1
|
Lehtonen J, Hakonen AH, Hassinen A, Lurås SI, Kaustio M, Glumoff V, Hinrichsen F, Li W, Sulonen AM, Wickman S, Almusa H, Polso M, Palomäki M, Kivirikko S, Avela K, Heiskanen K, Pietiäinen V, Aittomäki K, Saarela J. Genome sequencing reveals CCDC88A variants in malformations of cortical development and immune dysfunction. Hum Mol Genet 2025:ddaf081. [PMID: 40401444 DOI: 10.1093/hmg/ddaf081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 03/24/2025] [Accepted: 04/22/2025] [Indexed: 05/23/2025] Open
Abstract
Malformations of cortical development (MCDs) encompass a diverse group of genetic and clinical disorders. Here, we aimed to determine a genetic etiology for two siblings manifesting MCD, microcephaly, epilepsy, intellectual disability, and susceptibility to infections. A missense variant (NM_018084:c.929A > C, p.Asp310Ala) and an intragenic deletion (exons 14-16) in CCDC88A were identified as compound heterozygous in patients by genome sequencing. Truncating homozygous CCDC88A variants are known to cause an ultra-rare syndrome manifesting with MCD, microcephaly, seizures, and severe neurological impairment. CCDC88A encodes girdin, which is essential for various cell functions, such as actin remodeling and cell proliferation. Western blot analysis showed that the missense variant allele was expressed in fibroblasts at a level compatible with a heterozygous allele, whereas a truncated protein from the deletion allele was barely detectable. Proliferation and wound-healing assays revealed that girdin-deficient fibroblasts proliferated faster and migrated slower than controls. High-content imaging highlighted girdin-deficient fibroblasts as smaller and their actin remodeling disrupted, leading to perinuclear accumulation of endolysosomal organelles. To confirm these cellular phenotypes resulted from girdin loss, CRISPR-Cas9 edited knockout models of healthy fibroblasts were created, replicating the observations in patient cells. Additionally, the siblings exhibited reduced monocytoid and plasmacytoid dendritic cells, suggesting compromised immunity due to girdin deficiency. In summary, the study describes the first case of a CCDC88A missense variant and intragenic deletion associated with MCD. It demonstrates altered immunity and girdin-related cellular changes, such as cell morphology and proliferation-migration dichotomy, in patient and knockout fibroblasts, reinforcing the pathogenic relevance of these variants.
Collapse
Affiliation(s)
- Johanna Lehtonen
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo Science Park, Gaustadalléen 2, Oslo 0349, Norway
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Biomedicum 2, Tukholmankatu 8, Helsinki 00290, Finland
- Folkhälsan Research Center, Biomedicum 1, Haartmaninkatu 8, Helsinki 00290, Finland
- Department of Medical Genetics, Oslo University Hospital, Building 25, Kirkeveien 166 (Ullevål), Oslo 0450, Norway
| | - Anna H Hakonen
- Department of Clinical Genetics, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Topeliuksenkatu 32, Helsinki 00290, Finland
| | - Antti Hassinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Biomedicum 2, Tukholmankatu 8, Helsinki 00290, Finland
| | - Sanne Iversen Lurås
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo Science Park, Gaustadalléen 2, Oslo 0349, Norway
| | - Meri Kaustio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Biomedicum 2, Tukholmankatu 8, Helsinki 00290, Finland
| | - Virpi Glumoff
- Medical Research Laboratory Unit, Faculty of Medicine, University of Oulu, Pentti Kaiteran katu 1, Oulu 90570, Finland
| | - Francisca Hinrichsen
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo Science Park, Gaustadalléen 2, Oslo 0349, Norway
| | - Weiwei Li
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo Science Park, Gaustadalléen 2, Oslo 0349, Norway
| | - Anna-Maija Sulonen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Biomedicum 2, Tukholmankatu 8, Helsinki 00290, Finland
| | - Sanna Wickman
- Department of Pediatric Neurology, Hyvinkää Hospital, Helsinki and Uusimaa Hospital District, Sairaalankatu 1, Hyvinkää 05850, Finland
| | - Henrikki Almusa
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Biomedicum 2, Tukholmankatu 8, Helsinki 00290, Finland
| | - Minttu Polso
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Biomedicum 2, Tukholmankatu 8, Helsinki 00290, Finland
| | - Maarit Palomäki
- Department of Radiology, Helsinki University Hospital, Stenbäckinkatu 9, Helsinki 00290, Finland
| | - Sirpa Kivirikko
- Department of Clinical Genetics, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Topeliuksenkatu 32, Helsinki 00290, Finland
