1
|
Su WC, Xia Y. Virus targeting as a dominant driver of interfacial evolution in the structurally resolved human-virus protein-protein interaction network. Cell Syst 2025; 16:101202. [PMID: 40023148 DOI: 10.1016/j.cels.2025.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/28/2024] [Accepted: 02/04/2025] [Indexed: 03/04/2025]
Abstract
Regions on a host protein that interact with virus proteins (exogenous interfaces) frequently overlap with those that interact with other host proteins (endogenous interfaces), resulting in competition between hosts and viruses for these shared interfaces (mimic-targeted interfaces). Yet, the evolutionary consequences of this competitive relationship on the host are not well understood. Here, we integrate experimentally determined structures and homology-based templates of protein complexes with protein-protein interaction networks to construct a high-resolution human-virus structural interaction network. We perform site-specific evolutionary rate analyses on this structural interaction network and find that exogenous-specific interfaces evolve faster than endogenous-specific interfaces. Mimic-targeted interfaces evolve as fast as exogenous-specific interfaces, despite being targeted by both human and virus proteins. Our findings suggest that virus targeting plays a dominant role in host interfacial evolution within the context of domain-domain interactions and that mimic-targeted interfaces on human proteins are the key battleground for a mammalian-specific host-virus evolutionary arms race.
Collapse
Affiliation(s)
- Wan-Chun Su
- Graduate Program in Quantitative Life Sciences, McGill University, Montréal, QC, Canada
| | - Yu Xia
- Graduate Program in Quantitative Life Sciences, McGill University, Montréal, QC, Canada; Department of Bioengineering, McGill University, Montréal, QC, Canada.
| |
Collapse
|
2
|
Zhao H, Zhang L, Du D, Mai L, Liu Y, Morigen M, Fan L. The RIG-I-like receptor signaling pathway triggered by Staphylococcus aureus promotes breast cancer metastasis. Int Immunopharmacol 2024; 142:113195. [PMID: 39303544 DOI: 10.1016/j.intimp.2024.113195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Host microbes are increasingly recognized as key components in various types of cancer, although their exact impact remains unclear. This study investigated the functional significance of Staphylococcus aureus (S. aureus) in breast cancer tumorigenesis and progression. We found that S. aureus invasion resulted in a compromised DNA damage response process, as evidenced by the absence of G1-phase arrest and apoptosis in breast cells in the background of double strand breaks production and the activation of the ataxia-telangiectasia mutated (ATM)-p53 signaling pathway. The high-throughput mRNA sequencing, bioinformatics analysis and pharmacological studies revealed that S. aureus facilitates breast cell metastasis through the innate immune pathway, particularly in cancer cells. During metastasis, S. aureus initially induced the expression of RIG-I-like receptors (RIG-I in normal breast cells, RIG-I and MDA5 in breast cancer cells), which in turn activated NF-κB p65 expression. We further showed that NF-κB p65 activated the CCL5-CCR5 pathway, contributing to breast cell metastasis. Our study provides novel evidence that the innate immune system, triggered by bacterial infection, plays a role in bacterial-driven cancer metastasis.
Collapse
Affiliation(s)
- Haile Zhao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Linzhe Zhang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Dongdong Du
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Lisu Mai
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Yaping Liu
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Morigen Morigen
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China.
| | - Lifei Fan
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China.
| |
Collapse
|
3
|
Nguyen HDT, Le TM, Jung DR, Jo Y, Choi Y, Lee D, Lee OE, Cho J, Park NJY, Seo I, Chong GO, Shin JH, Han HS. Transcriptomic analysis reveals Streptococcus agalactiae activation of oncogenic pathways in cervical adenocarcinoma. Oncol Lett 2024; 28:588. [PMID: 39411203 PMCID: PMC11474141 DOI: 10.3892/ol.2024.14720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
Cervical adenocarcinoma (AC), a subtype of uterine cervical cancer (CC), poses a challenge due to its resistance to therapy and poor prognosis compared with squamous cervical carcinoma. Streptococcus agalactiae [group B Streptococcus (GBS)], a Gram-positive coccus, has been associated with cervical intraepithelial neoplasia in CC. However, the underlying mechanism interaction between GBS and CC, particularly AC, remains elusive. Leveraging The Cancer Genome Atlas public data and time-series transcriptomic data, the present study investigated the interaction between GBS and AC, revealing activation of two pivotal pathways: 'MAPK signaling pathway' and 'mTORC1 signaling'. Western blotting, reverse transcription-quantitative PCR and cell viability assays were performed to validate the activation of these pathways and their role in promoting cancer cell proliferation. Subsequently, the present study evaluated the efficacy of two anticancer drugs targeting these pathways (binimetinib and ridaforolimus) in AC cell treatment. Binimetinib demonstrated a cytostatic effect, while ridaforolimus had a modest impact on HeLa cells after 48 h of treatment, as observed in both cell viability and cytotoxicity assays. The combination of binimetinib and ridaforolimus resulted in a significantly greater cytotoxic effect compared to binimetinib or ridaforolimus monotherapy, although the synergy score indicated an additive effect. In general, the MAPK and mTORC1 signaling pathways were identified as the main pathways associated with GBS and AC cells. The combination of binimetinib and ridaforolimus could be a potential AC treatment.
Collapse
Affiliation(s)
- Hong Duc Thi Nguyen
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Tan Minh Le
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Da-Ryung Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Youngjae Jo
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yeseul Choi
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Donghyeon Lee
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Olive Em Lee
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Junghwan Cho
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea
| | - Nora Jee-Young Park
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| | - Incheol Seo
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Gun Oh Chong
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Integrative Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Next Generation Sequencing Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyung Soo Han
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
4
|
Ge J, Wang Y, Li X, Lu Q, Yu H, Liu H, Ma K, Deng X, Luo ZQ, Liu X, Qiu J. Phosphorylation of caspases by a bacterial kinase inhibits host programmed cell death. Nat Commun 2024; 15:8464. [PMID: 39349471 PMCID: PMC11442631 DOI: 10.1038/s41467-024-52817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
The intracellular bacterial pathogen Legionella pneumophila utilizes the Dot/Icm system to translocate over 330 effectors into the host cytosol. These virulence factors modify a variety of cell processes, including pathways involved in cell death and survival, to promote bacterial proliferation. Here, we show that the effector LegK3 is a eukaryotic-like Ser/Thr kinase that functions to suppress host apoptosis. Mechanistically, LegK3 directly phosphorylates multiple caspases involved in apoptosis signaling, including Caspase-3, Caspase-7, and Caspase-9. LegK3-induced phosphorylation of these caspases occurs at serine (Ser29 in Caspase-3 and Ser199 in Caspase-7) or threonine (Thr102 in Caspase-9) residues located in the prodomain or interdomain linkers. These modifications interfere with the suitability of the caspases as the substrates of initiator caspases or upstream regulators without impacting their proteolytic activity. Collectively, our study reveals a novel strategy used by L. pneumophila to maintain the integrity of infected cells for its intracellular growth.
Collapse
Affiliation(s)
- Jinli Ge
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ying Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xueyu Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qian Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hangqian Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kelong Ma
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China.
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Peng W, Garcia N, Servage KA, Kohler JJ, Ready JM, Tomchick DR, Fernandez J, Orth K. Pseudomonas effector AvrB is a glycosyltransferase that rhamnosylates plant guardee protein RIN4. SCIENCE ADVANCES 2024; 10:eadd5108. [PMID: 38354245 PMCID: PMC10866546 DOI: 10.1126/sciadv.add5108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
The plant pathogen Pseudomonas syringae encodes a type III secretion system avirulence effector protein, AvrB, that induces a form of programmed cell death called the hypersensitive response in plants as a defense mechanism against systemic infection. Despite the well-documented catalytic activities observed in other Fido (Fic, Doc, and AvrB) proteins, the enzymatic activity and target substrates of AvrB have remained elusive. Here, we show that AvrB is an unprecedented glycosyltransferase that transfers rhamnose from UDP-rhamnose to a threonine residue of the Arabidopsis guardee protein RIN4. We report structures of various enzymatic states of the AvrB-catalyzed rhamnosylation reaction of RIN4, which reveal the structural and mechanistic basis for rhamnosylation by a Fido protein. Collectively, our results uncover an unexpected reaction performed by a prototypical member of the Fido superfamily while providing important insights into the plant hypersensitive response pathway and foreshadowing more diverse chemistry used by Fido proteins and their substrates.
Collapse
Affiliation(s)
- Wei Peng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nalleli Garcia
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Kelly A. Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer J. Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph M. Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Diana R. Tomchick
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jessie Fernandez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
6
|
Das A, Cheng H, Wang Y, Kinch LN, Liang G, Hong S, Hobbs HH, Cohen JC. The ubiquitin E3 ligase BFAR promotes degradation of PNPLA3. Proc Natl Acad Sci U S A 2024; 121:e2312291121. [PMID: 38294943 PMCID: PMC10861911 DOI: 10.1073/pnas.2312291121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
A missense variant in patatin-like phospholipase domain-containing protein 3 [PNPLA3(I148M)] is the most impactful genetic risk factor for fatty liver disease (FLD). We previously showed that PNPLA3 is ubiquitylated and subsequently degraded by proteasomes and autophagosomes and that the PNPLA3(148M) variant interferes with this process. To define the machinery responsible for PNPLA3 turnover, we used small interfering (si)RNAs to inactivate components of the ubiquitin proteasome system. Inactivation of bifunctional apoptosis regulator (BFAR), a membrane-bound E3 ubiquitin ligase, reproducibly increased PNPLA3 levels in two lines of cultured hepatocytes. Conversely, overexpression of BFAR decreased levels of endogenous PNPLA3 in HuH7 cells. BFAR and PNPLA3 co-immunoprecipitated when co-expressed in cells. BFAR promoted ubiquitylation of PNPLA3 in vitro in a reconstitution assay using purified, epitope-tagged recombinant proteins. To confirm that BFAR targets PNPLA3, we inactivated Bfar in mice. Levels of PNPLA3 protein were increased twofold in hepatic lipid droplets of Bfar-/- mice with no associated increase in PNPLA3 mRNA levels. Taken together these data are consistent with a model in which BFAR plays a role in the post-translational degradation of PNPLA3. The identification of BFAR provides a potential target to enhance PNPLA3 turnover and prevent FLD.
Collapse
Affiliation(s)
- Avash Das
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Haili Cheng
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Yang Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Lisa N. Kinch
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Guosheng Liang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Sen Hong
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Helen H. Hobbs
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jonathan C. Cohen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
7
|
Youssouf N, Martin M, Bischoff M, Soubeyran P, Gannoun-Zaki L, Molle V. The secreted tyrosine phosphatase PtpA promotes Staphylococcus aureus survival in RAW 264.7 macrophages through decrease of the SUMOylation host response. Microbiol Spectr 2023; 11:e0281323. [PMID: 37819153 PMCID: PMC10714793 DOI: 10.1128/spectrum.02813-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Staphylococcus aureus uses numerous strategies to survive and persist in the intracellular environment of professional phagocytes, including modulation of the SUMOylation process. This study aims to understand how S. aureus alters host SUMOylation to enhance its intracellular survival in professional phagocytes. Our results indicate that S. aureus strain Newman utilizes PtpA-driven phosphorylation to decrease the amount of SUMOylated proteins in murine macrophages to facilitate its survival in this immune cell type.
