1
|
Alavi M, Roudi R, D'Angelo A, Sobhani N, Safari F. Current understanding of PEAK family members in regulation of cellular signaling pathways and cancer therapy. Mol Cell Biochem 2025; 480:3521-3533. [PMID: 39922936 DOI: 10.1007/s11010-025-05219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/26/2025] [Indexed: 02/10/2025]
Abstract
Cancer evades therapy by multiple mechanisms, leading to uncontrolled cell growth and metastasis. Targeted therapies have shown promise in treating cancer by focusing on pathways within cancer cells. The PEAK family, comprising PEAK1 (SgK269), PEAK2 (SgK223/Pragmin), and the latest addition, PEAK3 (C19orf35), plays a crucial role in modulating cellular processes. Dysregulation and hyperactivity of these proteins, through overexpression or mutations, are associated with a wide range of cancers. This review delves into the different roles of the PEAK family members in regulating cell signaling pathways and highlights their potential in cancer therapy.
Collapse
Affiliation(s)
- Mana Alavi
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | | | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| |
Collapse
|
2
|
Acebedo AR, Yamada G, Alcantara MC, Raga DD, Sato T, Nishinakamura R, Suzuki K. Sall1 regulates microtubule acetylation in mesenchymal cells during mouse urethral development. Cells Dev 2025:204027. [PMID: 40306366 DOI: 10.1016/j.cdev.2025.204027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Male embryonic external genitalia (eExG) undergo sexually dimorphic urethral development in response to androgen signaling (urethral masculinization). Whereas androgen is an essential masculinization factor for eExG, the specific molecular and cellular mechanisms are still unclear. Sall1 is a transcription factor that has been linked to the congenital disease Townes-Brocks syndrome, which includes anorectal and urogenital malformations. Currently, the functional role of Sall1 for normal urethral development is still unclear. In this study, we show that Sall1 is required to regulate proper microtubule acetylation to facilitate mesenchymal cell migration during urethral masculinization of mouse eExG. Mutant male mice with loss of function of mesenchymal Sall1 exhibited severe urethral defects, without prominent alteration of androgen signaling. Loss of Sall1 induced hyperacetylated microtubules in the eExG mesenchyme. Microtubule hyperacetylation resulted in defective fibrillar adhesions and fibronectin expression which impaired cell migration. Our findings reveal a novel mechanism of Sall1-regulated mesenchymal cell migration for urethral development. This mechanism for Sall1 may underlie the etiology of diseases such as Townes-Brocks syndrome.
Collapse
Affiliation(s)
- Alvin R Acebedo
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Institute of Biology, College of Science, University of the Philippines, Diliman, 1101 Quezon City, NCR, Philippines
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Department of Plastic and Reconstructive Surgery, Graduate School of Medicine Wakayama Medical University, Kimiidera, Wakayama 641-8509, Japan
| | - Mellissa C Alcantara
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Dennis D Raga
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Tetsuya Sato
- Biomedical Research Center, Faculty of Medicine, Saitama Medical University, Saitama 350-1241, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan.
| |
Collapse
|
3
|
Au FK, Le KT, Liao Z, Lin Z, Shen Y, Tong P, Zhang M, Qi RZ. Calponin-homology domain of GAS2L1 promotes formation of stress fibers and focal adhesions. Mol Biol Cell 2025; 36:ar47. [PMID: 39969983 PMCID: PMC12005110 DOI: 10.1091/mbc.e24-10-0444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/27/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Growth arrest-specific 2-like 1 protein (GAS2L1) binds both actin and microtubules through its unique structural domains: a calponin-homology (CH) domain for actin binding and a GAS2-related (GAR) domain for microtubule interaction. In this study, we demonstrate that GAS2L1 promotes stress fiber assembly, enhances focal adhesion formation, and stabilizes cytoskeletal networks against mechanical perturbation through its CH domain. Remarkably, we show that the CH domain dimerizes and induces actin filament bundling and stabilization both in cells and in vitro. The CH and GAR domains interact to form an autoinhibitory module, wherein the GAR domain suppresses CH domain dimerization and actin-bundling activity. Our findings provide novel insights into the regulatory mechanisms of GAS2L1's autoinhibition and identify the CH domain as a critical actin-bundling factor that contributes to the organization of stress fibers and focal adhesions.
Collapse
Affiliation(s)
- Franco K.C. Au
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Khoi T.D. Le
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhitao Liao
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhijie Lin
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuehong Shen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Penger Tong
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Mingjie Zhang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Robert Z. Qi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, China
| |
Collapse
|
4
|
Reuning U, D'Amore VM, Hodivala-Dilke K, Marinelli L, Kessler H. Importance of integrin transmembrane helical interactions for antagonistic versus agonistic ligand behavior: Consequences for medical applications. Bioorg Chem 2025; 156:108193. [PMID: 39842299 DOI: 10.1016/j.bioorg.2025.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Integrins are well-characterized receptors involved in cell adhesion and signaling. With six approved drugs, they are recognized as valuable therapeutic targets. Here, we explore potential activation mechanisms that may clarify the agonist versus antagonist behavior of integrin ligands. The reorganization of the transmembrane domain (TMD) in the integrin receptor, forming homooligomers within focal adhesions, could be key to the understanding of the agonistic properties of integrin ligands at substoichiometric concentrations. This has significant implications for medical applications. While we focus on the RGD peptide-recognizing integrin subfamily, we propose that these mechanistic insights may also apply to other integrin subtypes. For application of integrin ligands in medicine it is essential to consider this mechanism and its consequences for affinity and bioavailability.
Collapse
Affiliation(s)
- Ute Reuning
- TUM University Hospital, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Department of Gynecology and Obstetrics, Clinical Research Unit, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Vincenzo Maria D'Amore
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| | - Luciana Marinelli
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Horst Kessler
- Institute for Advanced Study, Department of Chemistry, School of Natural Sciences and Bavarian NMR Center (BNMRZ), Technical University Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany.
| |
Collapse
|
5
|
Vostatek M, Verin E, Tamm M, Rothbauer M, Toegel S, Moscato F. Bone-Mimetic Osteon Microtopographies on Poly-ε-Caprolactone Enhance the Osteogenic Potential of Human Mesenchymal Stem Cells. Macromol Biosci 2025; 25:e2400311. [PMID: 39234756 PMCID: PMC11827551 DOI: 10.1002/mabi.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/19/2024] [Indexed: 09/06/2024]
Abstract
The attributes of implant surfaces are pivotal for successful osseointegration. Among surface engineering strategies, microtopography stands out as a promising approach to promote early cellular interactions. This study aims to design and craft a novel biomimetic osteon-like surface modification and to compare its impact on human mesenchymal stem cells (hMSCs) with four established topographies: blank, inverted pyramids, protrusions, and grooves. Poly-ε-caprolactone samples are fabricated using 2-photon-polymerization and soft lithography, prior to analysis via scanning electron microscopy (SEM), water contact angle (WCA), and protein adsorption assays. Additionally, cellular responses including cell attachment, proliferation, morphology, cytoskeletal organization, and osteogenic differentiation potential are evaluated. SEM confirms the successful fabrication of microtopographies, with minimal effect on WCA and protein adsorption. Cell attachment experiments demonstrate a significant increase on the osteon-like structure, being three times higher than on the blank. Proliferation assays indicate a fourfold increase with osteon-like microtopography compared to the blank, while ALP activity is notably elevated with osteon-like microtopography at days 7 (threefold increase over blank) and 14 (fivefold increase over blank). In conclusion, the novel biomimetic osteon-like structure demonstrates favorable responses from hMSCs, suggesting potential for promoting successful implant integration in vivo.
Collapse
Affiliation(s)
- Matthias Vostatek
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaWaehringer Guertel 18–20/4LVienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstrasse 13Vienna1200Austria
| | - Elettra Verin
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaWaehringer Guertel 18–20/4LVienna1090Austria
| | - Marvin Tamm
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaWaehringer Guertel 18–20/4LVienna1090Austria
| | - Mario Rothbauer
- Karl Chiari Lab for Orthopedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaWaehringer Guertel 18–20Vienna1090Austria
- Faculty of Technical ChemistryTechnische Universitaet WienGetreidemarkt 9Vienna1060Austria
- Ludwig Boltzmann Institute for Arthritis and RehabilitationSpitalgasse 23/BT88Vienna1090Austria
| | - Stefan Toegel
- Karl Chiari Lab for Orthopedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaWaehringer Guertel 18–20Vienna1090Austria
- Ludwig Boltzmann Institute for Arthritis and RehabilitationSpitalgasse 23/BT88Vienna1090Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaWaehringer Guertel 18–20/4LVienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstrasse 13Vienna1200Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Guertel 18–20/4LVienna1090Austria
| |
Collapse
|
6
|
Zihni C. Phagocytosis by the retinal pigment epithelium: New insights into polarized cell mechanics. Bioessays 2025; 47:e2300197. [PMID: 39663766 DOI: 10.1002/bies.202300197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/21/2024] [Indexed: 12/13/2024]
Abstract
The retinal pigment epithelium (RPE) is a specialized epithelium at the back of the eye that carries out a variety of functions essential for visual health. Recent studies have advanced our molecular understanding of one of the major functions of the RPE; phagocytosis of spent photoreceptor outer segments (POS). Notably, a mechanical link, formed between apical integrins bound to extracellular POS and the intracellular actomyosin cytoskeleton, is proposed to drive the internalization of POS. The process may involve a "nibbling" action, as an initial step, to sever outer segment tips. These insights have led us to hypothesize an "integrin adhesome-like" network, atypically assembled at apical membrane RPE-POS contacts. I propose that this hypothetical network orchestrates the complex membrane remodeling events required for particle internalization. Therefore, its analysis and characterization will likely lead to a more comprehensive understanding of the molecular mechanisms that control POS phagocytosis.
Collapse
Affiliation(s)
- Ceniz Zihni
- Faculty of Health & Life Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
7
|
Roy T, Dutta S, Ghosh S, Sthanam LK, Sen S. CD44/Integrin β1 Association Drives Fast Motility on Hyaluronic Acid Substrates. J Cell Physiol 2025; 240:e70001. [PMID: 39835458 DOI: 10.1002/jcp.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/14/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
In addition to proteins such as collagen (Col) and fibronectin, the extracellular matrix (ECM) is enriched with bulky proteoglycan molecules such as hyaluronic acid (HA). However, how ECM proteins and proteoglycans collectively regulate cellular processes has not been adequately explored. Here, we address this question by studying cytoskeletal and focal adhesion organization and dynamics on cells cultured on polyacrylamide hydrogels functionalized with Col, HA and a combination of Col and HA (Col/HA). We show that fastest migration on HA substrates is attributed to the presence of smaller and weaker focal adhesions. Integrinβ $\beta $ 1 co-localization and its association with CD44-which is the receptor for HA, and insensitivity of cell spreading to RGD on HA substrates suggests that focal adhesions on HA substrates are formed via integrin association with HA bound CD44. Consistent with this, adhesion formation and cell motility were inhibited when CD44 was knocked out. Collectively, our results suggest that association of integrinβ $\beta $ 1 with CD44 drives fast motility on HA substrates.