| | - Kristiina Avela
- Department of Clinical Genetics, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Topeliuksenkatu 32, Helsinki 00290, Finland
- Turku University Hospital, University of Turku, Kiinamyllynkatu 4-8, Turku 20520, Finland
| | - Kaarina Heiskanen
- New Children's Hospital, HUS, Helsinki University Hospital and University of Helsinki, Stenbäckinkatu 9, Helsinki 00290, Finland
| | - Vilja Pietiäinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Biomedicum 2, Tukholmankatu 8, Helsinki 00290, Finland
| | - Kristiina Aittomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Fabianinkatu 33, Helsinki 00100, Finland
| | - Janna Saarela
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo Science Park, Gaustadalléen 2, Oslo 0349, Norway
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Biomedicum 2, Tukholmankatu 8, Helsinki 00290, Finland
- Department of Medical Genetics, Oslo University Hospital, Building 25, Kirkeveien 166 (Ullevål), Oslo 0450, Norway
| |
Collapse
|
2
|
Noguchi H. Curvature-sensing and generation by membrane proteins: a review. SOFT MATTER 2025; 21:3922-3940. [PMID: 40302616 DOI: 10.1039/d5sm00101c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Membrane proteins are crucial in regulating biomembrane shapes and controlling the dynamic changes in membrane morphology during essential cellular processes. These proteins can localize to regions with their preferred curvatures (curvature sensing) and induce localized membrane curvature. Thus, this review describes the recent theoretical development in membrane remodeling performed by membrane proteins. The mean-field theories of protein binding and the resulting membrane deformations are reviewed. The effects of hydrophobic insertions on the area-difference elasticity energy and that of intrinsically disordered protein domains on the membrane bending energy are discussed. For the crescent-shaped proteins, such as Bin/Amphiphysin/Rvs superfamily proteins, anisotropic protein bending energy and orientation-dependent excluded volume significantly contribute to curvature sensing and generation. Moreover, simulation studies of membrane deformations caused by protein binding are reviewed, including domain formation, budding, and tubulation.
Collapse
Affiliation(s)
- Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
| |
Collapse
|
3
|
Wang H, Ardila C, Jindal A, Aggarwal V, Wang W, Vande Geest J, Jiang Y, Xing J, Sant S. Protrusion force and cell-cell adhesion-induced polarity alignment govern collective migration modes. Biophys J 2025; 124:1674-1692. [PMID: 40235119 DOI: 10.1016/j.bpj.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/28/2025] [Accepted: 04/10/2025] [Indexed: 04/17/2025] Open
Abstract
Collective migration refers to the coordinated movement of cells as a single unit during migration. Although collective migration enhances invasive and metastatic potential in cancer, the mechanisms driving this behavior and regulating tumor migration plasticity remain poorly understood. This study provides a mechanistic model explaining the emergence of different modes of collective migration under hypoxia-induced secretome. We focus on the interplay between cellular protrusion force and cell-cell adhesion using collectively migrating three-dimensional microtumors as models with well-defined microenvironments. Large microtumors show directional migration due to intrinsic hypoxia, whereas small microtumors exhibit radial migration when exposed to hypoxic secretome. Here, we developed an in silico multi-scale microtumor model based on the cellular Potts model and implemented in CompuCell3D to elucidate underlying mechanisms. We identified distinct migration modes within specific regions of protrusion force and cell-cell adhesion parameter space and studied these modes using in vitro experimental microtumor models. We show that sufficient cellular protrusion force is crucial for radial and directional collective microtumor migration. Radial migration emerges when sufficient cellular protrusion force is generated, driving neighboring cells to move collectively in diverse directions. Within migrating tumors, strong cell-cell adhesion enhances the alignment of cell polarity, breaking the symmetric angular distribution of protrusion forces and leading to directional microtumor migration. The integrated results from the experimental and computational models provide fundamental insights into collective migration in response to different microenvironmental stimuli. Our computational and experimental models can adapt to various scenarios, providing valuable insights into cancer migration mechanisms.
