1
|
Qian Y, Liu Z, Liu Q, Tian X, Mo J, Leng L, Wang C, Xu G, Zhang S, Xie J. Transduction of Lentiviral Vectors and ADORA3 in HEK293T Cells Modulated in Gene Expression and Alternative Splicing. Int J Mol Sci 2025; 26:4431. [PMID: 40362672 PMCID: PMC12072217 DOI: 10.3390/ijms26094431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
For steady transgenic expression, lentiviral vector-mediated gene delivery is a commonly used technique. One question that needs to be explored is how external lentiviral vectors and overexpressed genes perturb cellular homeostasis, potentially altering transcriptional networks. In this study, two Human Embryonic Kidney 293T (HEK293T)-derived cell lines were established via lentiviral transduction, one overexpressing green fluorescent protein (GFP) and the other co-overexpressing GFP and ADORA3 following puromycin selection to ensure stable genomic integration. Genes with differentially transcript utilization (gDTUs) and differentially expressed genes (DEGs) across cell lines were identified after short-read and long-read RNA-seq. Only 31 genes were discovered to have changed in expression when GFP was expressed, although hundreds of genes showed variations in transcript use. In contrast, even when co-overexpression of GFP and ADORA3 alters the expression of more than 1000 genes, there are still less than 1000 gDTUs. Moreover, DEGs linked to ADORA3 overexpression play a major role in RNA splicing, whereas gDTUs are highly linked to a number of malignancies and the molecular mechanisms that underlie them. For the analysis of gene expression data from stable cell lines derived from HEK293T, our findings provide important insights into changes in gene expression and alternative splicing.
Collapse
Affiliation(s)
- Yongqi Qian
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.Q.); (Q.L.); (X.T.)
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (L.L.); (C.W.); (G.X.)
| | - Zhaoyu Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (L.L.); (C.W.); (G.X.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Qingqing Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.Q.); (Q.L.); (X.T.)
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (L.L.); (C.W.); (G.X.)
| | - Xiaojuan Tian
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.Q.); (Q.L.); (X.T.)
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (L.L.); (C.W.); (G.X.)
| | - Jing Mo
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (L.L.); (C.W.); (G.X.)
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (L.L.); (C.W.); (G.X.)
| | - Can Wang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (L.L.); (C.W.); (G.X.)
| | - Guoqing Xu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.L.); (J.M.); (L.L.); (C.W.); (G.X.)
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiang Xie
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.Q.); (Q.L.); (X.T.)
| |
Collapse
|
2
|
Brischigliaro M, Ahn A, Hong S, Fontanesi F, Barrientos A. Emerging mechanisms of human mitochondrial translation regulation. Trends Biochem Sci 2025:S0968-0004(25)00056-8. [PMID: 40221217 DOI: 10.1016/j.tibs.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 04/14/2025]
Abstract
Mitochondrial translation regulation enables precise control over the synthesis of hydrophobic proteins encoded by the organellar genome, orchestrating their membrane insertion, accumulation, and assembly into oxidative phosphorylation (OXPHOS) complexes. Recent research highlights regulation across all translation stages (initiation, elongation, termination, and recycling) through a complex interplay of mRNA structures, specialized translation factors, and unique regulatory mechanisms that adjust protein levels for stoichiometric assembly. Key discoveries include mRNA-programmed ribosomal pausing, frameshifting, and termination-dependent re-initiation, which fine-tune protein synthesis and promote translation of overlapping open reading frames (ORFs) in bicistronic transcripts. In this review, we examine these advances, which are significantly enhancing our understanding of mitochondrial gene expression.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB # 7094A, Miami, FL 33136, USA
| | - Ahram Ahn
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA
| | - Seungwoo Hong
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA.
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB # 7094A, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA; The Miami Veterans Affairs (VA) Medical System, 1201 NW 16th Street, Miami, FL 33125, USA.
| |
Collapse
|
3
|
Rodriguez-Martinez A, Young-Baird SK. Polysome profiling is an extensible tool for the analysis of bulk protein synthesis, ribosome biogenesis, and the specific steps in translation. Mol Biol Cell 2025; 36:mr2. [PMID: 40042939 PMCID: PMC12005114 DOI: 10.1091/mbc.e24-08-0341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Protein synthesis is an essential and highly regulated cellular process. Here, we demonstrate the versatility of polysome profiling-a methodology traditionally used to assess levels of protein synthesis-to monitor ribosomal integrity and modulation of specific steps in mRNA translation. Using expanded polysome profiling methodologies, we systematically illustrate defects in ribosome biogenesis, translation initiation, and translational elongation in different cellular conditions. We additionally provide instruction for how a modified polysome profiling protocol can be leveraged to identify and characterize the function of factors that regulate protein synthesis. These methodologies are broadly applicable to a range of physiological conditions and human diseases in which ribosome biogenesis or the phases of protein synthesis are distinctly regulated or dysregulated.
Collapse
Affiliation(s)
- Ambar Rodriguez-Martinez
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817
| | - Sara K. Young-Baird
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814
| |
Collapse
|
4
|
Chu CM, Sabbineni B, Cen HH, Hu X, Sun WG, Brownrigg GP, Xia YH, Rogalski J, Johnson JD. Signal transduction pathways controlling Ins2 gene activity and beta cell state transitions. iScience 2025; 28:112015. [PMID: 40144638 PMCID: PMC11938086 DOI: 10.1016/j.isci.2025.112015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 02/10/2025] [Indexed: 03/28/2025] Open
Abstract
Pancreatic β cells exist in low and high insulin gene activity states that are dynamic on a scale of hours to days. Here, we used live 3D imaging, mass spectrometry proteomics, and targeted perturbations of β cell signaling to comprehensively investigate Ins2(GFP)HIGH and Ins2(GFP)LOW β cell states. We identified the two Ins2 gene activity states in intact isolated islets and showed that cells in the same state were more likely to be nearer to each other. We report the proteomes of pure β cells to a depth of 5555 proteins and show that β cells with high Ins2 gene activity had reduced β cell immaturity factors, as well as increased translation. We identified activators of cAMP signaling (GLP1, IBMX) as powerful drivers of Ins2(GFP)LOW to Ins2(GFP)HIGH transitions. Okadaic acid and cyclosporine A had the opposite effects. This study provides new insight into the proteomic profiles and regulation of β cell states.
Collapse
Affiliation(s)
- Chieh Min Chu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Bhavya Sabbineni
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Haoning Howard Cen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Xiaoke Hu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - WenQing Grace Sun
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - George P. Brownrigg
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Yi Han Xia
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Jason Rogalski
- Proteomics and Metabolomics Core Facility, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Welfer GA, Brady RA, Natchiar SK, Watson ZL, Rundlet EJ, Alejo JL, Singh AP, Mishra NK, Altman RB, Blanchard SC. Impacts of ribosomal RNA sequence variation on gene expression and phenotype. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230379. [PMID: 40045785 PMCID: PMC11883441 DOI: 10.1098/rstb.2023.0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/19/2024] [Accepted: 01/06/2025] [Indexed: 03/09/2025] Open
Abstract
Since the framing of the Central Dogma, it has been speculated that physically distinct ribosomes within cells may influence gene expression and cellular physiology. While heterogeneity in ribosome composition has been reported in bacteria, protozoans, fungi, zebrafish, mice and humans, its functional implications remain actively debated. Here, we review recent evidence demonstrating that expression of conserved variant ribosomal DNA (rDNA) alleles in bacteria, mice and humans renders their actively translating ribosome pool intrinsically heterogeneous at the level of ribosomal RNA (rRNA). In this context, we discuss reports that nutrient limitation-induced stress in Escherichia coli leads to changes in variant rRNA allele expression, programmatically altering transcription and cellular phenotype. We highlight that cells expressing ribosomes from distinct operons exhibit distinct drug sensitivities, which can be recapitulated in vitro and potentially rationalized by subtle perturbations in ribosome structure or in their dynamic properties. Finally, we discuss evidence that differential expression of variant rDNA alleles results in different populations of ribosome subtypes within mammalian tissues. These findings motivate further research into the impacts of rRNA heterogeneities on ribosomal function and predict that strategies targeting distinct ribosome subtypes may hold therapeutic potential.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Griffin A. Welfer
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Ryan A. Brady
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - S. Kundhavai Natchiar
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Zoe L. Watson
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Emily J. Rundlet
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712, USA
| | - Jose L. Alejo
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Anand P. Singh
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Nitish K. Mishra
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Roger B. Altman
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Scott C. Blanchard
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| |
Collapse
|
6
|
Gilloteaux J, Charlier C, Suain V, Nicaise C. Astrocyte alterations during Osmotic Demyelination Syndrome: intermediate filaments, aggresomes, proteasomes, and glycogen storages. Ultrastruct Pathol 2025; 49:170-215. [PMID: 40062739 DOI: 10.1080/01913123.2025.2468700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 03/27/2025]
Abstract
INTRODUCTION A murine model mimicking the human osmotic demyelination syndrome (ODS) revealed with histology demyelinated alterations in the relay posterolateral (VPL) and ventral posteromedial (VPM) thalamic nuclei 12 h and 48 h after chronic hyponatremia due to a fast reinstatement of osmolality. Abnormal expression astrocyte markers ALDHL1 and GFAP with immunohistochemistry in these ODS altered zones, prompted aims to verify in both protoplasmic and fibrillar astrocytes with ultrastructure those changes and other associated subcellular modifications. METHOD This ODS investigation included four groups of mice: Sham (NN; n = 13), hyponatremic (HN; n = 11), those sacrificed 12 h after a fast restoration of normal natremia (ODS12h; n = 6), and mice sacrificed 48 h afterward, or ODS48 h (n = 9). Out of those four groups of mice, with LM and ultrastructure microscopy, the thalamic zones included NN (n = 2), HN (n = 2), ODS12h (n = 3) and ODS48h (n = 3) samples. There, comparisons between astrocytes included organelles, GFAP, and glycogen content changes. RESULTS Thalamic ODS epicenter damages comprised both protoplasmic (PA) and fibrillar (FA) astrocyte necroses along with those of neuropil destructions and neuron Wallerian demyelinated injuries surrounded by a centrifugal region gradient revealing worse to mild destructions. Ultrastructure aspects of resilient HN and ODS12h PAs disclosed altered mitochondria and accumulations of beta- to alpha-glycogen granules that became eventually captured into phagophores as glycophagosomes in ODS48h. HN and ODS12h time lapse FAs accumulated ribonucleoproteins, cytoskeletal aggresomes, and proteasomes but distant and resilient ODS48h FAs maintained GFAP fibrils along with typical mitochondria and dispersed β-glycogen, including in their neuropil surroundings. Thus, ODS triggered astrocyte injuries that involved both post-transcriptional and post-translational modifications such that astrocytes were unable to use glycogen and metabolites due to their own mitochondria defects while accumulated stalled ribonucleoproteins, cytoskeletal aggresomes were associated with proteasomes and GFAP ablation. Resilient but distant astrocytes revealed restitution of amphibolism where typical carbohydrate storages were revealed along with GFAP, as tripartite extensions supply for restored nerve axon initial segments, neural Ranvier's junctions, and oligodendrocyte -neuron junctional contacts. CONCLUSION ODS caused astrocyte damage associated with adjacent neuropil destruction that included a regional demyelination caused by a loss of dispatched energetic and metabolic exchanges within the injured region, bearing proportional and collateral centrifugal injuries, which involved reactive repairs time after rebalanced osmolarity.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Medicine, Laboratory of Neurodegeneration and Regeneration URPHyM, NARILIS, University of Namur, Namur, Belgium
- Department of Anatomical Sciences, St George's University School of Medicine, KB Taylor Global Scholar's Program at the Northumbria University, Newcastle upon Tyne, UK
| | - Corry Charlier
- Electron Microscopy Platform, MORPH-IM, Université de Namur, Bruxelles, Belgium
| | - Valérie Suain
- CMMI - The Center for Microscopy and Molecular Imaging, Gosselies, Belgium
| | - Charles Nicaise
- Department of Medicine, Laboratory of Neurodegeneration and Regeneration URPHyM, NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
7
|
Wood QW, Mastracci TL. Analysis of translational regulation using polysome profiling and puromycin incorporation. Methods Enzymol 2025; 715:211-230. [PMID: 40382139 DOI: 10.1016/bs.mie.2025.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Translation is the process of decoding an mRNA transcript to permit the synthesis of a protein. This process occurs in three steps: initiation, elongation, and termination. Each step of translation is regulated by translation factors. By regulating translation, the quantity and quality of proteins can be controlled. When translation becomes dysfunctional, disease can ensue, making translational regulation an important avenue of research. Polysome profiling and puromycin incorporation are experimental techniques used in concert to analyze the translational state of cells or tissues. Polysome profiling evaluates the state of translation by quantifying mRNAs based on the abundance of associated ribosomes. Puromycin incorporation measures the amount of newly synthesized protein. Together these methodologies can decipher stark and subtle changes in the rate and efficiency of translation, and provide the opportunity to dissect alterations to the translation of specific transcripts.
