amplified in MDCK cells unable to respond to interferon. Viruses that activated the interferon (IFN) response were subsequently selected by their ability to induce expression of green-fluorescent protein (GFP) following infection of A549 cells bearing an IFN promoter-dependent GFP gene. Using this approach we isolated individual mutant viruses that replicate to high titers in IFN-compromised cells but, compared to wild type viruses, induced higher levels of IFN in IFN-competent cells and had a reduced capacity to counteract exogenous IFN. Most of these viruses contained not previously reported NS1 mutations within either the RNA-binding domain, the effector domain or the linker region between them. These results indicate that subtle alterations in NS1 can reduce its effectiveness as an IFN antagonist without affecting the intrinsic capacity of the virus to multiply. The general approach reported here may facilitate the generation of replication-proficient, IFN-inducing virus mutants, that potentially could be developed as attenuated vaccines against a variety of viruses.
Collapse
Affiliation(s)
- Maite Pérez-Cidoncha
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
- Ciber de Enfermedades Respiratorias (ISCIII), Madrid, Spain
| | - Marian J. Killip
- School of Biology, Centre for Biomolecular Sciences, University of St Andrews, St Andrews, United Kingdom
| | - Víctor J. Asensio
- Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Bunyola, Mallorca, Spain
| | - Yolanda Fernández
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
- Ciber de Enfermedades Respiratorias (ISCIII), Madrid, Spain
| | - José A. Bengoechea
- Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Bunyola, Mallorca, Spain
- Ciber de Enfermedades Respiratorias (ISCIII), Madrid, Spain
| | - Richard E. Randall
- School of Biology, Centre for Biomolecular Sciences, University of St Andrews, St Andrews, United Kingdom
| | - Juan Ortín
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
- Ciber de Enfermedades Respiratorias (ISCIII), Madrid, Spain
| |
Collapse
|
32
|
Trapp S, Soubieux D, Marty H, Esnault E, Hoffmann TW, Chandenier M, Lion A, Kut E, Quéré P, Larcher T, Ledevin M, Munier S, Naffakh N, Marc D. Shortening the unstructured, interdomain region of the non-structural protein NS1 of an avian H1N1 influenza virus increases its replication and pathogenicity in chickens. J Gen Virol 2014; 95:1233-1243. [DOI: 10.1099/vir.0.063776-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Currently circulating H5N1 influenza viruses have undergone a complex evolution since the appearance of their progenitor A/Goose/Guangdong/1/96 in 1996. After the eradication of the H5N1 viruses that emerged in Hong Kong in 1997 (HK/97 viruses), new genotypes of H5N1 viruses emerged in the same region in 2000 that were more pathogenic for both chickens and mice than HK/97 viruses. These, as well as virtually all highly pathogenic H5N1 viruses since 2000, harbour a deletion of aa 80–84 in the unstructured region of the non-structural (NS) protein NS1 linking its RNA-binding domain to its effector domain. NS segments harbouring this mutation have since been found in non-H5N1 viruses and we asked whether this 5 aa deletion could have a general effect not limited to the NS1 of H5N1 viruses. We genetically engineered this deletion in the NS segment of a duck-origin avian H1N1 virus, and compared the in vivo and in vitro properties of the WT and NSdel8084 viruses. In experimentally infected chickens, the NSdel8084 virus showed both an increased replication potential and an increased pathogenicity. This in vivo phenotype was correlated with a higher replicative efficiency in vitro, both in embryonated eggs and in a chicken lung epithelial cell line. Our data demonstrated that the increased replicative potential conferred by this small deletion was a general feature not restricted to NS1 from H5N1 viruses and suggested that viruses acquiring this mutation may be selected positively in the future.