Collapse
Affiliation(s)
- Huijing Wang
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Catalina Ardila
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ajita Jindal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vaishali Aggarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Weikang Wang
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jonathan Vande Geest
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia
| | - Jianhua Xing
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania; UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, Illinois.
| |
Collapse
|
4
|
Hardin KR, Penas AB, Joubert S, Ye C, Myers KR, Zheng JQ. A Critical Role for the Fascin Family of Actin Bundling Proteins in Axon Development, Brain Wiring and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639554. [PMID: 40027761 PMCID: PMC11870622 DOI: 10.1101/2025.02.21.639554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Actin-based cell motility drives many neurodevelopmental events including guided axonal growth. Fascin is a major family of F-actin bundling proteins, but its role in axon development in vivo and brain wiring remains unclear. Here, we report that fascin is required for axon development, brain wiring and function. We show that fascin is enriched in the motile filopodia of axonal growth cones and its inhibition impairs axonal extension and branching of hippocampal neurons in culture. We next provide evidence that fascin is essential for axon development and brain wiring in vivo using Drosophila melanogaster as a model. Drosophila expresses a single ortholog of mammalian fascin called Singed (SN), which is highly expressed in the mushroom body (MB) of the central nervous system. We observe that loss of SN results in drastic MB disruption, highlighted by α- and β-lobe defects that are consistent with altered axonal guidance. SN-null flies also exhibit defective sensorimotor behaviors as assessed by the negative geotaxis assay. MB- specific expression of SN in SN-null flies rescues MB structure and sensorimotor deficits, indicating that SN functions autonomously in MB neurons. Together, our data from primary neuronal culture and in vivo models highlight a critical role for fascin in brain development and function. Highlights Fascin regulates axonal growth and branching of hippocampal neurons in culture.Singed, Drosophila fascin, is enriched specifically in mushroom body (MB) axons.Singed loss causes axon guidance defects and sensorimotor issues in flies.MB-specific Singed re-expression rescues MB structure and behavior in flies.
Collapse
|
5
|
Aldirawi M, Ghanbari P, Mietkowska M, März S, Odenthal-Schnittler M, Franz J, Wegner J, Currie S, Kipcke JP, Taha M, Giglmaier M, Blanque A, Schillers H, Raz E, Vestweber D, Rottner K, Schnittler H. A specific role for endothelial EPLIN-isoform-regulated actin dynamics in neutrophil transmigration. Sci Rep 2025; 15:15698. [PMID: 40325158 PMCID: PMC12053001 DOI: 10.1038/s41598-025-98192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/09/2025] [Indexed: 05/07/2025] Open
Abstract
Proinflammatory cytokines such as TNF-α or IL-1β activate the endothelium promoting leukocyte transendothelial migration (TEM) via expression of cell adhesion molecules (CAM) and cause actin remodelling. However, the function of endothelial actin remodelling in TEM remains elusive, despite its involvement in the formation of docking structures, diapedesis pores and pore resealing. Here, we establish EPLIN-isoforms, EPLIN-β and EPLIN-α, as differential regulators of TNF-α-inducedactin-remodelling significantly affecting TEM. We find EPLIN-β-induced stress fiber formation upon TNF-α-treatment weakens endothelial junctions, upregulates junctional dynamics and facilitates intercellular gaps for TEM. Increased junctional dynamics involves branched actin filaments under the control of EPLIN-α, including docking structure formation and transmigratory pore closure. We further establish by EPLIN deletion and re-expression studies that EPLIN-α-mediated termination of branched actin filaments maintains TNF-α-induced junctional dynamics and intercellular gaps facilitating TEM. These findings highlight the critical role of TNF-α-induced differential actin dynamics, controlled by EPLIN isoforms, in TEM. These results also offer a wider understanding of inflammation-induced TEM by incorporating altered junctional dynamics alongside upregulation of cell adhesion molecules.
