1
|
Hartmann S, Radochonski L, Ye C, Martinez-Sobrido L, Chen J. SARS-CoV-2 ORF3a drives dynamic dense body formation for optimal viral infectivity. Nat Commun 2025; 16:4393. [PMID: 40355429 DOI: 10.1038/s41467-025-59475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
SARS-CoV-2 hijacks multiple organelles for virion assembly, of which the mechanisms have not been fully understood. Here, we identified a SARS-CoV-2-driven membrane structure named the 3a dense body (3DB). 3DBs are unusual electron-dense and dynamic structures driven by the accessory protein ORF3a via remodeling a specific subset of the trans-Golgi network (TGN) and early endosomal membrane. 3DB formation is conserved in related bat and pangolin coronaviruses but was lost during the evolution to SARS-CoV. During SARS-CoV-2 infection, 3DB recruits the viral structural proteins spike (S) and membrane (M) and undergoes dynamic fusion/fission to maintain the optimal unprocessed-to-processed ratio of S on assembled virions. Disruption of 3DB formation resulted in virions assembled with an abnormal S processing rate, leading to a dramatic reduction in viral entry efficiency. Our study uncovers the crucial role of 3DB in maintaining maximal SARS-CoV-2 infectivity and highlights its potential as a target for COVID-19 prophylactics and therapeutics.
Collapse
Affiliation(s)
- Stella Hartmann
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Lisa Radochonski
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Jueqi Chen
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA.
| |
Collapse
|
2
|
Li P, Faraone JN, Hsu CC, Chamblee M, Liu Y, Zheng YM, Xu Y, Carlin C, Horowitz JC, Mallampalli RK, Saif LJ, Oltz EM, Jones D, Li J, Gumina RJ, Bednash JS, Xu K, Liu SL. Role of glycosylation mutations at the N-terminal domain of SARS-CoV-2 XEC variant in immune evasion, cell-cell fusion, and spike stability. J Virol 2025; 99:e0024225. [PMID: 40135879 PMCID: PMC11998534 DOI: 10.1128/jvi.00242-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/01/2025] [Indexed: 03/27/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, producing new variants that drive global coronavirus disease 2019 surges. XEC, a recombinant of KS.1.1 and KP.3.3, contains T22N and F59S mutations in the spike protein's N-terminal domain (NTD). The T22N mutation, similar to the DelS31 mutation in KP.3.1.1, introduces a potential N-linked glycosylation site in XEC. In this study, we examined the neutralizing antibody (nAb) response and mutation effects in sera from bivalent-vaccinated healthcare workers, BA.2.86/JN.1 wave-infected patients, and XBB.1.5 monovalent-vaccinated hamsters, assessing responses to XEC alongside D614G, JN.1, KP.3, and KP.3.1.1. XEC demonstrated significantly reduced neutralization titers across all cohorts, largely due to the F59S mutation. Notably, removal of glycosylation sites in XEC and KP.3.1.1 substantially restored nAb titers. Antigenic cartography analysis revealed XEC to be more antigenically distinct from its common ancestral BA.2.86/JN.1 compared to KP.3.1.1, with the F59S mutation as a determining factor. Similar to KP.3.1.1, XEC showed reduced cell-cell fusion relative to its parental KP.3, a change attributed to the T22N glycosylation. We also observed reduced S1 shedding for XEC and KP.3.1.1, which was reversed by ablation of T22N and DelS31 glycosylation mutations, respectively. Molecular modeling suggests that T22N and F59S mutations of XEC alter hydrophobic interactions with adjacent spike protein residues, impacting both conformational stability and neutralization. Overall, our findings underscore the pivotal role of NTD mutations in shaping SARS-CoV-2 spike biology and immune escape mechanisms.IMPORTANCEThe continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the emergence of novel variants with enhanced immune evasion properties, posing challenges for current vaccination strategies. This study identifies key N-terminal domain (NTD) mutations, particularly T22N and F59S in the recent XEC variant, which significantly impacts antigenicity, neutralization, and spike protein stability. The introduction of an N-linked glycosylation site through T22N, along with the antigenic shift driven by F59S, highlights how subtle mutations can drastically alter viral immune recognition. By demonstrating that glycosylation site removal restores neutralization sensitivity, this work provides crucial insights into the molecular mechanisms governing antibody escape. Additionally, the observed effects on spike protein shedding and cell-cell fusion contribute to a broader understanding of variant fitness and transmissibility. These findings emphasize the importance of monitoring NTD mutations in emerging SARS-CoV-2 lineages and support the need for adaptive vaccine designs to counteract ongoing viral evolution.
Collapse
Affiliation(s)
- Pei Li
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Julia N. Faraone
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio, USA
| | - Cheng Chih Hsu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yajie Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yan Xu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Texas Therapeutic Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Claire Carlin
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jeffrey C. Horowitz
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine,The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Rama K. Mallampalli
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine,The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Linda J. Saif
- Center for Food Animal Health, Animal Sciences Department, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center Arthur G. James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Daniel Jones
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Richard J. Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Joseph S. Bednash
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine,The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Kai Xu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Texas Therapeutic Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Li P, Faraone JN, Hsu CC, Chamblee M, Liu Y, Zheng YM, Xu Y, Carlin C, Horowitz JC, Mallampalli RK, Saif LJ, Oltz EM, Jones D, Li J, Gumina RJ, Bednash JS, Xu K, Liu SL. Neutralization and spike stability of JN.1-derived LB.1, KP.2.3, KP.3, and KP.3.1.1 subvariants. mBio 2025:e0046425. [PMID: 40136024 DOI: 10.1128/mbio.00464-25] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
During the summer of 2024, coronavirus disease 2019 (COVID-19) cases surged globally, driven by variants derived from JN.1 subvariants of severe acute respiratory syndrome coronavirus 2 that feature new mutations, particularly in the N-terminal domain (NTD) of the spike protein. In this study, we report on the neutralizing antibody (nAb) escape, infectivity, fusion, and spike stability of these subvariants-LB.1, KP.2.3, KP.3, and KP.3.1.1. Our findings demonstrate that all of these subvariants are highly evasive of nAbs elicited by the bivalent mRNA vaccine, the XBB.1.5 monovalent mumps virus-based vaccine, or from infections during the BA.2.86/JN.1 wave. This reduction in nAb titers is primarily driven by a single serine deletion (DelS31) in the NTD of the spike, leading to a distinct antigenic profile compared to the parental JN.1 and other variants. We also found that the DelS31 mutation decreases pseudovirus infectivity in CaLu-3 cells, which correlates with impaired cell-cell fusion. Additionally, the spike protein of DelS31 variants appears more conformationally stable, as indicated by reduced S1 shedding both with and without stimulation by soluble ACE2 and increased resistance to elevated temperatures. Molecular modeling suggests that DelS31 enhances the NTD-receptor-binding domain (RBD) interaction, favoring the RBD down conformation and reducing accessibility to ACE2 and specific nAbs. Moreover, DelS31 introduces an N-linked glycan at N30, shielding the NTD from antibody recognition. These findings underscore the role of NTD mutations in immune evasion, spike stability, and viral infectivity, highlighting the need to consider DelS31-containing antigens in updated COVID-19 vaccines.IMPORTANCEThe emergence of novel severe acute respiratory syndrome coronavirus 2 variants continues to pose challenges for global public health, particularly in the context of immune evasion and viral stability. This study identifies a key N-terminal domain (NTD) mutation, DelS31, in JN.1-derived subvariants that enhances neutralizing antibody escape while reducing infectivity and cell-cell fusion. The DelS31 mutation stabilizes the spike protein conformation, limits S1 shedding, and increases thermal resistance, which possibly contribute to prolonged viral persistence. Structural analyses reveal that DelS31 enhances NTD-receptor-binding domain interactions by introducing glycan shielding, thus decreasing antibody and ACE2 accessibility. These findings emphasize the critical role of NTD mutations in shaping viral evolution and immune evasion, underscoring the urgent need for updated coronavirus disease 2019 vaccines that account for these adaptive changes.
Collapse
Affiliation(s)
- Pei Li
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Julia N Faraone
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio, USA
| | - Cheng Chih Hsu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yajie Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yan Xu
- Texas Therapeutic Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Claire Carlin
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jeffrey C Horowitz
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Rama K Mallampalli
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Linda J Saif
- Center for Food Animal Health, Animal Sciences Department, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Eugene M Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Daniel Jones
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Richard J Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Joseph S Bednash
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kai Xu
- Texas Therapeutic Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Haider S, Ahmad N, Shafiq M, Siddiqui AR, Nur-e-Alam M, Ahmed A, Ul-Haq Z. Uncovering the Binding Mechanism of Mutated Omicron Variants via Computational Strategies. ACS OMEGA 2025; 10:2790-2798. [PMID: 39895721 PMCID: PMC11780447 DOI: 10.1021/acsomega.4c08562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/06/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025]
Abstract
The COVID-19 pandemic, triggered by the SARS-CoV-2 virus, has resulted in nearly 630 million cases and 6.60 million fatalities globally, as of November 2022. SARS-CoV-2, a species of the Coronaviridae family, has a single-stranded positive-sense RNA genome as well as four main structural proteins (S, E, M, and N) required for viral entrance into target cells. The spike protein (S) influences this entry through interactions with human angiotensin-converting enzyme 2 (hACE2) receptor. The World Health Organization (WHO) recognized numerous variants of concern (VOCs) that involve Alpha, Beta, Gamma, Delta, and Omicron, having multiple mutations within the spike protein, altering infection rates and immunity evasion. The Omicron variant, featuring 50 mutations, mainly within the spike protein's receptor-binding domain (RBD), has a higher transmission rate as compared to other variants. This study focused on two recent Omicron subvariants, XBB.1.5 and CH.1.1, which are known for their high affinity for the human ACE2 receptor. Utilizing an in silico strategy, a total of 1.65 μs molecular dynamics (MD) simulations were performed to assess the stability as well as binding details of these subvariants along with the wild-type Omicron variants. The comprehensive structural stability of the spike protein-hACE2 complexes was evaluated by using numerous parameters including root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (R g), and principal component analysis (PCA). Moreover, the binding free energies have been determined using the MM-GBSA approach to provide insights into the binding affinities of these variants. Evaluation revealed that the unbound mutant frameworks (SM and TM) displayed higher degrees of instability in comparison to the wild-type (WT) Omicron variant. In contrast, the WT-hACE2 of the Omicron variant complex was less stable than the subvariants, SM-hACE2 and TM-hACE2 complexes. Binding free energy calculations employing MM-PBSA disclosed higher binding energy values for the SM-hACE2 and TM-hACE2 complexes, suggesting a more stable and ordered binding interaction. The observed increase in transmissibility of the new XBB.1.5 and CH.1.1 subvariants, in comparison to the wild-type Omicron, appears to be due to this greater stability and ordered binding.
Collapse
Affiliation(s)
- Sajjad Haider
- H.
E. J. Research Institute of Chemistry, International Center for Chemical
and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Nadeem Ahmad
- H.
E. J. Research Institute of Chemistry, International Center for Chemical
and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Shafiq
- H.
E. J. Research Institute of Chemistry, International Center for Chemical
and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ali Raza Siddiqui
- H.
E. J. Research Institute of Chemistry, International Center for Chemical
and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Mohammad Nur-e-Alam
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, P.O. Box 2457, Riyadh 11451, Kingdom of Saudi Arabia
| | - Aftab Ahmed
- Department
of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| | - Zaheer Ul-Haq
- Dr.
Panjwani Center for Molecular Medicine and Drug Research, International
Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
5
|
Criscuolo E, Giuliani B, Castelli M, Cavallaro M, Sisti S, Burioni R, Ferrari D, Mancini N, Locatelli M, Clementi N. Single spike mutation differentiating XBB.1 and XBB.1.5 enhances SARS-CoV-2 cell-to-cell transmission and facilitates serum-mediated enhancement. Front Immunol 2024; 15:1501200. [PMID: 39664381 PMCID: PMC11631925 DOI: 10.3389/fimmu.2024.1501200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction The ongoing emergence of SARS-CoV-2 variants poses significant challenges to existing therapeutics. The spike (S) glycoprotein is central to both viral entry and cell-to-cell transmission via syncytia formation, a process that confers resistance to neutralizing antibodies. The mechanisms underlying this resistance, particularly in relation to spike-mediated fusion, remain poorly understood. Methods We analyzed two clinical SARS-CoV-2 isolates differing by a single amino acid substitution in the S protein. Using biochemical and cell-based assays, we evaluated entry kinetics, syncytia formation, and the neutralizing efficacy of convalescent sera. These parameters were further correlated with S-mediated cell-cell fusion activity. Results The single amino acid substitution significantly altered entry kinetics and enhanced syncytia formation. This modification did not diminished the neutralizing capacity of convalescent sera, but it increased the efficiency of S-induced cell-cell fusion. These findings highlight the mutation's impact on viral transmissibility and immune evasion. Discussion Our study demonstrates that even minor changes in the S protein can profoundly influence SARS-CoV-2 transmissibility and resistance to antibody-mediated neutralization. Understanding the molecular basis of S-mediated cell-cell fusion is crucial for anticipating the impact of emerging variants and developing next-generation therapeutic strategies. These insights provide a framework for predicting variant fitness and optimizing treatment approaches against future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Elena Criscuolo
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Benedetta Giuliani
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Castelli
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Mattia Cavallaro
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Sofia Sisti
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Roberto Burioni
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, Fondazione Macchi University Hospital, Varese, Italy
| | | | - Nicola Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
6
|
Li P, Faraone JN, Hsu CC, Chamblee M, Liu Y, Zheng YM, Xu Y, Carlin C, Horowitz JC, Mallampalli RK, Saif LJ, Oltz EM, Jones D, Li J, Gumina RJ, Bednash JS, Xu K, Liu SL. Neutralization and Stability of JN.1-derived LB.1, KP.2.3, KP.3 and KP.3.1.1 Subvariants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611219. [PMID: 39282390 PMCID: PMC11398412 DOI: 10.1101/2024.09.04.611219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
During the summer of 2024, COVID-19 cases surged globally, driven by variants derived from JN.1 subvariants of SARS-CoV-2 that feature new mutations, particularly in the N-terminal domain (NTD) of the spike protein. In this study, we report on the neutralizing antibody (nAb) escape, infectivity, fusion, and stability of these subvariants-LB.1, KP.2.3, KP.3, and KP.3.1.1. Our findings demonstrate that all of these subvariants are highly evasive of nAbs elicited by the bivalent mRNA vaccine, the XBB.1.5 monovalent mumps virus-based vaccine, or from infections during the BA.2.86/JN.1 wave. This reduction in nAb titers is primarily driven by a single serine deletion (DelS31) in the NTD of the spike, leading to a distinct antigenic profile compared to the parental JN.1 and other variants. We also found that the DelS31 mutation decreases pseudovirus infectivity in CaLu-3 cells, which correlates with impaired cell-cell fusion. Additionally, the spike protein of DelS31 variants appears more conformationally stable, as indicated by reduced S1 shedding both with and without stimulation by soluble ACE2, and increased resistance to elevated temperatures. Molecular modeling suggests that the DelS31 mutation induces a conformational change that stabilizes the NTD and strengthens the NTD-Receptor-Binding Domain (RBD) interaction, thus favoring the down conformation of RBD and reducing accessibility to both the ACE2 receptor and certain nAbs. Additionally, the DelS31 mutation introduces an N-linked glycan modification at N30, which shields the underlying NTD region from antibody recognition. Our data highlight the critical role of NTD mutations in the spike protein for nAb evasion, stability, and viral infectivity, and suggest consideration of updating COVID-19 vaccines with antigens containing DelS31.