Collapse
Affiliation(s)
- Sascha Trapp
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Denis Soubieux
- Equipe BioVA, UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Hélène Marty
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Evelyne Esnault
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Thomas W. Hoffmann
- Equipe BioVA, UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
| | - Margaux Chandenier
- Equipe BioVA, UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
| | - Adrien Lion
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Emmanuel Kut
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Pascale Quéré
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Thibaut Larcher
- LUNAM Université, École Nationale Vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique (Oniris), 44307 Nantes, France
- INRA UMR 703, APEX, Oniris-La Chantrerie, 44307 Nantes, France
| | - Mireille Ledevin
- LUNAM Université, École Nationale Vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique (Oniris), 44307 Nantes, France
- INRA UMR 703, APEX, Oniris-La Chantrerie, 44307 Nantes, France
| | - Sandie Munier
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, EA302, 75015 Paris, France
- CNRS, UMR3569, 75015 Paris, France
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, 75015 Paris, France
| | - Nadia Naffakh
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, EA302, 75015 Paris, France
- CNRS, UMR3569, 75015 Paris, France
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, 75015 Paris, France
| | - Daniel Marc
- Equipe BioVA, UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| |
Collapse
|
33
|
STAT1β is not dominant negative and is capable of contributing to gamma interferon-dependent innate immunity. Mol Cell Biol 2014; 34:2235-48. [PMID: 24710278 DOI: 10.1128/mcb.00295-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The transcription factor STAT1 is essential for interferon (IFN)-mediated immunity in humans and mice. STAT1 function is tightly regulated, and both loss- and gain-of-function mutations result in severe immune diseases. The two alternatively spliced isoforms, STAT1α and STAT1β, differ with regard to a C-terminal transactivation domain, which is absent in STAT1β. STAT1β is considered to be transcriptionally inactive and to be a competitive inhibitor of STAT1α. To investigate the functions of the STAT1 isoforms in vivo, we generated mice deficient for either STAT1α or STAT1β. As expected, the functions of STAT1α and STAT1β in IFN-α/β- and IFN-λ-dependent antiviral activity are largely redundant. In contrast to the current dogma, however, we found that STAT1β is transcriptionally active in response to IFN-γ. In the absence of STAT1α, STAT1β shows more prolonged IFN-γ-induced phosphorylation and promoter binding. Both isoforms mediate protective, IFN-γ-dependent immunity against the bacterium Listeria monocytogenes, although with remarkably different efficiencies. Our data shed new light on the potential contributions of the individual STAT1 isoforms to STAT1-dependent immune responses. Knowledge of STAT1β's function will help fine-tune diagnostic approaches and help design more specific strategies to interfere with STAT1 activity.
Collapse
|
34
|
An unbiased genetic screen reveals the polygenic nature of the influenza virus anti-interferon response. J Virol 2014; 88:4632-46. [PMID: 24574395 PMCID: PMC3993829 DOI: 10.1128/jvi.00014-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Influenza A viruses counteract the cellular innate immune response at several steps, including blocking RIG I-dependent activation of interferon (IFN) transcription, interferon (IFN)-dependent upregulation of IFN-stimulated genes (ISGs), and the activity of various ISG products; the multifunctional NS1 protein is responsible for most of these activities. To determine the importance of other viral genes in the interplay between the virus and the host IFN response, we characterized populations and selected mutants of wild-type viruses selected by passage through non-IFN-responsive cells. We reasoned that, by allowing replication to occur in the absence of the selection pressure exerted by IFN, the virus could mutate at positions that would normally be restricted and could thus find new optimal sequence solutions. Deep sequencing of selected virus populations and individual virus mutants indicated that nonsynonymous mutations occurred at many phylogenetically conserved positions in nearly all virus genes. Most individual mutants selected for further characterization induced IFN and ISGs and were unable to counteract the effects of exogenous IFN, yet only one contained a mutation in NS1. The relevance of these mutations for the virus phenotype was verified by reverse genetics. Of note, several virus mutants expressing intact NS1 proteins exhibited alterations in the M1/M2 proteins and accumulated large amounts of deleted genomic RNAs but nonetheless replicated to high titers. This suggests that the overproduction of IFN inducers by these viruses can override NS1-mediated IFN modulation. Altogether, the results suggest that influenza viruses replicating in IFN-competent cells have tuned their complete genomes to evade the cellular innate immune system and that serial replication in non-IFN-responsive cells allows the virus to relax from these constraints and find a new genome consensus within its sequence space. IMPORTANCE In natural virus infections, the production of interferons leads to an antiviral state in cells that effectively limits virus replication. The interferon response places considerable selection pressure on viruses, and they have evolved a variety of ways to evade it. Although the influenza virus NS1 protein is a powerful interferon antagonist, the contributions of other viral genes to interferon evasion have not been well characterized. Here, we examined the effects of alleviating the selection pressure exerted by interferon by serially passaging influenza viruses in cells unable to respond to interferon. Viruses that grew to high titers had mutations at many normally conserved positions in nearly all genes and were not restricted to the NS1 gene. Our results demonstrate that influenza viruses have fine-tuned their entire genomes to evade the interferon response, and by removing interferon-mediated constraints, viruses can mutate at genome positions normally restricted by the interferon response.