Collapse
Affiliation(s)
- Tanusri Roy
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Sarbajeet Dutta
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Swetlana Ghosh
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | | | - Shamik Sen
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| |
Collapse
|
8
|
Sturgess W, Packirisamy S, Geneidy R, Nordenfelt P, Swaminathan V. ECM-dependent regulation of septin 7 in focal adhesions promotes mechanosensing and functional response in fibroblasts. iScience 2024; 27:111355. [PMID: 39650732 PMCID: PMC11625310 DOI: 10.1016/j.isci.2024.111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/29/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Fibroblasts are adherent cells that maintain tissue homeostasis by sensing and responding to the extracellular matrix (ECM). Focal adhesions (FAs) link these ECM changes to actomyosin dynamics through changes in its composition, influencing cellular response. Septin-7 (Sept-7) has previously been found in FA proteomics studies and shown to influence ECM sensing. Using total internal reflection microscopy, we found that ECM-mediated integrin activation regulates spatially distinct Sept-7 structures in FAs. In perinuclear regions, ECM binding stabilized Sept-7 bundles at the back of FAs, while in the core of peripheral FAs high integrin activation promoted elongation of Sept-7 structures. Ventral Sept-7 structures were crucial for ECM sensing, impacting region-specific FA elongation, stabilization, and contributing to fibroblast mechanosensitivity. Taken together, our results suggest that ECM and integrin-dependent regulation of ventral Sept-7 structures plays a pivotal role in fibroblast ECM sensing and mechanotransduction through its recruitment and assembly into FA subpopulations.
Collapse
Affiliation(s)
- Wesley Sturgess
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Swathi Packirisamy
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Rodina Geneidy
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Pontus Nordenfelt
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Laboratory Medicine, Clinical Microbiology, Skåne University Hospital Lund, Lund Universty, Lund, Sweden
| | - Vinay Swaminathan
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Kyriazi D, Voth L, Bader A, Ewert W, Gerlach J, Elfrink K, Franz P, Tsap MI, Schirmer B, Damiano-Guercio J, Hartmann FK, Plenge M, Salari A, Schöttelndreier D, Strienke K, Bresch N, Salinas C, Gutzeit HO, Schaumann N, Hussein K, Bähre H, Brüsch I, Claus P, Neumann D, Taft MH, Shcherbata HR, Ngezahayo A, Bähler M, Amiri M, Knölker HJ, Preller M, Tsiavaliaris G. An allosteric inhibitor of RhoGAP class-IX myosins suppresses the metastatic features of cancer cells. Nat Commun 2024; 15:9947. [PMID: 39550360 PMCID: PMC11569205 DOI: 10.1038/s41467-024-54181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024] Open
Abstract
Aberrant Ras homologous (Rho) GTPase signalling is a major driver of cancer metastasis, and GTPase-activating proteins (GAPs), the negative regulators of RhoGTPases, are considered promising targets for suppressing metastasis, yet drug discovery efforts have remained elusive. Here, we report the identification and characterization of adhibin, a synthetic allosteric inhibitor of RhoGAP class-IX myosins that abrogates ATPase and motor function, suppressing RhoGTPase-mediated modes of cancer cell metastasis. In human and murine adenocarcinoma and melanoma cell models, including three-dimensional spheroid cultures, we reveal anti-migratory and anti-adhesive properties of adhibin that originate from local disturbances in RhoA/ROCK-regulated signalling, affecting actin-dynamics and actomyosin-based cell-contractility. Adhibin blocks membrane protrusion formation, disturbs remodelling of cell-matrix adhesions, affects contractile ring formation, and disrupts epithelial junction stability; processes severely impairing single/collective cell migration and cytokinesis. Combined with the non-toxic, non-pathological signatures of adhibin validated in organoids, mouse and Drosophila models, this mechanism of action provides the basis for developing anti-metastatic cancer therapies.
Collapse
Affiliation(s)
- Despoina Kyriazi
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Lea Voth
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Almke Bader
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Wiebke Ewert
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
- Institute for Functional Gene Analytics (IFGA), Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | | | - Kerstin Elfrink
- Institute of Integrative Cell Biology and Physiology, University of Münster, Münster, Germany
| | - Peter Franz
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Mariana I Tsap
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Bastian Schirmer
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | | | - Falk K Hartmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Masina Plenge
- Department of Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz Universität Hannover, Hannover, Germany
| | - Azam Salari
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | - Katharina Strienke
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Nadine Bresch
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Claudio Salinas
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Nora Schaumann
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Kais Hussein
- Institute of Pathology, KRH Klinikum Nordstadt, Hannover, Germany
| | - Heike Bähre
- Research Core Unit Mass Spectrometry-Metabolomics, Hannover Medical School, Hanover, Germany
| | - Inga Brüsch
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Peter Claus
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover, Germany
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Manuel H Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Anaclet Ngezahayo
- Department of Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz Universität Hannover, Hannover, Germany
| | - Martin Bähler
- Institute of Integrative Cell Biology and Physiology, University of Münster, Münster, Germany
| | - Mahdi Amiri
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | - Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
- Institute for Functional Gene Analytics (IFGA), Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | | |
Collapse
|
10
|
Wu Z, Wang Z, Hua Z, Ji Y, Ye Q, Zhang H, Yan W. Prognostic signature and immunotherapeutic relevance of Focal adhesion signaling pathway-related genes in osteosarcoma. Heliyon 2024; 10:e38523. [PMID: 39524888 PMCID: PMC11550747 DOI: 10.1016/j.heliyon.2024.e38523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background As the most common primary malignant bone tumor in children and adolescents, osteosarcoma currently lacks an effective clinical cure. Focal adhesion plays a crucial role in tumor invasion, migration, and drug resistance by mediating communication between the extracellular matrix and tumor cells. This study investigated the prognostic features and immunotherapeutic relevance of focal adhesion pathway-related genes in osteosarcoma to aid in the development of new therapeutic options. Methods We obtained mutational, transcriptomic, gene expression, and clinical data of osteosarcoma patients from the Gene Expression Omnibus (GEO) and Therapeutically Applicable Research to Generate Effective (TARGET) databases. Differentially expressed genes were screened, followed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. Kaplan-Meier survival analysis was performed for genes related to the focal adhesion pathway, and multivariate Cox regression analysis was employed to construct a prognostic signature model. Genes such as SIGLEC15, TIGIT, CD274, HAVCR2, PDCD1, CTLA4, and LAG3 were extracted from the TARGET and CCLE databases for osteosarcoma patients and osteosarcoma cell lines, respectively,to observe the expression of immune checkpoint-related genes. Finally, qRT-PCR was used to verify the expression of these immune checkpoint-related genes in osteosarcoma cell lines. Results In our study, 376 samples were analyzed, including 369 osteosarcoma samples and 7 normal tissue samples. We identified 50 up-regulated and 28 down-regulated differentially expressed genes. Among these, 10 Candidate genes relative to focal Adhesion were selected, and CAV1, ZYX, and ITGA5 were found to have a significant prognostic role based on survival analysis of osteosarcoma samples from the TARGET database. A predictive signature model related to the focal adhesion signaling pathway was constructed using these genes, and the AUCs of the 1-year, 3-year, and 5-year ROC curves were 0. 647, 0. 712, and 0. 717, respectively. The overall survival (OS) rate of osteosarcoma patients with high-risk scores was poorer than those with low-risk scores. Then, samples were divided into two subgroups based on the expression of the three genes, revealing significant differences in the expression of certain immune checkpoint-related genes between the subgroups. Additionally, above three genes and immune checkpoint-related genes in osteosarcoma cell lines were extracted from the CCLE database, showing high expression levels in eight osteosarcoma cell lines. We observed that CD274 and PDCD1LG2 were highly expressed in some osteosarcoma cell lines. Finally, the expression of CAV1, ZYX, ITGA5, CD80, CD274, and PDCD1LG2 in osteosarcoma cell lines was verified by qRT-PCR. Conclusions Our study validated the prognostic role of three focal adhesion pathway-related genes (ZYX, CAV1, and ITGA5) in patients with osteosarcoma and constructed a prognostic signature model associated with the focal adhesion signaling pathway. We identified significant differences in the expression of multiple immune checkpoint-related genes among subgroups defined by the three genes. Additionally, CD274 and PDCD1LG2 showed higher expression in osteosarcoma cell lines characterized by these genes. These findings may aid in the selection of effective immunotherapy for specific osteosarcoma patients.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhiqing Wang
- Zhabei Central Hospital, No. 619, Zhonghuaxin Road, Jing'an District, Shanghai, 200070, China
| | - Zhanqiang Hua
- Department of Orthopedics, Shanghai Electric Power Hospital, Shanghai, 200050, China
| | - Yingzheng Ji
- Department of Orthopedics, Naval Medical Center of PLA, Second Military Medical University, China
| | - Qingrong Ye
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hao Zhang
- Department of Orthopedics, Naval Medical Center of PLA, Second Military Medical University, China
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| |
Collapse
|
11
|
Huerta-López C, Clemente-Manteca A, Velázquez-Carreras D, Espinosa FM, Sanchez JG, Martínez-del-Pozo Á, García-García M, Martín-Colomo S, Rodríguez-Blanco A, Esteban-González R, Martín-Zamora FM, Gutierrez-Rus LI, Garcia R, Roca-Cusachs P, Elosegui-Artola A, del Pozo MA, Herrero-Galán E, Sáez P, Plaza GR, Alegre-Cebollada J. Cell response to extracellular matrix viscous energy dissipation outweighs high-rigidity sensing. SCIENCE ADVANCES 2024; 10:eadf9758. [PMID: 39546608 PMCID: PMC11567001 DOI: 10.1126/sciadv.adf9758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024]
Abstract
The mechanics of the extracellular matrix (ECM) determine cell activity and fate through mechanoresponsive proteins including Yes-associated protein 1 (YAP). Rigidity and viscous relaxation have emerged as the main mechanical properties of the ECM steering cell behavior. However, how cells integrate coexisting ECM rigidity and viscosity cues remains poorly understood, particularly in the high-stiffness regime. Here, we have exploited engineered stiff viscoelastic protein hydrogels to show that, contrary to current models of cell-ECM interaction, substrate viscous energy dissipation attenuates mechanosensing even when cells are exposed to higher effective rigidity. This unexpected behavior is however readily captured by a pull-and-hold model of molecular clutch-based cell mechanosensing, which also recapitulates opposite cellular response at low rigidities. Consistent with predictions of the pull-and-hold model, we find that myosin inhibition can boost mechanosensing on cells cultured on dissipative matrices. Together, our work provides general mechanistic understanding on how cells respond to the viscoelastic properties of the ECM.
