1
|
Weintraub SJ, Li Z, Nakagawa CL, Collins JH, Young EM. Oleaginous Yeast Biology Elucidated With Comparative Transcriptomics. Biotechnol Bioeng 2025; 122:677-697. [PMID: 39659041 DOI: 10.1002/bit.28891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/30/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
Extremophilic yeasts have favorable metabolic and tolerance traits for biomanufacturing- like lipid biosynthesis, flavinogenesis, and halotolerance - yet the connection between these favorable phenotypes and strain genotype is not well understood. To this end, this study compares the phenotypes and gene expression patterns of biotechnologically relevant yeasts Yarrowia lipolytica, Debaryomyces hansenii, and Debaryomyces subglobosus grown under nitrogen starvation, iron starvation, and salt stress. To analyze the large data set across species and conditions, two approaches were used: a "network-first" approach where a generalized metabolic network serves as a scaffold for mapping genes and a "cluster-first" approach where unsupervised machine learning co-expression analysis clusters genes. Both approaches provide insight into strain behavior. The network-first approach corroborates that Yarrowia upregulates lipid biosynthesis during nitrogen starvation and provides new evidence that riboflavin overproduction in Debaryomyces yeasts is overflow metabolism that is routed to flavin cofactor production under salt stress. The cluster-first approach does not rely on annotation; therefore, the coexpression analysis can identify known and novel genes involved in stress responses, mainly transcription factors and transporters. Therefore, this work links the genotype to the phenotype of biotechnologically relevant yeasts and demonstrates the utility of complementary computational approaches to gain insight from transcriptomics data across species and conditions.
Collapse
Affiliation(s)
- Sarah J Weintraub
- Department of Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Zekun Li
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Carter L Nakagawa
- Department of Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Joseph H Collins
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Eric M Young
- Department of Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
2
|
Ramalho S, Alkan F, Prekovic S, Jastrzebski K, Barberà EP, Hoekman L, Altelaar M, de Heus C, Liv N, Rodríguez-Colman MJ, Yilmaz M, van der Kammen R, Fedry J, de Gooijer MC, Suijkerbuijk SJE, Faller WJ, Silva J. NAC regulates metabolism and cell fate in intestinal stem cells. SCIENCE ADVANCES 2025; 11:eadn9750. [PMID: 39772672 PMCID: PMC11708876 DOI: 10.1126/sciadv.adn9750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Intestinal stem cells (ISCs) face the challenge of integrating metabolic demands with unique regenerative functions. Studies have shown an intricate interplay between metabolism and stem cell capacity; however, it is still not understood how this process is regulated. Combining ribosome profiling and CRISPR screening in intestinal organoids, we identify the nascent polypeptide-associated complex (NAC) as a key mediator of this process. Our findings suggest that NAC is responsible for relocalizing ribosomes to the mitochondria and regulating ISC metabolism. Upon NAC inhibition, intestinal cells show decreased import of mitochondrial proteins, which are needed for oxidative phosphorylation, and, consequently, enable the cell to maintain a stem cell identity. Furthermore, we show that overexpression of NACα is sufficient to drive mitochondrial respiration and promote ISC identity. Ultimately, our results reveal the pivotal role of NAC in regulating ribosome localization, mitochondrial metabolism, and ISC function, providing insights into the potential mechanism behind it.
Collapse
Affiliation(s)
- Sofia Ramalho
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ferhat Alkan
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Stefan Prekovic
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Katarzyna Jastrzebski
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Eric Pintó Barberà
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Cecilia de Heus
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nalan Liv
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Maria J. Rodríguez-Colman
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Mehmet Yilmaz
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rob van der Kammen
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Mark C. de Gooijer
- Division of Pharmacology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Saskia Jacoba Elisabeth Suijkerbuijk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - William J. Faller
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Joana Silva
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
3
|
Bohnert M, Gatsogiannis C, Herrmann JM. The ATP-driven extractor ATAD1/Msp1 proof-reads protein translocation into mitochondria. Trends Cell Biol 2024; 34:698-699. [PMID: 39089957 DOI: 10.1016/j.tcb.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
The accumulation of translocation intermediates in the mitochondrial import machinery threatens cellular fitness and is associated with cancer and neurodegeneration. A recent study by Weidberg and colleagues identifies ATAD1 as an ATP-driven extraction machine on the mitochondrial surface that pulls precursors into the cytosol to prevent clogging of mitochondrial import pores.
Collapse
Affiliation(s)
- Maria Bohnert
- Institute of Cell Dynamics and Imaging, University of Münster, Münster, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany
| | - Christos Gatsogiannis
- Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany; Institute of Medical Physics and Biophysics and Center for Soft Nanoscience, University of Münster, Münster, Germany
| | | |
Collapse
|
4
|
Yamada W, Tomoshige S, Nakamura S, Sato S, Ishikawa M. Targeted protein degradation in the mitochondrial matrix and its application to chemical control of mitochondrial morphology. Chem Sci 2024:d4sc03145h. [PMID: 39246353 PMCID: PMC11376192 DOI: 10.1039/d4sc03145h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Dysfunction of mitochondria is implicated in various diseases, including cancer and neurodegenerative disorders, but drug discovery targeting mitochondria and mitochondrial proteins has so far made limited progress. Targeted protein degradation (TPD) technologies represented by proteolysis targeting chimeras (PROTACs) are potentially applicable for this purpose, but most existing TPD approaches leverage the ubiquitin-proteasome system or lysosomes, which are absent in mitochondria, and TPD in mitochondria (mitoTPD) remains little explored. Herein, we describe the design and synthesis of a bifunctional molecule comprising TR79, an activator of the mitochondrial protease complex caseinolytic protease P (ClpP), linked to desthiobiotin. This compound successfully induced the degradation of monomeric streptavidin (mSA) and its fusion proteins localized to the mitochondrial matrix. Furthermore, in cells overexpressing mSA fused to short transmembrane protein 1 (mSA-STMP1), which enhances mitochondrial fission, our mitochondrial mSA degrader restored the mitochondrial morphology by reducing the level of mSA-STMP1. A preliminary structure-activity relationship study indicated that a longer linker length enhances the degradation activity towards mSA. These findings highlight the potential of mitoTPD as a tool for drug discovery targeting mitochondria and for research in mitochondrial biology, as well as the utility of mSA as a degradation tag for mitochondrial protein.
Collapse
Affiliation(s)
- Wakana Yamada
- Graduate School of Life Sciences, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai Miyagi 980-8577 Japan
| | - Shusuke Tomoshige
- Graduate School of Life Sciences, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai Miyagi 980-8577 Japan
| | - Sho Nakamura
- Graduate School of Life Sciences, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai Miyagi 980-8577 Japan
| | - Shinichi Sato
- Graduate School of Life Sciences, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai Miyagi 980-8577 Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University 6-3 Aramaki Aza-Aoba, Aoba-ku Sendai-shi Miyagi 980-8578 Japan
| | - Minoru Ishikawa
- Graduate School of Life Sciences, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai Miyagi 980-8577 Japan
| |
Collapse
|
5
|
Engel AJ, Paech S, Langhans M, van Etten JL, Moroni A, Thiel G, Rauh O. Combination of hydrophobicity and codon usage bias determines sorting of model K + channel protein to either mitochondria or endoplasmic reticulum. Traffic 2023; 24:533-545. [PMID: 37578147 DOI: 10.1111/tra.12915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
When the K+ channel-like protein Kesv from Ectocarpus siliculosus virus 1 is heterologously expressed in mammalian cells, it is sorted to the mitochondria. This targeting can be redirected to the endoplasmic reticulum (ER) by altering the codon usage in distinct regions of the gene or by inserting a triplet of hydrophobic amino acids (AAs) into the protein's C-terminal transmembrane domain (ct-TMD). Systematic variations in the flavor of the inserted AAs and/or its codon usage show that a positive charge in the inserted AA triplet alone serves as strong signal for mitochondria sorting. In cases of neutral AA triplets, mitochondria sorting are favored by a combination of hydrophilic AAs and rarely used codons; sorting to the ER exhibits the inverse dependency. This propensity for ER sorting is particularly high when a common codon follows a rarer one in the AA triplet; mitochondria sorting in contrast is supported by codon uniformity. Since parameters like positive charge, hydrophobic AAs, and common codons are known to facilitate elongation of nascent proteins in the ribosome the data suggest a mechanism in which local changes in elongation velocity and co-translational folding in the ct-TMD influence intracellular protein sorting.
Collapse
Affiliation(s)
- Anja J Engel
- Faculty of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Steffen Paech
- Faculty of Chemistry, Macromolecular and Paper Chemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Markus Langhans
- Faculty of Chemistry, Macromolecular and Paper Chemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - James L van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Anna Moroni
- Department of Biosciences and CNR IBF-Mi, Università degli Studi di Milano, Milan, Italy
| | - Gerhard Thiel
- Faculty of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Oliver Rauh
- Faculty of Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
6
|
Ma B, Ju A, Zhang S, An Q, Xu S, Liu J, Yu L, Fu Y, Luo Y. Albumosomes formed by cytoplasmic pre-folding albumin maintain mitochondrial homeostasis and inhibit nonalcoholic fatty liver disease. Signal Transduct Target Ther 2023; 8:229. [PMID: 37321990 PMCID: PMC10272166 DOI: 10.1038/s41392-023-01437-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 06/17/2023] Open
Abstract
Hepatic mitochondrial dysfunction contributes to the progression of nonalcoholic fatty liver disease (NAFLD). However, the factors that maintain mitochondrial homeostasis, especially in hepatocytes, are largely unknown. Hepatocytes synthesize various high-level plasma proteins, among which albumin is most abundant. In this study, we found that pre-folding albumin in the cytoplasm is completely different from folded albumin in the serum. Mechanistically, endogenous pre-folding albumin undergoes phase transition in the cytoplasm to form a shell-like spherical structure, which we call the "albumosome". Albumosomes interact with and trap pre-folding carnitine palmitoyltransferase 2 (CPT2) in the cytoplasm. Albumosomes control the excessive sorting of CPT2 to the mitochondria under high-fat-diet-induced stress conditions; in this way, albumosomes maintain mitochondrial homeostasis from exhaustion. Physiologically, albumosomes accumulate in hepatocytes during murine aging and protect the livers of aged mice from mitochondrial damage and fat deposition. Morphologically, mature albumosomes have a mean diameter of 4μm and are surrounded by heat shock protein Hsp90 and Hsp70 family proteins, forming a larger shell. The Hsp90 inhibitor 17-AAG promotes hepatic albumosomal accumulation in vitro and in vivo, through which suppressing the progression of NAFLD in mice.