Collapse
Affiliation(s)
- Quinton W Wood
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN, United States
| | - Teresa L Mastracci
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN, United States; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
8
|
Collier CP, Bolmatov D, Lydic R, Katsaras J. Neuronal Plasma Membranes as Supramolecular Assemblies for Biological Memory. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2973-2979. [PMID: 39825832 DOI: 10.1021/acs.langmuir.4c03375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Biological memory is the ability to develop, retain, and retrieve information over time. Currently, it is widely accepted that memories are stored in synapses (i.e., connections between brain cells throughout the brain) through a process known as synaptic plasticity, which leads to either long-term potentiation (LTP) or long-term depression (LTD). However, the strengthening (LTP) and weakening (LTD) of synapses involve post-translational modifications to neural networks requiring de novo gene expression, a lengthy and energetically expensive process. Recently, we observed that lipid bilayers in the absence of peptides/proteins are capable of LTP, not unlike what has been observed in mammals and birds. As such, this finding has prompted us to postulate that the lipid bilayer provides a good model for understanding the molecular basis of biological memory. In this article, we discuss the status, challenges, and opportunities of neuronal plasma membranes as structures for biological memory and learning, therapeutic targets for various brain disorders, and platforms for neural network developments.
Collapse
Affiliation(s)
- C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Dima Bolmatov
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ralph Lydic
- Department of Psychology, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - John Katsaras
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
9
|
Zhu Z, Bo D, Xie C, Dai D, Peng D, Sun M, Zheng J. Integrative multi-omics analysis reveals the translational landscape of the plant-parasitic nematode Meloidogyne incognita. Commun Biol 2025; 8:140. [PMID: 39875506 PMCID: PMC11775120 DOI: 10.1038/s42003-025-07533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Root-knot nematodes (RKNs) of the genus Meloidogyne pose the most significant threats to global food security due to their destructive nature as plant-parasitic nematodes. Although significant attention has been devoted to investigating the gene transcription profiling of RKNs, our understanding of the translational landscape of RKNs remains limited. In this study, we elucidated the translational landscape of Meloidogyne incognita through the integration of translatome, transcriptome and quantitative proteome analyses. Our findings revealed numerous previously unannotated translation events and refined the genome annotation. By investigating the genome-wide translational dynamics of M. incognita during parasitism, we revealed that the genes of M. incognita undergo parasitic stage-specific regulation at the translational level. Interestingly, we identified 470 micropeptides (containing fewer than 100 amino acids) with the potential to function as effectors. Additionally, we observed that the effector-coding genes in M. incognita exhibit higher translation efficiency (TE). Further analysis suggests that M. incognita has the potential to regulate the TE of effector-coding genes without simultaneous alterations in their transcript abundance, facilitating effector synthesis. Collectively, our study provides comprehensive datasets and explores the genome-wide translational landscape of M. incognita, shedding light on the contributions of translational regulation during parasitism.
Collapse
Affiliation(s)
- Zhaolu Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dexin Bo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanshuai Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dadong Dai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Donghai Peng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Chen B, Li L, Huang Y, Ma J, Ji F, Chen Y, Wu L, Peng H. N 6-methyladenosine in 28S rRNA promotes oncogenic mRNA translation and tyrosine catabolism. Cell Rep 2025; 44:115139. [PMID: 39739529 DOI: 10.1016/j.celrep.2024.115139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/28/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025] Open
Abstract
Aberrant N6-methyladenosine (m6A) modification on mRNA results in dysregulated mRNA translation and cancer progression; however, the role of m6A modification on rRNA remains unclear in cancers. Here, we show that ZCCHC4 and its mediated m6A modification on 28S rRNA are upregulated in various cancers and correlated with poor survival. Functionally, ZCCHC4 promotes intrahepatic cholangiocarcinoma (ICC) progression via its catalytic activity. Mechanistically, tether of the N6-adenineMIase domain of ZCCHC4 to the m6A site on 28S rRNA facilitates the binding of the zf-GRF-containing domain to eIF3G in the translation initiation complex and the binding of zf-DHHC-containing domain to the 3' UTR of mRNA, therefore facilitating mRNA circularization and translation. Further analysis reveals that HPD mediates ZCCHC4's functions on tyrosine catabolism and ICC progression, and targeting HPD inhibits ICC progression in vivo. Overall, our findings uncover insights underlying mRNA translation control and provide a molecular basis for targeting the ZCCHC4-HPD axis in ICC.
Collapse
Affiliation(s)
- Binbin Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Clinical Nutrition, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Li Li
- Department of Breast Center, Wuzhou Red Cross Hospital, 3-1 Xinxing First Road, Wuzhou 543001, P.R. China
| | - Ying Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jieyi Ma
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Fei Ji
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, Yuexiu District, Guangzhou 510080, P.R. China
| | - Yilin Chen
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, Yuexiu District, Guangzhou 510080, P.R. China
| | - Lirong Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China.
| | - Hao Peng
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, Yuexiu District, Guangzhou 510080, P.R. China.
| |
Collapse
|
11
|
Wang Y, Tang Y, Xie Z, Wang H. RPFdb v3.0: an enhanced repository for ribosome profiling data and related content. Nucleic Acids Res 2025; 53:D293-D298. [PMID: 39319601 PMCID: PMC11701560 DOI: 10.1093/nar/gkae808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
RPFdb (http://www.rpfdb.org or http://sysbio.gzzoc.com/rpfdb/) is a comprehensive repository dedicated to hosting ribosome profiling (Ribo-seq) data and related content. Herein, we present RPFdb v3.0, a significant update featuring expanded data content and improved functionality. Key enhancements include (i) increased data coverage, now encompassing 5018 Ribo-seq datasets and 2343 matched RNA-seq datasets from 496 studies across 34 species; (ii) implementation of translation efficiency, combining Ribo-seq and RNA-seq data to provide gene-specific translation efficiency; (iii) addition of pausing score, facilitating the identification of condition-specific triplet amino acid motifs with enhanced ribosome enrichment; (iv) refinement of open reading frame (ORF) annotation, leveraging RibORF v2.0 for more sensitive detection of actively translated ORFs; (v) introduction of a resource hub, curating advances in translatome sequencing techniques and data analytics tools to support a panoramic overview of the field; and (vi) redesigned web interface, providing intuitive navigation with dedicated pages for streamlined data retrieval, comparison and visualization. These enhancements make RPFdb a more powerful and user-friendly resource for researchers in the field of translatomics. The database is freely accessible and regularly updated to ensure its continued relevance to the scientific community.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuewen Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Hongwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| |
Collapse
|
12
|
Tong M, Palmer N, Dailamy A, Kumar A, Khaliq H, Han S, Finburgh E, Wing M, Hong C, Xiang Y, Miyasaki K, Portell A, Rainaldi J, Suhardjo A, Nourreddine S, Chew WL, Kwon EJ, Mali P. Robust genome and cell engineering via in vitro and in situ circularized RNAs. Nat Biomed Eng 2025; 9:109-126. [PMID: 39187662 DOI: 10.1038/s41551-024-01245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/24/2024] [Indexed: 08/28/2024]
Abstract
Circularization can improve RNA persistence, yet simple and scalable approaches to achieve this are lacking. Here we report two methods that facilitate the pursuit of circular RNAs (cRNAs): cRNAs developed via in vitro circularization using group II introns, and cRNAs developed via in-cell circularization by the ubiquitously expressed RtcB protein. We also report simple purification protocols that enable high cRNA yields (40-75%) while maintaining low immune responses. These methods and protocols facilitate a broad range of applications in stem cell engineering as well as robust genome and epigenome targeting via zinc finger proteins and CRISPR-Cas9. Notably, cRNAs bearing the encephalomyocarditis internal ribosome entry enabled robust expression and persistence compared with linear capped RNAs in cardiomyocytes and neurons, which highlights the utility of cRNAs in these non-dividing cells. We also describe genome targeting via deimmunized Cas9 delivered as cRNA and a long-range multiplexed protein engineering methodology for the combinatorial screening of deimmunized protein variants that enables compatibility between persistence of expression and immunogenicity in cRNA-delivered proteins. The cRNA toolset will aid research and the development of therapeutics.