Collapse
Affiliation(s)
- Nadhuma Youssouf
- VBIC, INSERM U1047, Université de Montpellier, Montpellier, France
| | - Marianne Martin
- VBIC, INSERM U1047, Université de Montpellier, Montpellier, France
| | - Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland University, Homburg, Saarland, Germany
| | - Philippe Soubeyran
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR, Aix-Marseille, Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | | | - Virginie Molle
- VBIC, INSERM U1047, Université de Montpellier, Montpellier, France
| |
Collapse
|
8
|
Ayoub MA. Hijacking of GPCRs and RTKs by pathogens. Cell Signal 2023:110802. [PMID: 37437829 DOI: 10.1016/j.cellsig.2023.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Pathogens exploit multiple cellular and molecular pathways in the host organisms for their entry, survival and dissemination. The cell surface receptors such as G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) constitute the targets of many pathogens. This is due to the ubiquitous expression of these two receptor families in the organism and their pivotal role in various cellular and physiological processes. At the molecular level, receptor hijacking implies either direct or indirect interactions between pathogens' effectors or toxins with GPCRs and RTKs at the cell surface thereby interfering with their activation and their downstream signaling pathways inside the host cells. As a result, the pathogens manipulate and redirect GPCR/RTK-mediated signaling pathways and different aspects of cell function for their benefit. The review presents a compilation of the major examples of pathogen infections where GPCRs and RTKs and their related intracellular signaling pathways are targeted. This provides a molecular basis for pathogens hijacking cell signaling and their virulence. Our understanding of such complex host-pathogen interactions at the molecular level will open new opportunities to develop new prophylactic and therapeutic approaches against infections. In this context, the pharmacological targeting of GPCRs and RTKs may be a promising approach.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Biology Department, College of Arts and Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
9
|
Gulen B, Casey A, Orth K. AMPylation of small GTPases by Fic enzymes. FEBS Lett 2023; 597:883-891. [PMID: 36239538 PMCID: PMC10050140 DOI: 10.1002/1873-3468.14516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/17/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022]
Abstract
Small GTPases orchestrate numerous cellular pathways, acting as molecular switches and regulatory hubs to transmit molecular signals and because of this, they are often the target of pathogens. During infection, pathogens manipulate host cellular networks using post-translational modifications (PTMs). AMPylation, the modification of proteins with AMP, has been identified as a common PTM utilized by pathogens to hijack GTPase signalling during infection. AMPylation is primarily carried out by enzymes with a filamentation induced by cyclic-AMP (Fic) domain. Modification of small GTPases by AMP renders GTPases impervious to upstream regulatory inputs, resulting in unregulated downstream effector outputs for host cellular processes. Here, we overview Fic-mediated AMPylation of small GTPases by pathogens and other related PTMs catalysed by Fic enzymes on GTPases.
Collapse
Affiliation(s)
- Burak Gulen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amanda Casey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX and Howard Hughes Medical Institute, Dallas, TX, USA
| |
Collapse
|
10
|
van Solinge TS, Mahjoum S, Ughetto S, Sammarco A, Broekman ML, Breakefield XO, O’Brien KP. Illuminating cellular and extracellular vesicle-mediated communication via a split-Nanoluc reporter in vitro and in vivo. CELL REPORTS METHODS 2023; 3:100412. [PMID: 36936071 PMCID: PMC10014296 DOI: 10.1016/j.crmeth.2023.100412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/01/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
Tools to effectively demonstrate and quantify functional delivery in cellular communication have been lacking. This study reports the use of a fluorescently labeled split Nanoluc reporter system to demonstrate and quantify functional transfer between cells in vitro and in a subcutaneous tumor mouse model. Our construct allows monitoring of direct, indirect, and specifically extracellular vesicle-mediated functional communication.
Collapse
Affiliation(s)
- Thomas S. van Solinge
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Shadi Mahjoum
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stefano Ughetto
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Oncology, University of Turin, Candiolo, Italy
| | - Alessandro Sammarco
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Marike L.D. Broekman
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, the Netherlands
| | - Xandra O. Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Killian P. O’Brien
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
St. Louis BM, Quagliato SM, Lee PC. Bacterial effector kinases and strategies to identify their target host substrates. Front Microbiol 2023; 14:1113021. [PMID: 36846793 PMCID: PMC9950578 DOI: 10.3389/fmicb.2023.1113021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Post-translational modifications (PTMs) are critical in regulating protein function by altering chemical characteristics of proteins. Phosphorylation is an integral PTM, catalyzed by kinases and reversibly removed by phosphatases, that modulates many cellular processes in response to stimuli in all living organisms. Consequently, bacterial pathogens have evolved to secrete effectors capable of manipulating host phosphorylation pathways as a common infection strategy. Given the importance of protein phosphorylation in infection, recent advances in sequence and structural homology search have significantly expanded the discovery of a multitude of bacterial effectors with kinase activity in pathogenic bacteria. Although challenges exist due to complexity of phosphorylation networks in host cells and transient interactions between kinases and substrates, approaches are continuously being developed and applied to identify bacterial effector kinases and their host substrates. In this review, we illustrate the importance of exploiting phosphorylation in host cells by bacterial pathogens via the action of effector kinases and how these effector kinases contribute to virulence through the manipulation of diverse host signaling pathways. We also highlight recent developments in the identification of bacterial effector kinases and a variety of techniques to characterize kinase-substrate interactions in host cells. Identification of host substrates provides new insights for regulation of host signaling during microbial infection and may serve as foundation for developing interventions to treat infection by blocking the activity of secreted effector kinases.
Collapse
Affiliation(s)
- Brendyn M. St. Louis
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, United States
| | - Sydney M. Quagliato
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, United States
| | | |
Collapse
|
12
|
Chandel S, Joon A, Kaur S, Ghosh S. Role of ST6GAL1 and ST6GAL2 in subversion of cellular signaling during enteroaggregative Escherichia coli infection of human intestinal epithelial cell lines. Appl Microbiol Biotechnol 2023; 107:1405-1420. [PMID: 36646912 PMCID: PMC9843105 DOI: 10.1007/s00253-022-12321-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 01/18/2023]
Abstract
Emerging evidence have suggested that aberrant sialylation on cell-surface carbohydrate architecture may influence host-pathogen interactions. The α2,6-sialyltransferase (ST) enzymes were found to alter the glycosylation pattern of the pathogen-infected host cell-surface proteins, which could facilitate its invasion. In this study, we assessed the role of specific α2,6-ST enzymes in the regulation of enteroaggregative E. coli (EAEC)-induced cell signaling pathways in human intestinal epithelial cells. EAEC-induced expression of α2,6-ST family genes in HCT-15 and INT-407 cell lines was assessed at mRNA level by qRT-PCR. Specific esi-RNA was used to silence the target ST-gene in each of the EAEC-infected cell type. Subsequently, the role of these enzymes in regulation of EAEC-induced cell signaling pathways was unraveled by analyzing the expression of MAPkinases (ERK1/2, p38, JNK) and transcription factors (NFκB, cJun, cFos, STAT) at mRNA and protein levels by qRT-PCR and western immunoblotting, respectively, expression of selected sialoglycoproteins by western immunoblotting along with the secretory IL-8 response using sandwich ELISA. ST6GAL-1 and ST6GAL-2 were efficiently silenced in EAEC-infected HCT-15 and INT-407 cells, respectively. Significant reduction in EAEC-induced activation of MAPKs, transcription factors, sialoglycoproteins, and IL-8 secretion was noted in ST-silenced cells in comparison to the respective control cells. We propose that ST6GAL-1 and ST6GAL-2 are quintessential for EAEC-induced stimulation of MAPK-mediated pathways, resulting in activation of transcription factors, leading to an inflammatory response in the human intestinal epithelial cells. Our study may be helpful to design better therapeutic strategies to control EAEC- infection. KEY POINTS: • EAEC induces α2,6-sialyltransferase (ST) upregulation in intestinal epithelial cells • Target STs (ST6GAL-1 & ST6GAL-2) were efficiently silenced using specific esiRNAs • Expression of MAPKs, transcription factors & IL-8 was reduced in ST silenced cells.
Collapse
Affiliation(s)
- Shipra Chandel
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Archana Joon
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Simarpreet Kaur
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Sujata Ghosh
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
13
|
A Novel Role of Secretory Cytosolic Tryparedoxin Peroxidase in Delaying Apoptosis of Leishmania-Infected Macrophages. Mol Cell Biol 2022; 42:e0008122. [PMID: 36073913 PMCID: PMC9583715 DOI: 10.1128/mcb.00081-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cytosolic tryparedoxin peroxidase (cTXNPx) of Leishmania donovani is a defensive enzyme. Apart from the nonsecretory form, the cTXNPx is released in the spent media of Leishmania cultures and also in the host cell cytosol. The secretory form of the enzyme from the parasite interacts with multiple proteins in the host cell cytosol, the apoptosis-inducing factor (AIF) being one of them. Immunoprecipitation with anti-cTXNPx and anti-AIF antibodies suggests a strong interaction between AIF and cTXNPx. Consequent to parasite invasion, the migration of AIF to the nucleus to precipitate apoptosis is inhibited in the presence of recombinant cTXNPx expressed in the host cell. This inhibition of AIF movement results in lesser host cell death, giving an advantage to the parasite for continued survival. Staurosporine-induced AIF migration to the nucleus was also inhibited in the presence of recombinant cTXNPx in the host cell. Therefore, this study demonstrates the ability of a Leishmania parasite enzyme, cTXNPx, to interfere with the migration of the host AIF protein, providing a survival advantage to the Leishmania parasite.
Collapse
|
14
|
Prathapan P. A determination of pan-pathogen antimicrobials? MEDICINE IN DRUG DISCOVERY 2022; 14:100120. [PMID: 35098103 PMCID: PMC8785259 DOI: 10.1016/j.medidd.2022.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/01/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
While antimicrobial drug development has historically mitigated infectious diseases that are known, COVID-19 revealed a dearth of 'in-advance' therapeutics suitable for infections by pathogens that have not yet emerged. Such drugs must exhibit a property that is antithetical to the classical paradigm of antimicrobial development: the ability to treat infections by any pathogen. Characterisation of such 'pan-pathogen' antimicrobials requires consolidation of drug repositioning studies, a new and growing field of drug discovery. In this review, a previously-established system for evaluating repositioning studies is used to highlight 4 therapeutics which exhibit pan-pathogen properties, namely azithromycin, ivermectin, niclosamide, and nitazoxanide. Recognition of the pan-pathogen nature of these antimicrobials is the cornerstone of a novel paradigm of antimicrobial development that is not only anticipatory of pandemics and bioterrorist attacks, but cognisant of conserved anti-infective mechanisms within the host-pathogen interactome which are only now beginning to emerge. Ultimately, the discovery of pan-pathogen antimicrobials is concomitantly the discovery of a new class of antivirals, and begets significant implications for pandemic preparedness research in a world after COVID-19.
Collapse
Affiliation(s)
- Praveen Prathapan
- New Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
15
|
Wadie B, Kleshchevnikov V, Sandaltzopoulou E, Benz C, Petsalaki E. Use of viral motif mimicry improves the proteome-wide discovery of human linear motifs. Cell Rep 2022; 39:110764. [PMID: 35508127 DOI: 10.1016/j.celrep.2022.110764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/09/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022] Open
Abstract
Linear motifs have an integral role in dynamic cell functions, including cell signaling. However, due to their small size, low complexity, and frequent mutations, identifying novel functional motifs poses a challenge. Viruses rely extensively on the molecular mimicry of cellular linear motifs. In this study, we apply systematic motif prediction combined with functional filters to identify human linear motifs convergently evolved also in viral proteins. We observe an increase in the sensitivity of motif prediction and improved enrichment in known instances. We identify >7,300 non-redundant motif instances at various confidence levels, 99 of which are supported by all functional and structural filters. Overall, we provide a pipeline to improve the identification of functional linear motifs from interactomics datasets and a comprehensive catalog of putative human motifs that can contribute to our understanding of the human domain-linear motif code and the associated mechanisms of viral interference.