Collapse
Affiliation(s)
- Pei Li
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Julia N. Faraone
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Cheng Chih Hsu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yajie Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yan Xu
- Texas Therapeutic Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Claire Carlin
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jeffrey C. Horowitz
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Rama K. Mallampalli
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Linda J. Saif
- Center for Food Animal Health, Animal Sciences Department, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Daniel Jones
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Richard J. Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Joseph S. Bednash
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Kai Xu
- Texas Therapeutic Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Lead contact
| |
Collapse
|
7
|
Li P, Liu Y, Faraone JN, Hsu CC, Chamblee M, Zheng YM, Carlin C, Bednash JS, Horowitz JC, Mallampalli RK, Saif LJ, Oltz EM, Jones D, Li J, Gumina RJ, Liu SL. Distinct patterns of SARS-CoV-2 BA.2.87.1 and JN.1 variants in immune evasion, antigenicity, and cell-cell fusion. mBio 2024; 15:e0075124. [PMID: 38591890 PMCID: PMC11077997 DOI: 10.1128/mbio.00751-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
The rapid evolution of SARS-CoV-2 variants presents a constant challenge to the global vaccination effort. In this study, we conducted a comprehensive investigation into two newly emerged variants, BA.2.87.1 and JN.1, focusing on their neutralization resistance, infectivity, antigenicity, cell-cell fusion, and spike processing. Neutralizing antibody (nAb) titers were assessed in diverse cohorts, including individuals who received a bivalent mRNA vaccine booster, patients infected during the BA.2.86/JN.1-wave, and hamsters vaccinated with XBB.1.5-monovalent vaccine. We found that BA.2.87.1 shows much less nAb escape from WT-BA.4/5 bivalent mRNA vaccination and JN.1-wave breakthrough infection sera compared to JN.1 and XBB.1.5. Interestingly, BA.2.87.1 is more resistant to neutralization by XBB.1.5-monovalent-vaccinated hamster sera than BA.2.86/JN.1 and XBB.1.5, but efficiently neutralized by a class III monoclonal antibody S309, which largely fails to neutralize BA.2.86/JN.1. Importantly, BA.2.87.1 exhibits higher levels of infectivity, cell-cell fusion activity, and furin cleavage efficiency than BA.2.86/JN.1. Antigenically, we found that BA.2.87.1 is closer to the ancestral BA.2 compared to other recently emerged Omicron subvariants including BA.2.86/JN.1 and XBB.1.5. Altogether, these results highlight immune escape properties as well as biology of new variants and underscore the importance of continuous surveillance and informed decision-making in the development of effective vaccines. IMPORTANCE This study investigates the recently emerged SARS-CoV-2 variants, BA.2.87.1 and JN.1, in comparison to earlier variants and the parental D614G. Varied infectivity and cell-cell fusion activity among these variants suggest potential disparities in their ability to infect target cells and possibly pathogenesis. BA.2.87.1 exhibits lower nAb escape from bivalent mRNA vaccinee and BA.2.86/JN.1-infected sera than JN.1 but is relatively resistance to XBB.1.5-vaccinated hamster sera, revealing distinct properties in immune reason and underscoring the significance of continuing surveillance of variants and reformulation of vaccines. Antigenic differences between BA.2.87.1 and other earlier variants yield critical information not only for antibody evasion but also for viral evolution. In conclusion, this study furnishes timely insights into the spike biology and immune escape of the emerging variants BA.2.87.1 and JN.1, thus guiding effective vaccine development and informing public health interventions.
Collapse
Affiliation(s)
- Pei Li
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yajie Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Julia N. Faraone
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio, USA
| | - Cheng Chih Hsu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Claire Carlin
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Joseph S. Bednash
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Jeffrey C. Horowitz
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Rama K. Mallampalli
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Linda J. Saif
- Center for Food Animal Health, Animal Sciences Department, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Daniel Jones
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Richard J. Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
8
|
Li P, Liu Y, Faraone J, Hsu CC, Chamblee M, Zheng YM, Carlin C, Bednash JS, Horowitz JC, Mallampalli RK, Saif LJ, Oltz EM, Jones D, Li J, Gumina RJ, Liu SL. Distinct Patterns of SARS-CoV-2 BA.2.87.1 and JN.1 Variants in Immune Evasion, Antigenicity and Cell-Cell Fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.583978. [PMID: 38559216 PMCID: PMC10979924 DOI: 10.1101/2024.03.11.583978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The rapid evolution of SARS-CoV-2 variants presents a constant challenge to the global vaccination effort. In this study, we conducted a comprehensive investigation into two newly emerged variants, BA.2.87.1 and JN.1, focusing on their neutralization resistance, infectivity, antigenicity, cell-cell fusion, and spike processing. Neutralizing antibody (nAb) titers were assessed in diverse cohorts, including individuals who received a bivalent mRNA vaccine booster, patients infected during the BA.2.86/JN.1-wave, and hamsters vaccinated with XBB.1.5-monovalent vaccine. We found that BA.2.87.1 shows much less nAb escape from WT-BA.4/5 bivalent mRNA vaccination and JN.1-wave breakthrough infection sera compared to JN.1 and XBB.1.5. Interestingly. BA.2.87.1 is more resistant to neutralization by XBB.15-monovalent-vaccinated hamster sera than BA.2.86/JN.1 and XBB.1.5, but efficiently neutralized by a class III monoclonal antibody S309, which largely fails to neutralize BA.2.86/JN.1. Importantly, BA.2.87.1 exhibits higher levels of infectivity, cell-cell fusion activity, and furin cleavage efficiency than BA.2.86/JN.1. Antigenically, we found that BA.2.87.1 is closer to the ancestral BA.2 compared to other recently emerged Omicron subvariants including BA.2.86/JN.1 and XBB.1.5. Altogether, these results highlight immune escape properties as well as biology of new variants and underscore the importance of continuous surveillance and informed decision-making in the development of effective vaccines.
Collapse
Affiliation(s)
- Pei Li
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yajie Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Julia Faraone
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Cheng Chih Hsu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Claire Carlin
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph S. Bednash
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Jeffrey C. Horowitz
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Rama K. Mallampalli
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Linda J. Saif
- Center for Food Animal Health, Animal Sciences Department, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Daniel Jones
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Richard J. Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Roy U. Computational Investigation of Selected Spike Protein Mutations in SARS-CoV-2: Delta, Omicron, and Some Circulating Subvariants. Pathogens 2023; 13:10. [PMID: 38276156 PMCID: PMC10820870 DOI: 10.3390/pathogens13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Among the multiple SARS-CoV-2 variants recently reported, the Delta variant has generated the most perilous and widespread effects. Another variant, Omicron, has been identified specifically for its high transmissibility. Omicron contains numerous spike (S) protein mutations and numbers much larger than those of its predecessor variants. In this report, the author has discussed some essential structural aspects and time-based structure changes of a selected set of spike protein mutations within the Delta and Omicron variants. The expected impact of multiple point mutations within the spike protein's receptor-binding domain (RBD) and S1 of these variants are examined. Additionally, the RBDs of the more recently emerged subvariants BA.4, BA.5, and BA.2.12.1 are discussed. Within the latter group, BA.5 represents the most prevalent form of SARS-CoV-2 globally until recently. This computational work also briefly explores the temporal mutation profile for the currently circulating variants of interest (VOIs), variants under monitoring (VUMs), and variants being monitored (VBMs) including XBB.1.5, BQ.1, BA.2.75, CH.1.1, XBB, XBF, EG.5 (or Eris), and BA.2.86 (or Pirola). It is expected that these structural data can facilitate the tasks of identifying drug targets and neutralizing antibodies for the evolving variants/subvariants of SARS-CoV-2.
Collapse
Affiliation(s)
- Urmi Roy
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
10
|
Faraone JN, Qu P, Goodarzi N, Zheng YM, Carlin C, Saif LJ, Oltz EM, Xu K, Jones D, Gumina RJ, Liu SL. Immune evasion and membrane fusion of SARS-CoV-2 XBB subvariants EG.5.1 and XBB.2.3. Emerg Microbes Infect 2023; 12:2270069. [PMID: 37819267 PMCID: PMC10606793 DOI: 10.1080/22221751.2023.2270069] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
Immune evasion by SARS-CoV-2 paired with immune imprinting from monovalent mRNA vaccines has resulted in attenuated neutralizing antibody responses against Omicron subvariants. In this study, we characterized two new XBB variants rising in circulation - EG.5.1 and XBB.2.3, for their neutralization and syncytia formation. We determined the neutralizing antibody titers in sera of individuals that received a bivalent mRNA vaccine booster, BA.4/5-wave infection, or XBB.1.5-wave infection. Bivalent vaccination-induced antibodies neutralized ancestral D614G efficiently, but to a much less extent, two new EG.5.1 and XBB.2.3 variants. In fact, the enhanced neutralization escape of EG.5.1 appeared to be driven by its key defining mutation XBB.1.5-F456L. Notably, infection by BA.4/5 or XBB.1.5 afforded little, if any, neutralization against EG.5.1, XBB.2.3 and previous XBB variants - especially in unvaccinated individuals, with average neutralizing antibody titers near the limit of detection. Additionally, we investigated the infectivity, fusion activity, and processing of variant spikes for EG.5.1 and XBB.2.3 in HEK293T-ACE2 and CaLu-3 cells but found no significant differences compared to earlier XBB variants. Overall, our findings highlight the continued immune evasion of new Omicron subvariants and, more importantly, the need to reformulate mRNA vaccines to include XBB spikes for better protection.
Collapse
Affiliation(s)
- Julia N. Faraone
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH, USA
| | - Panke Qu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Negin Goodarzi
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Claire Carlin
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | - Linda J. Saif
- Center for Food Animal Health, Animal Sciences Department, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Kai Xu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Daniel Jones
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Richard J. Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
11
|
Qu P, Xu K, Faraone JN, Goodarzi N, Zheng YM, Carlin C, Bednash JS, Horowitz JC, Mallampalli RK, Saif LJ, Oltz EM, Jones D, Gumina RJ, Liu SL. Immune Evasion, Infectivity, and Fusogenicity of SARS-CoV-2 Omicron BA.2.86 and FLip Variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557206. [PMID: 37745517 PMCID: PMC10515800 DOI: 10.1101/2023.09.11.557206] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Evolution of SARS-CoV-2 requires the reassessment of current vaccine measures. Here, we characterized BA.2.86 and the XBB-lineage variant FLip by investigating their neutralization alongside D614G, BA.1, BA.2, BA.4/5, XBB.1.5, and EG.5.1 by sera from 3-dose vaccinated and bivalent vaccinated healthcare workers, XBB.1.5-wave infected first responders, and monoclonal antibody (mAb) S309. We assessed the biology of the variant Spikes by measuring viral infectivity and membrane fusogenicity. BA.2.86 is less immune evasive compared to FLip and other XBB variants, consistent with antigenic distances. Importantly, distinct from XBB variants, mAb S309 was unable to neutralize BA.2.86, likely due to a D339H mutation based on modeling. BA.2.86 had relatively high fusogenicity and infectivity in CaLu-3 cells but low fusion and infectivity in 293T-ACE2 cells compared to some XBB variants, suggesting a potentially differences conformational stability of BA.2.86 Spike. Overall, our study underscores the importance of SARS-CoV-2 variant surveillance and the need for updated COVID-19 vaccines.