Collapse
Affiliation(s)
- Carla Huerta-López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | | | | | | - Juan G. Sanchez
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | - Álvaro Martínez-del-Pozo
- Departamento de Bioquímica y Biología Molecular, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María García-García
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Sara Martín-Colomo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | | | | | | | | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Alberto Elosegui-Artola
- Cell and Tissue Mechanobiology Laboratory, Francis Crick Institute, London, 1 Midland Road, NW1 1AT, UK
- Department of Physics, King’s College London, London, WC2R 2LS, UK
| | - Miguel A. del Pozo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Elías Herrero-Galán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Pablo Sáez
- Laboratori de Càlcul Numèric (LaCàN), Universitat Politècnica de Catalunya–BarcelonaTech, Barcelona, Spain
- Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Barcelona, Spain
| | - Gustavo R. Plaza
- ETSI de Caminos and Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | |
Collapse
|
12
|
Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol 2024; 25:865-885. [PMID: 39223427 PMCID: PMC11931590 DOI: 10.1038/s41580-024-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of 'matritherapies', that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
13
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
14
|
Liu T, Liu J, Chen Q, Wu L, Zhang L, Qiao D, Huang Z, Lu T, Hu A, Wang J. The prognostic value of bioinformatics analysis of ECM receptor signaling pathways and LAMB1 identification as a promising prognostic biomarker of lung adenocarcinoma. Medicine (Baltimore) 2024; 103:e39854. [PMID: 39312319 PMCID: PMC11419468 DOI: 10.1097/md.0000000000039854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
The extracellular matrix (ECM) is a complex and dynamic network of cross-linked proteins and a fundamental building block in multicellular organisms. Our study investigates the impact of genes related to the ECM receptor interaction pathway on immune-targeted therapy and lung adenocarcinoma (LUAD) prognosis. This study obtained LUAD chip data (GSE68465, GSE31210, and GSE116959) from NCBI GEO. Moreover, the gene data associated with the ECM receptor interaction pathway was downloaded from the Molecular Signature Database. Differentially expressed genes were identified using GEO2R, followed by analyzing their correlation with immune cell infiltration. Univariate Cox regression analysis screened out ECM-related genes significantly related to the survival prognosis of LUAD patients. Additionally, Lasso regression and multivariate Cox regression analysis helped construct a prognostic model. Patients were stratified by risk score and survival analyses. The prognostic models were evaluated using receiver operating characteristic curves, and risk scores and prognosis associations were analyzed using univariate and multivariate Cox regression analyses. A core gene was selected for gene set enrichment analysis and CIBERSORT analysis to determine its function and tumor-infiltrating immune cell proportion, respectively. The results revealed that the most abundant pathways among differentially expressed genes in LUAD primarily involved the cell cycle, ECM receptor interaction, protein digestion and absorption, p53 signaling pathway, complement and coagulation cascade, and tyrosine metabolism. Two ECM-associated subtypes were identified by consensus clustering. Besides, an ECM-related prognostic model was validated to predict LUAD survival, and it was associated with the tumor immune microenvironment. Additional cross-analysis screened laminin subunit beta 1 (LAMB1) for further research. The survival time of LUAD patients with elevated LAMB1 expression was longer than those with low LAMB1 expression. Gene set enrichment analysis and CIBERSORT analyses revealed that LAMB1 expression correlated with tumor immune microenvironment. In conclusion, a prognostic model of LUAD patients depending on the ECM receptor interaction pathway was constructed. Screening out LAMB1 can become a prognostic risk factor for LUAD patients or a potential target during LUAD treatment.
Collapse
Affiliation(s)
- Tingjun Liu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Liu
- Department of Respiratory Medicine, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Quangang Chen
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lianlian Wu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lingzhi Zhang
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dandan Qiao
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhutao Huang
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tianyuan Lu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ankang Hu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Wang
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
15
|
Berdiaki A, Neagu M, Tzanakakis P, Spyridaki I, Pérez S, Nikitovic D. Extracellular Matrix Components and Mechanosensing Pathways in Health and Disease. Biomolecules 2024; 14:1186. [PMID: 39334952 PMCID: PMC11430160 DOI: 10.3390/biom14091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Glycosaminoglycans (GAGs) and proteoglycans (PGs) are essential components of the extracellular matrix (ECM) with pivotal roles in cellular mechanosensing pathways. GAGs, such as heparan sulfate (HS) and chondroitin sulfate (CS), interact with various cell surface receptors, including integrins and receptor tyrosine kinases, to modulate cellular responses to mechanical stimuli. PGs, comprising a core protein with covalently attached GAG chains, serve as dynamic regulators of tissue mechanics and cell behavior, thereby playing a crucial role in maintaining tissue homeostasis. Dysregulation of GAG/PG-mediated mechanosensing pathways is implicated in numerous pathological conditions, including cancer and inflammation. Understanding the intricate mechanisms by which GAGs and PGs modulate cellular responses to mechanical forces holds promise for developing novel therapeutic strategies targeting mechanotransduction pathways in disease. This comprehensive overview underscores the importance of GAGs and PGs as key mediators of mechanosensing in maintaining tissue homeostasis and their potential as therapeutic targets for mitigating mechano-driven pathologies, focusing on cancer and inflammation.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Monica Neagu
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
| | - Petros Tzanakakis
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Ioanna Spyridaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Serge Pérez
- Centre de Recherche sur les Macromolécules Végétales (CERMAV), Centre National de la Recherche Scientifique (CNRS), University Grenoble Alpes, 38000 Grenoble, France;
| | - Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| |
Collapse
|
16
|
Baade T, Michaelis M, Prestel A, Paone C, Klishin N, Herbinger M, Scheinost L, Nedielkov R, Hauck CR, Möller HM. A flexible loop in the paxillin LIM3 domain mediates its direct binding to integrin β subunits. PLoS Biol 2024; 22:e3002757. [PMID: 39231388 PMCID: PMC11374337 DOI: 10.1371/journal.pbio.3002757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 07/17/2024] [Indexed: 09/06/2024] Open
Abstract
Integrins are fundamental for cell adhesion and the formation of focal adhesions (FA). Accordingly, these receptors guide embryonic development, tissue maintenance, and haemostasis but are also involved in cancer invasion and metastasis. A detailed understanding of the molecular interactions that drive integrin activation, FA assembly, and downstream signalling cascades is critical. Here, we reveal a direct association of paxillin, a marker protein of FA sites, with the cytoplasmic tails of the integrin β1 and β3 subunits. The binding interface resides in paxillin's LIM3 domain, where based on the NMR structure and functional analyses, a flexible, 7-amino acid loop engages the unstructured part of the integrin cytoplasmic tail. Genetic manipulation of the involved residues in either paxillin or integrin β3 compromises cell adhesion and motility of murine fibroblasts. This direct interaction between paxillin and the integrin cytoplasmic domain identifies an alternative, kindlin-independent mode of integrin outside-in signalling particularly important for integrin β3 function.
Collapse
Affiliation(s)
- Timo Baade
- Lehrstuhl Zellbiologie, Universität Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Marcus Michaelis
- Analytische Chemie, Universität Potsdam, Potsdam, Germany
- DFG Research Training Group 2473 "Bioactive Peptides"
| | | | - Christoph Paone
- Lehrstuhl Zellbiologie, Universität Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Nikolai Klishin
- Analytische Chemie, Universität Potsdam, Potsdam, Germany
- DFG Research Training Group 2473 "Bioactive Peptides"
| | | | - Laura Scheinost
- Lehrstuhl Zellbiologie, Universität Konstanz, Konstanz, Germany
| | | | - Christof R Hauck
- Lehrstuhl Zellbiologie, Universität Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Heiko M Möller
- Analytische Chemie, Universität Potsdam, Potsdam, Germany
- DFG Research Training Group 2473 "Bioactive Peptides"
| |
Collapse
|
17
|
Chocarro-Wrona C, López de Andrés J, Rioboó-Legaspi P, Pleguezuelos-Beltrán P, Antich C, De Vicente J, Gálvez-Martín P, López-Ruiz E, Marchal JA. Design and evaluation of a bilayered dermal/hypodermal 3D model using a biomimetic hydrogel formulation. Biomed Pharmacother 2024; 177:117051. [PMID: 38959608 DOI: 10.1016/j.biopha.2024.117051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
Due to the limitations of the current skin wound treatments, it is highly valuable to have a wound healing formulation that mimics the extracellular matrix (ECM) and mechanical properties of natural skin tissue. Here, a novel biomimetic hydrogel formulation has been developed based on a mixture of Agarose-Collagen Type I (AC) combined with skin ECM-related components: Dermatan sulfate (DS), Hyaluronic acid (HA), and Elastin (EL) for its application in skin tissue engineering (TE). Different formulations were designed by combining AC hydrogels with DS, HA, and EL. Cell viability, hemocompatibility, physicochemical, mechanical, and wound healing properties were investigated. Finally, a bilayered hydrogel loaded with fibroblasts and mesenchymal stromal cells was developed using the Ag-Col I-DS-HA-EL (ACDHE) formulation. The ACDHE hydrogel displayed the best in vitro results and acceptable physicochemical properties. Also, it behaved mechanically close to human native skin and exhibited good cytocompatibility. Environmental scanning electron microscopy (ESEM) analysis revealed a porous microstructure that allows the maintenance of cell growth and ECM-like structure production. These findings demonstrate the potential of the ACDHE hydrogel formulation for applications such as an injectable hydrogel or a bioink to create cell-laden structures for skin TE.
Collapse
Affiliation(s)
- Carlos Chocarro-Wrona
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada 18012, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada 18016, Spain; BioFab i3D, Biofabrication and 3D (bio)printing laboratory, Granada 18016, Spain
| | - Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada 18012, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada 18016, Spain; BioFab i3D, Biofabrication and 3D (bio)printing laboratory, Granada 18016, Spain
| | - Pablo Rioboó-Legaspi
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada 18012, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada 18016, Spain; BioFab i3D, Biofabrication and 3D (bio)printing laboratory, Granada 18016, Spain
| | - Paula Pleguezuelos-Beltrán
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada 18012, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada 18016, Spain; BioFab i3D, Biofabrication and 3D (bio)printing laboratory, Granada 18016, Spain
| | - Cristina Antich
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada 18012, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada 18016, Spain; BioFab i3D, Biofabrication and 3D (bio)printing laboratory, Granada 18016, Spain; National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 28050, United States
| | - Juan De Vicente
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada 18016, Spain; F2N2Lab, Magnetic Soft Matter Group, Department of Applied Physics, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | | | - Elena López-Ruiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada 18012, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada 18016, Spain; BioFab i3D, Biofabrication and 3D (bio)printing laboratory, Granada 18016, Spain; Department of Health Sciences, University of Jaén, Jaén 23071, Spain.
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada 18012, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada 18016, Spain; BioFab i3D, Biofabrication and 3D (bio)printing laboratory, Granada 18016, Spain.
| |
Collapse
|
18
|
Yurchenco PD, Kulczyk AW. Polymerizing laminins in development, health, and disease. J Biol Chem 2024; 300:107429. [PMID: 38825010 PMCID: PMC11260871 DOI: 10.1016/j.jbc.2024.107429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
Polymerizing laminins are multi-domain basement membrane (BM) glycoproteins that self-assemble into cell-anchored planar lattices to establish the initial BM scaffold. Nidogens, collagen-IV and proteoglycans then bind to the scaffold at different domain loci to create a mature BM. The LN domains of adjacent laminins bind to each other to form a polymer node, while the LG domains attach to cytoskeletal-anchoring integrins and dystroglycan, as well as to sulfatides and heparan sulfates. The polymer node, the repeating unit of the polymer scaffold, is organized into a near-symmetrical triskelion. The structure, recently solved by cryo-electron microscopy in combination with AlphaFold2 modeling and biochemical studies, reveals how the LN surface residues interact with each other and how mutations cause failures of self-assembly in an emerging group of diseases, the LN-lamininopathies, that include LAMA2-related dystrophy and Pierson syndrome.
Collapse
Affiliation(s)
- Peter D Yurchenco
- Department of Pathology & Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA.
| | - Arkadiusz W Kulczyk
- Department of Biochemistry and Microbiology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
19
|
Liu W, Gao T, Li N, Shao S, Liu B. Vesicle fusion and release in neurons under dynamic mechanical equilibrium. iScience 2024; 27:109793. [PMID: 38736547 PMCID: PMC11088343 DOI: 10.1016/j.isci.2024.109793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Vesicular fusion plays a pivotal role in cellular processes, involving stages like vesicle trafficking, fusion pore formation, content release, and membrane integration or separation. This dynamic process is regulated by a complex interplay of protein assemblies, osmotic forces, and membrane tension, which together maintain a mechanical equilibrium within the cell. Changes in cellular mechanics or external pressures prompt adjustments in this equilibrium, highlighting the system's adaptability. This review delves into the synergy between intracellular proteins, structural components, and external forces in facilitating vesicular fusion and release. It also explores how cells respond to mechanical stress, maintaining equilibrium and offering insights into vesicle fusion mechanisms and the development of neurological disorders.