Collapse
Affiliation(s)
- Bishoy Wadie
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Vitalii Kleshchevnikov
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Elissavet Sandaltzopoulou
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Caroline Benz
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK.
| |
Collapse
|
16
|
Sayed IM, Ibeawuchi SR, Lie D, Anandachar MS, Pranadinata R, Raffatellu M, Das S. The interaction of enteric bacterial effectors with the host engulfment pathway control innate immune responses. Gut Microbes 2022; 13:1991776. [PMID: 34719317 PMCID: PMC8565811 DOI: 10.1080/19490976.2021.1991776] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Host engulfment protein ELMO1 generates intestinal inflammation following internalization of enteric bacteria. In Shigella, bacterial effector IpgB1 interacts with ELMO1 and promotes bacterial invasion. IpgB1 belongs to the WxxxE effector family, a motif found in several effectors of enteric pathogens. Here, we have studied the role of WxxxE effectors, with emphasis on Salmonella SifA and whether it interacts with ELMO1 to regulate inflammation. In-silico-analysis of WxxxE effectors was performed using BLAST search and Clustal W program. The interaction of ELMO1 with SifA was assessed by GST pulldown assay and co-immunoprecipitation. ELMO1 knockout mice, and ELMO1-depleted murine macrophage J774 cell lines were challenged with WT and SifA mutant Salmonella. Bacterial effectors containing the WxxxE motif were transfected in WT and ELMO1-depleted J774 cells to assess the inflammatory cytokines. ELMO1 generates differential pro-inflammatory cytokines between pathogenic and nonpathogenic bacteria. WxxxE motif is present in pathogens and in the TIR domain of host proteins. The C-terminal part of ELMO1 interacts with SifA where WxxxE motif is important for interaction. ELMO1-SifA interaction affects bacterial colonization, dissemination, and inflammatory cytokines in vivo. Moreover, ELMO1-SifA interaction increases TNF-α and IL-6 production from the macrophage cell line and is associated with enhanced Rac1 activity. ELMO1 also interacts with WxxxE effectors IpgB1, IpgB2, and Map and induces inflammation after challenge with microbes or microbial ligands. ELMO1 generates a differential response through interaction with the WxxxE motif, which is absent in commensals. ELMO1-WxxxE interaction plays a role in bacterial pathogenesis and induction of inflammatory response.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | | | - Dominique Lie
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | | | - Rama Pranadinata
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Manuela Raffatellu
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, LA Jolla, CA, USA,Center for Mucosal Immunology, Chiba University-UC San Diego, La Jolla, CAUSA
| | - Soumita Das
- Department of Pathology, University of California San Diego, La Jolla, CA, USA,CONTACT Soumita Das Department of Pathology, University of California, San Diego, 9500 Gilman Drive, Mc 0644, George Palade Laboratory, Office Rm 256, San Diego, Ca, 92093-0644, USA
| |
Collapse
|
17
|
Paluck A, Osan J, Hollingsworth L, Talukdar SN, Saegh AA, Mehedi M. Role of ARP2/3 Complex-Driven Actin Polymerization in RSV Infection. Pathogens 2021; 11:26. [PMID: 35055974 PMCID: PMC8781601 DOI: 10.3390/pathogens11010026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/30/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading viral agent causing bronchiolitis and pneumonia in children under five years old worldwide. The RSV infection cycle starts with macropinocytosis-based entry into the host airway epithelial cell membrane, followed by virus transcription, replication, assembly, budding, and spread. It is not surprising that the host actin cytoskeleton contributes to different stages of the RSV replication cycle. RSV modulates actin-related protein 2/3 (ARP2/3) complex-driven actin polymerization for a robust filopodia induction on the infected lung epithelial A549 cells, which contributes to the virus's budding, and cell-to-cell spread. Thus, a comprehensive understanding of RSV-induced cytoskeletal modulation and its role in lung pathobiology may identify novel intervention strategies. This review will focus on the role of the ARP2/3 complex in RSV's pathogenesis and possible therapeutic targets to the ARP2/3 complex for RSV.
Collapse
Affiliation(s)
- Autumn Paluck
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
| | - Jaspreet Osan
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lauren Hollingsworth
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
| | - Sattya Narayan Talukdar
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
| | - Ali Al Saegh
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
| | - Masfique Mehedi
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
| |
Collapse
|
18
|
Roy D, Ehtesham NZ, Hasnain SE. Is Mycobacterium tuberculosis carcinogenic to humans? FASEB J 2021; 35:e21853. [PMID: 34416038 DOI: 10.1096/fj.202001581rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 05/20/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
We highlight the ability of the tuberculosis (TB) causing bacterial pathogen, Mycobacterium tuberculosis (Mtb), to induce key characteristics that are associated with established IARC classified Group 1 and Group 2A carcinogenic agents. There is sufficient evidence from epidemiological case-control, cohort and meta-analysis studies of increased lung cancer (LC) risk in pre-existing/active/old TB cases. Similar to carcinogens and other pathogenic infectious agents, exposure to aerosol-containing Mtb sprays in mice produce malignant transformation of cells that result in squamous cell carcinoma. Convincing, mechanistic data show several characteristics shared between TB and LC which include chronic inflammation, genomic instability and replicative immortality, just to name a few cancer hallmarks. These hallmarks of cancer may serve as precursors to malignant transformation. Together, these findings form the basis of our postulate that Mtb is a complete human pulmonary carcinogen. We also discuss how Mtb may act as both an initiating agent and promoter of tumor growth. Forthcoming experimental studies will not only serve as proof-of-concept but will also pivot our understanding of how to manage/treat TB cases as well as offer solutions to clinical conundrums of TB lesions masquerading as tumors. Clinical validation of our concept may also help pave the way for next generation personalized medicine for the management of pulmonary TB/cancer particularly for cases that are not responding well to conventional chemotherapy or TB drugs.
Collapse
Affiliation(s)
- Deodutta Roy
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Nasreen Z Ehtesham
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed Ehtesham Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| |
Collapse
|
19
|
Staphylococcus aureus Decreases SUMOylation Host Response to Promote Intramacrophage Survival. Int J Mol Sci 2021; 22:ijms22158108. [PMID: 34360873 PMCID: PMC8347835 DOI: 10.3390/ijms22158108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 01/15/2023] Open
Abstract
Staphylococcus aureus is a commensal bacterium that causes severe infections in soft tissue and the bloodstream. During infection, S. aureus manipulates host cell response to facilitate its own replication and dissemination. Here, we show that S. aureus significantly decreases the level of SUMOylation, an essential post-translational modification, in infected macrophages 24 h post-phagocytosis. The reduced level of SUMOylation correlates with a decrease in the SUMO-conjugating enzyme Ubc9. The over-expression of SUMO proteins in macrophages impaired bacterial intracellular proliferation and the inhibition of SUMOylation with ML-792 increased it. Together, these findings demonstrated for the first time the role of host SUMOylation response toward S. aureus infection.
Collapse
|
20
|
Rahmatbakhsh M, Gagarinova A, Babu M. Bioinformatic Analysis of Temporal and Spatial Proteome Alternations During Infections. Front Genet 2021; 12:667936. [PMID: 34276775 PMCID: PMC8283032 DOI: 10.3389/fgene.2021.667936] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Microbial pathogens have evolved numerous mechanisms to hijack host's systems, thus causing disease. This is mediated by alterations in the combined host-pathogen proteome in time and space. Mass spectrometry-based proteomics approaches have been developed and tailored to map disease progression. The result is complex multidimensional data that pose numerous analytic challenges for downstream interpretation. However, a systematic review of approaches for the downstream analysis of such data has been lacking in the field. In this review, we detail the steps of a typical temporal and spatial analysis, including data pre-processing steps (i.e., quality control, data normalization, the imputation of missing values, and dimensionality reduction), different statistical and machine learning approaches, validation, interpretation, and the extraction of biological information from mass spectrometry data. We also discuss current best practices for these steps based on a collection of independent studies to guide users in selecting the most suitable strategies for their dataset and analysis objectives. Moreover, we also compiled the list of commonly used R software packages for each step of the analysis. These could be easily integrated into one's analysis pipeline. Furthermore, we guide readers through various analysis steps by applying these workflows to mock and host-pathogen interaction data from public datasets. The workflows presented in this review will serve as an introduction for data analysis novices, while also helping established users update their data analysis pipelines. We conclude the review by discussing future directions and developments in temporal and spatial proteomics and data analysis approaches. Data analysis codes, prepared for this review are available from https://github.com/BabuLab-UofR/TempSpac, where guidelines and sample datasets are also offered for testing purposes.
Collapse
Affiliation(s)
| | - Alla Gagarinova
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| |
Collapse
|
21
|
Biondi A, Basile F, Vacante M. Familial adenomatous polyposis and changes in the gut microbiota: New insights into colorectal cancer carcinogenesis. World J Gastrointest Oncol 2021; 13:495-508. [PMID: 34163569 PMCID: PMC8204352 DOI: 10.4251/wjgo.v13.i6.495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/15/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with familial adenomatous polyposis (FAP), an autosomal dominant hereditary colorectal cancer syndrome, have a lifetime risk of developing cancer of nearly 100%. Recent studies have pointed out that the gut microbiota could play a crucial role in the development of colorectal adenomas and the consequent progression to colorectal cancer. Some gut bacteria, such as Fusobacterium nucleatum, Escherichia coli, Clostridium difficile, Peptostreptococcus, and enterotoxigenic Bacteroides fragilis, could be implicated in colorectal carcinogenesis through different mechanisms, including the maintenance of a chronic inflammatory state, production of bioactive tumorigenic metabolites, and DNA damage. Studies using the adenomatous polyposis coliMin/+ mouse model, which resembles FAP in most respects, have shown that specific changes in the intestinal microbial community could influence a multistep progression, the intestinal "adenoma-carcinoma sequence", which involves mucosal barrier injury, low-grade inflammation, activation of the Wnt pathway. Therefore, modulation of gut microbiota might represent a novel therapeutic target for patients with FAP. Administration of probiotics, prebiotics, antibiotics, and nonsteroidal anti-inflammatory drugs could potentially prevent the progression of the adenoma-carcinoma sequence in FAP. The aim of this review was to summarize the best available knowledge on the role of gut microbiota in colorectal carcinogenesis in patients with FAP.