Collapse
Affiliation(s)
- Panke Qu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Kai Xu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Julia N. Faraone
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Negin Goodarzi
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Claire Carlin
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph S. Bednash
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jeffrey C. Horowitz
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Rama K. Mallampalli
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Linda J. Saif
- Center for Food Animal Health, Animal Sciences Department, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Jones
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Richard J. Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Jawaid MZ, Baidya A, Mahboubi-Ardakani R, Davis RL, Cox DL. SARS-CoV-2 omicron spike simulations: broad antibody escape, weakened ACE2 binding, and modest furin cleavage. Microbiol Spectr 2023; 11:e0121322. [PMID: 37650619 PMCID: PMC10580870 DOI: 10.1128/spectrum.01213-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/07/2023] [Indexed: 09/01/2023] Open
Abstract
The recent emergence of the omicron variant of the SARS-CoV-2 virus with large numbers of mutations has raised concern about a potential new surge in infections. Here we use molecular dynamics to study the biophysics of the interface of the BA1 and BA2 omicron spike protein binding to (i) the ACE2 receptor protein, (ii) antibodies from all known binding regions, and (iii) the furin binding domain. Our simulations suggest that while there is a significant reduction of antibody (Ab) binding strength corresponding to escape, the omicron spikes pay a cost in terms of weaker receptor binding as measured by interfacial hydrogen bonds (H-bond). The furin cleavage domain (FCD) is the same or weaker binding than the delta variant, suggesting lower fusogenicity resulting in less viral load and disease intensity than the delta variant. IMPORTANCE The BA1 and BA2 and closely related BA2.12.2 and BA.5 omicron variants of SARS-CoV-2 dominate the current global infection landscape. Given the high number of mutations, particularly those which will lead to antibody escape, it is important to establish accurate methods that can guide developing health policy responses that identify at a fundamental level whether omicron and its variants are more threatening than its predecessors, especially delta. The importance of our work is to demonstrate that simple in silico simulations can predict biochemical binding details of the omicron spike protein that have epidemiological consequences, especially for binding to the cells and for fusing the viral membrane with the cells. In each case, we predicted weaker binding of the omicron spike, which agreed with subsequent experimental results. Future virology experiments will be needed to test these predictions further.
Collapse
Affiliation(s)
- M. Zaki Jawaid
- Department of Physics and Astronomy, University of California, Davis, California, USA
| | - A. Baidya
- Department of Physics and Astronomy, University of California, Davis, California, USA
| | - R. Mahboubi-Ardakani
- Department of Physics and Astronomy, University of California, Davis, California, USA
| | | | - Daniel L. Cox
- Department of Physics and Astronomy, University of California, Davis, California, USA
- Protein Architects Corp, Penn Valley, Pennsylvania, USA
| |
Collapse
|
13
|
Zhang J, Tang W, Gao H, Lavine CL, Shi W, Peng H, Zhu H, Anand K, Kosikova M, Kwon HJ, Tong P, Gautam A, Rits-Volloch S, Wang S, Mayer ML, Wesemann DR, Seaman MS, Lu J, Xiao T, Xie H, Chen B. Structural and functional characteristics of the SARS-CoV-2 Omicron subvariant BA.2 spike protein. Nat Struct Mol Biol 2023; 30:980-990. [PMID: 37430064 DOI: 10.1038/s41594-023-01023-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/17/2023] [Indexed: 07/12/2023]
Abstract
The Omicron subvariant BA.2 has become the dominant circulating strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in many countries. Here, we have characterized structural, functional and antigenic properties of the full-length BA.2 spike (S) protein and compared replication of the authentic virus in cell culture and an animal model with previously prevalent variants. BA.2 S can fuse membranes slightly more efficiently than Omicron BA.1, but still less efficiently than other previous variants. Both BA.1 and BA.2 viruses replicated substantially faster in animal lungs than the early G614 (B.1) strain in the absence of pre-existing immunity, possibly explaining the increased transmissibility despite their functionally compromised spikes. As in BA.1, mutations in the BA.2 S remodel its antigenic surfaces, leading to strong resistance to neutralizing antibodies. These results suggest that both immune evasion and replicative advantage may contribute to the heightened transmissibility of the Omicron subvariants.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Weichun Tang
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Hailong Gao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Christy L Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Wei Shi
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Haisun Zhu
- Institute for Protein Innovation, Harvard Institutes of Medicine, Boston, MA, USA
| | - Krishna Anand
- Institute for Protein Innovation, Harvard Institutes of Medicine, Boston, MA, USA
| | - Matina Kosikova
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Hyung Joon Kwon
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Pei Tong
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital; Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Avneesh Gautam
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital; Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | | | | | - Megan L Mayer
- The Harvard Cryo-EM Center for Structural Biology, Boston, MA, USA
| | - Duane R Wesemann
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital; Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jianming Lu
- Codex BioSolutions, Inc., Rockville, MD, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Hang Xie
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA.
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Azar JH, Evans JP, Sikorski MH, Chakravarthy KB, McKenney S, Carmody I, Zeng C, Teodorescu R, Song NJ, Hamon JL, Bucci D, Velegraki M, Bolyard C, Weller KP, Reisinger SA, Bhat SA, Maddocks KJ, Denlinger N, Epperla N, Gumina RJ, Vlasova AN, Oltz EM, Saif LJ, Chung D, Woyach JA, Shields PG, Liu SL, Li Z, Rubinstein MP. Selective suppression of de novo SARS-CoV-2 vaccine antibody responses in patients with cancer on B cell-targeted therapy. JCI Insight 2023; 8:e163434. [PMID: 36749632 PMCID: PMC10070099 DOI: 10.1172/jci.insight.163434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
We assessed vaccine-induced antibody responses to the SARS-CoV-2 ancestral virus and Omicron variant before and after booster immunization in 57 patients with B cell malignancies. Over one-third of vaccinated patients at the pre-booster time point were seronegative, and these patients were predominantly on active cancer therapies such as anti-CD20 monoclonal antibody. While booster immunization was able to induce detectable antibodies in a small fraction of seronegative patients, the overall booster benefit was disproportionately evident in patients already seropositive and not receiving active therapy. While ancestral virus- and Omicron variant-reactive antibody levels among individual patients were largely concordant, neutralizing antibodies against Omicron tended to be reduced. Interestingly, in all patients, including those unable to generate detectable antibodies against SARS-CoV-2 spike, we observed comparable levels of EBV- and influenza-reactive antibodies, demonstrating that B cell-targeting therapies primarily impair de novo but not preexisting antibody levels. These findings support rationale for vaccination before cancer treatment.
Collapse
Affiliation(s)
- Joseph H. Azar
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - John P. Evans
- Center for Retrovirus Research
- Department of Veterinary Biosciences
- Molecular, Cellular and Developmental Biology Program
| | - Madison H. Sikorski
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Karthik B. Chakravarthy
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Selah McKenney
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Ian Carmody
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Cong Zeng
- Center for Retrovirus Research
- Department of Veterinary Biosciences
| | - Rachael Teodorescu
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - No-Joon Song
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Jamie L. Hamon
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Donna Bucci
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Maria Velegraki
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Chelsea Bolyard
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Kevin P. Weller
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Sarah A. Reisinger
- The Ohio State University Comprehensive Cancer Center – James, The James Cancer Hospital
| | - Seema A. Bhat
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center – James
| | - Kami J. Maddocks
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center – James
| | - Nathan Denlinger
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center – James
| | - Narendranath Epperla
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center – James
| | - Richard J. Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine; and
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Animal Sciences Department, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute
| | - Eugene M. Oltz
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
- Department of Microbial Infection and Immunity; and
| | - Linda J. Saif
- Center for Food Animal Health, Animal Sciences Department, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute
| | - Dongjun Chung
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Jennifer A. Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center – James
| | - Peter G. Shields
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Shan-Lu Liu
- Center for Retrovirus Research
- Department of Veterinary Biosciences
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute
- Department of Microbial Infection and Immunity; and
| | - Zihai Li
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Mark P. Rubinstein
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| |
Collapse
|
15
|
Qu P, Evans JP, Kurhade C, Zeng C, Zheng YM, Xu K, Shi PY, Xie X, Liu SL. Determinants and Mechanisms of the Low Fusogenicity and High Dependence on Endosomal Entry of Omicron Subvariants. mBio 2023; 14:e0317622. [PMID: 36625591 PMCID: PMC9972997 DOI: 10.1128/mbio.03176-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 01/11/2023] Open
Abstract
The rapid spread and strong immune evasion of the SARS-CoV-2 Omicron subvariants has raised serious concerns for the global COVID-19 pandemic. These new variants exhibit generally reduced fusogenicity and increased endosomal entry pathway utilization compared to the ancestral D614G variant, the underlying mechanisms of which remain elusive. Here, we show that the C-terminal S1 mutations of the BA.1.1 subvariant, H655Y and T547K, critically govern the low fusogenicity of Omicron. Notably, H655Y also dictates the enhanced endosome entry pathway utilization. Mechanistically, T547K and H655Y likely stabilize the spike trimer conformation as suggested by increased molecular interactions in structural modeling and enhanced S1 shedding of their reversion mutants K547T and Y655H in viral producer cells. Importantly, the H655Y mutation also determines the low fusogenicity and enhanced dependence on the endosomal entry pathway of other Omicron subvariants, including BA.2, BA.2.12.1, BA.4/5, and BA.2.75. Together, these results uncover mechanisms governing Omicron subvariant entry and provide insights into altered Omicron tissue tropism and pathogenesis. IMPORTANCE Omicron has been shown to predominantly use the endosomal entry pathway, resulting in reduced lung tropism and reduced disease severity; however, the underlying mechanism is not fully understood. In addition, whether the most recent Omicron subvariants, including BA.5 and BA.2.75, use the same pathway as their ancestor for entry is currently not known. In this study, we show that T547K and H655Y mutations in the C terminus of the S1 subunit critically determine the enhanced dependence on the endosomal entry pathway as well as the reduced cell-cell fusion activity of Omicron BA.1, BA.1.1, and other subvariants. Further experiments and molecular modeling suggest that H655Y and K547T stabilize the spike trimer conformation, likely contributing to the decreased fusogenicity and endosomal entry. Our work uncovers novel mechanisms underlying the distinct entry pathway of Omicron subvariants and advances our understanding of their biological characteristics.
Collapse
Affiliation(s)
- Panke Qu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - John P. Evans
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio, USA
| | - Chaitanya Kurhade
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Cong Zeng
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Kai Xu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
16
|
Song Z, Luo Q, Wan L, Zhu Q, Liu R, Yin X, Lu X, Wei L, Xiang Z, Zou Y. Analysis of Antibodies Induced after SARS-CoV-2 Vaccination Using Antigen Coded Bead Array Luminex Technology. Vaccines (Basel) 2023; 11:442. [PMID: 36851319 PMCID: PMC9964277 DOI: 10.3390/vaccines11020442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Objectives. Since the outbreak of SARS-CoV-2 in late 2019, nearly 12.2 billion doses of the COVID-19 vaccine have been administered worldwide; however, the humoral immune responses induced by different types of vaccines are yet to be fully validated. Methods. We analyzed antibody levels in 100 serum samples after vaccination with different types of COVID-19 vaccines and their reactivity against the RBD antigen of Delta and Omicron variants using a bead-based microarray. Results. Elevated levels of anti-wild-type (WT)-RBD IgG and anti-WT-NP IgG were detected in participants who received two doses of the inactivated vaccines (CoronaVac or BBIBP-CorV) and three doses of the recombinant spike protein vaccine (ZF2001), indicating that antibody responses to SARS-CoV-2 were generated regardless of the vaccine administered. We found highly correlated levels of serum anti-RBD IgG and anti-NP IgG (r = 0.432, p < 0.001). We observed that the antibodies produced in vivo after COVID-19 vaccination still reacted with variants of SARS-CoV-2 (p < 0.0001). Conclusions. Our results show that high levels of specific antibodies can be produced after completion of COVID-19 vaccination (two doses of the inactivated vaccines or three doses of ZF2001), with some degree of cross-reactivity to the RBD antigen of Delta and Omicron variants, and provide an accessible and practical experimental method for post-vaccination antibody detection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yizhou Zou
- Department of Immunology, School of Basic Medical of Central South University, Changsha 410083, China
| |
Collapse
|
17
|
Wang ML, Lin Y, Hou JF, Yang YP, Chien Y, Sun YC, Liang KH, Yang DM, Chang TJ, Wu CH, Kao SY, Hung KF. The Omicron variant wave: Where are we now and what are the prospects? J Chin Med Assoc 2023; 86:135-137. [PMID: 36524941 DOI: 10.1097/jcma.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Omicron variant BA.2 is the dominant form of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak in many countries, including those that have already implemented the strictest quarantine mandates that effectively contained the spread of the previous variants. Although many individuals were partially or fully vaccinated, confirmed Omicron infections have far surpassed all other variants combined in just a couple of months since the Omicron variant emerged. The ChAdOx1-S (AstraZeneca), BNT162b2 (Pfizer-BioNTech), and mRNA-1273 (Moderna) vaccines offer protection against the severe illness of SARS-CoV-2 infection; however, these currently available vaccines are less effective in terms of preventing Omicron infections. As a result, a booster dose of BNT162b2 or mRNA-1273 is recommended for individuals >12 years old who had received their second dose of the approved vaccines for >5 months. Herein, we review the studies that assessed the clinical benefits of the booster dose of vaccines against Omicron infections. We also analyzed public data to address whether early booster vaccination effectively prevented the surge of the Omicron infections. Finally, we discuss the consideration of a fourth dose of vaccine as a way to prevent possible upcoming infections.