Collapse
Affiliation(s)
- Boyuan Ma
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
| | - Anji Ju
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
| | - Shaosen Zhang
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Qi An
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
| | - Siran Xu
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
| | - Jie Liu
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
- Immunogenetics Laboratory, Shenzhen Blood Center, 518025, Shenzhen, Guangdong, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yan Fu
- School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China.
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China.
| | - Yongzhang Luo
- School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China.
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
7
|
Small heat shock proteins operate as molecular chaperones in the mitochondrial intermembrane space. Nat Cell Biol 2023; 25:467-480. [PMID: 36690850 PMCID: PMC10014586 DOI: 10.1038/s41556-022-01074-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/12/2022] [Indexed: 01/24/2023]
Abstract
Mitochondria are complex organelles with different compartments, each harbouring their own protein quality control factors. While chaperones of the mitochondrial matrix are well characterized, it is poorly understood which chaperones protect the mitochondrial intermembrane space. Here we show that cytosolic small heat shock proteins are imported under basal conditions into the mitochondrial intermembrane space, where they operate as molecular chaperones. Protein misfolding in the mitochondrial intermembrane space leads to increased recruitment of small heat shock proteins. Depletion of small heat shock proteins leads to mitochondrial swelling and reduced respiration, while aggregation of aggregation-prone substrates is countered in their presence. Charcot-Marie-Tooth disease-causing mutations disturb the mitochondrial function of HSPB1, potentially linking previously observed mitochondrial dysfunction in Charcot-Marie-Tooth type 2F to its role in the mitochondrial intermembrane space. Our results reveal that small heat shock proteins form a chaperone system that operates in the mitochondrial intermembrane space.
Collapse
|
8
|
MRP5 and MRP9 play a concerted role in male reproduction and mitochondrial function. Proc Natl Acad Sci U S A 2022; 119:2111617119. [PMID: 35121660 PMCID: PMC8832985 DOI: 10.1073/pnas.2111617119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
Multidrug Resistance Proteins (MRPs) are typically implicated in cancer biology. Here, we show that MRP9 and MRP5 localize to mitochondrial-associated membranes and play a concerted role in maintaining mitochondrial homeostasis and male reproductive fitness. Our work fills in significant gaps in our understanding of MRP9 and MRP5 with wider implications in male fertility. It is plausible that variants in these transporters are associated with male reproductive dysfunction. Multidrug Resistance Proteins (MRPs) are transporters that play critical roles in cancer even though the physiological substrates of these enigmatic transporters are poorly elucidated. In Caenorhabditis elegans, MRP5/ABCC5 is an essential heme exporter because mrp-5 mutants are unviable due to their inability to export heme from the intestine to extraintestinal tissues. Heme supplementation restores viability of these mutants but fails to restore male reproductive deficits. Correspondingly, cell biological studies show that MRP5 regulates heme levels in the mammalian secretory pathway even though MRP5 knockout (KO) mice do not show reproductive phenotypes. The closest homolog of MRP5 is MRP9/ABCC12, which is absent in C. elegans, raising the possibility that MRP9 may genetically compensate for MRP5. Here, we show that MRP5 and MRP9 double KO (DKO) mice are viable but reveal significant male reproductive deficits. Although MRP9 is highly expressed in sperm, MRP9 KO mice show reproductive phenotypes only when MRP5 is absent. Both ABCC transporters localize to mitochondrial-associated membranes, dynamic scaffolds that associate the mitochondria and endoplasmic reticulum. Consequently, DKO mice reveal abnormal sperm mitochondria with reduced mitochondrial membrane potential and fertilization rates. Metabolomics show striking differences in metabolite profiles in the DKO testes, and RNA sequencing shows significant alterations in genes related to mitochondrial function and retinoic acid metabolism. Targeted functional metabolomics reveal lower retinoic acid levels in the DKO testes and higher levels of triglycerides in the mitochondria. These findings establish a model in which MRP5 and MRP9 play a concerted role in regulating male reproductive functions and mitochondrial sufficiency.
Collapse
|
9
|
Dissecting the molecular mechanisms of mitochondrial import and maturation of peroxiredoxins from yeast and mammalian cells. Biophys Rev 2022; 13:983-994. [PMID: 35059022 DOI: 10.1007/s12551-021-00899-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 12/26/2022] Open
Abstract
Peroxiredoxins (Prxs) are cysteine-based peroxidases that play a central role in keeping the H2O2 at physiological levels. Eukaryotic cells express different Prxs isoforms, which differ in their subcellular locations and substrate specificities. Mitochondrial Prxs are synthesized in the cytosol as precursor proteins containing N-terminal cleavable presequences that act as mitochondrial targeting signals. Due to the fact that presequence controls the import of the vast majority of mitochondrial matrix proteins, the mitochondrial Prxs were initially predicted to be localized exclusively in the matrix. However, recent studies showed that mitochondrial Prxs are also targeted to the intermembrane space by mechanisms that remain poorly understood. While in yeast the IMP complex can translocate Prx1 to the intermembrane space, the maturation of yeast Prx1 and mammalian Prdx3 and Prdx5 in the matrix has been associated with sequential cleavages of the presequence by MPP and Oct1/MIP proteases. In this review, we describe the state of the art of the molecular mechanisms that control the mitochondrial import and maturation of Prxs of yeast and human cells. Once mitochondria are considered the major intracellular source of H2O2, understanding the mitochondrial Prx biogenesis pathways is essential to increase our knowledge about the H2O2-dependent cellular signaling, which is relevant to the pathophysiology of some human diseases.
Collapse
|
10
|
Characterization of a Novel Splicing Variant in Acylglycerol Kinase (AGK) Associated with Fatal Sengers Syndrome. Int J Mol Sci 2021; 22:ijms222413484. [PMID: 34948281 PMCID: PMC8708263 DOI: 10.3390/ijms222413484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial functional integrity depends on protein and lipid homeostasis in the mitochondrial membranes and disturbances in their accumulation can cause disease. AGK, a mitochondrial acylglycerol kinase, is not only involved in lipid signaling but is also a component of the TIM22 complex in the inner mitochondrial membrane, which mediates the import of a subset of membrane proteins. AGK mutations can alter both phospholipid metabolism and mitochondrial protein biogenesis, contributing to the pathogenesis of Sengers syndrome. We describe the case of an infant carrying a novel homozygous AGK variant, c.518+1G>A, who was born with congenital cataracts, pielic ectasia, critical congenital dilated myocardiopathy, and hyperlactacidemia and died 20 h after birth. Using the patient’s DNA, we performed targeted sequencing of 314 nuclear genes encoding respiratory chain complex subunits and proteins implicated in mitochondrial oxidative phosphorylation (OXPHOS). A decrease of 96-bp in the length of the AGK cDNA sequence was detected. Decreases in the oxygen consumption rate (OCR) and the OCR:ECAR (extracellular acidification rate) ratio in the patient’s fibroblasts indicated reduced electron flow through the respiratory chain, and spectrophotometry revealed decreased activity of OXPHOS complexes I and V. We demonstrate a clear defect in mitochondrial function in the patient’s fibroblasts and describe the possible molecular mechanism underlying the pathogenicity of this novel AGK variant. Experimental validation using in vitro analysis allowed an accurate characterization of the disease-causing variant.
Collapse
|
11
|
Zhang Y, Yang H, Wei D, Zhang X, Wang J, Wu X, Chang J. Mitochondria-targeted nanoparticles in treatment of neurodegenerative diseases. EXPLORATION (BEIJING, CHINA) 2021; 1:20210115. [PMID: 37323688 PMCID: PMC10191038 DOI: 10.1002/exp.20210115] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/31/2021] [Indexed: 06/15/2023]
Abstract
Neurodegenerative diseases (NDs) are a class of heterogeneous diseases that includes Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Mitochondria play an important role in oxidative balance and metabolic activity of neurons; therefore, mitochondrial dysfunction is associated with NDs and mitochondria are considered a potential treatment target for NDs. Several obstacles, including the blood-brain barrier (BBB) and cell/mitochondrial membranes, reduce the efficiency of drug entry into the target lesions. Therefore, a variety of neuron mitochondrial targeting strategies has been developed. Among them, nanotechnology-based treatments show especially promising results. Owing to their adjustable size, appropriate charge, and lipophilic surface, nanoparticles (NPs) are the ideal theranostic system for crossing the BBB and targeting the neuronal mitochondria. In this review, we discussed the role of dysfunctional mitochondria in ND pathogenesis as well as the physiological barriers to various treatment strategies. We also reviewed the use and advantages of various NPs (including organic, inorganic, and biological membrane-coated NPs) for the treatment and diagnosis of NDs. Finally, we summarized the evidence and possible use for the promising role of NP-based theranostic systems in the treatment of mitochondrial dysfunction-related NDs.