Collapse
Affiliation(s)
- Wenhao Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
| | - Tianyu Gao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
| | - Na Li
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Shuai Shao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
20
|
Liang P, Wu Y, Zheng S, Zhang J, Yang S, Wang J, Ma S, Zhang M, Gu Z, Liu Q, Jiang W, Xing Q, Wang B. Paxillin phase separation promotes focal adhesion assembly and integrin signaling. J Cell Biol 2024; 223:e202209027. [PMID: 38466167 PMCID: PMC10926639 DOI: 10.1083/jcb.202209027] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/04/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2024] Open
Abstract
Focal adhesions (FAs) are transmembrane protein assemblies mediating cell-matrix connection. Although protein liquid-liquid phase separation (LLPS) has been tied to the organization and dynamics of FAs, the underlying mechanisms remain unclear. Here, we experimentally tune the LLPS of PXN/Paxillin, an essential scaffold protein of FAs, by utilizing a light-inducible Cry2 system in different cell types. In addition to nucleating FA components, light-triggered PXN LLPS potently activates integrin signaling and subsequently accelerates cell spreading. In contrast to the homotypic interaction-driven LLPS of PXN in vitro, PXN condensates in cells are associated with the plasma membrane and modulated by actomyosin contraction and client proteins of FAs. Interestingly, non-specific weak intermolecular interactions synergize with specific molecular interactions to mediate the multicomponent condensation of PXN and are efficient in promoting FA assembly and integrin signaling. Thus, our data establish an active role of the PXN phase transition into a condensed membrane-associated compartment in promoting the assembly/maturation of FAs.
Collapse
Affiliation(s)
- Peigang Liang
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuchen Wu
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shanyuan Zheng
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiaqi Zhang
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shuo Yang
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jinfang Wang
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Suibin Ma
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Mengjun Zhang
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhuang Gu
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qingfeng Liu
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wenxue Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Qiong Xing
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Bo Wang
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
| |
Collapse
|
21
|
Blanchard AT. Can a bulky glycocalyx promote catch bonding in early integrin adhesion? Perhaps a bit. Biomech Model Mechanobiol 2024; 23:117-128. [PMID: 37704890 PMCID: PMC11998087 DOI: 10.1007/s10237-023-01762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/30/2023] [Indexed: 09/15/2023]
Abstract
Many types of cancer cells overexpress bulky glycoproteins to form a thick glycocalyx layer. The glycocalyx physically separates the cell from its surroundings, but recent work has shown that the glycocalyx can paradoxically increase adhesion to soft tissues and therefore promote the metastasis of cancer cells. This surprising phenomenon occurs because the glycocalyx forces adhesion molecules (called integrins) on the cell's surface into clusters. These integrin clusters have cooperative effects that allow them to form stronger adhesions to surrounding tissues than would be possible with equivalent numbers of un-clustered integrins. These cooperative mechanisms have been intensely scrutinized in recent years. A more nuanced understanding of the biophysical underpinnings of glycocalyx-mediated adhesion could uncover therapeutic targets, deepen our general understanding of cancer metastasis, and elucidate general biophysical processes that extend far beyond the realm of cancer research. This work examines the hypothesis that the glycocalyx has the additional effect of increasing mechanical tension experienced by clustered integrins. Integrins function as mechanosensors that undergo catch bonding-meaning the application of moderate tension increases integrin bond lifetime relative to the lifetime of integrins experiencing low tension. In this work, a three-state chemomechanical catch bond model of integrin tension is used to investigate catch bonding in the presence of a bulky glycocalyx. A pseudo-steady-state approximation is applied, which relies on the assumption that integrin bond dynamics occur on a much faster timescale than the evolution of the full adhesion between the plasma membrane and the substrate. Force-dependent kinetic rate constants are used to calculate a steady-state distribution of integrin-ligand bonds for Gaussian-shaped adhesion geometries. The relationship between the energy of the system and adhesion geometry is then analyzed in the presence and absence of catch bonding in order to evaluate the extent to which catch bonding alters the energetics of adhesion formation. This modeling suggests that a bulky glycocalyx can lightly trigger catch bonding, increasing the bond lifetime of integrins at adhesion edges by up to 100%. The total number of integrin-ligand bonds within an adhesion is predicted to increase by up to ~ 60% for certain adhesion geometries. Catch bonding is predicted to decrease the activation energy of adhesion formation by ~ 1-4 kBT, which translates to a ~ 3-50 × increase in the kinetic rate of adhesion nucleation. This work reveals that integrin mechanics and clustering likely both contribute to glycocalyx-mediated metastasis.
Collapse
Affiliation(s)
- Aaron T Blanchard
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
- Duke Cancer Institute, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
22
|
Li G, Wang J, Wu W, Wang M, Han X, Zhang Z, Tang C. Proteomic Analysis of the Supernatant from Bone Marrow Mesenchymal Stem Cells under High Glucose Conditions. J Proteome Res 2024; 23:344-355. [PMID: 38113133 DOI: 10.1021/acs.jproteome.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Diabetes mellitus hinders the process of bone regeneration by inhibiting the function of mesenchymal stem cells (MSCs) through elevated glucose levels, thereby impeding osteointegration. The stem cell niche (SCN) plays a crucial role in determining the fate of stem cells by integrating various signals. However, the precise mechanism by which high glucose levels affect the SCN and subsequently influence the function of MSCs remains unclear. In this study, we employed proteomic analysis to identify proteins with altered expression in the extracellular matrix (ECM), aiming to elucidate the underlying mechanism. Three cell supernatants were collected from bone marrow mesenchymal stem cells (BMSCs) or BMSCs stimulated with high glucose (BMSCs+Hg). A total of 590 differentially expressed proteins were identified, which were found to be associated with the ECM, including aging, autophagy, and osteogenic differentiation. The findings of our study indicate that elevated glucose levels exert an influence on the molecular aspects of the SCN, potentially contributing to a better comprehension of the underlying mechanism.
Collapse
Affiliation(s)
- Guoqing Li
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Jiaohong Wang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Wei Wu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Mingxi Wang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Xiao Han
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Zhewei Zhang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Chunbo Tang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| |
Collapse
|
23
|
Yang F, Chen P, Jiang H, Xie T, Shao Y, Kim DH, Li B, Sun Y. Directional Cell Migration Guided by a Strain Gradient. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302404. [PMID: 37735983 PMCID: PMC11467785 DOI: 10.1002/smll.202302404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/27/2023] [Indexed: 09/23/2023]
Abstract
Strain gradients widely exist in development and physiological activities. The directional movement of cells is essential for proper cell localization, and directional cell migration in responses to gradients of chemicals, rigidity, density, and topography of extracellular matrices have been well-established. However; it is unclear whether strain gradients imposed on cells are sufficient to drive directional cell migration. In this work, a programmable uniaxial cell stretch device is developed that creates controllable strain gradients without changing substrate stiffness or ligand distributions. It is demonstrated that over 60% of the single rat embryonic fibroblasts migrate toward the lower strain side in static and the 0.1 Hz cyclic stretch conditions at ≈4% per mm strain gradients. It is confirmed that such responses are distinct from durotaxis or haptotaxis. Focal adhesion analysis confirms higher rates of contact area and protrusion formation on the lower strain side of the cell. A 2D extended motor-clutch model is developed to demonstrate that the strain-introduced traction force determines integrin fibronectin pairs' catch-release dynamics, which drives such directional migration. Together, these results establish strain gradient as a novel cue to regulate directional cell migration and may provide new insights in development and tissue repairs.
Collapse
Affiliation(s)
- Feiyu Yang
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Pengcheng Chen
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Han Jiang
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Tianfa Xie
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Yue Shao
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Bo Li
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
24
|
Aazmi A, Zhang D, Mazzaglia C, Yu M, Wang Z, Yang H, Huang YYS, Ma L. Biofabrication methods for reconstructing extracellular matrix mimetics. Bioact Mater 2024; 31:475-496. [PMID: 37719085 PMCID: PMC10500422 DOI: 10.1016/j.bioactmat.2023.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023] Open
Abstract
In the human body, almost all cells interact with extracellular matrices (ECMs), which have tissue and organ-specific compositions and architectures. These ECMs not only function as cellular scaffolds, providing structural support, but also play a crucial role in dynamically regulating various cellular functions. This comprehensive review delves into the examination of biofabrication strategies used to develop bioactive materials that accurately mimic one or more biophysical and biochemical properties of ECMs. We discuss the potential integration of these ECM-mimics into a range of physiological and pathological in vitro models, enhancing our understanding of cellular behavior and tissue organization. Lastly, we propose future research directions for ECM-mimics in the context of tissue engineering and organ-on-a-chip applications, offering potential advancements in therapeutic approaches and improved patient outcomes.
Collapse
Affiliation(s)
- Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Duo Zhang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Corrado Mazzaglia
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
25
|
Shimpi AA, Williams ED, Ling L, Tamir T, White FM, Fischbach C. Phosphoproteomic Changes Induced by Cell-Derived Matrix and Their Effect on Tumor Cell Migration and Cytoskeleton Remodeling. ACS Biomater Sci Eng 2023; 9:6835-6848. [PMID: 38015076 DOI: 10.1021/acsbiomaterials.3c01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Increased fibrotic extracellular matrix (ECM) deposition promotes tumor invasion, which is the first step of the metastatic cascade. Yet, the underlying mechanisms are poorly understood as conventional studies of tumor cell migration are often performed in 2D cultures lacking the compositional and structural complexity of native ECM. Moreover, these studies frequently focus on select candidate pathways potentially overlooking other relevant changes in cell signaling. Here, we combine a cell-derived matrix (CDM) model with phosphotyrosine phosphoproteomic analysis to investigate tumor cell migration on fibrotic ECM relative to standard tissue culture plastic (TCP). Our results suggest that tumor cells cultured on CDMs migrate faster and in a more directional manner than their counterparts on TCP. These changes in migration correlate with decreased cell spreading and increased cell elongation. While the formation of phosphorylated focal adhesion kinase (pFAK)+ adhesion complexes did not vary between TCP and CDMs, time-dependent phosphoproteomic analysis identified that the SRC family kinase LYN may be differentially regulated. Pharmacological inhibition of LYN decreased tumor cell migration and cytoskeletal rearrangement on CDMs and also on TCP, suggesting that LYN regulates tumor cell migration on CDMs in combination with other mechanisms. These data highlight how the combination of physicochemically complex in vitro systems with phosphoproteomics can help identify signaling mechanisms by which the fibrotic ECM regulates tumor cell migration.