Collapse
Affiliation(s)
- Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yang Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ju-Fen Hou
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Nursing, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Chen Sun
- College of Medicine, Tzu-Chi University, Hualien, Taiwan, ROC
- Department of Ophthalmology, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan, ROC
| | - Kung-Hao Liang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - De-Ming Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Tai-Jay Chang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Cheng-Hsien Wu
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shou-Yen Kao
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Kai-Feng Hung
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
18
|
González-Parra G, Arenas AJ. Mathematical Modeling of SARS-CoV-2 Omicron Wave under Vaccination Effects. COMPUTATION (BASEL, SWITZERLAND) 2023; 11:36. [PMID: 38957648 PMCID: PMC11218807 DOI: 10.3390/computation11020036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Over the course of the COVID-19 pandemic millions of deaths and hospitalizations have been reported. Different SARS-CoV-2 variants of concern have been recognized during this pandemic and some of these variants of concern have caused uncertainty and changes in the dynamics. The Omicron variant has caused a large amount of infected cases in the US and worldwide. The average number of deaths during the Omicron wave toll increased in comparison with previous SARS-CoV-2 waves. We studied the Omicron wave by using a highly nonlinear mathematical model for the COVID-19 pandemic. The novel model includes individuals who are vaccinated and asymptomatic, which influences the dynamics of SARS-CoV-2. Moreover, the model considers the waning of the immunity and efficacy of the vaccine against the Omicron strain. This study uses the facts that the Omicron strain has a higher transmissibility than the previous circulating SARS-CoV-2 strain but is less deadly. Preliminary studies have found that Omicron has a lower case fatality rate compared to previous circulating SARS-CoV-2 strains. The simulation results show that even if the Omicron strain is less deadly it might cause more deaths, hospitalizations and infections. We provide a variety of scenarios that help to obtain insight about the Omicron wave and its consequences. The proposed mathematical model, in conjunction with the simulations, provides an explanation for a large Omicron wave under various conditions related to vaccines and transmissibility. These results provide an awareness that new SARS-CoV-2 variants can cause more deaths even if their fatality rate is lower.
Collapse
Affiliation(s)
- Gilberto González-Parra
- Department of Mathematics, New Mexico Tech, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Abraham J. Arenas
- Departamento de Matematicas y Estadistica, Universidad de Cordoba, Monteria 230002, Colombia
| |
Collapse
|
19
|
Qu P, Faraone JN, Evans JP, Zheng YM, Carlin C, Anghelina M, Stevens P, Fernandez S, Jones D, Panchal A, Saif LJ, Oltz EM, Xu K, Gumina RJ, Liu SL. Extraordinary Evasion of Neutralizing Antibody Response by Omicron XBB.1.5, CH.1.1 and CA.3.1 Variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524244. [PMID: 36711991 PMCID: PMC9882202 DOI: 10.1101/2023.01.16.524244] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Newly emerging Omicron subvariants continue to emerge around the world, presenting potential challenges to current vaccination strategies. This study investigates the extent of neutralizing antibody escape by new subvariants XBB.1.5, CH.1.1, and CA.3.1, as well as their impacts on spike protein biology. Our results demonstrated a nearly complete escape of these variants from neutralizing antibodies stimulated by three doses of mRNA vaccine, but neutralization was rescued by a bivalent booster. However, CH.1.1 and CA.3.1 variants were highly resistant to both monovalent and bivalent mRNA vaccinations. We also assessed neutralization by sera from individuals infected during the BA.4/5 wave of infection and observed similar trends of immune escape. In these cohorts, XBB.1.5 did not exhibit enhanced neutralization resistance over the recently dominant BQ.1.1 variant. Notably, the spike proteins of XBB.1.5, CH.1.1, and CA.3.1 all exhibited increased fusogenicity compared to BA.2, correlating with enhanced S processing. Overall, our results support the administration of new bivalent mRNA vaccines, especially in fighting against newly emerged Omicron subvariants, as well as the need for continued surveillance of Omicron subvariants.
Collapse
Affiliation(s)
- Panke Qu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Julia N. Faraone
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - John P. Evans
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Claire Carlin
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mirela Anghelina
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Patrick Stevens
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Soledad Fernandez
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Daniel Jones
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ashish Panchal
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Linda J. Saif
- Center for Food Animal Health, Animal Sciences Department, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Kai Xu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Richard J. Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
20
|
Peña Rodríguez M, Hernández Bello J, Vega Magaña N, Viera Segura O, García Chagollán M, Ceja Gálvez HR, Mora Mora JC, Rentería Flores FI, García González OP, Muñoz Valle JF. Prevalence of symptoms, comorbidities, and reinfections in individuals infected with Wild-Type SARS-CoV-2, Delta, or Omicron variants: a comparative study in western Mexico. Front Public Health 2023; 11:1149795. [PMID: 37181688 PMCID: PMC10174068 DOI: 10.3389/fpubh.2023.1149795] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction The variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been classified into variants of interest (VOIs) or concern (VOCs) to prioritize global monitoring and research on variants with potential risks to public health. The SARS-CoV-2 high-rate mutation can directly impact the clinical disease progression, epidemiological behavior, immune evasion, vaccine efficacy, and transmission rates. Therefore, epidemiological surveillance is crucial for controlling the COVID-19 pandemic. In the present study, we aimed to describe the prevalence of wild-type (WT) SARS-CoV-2 and Delta and Omicron variants in Jalisco State, Mexico, from 2021 to 2022, and evaluate the possible association of these variants with clinical manifestations of COVID-19. Methods Four thousand and ninety-eight patients diagnosed with COVID-19 by real-time PCR (COVIFLU, Genes2Life, Mexico) from nasopharyngeal samples from January 2021 to January 2022 were included. Variant identification was performed by the RT-qPCR Master Mut Kit (Genes2Life, Mexico). A study population follow-up was performed to identify patients who had experienced reinfection after being vaccinated. Results and Discussion Samples were grouped into variants according to the identified mutations: 46.3% were Omicron, 27.9% were Delta, and 25.8% were WT. The proportions of dry cough, fatigue, headache, muscle pain, conjunctivitis, fast breathing, diarrhea, anosmia, and dysgeusia were significantly different among the abovementioned groups (p < 0.001). Anosmia and dysgeusia were mainly found in WT-infected patients, while rhinorrhea and sore throat were more prevalent in patients infected with the Omicron variant. For the reinfection follow-up, 836 patients answered, from which 85 cases of reinfection were identified (9.6%); Omicron was the VOC that caused all reported reinfection cases. In this study, we demonstrate that the Omicron variant caused the biggest outbreak in Jalisco during the pandemic from late December 2021 to mid-February 2022 but with a less severe form than the one demonstrated by Delta and WT. The co-analysis of mutations and clinical outcomes is a public health strategy with the potential to infer mutations or variants that could increase disease severity and even be an indicator of long-term sequelae of COVID-19.
Collapse
Affiliation(s)
- Marcela Peña Rodríguez
- Laboratorio de Enfermedades Emergentes y Reemergentes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Jorge Hernández Bello
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Natali Vega Magaña
- Laboratorio de Enfermedades Emergentes y Reemergentes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Oliver Viera Segura
- Laboratorio de Enfermedades Emergentes y Reemergentes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mariel García Chagollán
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Hazael Ramiro Ceja Gálvez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Doctorado en Ciencias en Biología Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Jesús Carlos Mora Mora
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Francisco Israel Rentería Flores
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Doctorado en Ciencias en Biología Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - José Francisco Muñoz Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- *Correspondence: José Francisco Muñoz Valle,
| |
Collapse
|
21
|
Zapata-Cardona MI, Flórez-Álvarez L, Lopera TJ, Chvatal-Medina M, Zapata-Builes W, Diaz FJ, Aguilar-Jimenez W, Taborda N, Hernandez JC, Rugeles MT. Neutralizing antibody titers to Omicron six months after vaccination with BNT162b2 in Colombia. Front Immunol 2022; 13:1102384. [PMID: 36618393 PMCID: PMC9811190 DOI: 10.3389/fimmu.2022.1102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The emergence of the Omicron variant has generated concerns about the efficacy of COVID-19 vaccines. We evaluated the serum neutralizing activity of antibodies against the Omicron (lineage BA.1.1) by plaque reduction neutralizing test, as well as its correlation with age and gender, in a Colombian cohort six months after being vaccinated with BNT162b2 (Pfizer/BioNTech). Compared to all other variants analyzed, a significantly lower neutralizing activity (p<0.001) was observed against Omicron. Interestingly, older individuals exhibited lower titers against Omicron than those younger than 40. No statistical differences in neutralizing activity were observed according to gender. Our results showed that two doses of BNT162b2 might not provide robust protection against the Omicron variant over time. It is necessary to consider including changes in the composition of the vaccines to protect against new emerging variants of SARS-CoV-2 and campaigns to implement additional booster vaccinations.
Collapse
Affiliation(s)
- María I. Zapata-Cardona
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Lizdany Flórez-Álvarez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia,Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tulio J. Lopera
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Mateo Chvatal-Medina
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Wildeman Zapata-Builes
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia,Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia., Medellín, Colombia
| | - Francisco J. Diaz
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Wbeimar Aguilar-Jimenez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Natalia Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Juan C. Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia., Medellín, Colombia
| | - Maria T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia,*Correspondence: Maria T. Rugeles,
| |
Collapse
|
22
|
Boer JC, Pan Q, Holien JK, Nguyen TB, Ascher DB, Plebanski M. A bias of Asparagine to Lysine mutations in SARS-CoV-2 outside the receptor binding domain affects protein flexibility. Front Immunol 2022; 13:954435. [PMID: 36569921 PMCID: PMC9788125 DOI: 10.3389/fimmu.2022.954435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction COVID-19 pandemic has been threatening public health and economic development worldwide for over two years. Compared with the original SARS-CoV-2 strain reported in 2019, the Omicron variant (B.1.1.529.1) is more transmissible. This variant has 34 mutations in its Spike protein, 15 of which are present in the Receptor Binding Domain (RBD), facilitating viral internalization via binding to the angiotensin-converting enzyme 2 (ACE2) receptor on endothelial cells as well as promoting increased immune evasion capacity. Methods Herein we compared SARS-CoV-2 proteins (including ORF3a, ORF7, ORF8, Nucleoprotein (N), membrane protein (M) and Spike (S) proteins) from multiple ancestral strains. We included the currently designated original Variant of Concern (VOC) Omicron, its subsequent emerged variants BA.1, BA2, BA3, BA.4, BA.5, the two currently emerging variants BQ.1 and BBX.1, and compared these with the previously circulating VOCs Alpha, Beta, Gamma, and Delta, to better understand the nature and potential impact of Omicron specific mutations. Results Only in Omicron and its subvariants, a bias toward an Asparagine to Lysine (N to K) mutation was evident within the Spike protein, including regions outside the RBD domain, while none of the regions outside the Spike protein domain were characterized by this mutational bias. Computational structural analysis revealed that three of these specific mutations located in the central core region, contribute to a preference for the alteration of conformations of the Spike protein. Several mutations in the RBD which have circulated across most Omicron subvariants were also analysed, and these showed more potential for immune escape. Conclusion This study emphasizes the importance of understanding how specific N to K mutations outside of the RBD region affect SARS-CoV-2 conformational changes and the need for neutralizing antibodies for Omicron to target a subset of conformationally dependent B cell epitopes.
Collapse
Affiliation(s)
- Jennifer C. Boer
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology, Melbourne, VIC, Australia
| | - Qisheng Pan
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia,Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jessica K. Holien
- School of Science, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Thanh-Binh Nguyen
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia,Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - David B. Ascher
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia,Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology, Melbourne, VIC, Australia,*Correspondence: Magdalena Plebanski,
| |
Collapse
|
23
|
Shingleton J, Burton L, Williams HE, Finnie TJR, Bennett E, Birrell P, Kenny S, Watson-Koszel T, Viner R, Arditi M, DeAngelis D, Gent N, Ladhani SN. Risk of paediatric multisystem inflammatory syndrome (PIMS-TS) during the SARS-CoV-2 alpha and delta variant waves: National observational and modelling study, 2020-21, England. Front Pediatr 2022; 10:1034280. [PMID: 36545670 PMCID: PMC9762156 DOI: 10.3389/fped.2022.1034280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives Paediatric Multisystem Inflammatory Syndrome (PIMS-TS) is a rare life-threatening complication that typically occurs several weeks after SARS-CoV-2 infection in children and young people (CYP). We used national and regional-level data from the COVID-19 pandemic waves in England to develop a model to predict PIMS-TS cases. Methods SARS-CoV-2 infections in CYP aged 0-15 years in England were estimated using the PHE-Cambridge real-time model. PIMS-TS cases were identified through the British Paediatric Surveillance Unit during (March-June 2020) and through Secondary Uses Services (SUS) from November 2020. A predictive model was developed to estimate PIMS-TS risk and lag times after SARS-CoV-2 infections. Results During the Alpha wave, the model accurately predicted PIMS-TS cases (506 vs. 502 observed cases), with a median estimated risk of 0.038% (IQR, 0.037-0.041%) of paediatric SARS-CoV-2 infections. For the Delta wave, the median risk of PIMS-TS was significantly lower at 0.026% (IQR, 0.025-0.029%), with 212 observed PIMS-TS cases compared to 450 predicted by the model. Conclusions The model accurately predicted national and regional PIMS-TS cases in CYP during the Alpha wave. PIMS-TS cases were 53% lower than predicted during the Delta wave. Further studies are needed to understand the mechanisms of the observed lower risk with the Delta variant.