Collapse
|
35
|
Abstract
UNLABELLED NS1 of influenza A virus is a potent antagonist of host antiviral interferon responses. This multifunctional protein with two distinctive domains, an RNA-binding domain (RBD) and an effector domain (ED) separated by a linker region (LR), is implicated in replication, pathogenesis, and host range. Although the structures of individual domains of NS1 from different strains of influenza viruses have been reported, the only structure of full-length NS1 available to date is from an H5N1 strain (A/Vietnam/1203/2004). By carrying out crystallographic analyses of full-length H6N6-NS1 (A/blue-winged teal/MN/993/1980) and an LR deletion mutant, combined with mutational analysis, we show here that these full-length NS1 structures provide an exquisite structural sampling of various conformational states of NS1 that based on the orientation of the ED with respect to RBD can be summarized as "open," "semi-open," and "closed" conformations. Our studies show that preference for these states is clearly dictated by determinants such as linker length, residue composition at position 71, and a mechanical hinge, providing a structural basis for strain-dependent functional variations in NS1. Because of the flexibility inherent in the LR, any particular NS1 could sample the conformational space around these states to engage ED in different quaternary interactions so that it may participate in specific protein-protein or protein-RNA interactions to allow for the known multifunctionality of NS1. We propose that such conformational plasticity provides a mechanism for autoregulating NS1 functions, depending on its temporal distribution, posttranslational modifications, and nuclear or cellular localization, during the course of virus infection. IMPORTANCE NS1 of influenza A virus is a multifunctional protein associated with numerous strain-specific regulatory functions during viral infection, including conferring resistance to antiviral interferon induction, replication, pathogenesis, virulence, and host range. NS1 has two domains, an RNA-binding domain and an effector domain separated by a linker. To date, the only full-length NS1 structure available is that from an H5N1 strain (A/Vietnam/1203/2004). Here, we determined crystal structures of the wild type and a linker region mutant of the H6N6 NS1 (A/blue-winged teal/MN/993/1980), which together with the previously determined H5N1 NS1 structure show that NS1 exhibits significant strain-dependent structural polymorphism due to variations in linker length, residue composition at position 71, and a mechanical hinge. Such a structural polymorphism may be the basis for strain-specific functions associated with NS1.
Collapse
|
36
|
Belser JA, Tumpey TM. Mammalian models for the study of H7 virus pathogenesis and transmission. Curr Top Microbiol Immunol 2014; 385:275-305. [PMID: 24996862 DOI: 10.1007/82_2014_383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mammalian models, most notably the mouse and ferret, have been instrumental in the assessment of avian influenza virus pathogenicity and transmissibility, and have been used widely to characterize the molecular determinants that confer H5N1 virulence in mammals. However, while H7 influenza viruses have typically been associated with conjunctivitis and/or mild respiratory disease in humans, severe disease and death is also possible, as underscored by the recent emergence of H7N9 viruses in China. Despite the public health need to understand the pandemic potential of this virus subtype, H7 virus pathogenesis and transmission has not been as extensively studied. In this review, we discuss the heterogeneity of H7 subtype viruses isolated from humans, and the characterization of mammalian models to study the virulence of H7 subtype viruses associated with human infection, including viruses of both high and low pathogenicity and following multiple inoculation routes. The use of the ferret transmission model to assess the influence of receptor binding preference among contemporary H7 influenza viruses is described. These models have enabled the study of preventative and therapeutic agents, including vaccines and antivirals, to reduce disease burden, and have permitted a greater appreciation that not all highly pathogenic influenza viruses are created equal.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, MS G-16, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30333, USA
| | | |
Collapse
|
37
|
Woo HM, Kim KS, Lee JM, Shim HS, Cho SJ, Lee WK, Ko HW, Keum YS, Kim SY, Pathinayake P, Kim CJ, Jeong YJ. Single-stranded DNA aptamer that specifically binds to the influenza virus NS1 protein suppresses interferon antagonism. Antiviral Res 2013; 100:337-45. [PMID: 24055449 DOI: 10.1016/j.antiviral.2013.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 09/06/2013] [Accepted: 09/08/2013] [Indexed: 12/24/2022]
Abstract
Non-structural protein 1 (NS1) of the influenza A virus (IAV) inhibits the host's innate immune response by suppressing the induction of interferons (IFNs). Therefore, blocking NS1 activity can be a potential strategy in the development of antiviral agents against IAV infection. In the present study, we selected a single-stranded DNA aptamer specific to the IAV NS1 protein after 15 cycles of systematic evolution of ligands by exponential enrichment (SELEX) procedure and examined the ability of the selected aptamer to inhibit the function of NS1. The selected aptamer binds to NS1 with a Kd of 18.91±3.95nM and RNA binding domain of NS1 is determined to be critical for the aptamer binding. The aptamer has a G-rich sequence in the random sequence region and forms a G-quadruplex structure. The localization of the aptamer bound to NS1 in cells was determined by confocal images, and flow cytometry analysis further demonstrated that the selected aptamer binds specifically to NS1. In addition, luciferase reporter gene assay, quantitative RT-PCR, and enzyme-linked immunosorbent assay (ELISA) experiments demonstrated that the selected aptamer had the ability to induce IFN-β by suppressing the function of NS1. Importantly, we also found that the selected aptamer was able to inhibit the viral replication without affecting cell viability. These results indicate that the selected ssDNA aptamer has strong potential to be further developed as a therapeutic agent against IAV.