Collapse
Affiliation(s)
- Antonio Biondi
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
- Multidisciplinary Research Center for Rare Diseases, University of Catania, Catania 95123, Italy
| | - Francesco Basile
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
- Multidisciplinary Research Center for Rare Diseases, University of Catania, Catania 95123, Italy
| | - Marco Vacante
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
- Multidisciplinary Research Center for Rare Diseases, University of Catania, Catania 95123, Italy
| |
Collapse
|
22
|
Mehta M, Dhanjal DS, Satija S, Wadhwa R, Paudel KR, Chellappan DK, Mohammad S, Haghi M, Hansbro PM, Dua K. Advancing of Cellular Signaling Pathways in Respiratory Diseases Using Nanocarrier Based Drug Delivery Systems. Curr Pharm Des 2021; 26:5380-5392. [PMID: 33198611 DOI: 10.2174/1381612826999201116161143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
Cell Signaling pathways form an integral part of our existence that allows the cells to comprehend a stimulus and respond back. Such reactions to external cues from the environment are required and are essential to regulate the normal functioning of our body. Abnormalities in the system arise when there are errors developed in these signals, resulting in a complication or a disease. Presently, respiratory diseases contribute to being the third leading cause of morbidity worldwide. According to the current statistics, over 339 million people are asthmatic, 65 million are suffering from COPD, 2.3 million are lung cancer patients and 10 million are tuberculosis patients. This toll of statistics with chronic respiratory diseases leaves a heavy burden on society and the nation's annual health expenditure. Hence, a better understanding of the processes governing these cellular pathways will enable us to treat and manage these deadly respiratory diseases effectively. Moreover, it is important to comprehend the synergy and interplay of the cellular signaling pathways in respiratory diseases, which will enable us to explore and develop suitable strategies for targeted drug delivery. This review, in particular, focuses on the major respiratory diseases and further provides an in-depth discussion on the various cell signaling pathways that are involved in the pathophysiology of respiratory diseases. Moreover, the review also analyses the defining concepts about advanced nano-drug delivery systems involving various nanocarriers and propose newer prospects to minimize the current challenges faced by researchers and formulation scientists.
Collapse
Affiliation(s)
- Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Daljeet Singh Dhanjal
- School of Biosciences and Bioengineering, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Ridhima Wadhwa
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Keshav Raj Paudel
- School of Life Sciences, Faculty of Science, University of Technology Sydney (UTS), Ultimo, NSW, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Shiva Mohammad
- School of Life Sciences, Faculty of Science, University of Technology Sydney (UTS), Ultimo, NSW, 2007, Australia
| | - Mehra Haghi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Philip M Hansbro
- School of Life Sciences, Faculty of Science, University of Technology Sydney (UTS), Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| |
Collapse
|
23
|
Protein N-myristoylation: functions and mechanisms in control of innate immunity. Cell Mol Immunol 2021; 18:878-888. [PMID: 33731917 PMCID: PMC7966921 DOI: 10.1038/s41423-021-00663-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2021] [Indexed: 02/08/2023] Open
Abstract
Protein N-myristoylation is an important fatty acylation catalyzed by N-myristoyltransferases (NMTs), which are ubiquitous enzymes in eukaryotes. Specifically, attachment of a myristoyl group is vital for proteins participating in various biological functions, including signal transduction, cellular localization, and oncogenesis. Recent studies have revealed unexpected mechanisms indicating that protein N-myristoylation is involved in host defense against microbial and viral infections. In this review, we describe the current understanding of protein N-myristoylation (mainly focusing on myristoyl switches) and summarize its crucial roles in regulating innate immune responses, including TLR4-dependent inflammatory responses and demyristoylation-induced innate immunosuppression during Shigella flexneri infection. Furthermore, we examine the role of myristoylation in viral assembly, intracellular host interactions, and viral spread during human immunodeficiency virus-1 (HIV-1) infection. Deeper insight into the relationship between protein N-myristoylation and innate immunity might enable us to clarify the pathogenesis of certain infectious diseases and better harness protein N-myristoylation for new therapeutics.
Collapse
|
24
|
Staphylococcus aureus Internalization in Osteoblast Cells: Mechanisms, Interactions and Biochemical Processes. What Did We Learn from Experimental Models? Pathogens 2021; 10:pathogens10020239. [PMID: 33669789 PMCID: PMC7922271 DOI: 10.3390/pathogens10020239] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Bacterial internalization is a strategy that non-intracellular microorganisms use to escape the host immune system and survive inside the human body. Among bacterial species, Staphylococcus aureus showed the ability to interact with and infect osteoblasts, causing osteomyelitis as well as bone and joint infection, while also becoming increasingly resistant to antibiotic therapy and a reservoir of bacteria that can make the infection difficult to cure. Despite being a serious issue in orthopedic surgery, little is known about the mechanisms that allow bacteria to enter and survive inside the osteoblasts, due to the lack of consistent experimental models. In this review, we describe the current knowledge about S. aureus internalization mechanisms and various aspects of the interaction between bacteria and osteoblasts (e.g., best experimental conditions, bacteria-induced damages and immune system response), focusing on studies performed using the MG-63 osteoblastic cell line, the best traditional (2D) model for the study of this phenomenon to date. At the same time, as it has been widely demonstrated that 2D culture systems are not completely indicative of the dynamic environment in vivo, and more recent 3D models—representative of bone infection—have also been investigated.
Collapse
|
25
|
Selvaraj G, Kaliamurthi S, Peslherbe GH, Wei DQ. Identifying potential drug targets and candidate drugs for COVID-19: biological networks and structural modeling approaches. F1000Res 2021; 10:127. [PMID: 33968364 PMCID: PMC8080978 DOI: 10.12688/f1000research.50850.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Coronavirus (CoV) is an emerging human pathogen causing severe acute respiratory syndrome (SARS) around the world. Earlier identification of biomarkers for SARS can facilitate detection and reduce the mortality rate of the disease. Thus, by integrated network analysis and structural modeling approach, we aimed to explore the potential drug targets and the candidate drugs for coronavirus medicated SARS. Methods: Differentially expression (DE) analysis of CoV infected host genes (HGs) expression profiles was conducted by using the Limma. Highly integrated DE-CoV-HGs were selected to construct the protein-protein interaction (PPI) network. Results: Using the Walktrap algorithm highly interconnected modules include module 1 (202 nodes); module 2 (126 nodes) and module 3 (121 nodes) modules were retrieved from the PPI network. MYC, HDAC9, NCOA3, CEBPB, VEGFA, BCL3, SMAD3, SMURF1, KLHL12, CBL, ERBB4, and CRKL were identified as potential drug targets (PDTs), which are highly expressed in the human respiratory system after CoV infection. Functional terms growth factor receptor binding, c-type lectin receptor signaling, interleukin-1 mediated signaling, TAP dependent antigen processing and presentation of peptide antigen via MHC class I, stimulatory T cell receptor signaling, and innate immune response signaling pathways, signal transduction and cytokine immune signaling pathways were enriched in the modules. Protein-protein docking results demonstrated the strong binding affinity (-314.57 kcal/mol) of the ERBB4-3cLpro complex which was selected as a drug target. In addition, molecular dynamics simulations indicated the structural stability and flexibility of the ERBB4-3cLpro complex. Further, Wortmannin was proposed as a candidate drug to ERBB4 to control SARS-CoV-2 pathogenesis through inhibit receptor tyrosine kinase-dependent macropinocytosis, MAPK signaling, and NF-kb singling pathways that regulate host cell entry, replication, and modulation of the host immune system. Conclusion: We conclude that CoV drug target "ERBB4" and candidate drug "Wortmannin" provide insights on the possible personalized therapeutics for emerging COVID-19.
Collapse
Affiliation(s)
- Gurudeeban Selvaraj
- Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec, H4B 1R6, Canada
- Centre of Interdisciplinary Science-Computational Life Sciences, College of Chemistry and Chemical Engineering,, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Satyavani Kaliamurthi
- Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec, H4B 1R6, Canada
- Centre of Interdisciplinary Science-Computational Life Sciences, College of Chemistry and Chemical Engineering,, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Gilles H. Peslherbe
- Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Dong-Qing Wei
- Centre of Interdisciplinary Science-Computational Life Sciences, College of Chemistry and Chemical Engineering,, Henan University of Technology, Zhengzhou, Henan, 450001, China
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, Shanghai, 200240, China
- IASIA (International Association of Scientists in the Interdisciplinary Areas), 125 Boul. de Bromont, Quebec, J2L 2K7, Canada
| |
Collapse
|
26
|
Selvaraj G, Kaliamurthi S, Peslherbe GH, Wei DQ. Identifying potential drug targets and candidate drugs for COVID-19: biological networks and structural modeling approaches. F1000Res 2021; 10:127. [PMID: 33968364 PMCID: PMC8080978 DOI: 10.12688/f1000research.50850.3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Coronavirus (CoV) is an emerging human pathogen causing severe acute respiratory syndrome (SARS) around the world. Earlier identification of biomarkers for SARS can facilitate detection and reduce the mortality rate of the disease. Thus, by integrated network analysis and structural modeling approach, we aimed to explore the potential drug targets and the candidate drugs for coronavirus medicated SARS. Methods: Differentially expression (DE) analysis of CoV infected host genes (HGs) expression profiles was conducted by using the Limma. Highly integrated DE-CoV-HGs were selected to construct the protein-protein interaction (PPI) network. Results: Using the Walktrap algorithm highly interconnected modules include module 1 (202 nodes); module 2 (126 nodes) and module 3 (121 nodes) modules were retrieved from the PPI network. MYC, HDAC9, NCOA3, CEBPB, VEGFA, BCL3, SMAD3, SMURF1, KLHL12, CBL, ERBB4, and CRKL were identified as potential drug targets (PDTs), which are highly expressed in the human respiratory system after CoV infection. Functional terms growth factor receptor binding, c-type lectin receptor signaling, interleukin-1 mediated signaling, TAP dependent antigen processing and presentation of peptide antigen via MHC class I, stimulatory T cell receptor signaling, and innate immune response signaling pathways, signal transduction and cytokine immune signaling pathways were enriched in the modules. Protein-protein docking results demonstrated the strong binding affinity (-314.57 kcal/mol) of the ERBB4-3cLpro complex which was selected as a drug target. In addition, molecular dynamics simulations indicated the structural stability and flexibility of the ERBB4-3cLpro complex. Further, Wortmannin was proposed as a candidate drug to ERBB4 to control SARS-CoV-2 pathogenesis through inhibit receptor tyrosine kinase-dependent macropinocytosis, MAPK signaling, and NF-kb singling pathways that regulate host cell entry, replication, and modulation of the host immune system. Conclusion: We conclude that CoV drug target "ERBB4" and candidate drug "Wortmannin" provide insights on the possible personalized therapeutics for emerging COVID-19.