Collapse
Affiliation(s)
- Mohammed Aldirawi
- Institute of Anatomy and Vascular Biology, University Münster, Vesaliusweg 2-4, Münster, Germany
| | - Parisa Ghanbari
- Institute of Anatomy and Vascular Biology, University Münster, Vesaliusweg 2-4, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, Münster, Germany
| | - Magdalena Mietkowska
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Sigrid März
- Institute of Anatomy and Vascular Biology, University Münster, Vesaliusweg 2-4, Münster, Germany
| | - Maria Odenthal-Schnittler
- Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, Münster, Germany
- Institute of Neuropathology, University of Münster, Pottkamp 2, 48149, Münster, Germany
| | - Jonas Franz
- Institute of Anatomy and Vascular Biology, University Münster, Vesaliusweg 2-4, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, Münster, Germany
- Institute of Neuropathology, University of Münster, Pottkamp 2, 48149, Münster, Germany
| | - Julian Wegner
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, 48149, Münster, Germany
| | - Silke Currie
- Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, Münster, Germany
| | - Jan Philip Kipcke
- Institute of Anatomy and Vascular Biology, University Münster, Vesaliusweg 2-4, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, Münster, Germany
- Institute of Neuropathology, University of Münster, Pottkamp 2, 48149, Münster, Germany
| | - Muna Taha
- Institute of Anatomy and Vascular Biology, University Münster, Vesaliusweg 2-4, Münster, Germany
| | - Marcus Giglmaier
- Institute of Aerodynamics and Fluid Mechanics, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| | - Anja Blanque
- Institute of Physiology, University Münster, Robert-Koch Strasse 27a, 48149, Münster, Germany
| | - Hermann Schillers
- Institute of Physiology, University Münster, Robert-Koch Strasse 27a, 48149, Münster, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, 48149, Münster, Germany
| | - Dietmar Vestweber
- Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, Münster, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Hans Schnittler
- Institute of Anatomy and Vascular Biology, University Münster, Vesaliusweg 2-4, Münster, Germany.
- Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, Münster, Germany.
- Institute of Neuropathology, University of Münster, Pottkamp 2, 48149, Münster, Germany.
| |
Collapse
|
6
|
Zhang P, Medwig-Kinney TN, Breiner EA, Perez JM, Song AN, Goldstein B. Cell signaling facilitates apical constriction by basolaterally recruiting Arp2/3 via Rac and WAVE. J Cell Biol 2025; 224:e202409133. [PMID: 40042443 PMCID: PMC11893165 DOI: 10.1083/jcb.202409133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 03/12/2025] Open
Abstract
Apical constriction is a critical cell shape change that drives cell internalization and tissue bending. How precisely localized actomyosin regulators drive apical constriction remains poorly understood. Caenorhabditis elegans gastrulation provides a valuable model to address this question. The Arp2/3 complex is essential in C. elegans gastrulation. To understand how Arp2/3 is locally regulated, we imaged embryos with endogenously tagged Arp2/3 and its nucleation-promoting factors (NPFs). The three NPFs-WAVE, WASP, and WASH-controlled Arp2/3 localization at distinct subcellular locations. We exploited this finding to study distinct populations of Arp2/3 and found that only WAVE depletion caused penetrant gastrulation defects. WAVE localized basolaterally with Arp2/3 and controlled F-actin levels near cell-cell contacts. WAVE and Arp2/3 localization depended on CED-10/Rac. Establishing ectopic cell contacts recruited WAVE and Arp2/3, identifying the contact as a symmetry-breaking cue for localization of these proteins. These results suggest that cell-cell signaling via Rac activates WAVE and Arp2/3 basolaterally and that basolateral Arp2/3 makes an important contribution to apical constriction.