Collapse
Affiliation(s)
- Hye-Min Woo
- Department of Bio and Nanochemistry, Kookmin University, Seoul 136-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Thakar J, Schmid S, Duke JL, García-Sastre A, Kleinstein SH. Overcoming NS1-mediated immune antagonism involves both interferon-dependent and independent mechanisms. J Interferon Cytokine Res 2013; 33:700-8. [PMID: 23772952 DOI: 10.1089/jir.2012.0113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To ensure survival, our immune system must overcome the action of pathogen-encoded immune antagonists, such as influenza A nonstructural protein-1 (NS1). NS1 subverts the host interferon (IFN) response at multiple levels and blocks the induction of IFN-β, a critical antiviral cytokine. This immune antagonism can be overcome in some cases. It has been shown that IFN-β is upregulated by 48 h in the lungs of wild-type C57BL/6 mice infected with influenza A. In contrast, it is shown here that IFNB1 continues to be repressed in IFNAR1(-/-) IL28Rα(-/-) mice, which are deficient in Type-I and III IFN signaling, implying induction of IFNB1 depends on effective IFN signaling. Despite the complete lack of IFN signaling in this system, some IFN stimulated genes (ISGs) were induced following infection with a Flu strain lacking NS1. While the expression of these viral stress-inducible genes (VSIGs) was initially repressed following infection with wild-type Flu, many of these genes became upregulated by 48 h postinfection. These results demonstrate the existence of IFN-independent mechanisms that can overcome NS1-mediated immune antagonism of VSIGs.
Collapse
Affiliation(s)
- Juilee Thakar
- 1 Department of Pathology, Yale School of Medicine , New Haven, Connecticut
| | | | | | | | | |
Collapse
|
39
|
Visualizing the beta interferon response in mice during infection with influenza A viruses expressing or lacking nonstructural protein 1. J Virol 2013; 87:6925-30. [PMID: 23576514 DOI: 10.1128/jvi.00283-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The innate host defense against influenza virus is largely dependent on the type I interferon (IFN) system. However, surprisingly little is known about the cellular source of IFN in the infected lung. To clarify this question, we employed a reporter mouse that contains the firefly luciferase gene in place of the IFN-β-coding region. IFN-β-producing cells were identified either by simultaneous immunostaining of lungs for luciferase and cellular markers or by generating conditional reporter mice that express luciferase exclusively in defined cell types. Two different strains of influenza A virus were employed that either do or do not code for nonstructural protein 1 (NS1), which strongly suppresses innate immune responses of infected cells. We found that epithelial cells and lung macrophages, which represent the prime host cells for influenza viruses, showed vigorous IFN-β responses which, however, were severely reduced and delayed if the infecting virus was able to produce NS1. Interestingly, CD11c(+) cell populations that were either expressing or lacking macrophage markers produced the bulk of IFN-β at 48 h after infection with wild-type influenza A virus. Our results demonstrate that the virus-encoded IFN-antagonistic factor NS1 disarms specifically epithelial cells and lung macrophages, which otherwise would serve as main mediators of the early response against infection by influenza virus.
Collapse
|
40
|
Reassortment of NS segments modifies highly pathogenic avian influenza virus interaction with avian hosts and host cells. J Virol 2013; 87:5362-71. [PMID: 23468508 DOI: 10.1128/jvi.02969-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 have caused numerous outbreaks in diverse poultry species and rising numbers of human infections. Both HPAIV subtypes support a growing concern of a pandemic outbreak, specifically via the avian-human link. Natural reassortment of both HPAIV subtypes is a possible event with unpredictable outcome for virulence and host specificity of the progeny virus for avian and mammalian species. NS reassortment of H5N1 HPAIV viruses in the background of A/FPV/Rostock/1934 (H7N1) HPAIV has been shown to change virus replication kinetics and host cell responses in mammalian cells. However, not much is known about the virus-host interaction of such viruses in avian species. In the present study, we show that the NS segment of A/Vietnam/1203/2004 (FPV NS VN, H5N1) HPAIV significantly altered the characteristics of the H7 prototype HPAIV in tracheal organ cultures (TOC) of chicken and turkey in vitro, with decreased replication efficiency accompanied by increased induction of type I interferon (IFN) and apoptosis. Furthermore, species-specific differences between chicken and turkey were demonstrated. Interestingly, NS-reassortant FPV NS VN showed an overall highly pathogenic phenotype, with increased virulence and replication potential compared to the wild-type virus after systemic infection of chicken and turkey embryos. Our data demonstrate that single reassortment of an H5-type NS into an H7-type HPAIV significantly changed virus replication abilities and influenced the avian host cell response without prior adaptation.