Collapse
Affiliation(s)
- Yue Zhang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| | - Han Yang
- School of Life and Health ScienceThe Chinese University of Hong KongShenzhenP. R. China
| | - Daohe Wei
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| | - Xinhui Zhang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| | - Jian Wang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| | - Xiaoli Wu
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| | - Jin Chang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| |
Collapse
|
12
|
TASK-1 regulates mitochondrial function under hypoxia. Biochem Biophys Res Commun 2021; 578:163-169. [PMID: 34571371 DOI: 10.1016/j.bbrc.2021.09.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022]
Abstract
TASK-1, TWIK-related acid-sensitive potassium channel 1, is a member of the two-pore- domain potassium channel family. It is constitutively active at resting potentials and strongly expressed in the heart. However, little is known about the role of TASK-1 channels in hypoxia. A cellular model of hypoxia and reoxygenation from rat heart-derived H9c2 cells or TASK-1 deficient HEK293T cells was employed to explore the role of TASK-1 channels in cytoprotection against hypoxia. The cell viability assay revealed that TASK-1 expression increased the number of viable cells subjected to 2 h of hypoxia followed by 2 h of reoxygenation (H/R). To dissect the protective role of TASK-1 on mitochondrial function, mitochondrial membrane potential (MMP) was assessed by tetramethylrhodamine fluorescence. It was demonstrated that MMP was significantly decreased by H/R, but it was maintained by TASK-1 expression or pretreatment with cyclosporin A, an inhibitor of mitochondrial permeability transition pore (mPTP). The effect of cyclosporin A on MMP was not further altered by TASK-1 expression. Moreover, TASK-1 expression significantly blocked cytochrome c release induced by H/R. While a small fraction of endogenous TASK-1 was found to colocalize with the mitochondrial marker MitoTracker in H9c2 cells, H/R did not alter the extent of colocalization of TASK-1 with MitoTracker. The total TASK-1 protein level was not significantly affected by H/R. In summary, we provided the evidence that TASK-1 channels confer cytoprotection against hypoxia-reoxygenation injury, possibly by their capacity of maintaining the mitochondrial membrane potential via inhibiting MPTP opening.
Collapse
|
13
|
Abudu YP, Shrestha BK, Zhang W, Palara A, Brenne HB, Larsen KB, Wolfson DL, Dumitriu G, Øie CI, Ahluwalia BS, Levy G, Behrends C, Tooze SA, Mouilleron S, Lamark T, Johansen T. SAMM50 acts with p62 in piecemeal basal- and OXPHOS-induced mitophagy of SAM and MICOS components. J Cell Biol 2021; 220:e202009092. [PMID: 34037656 PMCID: PMC8160579 DOI: 10.1083/jcb.202009092] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/24/2021] [Accepted: 04/28/2021] [Indexed: 12/21/2022] Open
Abstract
Mitophagy is the degradation of surplus or damaged mitochondria by autophagy. In addition to programmed and stress-induced mitophagy, basal mitophagy processes exert organelle quality control. Here, we show that the sorting and assembly machinery (SAM) complex protein SAMM50 interacts directly with ATG8 family proteins and p62/SQSTM1 to act as a receptor for a basal mitophagy of components of the SAM and mitochondrial contact site and cristae organizing system (MICOS) complexes. SAMM50 regulates mitochondrial architecture by controlling formation and assembly of the MICOS complex decisive for normal cristae morphology and exerts quality control of MICOS components. To this end, SAMM50 recruits ATG8 family proteins through a canonical LIR motif and interacts with p62/SQSTM1 to mediate basal mitophagy of SAM and MICOS components. Upon metabolic switch to oxidative phosphorylation, SAMM50 and p62 cooperate to mediate efficient mitophagy.
Collapse
Affiliation(s)
- Yakubu Princely Abudu
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Birendra Kumar Shrestha
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Wenxin Zhang
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Anthimi Palara
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Hanne Britt Brenne
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Kenneth Bowitz Larsen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Deanna Lynn Wolfson
- Department of Physics and Technology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Gianina Dumitriu
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Cristina Ionica Øie
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Balpreet Singh Ahluwalia
- Department of Physics and Technology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Gahl Levy
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Christian Behrends
- Institute of Biochemistry II, Goethe University Hospital, Frankfurt am Main, Germany
- Munich Cluster for Systems Neurology (SyNergy), Ludwig Maximilian University, Munich, Germany
| | - Sharon A. Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Stephane Mouilleron
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Trond Lamark
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
14
|
Sladowska M, Turek M, Kim MJ, Drabikowski K, Mussulini BHM, Mohanraj K, Serwa RA, Topf U, Chacinska A. Proteasome activity contributes to pro-survival response upon mild mitochondrial stress in Caenorhabditis elegans. PLoS Biol 2021; 19:e3001302. [PMID: 34252079 PMCID: PMC8274918 DOI: 10.1371/journal.pbio.3001302] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
Defects in mitochondrial function activate compensatory responses in the cell. Mitochondrial stress that is caused by unfolded proteins inside the organelle induces a transcriptional response (termed the "mitochondrial unfolded protein response" [UPRmt]) that is mediated by activating transcription factor associated with stress 1 (ATFS-1). The UPRmt increases mitochondrial protein quality control. Mitochondrial dysfunction frequently causes defects in the import of proteins, resulting in the accumulation of mitochondrial proteins outside the organelle. In yeast, cells respond to mistargeted mitochondrial proteins by increasing activity of the proteasome in the cytosol (termed the "unfolded protein response activated by mistargeting of proteins" [UPRam]). The presence and relevance of this response in higher eukaryotes is unclear. Here, we demonstrate that defects in mitochondrial protein import in Caenorhabditis elegans lead to proteasome activation and life span extension. Both proteasome activation and life span prolongation partially depend on ATFS-1, despite its lack of influence on proteasomal gene transcription. Importantly, life span prolongation depends on the fully assembled proteasome. Our data provide a link between mitochondrial dysfunction and proteasomal activity and demonstrate its direct relevance to mechanisms that promote longevity.
Collapse
Affiliation(s)
- Maria Sladowska
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Michał Turek
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Min-Ji Kim
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Krzysztof Drabikowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Karthik Mohanraj
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
| | - Remigiusz A. Serwa
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Ulrike Topf
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Chacinska
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- IMol Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
15
|
Acoba MG, Alpergin ESS, Renuse S, Fernández-Del-Río L, Lu YW, Khalimonchuk O, Clarke CF, Pandey A, Wolfgang MJ, Claypool SM. The mitochondrial carrier SFXN1 is critical for complex III integrity and cellular metabolism. Cell Rep 2021; 34:108869. [PMID: 33730581 PMCID: PMC8048093 DOI: 10.1016/j.celrep.2021.108869] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial carriers (MCs) mediate the passage of small molecules across the inner mitochondrial membrane (IMM), enabling regulated crosstalk between compartmentalized reactions. Despite MCs representing the largest family of solute carriers in mammals, most have not been subjected to a comprehensive investigation, limiting our understanding of their metabolic contributions. Here, we functionally characterize SFXN1, a member of the non-canonical, sideroflexin family. We find that SFXN1, an integral IMM protein with an uneven number of transmembrane domains, is a TIM22 complex substrate. SFXN1 deficiency leads to mitochondrial respiratory chain impairments, most detrimental to complex III (CIII) biogenesis, activity, and assembly, compromising coenzyme Q levels. The CIII dysfunction is independent of one-carbon metabolism, the known primary role for SFXN1 as a mitochondrial serine transporter. Instead, SFXN1 supports CIII function by participating in heme and α-ketoglutarate metabolism. Our findings highlight the multiple ways that SFXN1-based amino acid transport impacts mitochondrial and cellular metabolic efficiency.
Collapse
Affiliation(s)
- Michelle Grace Acoba
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ebru S Selen Alpergin
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Santosh Renuse
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lucía Fernández-Del-Río
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ya-Wen Lu
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA; Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Akhilesh Pandey
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Departments of Pathology and Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steven M Claypool
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Palmer CS, Anderson AJ, Stojanovski D. Mitochondrial protein import dysfunction: mitochondrial disease, neurodegenerative disease and cancer. FEBS Lett 2021; 595:1107-1131. [PMID: 33314127 DOI: 10.1002/1873-3468.14022] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
The majority of proteins localised to mitochondria are encoded by the nuclear genome, with approximately 1500 proteins imported into mammalian mitochondria. Dysfunction in this fundamental cellular process is linked to a variety of pathologies including neuropathies, cardiovascular disorders, myopathies, neurodegenerative diseases and cancer, demonstrating the importance of mitochondrial protein import machinery for cellular function. Correct import of proteins into mitochondria requires the co-ordinated activity of multimeric protein translocation and sorting machineries located in both the outer and inner mitochondrial membranes, directing the imported proteins to the destined mitochondrial compartment. This dynamic process maintains cellular homeostasis, and its dysregulation significantly affects cellular signalling pathways and metabolism. This review summarises current knowledge of the mammalian mitochondrial import machinery and the pathological consequences of mutation of its components. In addition, we will discuss the role of mitochondrial import in cancer, and our current understanding of the role of mitochondrial import in neurodegenerative diseases including Alzheimer's disease, Huntington's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Catherine S Palmer
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Alexander J Anderson
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| |
Collapse
|
17
|
Goyal S, Chaturvedi RK. Mitochondrial Protein Import Dysfunction in Pathogenesis of Neurodegenerative Diseases. Mol Neurobiol 2020; 58:1418-1437. [PMID: 33180216 DOI: 10.1007/s12035-020-02200-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria play an essential role in maintaining energy homeostasis and cellular survival. In the brain, higher ATP production is required by mature neurons for communication. Most of the mitochondrial proteins transcribe in the nucleus and import in mitochondria through different pathways of the mitochondrial protein import machinery. This machinery plays a crucial role in determining mitochondrial morphology and functions through mitochondrial biogenesis. Failure of this machinery and any alterations during mitochondrial biogenesis underlies neurodegeneration resulting in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD) etc. Current knowledge has revealed the different pathways of mitochondrial protein import machinery such as translocase of the outer mitochondrial membrane complex, the presequence pathway, carrier pathway, β-barrel pathway, and mitochondrial import and assembly machinery etc. In this review, we have discussed the recent studies regarding protein import machinery, beyond the well-known effects of increased oxidative stress and bioenergetics dysfunctions. We have elucidated in detail how these types of machinery help to import and locate the precursor proteins to their specific location inside the mitochondria and play a major role in mitochondrial biogenesis. We further discuss their involvement in mitochondrial dysfunctioning and the induction of toxic aggregates in neurodegenerative diseases like AD and PD. The review supports the importance of import machinery in neuronal functions and its association with toxic aggregated proteins in mitochondrial impairment, suggesting a critical role in fostering and maintaining neurodegeneration and therapeutic response.