Collapse
Affiliation(s)
- Joseph Shingleton
- Emergency Preparedness Response and Resilience Directorate, UK Health Security Agency, Porton Down, London, United Kingdom
- Joint Modelling Team, UK Health Security Agency, London, United Kingdom
| | - Lucy Burton
- Emergency Preparedness Response and Resilience Directorate, UK Health Security Agency, Porton Down, London, United Kingdom
- Joint Modelling Team, UK Health Security Agency, London, United Kingdom
| | - Hannah E. Williams
- Emergency Preparedness Response and Resilience Directorate, UK Health Security Agency, Porton Down, London, United Kingdom
- Joint Modelling Team, UK Health Security Agency, London, United Kingdom
| | - Thomas J. R. Finnie
- Emergency Preparedness Response and Resilience Directorate, UK Health Security Agency, Porton Down, London, United Kingdom
- Joint Modelling Team, UK Health Security Agency, London, United Kingdom
| | - Emma Bennett
- Emergency Preparedness Response and Resilience Directorate, UK Health Security Agency, Porton Down, London, United Kingdom
- Joint Modelling Team, UK Health Security Agency, London, United Kingdom
| | - Paul Birrell
- Joint Modelling Team, UK Health Security Agency, London, United Kingdom
- MRC Biostatistics Unit, University of Cambridge, School of Clinical Medicine, Cambridge Institute of Public Health, Cambridge, United Kingdom
- Statistical Modelling and Economics, UK Health Security Agency, Colindale, United Kingdom
| | - Simon Kenny
- CYP Transformation Programme Team, Nursing Directorate, NHS England and NHS Improvement, Leeds, England
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Paediatric Surgery, Alder Hey in the Park, Liverpool, United Kingdom
| | - Tiffany Watson-Koszel
- CYP Transformation Programme Team, Nursing Directorate, NHS England and NHS Improvement, Leeds, England
| | - Russell Viner
- Population, Policy and Practice, UCL Great Ormond St. Institute of Child Health, London, United Kingdom
| | - Moshe Arditi
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Daniela DeAngelis
- Statistical Modelling and Economics, UK Health Security Agency, Colindale, United Kingdom
| | - Nick Gent
- Emergency Preparedness Response and Resilience Directorate, UK Health Security Agency, Porton Down, London, United Kingdom
- Joint Modelling Team, UK Health Security Agency, London, United Kingdom
| | - Shamez N. Ladhani
- Immunisation and Countermeasures Division, UK Health Security Agency, London, United Kingdom
- Paediatric Infectious Diseases Research Group, St George’s University of London, London, United Kingdom
| |
Collapse
|
24
|
Qu P, Evans JP, Zheng YM, Carlin C, Saif LJ, Oltz EM, Xu K, Gumina RJ, Liu SL. Evasion of neutralizing antibody responses by the SARS-CoV-2 BA.2.75 variant. Cell Host Microbe 2022; 30:1518-1526.e4. [PMID: 36240764 PMCID: PMC9515334 DOI: 10.1016/j.chom.2022.09.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022]
Abstract
The newly emerged BA.2.75 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant contains 9 additional mutations in its spike (S) protein compared to the ancestral BA.2 variant. Here, we examine the neutralizing antibody escape of BA.2.75 in mRNA-vaccinated and BA.1-infected individuals, as well as the molecular basis underlying functional changes in S. Notably, BA.2.75 exhibits enhanced neutralization resistance over BA.2 but less than the BA.4/5 variant. The G446S and N460K mutations of BA.2.75 are primarily responsible for its enhanced resistance to neutralizing antibodies. The R493Q mutation, a reversion to the prototype sequence, reduces BA.2.75 neutralization resistance. The impact of these mutations is consistent with their locations in common neutralizing antibody epitopes. Further, BA.2.75 shows enhanced cell-cell fusion over BA.2, driven largely by the N460K mutation, which enhances S processing. Structural modeling reveals enhanced receptor contacts introduced by N460K, suggesting a mechanism of potentiated receptor utilization and syncytia formation.
Collapse
Affiliation(s)
- Panke Qu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - John P Evans
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Claire Carlin
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Linda J Saif
- Center for Food Animal Health, Animal Sciences Department, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA; Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Eugene M Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Kai Xu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Richard J Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
25
|
Tang J, Zeng C, Cox TM, Li C, Son YM, Cheon IS, Wu Y, Behl S, Taylor JJ, Chakraborty R, Johnson AJ, Schiavo DN, Utz JP, Reisenauer JS, Midthun DE, Mullon JJ, Edell ES, Alameh MG, Borish L, Teague WG, Kaplan MH, Weissman D, Kern R, Hu H, Vassallo R, Liu SL, Sun J. Respiratory mucosal immunity against SARS-CoV-2 after mRNA vaccination. Sci Immunol 2022; 7:eadd4853. [PMID: 35857583 PMCID: PMC9348751 DOI: 10.1126/sciimmunol.add4853] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 12/30/2022]
Abstract
SARS-CoV-2 mRNA vaccination induces robust humoral and cellular immunity in the circulation; however, it is currently unknown whether it elicits effective immune responses in the respiratory tract, particularly against variants of concern (VOCs), including Omicron. We compared the SARS-CoV-2 S-specific total and neutralizing antibody responses, and B and T cell immunity, in the bronchoalveolar lavage fluid (BAL) and blood of COVID-19-vaccinated individuals and hospitalized patients. Vaccinated individuals had significantly lower levels of neutralizing antibody against D614G, Delta (B.1.617.2), and Omicron BA.1.1 in the BAL compared with COVID-19 convalescents despite robust S-specific antibody responses in the blood. Furthermore, mRNA vaccination induced circulating S-specific B and T cell immunity, but in contrast to COVID-19 convalescents, these responses were absent in the BAL of vaccinated individuals. Using a mouse immunization model, we demonstrated that systemic mRNA vaccination alone induced weak respiratory mucosal neutralizing antibody responses, especially against SARS-CoV-2 Omicron BA.1.1 in mice; however, a combination of systemic mRNA vaccination plus mucosal adenovirus-S immunization induced strong neutralizing antibody responses not only against the ancestral virus but also the Omicron BA.1.1 variant. Together, our study supports the contention that the current COVID-19 vaccines are highly effective against severe disease development, likely through recruiting circulating B and T cell responses during reinfection, but offer limited protection against breakthrough infection, especially by the Omicron sublineage. Hence, mucosal booster vaccination is needed to establish robust sterilizing immunity in the respiratory tract against SARS-CoV-2, including infection by the Omicron sublineage and future VOCs.
Collapse
Affiliation(s)
- Jinyi Tang
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA 22908
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA 22908
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA 55905
| | - Cong Zeng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA 43210
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA 43210
| | - Thomas M. Cox
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA 55905
| | - Chaofan Li
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA 22908
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA 22908
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA 55905
| | - Young Min Son
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA 22908
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea 17546
| | - In Su Cheon
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA 22908
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA 22908
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA 55905
| | - Yue Wu
- Department of Immunology, Mayo Clinic, Rochester, MN, USA 55905
| | - Supriya Behl
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA 55905
| | - Justin J. Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA 98109
| | - Rana Chakraborty
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA 55905
| | | | - Dante N. Schiavo
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA 55905
| | - James P. Utz
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA 55905
| | - Janani S. Reisenauer
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA 55905
| | - David E. Midthun
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA 55905
| | - John J. Mullon
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA 55905
| | - Eric S. Edell
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA 55905
| | - Mohamad G. Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104
| | - Larry Borish
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA 22908
| | - William G. Teague
- Child Health Research Center, Department of Pediatrics, University of Virginia, Charlottesville, VA, USA 22908
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA 46074
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104
| | - Ryan Kern
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA 55905
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA 77555
| | - Robert Vassallo
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA 55905
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA 43210
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA 43210
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA 22908
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA 22908
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA 55905
- Department of Immunology, Mayo Clinic, Rochester, MN, USA 55905
| |
Collapse
|
26
|
Semeraro S, Gaetano AS, Zupin L, Poloni C, Merlach E, Greco E, Licen S, Fontana F, Leo S, Miani A, Broccolo F, Barbieri P. Operative Protocol for Testing the Efficacy of Nasal Filters in Preventing Airborne Transmission of SARS-CoV-2. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13790. [PMID: 36360670 PMCID: PMC9654745 DOI: 10.3390/ijerph192113790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Standardized methods for testing Viral Filtration Efficiency (VFE) of tissues and devices are lacking and few studies are available on aerosolizing, sampling and assessing infectivity of SARS-CoV-2 in controlled laboratory settings. NanoAg-coated endonasal filters appear a promising aid for lowering viable virus inhalation in both adult and younger populations (e.g., adolescents). OBJECTIVE to provide an adequate method for testing SARS-CoV-2 bioaerosol VFE of bio-gel Ag nanoparticles endonasal filters, by a model system, assessing residual infectivity as cytopathic effect and viral proliferation on in vitro cell cultures. METHODS A SARS-CoV-2 aerosol transmission chamber fed by a BLAM aerosol generator produces challenges (from very high viral loads (105 PFU/mL) to lower ones) for endonasal filters positioned in a Y shape sampling port connected to a Biosampler. An aerosol generator, chamber and sampler are contained in a class II cabinet in a BSL3 facility. Residual infectivity is assessed from aliquots of liquid collecting bioaerosol, sampled without and with endonasal filters. Cytopathic effect as plaque formation and viral proliferation assessed by qRT-PCR on Vero E6 cells are determined up to 7 days post inoculum. RESULTS Each experimental setting is replicated three times and basic statistics are calculated. Efficiency of aerosolization is determined as difference between viral load in the nebulizer and in the Biosampler at the first day of experiment. Efficiency of virus filtration is calculated as RNA viral load ratio in collected bioaerosol with and without endonasal filters at the day of the experiment. Presence of infectious virus is assessed by plaque forming unit assay and RNA viral load variations. CONCLUSIONS A procedure and apparatus for assessing SARS-CoV-2 VFE for endonasal filters is proposed. The apparatus can be implemented for more sophisticated studies on contaminated aerosols.
Collapse
Affiliation(s)
- Sabrina Semeraro
- INSTM National Interuniversity Consortium of Materials Science and Technology, Research Unit of University of Trieste, 34127 Trieste, Italy
| | - Anastasia Serena Gaetano
- INSTM National Interuniversity Consortium of Materials Science and Technology, Research Unit of University of Trieste, 34127 Trieste, Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Luisa Zupin
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell’Istria 65/1, 34137 Trieste, Italy
| | - Carlo Poloni
- INSTM National Interuniversity Consortium of Materials Science and Technology, Research Unit of University of Trieste, 34127 Trieste, Italy
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 10, 34127 Trieste, Italy
| | - Elvio Merlach
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Enrico Greco
- INSTM National Interuniversity Consortium of Materials Science and Technology, Research Unit of University of Trieste, 34127 Trieste, Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
- SIMA Società Italiana di Medicina Ambientale, Viale di Porta Vercellina, 9, 20123 Milano, Italy
| | - Sabina Licen
- INSTM National Interuniversity Consortium of Materials Science and Technology, Research Unit of University of Trieste, 34127 Trieste, Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Francesco Fontana
- Ospedale San Polo, Azienda Sanitaria Universitaria Giuliano Isontina, Via Luigi Galvani 1, 34074 Monfalcone, Italy
| | - Silvana Leo
- Division of Oncology, Vito Fazzi Hospital, P.za Muratore 1, 73100 Lecce, Italy
| | - Alessandro Miani
- SIMA Società Italiana di Medicina Ambientale, Viale di Porta Vercellina, 9, 20123 Milano, Italy
- Department of Environmental Science and Policy, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy
| | - Francesco Broccolo
- SIMA Società Italiana di Medicina Ambientale, Viale di Porta Vercellina, 9, 20123 Milano, Italy
- Department of Medicine and Surgery, School of Medicine, University of Milano-Bicocca, 20900 Monza, Italy
- Cerba HealthCare Italia, Via Durini, 14, 20122 Milano, Italy
| | - Pierluigi Barbieri
- INSTM National Interuniversity Consortium of Materials Science and Technology, Research Unit of University of Trieste, 34127 Trieste, Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
- SIMA Società Italiana di Medicina Ambientale, Viale di Porta Vercellina, 9, 20123 Milano, Italy
| |
Collapse
|
27
|
Tilleman L, Rubben K, Van Criekinge W, Deforce D, Van Nieuwerburgh F. Haplotyping pharmacogenes using TLA combined with Illumina or Nanopore sequencing. Sci Rep 2022; 12:17734. [PMID: 36273027 PMCID: PMC9587992 DOI: 10.1038/s41598-022-22499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/16/2022] [Indexed: 01/18/2023] Open
Abstract
The currently used pharmacogenetic genotyping assays offer limited haplotype information, which can potentially cause specific functional effects to be missed. This study tested if Targeted Locus Amplification (TLA), when using non-patient-specific primers combined with Illumina or Nanopore sequencing, can offer an advantage in terms of accurate phasing. The TLA method selectively amplifies and sequences entire genes based on crosslinking DNA in close physical proximity. This way, DNA fragments that were initially further apart in the genome are ligated into one molecule, making it possible to sequence distant variants within one short read. In this study, four pharmacogenes, CYP2D6, CYP2C19, CYP1A2 and BRCA1, were sequenced after enrichment using different primer pairs. Only 24% or 38% of the nucleotides mapped on target when using Illumina or Nanopore sequencing, respectively. With an average depth of more than 1000X for the regions of interest, none of the genes were entirely covered with either sequencing method. For three of the four genes, less than half of the variants were phased correctly compared to the reference. The Nanopore dataset with the optimized primer pair for CYP2D6 resulted in the correct haplotype, showing that this method can be used for reliable genotyping and phasing of pharmacogenes but does require patient-specific primer design and optimization to be effective.