Collapse
|
41
|
Matthaei M, Budt M, Wolff T. Highly pathogenic H5N1 influenza A virus strains provoke heterogeneous IFN-α/β responses that distinctively affect viral propagation in human cells. PLoS One 2013; 8:e56659. [PMID: 23451066 PMCID: PMC3581526 DOI: 10.1371/journal.pone.0056659] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 01/14/2013] [Indexed: 12/24/2022] Open
Abstract
The fatal transmissions of highly pathogenic avian influenza A viruses (IAV) of the H5N1 subtype to humans and high titer replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While type I interferons (IFN-α/β) are well described to contribute to the species barrier of many zoonotic viruses, current data to the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined IFN-α/β gene activation by different avian and human H5N1 isolates, if the IFN-α/β response restricts H5N1 growth and whether the different strains were equally capable to regulate the IFN-α/β system via their IFN-antagonistic NS1 proteins. Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little IFN-β, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion. Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the growth of all strains in human cells. Moreover, IFN-α/β activation by all strains depended on retinoic acid-inducible gene I excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins suppressed IFN-α/β induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-α/β activation in human host cells. Since no single amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the necessary adaptations to overcome the human IFN-α/β barrier involve mutations in multiple H5N1 genes.
Collapse
Affiliation(s)
- Markus Matthaei
- Division of Influenza/Respiratory Viruses, Robert Koch-Institut, Berlin, Germany
| | - Matthias Budt
- Division of Influenza/Respiratory Viruses, Robert Koch-Institut, Berlin, Germany
| | - Thorsten Wolff
- Division of Influenza/Respiratory Viruses, Robert Koch-Institut, Berlin, Germany
- * E-mail:
| |
Collapse
|
42
|
Rahim MN, Selman M, Sauder PJ, Forbes NE, Stecho W, Xu W, Lebar M, Brown EG, Coombs KM. Generation and characterization of a new panel of broadly reactive anti-NS1 mAbs for detection of influenza A virus. J Gen Virol 2012; 94:593-605. [PMID: 23223621 DOI: 10.1099/vir.0.046649-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Influenza A virus (IAV) non-structural protein 1 (NS1) has multiple functions, is essential for virus replication and may be a good target for IAV diagnosis. To generate broadly cross-reactive NS1-specific mAbs, mice were immunized with A/Hong Kong/1/1968 (H3N2) 6×His-tagged NS1 and hybridomas were screened with glutathione S-transferase-conjugated NS1 of A/Puerto Rico/8/1934 (H1N1). mAbs were isotyped and numerous IgG-type clones were characterized further. Most clones specifically recognized NS1 from various H1N1 and H3N2 IAV types by both immunoblot and immunofluorescence microscopy in mouse M1, canine Madin-Darby canine kidney and human A549 cells. mAb epitopes were mapped by overlapping peptides and selective reactivity to the newly described viral NS3 protein. These mAbs detected NS1 in both the cytoplasm and nucleus by immunostaining, and some detected NS1 as early as 5 h post-infection, suggesting their potential diagnostic use for tracking productive IAV replication and characterizing NS1 structure and function. It was also demonstrated that the newly identified NS3 protein is localized in the cytoplasm to high levels.
Collapse
Affiliation(s)
- Md Niaz Rahim
- Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada.,Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J6, Canada
| | - Mohammed Selman
- Emerging Pathogens Research Centre, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Patricia J Sauder
- Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Nicole E Forbes
- Emerging Pathogens Research Centre, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - William Stecho
- Emerging Pathogens Research Centre, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Wanhong Xu
- Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada.,Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J6, Canada
| | - Mark Lebar
- Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada.,Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J6, Canada
| | - Earl G Brown
- Emerging Pathogens Research Centre, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kevin M Coombs
- Manitoba Institute of Child Health, Room 513, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada.,Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada.,Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J6, Canada
| |
Collapse
|
43
|
Rajsbaum R, Albrecht RA, Wang MK, Maharaj NP, Versteeg GA, Nistal-Villán E, García-Sastre A, Gack MU. Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. PLoS Pathog 2012; 8:e1003059. [PMID: 23209422 PMCID: PMC3510253 DOI: 10.1371/journal.ppat.1003059] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 10/13/2012] [Indexed: 12/24/2022] Open
Abstract
Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.