Collapse
Affiliation(s)
- Pu Zhang
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Eleanor A. Breiner
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jadyn M. Perez
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - April N. Song
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Lambert MW. Critical role of alpha spectrin in DNA repair: the importance of μ-calpain and Fanconi anemia proteins. Exp Biol Med (Maywood) 2025; 250:10537. [PMID: 40375875 PMCID: PMC12078185 DOI: 10.3389/ebm.2025.10537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/17/2025] [Indexed: 05/18/2025] Open
Abstract
Nonerythroid spectrins are proteins important in maintaining the structural integrity and flexibility of the cell and nuclear membranes and are essential for a number of functionally important cellular processes. One of these proteins, nonerythroid α spectrin (αSpII), plays a critical role in DNA repair, specifically repair of DNA interstrand crosslinks (ICLs), where it acts as a scaffold, recruiting repair proteins to sites of damage. Loss or breakdown of αSpII is an important factor in a number of disorders. One of these is Fanconi anemia (FA), a genetic disorder characterized by bone marrow failure, chromosome instability, cancer predisposition, congenital abnormalities and a defect in DNA ICL repair. Significantly, breakdown of αSpII occurs in cells from a number of FA complementation groups, due to excessive cleavage by the protease, μ-calpain, leading to defective repair of DNA ICLs in telomeric and non-telomeric DNA. Knockdown of μ-calpain in FA cells by μ-calpain siRNA results in restoration of αSpII levels to normal and repair of DNA ICLs in telomeric and non-telomeric DNA, demonstrating the importance of αSpII stability in the repair process. It is hypothesized that there is a mechanistic link between excessive cleavage of αSpII by μ-calpain and defective DNA ICL repair in FA and that FA proteins, which are deficient in FA, play a key role in maintaining the stability of αSpII and preventing its cleavage by μ-calpain. All of these events are proposed to be important key factors involved in the pathophysiology of FA and suggest new avenues for potential therapeutic intervention.
Collapse
|
8
|
Richards CJ, Wierenga AT, Brouwers-Vos AZ, Kyrloglou E, Dillingh LS, Mulder PP, Palasantzas G, Schuringa JJ, Roos WH. Elastic properties of leukemic cells linked to maturation stage and integrin activation. iScience 2025; 28:112150. [PMID: 40201128 PMCID: PMC11978321 DOI: 10.1016/j.isci.2025.112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/06/2025] [Accepted: 02/27/2025] [Indexed: 04/10/2025] Open
Abstract
Acute myeloid leukemia (AML) remains challenging to cure. In addition to mutations that alter cell functioning, biophysical properties are modulated by external cues. In particular, membrane proteins that interact with the bone marrow niche can induce cellular changes. Here, we develop an atomic force microscopy (AFM) approach to measure non-adherent AML cell mechanical properties. The Young's modulus of the AML cell line, THP-1, increased in response to retronectin, whereas knock-out of the adhesion protein ITGB1 resulted in no response to retronectin. Confocal microscopy revealed different actin cytoskeleton morphologies for wild-type and ITGB1 knock-out cells exposed to retronectin. These results indicate that ITGB1 mediates stimuli-induced cellular mechanoresponses through cytoskeletal changes. We next used AFM to investigate the elastic properties of primary AML cells and found that more committed cells had lower Young's moduli than immature AMLs. Overall, this provides a platform for investigating the molecular mechanisms involved in leukemic cell mechanoresponse.