Collapse
Affiliation(s)
- Michael Tong
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Nathan Palmer
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Amir Dailamy
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Aditya Kumar
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Hammza Khaliq
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sangwoo Han
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Emma Finburgh
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Madeleine Wing
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Camilla Hong
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Yichen Xiang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Katelyn Miyasaki
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Andrew Portell
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Joseph Rainaldi
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Amanda Suhardjo
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sami Nourreddine
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ester J Kwon
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Yang C, Ali T, Li A, Gao R, Yu X, Li S, Li T. Ketamine reverses chronic corticosterone-induced behavioral deficits and hippocampal synaptic dysfunction by regulating eIF4E/BDNF signaling. Neuropharmacology 2024; 261:110156. [PMID: 39326783 DOI: 10.1016/j.neuropharm.2024.110156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Major depressive disorder (MDD) is a debilitating illness with a high global burden. While Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, offers rapid-acting antidepressant effects, its mechanism remains incompletely understood. Recent research suggests that dysregulation of mRNA translation via the Eukaryotic initiation factor 4E (eIF4E) pathway might contribute to depression pathophysiology. This study investigates whether Ketamine modulates eIF4E signaling in the hippocampus during its antidepressant action. Herein, adult male mice were exposed to Corticosterone, a well-established model for anxiety and depression, followed by behavioral testing and biochemical analysis. Corticosterone induced depression-like symptoms and disrupted synaptic function, including reduced TrkB/BDNF and eIF4E/MNK1/p-eIF2α/ubiquitin signaling. Ketamine treatment reversed these deficits. Notably, the eIF4E/MNK1 signaling inhibitor, eFT508, blocked Ketamine's antidepressant effect, leading to a return of depression-like phenotype and impaired synaptic signaling. Importantly, these effects were reversed by 7,8-DHF, a BDNF/TrkB signaling agonist. Mice treated with Corticosterone, Ketamine, and eFT508 and subsequently exposed to 7,8-DHF displayed normalized depression-like behaviors and restored synaptic signaling, including increased eIF4E phosphorylation and MNK1 expression. Besides, 7,8-DHF treatment enhanced p-eIF2α levels compared to the eFT508-treated group. These findings suggest that Ketamine exerts its antidepressant action through the regulation of the eIF4E/BDNF signaling pathway in the hippocampus. This study provides novel insights into the molecular mechanisms underlying Ketamine's therapeutic effects and highlights the potential of targeting this pathway for future MDD treatment strategies.
Collapse
Affiliation(s)
- Canyu Yang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China; State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Tahir Ali
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| | - Axiang Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China; State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Ruyan Gao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Xiaoming Yu
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People's Republic of China.
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Tao Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China; NHC Key Laboratory of Forensic Science, College of Forensic Medicine, Xi'an Jiaotong University. Xi'an, Shaanxi, People's Republic of China.
| |
Collapse
|
14
|
Suehiro T, Ahmad KM, Hoang NTD, Xu B, Komatsu H, Kurachi K, Nikawa H, Mine Y, Matsuki T, Asano K, Fujii M. Activation of platelet-derived growth factor receptors regulate connective tissue growth factor protein levels via the AKT pathway in malignant mesothelioma cells. J Biochem 2024; 176:460-471. [PMID: 39441675 DOI: 10.1093/jb/mvae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024] Open
Abstract
The incidence of malignant mesothelioma (MM), a disease linked to refractory asbestos exposure, continues to increase globally and remains largely resistant to various treatments. Our previous studies have identified a strong correlation between connective tissue growth factor (CTGF) protein expression and MM malignancy, underscoring the importance of understanding CTGF regulation in MM cells. In this study, we demonstrate for the first time that stimulation with platelet-derived growth factor receptor (PDGFR) ligand, PDGF-BB, increases CTGF protein expression levels without affecting CTGF mRNA levels. Inhibition of PDGFR resulted in a reduction of CTGF protein expression, indicating that PDGFR activation is essential in regulating CTGF protein expression in MM cells. PDGF-BB also activated the protein kinase B (AKT) pathway, and inhibition of AKT phosphorylation abolished the PDGFR-induced CTGF protein expression, suggesting that PDGFR acts upstream of CTGF via the AKT pathway. This reinforces the role of CTGF protein as a key regulator of MM malignancy. Additionally, PDGFR activation led to the phosphorylation of mTOR and 4E-BP1, critical regulators of protein synthesis downstream of AKT, suggesting that PDGFR controls CTGF protein expression through the regulation of CTGF mRNA translation.
Collapse
Affiliation(s)
- Tomoya Suehiro
- Department of Genomic Oncology and Oral Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan
| | - Khoja Mouhand Ahmad
- Department of Genomic Oncology and Oral Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan
| | - Nguyen Truong Duc Hoang
- Oncology Department, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, 217 Hong Bang, Ward 11, District 5, Ho Chi Minh 70000, Vietnam
| | - Bingwen Xu
- Department of Genomic Oncology and Oral Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan
| | - Honoka Komatsu
- Department of Genomic Oncology and Oral Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan
| | - Komei Kurachi
- Department of Genomic Oncology and Oral Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan
| | - Hiroki Nikawa
- Department of Oral Biology and Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan
| | - Yuichi Mine
- Department of Medical Systems Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan
| | - Tohru Matsuki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi, 480-0304, Japan
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Hiroshima Research Center for Healthy Aging, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Makiko Fujii
- Department of Genomic Oncology and Oral Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
15
|
Paukner D, Humphrey JD, Cyron CJ. Multiscale homogenized constrained mixture model of the bio-chemo-mechanics of soft tissue growth and remodeling. Biomech Model Mechanobiol 2024; 23:2115-2136. [PMID: 39419845 PMCID: PMC11554721 DOI: 10.1007/s10237-024-01884-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/05/2024] [Indexed: 10/19/2024]
Abstract
Constrained mixture models have successfully simulated many cases of growth and remodeling in soft biological tissues. So far, extensions of these models have been proposed to include either intracellular signaling or chemo-mechanical coupling on the organ-scale. However, no version of constrained mixture models currently exists that includes both aspects. Here, we propose such a version that resolves cellular signal processing by a set of logic-gated ordinary differential equations and captures chemo-mechanical interactions between cells by coupling a reaction-diffusion equation with the equations of nonlinear continuum mechanics. To demonstrate the potential of the model, we present 2 case studies within vascular solid mechanics: (i) the influence of angiotensin II on aortic growth and remodeling and (ii) the effect of communication between endothelial and intramural arterial cells via nitric oxide and endothelin-1.
Collapse
Affiliation(s)
- Daniel Paukner
- Institute for Continuum and Material Mechanics, Hamburg University of Technology, Hamburg, Germany
- Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Christian J Cyron
- Institute for Continuum and Material Mechanics, Hamburg University of Technology, Hamburg, Germany.
- Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany.
| |
Collapse
|
16
|
Solyga M, Majumdar A, Besse F. Regulating translation in aging: from global to gene-specific mechanisms. EMBO Rep 2024; 25:5265-5276. [PMID: 39562712 PMCID: PMC11624266 DOI: 10.1038/s44319-024-00315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
Aging is characterized by a decline in various biological functions that is associated with changes in gene expression programs. Recent transcriptome-wide integrative studies in diverse organisms and tissues have revealed a gradual uncoupling between RNA and protein levels with aging, which highlights the importance of post-transcriptional regulatory processes. Here, we provide an overview of multi-omics analyses that show the progressive uncorrelation of transcriptomes and proteomes during the course of healthy aging. We then describe the molecular changes leading to global downregulation of protein synthesis with age and review recent work dissecting the mechanisms involved in gene-specific translational regulation in complementary model organisms. These mechanisms include the recognition of regulated mRNAs by trans-acting factors such as miRNA and RNA-binding proteins, the condensation of mRNAs into repressive cytoplasmic RNP granules, and the pausing of ribosomes at specific residues. Lastly, we mention future challenges of this emerging field, possible buffering functions as well as potential links with disease.
Collapse
Affiliation(s)
- Mathilde Solyga
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Amitabha Majumdar
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, Maharashtra, India
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
17
|
Mostafa SM, Moore C. Cleavage and polyadenylation factors are potential regulators of adipogenesis. BMC Res Notes 2024; 17:242. [PMID: 39223634 PMCID: PMC11370009 DOI: 10.1186/s13104-024-06908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Alternative polyadenylation (APA) is a co-transcriptional process that leads to isoform diversity in the 3' ends of mRNAs. APA is known to occur during differentiation, and its dysregulation is observed in diseases like cancer and autoimmune disorders. It has been previously reported that differentiation of 3T3-L1 cells to adipocytes leads to an overall lengthening of mRNAs, but the proteins involved in this regulation have not been identified. The expression levels of subunits of the cleavage and polyadenylation (C/P) complex can regulate the choice of poly(A) site, which in turn can affect different cellular activities. In this paper, we studied the change in levels of C/P proteins during 3T3-L1 differentiation. RESULTS We observed that while the RNA expression of these proteins is unchanged during differentiation, the protein levels of some subunits do change, including a decrease in levels of CPSF73, the nuclease that cuts at the poly(A) site. However, overexpression of CPSF73 alone does not affect the efficiency and rate of differentiation.
Collapse
Affiliation(s)
- Salwa Mohd Mostafa
- Graduate School of Biomedical Sciences, Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Claire Moore
- Graduate School of Biomedical Sciences, Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
18
|
Wang X, Yang Q, Zhou X, Keene CD, Ryazanov AG, Ma T. Suppression of eEF2 phosphorylation alleviates synaptic failure and cognitive deficits in mouse models of Down syndrome. Alzheimers Dement 2024; 20:5357-5374. [PMID: 38934363 PMCID: PMC11350057 DOI: 10.1002/alz.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Cognitive impairment is a core feature of Down syndrome (DS), and the underlying neurobiological mechanisms remain unclear. Translation dysregulation is linked to multiple neurological disorders characterized by cognitive impairments. Phosphorylation of the translational factor eukaryotic elongation factor 2 (eEF2) by its kinase eEF2K results in inhibition of general protein synthesis. METHODS We used genetic and pharmacological methods to suppress eEF2K in two lines of DS mouse models. We further applied multiple approaches to evaluate the effects of eEF2K inhibition on DS pathophysiology. RESULTS We found that eEF2K signaling was overactive in the brain of patients with DS and DS mouse models. Inhibition of eEF2 phosphorylation through suppression of eEF2K in DS model mice improved multiple aspects of DS-associated pathophysiology including de novo protein synthesis deficiency, synaptic morphological defects, long-term synaptic plasticity failure, and cognitive impairments. DISCUSSION Our data suggested that eEF2K signaling dysregulation mediates DS-associated synaptic and cognitive impairments. HIGHLIGHTS Phosphorylation of the translational factor eukaryotic elongation factor 2 (eEF2) is increased in the Down syndrome (DS) brain. Suppression of the eEF2 kinase (eEF2K) alleviates cognitive deficits in DS models. Suppression of eEF2K improves synaptic dysregulation in DS models. Cognitive and synaptic impairments in DS models are rescued by eEF2K inhibitors.