Collapse
Affiliation(s)
- Laurentijn Tilleman
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Kaat Rubben
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Wim Van Criekinge
- Laboratory of Bioinformatics and Computational Genomics, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
28
|
Qu P, Evans JP, Faraone J, Zheng YM, Carlin C, Anghelina M, Stevens P, Fernandez S, Jones D, Lozanski G, Panchal A, Saif LJ, Oltz EM, Xu K, Gumina RJ, Liu SL. Distinct Neutralizing Antibody Escape of SARS-CoV-2 Omicron Subvariants BQ.1, BQ.1.1, BA.4.6, BF.7 and BA.2.75.2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.19.512891. [PMID: 36299423 PMCID: PMC9603827 DOI: 10.1101/2022.10.19.512891] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Continued evolution of SARS-CoV-2 has led to the emergence of several new Omicron subvariants, including BQ.1, BQ. 1.1, BA.4.6, BF.7 and BA.2.75.2. Here we examine the neutralization resistance of these subvariants, as well as their ancestral BA.4/5, BA.2.75 and D614G variants, against sera from 3-dose vaccinated health care workers, hospitalized BA.1-wave patients, and BA.5-wave patients. We found enhanced neutralization resistance in all new subvariants, especially the BQ.1 and BQ.1.1 subvariants driven by a key N460K mutation, and to a lesser extent, R346T and K444T mutations, as well as the BA.2.75.2 subvariant driven largely by its F486S mutation. The BQ.1 and BQ.1.1 subvariants also exhibited enhanced fusogenicity and S processing dictated by the N460K mutation. Interestingly, the BA.2.75.2 subvariant saw an enhancement by the F486S mutation and a reduction by the D1199N mutation to its fusogenicity and S processing, resulting in minimal overall change. Molecular modelling revealed the mechanisms of receptor-binding and non-receptor binding monoclonal antibody-mediated immune evasion by R346T, K444T, F486S and D1199N mutations. Altogether, these findings shed light on the concerning evolution of newly emerging SARS-CoV-2 Omicron subvariants.
Collapse
Affiliation(s)
- Panke Qu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - John P. Evans
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Julia Faraone
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Claire Carlin
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mirela Anghelina
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Patrick Stevens
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Soledad Fernandez
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Daniel Jones
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Gerard Lozanski
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ashish Panchal
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Linda J. Saif
- Center for Food Animal Health, Animal Sciences Department, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Kai Xu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Richard J. Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
29
|
Qu P, Evans JP, Kurhade C, Zeng C, Zheng YM, Xu K, Shi PY, Xie X, Liu SL. Determinants and Mechanisms of the Low Fusogenicity and Endosomal Entry of Omicron Subvariants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.15.512322. [PMID: 36299433 PMCID: PMC9603825 DOI: 10.1101/2022.10.15.512322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The rapid spread and strong immune evasion of the SARS-CoV-2 Omicron subvariants has raised serious concerns for the global COVID-19 pandemic. These new variants exhibit reduced fusogenicity and increased endosomal entry pathway utilization compared to the ancestral D614G variant, the underlying mechanisms of which remain elusive. Here we show that the C-terminal S1 mutations of the BA.1.1 subvariant, H655Y and T547K, critically govern the low fusogenicity of Omicron. Notably, H655Y also dictates the enhanced endosome entry pathway utilization. Mechanistically, T547K and H655Y likely stabilize the spike trimer conformation, as shown by increased molecular interactions in structural modeling as well as reduced S1 shedding. Importantly, the H655Y mutation also determines the low fusogenicity and high dependence on the endosomal entry pathway of other Omicron subvariants, including BA.2, BA.2.12.1, BA.4/5 and BA.2.75. These results uncover mechanisms governing Omicron subvariant entry and provide insights into altered Omicron tissue tropism and pathogenesis.
Collapse
Affiliation(s)
- Panke Qu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - John P. Evans
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA,Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Chaitanya Kurhade
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Cong Zeng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Kai Xu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA,Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA,Corresponding Author:
| |
Collapse
|
30
|
The Comparison of Mutational Progression in SARS-CoV-2: A Short Updated Overview. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp3040018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The COVID-19 pandemic has impacted the world population adversely, posing a threat to human health. In the past few years, various strains of SARS-CoV-2, each with different mutations in its structure, have impacted human health in negative ways. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations influence the virulence, antibody evasion, and Angiotensin-converting enzyme 2 (ACE2) affinity of the virus. These mutations are essential to understanding how a new strain of SARS-CoV-2 has changed and its possible effects on the human body. This review provides an insight into the spike mutations of SARS-CoV-2 variants. As the current scientific data offer a scattered outlook on the various type of mutations, we aimed to categorize the mutations of Beta (B.1.351), Gamma (P.1), Delta (B.1.612.2), and Omicron (B.1.1.529) systematically according to their location in the subunit 1 (S1) and subunit 2 (S2) domains and summarized their consequences as a result. We also compared the miscellany of mutations that have emerged in all four variants to date. The comparison shows that mutations such as D614G and N501Y have emerged in all four variants of concern and that all four variants have multiple mutations within the N-terminal domain (NTD), as in the case of the Delta variant. Other mutations are scattered in the receptor binding domain (RBD) and subdomain 2 (SD2) of the S1 domain. Mutations in RBD or NTD are often associated with antibody evasion. Few mutations lie in the S2 domain in the Beta, Gamma, and Delta variants. However, in the Omicron variant many mutations occupy the S2 domain, hinting towards a much more evasive virus.
Collapse
|
31
|
Wein T, Sorek R. Bacterial origins of human cell-autonomous innate immune mechanisms. Nat Rev Immunol 2022; 22:629-638. [PMID: 35396464 DOI: 10.1038/s41577-022-00705-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
Abstract
The cell-autonomous innate immune system enables animal cells to resist viral infection. This system comprises an array of sensors that, after detecting viral molecules, activate the expression of antiviral proteins and the interferon response. The repertoire of immune sensors and antiviral proteins has long been considered to be derived from extensive evolutionary innovation in vertebrates, but new data challenge this dogma. Recent studies show that central components of the cell-autonomous innate immune system have ancient evolutionary roots in prokaryotic genes that protect bacteria from phages. These include the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, Toll/IL-1 receptor (TIR) domain-containing pathogen receptors, the viperin family of antiviral proteins, SAMHD1-like nucleotide-depletion enzymes, gasdermin proteins and key components of the RNA interference pathway. This Perspective details current knowledge of the elements of antiviral immunity that are conserved from bacteria to humans, and presents possible evolutionary scenarios to explain the observed conservation.
Collapse
Affiliation(s)
- Tanita Wein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
32
|
Delshad M, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. Host genetic diversity and genetic variations of SARS-CoV-2 in COVID-19 pathogenesis and the effectiveness of vaccination. Int Immunopharmacol 2022; 111:109128. [PMID: 35963158 PMCID: PMC9359488 DOI: 10.1016/j.intimp.2022.109128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the outbreak of coronavirus disease 2019 (COVID-19), has shown a vast range of clinical manifestations from asymptomatic to life-threatening symptoms. To figure out the cause of this heterogeneity, studies demonstrated the trace of genetic diversities whether in the hosts or the virus itself. With this regard, this review provides a comprehensive overview of how host genetic such as those related to the entry of the virus, the immune-related genes, gender-related genes, disease-related genes, and also host epigenetic could influence the severity of COVID-19. Besides, the mutations in the genome of SARS-CoV-2 __leading to emerging of new variants__ per se affect the affinity of the virus to the host cells and enhance the immune escape capacity. The current review discusses these variants and also the latest data about vaccination effectiveness facing the most important variants.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Neerukonda SN, Wang R, Vassell R, Baha H, Lusvarghi S, Liu S, Wang T, Weiss CD, Wang W. Characterization of Entry Pathways, Species-Specific Angiotensin-Converting Enzyme 2 Residues Determining Entry, and Antibody Neutralization Evasion of Omicron BA.1, BA.1.1, BA.2, and BA.3 Variants. J Virol 2022; 96:e0114022. [PMID: 36000843 PMCID: PMC9472608 DOI: 10.1128/jvi.01140-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022] Open
Abstract
The SARS-CoV-2 Omicron variants were first detected in November 2021, and several Omicron lineages (BA.1, BA.2, BA.3, BA.4, and BA.5) have since rapidly emerged. Studies characterizing the mechanisms of Omicron variant infection and sensitivity to neutralizing antibodies induced upon vaccination are ongoing by several groups. In the present study, we used pseudoviruses to show that the transmembrane serine protease 2 (TMPRSS2) enhances infection of BA.1, BA.1.1, BA.2, and BA.3 Omicron variants to a lesser extent than ancestral D614G. We further show that Omicron variants have higher sensitivity to inhibition by soluble angiotensin-converting enzyme 2 (ACE2) and the endosomal inhibitor chloroquine compared to D614G. The Omicron variants also more efficiently used ACE2 receptors from 9 out of 10 animal species tested, and unlike the D614G variant, used mouse ACE2 due to the Q493R and Q498R spike substitutions. Finally, neutralization of the Omicron variants by antibodies induced by three doses of Pfizer/BNT162b2 mRNA vaccine was 7- to 8-fold less potent than the D614G. These results provide insights into the transmissibility and immune evasion capacity of the emerging Omicron variants to curb their ongoing spread. IMPORTANCE The ongoing emergence of SARS-CoV-2 Omicron variants with an extensive number of spike mutations poses a significant public health and zoonotic concern due to enhanced transmission fitness and escape from neutralizing antibodies. We studied three Omicron lineage variants (BA.1, BA.2, and BA.3) and found that transmembrane serine protease 2 has less influence on Omicron entry into cells than on D614G, and Omicron exhibits greater sensitivity to endosomal entry inhibition compared to D614G. In addition, Omicron displays more efficient usage of diverse animal species ACE2 receptors than D614G. Furthermore, due to Q493R/Q498R substitutions in spike, Omicron, but not D614G, can use the mouse ACE2 receptor. Finally, three doses of Pfizer/BNT162b2 mRNA vaccination elicit high neutralization titers against Omicron variants, although the neutralization titers are still 7- to 8-fold lower those that against D614G. These results may give insights into the transmissibility and immune evasion capacity of the emerging Omicron variants to curb their ongoing spread.
Collapse
Affiliation(s)
- Sabari Nath Neerukonda
- US Food and Drug Administration, Office of Vaccine Research and Review, Center for Biologics Evaluation, Research and Review, Silver Spring, Maryland, USA
| | - Richard Wang
- US Food and Drug Administration, Office of Vaccine Research and Review, Center for Biologics Evaluation, Research and Review, Silver Spring, Maryland, USA
| | - Russell Vassell
- US Food and Drug Administration, Office of Vaccine Research and Review, Center for Biologics Evaluation, Research and Review, Silver Spring, Maryland, USA
| | - Haseebullah Baha
- US Food and Drug Administration, Office of Vaccine Research and Review, Center for Biologics Evaluation, Research and Review, Silver Spring, Maryland, USA
| | - Sabrina Lusvarghi
- US Food and Drug Administration, Office of Vaccine Research and Review, Center for Biologics Evaluation, Research and Review, Silver Spring, Maryland, USA
| | - Shufeng Liu
- US Food and Drug Administration, Office of Vaccine Research and Review, Center for Biologics Evaluation, Research and Review, Silver Spring, Maryland, USA
| | - Tony Wang
- US Food and Drug Administration, Office of Vaccine Research and Review, Center for Biologics Evaluation, Research and Review, Silver Spring, Maryland, USA
| | - Carol D. Weiss
- US Food and Drug Administration, Office of Vaccine Research and Review, Center for Biologics Evaluation, Research and Review, Silver Spring, Maryland, USA
| | - Wei Wang
- US Food and Drug Administration, Office of Vaccine Research and Review, Center for Biologics Evaluation, Research and Review, Silver Spring, Maryland, USA
| |
Collapse
|
34
|
Wei Z, He J, Wang C, Bao J, Leng T, Chen F. The importance of booster vaccination in the context of Omicron wave. Front Immunol 2022; 13:977972. [PMID: 36159796 PMCID: PMC9498215 DOI: 10.3389/fimmu.2022.977972] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Omicron (B.1.1.529) was first detected in a sample collected in Botswana on November 11, 2021, and has rapidly replaced Delta as the dominant global variant given the robust transmissibility. Moreover, it displays a lower virulence than other variants. However, the pathogenicity of Omicron appears to be underestimated in view of the increasing levels of herd immunity through natural infection or vaccination. Additionally, the volume of hospitalizations and deaths increase in proportion to the number of cases due to the high transmissibility of Omicron. Therefore, vaccination remains an important public health priority. Notably, a series of important mutations in the Omicron spike protein, especially in the receptor-binding domain and N-terminal domain, appears to be associated with immune escape capacity, reducing the willingness of people to receive vaccines. Herein, we provide an in-depth discussion to assess the effectiveness of the second and third vaccination against Omicron variant. On the one hand, the two-dose vaccination program adopted by many countries is insufficient to prevent Omicron infection given the mutations correlated with immune escape and the decline in vaccine efficacy over time. On the other hand, booster dose significantly increases the protective efficacy against Omicron infection. Most importantly, heterologous third dose vaccination induces a more robust immune response than homologous booster dose. Therefore, under the special background of this pandemic, there is an urgent need to accelerate the third dose of vaccination, especially providing better booster vaccination strategies, to combat emerging Omicron variant.
Collapse
|
35
|
Sullivan DJ, Franchini M, Joyner MJ, Casadevall A, Focosi D. Analysis of anti-Omicron neutralizing antibody titers in different vaccinated and unvaccinated convalescent plasma sources. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2021.12.24.21268317. [PMID: 35982681 PMCID: PMC9387146 DOI: 10.1101/2021.12.24.21268317] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The latest SARS-CoV-2 variant of concern Omicron, with its immune escape from therapeutic anti-Spike monoclonal antibodies and WA-1 vaccine-elicited sera, demonstrates the continued relevance of COVID-19 convalescent plasma (CCP) therapies. Lessons learnt from previous usage of CCP suggests focusing on early outpatients and immunocompromised recipients, with high neutralizing antibody (nAb) titer units. In this analysis we systematically reviewed Omicron-neutralizing plasma activity data, and found that approximately 47% (424/902) of CCP from unvaccinated pre-Omicron donors neutralizes Omicron BA.1 with a very low geomean of geometric mean titers for 50% neutralization GM(GMT50) of about 13, representing a more than 20-fold reduction from WA-1 neutralization. Two doses of mRNA vaccines in nonconvalescent subjects had a similar 50% percent neutralization with Omicron BA.1 neutralization GM(GMT(50)) of about 27. However, plasma from vaccinees recovered from either previous pre-Omicron variants of concern infection, Omicron BA.1 infection, or third-dose uninfected vaccinees was nearly 100% neutralizing against Omicron BA.1, BA.2 and BA.4/5 with GM(GMT(50)) all over 189, 10 times higher than pre-Omicron CCP. Fully vaccinated and post-BA.1 plasma (Vax-CCP) had GM(GMT50) over 450 for BA.4/5 and over 1500 for BA.1 and BA.2. These findings have implications for both CCP stocks collected in prior pandemic periods and plans to restart CCP collections. Thus, Vax-CCP provides an effective tool to combat ongoing variants that defeat therapeutic monoclonal antibodies.