Collapse
Affiliation(s)
- Ricardo Rajsbaum
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Randy A. Albrecht
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - May K. Wang
- Department of Microbiology and Immunobiology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Natalya P. Maharaj
- Department of Microbiology and Immunobiology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Gijs A. Versteeg
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Estanislao Nistal-Villán
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Michaela U. Gack
- Department of Microbiology and Immunobiology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| |
Collapse
|
44
|
Marc D, Barbachou S, Soubieux D. The RNA-binding domain of influenzavirus non-structural protein-1 cooperatively binds to virus-specific RNA sequences in a structure-dependent manner. Nucleic Acids Res 2012; 41:434-49. [PMID: 23093596 PMCID: PMC3592425 DOI: 10.1093/nar/gks979] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Influenzavirus non-structural protein NS1 is involved in several steps of the virus replication cycle. It counteracts the interferon response, and also exhibits other activities towards viral and cellular RNAs. NS1 is known to bind non-specifically to double-stranded RNA (dsRNA) as well as to viral and cellular RNAs. We set out to search whether NS1 could preferentially bind sequence-specific RNA patterns, and performed an in vitro selection (SELEX) to isolate NS1-specific aptamers from a pool of 80-nucleotide(nt)-long RNAs. Among the 63 aptamers characterized, two families were found to harbour a sequence that is strictly conserved at the 5' terminus of all positive-strand RNAs of influenzaviruses A. We found a second virus-specific motif, a 9 nucleotide sequence located 15 nucleotides downstream from NS1's stop codon. In addition, a majority of aptamers had one or two symmetrically positioned copies of the 5'-GUAAC / 3'-CUUAG double-stranded motif, which closely resembles the canonical 5'-splice site. Through an in-depth analysis of the interaction combining fluorimetry and gel-shift assays, we showed that NS1's RNA-binding domain (RBD) specifically recognizes sequence patterns in a structure-dependent manner, resulting in an intimate interaction with high affinity (low nanomolar to subnanomolar K(D) values) that leads to oligomerization of the RBD on its RNA ligands.
Collapse
Affiliation(s)
- Daniel Marc
- Equipe BioVA, UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, Nouzilly F-37380, France.
| | | | | |
Collapse
|
45
|
Soubies SM, Hoffmann TW, Croville G, Larcher T, Ledevin M, Soubieux D, Quéré P, Guérin JL, Marc D, Volmer R. Deletion of the C-terminal ESEV domain of NS1 does not affect the replication of a low-pathogenic avian influenza virus H7N1 in ducks and chickens. J Gen Virol 2012; 94:50-58. [PMID: 23052391 DOI: 10.1099/vir.0.045153-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) H7N1 viruses caused a series of epizootics in Italy between 1999 and 2001. The emergence of these HPAI viruses coincided with the deletion of the six amino acids R(225)VESEV(230) at the C terminus of NS1. In order to assess how the truncation of NS1 affected virus replication, we used reverse genetics to generate a wild-type low-pathogenic avian influenza (LPAI) H7N1 virus with a 230aa NS1 (H7N1(230)) and a mutant virus with a truncated NS1 (H7N1(224)). The 6aa truncation had no impact on virus replication in duck or chicken cells in vitro. The H7N1(230) and H7N1(224) viruses also replicated to similar levels and induced similar immune responses in ducks or chickens. No significant histological lesions were detected in infected ducks, regardless of the virus inoculated. However, in chickens, the H7N1(230) virus induced a more severe interstitial pneumonia than did the H7N1(224) virus. These findings indicate that the C-terminal extremity of NS1, including the PDZ-binding motif ESEV, is dispensable for efficient replication of an LPAI virus in ducks and chickens, even though it may increase virulence in chickens, as revealed by the intensity of the histological lesions.
Collapse
Affiliation(s)
- Sébastien M Soubies
- INRA, UMR 1225, Ecole nationale vétérinaire de Toulouse, F-31076 Toulouse, France.,Université de Toulouse, ENVT, UMR 1225, F-31076 Toulouse, France
| | - Thomas W Hoffmann
- Equipe BioVA, INRA UMR1282, Infectiologie et Santé Publique, ISP, F-37380 Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Guillaume Croville
- INRA, UMR 1225, Ecole nationale vétérinaire de Toulouse, F-31076 Toulouse, France.,Université de Toulouse, ENVT, UMR 1225, F-31076 Toulouse, France
| | - Thibaut Larcher
- INRA UMR 703, APEX, Oniris-La Chantrerie, F-44307 Nantes, France
| | - Mireille Ledevin
- INRA UMR 703, APEX, Oniris-La Chantrerie, F-44307 Nantes, France
| | - Denis Soubieux
- Equipe BioVA, INRA UMR1282, Infectiologie et Santé Publique, ISP, F-37380 Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Pascale Quéré
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France.,Equipe PIA, INRA UMR1282, Infectiologie et Santé Publique, ISP, F-37380 Nouzilly, France
| | - Jean-Luc Guérin
- INRA, UMR 1225, Ecole nationale vétérinaire de Toulouse, F-31076 Toulouse, France.,Université de Toulouse, ENVT, UMR 1225, F-31076 Toulouse, France