Collapse
Affiliation(s)
- Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
18
|
Karakaidos P, Rampias T. Mitonuclear Interactions in the Maintenance of Mitochondrial Integrity. Life (Basel) 2020; 10:life10090173. [PMID: 32878185 PMCID: PMC7555762 DOI: 10.3390/life10090173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/28/2020] [Indexed: 12/27/2022] Open
Abstract
In eukaryotic cells, mitochondria originated in an α-proteobacterial endosymbiont. Although these organelles harbor their own genome, the large majority of genes, originally encoded in the endosymbiont, were either lost or transferred to the nucleus. As a consequence, mitochondria have become semi-autonomous and most of their processes require the import of nuclear-encoded components to be functional. Therefore, the mitochondrial-specific translation has evolved to be coordinated by mitonuclear interactions to respond to the energetic demands of the cell, acquiring unique and mosaic features. However, mitochondrial-DNA-encoded genes are essential for the assembly of the respiratory chain complexes. Impaired mitochondrial function due to oxidative damage and mutations has been associated with numerous human pathologies, the aging process, and cancer. In this review, we highlight the unique features of mitochondrial protein synthesis and provide a comprehensive insight into the mitonuclear crosstalk and its co-evolution, as well as the vulnerabilities of the animal mitochondrial genome.
Collapse
|
19
|
Murray B, Peng H, Barbier-Torres L, Robinson A, Li TWH, Fan W, Tomasi ML, Gottlieb RA, Eyk JV, Lu Z, Martínez-Chantar ML, Liangpunsakul S, Skill NJ, Mato JM, Lu SC. Methionine Adenosyltransferase α1 Is Targeted to the Mitochondrial Matrix and Interacts with Cytochrome P450 2E1 to Lower Its Expression. Hepatology 2019; 70:2018-2034. [PMID: 31077594 PMCID: PMC6842664 DOI: 10.1002/hep.30762] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/09/2019] [Indexed: 12/12/2022]
Abstract
Methionine adenosyltransferase α1 (MATα1, encoded by MAT1A) is responsible for hepatic biosynthesis of S-adenosyl methionine, the principal methyl donor. MATα1 also act as a transcriptional cofactor by interacting and influencing the activity of several transcription factors. Mat1a knockout (KO) mice have increased levels of cytochrome P450 2E1 (CYP2E1), but the underlying mechanisms are unknown. The aims of the current study were to identify binding partners of MATα1 and elucidate how MATα1 regulates CYP2E1 expression. We identified binding partners of MATα1 by coimmunoprecipitation (co-IP) and mass spectrometry. Interacting proteins were confirmed using co-IP using recombinant proteins, liver lysates, and mitochondria. Alcoholic liver disease (ALD) samples were used to confirm relevance of our findings. We found that MATα1 negatively regulates CYP2E1 at mRNA and protein levels, with the latter being the dominant mechanism. MATα1 interacts with many proteins but with a predominance of mitochondrial proteins including CYP2E1. We found that MATα1 is present in the mitochondrial matrix of hepatocytes using immunogold electron microscopy. Mat1a KO hepatocytes had reduced mitochondrial membrane potential and higher mitochondrial reactive oxygen species, both of which were normalized when MAT1A was overexpressed. In addition, KO hepatocytes were sensitized to ethanol and tumor necrosis factor α-induced mitochondrial dysfunction. Interaction of MATα1 with CYP2E1 was direct, and this facilitated CYP2E1 methylation at R379, leading to its degradation through the proteasomal pathway. Mat1a KO livers have a reduced methylated/total CYP2E1 ratio. MATα1's influence on mitochondrial function is largely mediated by its effect on CYP2E1 expression. Patients with ALD have reduced MATα1 levels and a decrease in methylated/total CYP2E1 ratio. Conclusion: Our findings highlight a critical role of MATα1 in regulating mitochondrial function by suppressing CYP2E1 expression at multiple levels.
Collapse
Affiliation(s)
- Ben Murray
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hui Peng
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lucia Barbier-Torres
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aaron Robinson
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tony W. H. Li
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wei Fan
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Maria Lauda Tomasi
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Roberta A. Gottlieb
- The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jenny Van Eyk
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zhimin Lu
- Department of Neuro-Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - ML Martínez-Chantar
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN,Roudebush Veterans Administration Medical Center, Indianapolis, IN
| | - Nicholas J Skill
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - José M. Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Shelly C. Lu
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
20
|
Abstract
The sorting of proteins into different functional compartments is a fundamental cellular task. In this issue, Maza et al. (2019. J. Cell Biol https://doi.org/10.1083/jcb.201906024) demonstrate that distinct protein populations are dynamically generated in specialized regions of photoreceptors via an interplay of protein-membrane affinity, impeded diffusion, and driven transport.
Collapse
Affiliation(s)
- Aidan I Brown
- Department of Physics, University of California, San Diego, San Diego, CA
| | - Elena F Koslover
- Department of Physics, University of California, San Diego, San Diego, CA
| |
Collapse
|
21
|
Early Scanning of Nascent Polypeptides inside the Ribosomal Tunnel by NAC. Mol Cell 2019; 75:996-1006.e8. [PMID: 31377116 DOI: 10.1016/j.molcel.2019.06.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/08/2019] [Accepted: 06/19/2019] [Indexed: 11/24/2022]
Abstract
Cotranslational processing of newly synthesized proteins is fundamental for correct protein maturation. Protein biogenesis factors are thought to bind nascent polypeptides not before they exit the ribosomal tunnel. Here, we identify a nascent chain recognition mechanism deep inside the ribosomal tunnel by an essential eukaryotic cytosolic chaperone. The nascent polypeptide-associated complex (NAC) inserts the N-terminal tail of its β subunit (N-βNAC) into the ribosomal tunnel to sense substrates directly upon synthesis close to the peptidyl-transferase center. N-βNAC escorts the growing polypeptide to the cytosol and relocates to an alternate binding site on the ribosomal surface. Using C. elegans as an in vivo model, we demonstrate that the tunnel-probing activity of NAC is essential for organismal viability and critical to regulate endoplasmic reticulum (ER) protein transport by controlling ribosome-Sec61 translocon interactions. Thus, eukaryotic protein maturation relies on the early sampling of nascent chains inside the ribosomal tunnel.
Collapse
|
22
|
Muller P, Coates PJ, Nenutil R, Trcka F, Hrstka R, Chovanec J, Brychtova V, Vojtesek B. Tomm34 is commonly expressed in epithelial ovarian cancer and associates with tumour type and high FIGO stage. J Ovarian Res 2019; 12:30. [PMID: 30917858 PMCID: PMC6436220 DOI: 10.1186/s13048-019-0498-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/05/2019] [Indexed: 01/15/2023] Open
Abstract
Background Increased activity of the chaperones Hsp70 and Hsp90 is a common feature of solid tumours. Translocase of the outer mitochondrial membrane 34 (Tomm34) is a cochaperone of both Hsp70 and Hsp90 that was found to be overexpressed in colorectal, hepatocellular, lung and breast carcinomas. The expression profile of Tomm34 in ovarian cancer has not been investigated. Therefore, the aim of the current study was to investigate the expression pattern of Tomm34 in ovarian carcinomas and analyse its correlation with clinico-pathological parameters. Results Epithelial ovarian cancers (140) were histologically classified based on their morphology and graded into two types comprising 5 histologic subgroups. Type I carcinomas comprise low grade serous (LGSC), clear cell (CCOC) and endometrioid (ENOC), type II comprises high grade serous carcinomas (HGSC) and solid, pseudoendometrioid, transitional carcinomas (SET). Tomm34 was more highly expressed in type II than type I carcinomas (p < 0.0001). Comparing tumours based on the mutation in the TP53 gene revealed similar results, where mutant tumours exhibited significantly higher levels of Tomm34 (p < 0.0001). The decreased levels of Tomm34 in type I carcinomas were particularly evident in clear cell and mucinous carcinomas. The expression of Tomm34 was also positively correlated with FIGO stage (r = 0.23; p = 0.007). Tomm34 levels also indicated poor prognosis for patients with mutant p53. Conclusions Our data indicate that Tomm34 is commonly expressed at high levels in epithelial ovarian cancers, except for the clear cell and mucinous subtypes. The expression of Tomm34 corresponds with the dualistic model of ovarian cancer pathogenesis where high grade, type II tumours exhibit higher expression of Tomm34 in contrast to type I tumours. These data are also comparable to the previous findings that Tomm34 is a marker of progression and poor prognosis in human cancer. Electronic supplementary material The online version of this article (10.1186/s13048-019-0498-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Petr Muller
- Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Philip J Coates
- Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Rudolf Nenutil
- Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Filip Trcka
- Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Roman Hrstka
- Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Josef Chovanec
- Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Veronika Brychtova
- Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Borivoj Vojtesek
- Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
23
|
Lamade AM, Kenny EM, Anthonymuthu TS, Soysal E, Clark RSB, Kagan VE, Bayır H. Aiming for the target: Mitochondrial drug delivery in traumatic brain injury. Neuropharmacology 2019; 145:209-219. [PMID: 30009835 PMCID: PMC6309489 DOI: 10.1016/j.neuropharm.2018.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/29/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Mitochondria are a keystone of neuronal function, serving a dual role as sustainer of life and harbinger of death. While mitochondria are indispensable for energy production, a dysregulated mitochondrial network can spell doom for both neurons and the functions they provide. Traumatic brain injury (TBI) is a complex and biphasic injury, often affecting children and young adults. The primary pathological mechanism of TBI is mechanical, too rapid to be mitigated by anything but prevention. However, the secondary injury of TBI evolves over hours and days after the initial insult providing a window of opportunity for intervention. As a nexus point of both survival and death during this second phase, targeting mitochondrial pathology in TBI has long been an attractive strategy. Often these attempts are mired by efficacy-limiting unintended off-target effects. Specific delivery to and enrichment of therapeutics at their submitochondrial site of action can reduce deleterious effects and increase potency. Mitochondrial drug localization is accomplished using (1) the mitochondrial membrane potential, (2) affinity of a carrier to mitochondria-specific components (e.g. lipids), (3) piggybacking on the cells own mitochondria trafficking systems, or (4) nanoparticle-based approaches. In this review, we briefly consider the mitochondrial delivery strategies and drug targets that illustrate the promise of these mitochondria-specific approaches in the design of TBI pharmacotherapy. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Andrew M Lamade
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth M Kenny
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tamil S Anthonymuthu
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elif Soysal
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Robert S B Clark
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Laboratory of Navigational Redox Lipidomics in Biomedicine, Department of Human Pathology, IM Sechenov First Moscow State Medical University, Russian Federation
| | - Hülya Bayır
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
24
|
Defective mitochondrial protein import contributes to complex I-induced mitochondrial dysfunction and neurodegeneration in Parkinson’s disease. Cell Death Dis 2018; 9:1122. [PMID: 30405116 PMCID: PMC6221944 DOI: 10.1038/s41419-018-1154-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 11/11/2022]
Abstract
Mitochondria are the prime energy source in most eukaryotic cells, but these highly dynamic organelles are also involved in a multitude of cellular events. Disruption of mitochondrial homeostasis and the subsequent mitochondrial dysfunction plays a key role in the pathophysiology of Parkinson’s disease (PD). Therefore, maintenance of mitochondrial integrity through different surveillance mechanisms is critical for neuronal survival. Here, we have studied the mitochondrial protein import system in in vitro and in vivo models of PD. Complex I inhibition, a characteristic pathological hallmark in PD, impaired mitochondrial protein import, which was associated with a downregulation of two key components of the system: translocase of the outer membrane 20 (TOM20) and translocase of the inner membrane 23 (TIM23), both in vitro and in vivo. In vitro, those changes were associated with OXPHOS protein downregulation, accumulation of aggregated proteins inside mitochondria and downregulation of mitochondrial chaperones. Most of these pathogenic changes, including mitochondrial dysfunction and dopaminergic cell death, were abrogated by TOM20 or TIM23 overexpression, in vitro. However, in vivo, while TOM20 overexpression exacerbated neurodegeneration in both substantia nigra (SN) pars compacta (pc) and striatum, overexpression of TIM23 partially protected dopaminergic neurons in the SNpc. These results highlight mitochondrial protein import dysfunction and the distinct role of two of their components in the pathogenesis of PD and suggest the need for future studies to further characterize mitochondrial protein import deficit in the context of PD.