Collapse
Affiliation(s)
- David J Sullivan
- Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD 21218, USA
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Michael J. Joyner
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD 21218, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| |
Collapse
|
36
|
Fazekas Z, Menyhárd DK, Perczel A. Omicron Binding Mode: Contact Analysis and Dynamics of the Omicron Receptor-Binding Domain in Complex with ACE2. J Chem Inf Model 2022; 62:3844-3853. [PMID: 35849759 PMCID: PMC9331008 DOI: 10.1021/acs.jcim.2c00397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Indexed: 12/12/2022]
Abstract
On 26 November 2021, the WHO classified the Omicron variant of the SARS-CoV-2 virus (B.1.1.529 lineage) as a variant of concern (VOC) (COVID-19 Variant Data, Department of Health, 2022). The Omicron variant contains as many as 26 unique mutations of effects not yet determined (Venkatakrishnan, A., Open Science Framework, 2021). Out of its total of 34 Spike protein mutations, 15 are located on the receptor-binding domain (S-RBD) (Stanford Coronavirus Antiviral & Resistance Database, 2022) that directly contacts the angiotensin-converting enzyme 2 (ACE2) host receptor and is also a primary target for antibodies. Here, we studied the binding mode of the S-RBD domain of the Spike protein carrying the Omicron mutations and the globular domain of human ACE2 using molecular dynamics (MD) simulations. We identified new and key Omicron-specific interactions such as R493 (of mutation Q493R), which forms salt bridges both with E35 and D38 of ACE2, Y501 (N501Y), which forms an edge-to-face aromatic interaction with Y41, and Y505 (Y505H), which makes an H-bond with E37 and K353. The glycan chains of ACE2 also bind differently in the WT and Omicron variants in response to different charge distributions on the surface of Spike proteins. However, while the Omicron mutations considerably improve the overall electrostatic fit of the two interfaces, the total number of specific and favorable interactions between the two does not increase. The dynamics of the complexes are highly affected too, making the Omicron S-RBD:ACE2 complex more rigid; the two main interaction sites, Patches I and II, isolated in the WT complex, become connected in the Omicron complex through the alternating interaction of R493 and R498 with E35 and D38.
Collapse
Affiliation(s)
- Zsolt Fazekas
- Laboratory of Structural Chemistry and Biology,
Institute of Chemistry, ELTE Eötvös Loránd
University, Budapest 1117, Hungary
- ELTE Hevesy György PhD School of Chemistry,
ELTE Eötvös Loránd University, Budapest
1117, Hungary
| | - Dóra K. Menyhárd
- Laboratory of Structural Chemistry and Biology,
Institute of Chemistry, ELTE Eötvös Loránd
University, Budapest 1117, Hungary
- MTA-ELTE Protein Modeling Research Group,
Eötvös Loránd Research Network (ELKH), ELTE
Eötvös Loránd University, Budapest 1117,
Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology,
Institute of Chemistry, ELTE Eötvös Loránd
University, Budapest 1117, Hungary
- MTA-ELTE Protein Modeling Research Group,
Eötvös Loránd Research Network (ELKH), ELTE
Eötvös Loránd University, Budapest 1117,
Hungary
| |
Collapse
|
37
|
Qu P, Evans JP, Zheng YM, Carlin C, Saif LJ, Oltz EM, Xu K, Gumina RJ, Liu SL. Evasion of Neutralizing Antibody Response by the SARS-CoV-2 BA.2.75 Variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.14.503921. [PMID: 36032970 PMCID: PMC9413709 DOI: 10.1101/2022.08.14.503921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The newly emerged BA.2.75 SARS-CoV-2 variant exhibits an alarming 9 additional mutations in its spike (S) protein compared to the ancestral BA.2 variant. Here we examine the neutralizing antibody escape of BA.2.75 in mRNA-vaccinated and BA.1-infected individuals, as well as the molecular basis underlying functional changes in the S protein. Notably, BA.2.75 exhibits enhanced neutralization resistance over BA.2, but less than the BA.4/5 variant. The G446S and N460K mutations of BA.2.75 are primarily responsible for its enhanced resistance to neutralizing antibodies. The R493Q mutation, a reversion to the prototype sequence, reduces BA.2.75 neutralization resistance. The mutational impact is consistent with their locations in common neutralizing antibody epitopes. Further, the BA.2.75 variant shows enhanced cell-cell fusion over BA.2, driven largely by the N460K mutation, which enhances S processing. Structural modeling revealed a new receptor contact introduced by N460K, supporting a mechanism of potentiated receptor utilization and syncytia formation.
Collapse
Affiliation(s)
- Panke Qu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - John P. Evans
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Claire Carlin
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Linda J. Saif
- Center for Food Animal Health, Animal Sciences Department, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Kai Xu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Richard J. Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
38
|
Seidel A, Zanoni M, Groß R, Krnavek D, Erdemci-Evin S, von Maltitz P, Albers DPJ, Conzelmann C, Liu S, Weil T, Mayer B, Hoffmann M, Pöhlmann S, Beil A, Kroschel J, Kirchhoff F, Münch J, Müller JA. BNT162b2 booster after heterologous prime-boost vaccination induces potent neutralizing antibodies and T cell reactivity against SARS-CoV-2 Omicron BA.1 in young adults. Front Immunol 2022; 13:882918. [PMID: 35958601 PMCID: PMC9357986 DOI: 10.3389/fimmu.2022.882918] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/28/2022] [Indexed: 01/14/2023] Open
Abstract
In light of the decreasing immune protection against symptomatic SARS-CoV-2 infection after initial vaccinations and the now dominant immune-evasive Omicron variants, 'booster' vaccinations are regularly performed to restore immune responses. Many individuals have received a primary heterologous prime-boost vaccination with long intervals between vaccinations, but the resulting long-term immunity and the effects of a subsequent 'booster', particularly against Omicron BA.1, have not been defined. We followed a cohort of 23 young adults, who received a primary heterologous ChAdOx1 nCoV-19 BNT162b2 prime-boost vaccination, over a 7-month period and analysed how they responded to a BNT162b2 'booster'. We show that already after the primary heterologous vaccination, neutralization titers against Omicron BA.1 are recognizable but that humoral and cellular immunity wanes over the course of half a year. Residual responsive memory T cells recognized spike epitopes of the early SARS-CoV-2 B.1 strain as well as the Delta and BA.1 variants of concern (VOCs). However, the remaining antibody titers hardly neutralized these VOCs. The 'booster' vaccination was well tolerated and elicited both high antibody titers and increased memory T cell responses against SARS-CoV-2 including BA.1. Strikingly, in this young heterologously vaccinated cohort the neutralizing activity after the 'booster' was almost as potent against BA.1 as against the early B.1 strain. Our results suggest that a 'booster' after heterologous vaccination results in effective immune maturation and potent protection against the Omicron BA.1 variant in young adults.
Collapse
Affiliation(s)
- Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Michelle Zanoni
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniela Krnavek
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Pascal von Maltitz
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Dan P. J. Albers
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Sichen Liu
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Benjamin Mayer
- Institute for Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Alexandra Beil
- Central Department for Clinical Chemistry, University Hospital Ulm, Ulm, Germany
| | - Joris Kroschel
- Central Department for Clinical Chemistry, University Hospital Ulm, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| | - Janis A. Müller
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
39
|
Neutralizing antibody activity against 21 SARS-CoV-2 variants in older adults vaccinated with BNT162b2. Nat Microbiol 2022; 7:1180-1188. [PMID: 35836002 PMCID: PMC9352594 DOI: 10.1038/s41564-022-01163-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
SARS-CoV-2 variants may threaten the effectiveness of vaccines and antivirals to mitigate serious COVID-19 disease. This is of most concern in clinically vulnerable groups such as older adults. We analysed 72 sera samples from 37 individuals, aged 70–89 years, vaccinated with two doses of BNT162b2 (Pfizer–BioNTech) 3 weeks apart, for neutralizing antibody responses to wildtype SARS-CoV-2. Between 3 and 20 weeks after the second vaccine dose, neutralizing antibody titres fell 4.9-fold to a median titre of 21.3 (neutralization dose 80%), with 21.6% of individuals having no detectable neutralizing antibodies at the later time point. Next, we examined neutralization of 21 distinct SARS-CoV-2 variant spike proteins with these sera, and confirmed substantial antigenic escape, especially for the Omicron (B.1.1.529, BA.1/BA.2), Beta (B.1.351), Delta (B.1.617.2), Theta (P.3), C.1.2 and B.1.638 spike variants. By combining pseudotype neutralization with specific receptor-binding domain (RBD) enzyme-linked immunosorbent assays, we showed that changes to position 484 in the spike RBD were mainly responsible for SARS-CoV-2 neutralizing antibody escape. Nineteen sera from the same individuals boosted with a third dose of BNT162b2 contained higher neutralizing antibody titres, providing cross-protection against Omicron BA.1 and BA.2. Despite SARS-CoV-2 immunity waning over time in older adults, booster vaccines can elicit broad neutralizing antibodies against a large number of SARS-CoV-2 variants in this clinically vulnerable cohort. Analysis of the neutralizing antibody activity from sera of vaccinated individuals aged between 70 and 89 reveals a reduction of antibody titres against SARS-CoV-2 wildtype and antigenic escape of various variants of concern that links to specific mutations within the RBD. A booster vaccination helps increasing neutralizing antibody titres against the Omicron BA.1 and BA.2 variants in older adults.
Collapse
|
40
|
Tunyasuvunakool K. The prospects and opportunities of protein structure prediction with AI. Nat Rev Mol Cell Biol 2022; 23:445-446. [PMID: 35477993 DOI: 10.1038/s41580-022-00488-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Guo HB, Perminov A, Bekele S, Kedziora G, Farajollahi S, Varaljay V, Hinkle K, Molinero V, Meister K, Hung C, Dennis P, Kelley-Loughnane N, Berry R. AlphaFold2 models indicate that protein sequence determines both structure and dynamics. Sci Rep 2022; 12:10696. [PMID: 35739160 PMCID: PMC9226352 DOI: 10.1038/s41598-022-14382-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/06/2022] [Indexed: 12/29/2022] Open
Abstract
AlphaFold 2 (AF2) has placed Molecular Biology in a new era where we can visualize, analyze and interpret the structures and functions of all proteins solely from their primary sequences. We performed AF2 structure predictions for various protein systems, including globular proteins, a multi-domain protein, an intrinsically disordered protein (IDP), a randomized protein, two larger proteins (> 1000 AA), a heterodimer and a homodimer protein complex. Our results show that along with the three dimensional (3D) structures, AF2 also decodes protein sequences into residue flexibilities via both the predicted local distance difference test (pLDDT) scores of the models, and the predicted aligned error (PAE) maps. We show that PAE maps from AF2 are correlated with the distance variation (DV) matrices from molecular dynamics (MD) simulations, which reveals that the PAE maps can predict the dynamical nature of protein residues. Here, we introduce the AF2-scores, which are simply derived from pLDDT scores and are in the range of [0, 1]. We found that for most protein models, including large proteins and protein complexes, the AF2-scores are highly correlated with the root mean square fluctuations (RMSF) calculated from MD simulations. However, for an IDP and a randomized protein, the AF2-scores do not correlate with the RMSF from MD, especially for the IDP. Our results indicate that the protein structures predicted by AF2 also convey information of the residue flexibility, i.e., protein dynamics.
Collapse
Affiliation(s)
- Hao-Bo Guo
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, OH, USA
- UES Inc., Dayton, OH, USA
| | - Alexander Perminov
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, OH, USA
- Computer Science Department, Miami University, Oxford, OH, USA
| | - Selemon Bekele
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, OH, USA
- UES Inc., Dayton, OH, USA
| | - Gary Kedziora
- General Dynamics Information Technology, Inc., Wright-Patterson Air Force Base, 45433, OH, USA
| | - Sanaz Farajollahi
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, OH, USA
- UES Inc., Dayton, OH, USA
| | - Vanessa Varaljay
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, OH, USA
| | - Kevin Hinkle
- Department of Chemical and Materials Engineering, Dayton University, Dayton, OH, USA
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, UT, USA
| | - Konrad Meister
- Department of Natural Sciences, University of Alaska Southeast, Juneau, AK, USA
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Chia Hung
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, OH, USA
| | - Patrick Dennis
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, OH, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, OH, USA.
| | - Rajiv Berry
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, OH, USA.
| |
Collapse
|
42
|
Yuan S, Ye ZW, Liang R, Tang K, Zhang AJ, Lu G, Ong CP, Man Poon VK, Chan CCS, Mok BWY, Qin Z, Xie Y, Chu AWH, Chan WM, Ip JD, Sun H, Tsang JOL, Yuen TTT, Chik KKH, Chan CCY, Cai JP, Luo C, Lu L, Yip CCY, Chu H, To KKW, Chen H, Jin DY, Yuen KY, Chan JFW. Pathogenicity, transmissibility, and fitness of SARS-CoV-2 Omicron in Syrian hamsters. Science 2022; 377:428-433. [PMID: 35737809 DOI: 10.1126/science.abn8939] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The in vivo pathogenicity, transmissibility, and fitness of the SARS-CoV-2 Omicron (B.1.1.529) variant are unclear. We compared these virological attributes of this new variant of concern with those of the Delta (B.1.617.2) variant in a Syrian hamster model of COVID-19. Omicron-infected hamsters lost significantly less body weight and exhibited reduced clinical scores, respiratory tract viral burdens, cytokine/chemokine dysregulation, and lung damage than Delta-infected hamsters. Both variants were highly transmissible via contact transmission. In non-contact transmission studies, Omicron demonstrated similar or higher transmissibility than Delta. Delta outcompeted Omicron without selection pressure. This scenario drastically changed once immune selection pressure with neutralizing antibodies active against Delta but poorly active against Omicron was introduced. Next-generation vaccines and antivirals effective against this new VOC are urgently needed.