| | - Daniel Marc
- Equipe BioVA, INRA UMR1282, Infectiologie et Santé Publique, ISP, F-37380 Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Romain Volmer
- INRA, UMR 1225, Ecole nationale vétérinaire de Toulouse, F-31076 Toulouse, France.,Université de Toulouse, ENVT, UMR 1225, F-31076 Toulouse, France
| |
Collapse
|
46
|
Mutations in the M-gene segment can substantially increase replication efficiency of NS1 deletion influenza A virus in MDCK cells. J Virol 2012; 86:12341-50. [PMID: 22951840 DOI: 10.1128/jvi.01725-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza viruses unable to express NS1 protein (delNS1) replicate poorly and induce large amounts of interferon (IFN). They are therefore considered candidate viruses for live-attenuated influenza vaccines. Their attenuated replication is generally assumed to result from the inability to counter the antiviral host response, as delNS1 viruses replicate efficiently in Vero cells, which lack IFN expression. In this study, delNS1 virus was parallel passaged on IFN-competent MDCK cells, which resulted in two strains that were able to replicate to high virus titers in MDCK cells due to adaptive mutations especially in the M-gene segment but also in the NP and NS gene segments. Most notable were clustered U-to-C mutations in the M segment of both strains and clustered A-to-G mutations in the NS segment of one strain, which presumably resulted from host cell-mediated RNA editing. The M segment mutations in both strains changed the ratio of M1 to M2 expression, probably by affecting splicing efficiency. In one virus, 2 amino acid substitutions in M1 additionally enhanced virus replication, possibly through changes in the M1 distribution between the nucleus and the cytoplasm. Both adapted viruses induced levels of IFN equal to that of the original delNS1 virus. These results show that the increased replication of the adapted viruses is not primarily due to altered IFN induction but rather is related to changes in M1 expression or localization. The mutations identified in this paper may be used to enhance delNS1 virus replication for vaccine production.
Collapse
|
47
|
Fatemi SH, Folsom TD, Rooney RJ, Mori S, Kornfield TE, Reutiman TJ, Kneeland RE, Liesch SB, Hua K, Hsu J, Patel DH. The viral theory of schizophrenia revisited: abnormal placental gene expression and structural changes with lack of evidence for H1N1 viral presence in placentae of infected mice or brains of exposed offspring. Neuropharmacology 2012; 62:1290-8. [PMID: 21277874 PMCID: PMC3156896 DOI: 10.1016/j.neuropharm.2011.01.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/22/2010] [Accepted: 01/10/2011] [Indexed: 12/19/2022]
Abstract
Researchers have long noted an excess of patients with schizophrenia were born during the months of January and March. This winter birth effect has been hypothesized to result either from various causes such as vitamin D deficiency (McGrath, 1999; McGrath et al., 2010), or from maternal infection during pregnancy. Infection with a number of viruses during pregnancy including influenza, and rubella are known to increase the risk of schizophrenia in the offspring (Brown, 2006). Animal models using influenza virus or Poly I:C, a viral mimic, have been able to replicate many of the brain morphological, genetic, and behavioral deficits of schizophrenia (Meyer et al., 2006, 2008a, 2009; Bitanihirwe et al., 2010; Meyer and Feldon, 2010; Short et al., 2010). Using a murine model of prenatal viral infection, our laboratory has shown that viral infection on embryonic days 9, 16, and 18 leads to abnormal expression of brain genes and brain structural abnormalities in the exposed offspring (Fatemi et al., 2005, 2008a,b, 2009a,b). The purpose of the current study was to examine gene expression and morphological changes in the placenta, hippocampus, and prefrontal cortex as a result of viral infection on embryonic day 7 of pregnancy. Pregnant mice were either infected with influenza virus [A/WSN/33 strain (H1N1)] or sham-infected with vehicle solution. At E16, placentas were harvested and prepared for either microarray analysis or for light microscopy. We observed significant, upregulation of 77 genes and significant downregulation of 93 genes in placentas. In brains of exposed offspring following E7 infection, there were changes in gene expression in prefrontal cortex (6 upregulated and 24 downregulated at P0; 5 upregulated and 14 downregulated at P56) and hippocampus (4 upregulated and 6 downregulated at P0; 6 upregulated and 13 downregulated at P56). QRT-PCR verified the direction and magnitude of change for a number of genes associated with hypoxia, inflammation, schizophrenia, and autism. Placentas from infected mice showed a number of morphological abnormalities including presence of thrombi and increased presence of immune cells. Additionally, we searched for presence of H1N1 viral-specific genes for M1/M2, NA, and NS1 in placentas of infected mice and brains of exposed offspring and found none. Our results demonstrate that prenatal viral infection disrupts structure and gene expression of the placenta, hippocampus, and prefrontal cortex potentially explaining deleterious effects in the exposed offspring without evidence for presence of viral RNAs in the target tissues.