Collapse
Affiliation(s)
- Xin Wang
- Department of Internal MedicineGerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Qian Yang
- Department of Internal MedicineGerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Xueyan Zhou
- Department of Internal MedicineGerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - C. Dirk Keene
- Department of PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Alexey G. Ryazanov
- Department of PharmacologyRutgers Robert Wood Johnson Medical SchoolPiscatawayNew JerseyUSA
| | - Tao Ma
- Department of Internal MedicineGerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of Translational NeuroscienceWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
19
|
Snow S, Mir DA, Ma Z, Horrocks J, Cox M, Ruzga M, Sayed H, Rogers AN. Neuronal CBP-1 is Required for Enhanced Body Muscle Proteostasis in Response to Reduced Translation Downstream of mTOR. FRONT BIOSCI-LANDMRK 2024; 29:264. [PMID: 39082355 PMCID: PMC11412575 DOI: 10.31083/j.fbl2907264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND The ability to maintain muscle function decreases with age and loss of proteostatic function. Diet, drugs, and genetic interventions that restrict nutrients or nutrient signaling help preserve long-term muscle function and slow age-related decline. Previously, it was shown that attenuating protein synthesis downstream of the mechanistic target of rapamycin (mTOR) gradually increases expression of heat shock response (HSR) genes in a manner that correlates with increased resilience to protein unfolding stress. Here, we investigate the role of specific tissues in mediating the cytoprotective effects of low translation. METHODS This study uses genetic tools (transgenic Caenorhabditis elegans (C. elegans), RNA interference and gene expression analysis) as well as physiological assays (survival and paralysis assays) in order to better understand how specific tissues contribute to adaptive changes involving cellular cross-talk that enhance proteostasis under low translation conditions. RESULTS We use the C. elegans system to show that lowering translation in neurons or the germline increases heat shock gene expression and survival under conditions of heat stress. In addition, we find that low translation in these tissues protects motility in a body muscle-specific model of proteotoxicity that results in paralysis. Low translation in neurons or germline also results in increased expression of certain muscle regulatory and structural genes, reversing reduced expression normally observed with aging in C. elegans. Enhanced resilience to protein unfolding stress requires neuronal expression of cbp-1. CONCLUSIONS Low translation in either neurons or the germline orchestrate protective adaptation in other tissues, including body muscle.
Collapse
Affiliation(s)
- Santina Snow
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Dilawar Ahmad Mir
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Zhengxin Ma
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Jordan Horrocks
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Matthew Cox
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Marissa Ruzga
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Hussein Sayed
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Aric N. Rogers
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| |
Collapse
|
20
|
Kusuma F, Park S, Nguyen KA, Elvira R, Lee D, Han J. PKR Mediates the Mitochondrial Unfolded Protein Response through Double-Stranded RNA Accumulation under Mitochondrial Stress. Int J Mol Sci 2024; 25:7738. [PMID: 39062980 PMCID: PMC11276775 DOI: 10.3390/ijms25147738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Mitochondrial stress, resulting from dysfunction and proteostasis disturbances, triggers the mitochondrial unfolded protein response (UPRMT), which activates gene encoding chaperones and proteases to restore mitochondrial function. Although ATFS-1 mediates mitochondrial stress UPRMT induction in C. elegans, the mechanisms relaying mitochondrial stress signals to the nucleus in mammals remain poorly defined. Here, we explored the role of protein kinase R (PKR), an eIF2α kinase activated by double-stranded RNAs (dsRNAs), in mitochondrial stress signaling. We found that UPRMT does not occur in cells lacking PKR, indicating its crucial role in this process. Mechanistically, we observed that dsRNAs accumulate within mitochondria under stress conditions, along with unprocessed mitochondrial transcripts. Furthermore, we demonstrated that accumulated mitochondrial dsRNAs in mouse embryonic fibroblasts (MEFs) deficient in the Bax/Bak channels are not released into the cytosol and do not induce the UPRMT upon mitochondrial stress, suggesting a potential role of the Bax/Bak channels in mediating the mitochondrial stress response. These discoveries enhance our understanding of how cells maintain mitochondrial integrity, respond to mitochondrial dysfunction, and communicate stress signals to the nucleus through retrograde signaling. This knowledge provides valuable insights into prospective therapeutic targets for diseases associated with mitochondrial stress.
Collapse
Affiliation(s)
- Fedho Kusuma
- Department of Integrated Biomedical Science, Soonchunyang University, Cheonan 31151, Republic of Korea; (F.K.); (S.P.); (K.A.N.)
| | - Soyoung Park
- Department of Integrated Biomedical Science, Soonchunyang University, Cheonan 31151, Republic of Korea; (F.K.); (S.P.); (K.A.N.)
| | - Kim Anh Nguyen
- Department of Integrated Biomedical Science, Soonchunyang University, Cheonan 31151, Republic of Korea; (F.K.); (S.P.); (K.A.N.)
| | - Rosalie Elvira
- Soonchunyang Institute of Medi-Bio Science, Soonchunyang University, Cheonan 31151, Republic of Korea; (R.E.); (D.L.)
| | - Duckgue Lee
- Soonchunyang Institute of Medi-Bio Science, Soonchunyang University, Cheonan 31151, Republic of Korea; (R.E.); (D.L.)
| | - Jaeseok Han
- Department of Integrated Biomedical Science, Soonchunyang University, Cheonan 31151, Republic of Korea; (F.K.); (S.P.); (K.A.N.)
- Soonchunyang Institute of Medi-Bio Science, Soonchunyang University, Cheonan 31151, Republic of Korea; (R.E.); (D.L.)
| |
Collapse
|
21
|
Mir DA, Ma Z, Horrocks J, Rogers A. Stress-Induced Eukaryotic Translational Regulatory Mechanisms. JOURNAL OF CLINICAL AND MEDICAL SCIENCES 2024; 8:1000277. [PMID: 39364184 PMCID: PMC11448810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The eukaryotic protein synthesis process entails intricate stages governed by diverse mechanisms to tightly regulate translation. Translational regulation during stress is pivotal for maintaining cellular homeostasis, ensuring the accurate expression of essential proteins is important for survival. This selective translational control mechanism is integral to cellular adaptation and resilience under adverse conditions. This review manuscript explores various mechanisms involved in selective translational regulation, focusing on mRNA-specific and global regulatory processes. Key aspects of translational control include translation initiation, which is often a rate-limiting step, and involves the formation of the eIF4F complex and recruitment of mRNA to ribosomes. Regulation of translation initiation factors, such as eIF4E, eIF4E2, and eIF2, through phosphorylation and interactions with binding proteins, modulates translation efficiency under stress conditions. This review also highlights the control of translation initiation through factors like the eIF4F complex and the ternary complex and also underscores the importance of eIF2α phosphorylation in stress granule formation and cellular stress responses. Additionally, the impact of amino acid deprivation, mTOR signaling, and ribosome biogenesis on translation regulation and cellular adaptation to stress is also discussed. Understanding the intricate mechanisms of translational regulation during stress provides insights into cellular adaptation mechanisms and potential therapeutic targets for various diseases, offering valuable avenues for addressing conditions associated with dysregulated protein synthesis.
Collapse
Affiliation(s)
- Dilawar Ahmad Mir
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Zhengxin Ma
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Jordan Horrocks
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Aric Rogers
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| |
Collapse
|
22
|
Diamond PD, McGlincy NJ, Ingolia NT. Depletion of cap-binding protein eIF4E dysregulates amino acid metabolic gene expression. Mol Cell 2024; 84:2119-2134.e5. [PMID: 38848691 DOI: 10.1016/j.molcel.2024.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024]
Abstract
Protein synthesis is metabolically costly and must be tightly coordinated with changing cellular needs and nutrient availability. The cap-binding protein eIF4E makes the earliest contact between mRNAs and the translation machinery, offering a key regulatory nexus. We acutely depleted this essential protein and found surprisingly modest effects on cell growth and recovery of protein synthesis. Paradoxically, impaired protein biosynthesis upregulated genes involved in the catabolism of aromatic amino acids simultaneously with the induction of the amino acid biosynthetic regulon driven by the integrated stress response factor GCN4. We further identified the translational control of Pho85 cyclin 5 (PCL5), a negative regulator of Gcn4, that provides a consistent protein-to-mRNA ratio under varied translation environments. This regulation depended in part on a uniquely long poly(A) tract in the PCL5 5' UTR and poly(A) binding protein. Collectively, these results highlight how eIF4E connects protein synthesis to metabolic gene regulation, uncovering mechanisms controlling translation during environmental challenges.
Collapse
Affiliation(s)
- Paige D Diamond
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas J McGlincy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
23
|
Kim KQ, Nanjaraj Urs AN, Lasehinde V, Greenlaw AC, Hudson BH, Zaher HS. eIF4F complex dynamics are important for the activation of the integrated stress response. Mol Cell 2024; 84:2135-2151.e7. [PMID: 38848692 PMCID: PMC11189614 DOI: 10.1016/j.molcel.2024.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/08/2023] [Accepted: 04/19/2024] [Indexed: 06/09/2024]
Abstract
In response to stress, eukaryotes activate the integrated stress response (ISR) via phosphorylation of eIF2α to promote the translation of pro-survival effector genes, such as GCN4 in yeast. Complementing the ISR is the target of rapamycin (TOR) pathway, which regulates eIF4E function. Here, we probe translational control in the absence of eIF4E in Saccharomyces cerevisiae. Intriguingly, we find that loss of eIF4E leads to de-repression of GCN4 translation. In addition, we find that de-repression of GCN4 translation is accompanied by neither eIF2α phosphorylation nor reduction in initiator ternary complex (TC). Our data suggest that when eIF4E levels are depleted, GCN4 translation is de-repressed via a unique mechanism that may involve faster scanning by the small ribosome subunit due to increased local concentration of eIF4A. Overall, our findings suggest that relative levels of eIF4F components are key to ribosome dynamics and may play important roles in translational control of gene expression.
Collapse
Affiliation(s)
- Kyusik Q Kim
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Victor Lasehinde
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alison C Greenlaw
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Benjamin H Hudson
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
24
|
Angel SO, Vanagas L, Alonso AM. Mechanisms of adaptation and evolution in Toxoplasma gondii. Mol Biochem Parasitol 2024; 258:111615. [PMID: 38354788 DOI: 10.1016/j.molbiopara.2024.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Toxoplasma has high host flexibility, infecting all nucleated cells of mammals and birds. This implies that during its infective process the parasite must constantly adapt to different environmental situations, which in turn leads to modifications in its metabolism, regulation of gene transcription, translation of mRNAs and stage specific factors. There are conserved pathways that support these adaptations, which we aim to elucidate in this review. We begin by exploring the widespread epigenetic mechanisms and transcription regulators, continue with the supportive role of Heat Shock Proteins (Hsp), the translation regulation, stress granules, and finish with the emergence of contingency genes in highly variable genomic domains, such as subtelomeres. Within epigenetics, the discovery of a new histone variant of the H2B family (H2B.Z), contributing to T. gondii virulence and differentiation, but also gene expression regulation and its association with the metabolic state of the parasite, is highlighted. Associated with the regulation of gene expression are transcription factors (TFs). An overview of the main findings on TF and development is presented. We also emphasize the role of Hsp90 and Tgj1 in T. gondii metabolic fitness and the regulation of protein translation. Translation regulation is also highlighted as a mechanism for adaptation to conditions encountered by the parasite as well as stress granules containing mRNA and proteins generated in the extracellular tachyzoite. Another important aspect in evolution and adaptability are the subtelomeres because of their high variability and gene duplication rate. Toxoplasma possess multigene families of membrane proteins and contingency genes that are associated with different metabolic stresses. Among them parasite differentiation and environmental stresses stand out, including those that lead tachyzoite to bradyzoite conversion. Finally, we are interested in positioning protozoa as valuable evolution models, focusing on research related to the Extended Evolutionary Synthesis, based on models recently generated, such as extracellular adaptation and ex vivo cyst recrudescence.