Collapse
Affiliation(s)
- Gurudeeban Selvaraj
- Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec, H4B 1R6, Canada
- Centre of Interdisciplinary Science-Computational Life Sciences, College of Chemistry and Chemical Engineering,, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Satyavani Kaliamurthi
- Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec, H4B 1R6, Canada
- Centre of Interdisciplinary Science-Computational Life Sciences, College of Chemistry and Chemical Engineering,, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Gilles H. Peslherbe
- Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Dong-Qing Wei
- Centre of Interdisciplinary Science-Computational Life Sciences, College of Chemistry and Chemical Engineering,, Henan University of Technology, Zhengzhou, Henan, 450001, China
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, Shanghai, 200240, China
- IASIA (International Association of Scientists in the Interdisciplinary Areas), 125 Boul. de Bromont, Quebec, J2L 2K7, Canada
| |
Collapse
|
27
|
Selvaraj G, Kaliamurthi S, Peslherbe GH, Wei DQ. Identifying potential drug targets and candidate drugs for COVID-19: biological networks and structural modeling approaches. F1000Res 2021; 10:127. [PMID: 33968364 PMCID: PMC8080978 DOI: 10.12688/f1000research.50850.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 11/08/2024] Open
Abstract
Background: Coronavirus (CoV) is an emerging human pathogen causing severe acute respiratory syndrome (SARS) around the world. Earlier identification of biomarkers for SARS can facilitate detection and reduce the mortality rate of the disease. Thus, by integrated network analysis and structural modeling approach, we aimed to explore the potential drug targets and the candidate drugs for coronavirus medicated SARS. Methods: Differentially expression (DE) analysis of CoV infected host genes (HGs) expression profiles was conducted by using the Limma. Highly integrated DE-CoV-HGs were selected to construct the protein-protein interaction (PPI) network. Results: Using the Walktrap algorithm highly interconnected modules include module 1 (202 nodes); module 2 (126 nodes) and module 3 (121 nodes) modules were retrieved from the PPI network. MYC, HDAC9, NCOA3, CEBPB, VEGFA, BCL3, SMAD3, SMURF1, KLHL12, CBL, ERBB4, and CRKL were identified as potential drug targets (PDTs), which are highly expressed in the human respiratory system after CoV infection. Functional terms growth factor receptor binding, c-type lectin receptor signaling, interleukin-1 mediated signaling, TAP dependent antigen processing and presentation of peptide antigen via MHC class I, stimulatory T cell receptor signaling, and innate immune response signaling pathways, signal transduction and cytokine immune signaling pathways were enriched in the modules. Protein-protein docking results demonstrated the strong binding affinity (-314.57 kcal/mol) of the ERBB4-3cLpro complex which was selected as a drug target. In addition, molecular dynamics simulations indicated the structural stability and flexibility of the ERBB4-3cLpro complex. Further, Wortmannin was proposed as a candidate drug to ERBB4 to control SARS-CoV-2 pathogenesis through inhibit receptor tyrosine kinase-dependent macropinocytosis, MAPK signaling, and NF-kb singling pathways that regulate host cell entry, replication, and modulation of the host immune system. Conclusion: We conclude that CoV drug target "ERBB4" and candidate drug "Wortmannin" provide insights on the possible personalized therapeutics for emerging COVID-19.
Collapse
Affiliation(s)
- Gurudeeban Selvaraj
- Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec, H4B 1R6, Canada
- Centre of Interdisciplinary Science-Computational Life Sciences, College of Chemistry and Chemical Engineering,, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Satyavani Kaliamurthi
- Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec, H4B 1R6, Canada
- Centre of Interdisciplinary Science-Computational Life Sciences, College of Chemistry and Chemical Engineering,, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Gilles H. Peslherbe
- Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Dong-Qing Wei
- Centre of Interdisciplinary Science-Computational Life Sciences, College of Chemistry and Chemical Engineering,, Henan University of Technology, Zhengzhou, Henan, 450001, China
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, Shanghai, 200240, China
- IASIA (International Association of Scientists in the Interdisciplinary Areas), 125 Boul. de Bromont, Quebec, J2L 2K7, Canada
| |
Collapse
|
28
|
De Nisco NJ, Casey AK, Kanchwala M, Lafrance AE, Coskun FS, Kinch LN, Grishin NV, Xing C, Orth K. Manipulation of IRE1-Dependent MAPK Signaling by a Vibrio Agonist-Antagonist Effector Pair. mSystems 2021; 6:e00872-20. [PMID: 33563785 PMCID: PMC7883537 DOI: 10.1128/msystems.00872-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/19/2021] [Indexed: 12/05/2022] Open
Abstract
Diverse bacterial pathogens employ effector delivery systems to disrupt vital cellular processes in the host (N. M. Alto and K. Orth, Cold Spring Harbor Perspect Biol 4:a006114, 2012, https://doi.org/10.1101/cshperspect.a006114). The type III secretion system 1 of the marine pathogen Vibrio parahaemolyticus utilizes the sequential action of four effectors to induce a rapid, proinflammatory cell death uniquely characterized by a prosurvival host transcriptional response (D. L. Burdette, M. L. Yarbrough, A Orvedahl, C. J. Gilpin, and K. Orth, Proc Natl Acad Sci USA 105:12497-12502, 2008, https://doi.org/10.1073/pnas.0802773105; N. J. De Nisco, M. Kanchwala, P. Li, J. Fernandez, C. Xing, and K. Orth, Sci Signal 10:eaa14501, 2017, https://doi.org/10.1126/scisignal.aal4501). Herein, we show that this prosurvival response is caused by the action of the channel-forming effector VopQ that targets the host V-ATPase, resulting in lysosomal deacidification and inhibition of lysosome-autophagosome fusion. Recent structural studies have shown how VopQ interacts with the V-ATPase and, while in the ER, a V-ATPase assembly intermediate can interact with VopQ, causing a disruption in membrane integrity. Additionally, we observed that VopQ-mediated disruption of the V-ATPase activates the IRE1 branch of the unfolded protein response (UPR), resulting in an IRE1-dependent activation of ERK1/2 MAPK signaling. We also find that this early VopQ-dependent induction of ERK1/2 phosphorylation is terminated by the VopS-mediated inhibitory AMPylation of Rho GTPase signaling. Since VopS dampens VopQ-induced IRE1-dependent ERK1/2 activation, we propose that IRE1 activates ERK1/2 phosphorylation at or above the level of Rho GTPases. This study illustrates how temporally induced effectors can work as in tandem as agonist/antagonist to manipulate host signaling and reveals new connections between V-ATPase function, UPR, and MAPK signaling.IMPORTANCE Vibrio parahaemolyticus is a seafood-borne pathogen that encodes two type 3 secretion systems (T3SS). The first system, T3SS1, is thought to be maintained in all strains of V. parahaemolyticus to maintain survival in the environment, whereas the second system, T3SS2, is linked to clinical isolates and disease in humans. Here, we found that first system targets evolutionarily conserved signaling systems to manipulate host cells, eventually causing a rapid, orchestrated cells death within 3 h. We have found that the T3SS1 injects virulence factors that temporally manipulate host signaling. Within the first hour of infection, the effector VopQ acts first by activating host survival signals while diminishing the host cell apoptotic machinery. Less than an hour later, another effector, VopS, reverses activation and inhibition of these signaling systems, ultimately leading to death of the host cell. This work provides example of how pathogens have evolved to manipulate the interplay between T3SS effectors to regulate host signaling pathways.
Collapse
Affiliation(s)
- Nicole J De Nisco
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Amanda K Casey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mohammed Kanchwala
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alexander E Lafrance
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Fatma S Coskun
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
29
|
Treveil A, Bohar B, Sudhakar P, Gul L, Csabai L, Olbei M, Poletti M, Madgwick M, Andrighetti T, Hautefort I, Modos D, Korcsmaros T. ViralLink: An integrated workflow to investigate the effect of SARS-CoV-2 on intracellular signalling and regulatory pathways. PLoS Comput Biol 2021; 17:e1008685. [PMID: 33534793 PMCID: PMC7886129 DOI: 10.1371/journal.pcbi.1008685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 02/16/2021] [Accepted: 01/10/2021] [Indexed: 12/21/2022] Open
Abstract
The SARS-CoV-2 pandemic of 2020 has mobilised scientists around the globe to research all aspects of the coronavirus virus and its infection. For fruitful and rapid investigation of viral pathomechanisms, a collaborative and interdisciplinary approach is required. Therefore, we have developed ViralLink: a systems biology workflow which reconstructs and analyses networks representing the effect of viruses on intracellular signalling. These networks trace the flow of signal from intracellular viral proteins through their human binding proteins and downstream signalling pathways, ending with transcription factors regulating genes differentially expressed upon viral exposure. In this way, the workflow provides a mechanistic insight from previously identified knowledge of virally infected cells. By default, the workflow is set up to analyse the intracellular effects of SARS-CoV-2, requiring only transcriptomics counts data as input from the user: thus, encouraging and enabling rapid multidisciplinary research. However, the wide-ranging applicability and modularity of the workflow facilitates customisation of viral context, a priori interactions and analysis methods. Through a case study of SARS-CoV-2 infected bronchial/tracheal epithelial cells, we evidence the functionality of the workflow and its ability to identify key pathways and proteins in the cellular response to infection. The application of ViralLink to different viral infections in a context specific manner using different available transcriptomics datasets will uncover key mechanisms in viral pathogenesis.
Collapse
Affiliation(s)
- Agatha Treveil
- Earlham Institute, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Balazs Bohar
- Earlham Institute, Norwich, United Kingdom
- Department of Genetics, Eotvos Lorand University, Budapest, Hungary
| | - Padhmanand Sudhakar
- Earlham Institute, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lejla Gul
- Earlham Institute, Norwich, United Kingdom
| | - Luca Csabai
- Earlham Institute, Norwich, United Kingdom
- Department of Genetics, Eotvos Lorand University, Budapest, Hungary
| | - Marton Olbei
- Earlham Institute, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Martina Poletti
- Earlham Institute, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Matthew Madgwick
- Earlham Institute, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Tahila Andrighetti
- Earlham Institute, Norwich, United Kingdom
- Institute of Biosciences, São Paulo University, Botucatu, Brazil
| | | | - Dezso Modos
- Earlham Institute, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Tamas Korcsmaros
- Earlham Institute, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| |
Collapse
|
30
|
S-nitrosylation-mediated activation of a histidine kinase represses the type 3 secretion system and promotes virulence of an enteric pathogen. Nat Commun 2020; 11:5777. [PMID: 33188170 PMCID: PMC7666205 DOI: 10.1038/s41467-020-19506-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Vibrio parahaemolyticus is the leading cause of seafood-borne diarrheal diseases. Experimental overproduction of a type 3 secretion system (T3SS1) in this pathogen leads to decreased intestinal colonization, which suggests that T3SS1 repression is required for maximal virulence. However, the mechanisms by which T3SS1 is repressed in vivo are unclear. Here, we show that host-derived nitrite modifies the activity of a bacterial histidine kinase and mediates T3SS1 repression. More specifically, nitrite activates histidine kinase sensor VbrK through S-nitrosylation on cysteine 86, which results in downregulation of the entire T3SS1 operon through repression of its positive regulator exsC. Replacement of cysteine 86 with a serine (VbrK C86S mutant) leads to increased expression of inflammatory cytokines in infected Caco-2 cells. In an infant rabbit model of infection, the VbrK C86S mutant induces a stronger inflammatory response at the early stage of infection, and displays reduced intestinal colonization and virulence at the later stage of infection, in comparison with the parent strain. Our results indicate that the pathogen V. parahaemolyticus perceives nitrite as a host-derived signal and responds by downregulating a proinflammatory factor (T3SS1), thus enhancing intestinal colonization and virulence. Vibrio parahaemolyticus causes seafood-borne diarrheal diseases. Here, the authors show that the pathogen uses a histidine kinase to sense host-derived nitrite and downregulate a proinflammatory type 3 secretion system, thus enhancing intestinal colonization and virulence.