Collapse
Affiliation(s)
- S. Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
- Department of Pharmacology, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
| | - Timothy D. Folsom
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
| | | | - Susumu Mori
- Department of Radiology, Division of NMR, Johns Hopkins University, School of Medicine, 720 Rutland Avenue, Baltimore, MD 21287, USA
| | - Tess E. Kornfield
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
| | - Teri J. Reutiman
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
| | - Rachel E. Kneeland
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
| | - Stephanie B. Liesch
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
| | - Kegang Hua
- Department of Radiology, Division of NMR, Johns Hopkins University, School of Medicine, 720 Rutland Avenue, Baltimore, MD 21287, USA
| | - John Hsu
- Department of Radiology, Division of NMR, Johns Hopkins University, School of Medicine, 720 Rutland Avenue, Baltimore, MD 21287, USA
| | - Divyen H. Patel
- Genome Explorations, Inc. 654 Jefferson Ave., Memphis, TN 38105
| |
Collapse
|
48
|
MDCK cell line with inducible allele B NS1 expression propagates delNS1 influenza virus to high titres. Vaccine 2011; 29:6976-85. [PMID: 21787829 DOI: 10.1016/j.vaccine.2011.07.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 07/04/2011] [Accepted: 07/11/2011] [Indexed: 12/17/2022]
|
49
|
Penski N, Härtle S, Rubbenstroth D, Krohmann C, Ruggli N, Schusser B, Pfann M, Reuter A, Gohrbandt S, Hundt J, Veits J, Breithaupt A, Kochs G, Stech J, Summerfield A, Vahlenkamp T, Kaspers B, Staeheli P. Highly pathogenic avian influenza viruses do not inhibit interferon synthesis in infected chickens but can override the interferon-induced antiviral state. J Virol 2011; 85:7730-41. [PMID: 21613402 PMCID: PMC3147912 DOI: 10.1128/jvi.00063-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 05/17/2011] [Indexed: 01/13/2023] Open
Abstract
From infection studies with cultured chicken cells and experimental mammalian hosts, it is well known that influenza viruses use the nonstructural protein 1 (NS1) to suppress the synthesis of interferon (IFN). However, our current knowledge regarding the in vivo role of virus-encoded NS1 in chickens is much more limited. Here, we report that highly pathogenic avian influenza viruses of subtypes H5N1 and H7N7 lacking fully functional NS1 genes were attenuated in 5-week-old chickens. Surprisingly, in diseased birds infected with NS1 mutants, the IFN levels were not higher than in diseased birds infected with wild-type virus, suggesting that NS1 cannot suppress IFN gene expression in at least one cell population of infected chickens that produces large amounts of the cytokine in vivo. To address the question of why influenza viruses are highly pathogenic in chickens although they strongly activate the innate immune system, we determined whether recombinant chicken alpha interferon (IFN-α) can inhibit the growth of highly pathogenic avian influenza viruses in cultured chicken cells and whether it can ameliorate virus-induced disease in 5-week-old birds. We found that IFN treatment failed to confer substantial protection against challenge with highly pathogenic viruses, although it was effective against viruses with low pathogenic potential. Taken together, our data demonstrate that preventing the synthesis of IFN is not the primary role of the viral NS1 protein during infection of chickens. Our results further suggest that virus-induced IFN does not contribute substantially to resistance of chickens against highly pathogenic influenza viruses.
Collapse
Affiliation(s)
- Nicola Penski
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Sonja Härtle
- Department of Veterinary Sciences, University of Munich, Munich, Germany
| | | | - Carsten Krohmann
- Department of Veterinary Sciences, University of Munich, Munich, Germany
| | - Nicolas Ruggli
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland
| | - Benjamin Schusser
- Department of Veterinary Sciences, University of Munich, Munich, Germany
| | - Michael Pfann
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Antje Reuter
- Department of Virology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology, Freiburg, Germany
| | | | - Jana Hundt
- Friedrich-Loeffler-Institut, Isle of Riems, Germany
| | - Jutta Veits
- Friedrich-Loeffler-Institut, Isle of Riems, Germany
| | | | - Georg Kochs
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Jürgen Stech
- Friedrich-Loeffler-Institut, Isle of Riems, Germany
| | - Artur Summerfield
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland
| | | | - Bernd Kaspers
- Department of Veterinary Sciences, University of Munich, Munich, Germany
| | - Peter Staeheli
- Department of Virology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
50
|
Kugel D, Pulverer JE, Köster M, Hauser H, Staeheli P. Novel Nonviral Bioassays for Mouse Type I and Type III Interferon. J Interferon Cytokine Res 2011; 31:345-9. [DOI: 10.1089/jir.2010.0079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Daniela Kugel
- Department of Virology, University of Freiburg, Freiburg, Germany
| | | | - Mario Köster
- Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Hansjörg Hauser
- Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Peter Staeheli
- Department of Virology, University of Freiburg, Freiburg, Germany
| |
Collapse
|