Collapse
Affiliation(s)
- Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Zi-Wei Ye
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ronghui Liang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Anna Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Gang Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China.,Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China; and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Chon Phin Ong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Vincent Kwok Man Poon
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Chris Chung-Sing Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Bobo Wing-Yee Mok
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Zhenzhi Qin
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yubin Xie
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Allen Wing-Ho Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Wan-Mui Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jonathan Daniel Ip
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Haoran Sun
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jessica Oi-Ling Tsang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Terrence Tsz-Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kenn Ka-Heng Chik
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Chris Chun-Yiu Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Cuiting Luo
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Lu Lu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Cyril Chik-Yan Yip
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China; and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.,Guangzhou Laboratory, Guangdong Province, China
| | - Honglin Chen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.,Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.,Guangzhou Laboratory, Guangdong Province, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Guangzhou Laboratory, Guangdong Province, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China; and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.,Guangzhou Laboratory, Guangdong Province, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China; and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.,Guangzhou Laboratory, Guangdong Province, China
| |
Collapse
|
43
|
Hoteit R, Yassine HM. Biological Properties of SARS-CoV-2 Variants: Epidemiological Impact and Clinical Consequences. Vaccines (Basel) 2022; 10:919. [PMID: 35746526 PMCID: PMC9230982 DOI: 10.3390/vaccines10060919] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a virus that belongs to the coronavirus family and is the cause of coronavirus disease 2019 (COVID-19). As of May 2022, it had caused more than 500 million infections and more than 6 million deaths worldwide. Several vaccines have been produced and tested over the last two years. The SARS-CoV-2 virus, on the other hand, has mutated over time, resulting in genetic variation in the population of circulating variants during the COVID-19 pandemic. It has also shown immune-evading characteristics, suggesting that vaccinations against these variants could be potentially ineffective. The purpose of this review article is to investigate the key variants of concern (VOCs) and mutations of the virus driving the current pandemic, as well as to explore the transmission rates of SARS-CoV-2 VOCs in relation to epidemiological factors and to compare the virus's transmission rate to that of prior coronaviruses. We examined and provided key information on SARS-CoV-2 VOCs in this study, including their transmissibility, infectivity rate, disease severity, affinity for angiotensin-converting enzyme 2 (ACE2) receptors, viral load, reproduction number, vaccination effectiveness, and vaccine breakthrough.
Collapse
Affiliation(s)
- Reem Hoteit
- Clinical Research Institute, Faculty of Medicine, American University of Beirut, Beirut 110236, Lebanon;
| | - Hadi M. Yassine
- Biomedical Research Center and College of Health Sciences-QU Health, Qatar University, Doha 2713, Qatar
| |
Collapse
|
44
|
Li X. Concerns on the Effectiveness of Current COVID-19 Vaccines. Front Microbiol 2022; 13:848803. [PMID: 35733969 PMCID: PMC9207398 DOI: 10.3389/fmicb.2022.848803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xingguang Li
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
45
|
Jawad B, Adhikari P, Podgornik R, Ching WY. Binding Interactions between Receptor-Binding Domain of Spike Protein and Human Angiotensin Converting Enzyme-2 in Omicron Variant. J Phys Chem Lett 2022; 13:3915-3921. [PMID: 35481766 PMCID: PMC9063111 DOI: 10.1021/acs.jpclett.2c00423] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The emergence of new SARS-CoV-2 Omicron variant of concern (OV) has exacerbated the COVID-19 pandemic because of a large number of mutations in the spike protein, particularly in the receptor-binding domain (RBD), resulting in highly contagious and/or vaccine-resistant strains. Herein, we present a systematic analysis based on detailed molecular dynamics (MD) simulations in order to understand how the OV RBD mutations affect the ACE2 binding. We show that the OV RBD binds to ACE2 more efficiently and tightly predominantly because of strong electrostatic interactions, thereby promoting increased infectivity and transmissibility compared to other strains. Some of the OV RBD mutations are predicted to affect the antibody neutralization either through their role in the S-protein conformational changes, such as S371L, S373P, and S375F, or through changing its surface charge distribution, such as G339D, N440K, T478K, and E484A. Other mutations, such as K417N, G446S, and Y505H, decrease the ACE2 binding, whereas S447N, Q493R, G496S, Q498R, and N501Y tend to increase it.
Collapse
Affiliation(s)
- Bahaa Jawad
- Department
of Physics and Astronomy, University of
Missouri—Kansas City, Kansas City, Missouri 64110, United States
- Department
of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Puja Adhikari
- Department
of Physics and Astronomy, University of
Missouri—Kansas City, Kansas City, Missouri 64110, United States
| | - Rudolf Podgornik
- Wenzhou
Institute of the University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- School
of Physical Sciences and Kavli Institute of Theoretical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100090, China
- Department
of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Wai-Yim Ching
- Department
of Physics and Astronomy, University of
Missouri—Kansas City, Kansas City, Missouri 64110, United States
| |
Collapse
|
46
|
Zhang J, Tang W, Gao H, Lavine CL, Shi W, Peng H, Zhu H, Anand K, Kosikova M, Kwon HJ, Tong P, Gautam A, Rits-Volloch S, Wang S, Mayer ML, Wesemann DR, Seaman MS, Lu J, Xiao T, Xie H, Chen B. Structural and functional characteristics of SARS-CoV-2 Omicron subvariant BA.2 spike. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022. [PMID: 35547850 DOI: 10.1101/2022.04.28.489772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Omicron subvariant BA.2 has become the dominant circulating strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in many countries. We have characterized structural, functional and antigenic properties of the full-length BA.2 spike (S) protein and compared replication of the authentic virus in cell culture and animal model with previously prevalent variants. BA.2 S can fuse membranes more efficiently than Omicron BA.1, mainly due to lack of a BA.1-specific mutation that may retard the receptor engagement, but still less efficiently than other variants. Both BA.1 and BA.2 viruses replicated substantially faster in animal lungs than the early G614 (B.1) strain in the absence of pre-existing immunity, possibly explaining the increased transmissibility despite their functionally compromised spikes. As in BA.1, mutations in the BA.2 S remodel its antigenic surfaces leading to strong resistance to neutralizing antibodies. These results suggest that both immune evasion and replicative advantage may contribute to the heightened transmissibility for the Omicron subvariants.
Collapse
|
47
|
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic demonstrates the threat posed by novel coronaviruses to human health. Coronaviruses share a highly conserved cell entry mechanism mediated by the spike protein, the sole product of the S gene. The structural dynamics by which the spike protein orchestrates infection illuminate how antibodies neutralize virions and how S mutations contribute to viral fitness. Here, we review the process by which spike engages its proteinaceous receptor, angiotensin converting enzyme 2 (ACE2), and how host proteases prime and subsequently enable efficient membrane fusion between virions and target cells. We highlight mutations common among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern and discuss implications for cell entry. Ultimately, we provide a model by which sarbecoviruses are activated for fusion competency and offer a framework for understanding the interplay between humoral immunity and the molecular evolution of the SARS-CoV-2 Spike. In particular, we emphasize the relevance of the Canyon Hypothesis (M. G. Rossmann, J Biol Chem 264:14587-14590, 1989) for understanding evolutionary trajectories of viral entry proteins during sustained intraspecies transmission of a novel viral pathogen.
Collapse
Affiliation(s)
- Kyle A. Wolf
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Interdiscipinary Ph.D. Program in Structural and Computational Biology and Quantitative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason C. Kwan
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jeremy P. Kamil
- Department of Microbiology and Immunology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
- Center for Excellence in Emerging Viral Threats, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
48
|
Bhattacharya M, Sharma AR, Dhama K, Agoramoorthy G, Chakraborty C. Omicron variant (B.1.1.529) of SARS-CoV-2: understanding mutations in the genome, S-glycoprotein, and antibody-binding regions. GeroScience 2022; 44:619-637. [PMID: 35258772 PMCID: PMC8902853 DOI: 10.1007/s11357-022-00532-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/16/2022] [Indexed: 01/18/2023] Open
Abstract
The Omicron variant has been detected in nearly 150 countries. We analyzed the mutational landscape of Omicron throughout the genome, focusing the S-glycoprotein. We also evaluated mutations in the antibody-binding regions and observed some important mutations overlapping those of previous variants including N501Y, D614G, H655Y, N679K, and P681H. Various new receptor-binding domain mutations were detected, including Q493K, G496S, Q498R, S477N, G466S, N440K, and Y505H. New mutations were found in the NTD (Δ143-145, A67V, T95I, L212I, and Δ211) including one new mutation in fusion peptide (D796Y). There are several mutations in the antibody-binding region including K417N, E484A, Q493K, Q498R, N501Y, and Y505H and several near the antibody-binding region (S477N, T478K, G496S, G446S, and N440K). The impact of mutations in regions important for the affinity between spike proteins and neutralizing antibodies was evaluated. Furthermore, we examined the effect of significant antibody-binding mutations (K417N, T478K, E484A, and N501Y) on antibody affinity, stability to ACE2 interaction, and possibility of amino acid substitution. All the four mutations destabilize the antibody-binding affinity. This study reveals future directions for developing neutralizing antibodies against the Omicron variant.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | | | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
49
|
Evans JP, Zeng C, Carlin C, Lozanski G, Saif LJ, Oltz EM, Gumina RJ, Liu SL. Neutralizing antibody responses elicited by SARS-CoV-2 mRNA vaccination wane over time and are boosted by breakthrough infection. Sci Transl Med 2022; 14:eabn8057. [PMID: 35166573 PMCID: PMC8939766 DOI: 10.1126/scitranslmed.abn8057] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
The waning efficacy of SARS-CoV-2 vaccines, combined with the continued emergence of variants resistant to vaccine-induced immunity, has reignited debate over the need for booster vaccine doses. To address this, we examined the neutralizing antibody response against the spike protein of five major SARS-CoV-2 variants, D614G, Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529), in health care workers (HCWs) vaccinated with SARS-CoV-2 mRNA vaccines. Serum samples were collected before vaccination, 3 weeks after first vaccination, 1 month after second vaccination, and 6 months after second vaccination. Minimal neutralizing antibody titers were detected against Omicron pseudovirus at all four time points, including for most patients who had SARS-CoV-2 breakthrough infections. Neutralizing antibody titers against all other variant spike protein-bearing pseudoviruses declined markedly from 1 to 6 months after the second mRNA vaccine dose, although SARS-CoV-2 infection boosted vaccine responses. In addition, mRNA-1273-vaccinated HCWs exhibited about twofold higher neutralizing antibody titers than BNT162b2-vaccinated HCWs. Together, these results demonstrate possible waning of antibody-mediated protection against SARS-CoV-2 variants that is dependent on prior infection status and the mRNA vaccine received. They also show that the Omicron variant spike protein can almost completely escape from neutralizing antibodies elicited in recipients of only two mRNA vaccine doses.
Collapse
Affiliation(s)
- John P. Evans
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Cong Zeng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Claire Carlin
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Gerard Lozanski
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Linda J. Saif
- Center for Food Animal Health, Animal Sciences Department, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Richard J. Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
50
|
Yuan M, Zhu X, He WT, Zhou P, Kaku CI, Capozzola T, Zhu CY, Yu X, Liu H, Yu W, Hua Y, Tien H, Peng L, Song G, Cottrell CA, Schief WR, Nemazee D, Walker LM, Andrabi R, Burton DR, Wilson IA. A broad and potent neutralization epitope in SARS-related coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.13.484037. [PMID: 35313576 PMCID: PMC8936108 DOI: 10.1101/2022.03.13.484037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many neutralizing antibodies (nAbs) elicited to ancestral SARS-CoV-2 through natural infection and vaccination generally have reduced effectiveness to SARS-CoV-2 variants. Here we show therapeutic antibody ADG20 is able to neutralize all SARS-CoV-2 variants of concern (VOCs) including Omicron (B.1.1.529) as well as other SARS-related coronaviruses. We delineate the structural basis of this relatively escape-resistant epitope that extends from one end of the receptor binding site (RBS) into the highly conserved CR3022 site. ADG20 can then benefit from high potency through direct competition with ACE2 in the more variable RBS and interaction with the more highly conserved CR3022 site. Importantly, antibodies that are able to target this site generally neutralize all VOCs, albeit with reduced potency against Omicron. Thus, this highly conserved and vulnerable site can be exploited for design of universal vaccines and therapeutic antibodies.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wan-ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Connie Y. Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xinye Yu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wenli Yu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yuanzi Hua
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Henry Tien
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christopher A. Cottrell
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - William R. Schief
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Laura M. Walker
- Adimab, LLC, Lebanon, NH 03766, USA
- Adagio Therapeutics, Inc., Waltham, MA 02451, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|