Collapse
Affiliation(s)
- Adrian A Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Erik D Williams
- Department of Information Science, Cornell University, Ithaca, New York 14853, United States
| | - Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Tigist Tamir
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 023139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 023139, United States
| | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 023139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 023139, United States
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
26
|
Liu T, Ren Y, Wang Q, Wang Y, Li Z, Sun W, Fan D, Luan Y, Gao Y, Yan Z. Exploring the role of the disulfidptosis-related gene SLC7A11 in adrenocortical carcinoma: implications for prognosis, immune infiltration, and therapeutic strategies. Cancer Cell Int 2023; 23:259. [PMID: 37919768 PMCID: PMC10623781 DOI: 10.1186/s12935-023-03091-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Disulfidptosis and the disulfidptosis-related gene SLC7A11 have recently attracted significant attention for their role in tumorigenesis and tumour management. However, its association with adrenocortical carcinoma (ACC) is rarely discussed. METHODS Differential analysis, Cox regression analysis, and survival analysis were used to screen for the hub gene SLC7A11 in the TCGA and GTEx databases and disulfidptosis-related gene sets. Then, we performed an association analysis between SLC7A11 and clinically relevant factors in ACC patients. Univariate and multivariate Cox regression analyses were performed to evaluate the prognostic value of SLC7A11 and clinically relevant factors. Weighted gene coexpression analysis was used to find genes associated with SLC7A11. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses and the LinkedOmics database were used to analyse the functions of SLC7A11-associated genes. The CIBERSORT and Xcell algorithms were used to analyse the relationship between SLC7A11 and immune cell infiltration in ACC. The TISIDB database was applied to search for the correlation between SLC7A11 expression and immune chemokines. In addition, we performed a correlation analysis for SLC7A11 expression and tumour mutational burden and immune checkpoint-related genes and assessed drug sensitivity based on SLC7A11 expression. Immunohistochemistry and RT‒qPCR were used to validate the upregulation of SLC7A11 in the ACC. RESULTS SLC7A11 is highly expressed in multiple urological tumours, including ACC. SLC7A11 expression is strongly associated with clinically relevant factors (M-stage and MYL6 expression) in ACC. SLC7A11 and the constructed nomogram can accurately predict ACC patient outcomes. The functions of SLC7A11 and its closely related genes are tightly associated with the occurrence of disulfidptosis in ACC. SLC7A11 expression was tightly associated with various immune cell infiltration disorders in the ACC tumour microenvironment (TME). It was positively correlated with the expression of immune chemokines (CXCL8, CXCL3, and CCL20) and negatively correlated with the expression of immune chemokines (CXCL17 and CCL14). SLC7A11 expression was positively associated with the expression of immune checkpoint genes (NRP1, TNFSF4, TNFRSF9, and CD276) and tumour mutation burden. The expression level of SLC7A11 in ACC patients is closely associated withcthe drug sensitivity. CONCLUSION In ACC, high expression of SLC7A11 is associated with migration, invasion, drug sensitivity, immune infiltration disorders, and poor prognosis, and its induction of disulfidptosis is a promising target for the treatment of ACC.
Collapse
Affiliation(s)
- Tonghu Liu
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Yilin Ren
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Qixin Wang
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China
- Department of Surgery, Nanyang Central Hospital, 473005, Nanyang, Henan, China
| | - Yu Wang
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China
- Henan Engineering Research Center of Tumour Molecular Diagnosis and Treatment, 450001, Zhengzhou, Henan, China
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Zhiyuan Li
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Weibo Sun
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China
- Department of Radiation Oncology and Oncology, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, 450003, Zhengzhou, Henan, China
| | - Dandan Fan
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China
- Henan Engineering Research Center of Tumour Molecular Diagnosis and Treatment, 450001, Zhengzhou, Henan, China
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Yongkun Luan
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China.
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China.
- Henan Engineering Research Center of Tumour Molecular Diagnosis and Treatment, 450001, Zhengzhou, Henan, China.
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China.
| | - Yukui Gao
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China.
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, 241001, Wuhu, Anhui, China.
| | - Zechen Yan
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China.
- Henan Engineering Research Center of Tumour Molecular Diagnosis and Treatment, 450001, Zhengzhou, Henan, China.
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China.
| |
Collapse
|
27
|
Kenny FN, Marcotti S, De Freitas DB, Drudi EM, Leech V, Bell RE, Easton J, Díaz-de-la-Loza MDC, Fleck R, Allison L, Philippeos C, Manhart A, Shaw TJ, Stramer BM. Autocrine IL-6 drives cell and extracellular matrix anisotropy in scar fibroblasts. Matrix Biol 2023; 123:1-16. [PMID: 37660739 PMCID: PMC10878985 DOI: 10.1016/j.matbio.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Fibrosis is associated with dramatic changes in extracellular matrix (ECM) architecture of unknown etiology. Here we exploit keloid scars as a paradigm to understand fibrotic ECM organization. We reveal that keloid patient fibroblasts uniquely produce a globally aligned ECM network in 2-D culture as observed in scar tissue. ECM anisotropy develops after rapid initiation of a fibroblast supracellular actin network, suggesting that cell alignment initiates ECM patterning. Keloid fibroblasts produce elevated levels of IL-6, and autocrine IL-6 production is both necessary and sufficient to induce cell and ECM alignment, as evidenced by ligand stimulation of normal dermal fibroblasts and treatment of keloid fibroblasts with the function blocking IL-6 receptor monoclonal antibody, tocilizumab. Downstream of IL-6, supracellular organization of keloid fibroblasts is controlled by activation of cell-cell adhesion. Adhesion formation inhibits contact-induced cellular overlap leading to nematic organization of cells and an alignment of focal adhesions. Keloid fibroblasts placed on isotropic ECM align the pre-existing matrix, suggesting that focal adhesion alignment leads to active anisotropic remodeling. These results show that IL-6-induced fibroblast cooperativity can control the development of a nematic ECM, highlighting both IL-6 signaling and cell-cell adhesions as potential therapeutic targets to inhibit this common feature of fibrosis.
Collapse
Affiliation(s)
- Fiona N Kenny
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | | | - Elena M Drudi
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Vivienne Leech
- Department of Mathematics, University College London, UK
| | - Rachel E Bell
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Jennifer Easton
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | | | - Roland Fleck
- Centre for Ultrastructure Imaging, King's College London, UK
| | - Leanne Allison
- Centre for Ultrastructure Imaging, King's College London, UK
| | - Christina Philippeos
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Angelika Manhart
- Department of Mathematics, University College London, UK; Faculty of Mathematics, University of Vienna, Vienna, Austria
| | - Tanya J Shaw
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK.
| | - Brian M Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
28
|
Abstract
Multicellular organisms generate tissues of diverse shapes and functions from cells and extracellular matrices. Their adhesion molecules mediate cell-cell and cell-matrix interactions, which not only play crucial roles in maintaining tissue integrity but also serve as key regulators of tissue morphogenesis. Cells constantly probe their environment to make decisions: They integrate chemical and mechanical information from the environment via diffusible ligand- or adhesion-based signaling to decide whether to release specific signaling molecules or enzymes, to divide or differentiate, to move away or stay, or even whether to live or die. These decisions in turn modify their environment, including the chemical nature and mechanical properties of the extracellular matrix. Tissue morphology is the physical manifestation of the remodeling of cells and matrices by their historical biochemical and biophysical landscapes. We review our understanding of matrix and adhesion molecules in tissue morphogenesis, with an emphasis on key physical interactions that drive morphogenesis.
Collapse
Affiliation(s)
- Di Wu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA;
| | - Shaohe Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| |
Collapse
|
29
|
Abstract
Animal tissues are made up of multiple cell types that are increasingly well-characterized, yet our understanding of the core principles that govern tissue organization is still incomplete. This is in part because many observable tissue characteristics, such as cellular composition and spatial patterns, are emergent properties, and as such, they cannot be explained through the knowledge of individual cells alone. Here we propose a complex systems theory perspective to address this fundamental gap in our understanding of tissue biology. We introduce the concept of cell categories, which is based on cell relations rather than cell identity. Based on these notions we then discuss common principles of tissue modularity, introducing compositional, structural, and functional tissue modules. Cell diversity and cell relations provide a basis for a new perspective on the underlying principles of tissue organization in health and disease.
Collapse
Affiliation(s)
- Miri Adler
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Arun R Chavan
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ruslan Medzhitov
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
30
|
Honasoge KS, Karagöz Z, Goult BT, Wolfenson H, LaPointe VLS, Carlier A. Force-dependent focal adhesion assembly and disassembly: A computational study. PLoS Comput Biol 2023; 19:e1011500. [PMID: 37801464 PMCID: PMC10584152 DOI: 10.1371/journal.pcbi.1011500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/18/2023] [Accepted: 09/07/2023] [Indexed: 10/08/2023] Open
Abstract
Cells interact with the extracellular matrix (ECM) via cell-ECM adhesions. These physical interactions are transduced into biochemical signals inside the cell which influence cell behaviour. Although cell-ECM interactions have been studied extensively, it is not completely understood how immature (nascent) adhesions develop into mature (focal) adhesions and how mechanical forces influence this process. Given the small size, dynamic nature and short lifetimes of nascent adhesions, studying them using conventional microscopic and experimental techniques is challenging. Computational modelling provides a valuable resource for simulating and exploring various "what if?" scenarios in silico and identifying key molecular components and mechanisms for further investigation. Here, we present a simplified mechano-chemical model based on ordinary differential equations with three major proteins involved in adhesions: integrins, talin and vinculin. Additionally, we incorporate a hypothetical signal molecule that influences adhesion (dis)assembly rates. We find that assembly and disassembly rates need to vary dynamically to limit maturation of nascent adhesions. The model predicts biphasic variation of actin retrograde velocity and maturation fraction with substrate stiffness, with maturation fractions between 18-35%, optimal stiffness of ∼1 pN/nm, and a mechanosensitive range of 1-100 pN/nm, all corresponding to key experimental findings. Sensitivity analyses show robustness of outcomes to small changes in parameter values, allowing model tuning to reflect specific cell types and signaling cascades. The model proposes that signal-dependent disassembly rate variations play an underappreciated role in maturation fraction regulation, which should be investigated further. We also provide predictions on the changes in traction force generation under increased/decreased vinculin concentrations, complementing previous vinculin overexpression/knockout experiments in different cell types. In summary, this work proposes a model framework to robustly simulate the mechanochemical processes underlying adhesion maturation and maintenance, thereby enhancing our fundamental knowledge of cell-ECM interactions.
Collapse
Affiliation(s)
- Kailas Shankar Honasoge
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Zeynep Karagöz
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Vanessa L. S. LaPointe
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Aurélie Carlier
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
31
|
Dang I, Brazzo JA, Bae Y, Assoian RK. Key role for Rac in the early transcriptional response to extracellular matrix stiffness and stiffness-dependent repression of ATF3. J Cell Sci 2023; 136:jcs260636. [PMID: 37737020 PMCID: PMC10617619 DOI: 10.1242/jcs.260636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
The Rho family GTPases Rac and Rho play critical roles in transmitting mechanical information contained within the extracellular matrix (ECM) to the cell. Rac and Rho have well-described roles in regulating stiffness-dependent actin remodeling, proliferation and motility. However, much less is known about the relative roles of these GTPases in stiffness-dependent transcription, particularly at the genome-wide level. Here, we selectively inhibited Rac and Rho in mouse embryonic fibroblasts cultured on deformable substrata and used RNA sequencing to elucidate and compare the contribution of these GTPases to the early transcriptional response to ECM stiffness. Surprisingly, we found that the stiffness-dependent activation of Rac was dominant over Rho in the initial transcriptional response to ECM stiffness. We also identified activating transcription factor 3 (ATF3) as a major target of stiffness- and Rac-mediated signaling and show that ATF3 repression by ECM stiffness helps to explain how the stiffness-dependent activation of Rac results in the induction of cyclin D1.
Collapse
Affiliation(s)
- Irène Dang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph A. Brazzo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Richard K. Assoian
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
32
|
Asciak L, Gilmour L, Williams JA, Foster E, Díaz-García L, McCormick C, Windmill JFC, Mulvana HE, Jackson-Camargo JC, Domingo-Roca R. Investigating multi-material hydrogel three-dimensional printing for in vitro representation of the neo-vasculature of solid tumours: a comprehensive mechanical analysis and assessment of nitric oxide release from human umbilical vein endothelial cells. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230929. [PMID: 37593713 PMCID: PMC10427827 DOI: 10.1098/rsos.230929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
Many solid tumours (e.g. sarcoma, carcinoma and lymphoma) form a disorganized neo-vasculature that initiates uncontrolled vessel formation to support tumour growth. The complexity of these environments poses a significant challenge for tumour medicine research. While animal models are commonly used to address some of these challenges, they are time-consuming and raise ethical concerns. In vitro microphysiological systems have been explored as an alternative, but their production typically requires multi-step lithographic processes that limit their production. In this work, a novel approach to rapidly develop multi-material tissue-mimicking, cell-compatible platforms able to represent the complexity of a solid tumour's neo-vasculature is investigated via stereolithography three-dimensional printing. To do so, a series of acrylate resins that yield covalently photo-cross-linked hydrogels with healthy and diseased mechano-acoustic tissue-mimicking properties are designed and characterized. The potential viability of these materials to displace animal testing in preclinical research is assessed by studying the morphology, actin expression, focal adhesions and nitric oxide release of human umbilical vein endothelial cells. These materials are exploited to produce a simplified multi-material three-dimensional printed model of the neo-vasculature of a solid tumour, demonstrating the potential of our approach to replicate the complexity of solid tumours in vitro without the need for animal testing.