Collapse
Affiliation(s)
- Sergio O Angel
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov, Buenos Aires, Argentina.
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov, Buenos Aires, Argentina.
| | - Andres M Alonso
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov, Buenos Aires, Argentina.
| |
Collapse
|
25
|
Mir DA, Ma Z, Horrocks J, Rogers AN. Stress-induced Eukaryotic Translational Regulatory Mechanisms. ARXIV 2024:arXiv:2405.01664v1. [PMID: 38745702 PMCID: PMC11092689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The eukaryotic protein synthesis process entails intricate stages governed by diverse mechanisms to tightly regulate translation. Translational regulation during stress is pivotal for maintaining cellular homeostasis, ensuring the accurate expression of essential proteins crucial for survival. This selective translational control mechanism is integral to cellular adaptation and resilience under adverse conditions. This review manuscript explores various mechanisms involved in selective translational regulation, focusing on mRNA-specific and global regulatory processes. Key aspects of translational control include translation initiation, which is often a rate-limiting step, and involves the formation of the eIF4F complex and recruitment of mRNA to ribosomes. Regulation of translation initiation factors, such as eIF4E, eIF4E2, and eIF2, through phosphorylation and interactions with binding proteins, modulates translation efficiency under stress conditions. This review also highlights the control of translation initiation through factors like the eIF4F complex and the ternary complex and also underscores the importance of eIF2α phosphorylation in stress granule formation and cellular stress responses. Additionally, the impact of amino acid deprivation, mTOR signaling, and ribosome biogenesis on translation regulation and cellular adaptation to stress is also discussed. Understanding the intricate mechanisms of translational regulation during stress provides insights into cellular adaptation mechanisms and potential therapeutic targets for various diseases, offering valuable avenues for addressing conditions associated with dysregulated protein synthesis.
Collapse
Affiliation(s)
- Dilawar Ahmad Mir
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| | - Zhengxin Ma
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| | - Jordan Horrocks
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| | - Aric N Rogers
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| |
Collapse
|
26
|
Zaid A, Ariel A. Harnessing anti-inflammatory pathways and macrophage nano delivery to treat inflammatory and fibrotic disorders. Adv Drug Deliv Rev 2024; 207:115204. [PMID: 38342241 DOI: 10.1016/j.addr.2024.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Targeting specific organs and cell types using nanotechnology and sophisticated delivery methods has been at the forefront of applicative biomedical sciences lately. Macrophages are an appealing target for immunomodulation by nanodelivery as they are heavily involved in various aspects of many diseases and are highly plastic in their nature. Their continuum of functional "polarization" states has been a research focus for many years yielding a profound understanding of various aspects of these cells. The ability of monocyte-derived macrophages to metamorphose from pro-inflammatory to reparative and consequently to pro-resolving effectors has raised significant interest in its therapeutic potential. Here, we briefly survey macrophages' ontogeny and various polarization phenotypes, highlighting their function in the inflammation-resolution shift. We review their inducing mediators, signaling pathways, and biological programs with emphasis on the nucleic acid sensing-IFN-I axis. We also portray the polarization spectrum of macrophages and the characteristics of their transition between different subtypes. Finally, we highlighted different current drug delivery methods for targeting macrophages with emphasis on nanotargeting that might lead to breakthroughs in the treatment of wound healing, bone regeneration, autoimmune, and fibrotic diseases.
Collapse
Affiliation(s)
- Ahmad Zaid
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel.
| |
Collapse
|
27
|
Jiogo H, Crist C. Navigating translational control of gene expression in satellite cells. Curr Top Dev Biol 2024; 158:253-277. [PMID: 38670709 DOI: 10.1016/bs.ctdb.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Satellite cells, named for their satellite position around the sarcolemma of the myofibre, are responsible for skeletal muscle regeneration. Satellite cells normally reside in a quiescent state, but rapidly activate the myogenic program and the cell cycle in response to injury. Translational control of gene expression has emerged as an important regulator of satellite cell activity. Quiescent satellite cells maintain low levels of protein synthesis and selectively translate specific mRNAs to conserve limited energy. Activated satellite cells rapidly restore global protein synthesis to meet the demands of proliferating myogenic progenitors that participate in muscle repair. We propose a model by which translational control enables rapid protein level changes in response to injury-induced environmental shifts, serving as both a brake mechanism during quiescence and an accelerator for injury response. In this Chapter, we navigate the processing, translation and metabolism of newly transcribed mRNAs. We review the modifications of mRNA that occur during mRNA processing in the nucleus of satellite cells, and illustrate how these modifications impact the translation and stability of mRNAs. In the cytoplasm, we review how pathways work in concert to regulate protein synthesis globally, while trans acting microRNAs and RNA binding proteins modify specific mRNA translation within a context of tightly regulated protein synthesis. While navigating translational control of gene expression in satellite cells, this chapter reveals that despite significant progress, the field remains nascent in the broader scope of translational control in cell biology. We propose that future investigations will benefit from incorporating emerging global analyses to study translational control of gene expression in rare satellite cells, and we pose unanswered questions that warrant future exploration.
Collapse
Affiliation(s)
- Holly Jiogo
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Colin Crist
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.
| |
Collapse
|
28
|
Snow S, Mir D, Ma Z, Horrocks J, Cox M, Ruzga M, Sayed H, Rogers AN. Neuronal CBP-1 is required for enhanced body muscle proteostasis in response to reduced translation downstream of mTOR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585263. [PMID: 38559178 PMCID: PMC10980069 DOI: 10.1101/2024.03.15.585263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background The ability to maintain muscle function decreases with age and loss of proteostatic function. Diet, drugs, and genetic interventions that restrict nutrients or nutrient signaling help preserve long-term muscle function and slow age-related decline. Previously, it was shown that attenuating protein synthesis downstream of the mechanistic target of rapamycin (mTOR) gradually increases expression of heat shock response (HSR) genes in a manner that correlates with increased resilience to protein unfolding stress. Here, we investigate the role of specific tissues in mediating the cytoprotective effects of low translation. Methods This study uses genetic tools (transgenic C. elegans , RNA interference and gene expression analysis) as well as physiological assays (survival and paralysis assays) in order to better understand how specific tissues contribute to adaptive changes involving cellular cross-talk that enhance proteostasis under low translation conditions. Results We use the C. elegans system to show that lowering translation in neurons or the germline increases heat shock gene expression and survival under conditions of heat stress. In addition, we find that low translation in these tissues protects motility in a body muscle-specific model of proteotoxicity that results in paralysis. Low translation in neurons or germline also results in increased expression of certain muscle regulatory and structural genes, reversing reduced expression normally observed with aging in C. elegans . Enhanced resilience to protein unfolding stress requires neuronal expression of cbp-1 . Conclusion Low translation in either neurons or the germline orchestrate protective adaptation in other tissues, including body muscle.
Collapse
|
29
|
González-Sánchez AM, Castellanos-Silva EA, Díaz-Figueroa G, Cate JHD. JUN mRNA translation regulation is mediated by multiple 5' UTR and start codon features. PLoS One 2024; 19:e0299779. [PMID: 38483896 PMCID: PMC10939236 DOI: 10.1371/journal.pone.0299779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Regulation of mRNA translation by eukaryotic initiation factors (eIFs) is crucial for cell survival. In humans, eIF3 stimulates translation of the JUN mRNA which encodes the transcription factor JUN, an oncogenic transcription factor involved in cell cycle progression, apoptosis, and cell proliferation. Previous studies revealed that eIF3 activates translation of the JUN mRNA by interacting with a stem loop in the 5' untranslated region (5' UTR) and with the 5' -7-methylguanosine cap structure. In addition to its interaction site with eIF3, the JUN 5' UTR is nearly one kilobase in length, and has a high degree of secondary structure, high GC content, and an upstream start codon (uAUG). This motivated us to explore the complexity of JUN mRNA translation regulation in human cells. Here we find that JUN translation is regulated in a sequence and structure-dependent manner in regions adjacent to the eIF3-interacting site in the JUN 5' UTR. Furthermore, we identify contributions of an additional initiation factor, eIF4A, in JUN regulation. We show that enhancing the interaction of eIF4A with JUN by using the compound Rocaglamide A (RocA) represses JUN translation. We also find that both the upstream AUG (uAUG) and the main AUG (mAUG) contribute to JUN translation and that they are conserved throughout vertebrates. Our results reveal additional layers of regulation for JUN translation and show the potential of JUN as a model transcript for understanding multiple interacting modes of translation regulation.
Collapse
Affiliation(s)
- Angélica M. González-Sánchez
- Comparative Biochemistry Graduate Program, University of California, Berkeley, Berkeley, CA, United States of America
| | - Eimy A. Castellanos-Silva
- Department of Biochemistry and Molecular Biology, University of California, Davis, Davis, CA, United States of America
| | - Gabriela Díaz-Figueroa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Jamie H. D. Cate
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States of America
| |
Collapse
|
30
|
Hu Y, Kong F, Guo H, Hua Y, Zhu Y, Zhang C, Qadeer A, Xiao Y, Cai Q, Ji S. Drosophila eIF3f1 mediates host immune defense by targeting dTak1. EMBO Rep 2024; 25:1415-1435. [PMID: 38279019 PMCID: PMC10933477 DOI: 10.1038/s44319-024-00067-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Eukaryotic translation initiation factors have long been recognized for their critical roles in governing the translation of coding RNAs into peptides/proteins. However, whether they harbor functional activities at the post-translational level remains poorly understood. Here, we demonstrate that eIF3f1 (eukaryotic translation initiation factor 3 subunit f1), which encodes an archetypal deubiquitinase, is essential for the antimicrobial innate immune defense of Drosophila melanogaster. Our in vitro and in vivo evidence indicate that the immunological function of eIF3f1 is dependent on the N-terminal JAMM (JAB1/MPN/Mov34 metalloenzymes) domain. Mechanistically, eIF3f1 physically associates with dTak1 (Drosophila TGF-beta activating kinase 1), a key regulator of the IMD (immune deficiency) signaling pathway, and mediates the turnover of dTak1 by specifically restricting its K48-linked ubiquitination. Collectively, these results provide compelling insight into a noncanonical molecular function of a translation initiation factor that controls the post-translational modification of a target protein.