Collapse
|
31
|
Molecular Mechanisms That Define Redox Balance Function in Pathogen-Host Interactions-Is There a Role for Dietary Bioactive Polyphenols? Int J Mol Sci 2019; 20:ijms20246222. [PMID: 31835548 PMCID: PMC6940965 DOI: 10.3390/ijms20246222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023] Open
Abstract
To ensure a functional immune system, the mammalian host must detect and respond to the presence of pathogenic bacteria during infection. This is accomplished in part by generating reactive oxygen species (ROS) that target invading bacteria; a process that is facilitated by NADPH oxidase upregulation. Thus, bacterial pathogens must overcome the oxidative burst produced by the host innate immune cells in order to survive and proliferate. In this way, pathogenic bacteria develop virulence, which is related to the affinity to secrete effector proteins against host ROS in order to facilitate microbial survival in the host cell. These effectors scavenge the host generated ROS directly, or alternatively, manipulate host cell signaling mechanisms designed to benefit pathogen survival. The redox-balance of the host is important for the regulation of cell signaling activities that include mitogen-activated protein kinase (MAPK), p21-activated kinase (PAK), phosphatidylinositol 3-kinase (PI3K)/Akt, and nuclear factor κB (NF-κB) pathways. An understanding of the function of pathogenic effectors to divert host cell signaling is important to ascertain the mechanisms underlying pathogen virulence and the eventual host–pathogen relationship. Herein, we examine the effectors produced by the microbial secretion system, placing emphasis on how they target molecular signaling mechanisms involved in a host immune response. Moreover, we discuss the potential impact of bioactive polyphenols in modulating these molecular interactions that will ultimately influence pathogen virulence.
Collapse
|
32
|
Massey SE, Mishra B. Origin of biomolecular games: deception and molecular evolution. J R Soc Interface 2019; 15:rsif.2018.0429. [PMID: 30185543 DOI: 10.1098/rsif.2018.0429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Biological macromolecules encode information: some of it to endow the molecule with structural flexibility, some of it to enable molecular actions as a catalyst or a substrate, but a residual part can be used to communicate with other macromolecules. Thus, macromolecules do not need to possess information only to survive in an environment, but also to strategically interact with others by sending signals to a receiving macromolecule that can properly interpret the signal and act suitably. These sender-receiver signalling games are sustained by the information asymmetry that exists among the macromolecules. In both biochemistry and molecular evolution, the important role of information asymmetry remains largely unaddressed. Here, we provide a new unifying perspective on the impact of information symmetry between macromolecules on molecular evolutionary processes, while focusing on molecular deception. Biomolecular games arise from the ability of biological macromolecules to exert precise recognition, and their role as units of selection, meaning that they are subject to competition and cooperation with other macromolecules. Thus, signalling game theory can be used to better understand fundamental features of living systems such as molecular recognition, molecular mimicry, selfish elements and 'junk' DNA. We show how deceptive behaviour at the molecular level indicates a conflict of interest, and so provides evidence of genetic conflict. This model proposes that molecular deception is diagnostic of selfish behaviour, helping to explain the evasive behaviour of transposable elements in 'junk' DNA, for example. Additionally, in this broad review, a range of major evolutionary transitions are shown to be associated with the establishment of signalling conventions, many of which are susceptible to molecular deception. These perspectives allow us to assign rudimentary behaviour to macromolecules, and show how participation in signalling games differentiates biochemistry from abiotic chemistry.
Collapse
Affiliation(s)
- Steven E Massey
- Department of Biology, University of Puerto Rico, San Juan, PR, USA
| | - Bud Mishra
- Courant Institute, New York University, NY, USA
| |
Collapse
|
33
|
A Bacterial Effector Mimics a Host HSP90 Client to Undermine Immunity. Cell 2019; 179:205-218.e21. [PMID: 31522888 DOI: 10.1016/j.cell.2019.08.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 06/21/2019] [Accepted: 08/09/2019] [Indexed: 01/01/2023]
Abstract
The molecular chaperone HSP90 facilitates the folding of several client proteins, including innate immune receptors and protein kinases. HSP90 is an essential component of plant and animal immunity, yet pathogenic strategies that directly target the chaperone have not been described. Here, we identify the HopBF1 family of bacterial effectors as eukaryotic-specific HSP90 protein kinases. HopBF1 adopts a minimal protein kinase fold that is recognized by HSP90 as a host client. As a result, HopBF1 phosphorylates HSP90 to completely inhibit the chaperone's ATPase activity. We demonstrate that phosphorylation of HSP90 prevents activation of immune receptors that trigger the hypersensitive response in plants. Consequently, HopBF1-dependent phosphorylation of HSP90 is sufficient to induce severe disease symptoms in plants infected with the bacterial pathogen, Pseudomonas syringae. Collectively, our results uncover a family of bacterial effector kinases with toxin-like properties and reveal a previously unrecognized betrayal mechanism by which bacterial pathogens modulate host immunity.
Collapse
|
34
|
Andrade LO. Plasma membrane repair involvement in parasitic and other pathogen infections. CURRENT TOPICS IN MEMBRANES 2019; 84:217-238. [PMID: 31610864 DOI: 10.1016/bs.ctm.2019.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intracellular pathogens depend on specific mechanisms to be able to gain entry and survive into their host cells. For this, they subvert pathways involved in physiological cellular processes. Here we are going to focus on how two protozoan parasites, Trypanosoma cruzi and Leishmania sp, which may cause severe diseases in humans, use plasma membrane repair (PMR) mechanisms to gain entry in host intracellular environment. T. cruzi is the causative agent of Chagas disease, a disease originally endemic of central and South America, but that has become widespread around the globe. T. cruzi is able to invade any nucleated cell, but muscle cells are usually the main targets during chronic disease. During host cell contact, the parasite interacts with proteins at the host cell surface and may cause damage to their membrane, which has been shown to be responsible for inducing intracellular calcium increase and PMR-related events that culminate with parasite internalization. The same was recently observed for Leishmania sp, when infecting nonprofessional phagocytic cells, such as fibroblasts. Other pathogens, such as viruses or bacteria may also use PMR-related events for invasion and vacuole escape/maturation. In some cases, PMR may also be responsible to modulate pathogen intracellular development. These other PMR roles in pathogen infections will also be briefly discussed.
Collapse
Affiliation(s)
- Luciana O Andrade
- Department of Morphology, Federal University of Minas Gerais, Brazil.
| |
Collapse
|
35
|
Sadr Karimi S, Pante N. Carbon nanotubes as molecular transporters to study a new mechanism for molecular entry into the cell nucleus using actin polymerization force. PLoS One 2019; 14:e0221562. [PMID: 31437229 PMCID: PMC6705785 DOI: 10.1371/journal.pone.0221562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
The transport of macromolecules into the cell nucleus occurs through nuclear pore complexes (NPCs) and is mediated by cellular receptors. Recently, a novel mechanism of nuclear entry, in which actin polymerization provides a propulsive force driving the transport through the NPC, has been proposed. This mechanism is used by the nucleocapsid from baculovirus, one of the largest viruses to replicate in the nucleus of their host cells, which crosses the NPC and enters the nucleus independently of cellular receptors. The baculovirus nucleocapsid contains a protein that hijacks the cellular actin polymerization machinery to assemble actin filaments that propel the nucleocapsid through the host cell cytoplasm. In this study, we functionalized carbon nanotubes by covalently attaching a protein domain responsible for inducing actin polymerization and investigated their nuclear entry. We found that the functionalized carbon nanotubes were able to enter the cell nucleus under permissive conditions for actin polymerization, but not when this process was inhibited. We conclude that the mechanical force generated by actin polymerization can drive cargo entry into the cell nucleus. Our results support a novel force-driven mechanism for molecular entry into the cell nucleus.
Collapse
Affiliation(s)
- Shaghayegh Sadr Karimi
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nelly Pante
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
36
|
Otopathogenic Staphylococcus aureus Invades Human Middle Ear Epithelial Cells Primarily through Cholesterol Dependent Pathway. Sci Rep 2019; 9:10777. [PMID: 31346200 PMCID: PMC6658548 DOI: 10.1038/s41598-019-47079-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/26/2019] [Indexed: 01/20/2023] Open
Abstract
Chronic suppurative otitis media (CSOM) is one of the most common infectious diseases of the middle ear especially affecting children, leading to delay in language development and communication. Although Staphylococcus aureus is the most common pathogen associated with CSOM, its interaction with middle ear epithelial cells is not well known. In the present study, we observed that otopathogenic S. aureus has the ability to invade human middle ear epithelial cells (HMEECs) in a dose and time dependent manner. Scanning electron microscopy demonstrated time dependent increase in the number of S. aureus on the surface of HMEECs. We observed that otopathogenic S. aureus primarily employs a cholesterol dependent pathway to colonize HMEECs. In agreement with these findings, confocal microscopy showed that S. aureus colocalized with lipid rafts in HMEECs. The results of the present study provide new insights into the pathogenesis of S. aureus induced CSOM. The availability of in vitro cell culture model will pave the way to develop novel effective treatment modalities for CSOM beyond antibiotic therapy.
Collapse
|
37
|
Root A. Do cells use passwords in cell-state transitions? Is cell signaling sometimes encrypted? Theory Biosci 2019; 139:87-93. [PMID: 31175621 DOI: 10.1007/s12064-019-00295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 06/03/2019] [Indexed: 11/28/2022]
Abstract
Organisms must maintain proper regulation including defense and healing. Life-threatening problems may be caused by pathogens or by a multicellular organism's own cells through cancer or autoimmune disorders. Life evolved solutions to these problems that can be conceptualized through the lens of information security, which is a well-developed field in computer science. Here I argue that taking an information security view of cells is not merely semantics, but useful to explain features of signaling, regulation, and defense. An information security perspective also offers a conduit for cross-fertilization of advanced ideas from computer science and the potential for biology to inform computer science. First, I consider whether cells use passwords, i.e., initiation sequences that are required for subsequent signals to have effects, by analyzing the concept of pioneer transcription factors in chromatin regulation and cellular reprogramming. Second, I consider whether cells may encrypt signal transduction cascades. Encryption could benefit cells by making it more difficult for pathogens or oncogenes to hijack cell networks. By using numerous molecules, cells may gain a security advantage in particular against viruses, whose genome sizes are typically under selection pressure. I provide a simple conceptual argument for how cells may perform encryption through posttranslational modifications, complex formation, and chromatin accessibility. I invoke information theory to provide a criterion of an entropy spike to assess whether a signaling cascade has encryption-like features. I discuss how the frequently invoked concept of context dependency may oversimplify more advanced features of cell signaling networks, such as encryption. Therefore, by considering that biochemical networks may be even more complex than commonly realized we may be better able to understand defenses against pathogens and pathologies.
Collapse
Affiliation(s)
- Alex Root
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
38
|
Tawfik A, Knight P, Duckworth CA, Pritchard DM, Rhodes JM, Campbell BJ. Replication of Crohn's Disease Mucosal E. coli Isolates inside Macrophages Correlates with Resistance to Superoxide and Is Dependent on Macrophage NF-kappa B Activation. Pathogens 2019; 8:pathogens8020074. [PMID: 31181736 PMCID: PMC6630736 DOI: 10.3390/pathogens8020074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/02/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022] Open
Abstract
Mucosa-associated Escherichia coli are increased in Crohn’s disease (CD) and colorectal cancer (CRC). CD isolates replicate within macrophages but the specificity of this effect for CD and its mechanism are unclear. Gentamicin exclusion assay was used to assess E. coli replication within J774.A1 murine macrophages. E. coli growth was assessed following acid, low-nutrient, nitrosative, oxidative and superoxide stress, mimicking the phagolysosome. Twelve of 16 CD E. coli isolates replicated >2-fold within J774.A1 macrophages; likewise for isolates from 6/7 urinary tract infection (UTI), 8/9 from healthy subjects, compared with 2/6 ulcerative colitis, 2/7 colorectal cancer and 0/3 laboratory strains. CD mucosal E. coli were tolerant of acidic, low-nutrient, nitrosative and oxidative stress. Replication within macrophages correlated strongly with tolerance to superoxide stress (rho = 0.44, p = 0.0009). Exemplar CD E. coli HM605 and LF82 were unable to survive within Nfκb1-/- murine bone marrow-derived macrophages. In keeping with this, pre-incubation of macrophages with hydrocortisone (0.6 µM for 24 h) caused 70.49 ± 12.11% inhibition of intra-macrophage replication. Thus, CD mucosal E. coli commonly replicate inside macrophages, but so do some UTI and healthy subject strains. Replication correlates with resistance to superoxide and is highly dependent on macrophage NF-κB signalling. This may therefore be a good therapeutic target.