Collapse
Affiliation(s)
- Lisa Asciak
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Lauren Gilmour
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Euan Foster
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Lara Díaz-García
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | | | - James F. C. Windmill
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Helen E. Mulvana
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Roger Domingo-Roca
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| |
Collapse
|
33
|
Ateshian GA, Spack KA, Hone JC, Azeloglu EU, Gusella GL. Computational study of biomechanical drivers of renal cystogenesis. Biomech Model Mechanobiol 2023; 22:1113-1127. [PMID: 37024601 PMCID: PMC10524738 DOI: 10.1007/s10237-023-01704-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/12/2023] [Indexed: 04/08/2023]
Abstract
Renal cystogenesis is the pathological hallmark of autosomal dominant polycystic kidney disease, caused by PKD1 and PKD2 mutations. The formation of renal cysts is a common manifestation in ciliopathies, a group of syndromic disorders caused by mutation of proteins involved in the assembly and function of the primary cilium. Cystogenesis is caused by the derailment of the renal tubular architecture and tissue deformation that eventually leads to the impairment of kidney function. However, the biomechanical imbalance of cytoskeletal forces that are altered in cells with Pkd1 mutations has never been investigated, and its nature and extent remain unknown. In this computational study, we explored the feasibility of various biomechanical drivers of renal cystogenesis by examining several hypothetical mechanisms that may promote morphogenetic markers of cystogenesis. Our objective was to provide physics-based guidance for our formulation of hypotheses and our design of experimental studies investigating the role of biomechanical disequilibrium in cystogenesis. We employed the finite element method to explore the role of (1) wild-type versus mutant cell elastic modulus; (2) contractile stress magnitude in mutant cells; (3) localization and orientation of contractile stress in mutant cells; and (4) sequence of cell contraction and cell proliferation. Our objective was to identify the factors that produce the characteristic tubular cystic growth. Results showed that cystogenesis occurred only when mutant cells contracted along the apical-basal axis, followed or accompanied by cell proliferation, as long as mutant cells had comparable or lower elastic modulus than wild-type cells, with their contractile stresses being significantly greater than their modulus. Results of these simulations allow us to focus future in vitro and in vivo experimental studies on these factors, helping us formulate physics-based hypotheses for renal tubule cystogenesis.
Collapse
Affiliation(s)
- Gerard A Ateshian
- Department of Mechanical Engineering, Columbia University, New York, NY, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| | - Katherine A Spack
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - James C Hone
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Evren U Azeloglu
- Department of Medicine, Division of Nephrology, Mount Sinai School of Medicine, New York, NY, USA
- Department of Pharmacological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - G Luca Gusella
- Department of Medicine, Division of Nephrology, Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
34
|
Franz F, Tapia-Rojo R, Winograd-Katz S, Boujemaa-Paterski R, Li W, Unger T, Albeck S, Aponte-Santamaria C, Garcia-Manyes S, Medalia O, Geiger B, Gräter F. Allosteric activation of vinculin by talin. Nat Commun 2023; 14:4311. [PMID: 37463895 DOI: 10.1038/s41467-023-39646-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 06/22/2023] [Indexed: 07/20/2023] Open
Abstract
The talin-vinculin axis is a key mechanosensing component of cellular focal adhesions. How talin and vinculin respond to forces and regulate one another remains unclear. By combining single-molecule magnetic tweezers experiments, Molecular Dynamics simulations, actin-bundling assays, and adhesion assembly experiments in live cells, we here describe a two-ways allosteric network within vinculin as a regulator of the talin-vinculin interaction. We directly observe a maturation process of vinculin upon talin binding, which reinforces the binding to talin at a rate of 0.03 s-1. This allosteric transition can compete with force-induced dissociation of vinculin from talin only at forces up to 10 pN. Mimicking the allosteric activation by mutation yields a vinculin molecule that bundles actin and localizes to focal adhesions in a force-independent manner. Hence, the allosteric switch confines talin-vinculin interactions and focal adhesion build-up to intermediate force levels. The 'allosteric vinculin mutant' is a valuable molecular tool to further dissect the mechanical and biochemical signalling circuits at focal adhesions and elsewhere.
Collapse
Affiliation(s)
- Florian Franz
- Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Mathematikon, INF 205, 69120, Heidelberg, Germany
| | - Rafael Tapia-Rojo
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, Strand, WC2R 2LS London, UK.
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, London, UK.
| | - Sabina Winograd-Katz
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Wenhong Li
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Unger
- The Dana and Yossie Hollander Center for Structural Proteomics, Weizmann Institute of Science, Rehovot, Israel
| | - Shira Albeck
- The Dana and Yossie Hollander Center for Structural Proteomics, Weizmann Institute of Science, Rehovot, Israel
| | - Camilo Aponte-Santamaria
- Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Mathematikon, INF 205, 69120, Heidelberg, Germany
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, Strand, WC2R 2LS London, UK
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, London, UK
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland.
| | - Benjamin Geiger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany.
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Mathematikon, INF 205, 69120, Heidelberg, Germany.
- IMSEAM, Heidelberg University, INF 225, 69120, Heidelberg, Germany.
| |
Collapse
|
35
|
Lončarić M, Stojanović N, Rac-Justament A, Coopmans K, Majhen D, Humphries JD, Humphries MJ, Ambriović-Ristov A. Talin2 and KANK2 functionally interact to regulate microtubule dynamics, paclitaxel sensitivity and cell migration in the MDA-MB-435S melanoma cell line. Cell Mol Biol Lett 2023; 28:56. [PMID: 37460977 PMCID: PMC10353188 DOI: 10.1186/s11658-023-00473-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Focal adhesions (FAs) are integrin-containing, multi-protein structures that link intracellular actin to the extracellular matrix and trigger multiple signaling pathways that control cell proliferation, differentiation, survival and motility. Microtubules (MTs) are stabilized in the vicinity of FAs through interaction with the components of the cortical microtubule stabilizing complex (CMSC). KANK (KN motif and ankyrin repeat domains) family proteins within the CMSC, KANK1 or KANK2, bind talin within FAs and thus mediate actin-MT crosstalk. We previously identified in MDA-MB-435S cells, which preferentially use integrin αVβ5 for adhesion, KANK2 as a key molecule enabling the actin-MT crosstalk. KANK2 knockdown also resulted in increased sensitivity to MT poisons, paclitaxel (PTX) and vincristine and reduced migration. Here, we aimed to analyze whether KANK1 has a similar role and to distinguish which talin isoform binds KANK2. METHODS The cell model consisted of human melanoma cell line MDA-MB-435S and stably transfected clone with decreased expression of integrin αV (3αV). For transient knockdown of talin1, talin2, KANK1 or KANK2 we used gene-specific siRNAs transfection. Using previously standardized protocol we isolated integrin adhesion complexes. SDS-PAGE and Western blot was used for protein expression analysis. The immunofluorescence analysis and live cell imaging was done using confocal microscopy. Cell migration was analyzed with Transwell Cell Culture Inserts. Statistical analysis using GraphPad Software consisted of either one-way analysis of variance (ANOVA), unpaired Student's t-test or two-way ANOVA analysis. RESULTS We show that KANK1 is not a part of the CMSC associated with integrin αVβ5 FAs and its knockdown did not affect the velocity of MT growth or cell sensitivity to PTX. The talin2 knockdown mimicked KANK2 knockdown i.e. led to the perturbation of actin-MT crosstalk, which is indicated by the increased velocity of MT growth and increased sensitivity to PTX and also reduced migration. CONCLUSION We conclude that KANK2 functionally interacts with talin2 and that the mechanism of increased sensitivity to PTX involves changes in microtubule dynamics. These data elucidate a cell-type-specific role of talin2 and KANK2 isoforms and we propose that talin2 and KANK2 are therefore potential therapeutic targets for improved cancer therapy.
Collapse
Affiliation(s)
- Marija Lončarić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nikolina Stojanović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Anja Rac-Justament
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Kaatje Coopmans
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Dragomira Majhen
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Jonathan D Humphries
- Department of Life Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
36
|
Campbell S, Mendoza MC, Rammohan A, McKenzie ME, Bidone TC. Computational model of integrin adhesion elongation under an actin fiber. PLoS Comput Biol 2023; 19:e1011237. [PMID: 37410718 PMCID: PMC10325090 DOI: 10.1371/journal.pcbi.1011237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
Cells create physical connections with the extracellular environment through adhesions. Nascent adhesions form at the leading edge of migrating cells and either undergo cycles of disassembly and reassembly, or elongate and stabilize at the end of actin fibers. How adhesions assemble has been addressed in several studies, but the exact role of actin fibers in the elongation and stabilization of nascent adhesions remains largely elusive. To address this question, here we extended our computational model of adhesion assembly by incorporating an actin fiber that locally promotes integrin activation. The model revealed that an actin fiber promotes adhesion stabilization and elongation. Actomyosin contractility from the fiber also promotes adhesion stabilization and elongation, by strengthening integrin-ligand interactions, but only up to a force threshold. Above this force threshold, most integrin-ligand bonds fail, and the adhesion disassembles. In the absence of contraction, actin fibers still support adhesions stabilization. Collectively, our results provide a picture in which myosin activity is dispensable for adhesion stabilization and elongation under an actin fiber, offering a framework for interpreting several previous experimental observations.
Collapse
Affiliation(s)
- Samuel Campbell
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Michelle C. Mendoza
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Aravind Rammohan
- Corning Life Sciences, Tewksburry, Massachusetts, United States of America
| | - Matthew E. McKenzie
- Corning Research and Development Corporation, Corning, New York, United States of America
| | - Tamara C. Bidone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States of America
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
37
|
Adhicary S, Fanelli K, Nakisli S, Ward B, Pearce I, Nielsen CM. Rbpj Deficiency Disrupts Vascular Remodeling via Abnormal Apelin and Cdc42 (Cell Division Cycle 42) Activity in Brain Arteriovenous Malformation. Stroke 2023; 54:1593-1605. [PMID: 37051908 PMCID: PMC10213117 DOI: 10.1161/strokeaha.122.041853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/13/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Brain arteriovenous malformations (bAVM) are characterized by enlarged blood vessels, which direct blood through arteriovenous shunts, bypassing the artery-capillary-vein network and disrupting blood flow. Clinically, bAVM treatments are invasive and not routinely applicable. There is critical need to understand mechanisms of bAVM pathologies and develop pharmacological therapies. METHODS We used an in vivo mouse model of Rbpj-mediated bAVM, which develops pathologies in the early postnatal period and an siRNA in vitro system to knockdown RBPJ in human brain microvascular endothelial cells (ECs). To understand molecular events regulated by endothelial Rbpj, we conducted RNA-Seq and chromatin immunoprecipitation-Seq analyses from isolated brain ECs. RESULTS Rbpj-deficient (mutant) brain ECs acquired abnormally rounded shape (with no change to cell area), altered basement membrane dynamics, and increased endothelial cell density along arteriovenous shunts, compared to controls, suggesting impaired remodeling of neonatal brain vasculature. Consistent with impaired endothelial cell dynamics, we found increased Cdc42 (cell division cycle 42) activity in isolated mutant ECs, suggesting that Rbpj regulates small GTPase (guanosine triphosphate hydrolase)-mediated cellular functions in brain ECs. siRNA-treated, RBPJ-deficient human brain ECs displayed increased Cdc42 activity, disrupted cell polarity and focal adhesion properties, and impaired migration in vitro. RNA-Seq analysis from isolated brain ECs identified differentially expressed genes in mutants, including Apelin, which encodes a ligand for G protein-coupled receptor signaling known to influence small GTPase activity. Chromatin immunoprecipitation-Seq analysis revealed chromatin loci occupied by Rbpj in brain ECs that corresponded to G-protein and Apelin signaling molecules. In vivo administration of a competitive peptide antagonist against the Apelin receptor (Aplnr/Apj) attenuated Cdc42 activity and restored endothelial cell morphology and arteriovenous connection diameter in Rbpj-mutant brain vessels. CONCLUSIONS Our data suggest that endothelial Rbpj promotes rearrangement of brain ECs during cerebrovascular remodeling, through Apelin/Apj-mediated small GTPase activity, and prevents bAVM. By inhibiting Apelin/Apj signaling in vivo, we demonstrated pharmacological prevention of Rbpj-mediated bAVM.