Collapse
Affiliation(s)
- Yixuan Hu
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
- Institutes of Brain Science, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Fanrui Kong
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Huimin Guo
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
- Center for Biological Technology, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Yongzhi Hua
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Yangyang Zhu
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Chuchu Zhang
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Abdul Qadeer
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Yihua Xiao
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Qingshuang Cai
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67400, France.
| | - Shanming Ji
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China.
| |
Collapse
|
31
|
Añazco-Guenkova AM, Miguel-López B, Monteagudo-García Ó, García-Vílchez R, Blanco S. The impact of tRNA modifications on translation in cancer: identifying novel therapeutic avenues. NAR Cancer 2024; 6:zcae012. [PMID: 38476632 PMCID: PMC10928989 DOI: 10.1093/narcan/zcae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Recent advancements have illuminated the critical role of RNA modifications in post-transcriptional regulation, shaping the landscape of gene expression. This review explores how tRNA modifications emerge as critical players, fine-tuning functionalities that not only maintain the fidelity of protein synthesis but also dictate gene expression and translation profiles. Highlighting their dysregulation as a common denominator in various cancers, we systematically investigate the intersection of both cytosolic and mitochondrial tRNA modifications with cancer biology. These modifications impact key processes such as cell proliferation, tumorigenesis, migration, metastasis, bioenergetics and the modulation of the tumor immune microenvironment. The recurrence of altered tRNA modification patterns across different cancer types underscores their significance in cancer development, proposing them as potential biomarkers and as actionable targets to disrupt tumorigenic processes, offering new avenues for precision medicine in the battle against cancer.
Collapse
Affiliation(s)
- Ana M Añazco-Guenkova
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Borja Miguel-López
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Óscar Monteagudo-García
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Raquel García-Vílchez
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Sandra Blanco
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
32
|
Lewis V, Rurak G, Salmaso N, Aguilar-Valles A. An integrative view on the cell-type-specific mechanisms of ketamine's antidepressant actions. Trends Neurosci 2024; 47:195-208. [PMID: 38220554 DOI: 10.1016/j.tins.2023.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/08/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024]
Abstract
Over the past six decades, the use of ketamine has evolved from an anesthetic and recreational drug to the first non-monoaminergic antidepressant approved for treatment-resistant major depressive disorder (MDD). Subanesthetic doses of ketamine and its enantiomer (S)-ketamine (esketamine) directly bind to several neurotransmitter receptors [including N-methyl-d-aspartic acid receptor (NMDAR), κ and μ opioid receptor (KOR and MOR)] widely distributed in the brain and across different cell types, implicating several potential molecular mechanisms underlying the action of ketamine as an antidepressant. This review examines preclinical studies investigating cell-type-specific mechanisms underlying the effects of ketamine on behavior and synapses. Cell-type-specific approaches are crucial for disentangling the critical mechanisms involved in the therapeutic effect of ketamine.
Collapse
Affiliation(s)
- Vern Lewis
- Department of Neuroscience, Carleton University, Health Sciences Building, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Gareth Rurak
- Department of Neuroscience, Carleton University, Health Sciences Building, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Health Sciences Building, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Argel Aguilar-Valles
- Department of Neuroscience, Carleton University, Health Sciences Building, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
33
|
Valdivia-Francia F, Sendoel A. No country for old methods: New tools for studying microproteins. iScience 2024; 27:108972. [PMID: 38333695 PMCID: PMC10850755 DOI: 10.1016/j.isci.2024.108972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Microproteins encoded by small open reading frames (sORFs) have emerged as a fascinating frontier in genomics. Traditionally overlooked due to their small size, recent technological advancements such as ribosome profiling, mass spectrometry-based strategies and advanced computational approaches have led to the annotation of more than 7000 sORFs in the human genome. Despite the vast progress, only a tiny portion of these microproteins have been characterized and an important challenge in the field lies in identifying functionally relevant microproteins and understanding their role in different cellular contexts. In this review, we explore the recent advancements in sORF research, focusing on the new methodologies and computational approaches that have facilitated their identification and functional characterization. Leveraging these new tools hold great promise for dissecting the diverse cellular roles of microproteins and will ultimately pave the way for understanding their role in the pathogenesis of diseases and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Fabiola Valdivia-Francia
- University of Zurich, Institute for Regenerative Medicine (IREM), Wagistrasse 12, 8952 Schlieren-Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich/ ETH Zurich, Schlieren-Zurich, Switzerland
| | - Ataman Sendoel
- University of Zurich, Institute for Regenerative Medicine (IREM), Wagistrasse 12, 8952 Schlieren-Zurich, Switzerland
| |
Collapse
|
34
|
Lao J, Sun H, Wang A, Wu M, Liu D, Zhang Y, Chen C, Xia Q, Ma S. Effect of eIF6 on the development of silk glands and silk protein synthesis of the silkworm, Bombyx mori. Int J Biol Macromol 2024; 256:128316. [PMID: 38000606 DOI: 10.1016/j.ijbiomac.2023.128316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
The silkworm is a lepidopteran domesticated from the wild silkworm, mostly valued for its efficient synthesis of silk protein. This species' ability to spin silk has supported the 5500-year-old silk industry and the globally known "Silk Road", making the transformation of mulberry leaves into silk of great concern. Therefore, research on the silk-related genes of silkworms and their regulatory mechanisms has attracted increasing attention. Previous studies have revealed that domestic silk gland cells are endoreduplication cells, and their high-copy genome and special chromatin conformation provide conditions for the high expression of silk proteins. In this study, we systematically investigate the expression pattern of eukaryotic initiation factors (eIFs) and identified the eIF6 as a eukaryotic translation initiation factor involved in the synthesis of silk proteins. We generated an eIF6 gene deletion mutant strain of silkworm using the CRISPR/Cas9 system and investigated the function of eIF6 in silk gland development and silk protein synthesis. The results showed that deletion of eIF6 inhibited the individual development of silkworm larvae, inhibited the development of silk glands, and significantly reduced the cocoon layer ratio. Therefore, we elucidated the function of eIF6 in the development of silk glands and the synthesis of silk proteins, which is important for further elucidation of the developmental process of silk glands and the mechanism underlying the ultra-high expression of silk proteins.
Collapse
Affiliation(s)
- Junjie Lao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Hao Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Aoming Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Mingke Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Dan Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Yan Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Chaojie Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.
| | - Sanyuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.
| |
Collapse
|
35
|
Kumar A, Bellar A, Mishra S, Sekar J, Welch N, Dasarathy S. L-Isoleucine reverses hyperammonemia-induced myotube mitochondrial dysfunction and post-mitotic senescence. J Nutr Biochem 2024; 123:109498. [PMID: 37871767 PMCID: PMC10841977 DOI: 10.1016/j.jnutbio.2023.109498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Perturbations in the metabolism of ammonia, a cytotoxic endogenous metabolite, occur in a number of chronic diseases, with consequent hyperammonemia. Increased skeletal muscle ammonia uptake causes metabolic, molecular, and phenotype alterations including cataplerosis of (loss of tricarboxylic acid cycle (TCA) cycle intermediate) α-ketoglutarate (αKG), mitochondrial oxidative dysfunction, and senescence-associated molecular phenotype (SAMP). L-Isoleucine (Ile) is an essential, branched-chain amino acid (BCAA) that simultaneously provides acetyl-CoA as an oxidative substrate and succinyl-CoA for anaplerosis (providing TCA cycle intermediates). Our multiomics analyses in myotubes and skeletal muscle from hyperammonemic mice and human patients with cirrhosis showed perturbations in BCAA transporters and catabolism. We, therefore, determined if Ile reverses hyperammonemia-induced impaired mitochondrial oxidative function and SAMP. Studies were performed in differentiated murine C2C12 myotubes that were early passage, late passage (senescent), or those depleted of LAT1/SLC7A5 and human induced pluripotent stem cell-derived myotubes (hiPSCM). Ile reverses hyperammonemia-induced reduction in the maximum respiratory capacity, complex I, II, and III functions in early passage murine myotubes and hiPSCM. Consistently, low ATP content and impaired global protein synthesis (high energy requiring cellular process) during hyperammonemia are reversed by Ile in murine myotubes and hiPSCM. Lower abundance of critical regulators of protein synthesis in mTORC1 signaling, and increased phosphorylation of eukaryotic initiation factor 2α are also reversed by Ile. Genetic depletion studies showed that Ile responses are independent of the amino acid transporter LAT1/SLC7A5. Our studies show that Ile reverses the hyperammonemia-induced impaired mitochondrial oxidative function, cataplerosis, and SAMP in a LAT1/SLC7A5 transporter-independent manner.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Gastroenterology, Hepatology and Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Annette Bellar
- Department of Inflammation and Immunity, Lerner Research Institute, Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Saurabh Mishra
- Department of Inflammation and Immunity, Lerner Research Institute, Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jinendiran Sekar
- Department of Inflammation and Immunity, Lerner Research Institute, Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicole Welch
- Department of Inflammation and Immunity, Lerner Research Institute, Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Lerner Research Institute, Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
36
|
Yoshida H. Dissecting the Immune System through Gene Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:219-235. [PMID: 38467983 DOI: 10.1007/978-981-99-9781-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The immune system plays a dual role in human health, functioning both as a protector against pathogens and, at times, as a contributor to disease. This feature emphasizes the importance to uncover the underlying causes of its malfunctions, necessitating an in-depth analysis in both pathological and physiological conditions to better understand the immune system and immune disorders. Recent advances in scientific technology have enabled extensive investigations into gene regulation, a crucial mechanism governing cellular functionality. Studying gene regulatory mechanisms within the immune system is a promising avenue for enhancing our understanding of immune cells and the immune system as a whole. The gene regulatory mechanisms, revealed through various methodologies, and their implications in the field of immunology are discussed in this chapter.
Collapse
Affiliation(s)
- Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
37
|
Kataoka R, Hammert WB, Yamada Y, Song JS, Seffrin A, Kang A, Spitz RW, Wong V, Loenneke JP. The Plateau in Muscle Growth with Resistance Training: An Exploration of Possible Mechanisms. Sports Med 2024; 54:31-48. [PMID: 37787845 DOI: 10.1007/s40279-023-01932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
It is hypothesized that there is likely a finite ability for muscular adaptation. While it is difficult to distinguish between a true plateau following a long-term training period and short-term stalling in muscle growth, a plateau in muscle growth has been attributed to reaching a genetic potential, with limited discussion on what might physiologically contribute to this muscle growth plateau. The present paper explores potential physiological factors that may drive the decline in muscle growth after prolonged resistance training. Overall, with chronic training, the anabolic signaling pathways may become more refractory to loading. While measures of anabolic markers may have some predictive capabilities regarding muscle growth adaptation, they do not always demonstrate a clear connection. Catabolic processes may also constrain the ability to achieve further muscle growth, which is influenced by energy balance. Although speculative, muscle cells may also possess cell scaling mechanisms that sense and regulate their own size, along with molecular brakes that hinder growth rate over time. When considering muscle growth over the lifespan, there comes a point when the anabolic response is attenuated by aging, regardless of whether or not individuals approach their muscle growth potential. Our goal is that the current review opens avenues for future experimental studies to further elucidate potential mechanisms to explain why muscle growth may plateau.