Collapse
|
25
|
Mitochondrial diseases caused by dysfunctional mitochondrial protein import. Biochem Soc Trans 2018; 46:1225-1238. [PMID: 30287509 DOI: 10.1042/bst20180239] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/20/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria are essential organelles which perform complex and varied functions within eukaryotic cells. Maintenance of mitochondrial health and functionality is thus a key cellular priority and relies on the organelle's extensive proteome. The mitochondrial proteome is largely encoded by nuclear genes, and mitochondrial proteins must be sorted to the correct mitochondrial sub-compartment post-translationally. This essential process is carried out by multimeric and dynamic translocation and sorting machineries, which can be found in all four mitochondrial compartments. Interestingly, advances in the diagnosis of genetic disease have revealed that mutations in various components of the human import machinery can cause mitochondrial disease, a heterogenous and often severe collection of disorders associated with energy generation defects and a multisystem presentation often affecting the cardiovascular and nervous systems. Here, we review our current understanding of mitochondrial protein import systems in human cells and the molecular basis of mitochondrial diseases caused by defects in these pathways.
Collapse
|
26
|
Wan Y, Hopper AK. From powerhouse to processing plant: conserved roles of mitochondrial outer membrane proteins in tRNA splicing. Genes Dev 2018; 32:1309-1314. [PMID: 30228203 PMCID: PMC6169838 DOI: 10.1101/gad.316257.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/23/2018] [Indexed: 11/27/2022]
Abstract
In this study, Wan et al. report that budding yeast mitochondrial outer membrane (MOM) proteins Tom70, Tom22, and Sam37 are required for efficient tRNA splicing. They show that defective tRNA splicing in MOM mutants is due not to loss of respiratory metabolism but instead inefficient targeting/tethering of tRNA splicing endonuclease (SEN) subunits to mitochondria. The mitochondrial cytoplasmic surface serves as a processing site for numerous RNAs from budding yeast to metazoans. We report that budding yeast mitochondrial outer membrane (MOM) proteins that are subunits of the translocase of the outer mitochondrial membrane (Tom70 and Tom 22) and sorting and assembly machinery (Sam37) are required for efficient pretransfer RNA (pre-tRNA) splicing. Defective pre-tRNA splicing in MOM mutants is due not to loss of respiratory metabolism but instead inefficient targeting/tethering of tRNA splicing endonuclease (SEN) subunits to mitochondria. Schizosaccharomyces pombe SEN subunits also localize to mitochondria, and Tom70 is required for this localization and pre-tRNA splicing. Thus, the role of MOM protein in targeting/tethering SEN subunits to mitochondria has been conserved for >500 million years.
Collapse
Affiliation(s)
- Yao Wan
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Anita K Hopper
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
27
|
Eremina L, Pashintseva N, Kovalev L, Kovaleva M, Shishkin S. Proteomics of mammalian mitochondria in health and malignancy: From protein identification to function. Anal Biochem 2018; 552:4-18. [DOI: 10.1016/j.ab.2017.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/07/2017] [Accepted: 03/23/2017] [Indexed: 12/28/2022]
|
28
|
Chatterjee K, Nostramo RT, Wan Y, Hopper AK. tRNA dynamics between the nucleus, cytoplasm and mitochondrial surface: Location, location, location. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:373-386. [PMID: 29191733 PMCID: PMC5882565 DOI: 10.1016/j.bbagrm.2017.11.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 01/20/2023]
Abstract
Although tRNAs participate in the essential function of protein translation in the cytoplasm, tRNA transcription and numerous processing steps occur in the nucleus. This subcellular separation between tRNA biogenesis and function requires that tRNAs be efficiently delivered to the cytoplasm in a step termed "primary tRNA nuclear export". Surprisingly, tRNA nuclear-cytoplasmic traffic is not unidirectional, but, rather, movement is bidirectional. Cytoplasmic tRNAs are imported back to the nucleus by the "tRNA retrograde nuclear import" step which is conserved from budding yeast to vertebrate cells and has been hijacked by viruses, such as HIV, for nuclear import of the viral reverse transcription complex in human cells. Under appropriate environmental conditions cytoplasmic tRNAs that have been imported into the nucleus return to the cytoplasm via the 3rd nuclear-cytoplasmic shuttling step termed "tRNA nuclear re-export", that again is conserved from budding yeast to vertebrate cells. We describe the 3 steps of tRNA nuclear-cytoplasmic movements and their regulation. There are multiple tRNA nuclear export and import pathways. The different tRNA nuclear exporters appear to possess substrate specificity leading to the tantalizing possibility that the cellular proteome may be regulated at the level of tRNA nuclear export. Moreover, in some organisms, such as budding yeast, the pre-tRNA splicing heterotetrameric endonuclease (SEN), which removes introns from pre-tRNAs, resides on the cytoplasmic surface of the mitochondria. Therefore, we also describe the localization of the SEN complex to mitochondria and splicing of pre-tRNA on mitochondria, which occurs prior to the participation of tRNAs in protein translation. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Kunal Chatterjee
- The Ohio State University Comprehensive Cancer Research Center, United States; Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States
| | - Regina T Nostramo
- Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States
| | - Yao Wan
- The Ohio State University Comprehensive Cancer Research Center, United States; Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States
| | - Anita K Hopper
- Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States.
| |
Collapse
|
29
|
Banerjee R, Günsel U, Mokranjac D. Chemical Crosslinking in Intact Mitochondria. Methods Mol Biol 2018; 1567:139-154. [PMID: 28276017 DOI: 10.1007/978-1-4939-6824-4_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Many mitochondrial proteins perform their functions as components of large, multimeric complexes. Chemical crosslinking is a powerful method to analyze protein-protein interactions within such complexes. Using membrane-permeable crosslinkers and isolated intact mitochondria, protein-protein interactions that are secluded by two mitochondrial membranes can be readily analyzed in physiologically active, isolated organelles under a variety of physiological and pathophysiological conditions. Here, we describe two methods for chemical crosslinking in intact yeast mitochondria. The first method enables the analysis of ATP-dependent remodeling of mitochondrial protein complexes while the second one allows the identification of crosslinking partners of a protein of interest.
Collapse
Affiliation(s)
- Rupa Banerjee
- Biomedical Center-Physiological Chemistry, LMU Munich, Großhadernerstr. 9, 82152, Martinsried, Germany
| | - Umut Günsel
- Biomedical Center-Physiological Chemistry, LMU Munich, Großhadernerstr. 9, 82152, Martinsried, Germany
| | - Dejana Mokranjac
- Biomedical Center-Physiological Chemistry, LMU Munich, Großhadernerstr. 9, 82152, Martinsried, Germany.
| |
Collapse
|
30
|
Fukasawa Y, Oda T, Tomii K, Imai K. Origin and Evolutionary Alteration of the Mitochondrial Import System in Eukaryotic Lineages. Mol Biol Evol 2017; 34:1574-1586. [PMID: 28369657 PMCID: PMC5455965 DOI: 10.1093/molbev/msx096] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein transport systems are fundamentally important for maintaining mitochondrial function. Nevertheless, mitochondrial protein translocases such as the kinetoplastid ATOM complex have recently been shown to vary in eukaryotic lineages. Various evolutionary hypotheses have been formulated to explain this diversity. To resolve any contradiction, estimating the primitive state and clarifying changes from that state are necessary. Here, we present more likely primitive models of mitochondrial translocases, specifically the translocase of the outer membrane (TOM) and translocase of the inner membrane (TIM) complexes, using scrutinized phylogenetic profiles. We then analyzed the translocases’ evolution in eukaryotic lineages. Based on those results, we propose a novel evolutionary scenario for diversification of the mitochondrial transport system. Our results indicate that presequence transport machinery was mostly established in the last eukaryotic common ancestor, and that primitive translocases already had a pathway for transporting presequence-containing proteins. Moreover, secondary changes including convergent and migrational gains of a presequence receptor in TOM and TIM complexes, respectively, likely resulted from constrained evolution. The nature of a targeting signal can constrain alteration to the protein transport complex.