Collapse
Affiliation(s)
- Subhodip Adhicary
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Translational Biomedical Sciences Program, Ohio University, Athens, OH
| | - Kayleigh Fanelli
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH
| | - Sera Nakisli
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH
| | - Brittney Ward
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH
- Honors Tutorial College, Ohio University, Athens, OH
| | - Isaac Pearce
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Corinne M. Nielsen
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH
- Molecular and Cellular Biology Program, Ohio University, Athens, OH
| |
Collapse
|
38
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
39
|
Estep JA, Sun LO, Riccomagno MM. A luciferase fragment complementation assay to detect focal adhesion kinase (FAK) signaling events. Heliyon 2023; 9:e15282. [PMID: 37089315 PMCID: PMC10119766 DOI: 10.1016/j.heliyon.2023.e15282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Integrin Adhesion Complexes (IACs) serve as links between the cytoskeleton and extracellular environment, acting as mechanosensing and signaling hubs. As such, IACs participate in many aspects of cellular motility, tissue morphogenesis, anchorage-dependent growth and cell survival. Focal Adhesion Kinase (FAK) has emerged as a critical organizer of IAC signaling events due to its early recruitment and diverse substrates, and thus has become a genetic and therapeutic target. Here we present the design and characterization of simple, reversible, and scalable Bimolecular Complementation sensors to monitor FAK phosphorylation in living cells. These probes provide novel means to quantify IAC signaling, expanding on the currently available toolkit for interrogating FAK phosphorylation during diverse cellular processes.
Collapse
Affiliation(s)
- Jason A. Estep
- Cell, Molecular and Developmental Biology Program, Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Lu O. Sun
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Martin M. Riccomagno
- Cell, Molecular and Developmental Biology Program, Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
- Neuroscience Program, Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
40
|
Li Mow Chee F, Beernaert B, Griffith BGC, Loftus AEP, Kumar Y, Wills JC, Lee M, Valli J, Wheeler AP, Armstrong JD, Parsons M, Leigh IM, Proby CM, von Kriegsheim A, Bickmore WA, Frame MC, Byron A. Mena regulates nesprin-2 to control actin-nuclear lamina associations, trans-nuclear membrane signalling and gene expression. Nat Commun 2023; 14:1602. [PMID: 36959177 PMCID: PMC10036544 DOI: 10.1038/s41467-023-37021-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/21/2023] [Indexed: 03/25/2023] Open
Abstract
Interactions between cells and the extracellular matrix, mediated by integrin adhesion complexes, play key roles in fundamental cellular processes, including the sensing and transduction of mechanical cues. Here, we investigate systems-level changes in the integrin adhesome in patient-derived cutaneous squamous cell carcinoma cells and identify the actin regulatory protein Mena as a key node in the adhesion complex network. Mena is connected within a subnetwork of actin-binding proteins to the LINC complex component nesprin-2, with which it interacts and co-localises at the nuclear envelope. Moreover, Mena potentiates the interactions of nesprin-2 with the actin cytoskeleton and the nuclear lamina. CRISPR-mediated Mena depletion causes altered nuclear morphology, reduces tyrosine phosphorylation of the nuclear membrane protein emerin and downregulates expression of the immunomodulatory gene PTX3 via the recruitment of its enhancer to the nuclear periphery. We uncover an unexpected role for Mena at the nuclear membrane, where it controls nuclear architecture, chromatin repositioning and gene expression. Our findings identify an adhesion protein that regulates gene transcription via direct signalling across the nuclear envelope.
Collapse
Affiliation(s)
- Frederic Li Mow Chee
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Bruno Beernaert
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, OX3 7DQ, UK
| | - Billie G C Griffith
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Alexander E P Loftus
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Yatendra Kumar
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Jimi C Wills
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Martin Lee
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Jessica Valli
- Edinburgh Super Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Ann P Wheeler
- Advanced Imaging Resource, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - J Douglas Armstrong
- Simons Initiative for the Developing Brain, School of Informatics, University of Edinburgh, Edinburgh, EH8 9LE, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Irene M Leigh
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Charlotte M Proby
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Alex von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Margaret C Frame
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Adam Byron
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK.
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
41
|
Blanchard A. Can a bulky glycocalyx promote catch bonding in early integrin adhesion? Perhaps a bit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532909. [PMID: 36993661 PMCID: PMC10055170 DOI: 10.1101/2023.03.16.532909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Many types of cancer overexpress bulky glycoproteins to form a thick glycocalyx layer. The glycocalyx physically separates the cell from its surroundings, but recent work has shown that the glycocalyx can paradoxically increase adhesion to soft tissues and therefore promote the metastasis of cancer cells. This surprising phenomenon occurs because the glycocalyx forces adhesion molecules (called integrins) on the cell's surface into clusters. These integrin clusters have cooperative effects that allow them to form stronger adhesions to surrounding tissues than would be possible with equivalent numbers of un-clustered integrins. These cooperative mechanisms have been intensely scrutinized in recent years; a more nuanced understanding of the biophysical underpinnings of glycocalyx-mediated adhesion could uncover therapeutic targets, deepen our general understanding of cancer metastasis, and elucidate general biophysical processes that extend far beyond the realm of cancer research. This work examines the hypothesis that the glycocalyx has the additional effect of increasing mechanical tension experienced by clustered integrins. Integrins function as mechanosensors that undergo catch bonding - meaning the application of moderate tension increases integrin bond lifetime relative to the lifetime of integrins experiencing low tension. In this work, a three-state chemomechanical catch bond model of integrin tension is used to investigate catch bonding in the presence of a bulky glycocalyx. This modeling suggests that a bulky glycocalyx can lightly trigger catch bonding, increasing the bond lifetime of integrins at adhesion edges by up to 100%. The total number of integrin-ligand bonds within an adhesion is predicted to increase by up to ~60% for certain adhesion geometries. Catch bonding is predicted to decrease the activation energy of adhesion formation by ~1-4 k B T, which translates to a ~3-50× increase in the kinetic rate of adhesion nucleation. This work reveals that integrin mechanic and clustering likely both contribute to glycocalyx-mediated metastasis.
Collapse
Affiliation(s)
- Aaron Blanchard
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708 United States
- Duke Cancer Institute, Duke University, Durham, NC, 27708, United States
| |
Collapse
|
42
|
Ray AT, Soriano P. FGF signaling regulates salivary gland branching morphogenesis by modulating cell adhesion. Development 2023; 150:dev201293. [PMID: 36861436 PMCID: PMC10112918 DOI: 10.1242/dev.201293] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Loss of FGF signaling leads to defects in salivary gland branching, but the mechanisms underlying this phenotype remain largely unknown. We disrupted expression of Fgfr1 and Fgfr2 in salivary gland epithelial cells and found that both receptors function coordinately in regulating branching. Strikingly, branching morphogenesis in double knockouts is restored by Fgfr1 and Fgfr2 (Fgfr1/2) knock-in alleles incapable of engaging canonical RTK signaling, suggesting that additional FGF-dependent mechanisms play a role in salivary gland branching. Fgfr1/2 conditional null mutants showed defective cell-cell and cell-matrix adhesion, both of which have been shown to play instructive roles in salivary gland branching. Loss of FGF signaling led to disordered cell-basement membrane interactions in vivo as well as in organ culture. This was partially restored upon introducing Fgfr1/2 wild-type or signaling alleles that are incapable of eliciting canonical intracellular signaling. Together, our results identify non-canonical FGF signaling mechanisms that regulate branching morphogenesis through cell-adhesion processes.
Collapse
Affiliation(s)
- Ayan T. Ray
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
43
|
Masaike S, Tsuji Y, Kidoaki S. Local pH mapping in the cell adhesion nano-interfaces on a pH-responsive fluorescence-dye-immobilized substrate. ANAL SCI 2023; 39:347-355. [PMID: 36564615 DOI: 10.1007/s44211-022-00239-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Cell-substrate adhesion nano-interfaces can, in principle, exhibit a spatial distribution of local pH values under the influence of the weakly acidic microenvironment of glycocalyx grafted on lipid bilayer cell membrane which is compressed and closely attached to culture substrate in the vicinity of integrin-adhesion complexes. However, a simple local pH distribution imaging methodology has not been developed. In this study, to visualize the local pH distribution at the cell adhesion interface, we prepared glass substrates chemically modified with a pH-responsive fluorescent dye fluorescein isothiocyanate (FITC), observed the distribution of FITC fluorescence intensity at the adhesion interface of fibroblast (NIH/3T3) and cancer cells (HeLa), and compared the FITC images with the observed distribution of focal adhesions. FITC images were converted to pH mapping based on the pH-fluorescence calibration data of surface-immobilized FITC pre-measured in different pH media, which showed significantly larger regions with lowered pH level (6.8-7.0) from outside the cell (pH 7.4) were observed at the thick inner periphery of HeLa cells while 3T3 cells exhibited smaller lowered pH regions at the thin periphery. The lowered pH regions overlapped with many focal adhesions, and image analysis showed that larger focal adhesions tend to possess more lowered pH sites inside, reflecting enhanced glycocalyx compression due to accumulated integrin-adhesion ligand binding. This tendency was stronger for HeLa than for 3T3 cells. The role of glycocalyx compression and the pH reduction at the cell adhesive interface is discussed.
Collapse
Affiliation(s)
- Sayaka Masaike
- Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yukie Tsuji
- Laboratory of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, CE41-204, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Satoru Kidoaki
- Laboratory of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, CE41-204, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
44
|
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q, Cui Y. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther 2023; 8:1. [PMID: 36588107 PMCID: PMC9805914 DOI: 10.1038/s41392-022-01259-6] [Citation(s) in RCA: 408] [Impact Index Per Article: 204.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 01/03/2023] Open
Abstract
Integrins are considered the main cell-adhesion transmembrane receptors that play multifaceted roles as extracellular matrix (ECM)-cytoskeletal linkers and transducers in biochemical and mechanical signals between cells and their environment in a wide range of states in health and diseases. Integrin functions are dependable on a delicate balance between active and inactive status via multiple mechanisms, including protein-protein interactions, conformational changes, and trafficking. Due to their exposure on the cell surface and sensitivity to the molecular blockade, integrins have been investigated as pharmacological targets for nearly 40 years, but given the complexity of integrins and sometimes opposite characteristics, targeting integrin therapeutics has been a challenge. To date, only seven drugs targeting integrins have been successfully marketed, including abciximab, eptifibatide, tirofiban, natalizumab, vedolizumab, lifitegrast, and carotegrast. Currently, there are approximately 90 kinds of integrin-based therapeutic drugs or imaging agents in clinical studies, including small molecules, antibodies, synthetic mimic peptides, antibody-drug conjugates (ADCs), chimeric antigen receptor (CAR) T-cell therapy, imaging agents, etc. A serious lesson from past integrin drug discovery and research efforts is that successes rely on both a deep understanding of integrin-regulatory mechanisms and unmet clinical needs. Herein, we provide a systematic and complete review of all integrin family members and integrin-mediated downstream signal transduction to highlight ongoing efforts to develop new therapies/diagnoses from bench to clinic. In addition, we further discuss the trend of drug development, how to improve the success rate of clinical trials targeting integrin therapies, and the key points for clinical research, basic research, and translational research.