Collapse
Affiliation(s)
- Ryo Kataoka
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - William B Hammert
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Yujiro Yamada
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Jun Seob Song
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Aldo Seffrin
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Anna Kang
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Robert W Spitz
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Vickie Wong
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA.
| |
Collapse
|
38
|
Sherwood DR, Kenny-Ganzert IW, Balachandar Thendral S. Translational regulation of cell invasion through extracellular matrix-an emerging role for ribosomes. F1000Res 2023; 12:1528. [PMID: 38628976 PMCID: PMC11019292 DOI: 10.12688/f1000research.143519.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 04/19/2024] Open
Abstract
Many developmental and physiological processes require cells to invade and migrate through extracellular matrix barriers. This specialized cellular behavior is also misregulated in many diseases, such as immune disorders and cancer. Cell invasive activity is driven by pro-invasive transcriptional networks that activate the expression of genes encoding numerous different proteins that expand and regulate the cytoskeleton, endomembrane system, cell adhesion, signaling pathways, and metabolic networks. While detailed mechanistic studies have uncovered crucial insights into pro-invasive transcriptional networks and the distinct cell biological attributes of invasive cells, less is known about how invasive cells modulate mRNA translation to meet the robust, dynamic, and unique protein production needs of cell invasion. In this review we outline known modes of translation regulation promoting cell invasion and focus on recent studies revealing elegant mechanisms that expand ribosome biogenesis within invasive cells to meet the increased protein production requirements to invade and migrate through extracellular matrix barriers.
Collapse
|
39
|
González-Sánchez AM, Castellanos-Silva EA, Díaz-Figueroa G, Cate JHD. JUN mRNA Translation Regulation is Mediated by Multiple 5' UTR and Start Codon Features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567602. [PMID: 38014201 PMCID: PMC10680820 DOI: 10.1101/2023.11.17.567602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Regulation of mRNA translation by eukaryotic initiation factors (eIFs) is crucial for cell survival. In humans, eIF3 stimulates translation of the JUN mRNA which encodes the transcription factor JUN, an oncogenic transcription factor involved in cell cycle progression, apoptosis, and cell proliferation. Previous studies revealed that eIF3 activates translation of the JUN mRNA by interacting with a stem loop in the 5' untranslated region (5' UTR) and with the 5'-7-methylguanosine cap structure. In addition to its interaction site with eIF3, the JUN 5' UTR is nearly one kilobase in length, and has a high degree of secondary structure, high GC content, and an upstream start codon (uAUG). This motivated us to explore the complexity of JUN mRNA translation regulation in human cells. Here we find that JUN translation is regulated in a sequence and structure-dependent manner in regions adjacent to the eIF3-interacting site in the JUN 5' UTR. Furthermore, we identify contributions of an additional initiation factor, eIF4A, in JUN regulation. We show that enhancing the interaction of eIF4A with JUN by using the compound Rocaglamide A (RocA) represses JUN translation. We also find that both the upstream AUG (uAUG) and the main AUG (mAUG) contribute to JUN translation and that they are conserved throughout vertebrates. Our results reveal additional layers of regulation for JUN translation and show the potential of JUN as a model transcript for understanding multiple interacting modes of translation regulation.
Collapse
Affiliation(s)
| | - Eimy A Castellanos-Silva
- University of California, Davis, Department of Biochemistry and Molecular Biology, Davis, CA, USA
| | - Gabriela Díaz-Figueroa
- University of California, Berkeley, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Jamie H D Cate
- University of California, Berkeley, Department of Molecular and Cell Biology, Berkeley, CA, USA
| |
Collapse
|
40
|
Bleckmann A, Spitzlberger N, Denninger P, Ehrnsberger HF, Wang L, Bruckmann A, Reich S, Holzinger P, Medenbach J, Grasser KD, Dresselhaus T. Cytosolic RGG RNA-binding proteins are temperature sensitive flowering time regulators in Arabidopsis. Biol Chem 2023; 404:1069-1084. [PMID: 37674329 DOI: 10.1515/hsz-2023-0171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
mRNA translation is tightly regulated by various classes of RNA-binding proteins (RBPs) during development and in response to changing environmental conditions. In this study, we characterize the arginine-glycine-glycine (RGG) motif containing RBP family of Arabidopsis thaliana representing homologues of the multifunctional translation regulators and ribosomal preservation factors Stm1 from yeast (ScStm1) and human SERBP1 (HsSERBP1). The Arabidopsis genome encodes three RGG proteins named AtRGGA, AtRGGB and AtRGGC. While AtRGGA is ubiquitously expressed, AtRGGB and AtRGGC are enriched in dividing cells. All AtRGGs localize almost exclusively to the cytoplasm and bind with high affinity to ssRNA, while being capable to interact with most nucleic acids, except dsRNA. A protein-interactome study shows that AtRGGs interact with ribosomal proteins and proteins involved in RNA processing and transport. In contrast to ScStm1, AtRGGs are enriched in ribosome-free fractions in polysome profiles, suggesting additional plant-specific functions. Mutant studies show that AtRGG proteins differentially regulate flowering time, with a distinct and complex temperature dependency for each AtRGG protein. In conclusion, we suggest that AtRGGs function in fine-tuning translation efficiency to control flowering time and potentially other developmental processes in response to environmental changes.
Collapse
Affiliation(s)
- Andrea Bleckmann
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Nicole Spitzlberger
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Philipp Denninger
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Hans F Ehrnsberger
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Lele Wang
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Astrid Bruckmann
- Biochemistry I, University of Regensburg, D-93053 Regensburg, Germany
| | - Stefan Reich
- Biochemistry I, University of Regensburg, D-93053 Regensburg, Germany
| | - Philipp Holzinger
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Jan Medenbach
- Biochemistry I, University of Regensburg, D-93053 Regensburg, Germany
| | - Klaus D Grasser
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
41
|
Kumari P, Sarovar Bhavesh N. Birth and death view of DNA, RNA, and proteins. Gene 2023; 883:147672. [PMID: 37506987 DOI: 10.1016/j.gene.2023.147672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/26/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
The potential of cells to guide their genome and configure genes to express at a given time and in response to specific stimuli is pivotal to regulate cellular processes such as tissue differentiation, organogenesis, organismal development, homeostasis, and disease. In this review, we focus on the diverse mechanisms involved in DNA replication and its degradation, mRNA synthesis, and associated regulation such as RNA capping, splicing, tailing, and export. mRNA turnover including Decapping, deadenylation, RNA interference, and Nonsense mediated mRNA decay followed by protein translation, post-translational modification, and protein turnover. We highlight recent advances in understanding the complex series of molecular mechanisms responsible for the remarkable cellular regulatory mechanisms.
Collapse
Affiliation(s)
- Pooja Kumari
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India.
| | - Neel Sarovar Bhavesh
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
42
|
Harrer P, Škorvánek M, Kittke V, Dzinovic I, Borngräber F, Thomsen M, Mandel V, Svorenova T, Ostrozovicova M, Kulcsarova K, Berutti R, Busch H, Ott F, Kopajtich R, Prokisch H, Kumar KR, Mencacci NE, Kurian MA, Di Fonzo A, Boesch S, Kühn AA, Blümlein U, Lohmann K, Haslinger B, Weise D, Jech R, Winkelmann J, Zech M. Dystonia Linked to EIF4A2 Haploinsufficiency: A Disorder of Protein Translation Dysfunction. Mov Disord 2023; 38:1914-1924. [PMID: 37485550 DOI: 10.1002/mds.29562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/06/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Protein synthesis is a tightly controlled process, involving a host of translation-initiation factors and microRNA-associated repressors. Variants in the translational regulator EIF2AK2 were first linked to neurodevelopmental-delay phenotypes, followed by their implication in dystonia. Recently, de novo variants in EIF4A2, encoding eukaryotic translation initiation factor 4A isoform 2 (eIF4A2), have been described in pediatric cases with developmental delay and intellectual disability. OBJECTIVE We sought to characterize the role of EIF4A2 variants in dystonic conditions. METHODS We undertook an unbiased search for likely deleterious variants in mutation-constrained genes among 1100 families studied with dystonia. Independent cohorts were screened for EIF4A2 variants. Western blotting and immunocytochemical studies were performed in patient-derived fibroblasts. RESULTS We report the discovery of a novel heterozygous EIF4A2 frameshift deletion (c.896_897del) in seven patients from two unrelated families. The disease was characterized by adolescence- to adulthood-onset dystonia with tremor. In patient-derived fibroblasts, eIF4A2 production amounted to only 50% of the normal quantity. Reduction of eIF4A2 was associated with abnormally increased levels of IMP1, a target of Ccr4-Not, the complex that interacts with eIF4A2 to mediate microRNA-dependent translational repression. By complementing the analyses with fibroblasts bearing EIF4A2 biallelic mutations, we established a correlation between IMP1 expression alterations and eIF4A2 functional dosage. Moreover, eIF4A2 and Ccr4-Not displayed significantly diminished colocalization in dystonia patient cells. Review of international databases identified EIF4A2 deletion variants (c.470_472del, c.1144_1145del) in another two dystonia-affected pedigrees. CONCLUSIONS Our findings demonstrate that EIF4A2 haploinsufficiency underlies a previously unrecognized dominant dystonia-tremor syndrome. The data imply that translational deregulation is more broadly linked to both early neurodevelopmental phenotypes and later-onset dystonic conditions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Philip Harrer
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matej Škorvánek
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Volker Kittke
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ivana Dzinovic
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Friederike Borngräber
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mirja Thomsen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Vanessa Mandel
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Tatiana Svorenova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Miriam Ostrozovicova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Kristina Kulcsarova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Riccardo Berutti
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hauke Busch
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Fabian Ott
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Robert Kopajtich
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Kishore R Kumar
- Translational Neurogenomics Group, Molecular Medicine Laboratory and Neurology Department, Concord Clinical School, Concord Repatriation General Hospital, The University of Sydney, Sydney, New South Wales, Australia
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Niccolo E Mencacci
- Ken and Ruth Davee Department of Neurology, Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Manju A Kurian
- Department of Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Blümlein
- Department of Pediatrics, Carl-Thiem-Klinikum Cottbus, Cottbus, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Bernhard Haslinger
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - David Weise
- Department of Neurology, Asklepios Fachklinikum Stadtroda, Stadtroda, Germany
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Robert Jech
- Department of Neurology, Charles University in Prague, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
43
|
Shirokikh NE, Jensen KB, Thakor N. Editorial: RNA machines. Front Genet 2023; 14:1290420. [PMID: 37829284 PMCID: PMC10565666 DOI: 10.3389/fgene.2023.1290420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Affiliation(s)
- Nikolay E. Shirokikh
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Kirk Blomquist Jensen
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Nehal Thakor
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
44
|
Zafar H, Hassan AH, Demo G. Translation machinery captured in motion. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1792. [PMID: 37132456 DOI: 10.1002/wrna.1792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Translation accuracy is one of the most critical factors for protein synthesis. It is regulated by the ribosome and its dynamic behavior, along with translation factors that direct ribosome rearrangements to make translation a uniform process. Earlier structural studies of the ribosome complex with arrested translation factors laid the foundation for an understanding of ribosome dynamics and the translation process as such. Recent technological advances in time-resolved and ensemble cryo-EM have made it possible to study translation in real time at high resolution. These methods provided a detailed view of translation in bacteria for all three phases: initiation, elongation, and termination. In this review, we focus on translation factors (in some cases GTP activation) and their ability to monitor and respond to ribosome organization to enable efficient and accurate translation. This article is categorized under: Translation > Ribosome Structure/Function Translation > Mechanisms.