Collapse
Affiliation(s)
- Yoshinori Fukasawa
- Artificial Intelligence Research Center, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan
| | - Toshiyuki Oda
- Artificial Intelligence Research Center, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan
| | - Kenichiro Imai
- Artificial Intelligence Research Center, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan
| |
Collapse
|
31
|
Suofu Y, Li W, Jean-Alphonse FG, Jia J, Khattar NK, Li J, Baranov SV, Leronni D, Mihalik AC, He Y, Cecon E, Wehbi VL, Kim J, Heath BE, Baranova OV, Wang X, Gable MJ, Kretz ES, Di Benedetto G, Lezon TR, Ferrando LM, Larkin TM, Sullivan M, Yablonska S, Wang J, Minnigh MB, Guillaumet G, Suzenet F, Richardson RM, Poloyac SM, Stolz DB, Jockers R, Witt-Enderby PA, Carlisle DL, Vilardaga JP, Friedlander RM. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc Natl Acad Sci U S A 2017; 114:E7997-E8006. [PMID: 28874589 PMCID: PMC5617277 DOI: 10.1073/pnas.1705768114] [Citation(s) in RCA: 296] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are classically characterized as cell-surface receptors transmitting extracellular signals into cells. Here we show that central components of a GPCR signaling system comprised of the melatonin type 1 receptor (MT1), its associated G protein, and β-arrestins are on and within neuronal mitochondria. We discovered that the ligand melatonin is exclusively synthesized in the mitochondrial matrix and released by the organelle activating the mitochondrial MT1 signal-transduction pathway inhibiting stress-mediated cytochrome c release and caspase activation. These findings coupled with our observation that mitochondrial MT1 overexpression reduces ischemic brain injury in mice delineate a mitochondrial GPCR mechanism contributing to the neuroprotective action of melatonin. We propose a new term, "automitocrine," analogous to "autocrine" when a similar phenomenon occurs at the cellular level, to describe this unexpected intracellular organelle ligand-receptor pathway that opens a new research avenue investigating mitochondrial GPCR biology.
Collapse
Affiliation(s)
- Yalikun Suofu
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Wei Li
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- School of Medicine, University of Tsinghua, Beijing, China 100084
| | - Frédéric G Jean-Alphonse
- Laboratory for G-Protein Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Jiaoying Jia
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- Xiangya Second Hospital, Central South University, Hunan Province, China 410008
| | - Nicolas K Khattar
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jiatong Li
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- School of Medicine, University of Tsinghua, Beijing, China 100084
| | - Sergei V Baranov
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Daniela Leronni
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Amanda C Mihalik
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Yanqing He
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- Xiangya Second Hospital, Central South University, Hunan Province, China 410008
| | - Erika Cecon
- Inserm, U1016, Institut Cochin, 75014 Paris, France
- CNRS UMR 8104, Paris, France
- University of Paris Descartes, 75006 Paris, France
| | - Vanessa L Wehbi
- Laboratory for G-Protein Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - JinHo Kim
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Brianna E Heath
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Oxana V Baranova
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Xiaomin Wang
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Matthew J Gable
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Eric S Kretz
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Timothy R Lezon
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Lisa M Ferrando
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Timothy M Larkin
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Mara Sullivan
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213
| | - Svitlana Yablonska
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jingjing Wang
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- School of Medicine, University of Tsinghua, Beijing, China 100084
| | - M Beth Minnigh
- Small Molecule Biomarker Core, University of Pittsburgh, Pittsburgh, PA 15213
| | - Gérald Guillaumet
- Institut de Chimie Organique et Analytique, Universite d'Orleans, UMR CNRS 7311, 45067 Orleans, France
| | - Franck Suzenet
- Institut de Chimie Organique et Analytique, Universite d'Orleans, UMR CNRS 7311, 45067 Orleans, France
| | - R Mark Richardson
- Brain Modulation Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Samuel M Poloyac
- Small Molecule Biomarker Core, University of Pittsburgh, Pittsburgh, PA 15213
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, 75014 Paris, France
- CNRS UMR 8104, Paris, France
- University of Paris Descartes, 75006 Paris, France
| | | | - Diane L Carlisle
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jean-Pierre Vilardaga
- Laboratory for G-Protein Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261;
| | - Robert M Friedlander
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213;
| |
Collapse
|
32
|
Malhotra K, Modak A, Nangia S, Daman TH, Gunsel U, Robinson VL, Mokranjac D, May ER, Alder NN. Cardiolipin mediates membrane and channel interactions of the mitochondrial TIM23 protein import complex receptor Tim50. SCIENCE ADVANCES 2017; 3:e1700532. [PMID: 28879236 PMCID: PMC5580885 DOI: 10.1126/sciadv.1700532] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/04/2017] [Indexed: 05/07/2023]
Abstract
The phospholipid cardiolipin mediates the functional interactions of proteins that reside within energy-conserving biological membranes. However, the molecular basis by which this lipid performs this essential cellular role is not well understood. We address this role of cardiolipin using the multisubunit mitochondrial TIM23 protein transport complex as a model system. The early stages of protein import by this complex require specific interactions between the polypeptide substrate receptor, Tim50, and the membrane-bound channel-forming subunit, Tim23. Using analyses performed in vivo, in isolated mitochondria, and in reductionist nanoscale model membrane systems, we show that the soluble receptor domain of Tim50 interacts with membranes and with specific sites on the Tim23 channel in a manner that is directly modulated by cardiolipin. To obtain structural insights into the nature of these interactions, we obtained the first small-angle x-ray scattering-based structure of the soluble Tim50 receptor in its entirety. Using these structural insights, molecular dynamics simulations combined with a range of biophysical measurements confirmed the role of cardiolipin in driving the association of the Tim50 receptor with lipid bilayers with concomitant structural changes, highlighting the role of key structural elements in mediating this interaction. Together, these results show that cardiolipin is required to mediate specific receptor-channel associations in the TIM23 complex. Our results support a new working model for the dynamic structural changes that occur within the complex during transport. More broadly, this work strongly advances our understanding of how cardiolipin mediates interactions among membrane-associated proteins.
Collapse
Affiliation(s)
- Ketan Malhotra
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Arnab Modak
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Shivangi Nangia
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Tyler H. Daman
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Umut Gunsel
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| | - Victoria L. Robinson
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Dejana Mokranjac
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| | - Eric R. May
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
- Corresponding author.
| |
Collapse
|
33
|
Sengers Syndrome-Associated Mitochondrial Acylglycerol Kinase Is a Subunit of the Human TIM22 Protein Import Complex. Mol Cell 2017; 67:457-470.e5. [DOI: 10.1016/j.molcel.2017.06.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/28/2017] [Accepted: 06/13/2017] [Indexed: 11/19/2022]
|
34
|
Abstract
Cysteine thiols are among the most reactive functional groups in proteins, and their pairing in disulfide linkages is a common post-translational modification in proteins entering the secretory pathway. This modest amino acid alteration, the mere removal of a pair of hydrogen atoms from juxtaposed cysteine residues, contrasts with the substantial changes that characterize most other post-translational reactions. However, the wide variety of proteins that contain disulfides, the profound impact of cross-linking on the behavior of the protein polymer, the numerous and diverse players in intracellular pathways for disulfide formation, and the distinct biological settings in which disulfide bond formation can take place belie the simplicity of the process. Here we lay the groundwork for appreciating the mechanisms and consequences of disulfide bond formation in vivo by reviewing chemical principles underlying cysteine pairing and oxidation. We then show how enzymes tune redox-active cofactors and recruit oxidants to improve the specificity and efficiency of disulfide formation. Finally, we discuss disulfide bond formation in a cellular context and identify important principles that contribute to productive thiol oxidation in complex, crowded, dynamic environments.
Collapse
Affiliation(s)
- Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
35
|
Di Bartolomeo F, Doan KN, Athenstaedt K, Becker T, Daum G. Involvement of a putative substrate binding site in the biogenesis and assembly of phosphatidylserine decarboxylase 1 from Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:716-725. [PMID: 28473294 DOI: 10.1016/j.bbalip.2017.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/20/2017] [Accepted: 04/28/2017] [Indexed: 11/20/2022]
Abstract
In the yeast Saccharomyces cerevisiae, the mitochondrial phosphatidylserine decarboxylase 1 (Psd1p) produces the largest amount of cellular phosphatidylethanolamine (PE). Psd1p is synthesized as a larger precursor on cytosolic ribosomes and then imported into mitochondria in a three-step processing event leading to the formation of an α-subunit and a β-subunit. The α-subunit harbors a highly conserved motif, which was proposed to be involved in phosphatidylserine (PS) binding. Here, we present a molecular analysis of this consensus motif for the function of Psd1p by using Psd1p variants bearing either deletions or point mutations in this region. Our data show that mutations in this motif affect processing and stability of Psd1p, and consequently the enzyme's activity. Thus, we conclude that this consensus motif is essential for structural integrity and processing of Psd1p.