Collapse
Affiliation(s)
- Xiaocong Pang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Xu He
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiwei Qiu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Hanxu Zhang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Ran Xie
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiyan Liu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Yanlun Gu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Nan Zhao
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| |
Collapse
|
45
|
Hoshiba T, Yunoki S. Comparison of decellularization protocols for cultured cell-derived extracellular matrix-Effects on decellularization efficacy, extracellular matrix retention, and cell functions. J Biomed Mater Res B Appl Biomater 2023; 111:85-94. [PMID: 35852254 DOI: 10.1002/jbm.b.35135] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 12/27/2022]
Abstract
The in vitro reconstruction of the extracellular matrix (ECM) is required in tissue engineering and regenerative medicine because the ECM can regulate cell functions in vivo. For ECM reconstruction, a decellularization technique is used. ECM reconstructed by decellularization (dECM) is prepared from tissues/organs and cultured cells. Although decellularization methods have been optimized for tissue-/organ-derived dECM, the methods for cultured cell-derived dECM have not yet been optimized. Here, two physical (osmotic shocks) and five chemical decellularization methods are compared. The decellularization efficacies were changed according to the decellularization methods used. Among them, only the Triton X-100 and Tween 20 treatments could not decellularize completely. Additionally, when the efficacies were compared among different types of cells (monolayered cells with/without strong cell adhesion, multilayered cells), the efficacies were decreased for multilayered cells or cells with strong cell adhesion. Retained ECM contents tended to be greater in the dECM prepared by osmotic shocks than in those prepared by chemical methods. The contents impacted cell adhesion, shapes, growth and intracellular signal activation on the dECM. The comparison would be helpful for the optimization of decellularization methods for cultured cells, and it could also provide new insights into developing milder decellularization methods for tissues and organs.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Biotechnology Group, Tokyo Metropolitan Industrial Technology Research Institute, Tokyo, Japan
| | - Shunji Yunoki
- Biotechnology Group, Tokyo Metropolitan Industrial Technology Research Institute, Tokyo, Japan
| |
Collapse
|
46
|
S100A10 Promotes Pancreatic Ductal Adenocarcinoma Cells Proliferation, Migration and Adhesion through JNK/LAMB3-LAMC2 Axis. Cancers (Basel) 2022; 15:cancers15010202. [PMID: 36612197 PMCID: PMC9818352 DOI: 10.3390/cancers15010202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors, characterized by diagnosis at an advanced stage and a poor prognosis. As a member of the S100 protein family, S100A10 regulates multiple biological functions related to cancer progression and metastasis. However, the role of S100A10 in PDAC is still not completely elucidated. In this study, we reported that S100A10 was significantly up-regulated in PDAC tissue and associated with a poor prognosis by integrated bioinformatic analysis and human PDAC tissue samples. In vitro, down-regulation of S100A10 reduced the proliferation, migration, and adhesion of PDAC cell lines, whereas up-regulation of S100A10 showed the opposite effect. Furthermore, LAMB3 was proved to be activated by S100A10 using RNA-sequencing and western blotting. The effect of LAMB3 on the proliferation, migration, and adhesion of PDAC cells was similar to that of S100A10. Up-regulation or down-regulation of LAMB3 could reverse the corresponding effect of S100A10. Moreover, we validated S100A10 activates LAMB3 through the JNK pathway, and LAMB3 was further proved to interact with LAMC2. Mice-bearing orthotopic pancreatic tumors showed that S100A10 knocked-down PANC-1 cells had a smaller tumor size than the control group. In conclusion, S100A10 promotes PDAC cells proliferation, migration, and adhesion through JNK/LAMB3-LAMC2 axis.
Collapse
|
47
|
Munugula C, Hu J, Christodoulou E, Yellapantula V. Microenvironmental changes co-occur with mosaic somatic clonal expansions in normal skin and esophagus tissues. Front Oncol 2022; 12:1021940. [DOI: 10.3389/fonc.2022.1021940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
The presence of somatic mutations, previously identified in cancers, are being increasingly recognized in normal tissues. While the role of microenvironment (ME) in tumor progression is well understood, the changes that occur in the microenvironment of normal tissues that harbor somatic mutations has not been systematically studied. Here, using normal RNA-Seq data accrued from 6544 samples across 27 tissue types from Genotype-Tissue Expression (GTEx) project, we studied the association of microenvironmental changes in the presence of somatic clonal expansions of previously implicated cancer genes. We focused our analysis on skin and esophagus since they have the highest number of samples and mutation burden together. We observed changes in microenvironmental cell-types previously implicated in tumor progression including endothelial cells, epithelial cells, pericytes, fibroblasts, chondrocytes, among others. The Epithelial-Mesenchymal-Transition (EMT) pathway is dysregulated in both skin and esophagus, along with increased hypoxia scores in samples with clonal expansions. These results suggest that microenvironmental changes play an important role in clonal expansions and potentially the initiating stages of cancer progression. Studying these changes may provide new avenues for early intervention of cancer, for targeted therapies, or enhance activities of conventional therapies.
Collapse
|
48
|
Jurj A, Ionescu C, Berindan-Neagoe I, Braicu C. The extracellular matrix alteration, implication in modulation of drug resistance mechanism: friends or foes? J Exp Clin Cancer Res 2022; 41:276. [PMID: 36114508 PMCID: PMC9479349 DOI: 10.1186/s13046-022-02484-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
The extracellular matrix (ECM) is an important component of the tumor microenvironment (TME), having several important roles related to the hallmarks of cancer. In cancer, multiple components of the ECM have been shown to be altered. Although most of these alterations are represented by the increased or decreased quantity of the ECM components, changes regarding the functional alteration of a particular ECM component or of the ECM as a whole have been described. These alterations can be induced by the cancer cells directly or by the TME cells, with cancer-associated fibroblasts being of particular interest in this regard. Because the ECM has this wide array of functions in the tumor, preclinical and clinical studies have assessed the possibility of targeting the ECM, with some of them showing encouraging results. In the present review, we will highlight the most relevant ECM components presenting a comprehensive description of their physical, cellular and molecular properties which can alter the therapy response of the tumor cells. Lastly, some evidences regarding important biological processes were discussed, offering a more detailed understanding of how to modulate altered signalling pathways and to counteract drug resistance mechanisms in tumor cells.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Calin Ionescu
- 7Th Surgical Department, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012, Cluj-Napoca, Romania
- Surgical Department, Municipal Hospital, 400139, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania.
- Research Center for Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540139, Targu Mures, Romania.
| |
Collapse
|
49
|
Bejar-Padilla V, Cabe JI, Lopez S, Narayanan V, Mezher M, Maruthamuthu V, Conway DE. α-Catenin-dependent vinculin recruitment to adherens junctions is antagonistic to focal adhesions. Mol Biol Cell 2022; 33:ar93. [PMID: 35921161 DOI: 10.1091/mbc.e22-02-0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vinculin is a protein found in both focal adhesions (FAs) and adherens junctions (AJs) which regulates actin connectivity to these structures. Many studies have demonstrated that mechanical perturbations of cells result in enhanced recruitment of vinculin to FAs and/or AJs. Likewise, many other studies have shown "cross-talk" between FAs and AJs. Vinculin itself has been suggested to be a probable regulator of this adhesion cross-talk. In this study we used MDCK as a model system of epithelia, developing cell lines in which vinculin recruitment was reduced or enhanced at AJs. Careful analysis of these cells revealed that perturbing vinculin recruitment to AJs resulted in a reduction of detectable FAs. Interestingly the cross-talk between these two structures was not due to a limited pool of vinculin, as increasing expression of vinculin did not rescue FA formation. Instead, we demonstrate that vinculin translocation between AJs and FAs is necessary for actin cytoskeleton rearrangements that occur during cell migration, which is necessary for large, well-formed FAs. Last, we show using a wound assay that collective cell migration is similarly hindered when vinculin recruitment is reduced or enhanced at AJs, highlighting that vinculin translocation between each compartment is necessary for efficient collective migration.
Collapse
Affiliation(s)
- Vidal Bejar-Padilla
- Biomedical Engineering, Virginia Commonwealth University, Richmond Virginia 23284
| | - Jolene I Cabe
- Biomedical Engineering, Virginia Commonwealth University, Richmond Virginia 23284
| | - Santiago Lopez
- Biomedical Engineering, Virginia Commonwealth University, Richmond Virginia 23284
| | - Vani Narayanan
- Biomedical Engineering, Virginia Commonwealth University, Richmond Virginia 23284
| | - Mazen Mezher
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk Virginia 23529
| | - Venkat Maruthamuthu
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk Virginia 23529
| | - Daniel E Conway
- Biomedical Engineering, Virginia Commonwealth University, Richmond Virginia 23284.,Biomedical Engineering, The Ohio State University.,Center for Cancer Engineering, Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus Ohio 43210
| |
Collapse
|
50
|
Lana JFSD, Lana AVSD, da Fonseca LF, Coelho MA, Marques GG, Mosaner T, Ribeiro LL, Azzini GOM, Santos GS, Fonseca E, de Andrade MAP. Stromal Vascular Fraction for Knee Osteoarthritis - An Update. J Stem Cells Regen Med 2022; 18:11-20. [PMID: 36003656 DOI: 10.46582/jsrm.1801003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022]
Abstract
Orthobiologics never cease to cause popularity within the medical science field, distinctly in regenerative medicine. Recently, adipose tissue has been an object of interest for many researchers and medical experts due to the fact that it represents a novel and potential cell source for tissue engineering and regenerative medicine purposes. Stromal vascular fraction (SVF), for instance, which is an adipose tissue-derivative, has generated optimistic results in many scenarios. Its biological potential can be harnessed and administered into injured tissues, particularly areas in which standard healing is disrupted. This is a typical feature of osteoarthritis (OA), a common degenerative joint disease which is outlined by persistent inflammation and destruction of surrounding tissues. SVF is known to carry a large amount of stem and progenitor cells, which are able to perform self-renewal, differentiation, and proliferation. Furthermore, they also secrete several cytokines and several growth factors, effectively sustaining immune modulatory effects and halting the escalated pro-inflammatory status of OA. Although SVF has shown interesting results throughout the medical community, additional research is still highly desirable in order to further elucidate its potential regarding musculoskeletal disorders, especially OA.
Collapse
Affiliation(s)
| | | | - Lucas Furtado da Fonseca
- Orthopaedic Department - Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo - SP, Brazil
| | - Marcelo Amaral Coelho
- IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Indaiatuba - SP, Brazil
| | | | - Tomas Mosaner
- IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Indaiatuba - SP, Brazil
| | | | | | - Gabriel Silva Santos
- IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Indaiatuba - SP, Brazil
| | - Eduardo Fonseca
- IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Indaiatuba - SP, Brazil
| | | |
Collapse
|