Collapse
Affiliation(s)
- Ahmed Tawfik
- Gastroenterology Research Unit, Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK.
- Gastroenterology Department, Beaumont Hospital, Dublin 9, Ireland.
| | - Paul Knight
- Gastroenterology Research Unit, Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK.
- Gastroenterology Department, University Hospital of South Manchester, Wythenshawe M23 9LT, UK.
| | - Carrie A Duckworth
- Gastroenterology Research Unit, Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK.
| | - D Mark Pritchard
- Gastroenterology Research Unit, Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK.
| | - Jonathan M Rhodes
- Gastroenterology Research Unit, Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK.
| | - Barry J Campbell
- Gastroenterology Research Unit, Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK.
| |
Collapse
|
39
|
Stamm CE, Pasko BL, Chaisavaneeyakorn S, Franco LH, Nair VR, Weigele BA, Alto NM, Shiloh MU. Screening Mycobacterium tuberculosis Secreted Proteins Identifies Mpt64 as a Eukaryotic Membrane-Binding Bacterial Effector. mSphere 2019; 4:e00354-19. [PMID: 31167949 PMCID: PMC6553557 DOI: 10.1128/msphere.00354-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is one of the most successful human pathogens. One reason for its success is that Mtb can reside within host macrophages, a cell type that normally functions to phagocytose and destroy infectious bacteria. However, Mtb is able to evade macrophage defenses in order to survive for prolonged periods of time. Many intracellular pathogens secrete virulence factors targeting host membranes and organelles to remodel their intracellular environmental niche. We hypothesized that Mtb secreted proteins that target host membranes are vital for Mtb to adapt to and manipulate the host environment for survival. Thus, we characterized 200 secreted proteins from Mtb for their ability to associate with eukaryotic membranes using a unique temperature-sensitive yeast screen and to manipulate host trafficking pathways using a modified inducible secretion screen. We identified five Mtb secreted proteins that both associated with eukaryotic membranes and altered the host secretory pathway. One of these secreted proteins, Mpt64, localized to the endoplasmic reticulum during Mtb infection of murine and human macrophages and impaired the unfolded protein response in macrophages. These data highlight the importance of secreted proteins in Mtb pathogenesis and provide a basis for further investigation into their molecular mechanisms.IMPORTANCE Advances have been made to identify secreted proteins of Mycobacterium tuberculosis during animal infections. These data, combined with transposon screens identifying genes important for M. tuberculosis virulence, have generated a vast resource of potential M. tuberculosis virulence proteins. However, the function of many of these proteins in M. tuberculosis pathogenesis remains elusive. We have integrated three cell biological screens to characterize nearly 200 M. tuberculosis secreted proteins for eukaryotic membrane binding, host subcellular localization, and interactions with host vesicular trafficking. In addition, we observed the localization of one secreted protein, Mpt64, to the endoplasmic reticulum (ER) during M. tuberculosis infection of macrophages. Interestingly, although Mpt64 is exported by the Sec pathway, its delivery into host cells was dependent upon the action of the type VII secretion system. Finally, we observed that Mpt64 impairs the ER-mediated unfolded protein response in macrophages.
Collapse
Affiliation(s)
- Chelsea E Stamm
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Breanna L Pasko
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sujittra Chaisavaneeyakorn
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Luis H Franco
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Vidhya R Nair
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bethany A Weigele
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Neal M Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michael U Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
40
|
Deplanche M, Mouhali N, Nguyen MT, Cauty C, Ezan F, Diot A, Raulin L, Dutertre S, Langouet S, Legembre P, Taieb F, Otto M, Laurent F, Götz F, Le Loir Y, Berkova N. Staphylococcus aureus induces DNA damage in host cell. Sci Rep 2019; 9:7694. [PMID: 31118484 PMCID: PMC6531466 DOI: 10.1038/s41598-019-44213-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus causes serious medical problems in human and animals. Here we show that S. aureus can compromise host genomic integrity as indicated by bacteria-induced histone H2AX phosphorylation, a marker of DNA double strand breaks (DSBs), in human cervix cancer HeLa and osteoblast-like MG-63 cells. This DNA damage is mediated by alpha phenol-soluble modulins (PSMα1–4), while a specific class of lipoproteins (Lpls), encoded on a pathogenicity island in S. aureus, dampens the H2AX phosphorylation thus counteracting the DNA damage. This DNA damage is mediated by reactive oxygen species (ROS), which promotes oxidation of guanine forming 7,8-dihydro-8-oxoguanine (8-oxoG). DNA damage is followed by the induction of DNA repair that involves the ATM kinase-signaling pathway. An examination of S. aureus strains, isolated from the same patient during acute initial and recurrent bone and joint infections (BJI), showed that recurrent strains produce lower amounts of Lpls, induce stronger DNA-damage and prompt the G2/M transition delay to a greater extent that suggest an involvement of these mechanisms in adaptive processes of bacteria during chronicization. Our findings redefine our understanding of mechanisms of S. aureus-host interaction and suggest that the balance between the levels of PSMα and Lpls expression impacts the persistence of the infection.
Collapse
Affiliation(s)
| | | | - Minh-Thu Nguyen
- Microbial Genetics, University of Tübingen, Tübingen, Germany
| | | | - Frédéric Ezan
- Univ Rennes, Inserm, EHESP, Irset UMR_S 1085, F-35000, Rennes, France
| | - Alan Diot
- Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, Université Lyon 1, Lyon, France.,Centre National de Référence des Staphylocoques, Lyon, France
| | - Lesly Raulin
- CNRS, Inserm, BIOSIT-UMS 3480, MRic, Université de Rennes, Rennes, France
| | - Stephanie Dutertre
- CNRS, Inserm, BIOSIT-UMS 3480, MRic, Université de Rennes, Rennes, France
| | - Sophie Langouet
- Univ Rennes, Inserm, EHESP, Irset UMR_S 1085, F-35000, Rennes, France
| | - Patrick Legembre
- Centre Eugène Marquis, Equipe Ligue Contre Le Cancer, Rennes, France
| | - Frederic Taieb
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Michael Otto
- Laboratory of Human Bacterial Pathogenesis, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Frédéric Laurent
- Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, Université Lyon 1, Lyon, France.,Centre National de Référence des Staphylocoques, Lyon, France
| | - Friedrich Götz
- Microbial Genetics, University of Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
41
|
Turck JW, Taank V, Neelakanta G, Sultana H. Ixodes scapularis Src tyrosine kinase facilitates Anaplasma phagocytophilum survival in its arthropod vector. Ticks Tick Borne Dis 2019; 10:838-847. [PMID: 31000483 DOI: 10.1016/j.ttbdis.2019.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/19/2019] [Accepted: 04/03/2019] [Indexed: 11/25/2022]
Abstract
Anaplasma phagocytophilum, the agent of human anaplasmosis, is an obligate intracellular bacterium that uses multiple survival strategies to persist in Ixodes scapularis ticks. Our previous study showed that A. phagocytophilum efficiently induced the tyrosine phosphorylation of several Ixodes proteins that includes extended phosphorylation of actin at tyrosine residue Y178. In order to identify the tyrosine kinase responsible for the A. phagocytophilum induced tyrosine phosphorylation of proteins, we combed the I. scapularis genome and identified a non-receptor Src tyrosine kinase ortholog. I. scapularis Src kinase showed high degree of amino acid sequence conservation with Dsrc from Drosophila melanogaster. We noted that at different developmental stages of I. scapularis ticks, larvae expressed significantly higher levels of src transcripts in comparison to the other stages. We found that A. phagocytophilum significantly reduced Src levels in unfed nymphs and in nymphs while blood feeding (48 h during feeding) in comparison to the levels noted to relative uninfected controls. However, A. phagocytophilum increased Src levels in fully engorged larvae and nymphs (48 h post feeding) and in vitro tick cells in comparison to the relative uninfected controls. Inhibition of Src kinase expression and activity by treatment with src-dsRNA or Src-inhibitor, respectively, significantly reduced A. phagocytophilum loads in ticks and tick cells. Overall, our study provides evidence for the important role of I. scapularis Src kinase in facilitating A. phagocytophilum colonization and survival in the arthropod vector.
Collapse
Affiliation(s)
- Jeremy W Turck
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Vikas Taank
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA; Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, VA, USA.
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA; Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, VA, USA.
| |
Collapse
|
42
|
Lee PC, Machner MP. The Legionella Effector Kinase LegK7 Hijacks the Host Hippo Pathway to Promote Infection. Cell Host Microbe 2019; 24:429-438.e6. [PMID: 30212651 DOI: 10.1016/j.chom.2018.08.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/26/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022]
Abstract
The intracellular pathogen Legionella pneumophila encodes translocated effector proteins that modify host cell processes to support bacterial survival and growth. Here, we show that the L. pneumophila effector protein LegK7 hijacks the conserved Hippo signaling pathway by molecularly mimicking host Hippo kinase (MST1 in mammals), which is the key regulator of pathway activation. LegK7, like Hippo/MST1, phosphorylates the scaffolding protein MOB1, which triggers a signaling cascade resulting in the degradation of the transcriptional regulators TAZ and YAP1. Transcriptome analysis revealed that LegK7-mediated targeting of TAZ and YAP1 alters the transcriptional profile of mammalian macrophages, a key cellular target of L. pneumophila infection. Specifically, genes targeted by the transcription factor PPARγ, which is regulated by TAZ, displayed altered expression, and continuous interference with PPARγ activity rendered macrophages less permissive to L. pneumophila intracellular growth. Thus, a conserved L. pneumophila effector kinase exploits the Hippo pathway to promote bacterial growth and infection.
Collapse
Affiliation(s)
- Pei-Chung Lee
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthias P Machner
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Connor M, Arbibe L, Hamon M. Customizing Host Chromatin: a Bacterial Tale. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0015-2019. [PMID: 30953433 PMCID: PMC11590419 DOI: 10.1128/microbiolspec.bai-0015-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 12/14/2022] Open
Abstract
Successful bacterial colonizers and pathogens have evolved with their hosts and have acquired mechanisms to customize essential processes that benefit their lifestyle. In large part, bacterial survival hinges on shaping the transcriptional signature of the host, a process regulated at the chromatin level. Modifications of chromatin, either on histone proteins or on DNA itself, are common targets during bacterium-host cross talk and are the focus of this article.