Collapse
Affiliation(s)
| | - Kim Nguyen Doan
- Institute of Biochemistry and Molecular Biology ZBMZ, Faculty of Medicine, University of Freiburg, Germany; Faculty of Biology, University of Freiburg, Germany
| | - Karin Athenstaedt
- Institute of Biochemistry, Graz University of Technology, NaWi Graz, Austria; Institute of Molecular Biosciences, University of Graz, NaWi Graz, Austria.
| | - Thomas Becker
- BIOSS Center for Biological Signalling Studies, University of Freiburg, Germany; Institute of Biochemistry and Molecular Biology ZBMZ, Faculty of Medicine, University of Freiburg, Germany.
| | - Günther Daum
- Institute of Biochemistry, Graz University of Technology, NaWi Graz, Austria.
| |
Collapse
|
36
|
Yao J, McHedlishvili D, McIntire WE, Guagliardo NA, Erisir A, Coburn CA, Santarelli VP, Bayliss DA, Barrett PQ. Functional TASK-3-Like Channels in Mitochondria of Aldosterone-Producing Zona Glomerulosa Cells. Hypertension 2017. [PMID: 28630209 DOI: 10.1161/hypertensionaha.116.08871] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ca2+ drives aldosterone synthesis in the cytosolic and mitochondrial compartments of the adrenal zona glomerulosa cell. Membrane potential across each of these compartments regulates the amplitude of the Ca2+ signal; yet, only plasma membrane ion channels and their role in regulating cell membrane potential have garnered investigative attention as pathological causes of human hyperaldosteronism. Previously, we reported that genetic deletion of TASK-3 channels (tandem pore domain acid-sensitive K+ channels) from mice produces aldosterone excess in the absence of a change in the cell membrane potential of zona glomerulosa cells. Here, we report using yeast 2-hybrid, immunoprecipitation, and electron microscopic analyses that TASK-3 channels are resident in mitochondria, where they regulate mitochondrial morphology, mitochondrial membrane potential, and aldosterone production. This study provides proof of principle that mitochondrial K+ channels, by modulating inner mitochondrial membrane morphology and mitochondrial membrane potential, have the ability to play a pathological role in aldosterone dysregulation in steroidogenic cells.
Collapse
Affiliation(s)
- Junlan Yao
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - David McHedlishvili
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - William E McIntire
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - Nick A Guagliardo
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - Alev Erisir
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - Craig A Coburn
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - Vincent P Santarelli
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - Douglas A Bayliss
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - Paula Q Barrett
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.).
| |
Collapse
|
37
|
Kang Y, Baker MJ, Liem M, Louber J, McKenzie M, Atukorala I, Ang CS, Keerthikumar S, Mathivanan S, Stojanovski D. Tim29 is a novel subunit of the human TIM22 translocase and is involved in complex assembly and stability. eLife 2016; 5. [PMID: 27554484 PMCID: PMC5016092 DOI: 10.7554/elife.17463] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/14/2016] [Indexed: 12/14/2022] Open
Abstract
The TIM22 complex mediates the import of hydrophobic carrier proteins into the mitochondrial inner membrane. While the TIM22 machinery has been well characterised in yeast, the human complex remains poorly characterised. Here, we identify Tim29 (C19orf52) as a novel, metazoan-specific subunit of the human TIM22 complex. The protein is integrated into the mitochondrial inner membrane with it's C-terminus exposed to the intermembrane space. Tim29 is required for the stability of the TIM22 complex and functions in the assembly of hTim22. Furthermore, Tim29 contacts the Translocase of the Outer Mitochondrial Membrane, TOM complex, enabling a mechanism for transport of hydrophobic carrier substrates across the aqueous intermembrane space. Identification of Tim29 highlights the significance of analysing mitochondrial import systems across phylogenetic boundaries, which can reveal novel components and mechanisms in higher organisms.
Collapse
Affiliation(s)
- Yilin Kang
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Michael James Baker
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Michael Liem
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Jade Louber
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Matthew McKenzie
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Melbourne, Australia
| | - Ishara Atukorala
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Ching-Seng Ang
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Shivakumar Keerthikumar
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
38
|
Fielden LF, Kang Y, Newton HJ, Stojanovski D. Targeting mitochondria: how intravacuolar bacterial pathogens manipulate mitochondria. Cell Tissue Res 2016; 367:141-154. [PMID: 27515462 DOI: 10.1007/s00441-016-2475-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 07/07/2016] [Indexed: 02/07/2023]
Abstract
Manipulation of host cell function by bacterial pathogens is paramount for successful invasion and creation of a niche conducive to bacterial replication. Mitochondria play a role in many important cellular processes including energy production, cellular calcium homeostasis, lipid metabolism, haeme biosynthesis, immune signalling and apoptosis. The sophisticated integration of host cell processes by the mitochondrion have seen it emerge as a key target during bacterial infection of human host cells. This review highlights the targeting and interaction of this dynamic organelle by intravacuolar bacterial pathogens and the way that the modulation of mitochondrial function might contribute to pathogenesis.
Collapse
Affiliation(s)
- Laura F Fielden
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yilin Kang
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3000, Australia.
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
39
|
Wu J, Bao A, Chatterjee K, Wan Y, Hopper AK. Genome-wide screen uncovers novel pathways for tRNA processing and nuclear-cytoplasmic dynamics. Genes Dev 2016; 29:2633-44. [PMID: 26680305 PMCID: PMC4699390 DOI: 10.1101/gad.269803.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this resource, Wu et al. present the first comprehensive unbiased analysis of the role of nearly an entire proteome in tRNA biology and describe 162 novel and 12 previously known Saccharomyces cerevisiae gene products that function in tRNA processing, turnover, and subcellular movement. The findings from this genome-wide screen describe putative novel pathways for tRNA nuclear export and extensive links between tRNA biology and other aspects of cell physiology. Transfer ribonucleic acids (tRNAs) are essential for protein synthesis. However, key gene products involved in tRNA biogenesis and subcellular movement remain to be discovered. We conducted the first comprehensive unbiased analysis of the role of nearly an entire proteome in tRNA biology and describe 162 novel and 12 previously known Saccharomyces cerevisiae gene products that function in tRNA processing, turnover, and subcellular movement. tRNA nuclear export is of particular interest because it is essential, but the known tRNA exporters (Los1 [exportin-t] and Msn5 [exportin-5]) are unessential. We report that mutations of CRM1 (Exportin-1), MEX67/MTR2 (TAP/p15), and five nucleoporins cause accumulation of unspliced tRNA, a hallmark of defective tRNA nuclear export. CRM1 mutation genetically interacts with los1Δ and causes altered tRNA nuclear–cytoplasmic distribution. The data implicate roles for the protein and mRNA nuclear export machineries in tRNA nuclear export. Mutations of genes encoding actin cytoskeleton components and mitochondrial outer membrane proteins also cause accumulation of unspliced tRNA, likely due to defective splicing on mitochondria. Additional gene products, such as chromatin modification enzymes, have unanticipated effects on pre-tRNA end processing. Thus, this genome-wide screen uncovered putative novel pathways for tRNA nuclear export and extensive links between tRNA biology and other aspects of cell physiology.
Collapse
Affiliation(s)
- Jingyan Wu
- Department of Molecular Genetics, Center for RNA biology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | - Kunal Chatterjee
- Department of Molecular Genetics, Center for RNA biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Yao Wan
- Department of Molecular Genetics, Center for RNA biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Anita K Hopper
- Department of Molecular Genetics, Center for RNA biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
40
|
Chatty Mitochondria: Keeping Balance in Cellular Protein Homeostasis. Trends Cell Biol 2016; 26:577-586. [PMID: 27004699 DOI: 10.1016/j.tcb.2016.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/16/2016] [Accepted: 03/01/2016] [Indexed: 12/25/2022]
Abstract
Mitochondria are multifunctional cellular organelles that host many biochemical pathways including oxidative phosphorylation (OXPHOS). Defective mitochondria pose a threat to cellular homeostasis and compensatory responses exist to curtail the source of stress and/or its consequences. The mitochondrial proteome comprises proteins encoded by the nuclear and mitochondrial genomes. Disturbances in protein homeostasis may originate from mistargeting of nuclear encoded mitochondrial proteins. Defective protein import and accumulation of mistargeted proteins leads to stress that triggers translation alterations and proteasomal activation. These cytosolic pathways are complementary to the mitochondrial unfolded protein response (UPRmt) that aims to increase the capacity of protein quality control mechanisms inside mitochondria. They constitute putative targets for interventions aimed at increasing the fitness, stress resistance, and longevity of cells and organisms.
Collapse
|
41
|
Yamano K, Matsuda N, Tanaka K. The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep 2016; 17:300-16. [PMID: 26882551 DOI: 10.15252/embr.201541486] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022] Open
Abstract
The quality of mitochondria, essential organelles that produce ATP and regulate numerous metabolic pathways, must be strictly monitored to maintain cell homeostasis. The loss of mitochondrial quality control systems is acknowledged as a determinant for many types of neurodegenerative diseases including Parkinson's disease (PD). The two gene products mutated in the autosomal recessive forms of familial early-onset PD, Parkin and PINK1, have been identified as essential proteins in the clearance of damaged mitochondria via an autophagic pathway termed mitophagy. Recently, significant progress has been made in understanding how the mitochondrial serine/threonine kinase PINK1 and the E3 ligase Parkin work together through a novel stepwise cascade to identify and eliminate damaged mitochondria, a process that relies on the orchestrated crosstalk between ubiquitin/phosphorylation signaling and autophagy. In this review, we highlight our current understanding of the detailed molecular mechanisms governing Parkin-/PINK1-mediated mitophagy and the evidences connecting Parkin/PINK1 function and mitochondrial clearance in neurons.
Collapse
Affiliation(s)
- Koji Yamano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
42
|
Banerjee R, Gladkova C, Mapa K, Witte G, Mokranjac D. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein. eLife 2015; 4:e11897. [PMID: 26714107 PMCID: PMC4749553 DOI: 10.7554/elife.11897] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 12/28/2015] [Indexed: 12/18/2022] Open
Abstract
The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins.