Collapse
Affiliation(s)
- Hassan Zafar
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ahmed H Hassan
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Gabriel Demo
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
45
|
Xue M, Cong F, Zheng W, Xu R, Liu X, Bao H, Sung YY, Xi Y, He F, Ma J, Yang X, Ge W. Loss of Paip1 causes translation reduction and induces apoptotic cell death through ISR activation and Xrp1. Cell Death Discov 2023; 9:288. [PMID: 37543696 PMCID: PMC10404277 DOI: 10.1038/s41420-023-01587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
Regulation of protein translation initiation is tightly associated with cell growth and survival. Here, we identify Paip1, the Drosophila homolog of the translation initiation factor PAIP1, and analyze its role during development. Through genetic analysis, we find that loss of Paip1 causes reduced protein translation and pupal lethality. Furthermore, tissue specific knockdown of Paip1 results in apoptotic cell death in the wing imaginal disc. Paip1 depletion leads to increased proteotoxic stress and activation of the integrated stress response (ISR) pathway. Mechanistically, we show that loss of Paip1 promotes phosphorylation of eIF2α via the kinase PERK, leading to apoptotic cell death. Moreover, Paip1 depletion upregulates the transcription factor gene Xrp1, which contributes to apoptotic cell death and eIF2α phosphorylation. We further show that loss of Paip1 leads to an increase in Xrp1 translation mediated by its 5'UTR. These findings uncover a novel mechanism that links translation impairment to tissue homeostasis and establish a role of ISR activation and Xrp1 in promoting cell death.
Collapse
Affiliation(s)
- Maoguang Xue
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Fei Cong
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Wanling Zheng
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Ruoqing Xu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Xiaoyu Liu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Hongcun Bao
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Ying Ying Sung
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Yongmei Xi
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Feng He
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Jun Ma
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Xiaohang Yang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
46
|
Chen X, An Y, Tan M, Xie D, Liu L, Xu B. Biological functions and research progress of eIF4E. Front Oncol 2023; 13:1076855. [PMID: 37601696 PMCID: PMC10435865 DOI: 10.3389/fonc.2023.1076855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 08/22/2023] Open
Abstract
The eukaryotic translation initiation factor eIF4E can specifically bind to the cap structure of an mRNA 5' end, mainly regulating translation initiation and preferentially enhancing the translation of carcinogenesis related mRNAs. The expression of eIF4E is closely related to a variety of malignant tumors. In tumor cells, eIF4E activity is abnormally increased, which stimulates cell growth, metastasis and translation of related proteins. The main factors affecting eIF4E activity include intranuclear regulation, phosphorylation of 4EBPs, and phosphorylation and sumoylation of eIF4E. In this review, we summarize the biological functions and the research progress of eIF4E, the main influencing factors of eIF4E activity, and the recent progress of drugs targeting eIF4E, in the hope of providing new insights for the treatment of multiple malignancies and development of targeted drugs.
Collapse
Affiliation(s)
- Xiaocong Chen
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Yang An
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Mengsi Tan
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Dongrui Xie
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| |
Collapse
|
47
|
Vidal CM, Ouyang C, Qi Y, Mendez-Dorantes C, Coblentz A, Alva-Ornelas JA, Stark JM, Seewaldt VL, Ann DK. Arginine regulates HSPA5/BiP translation through ribosome pausing in triple-negative breast cancer cells. Br J Cancer 2023; 129:444-454. [PMID: 37386138 PMCID: PMC10403569 DOI: 10.1038/s41416-023-02322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with a high mortality rate due to a lack of therapeutic targets. Many TNBC cells are reliant on extracellular arginine for survival and express high levels of binding immunoglobin protein (BiP), a marker of metastasis and endoplasmic reticulum (ER) stress response. METHODS In this study, the effect of arginine shortage on BiP expression in the TNBC cell line MDA-MB-231 was evaluated. Two stable cell lines were generated in MDA-MB-231 cells: the first expressed wild-type BiP, and the second expressed a mutated BiP free of the two arginine pause-site codons, CCU and CGU, termed G-BiP. RESULTS The results showed that arginine shortage induced a non-canonical ER stress response by inhibiting BiP translation via ribosome pausing. Overexpression of G-BiP in MDA-MB-231 cells promoted cell resistance to arginine shortage compared to cells overexpressing wild-type BiP. Additionally, limiting arginine led to decreased levels of the spliced XBP1 in the G-BiP overexpressing cells, potentially contributing to their improved survival compared to the parental WT BiP overexpressing cells. CONCLUSION In conclusion, these findings suggest that the downregulation of BiP disrupts proteostasis during arginine shortage-induced non-canonical ER stress and plays a key role in cell growth inhibition, indicating BiP as a target of codon-specific ribosome pausing upon arginine shortage.
Collapse
Affiliation(s)
- Christina M Vidal
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Ching Ouyang
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yue Qi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Carlos Mendez-Dorantes
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Alaysia Coblentz
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Jackelyn A Alva-Ornelas
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Jeremy M Stark
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Victoria L Seewaldt
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - David K Ann
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
48
|
Fakih Z, Plourde MB, Germain H. Differential Participation of Plant Ribosomal Proteins from the Small Ribosomal Subunit in Protein Translation under Stress. Biomolecules 2023; 13:1160. [PMID: 37509195 PMCID: PMC10377644 DOI: 10.3390/biom13071160] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Upon exposure to biotic and abiotic stress, plants have developed strategies to adapt to the challenges imposed by these unfavorable conditions. The energetically demanding translation process is one of the main elements regulated to reduce energy consumption and to selectively synthesize proteins involved in the establishment of an adequate response. Emerging data have shown that ribosomes remodel to adapt to stresses. In Arabidopsis thaliana, ribosomes consist of approximately eighty-one distinct ribosomal proteins (RPs), each of which is encoded by two to seven genes. Recent research has revealed that a mutation in a given single RP in plants can not only affect the functions of the RP itself but can also influence the properties of the ribosome, which could bring about changes in the translation to varying degrees. However, a pending question is whether some RPs enable ribosomes to preferentially translate specific mRNAs. To reveal the role of ribosomal proteins from the small subunit (RPS) in a specific translation, we developed a novel approach to visualize the effect of RPS silencing on the translation of a reporter mRNA (GFP) combined to the 5'UTR of different housekeeping and defense genes. The silencing of genes encoding for NbRPSaA, NbRPS5A, and NbRPS24A in Nicotiana benthamiana decreased the translation of defense genes. The NbRACK1A-silenced plant showed compromised translations of specific antioxidant enzymes. However, the translations of all tested genes were affected in NbRPS27D-silenced plants. These findings suggest that some RPS may be potentially involved in the control of protein translation.
Collapse
Affiliation(s)
- Zainab Fakih
- Department of Chemistry, Biochemistry and Physics and Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada
| | - Mélodie B Plourde
- Department of Chemistry, Biochemistry and Physics and Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics and Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada
| |
Collapse
|
49
|
Wang W, Wang Y, Chen T, Qin G, Tian S. Current insights into posttranscriptional regulation of fleshy fruit ripening. PLANT PHYSIOLOGY 2023; 192:1785-1798. [PMID: 36250906 PMCID: PMC10315313 DOI: 10.1093/plphys/kiac483] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/27/2022] [Indexed: 05/26/2023]
Abstract
Fruit ripening is a complicated process that is accompanied by the formation of fruit quality. It is not only regulated at the transcriptional level via transcription factors or DNA methylation but also fine-tuned after transcription occurs. Here, we review recent advances in our understanding of key regulatory mechanisms of fleshy fruit ripening after transcription. We mainly highlight the typical mechanisms by which fruit ripening is controlled, namely, alternative splicing, mRNA N6-methyladenosine RNA modification methylation, and noncoding RNAs at the posttranscriptional level; regulation of translation efficiency and upstream open reading frame-mediated translational repression at the translational level; and histone modifications, protein phosphorylation, and protein ubiquitination at the posttranslational level. Taken together, these posttranscriptional regulatory mechanisms, along with transcriptional regulation, constitute the molecular framework of fruit ripening. We also critically discuss the potential usage of some mechanisms to improve fruit traits.
Collapse
Affiliation(s)
- Weihao Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuying Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Barros GC, Guerrero S, Silva GM. The central role of translation elongation in response to stress. Biochem Soc Trans 2023; 51:959-969. [PMID: 37318088 PMCID: PMC11160351 DOI: 10.1042/bst20220584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Protein synthesis is essential to support homeostasis, and thus, must be highly regulated during cellular response to harmful environments. All stages of translation are susceptible to regulation under stress, however, the mechanisms involved in translation regulation beyond initiation have only begun to be elucidated. Methodological advances enabled critical discoveries on the control of translation elongation, highlighting its important role in translation repression and the synthesis of stress-response proteins. In this article, we discuss recent findings on mechanisms of elongation control mediated by ribosome pausing and collisions and the availability of tRNAs and elongation factors. We also discuss how elongation intersects with distinct modes of translation control, further supporting cellular viability and gene expression reprogramming. Finally, we highlight how several of these pathways are reversibly regulated, emphasizing the dynamics of translation control during stress-response progression. A comprehensive understanding of translation regulation under stress will produce fundamental knowledge of protein dynamics while opening new avenues and strategies to overcome dysregulated protein production and cellular sensitivity to stress.
Collapse
Affiliation(s)
| | | | - Gustavo M. Silva
- Department of Biology, Duke University, Durham, NC, USA
- Lead contact
| |
Collapse
|