Collapse
Affiliation(s)
- Michael Connor
- Institut Pasteur, G5 Chromatine et Infection, Paris, France
| | - Laurence Arbibe
- INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades, INEM Institute Department of Immunology, Infectiology and Hematology, Paris, France
| | - Mélanie Hamon
- Institut Pasteur, G5 Chromatine et Infection, Paris, France
| |
Collapse
|
44
|
Gannoun-Zaki L, Pätzold L, Huc-Brandt S, Baronian G, Elhawy MI, Gaupp R, Martin M, Blanc-Potard AB, Letourneur F, Bischoff M, Molle V. PtpA, a secreted tyrosine phosphatase from Staphylococcus aureus, contributes to virulence and interacts with coronin-1A during infection. J Biol Chem 2018; 293:15569-15580. [PMID: 30131335 DOI: 10.1074/jbc.ra118.003555] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/16/2018] [Indexed: 11/06/2022] Open
Abstract
Secretion of bacterial signaling proteins and adaptation to the host, especially during infection, are processes that are often linked in pathogenic bacteria. The human pathogen Staphylococcus aureus is equipped with a large arsenal of immune-modulating factors, allowing it to either subvert the host immune response or to create permissive niches for its survival. Recently, we showed that one of the low-molecular-weight protein tyrosine phosphatases produced by S. aureus, PtpA, is secreted during growth. Here, we report that deletion of ptpA in S. aureus affects intramacrophage survival and infectivity. We also observed that PtpA is secreted during macrophage infection. Immunoprecipitation assays identified several host proteins as putative intracellular binding partners for PtpA, including coronin-1A, a cytoskeleton-associated protein that is implicated in a variety of cellular processes. Of note, we demonstrated that coronin-1A is phosphorylated on tyrosine residues upon S. aureus infection and that its phosphorylation profile is linked to PtpA expression. Our results confirm that PtpA has a critical role during infection as a bacterial effector protein that counteracts host defenses.
Collapse
Affiliation(s)
- Laila Gannoun-Zaki
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Linda Pätzold
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Sylvaine Huc-Brandt
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Grégory Baronian
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Mohamed Ibrahem Elhawy
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Rosmarie Gaupp
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Marianne Martin
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Anne-Béatrice Blanc-Potard
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - François Letourneur
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Markus Bischoff
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Virginie Molle
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| |
Collapse
|
45
|
Arroyo-Olarte RD, Thurow L, Kozjak-Pavlovic V, Gupta N. Illuminating pathogen-host intimacy through optogenetics. PLoS Pathog 2018; 14:e1007046. [PMID: 30001435 PMCID: PMC6042787 DOI: 10.1371/journal.ppat.1007046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The birth and subsequent evolution of optogenetics has resulted in an unprecedented advancement in our understanding of the brain. Its outstanding success does usher wider applications; however, the tool remains still largely relegated to neuroscience. Here, we introduce selected aspects of optogenetics with potential applications in infection biology that will not only answer long-standing questions about intracellular pathogens (parasites, bacteria, viruses) but also broaden the dimension of current research in entwined models. In this essay, we illustrate how a judicious integration of optogenetics with routine methods can illuminate the host–pathogen interactions in a way that has not been feasible otherwise.
Collapse
Affiliation(s)
- Ruben Dario Arroyo-Olarte
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Laura Thurow
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Biocenter, Julius Maximilian University, Würzburg, Germany
| | - Nishith Gupta
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
- * E-mail:
| |
Collapse
|
46
|
Husein A, Jamal A, Ahmed MZ, Arish M, Ali R, Tabrez S, Rasool F, Rub A. Leishmania donovani infection differentially regulates small G-proteins. J Cell Biochem 2018; 119:7844-7854. [PMID: 29943842 DOI: 10.1002/jcb.27186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/24/2018] [Indexed: 01/28/2023]
Abstract
Leishmania is a protozoan parasite that resides and replicates in macrophages and causes leishmaniasis. The parasite alters the signaling cascade in host macrophages and evades the host machinery. Small G-proteins are GTPases, grouped in 5 different families that play a crucial role in the regulation of cell proliferation, cell survival, apoptosis, intracellular trafficking, and transport. In particular, the Ras family of small G-proteins has been identified to play a significant role in the cellular functions mentioned before. Here, we studied the differential expression of the most important small G-proteins during Leishmania infection. We found major changes in the expression of different isoforms of Ras, mainly in N-Ras. We observed that Leishmania donovani infection led to enhanced N-Ras expression, whereas it inhibited K-Ras and H-Ras expression. Furthermore, an active N-Ras pull-down assay showed enhanced N-Ras activity. L donovani infection also increased extracellular signal-regulated kinase 1/2 phosphorylation and simultaneously decreased p38 phosphorylation. In contrast, pharmacological inhibition of Ras led to reduction in the phosphorylation of extracellular signal-regulated kinase 1/2 and enhanced the phosphorylation of p38 in Leishmania-infected cells, which could lead to increased interleukin-12 expression and decreased interleukin-10 expression. Indeed, farnesylthiosalicyclic acid (a Ras inhibitor), when used at the effective level in L donovani-infected macrophages, reduced amastigotes in the host macrophages. Thus, upregulated N-Ras expression during L donovani infection could be a novel immune evasion strategy of Leishmania and would be a potential target for antileishmanial immunotherapy.
Collapse
Affiliation(s)
- Atahar Husein
- Infection and Immunity Lab (Lab No. 414), Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Azfar Jamal
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Mohammad Zulfazal Ahmed
- Infection and Immunity Lab (Lab No. 414), Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Arish
- Infection and Immunity Lab (Lab No. 414), Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Rahat Ali
- Infection and Immunity Lab (Lab No. 414), Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Shams Tabrez
- Infection and Immunity Lab (Lab No. 414), Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Fayyaz Rasool
- Infection and Immunity Lab (Lab No. 414), Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Abdur Rub
- Infection and Immunity Lab (Lab No. 414), Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.,Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| |
Collapse
|
47
|
Modulation of gene transcription and epigenetics of colon carcinoma cells by bacterial membrane vesicles. Sci Rep 2018; 8:7434. [PMID: 29743643 PMCID: PMC5943334 DOI: 10.1038/s41598-018-25308-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 04/12/2018] [Indexed: 12/18/2022] Open
Abstract
Interactions between bacteria and colon cancer cells influence the transcription of the host cell. Yet is it undetermined whether the bacteria itself or the communication between the host and bacteria is responsible for the genomic changes in the eukaryotic cell. Now, we have investigated the genomic and epigenetic consequences of co-culturing colorectal carcinoma cells with membrane vesicles from pathogenic bacteria Vibrio cholerae and non-pathogenic commensal bacteria Escherichia coli. Our study reveals that membrane vesicles from pathogenic and commensal bacteria have a global impact on the gene expression of colon-carcinoma cells. The changes in gene expression correlate positively with both epigenetic changes and chromatin accessibility of promoters at transcription start sites of genes induced by both types of membrane vesicles. Moreover, we have demonstrated that membrane vesicles obtained only from V. cholerae induced the expression of genes associated with epithelial cell differentiation. Altogether, our study suggests that the observed genomic changes in host cells might be due to specific components of membrane vesicles and do not require communication by direct contact with the bacteria.
Collapse
|
48
|
García-Cano E, Hak H, Magori S, Lazarowitz SG, Citovsky V. The Agrobacterium F-Box Protein Effector VirF Destabilizes the Arabidopsis GLABROUS1 Enhancer/Binding Protein-Like Transcription Factor VFP4, a Transcriptional Activator of Defense Response Genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:576-586. [PMID: 29264953 PMCID: PMC5953515 DOI: 10.1094/mpmi-07-17-0188-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Agrobacterium-mediated genetic transformation not only represents a technology of choice to genetically manipulate plants, but it also serves as a model system to study mechanisms employed by invading pathogens to counter the myriad defenses mounted against them by the host cell. Here, we uncover a new layer of plant defenses that is targeted by A. tumefaciens to facilitate infection. We show that the Agrobacterium F-box effector VirF, which is exported into the host cell, recognizes an Arabidopsis transcription factor VFP4 and targets it for proteasomal degradation. We hypothesize that VFP4 resists Agrobacterium infection and that the bacterium utilizes its VirF effector to degrade VFP4 and thereby mitigate the VFP4-based defense. Indeed, loss-of-function mutations in VFP4 resulted in differential expression of numerous biotic stress-response genes, suggesting that one of the functions of VFP4 is to control a spectrum of plant defenses, including those against Agrobacterium tumefaciens. We identified one such gene, ATL31, known to mediate resistance to bacterial pathogens. ATL31 was transcriptionally repressed in VFP4 loss-of-function plants and activated in VFP4 gain-of-function plants. Gain-of-function lines of VFP4 and ATL31 exhibited recalcitrance to Agrobacterium tumorigenicity, suggesting that A. tumefaciens may utilize the host ubiquitin/proteasome system to destabilize transcriptional regulators of the host disease response machinery.
Collapse
Affiliation(s)
- Elena García-Cano
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | - Hagit Hak
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
- Corresponding author: Hagit Hak;
| | - Shimpei Magori
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | - Sondra G. Lazarowitz
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
49
|
Bordonaro M. Hypothesis: Cancer Is a Disease of Evolved Trade-Offs Between Neoplastic Virulence and Transmission. J Cancer 2018; 9:1707-1724. [PMID: 29805696 PMCID: PMC5968758 DOI: 10.7150/jca.24679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/10/2018] [Indexed: 12/12/2022] Open
Abstract
Virulence is defined as the ability of a pathogen to cause morbidity and/or mortality in infected hosts. The relationship between virulence and transmissibility is complex; natural selection may promote decreased virulence to enhance host mobility and increase the probability for transmission, or transmissibility may be enhanced by increased virulence, leading to higher pathogen load and, in some cases, superior evasion from host defenses. An evolutionary trade-off exists between the ability of pathogens to maintain opportunities for long-term transmission via suppressed virulence and increased short-term transmission via enhanced virulence. We propose an analogy between transmissibility and virulence in microbial pathogens and in cancer. Thus, in the latter case, the outcome of invasive growth and metastasis is analogous to transmissibility, and virulence is defined by high rates of proliferation, invasiveness and motility, potential for metastasis, and the extent to which the cancer contributes to patient morbidity and mortality. Horizontal and vertical transmission, associated with increased or decreased pathogen virulence respectively, can also be utilized to model the neoplastic process and factors that would increase or decrease tumor aggressiveness. Concepts of soft vs. hard selection and evolutionary game theory can optimize our understanding of carcinogenesis and therapeutic strategies. Therefore, the language of transmissibility, horizontal vs. vertical transmission, selection, and virulence can be used to inform approaches to inhibit tumorigenic progression, and, more generally, for cancer prevention and treatment.
Collapse
Affiliation(s)
- Michael Bordonaro
- Department of Basic Sciences, Geisinger Commonwealth School of Medicine, 525 Pine Street, Scranton, PA 18509, USA
| |
Collapse
|
50
|
Abstract
Posttranslational modifications are covalent changes made to proteins that typically alter the function or location of the protein. AMPylation is an emerging posttranslational modification that involves the addition of adenosine monophosphate (AMP) to a protein. Like other, more well-studied posttranslational modifications, AMPylation is predicted to regulate the activity of the modified target proteins. However, the scope of this modification both in bacteria and in eukaryotes remains to be fully determined. In this review, we provide an up to date overview of the known AMPylating enzymes, the regulation of these enzymes, and the effect of this modification on target proteins.
Collapse
Affiliation(s)
- Amanda K. Casey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard NA5.120F, Dallas, Texas 75390-9148, United States
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard NA5.120F, Dallas, Texas 75390-9148, United States
- Howard Hughes Medical Institute, 6000 Harry Hines Boulevard NA5.120F, Dallas, Texas 75390-9148, United States
| |
Collapse
|