Collapse
Affiliation(s)
- Rupa Banerjee
- Biomedical Center Munich, Department of Physiological Chemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Christina Gladkova
- Biomedical Center Munich, Department of Physiological Chemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Koyeli Mapa
- Biomedical Center Munich, Department of Physiological Chemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Gregor Witte
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Dejana Mokranjac
- Biomedical Center Munich, Department of Physiological Chemistry, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
43
|
Richardson J, Irving L, Hyslop LA, Choudhary M, Murdoch A, Turnbull DM, Herbert M. Concise reviews: Assisted reproductive technologies to prevent transmission of mitochondrial DNA disease. Stem Cells 2015; 33:639-45. [PMID: 25377180 PMCID: PMC4359624 DOI: 10.1002/stem.1887] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/26/2014] [Accepted: 10/11/2014] [Indexed: 12/31/2022]
Abstract
While the fertilized egg inherits its nuclear DNA from both parents, the mitochondrial DNA is strictly maternally inherited. Cells contain multiple copies of mtDNA, each of which encodes 37 genes, which are essential for energy production by oxidative phosphorylation. Mutations can be present in all, or only in some copies of mtDNA. If present above a certain threshold, pathogenic mtDNA mutations can cause a range of debilitating and fatal diseases. Here, we provide an update of currently available options and new techniques under development to reduce the risk of transmitting mtDNA disease from mother to child. Preimplantation genetic diagnosis (PGD), a commonly used technique to detect mutations in nuclear DNA, is currently being offered to determine the mutation load of embryos produced by women who carry mtDNA mutations. The available evidence indicates that cells removed from an eight-cell embryo are predictive of the mutation load in the entire embryo, indicating that PGD provides an effective risk reduction strategy for women who produce embryos with low mutation loads. For those who do not, research is now focused on meiotic nuclear transplantation techniques to uncouple the inheritance of nuclear and mtDNA. These approaches include transplantation of any one of the products or female meiosis (meiosis II spindle, or either of the polar bodies) between oocytes, or the transplantation of pronuclei between fertilized eggs. In all cases, the transferred genetic material arises from a normal meiosis and should therefore, not be confused with cloning. The scientific progress and associated regulatory issues are discussed. Stem Cells2015;33:639–645
Collapse
Affiliation(s)
- Jessica Richardson
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, United Kingdom; Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
44
|
Young MJ, Humble MM, DeBalsi KL, Sun KY, Copeland WC. POLG2 disease variants: analyses reveal a dominant negative heterodimer, altered mitochondrial localization and impaired respiratory capacity. Hum Mol Genet 2015; 24:5184-97. [PMID: 26123486 PMCID: PMC4550827 DOI: 10.1093/hmg/ddv240] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/02/2015] [Accepted: 06/22/2015] [Indexed: 01/14/2023] Open
Abstract
Human mitochondrial DNA (mtDNA) is replicated and repaired by the mtDNA polymerase gamma, polγ. Polγ is composed of three subunits encoded by two nuclear genes: (1) POLG codes for the 140-kilodalton (kDa) catalytic subunit, p140 and (2) POLG2 encodes the ∼110-kDa homodimeric accessory subunit, p55. Specific mutations are associated with POLG- or POLG2-related disorders. During DNA replication the p55 accessory subunit binds to p140 and increases processivity by preventing polγ's dissociation from the template. To date, studies have demonstrated that homodimeric p55 disease variants are deficient in the ability to stimulate p140; however, all patients currently identified with POLG2-related disorders are heterozygotes. In these patients, we expect p55 to occur as 25% wild-type (WT) homodimers, 25% variant homodimers and 50% heterodimers. We report the development of a tandem affinity strategy to isolate p55 heterodimers. The WT/G451E p55 heterodimer impairs polγ function in vitro, demonstrating that the POLG2 c.1352G>A/p.G451E mutation encodes a dominant negative protein. To analyze the subcellular consequence of disease mutations in HEK293 cells, we designed plasmids encoding p55 disease variants tagged with green fluorescent protein (GFP). P205R and L475DfsX2 p55 variants exhibit irregular diffuse mitochondrial fluorescence and unlike WT p55, they fail to form distinct puncta associated with mtDNA nucleoids. Furthermore, homogenous preparations of P205R and L475DfsX2 p55 form aberrant reducible multimers. We predict that abnormal protein folding or aggregation or both contribute to the pathophysiology of these disorders. Examination of mitochondrial bioenergetics in stable cell lines overexpressing GFP-tagged p55 variants revealed impaired mitochondrial reserve capacity.
Collapse
Affiliation(s)
- Matthew J Young
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - Margaret M Humble
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - Karen L DeBalsi
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - Kathie Y Sun
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| |
Collapse
|
45
|
Hudson DA, Thorpe C. Mia40 is a facile oxidant of unfolded reduced proteins but shows minimal isomerase activity. Arch Biochem Biophys 2015; 579:1-7. [PMID: 26014136 PMCID: PMC4500674 DOI: 10.1016/j.abb.2015.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 01/22/2023]
Abstract
Mia40 participates in oxidative protein folding within the mitochondrial intermembrane space (IMS) by mediating the transfer of reducing equivalents from client proteins to FAD-linked oxidoreductases of the Erv1 family (lfALR in mammals). Here we investigate the specificity of the human Mia40/lfALR system towards non-cognate unfolded protein substrates to assess whether the efficient introduction of disulfides requires a particular amino acid sequence context or the presence of an IMS targeting signal. Reduced pancreatic ribonuclease A (rRNase), avian lysozyme, and riboflavin binding protein are all competent substrates of the Mia40/lfALR system, although they lack those sequence features previously thought to direct disulfide bond formation in cognate IMS substrates. The oxidation of rRNase by Mia40 does not limit overall turnover of unfolded substrate by the Mia40/lfALR system. Mia40 is an ineffective protein disulfide isomerase when its ability to restore enzymatic activity from scrambled RNase is compared to that of protein disulfide isomerase. Mia40's ability to bind amphipathic peptides is evident by avid binding to the isolated B-chain during the insulin reductase assay. In aggregate these data suggest that the Mia40/lfALR system has a broad sequence specificity and that potential substrates may be protected from adventitious oxidation by kinetic sequestration within the mitochondrial IMS.
Collapse
Affiliation(s)
- Devin A Hudson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
46
|
A Perspective on Transport of Proteins into Mitochondria: A Myriad of Open Questions. J Mol Biol 2015; 427:1135-58. [DOI: 10.1016/j.jmb.2015.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 11/22/2022]
|
47
|
Optimized two-color super resolution imaging of Drp1 during mitochondrial fission with a slow-switching Dronpa variant. Proc Natl Acad Sci U S A 2014; 111:13093-8. [PMID: 25149858 DOI: 10.1073/pnas.1320044111] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We studied the single-molecule photo-switching properties of Dronpa, a green photo-switchable fluorescent protein and a popular marker for photoactivated localization microscopy. We found the excitation light photoactivates as well as deactivates Dronpa single molecules, hindering temporal separation and limiting super resolution. To resolve this limitation, we have developed a slow-switching Dronpa variant, rsKame, featuring a V157L amino acid substitution proximal to the chromophore. The increased steric hindrance generated by the substitution reduced the excitation light-induced photoactivation from the dark to fluorescent state. To demonstrate applicability, we paired rsKame with PAmCherry1 in a two-color photoactivated localization microscopy imaging method to observe the inner and outer mitochondrial membrane structures and selectively labeled dynamin related protein 1 (Drp1), responsible for membrane scission during mitochondrial fission. We determined the diameter and length of Drp1 helical rings encircling mitochondria during fission and showed that, whereas their lengths along mitochondria were not significantly changed, their diameters decreased significantly. These results suggest support for the twistase model of Drp1 constriction, with potential loss of subunits at the helical ends.
Collapse
|
48
|
Napoli E, Wong S, Hung C, Ross-Inta C, Bomdica P, Giulivi C. Defective mitochondrial disulfide relay system, altered mitochondrial morphology and function in Huntington's disease. Hum Mol Genet 2013; 22:989-1004. [PMID: 23197653 PMCID: PMC8482967 DOI: 10.1093/hmg/dds503] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/07/2012] [Accepted: 11/26/2012] [Indexed: 01/09/2024] Open
Abstract
A number of studies have been conducted that link mitochondrial dysfunction (MD) to Huntington's disease (HD); however, contradicting results had resulted in a lack of a clear mechanism that links expression of mutant Huntingtin protein and MD. Mouse homozygous (HM) and heterozygous (HT) mutant striatal cells with two or one allele encoding for a mutant huntingtin protein with 111 polyGln repeats showed a significant impairment of the mitochondrial disulfide relay system (MDRS). This system (consisting of two proteins, Gfer and Mia40) is involved in the mitochondrial import of Cys-rich proteins. The Gfer-to-Mia40 ratio was significantly altered in HM cells compared with controls, along with the expression of mitochondrial proteins considered substrates of the MDRS. In progenitors and differentiated neuron-like HM cells, impairment of MDRS were accompanied by deficient oxidative phosphorylation, Complex I, IV and V activities, decreased mtDNA copy number and transcripts, accumulation of mtDNA deletions and changes in mitochondrial morphology, consistent with other MDRS-deficient biological models, thus providing a framework for the energy deficits observed in this HD model. The majority (>90%) of the mitochondrial outcomes exhibited a gene-dose dependency with the expression of mutant Htt. Finally, decreases in the mtDNA copy number, along with the accumulation of mtDNA deletions, provide a mechanism for the progressive neurodegeneration observed in HD patients.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, University of California
Davis, Davis, CA 95616, USA
| | - Sarah Wong
- Department of Molecular Biosciences, University of California
Davis, Davis, CA 95616, USA
| | - Connie Hung
- Department of Molecular Biosciences, University of California
Davis, Davis, CA 95616, USA
| | - Catherine Ross-Inta
- Department of Molecular Biosciences, University of California
Davis, Davis, CA 95616, USA
| | - Prithvi Bomdica
- Department of Molecular Biosciences, University of California
Davis, Davis, CA 95616, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, University of California
Davis, Davis, CA 95616, USA
| |
Collapse
|