Collapse
Affiliation(s)
- Ceri J. Richards
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, 9747 AG Groningen, the Netherlands
| | - Albertus T.J. Wierenga
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Annet Z. Brouwers-Vos
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Emmanouil Kyrloglou
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Laura S. Dillingh
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, 9747 AG Groningen, the Netherlands
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
- Nanostructure Materials and Interfaces, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Patty P.M.F.A. Mulder
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Georgios Palasantzas
- Nanostructure Materials and Interfaces, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Wouter H. Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, 9747 AG Groningen, the Netherlands
| |
Collapse
|
9
|
Park E, Jeon H, Oh KI, Jeong J, Kim DW, Jin HS, Jeong SY. Coactosin-like F-actin binding protein (Cotl1) plays a key role in adipocyte differentiation and obesity. Commun Biol 2025; 8:628. [PMID: 40246959 PMCID: PMC12006365 DOI: 10.1038/s42003-025-08062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 04/09/2025] [Indexed: 04/19/2025] Open
Abstract
Actin dynamics, mediated by various actin-binding proteins, plays an important role in adipocyte differentiation. We investigated the role of coactosin-like F-actin binding protein (Cotl1) in adipocyte differentiation in vitro and in vivo. Cotl1 expression level was increased during adipocyte differentiation in mouse 3T3-L1 cells and primary cultured adipose-derived stem cells (ADSCs) and during weight gain in adipose tissues. However, Cotl1 deficient in 3T3-L1 and ADSCs inhibited adipocyte differentiation, and Cotl1-/- mice displayed resistance to high-fat diet (HFD)-induced weight gain, hepatic steatosis and adipocyte enlargement compared to HFD-fed wild type (WT) mice. Ingenuity Pathway Analysis of RNA-sequencing in adipose tissues of HFD-WT and HFD-Cotl1-/- mice predicted complicated relationships between Cotl1, differentiation of adipocytes, obesity and organization of actin cytoskeleton. Particularly, peroxisome proliferator-activated receptor gamma (Pparg) emerged as a central player, with Cotl1 influencing Pparg expression, consequently regulating adipocyte differentiation. These findings suggest Cotl1 as a pivotal regulator of terminal adipocyte differentiation by modulating adipogenic genes.
Collapse
Affiliation(s)
- Eunkuk Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
- Department of Biological Research Laboratory, Jeonbuk Institute for Food-Bioindustry, Jeonju, Republic of Korea
| | - Hyoju Jeon
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Kang-Il Oh
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Junhwan Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Do-Wan Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Republic of Korea.
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
10
|
Zhong Q, Qi J, Su N, Li Z, Wang C, Zeng H, Liu R, Li Y, Yang Q. In vivo investigation of PEDV transmission via nasal infection: mechanisms of CD4 + T-cell-mediated intestinal infection. J Virol 2025; 99:e0176124. [PMID: 40094365 PMCID: PMC12020991 DOI: 10.1128/jvi.01761-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
The porcine epidemic diarrhea virus (PEDV), a highly pathogenic coronavirus, poses significant challenges to global swine agriculture with severe economic consequences. Our research reveals that in addition to known transmission routes, PEDV can be airborne, initially invading the nasal mucosa and subsequently being transported by dendritic cells and peripheral blood T cells, ultimately leading to intestinal disease in piglets. This study elucidates the cellular mechanisms behind the process, demonstrating how PEDV is internalized by CD4+ T cells after being transferred by dendritic cells, where it establishes a latent infection. Crucially, PEDV induces the upregulation of the integrin α4β7 homing receptor, facilitating the migration of these infected CD4+ T cells to the small intestine. Furthermore, our findings reveal that the activation of the α4β7-Rho-GTPases-Cofilin signaling pathway by PEDV reorganizes the actin cytoskeleton, enabling CD4+ T-cell transmigration through high endothelial venules into the intestinal mucosa, resulting in the infection of intestinal epithelial cells. These insights not only illuminate the molecular mechanisms PEDV employs to hijack CD4+ T cells for transmission from the respiratory tract to the intestine but also identify novel targets for therapeutic intervention, providing new perspectives for effectively preventing and managing PEDV infection with broader implications for controlling similar pathogens in diverse hosts.IMPORTANCEPorcine epidemic diarrhea virus (PEDV), characterized by rapid transmission and widespread prevalence, poses a significant long-term threat to the global pig farming industry. Our previous research revealed that, in addition to the classic fecal-oral infection route, PEDV can invade through the nasal mucosa, leading to intestinal infection. This study further investigated the molecular mechanisms by which the virus is transported by T lymphocytes from the respiratory tract to the intestines. We found that PEDV establishes a latent infection in CD4+ T cells and promotes their intestinal homing by upregulating the homing receptor integrin α4β7. Additionally, we elucidated the activation of the integrin α4β7-mediated Rho-GTPase-Cofilin signaling axis by PEDV, which regulates pseudopod formation and facilitates CD4+ T-cell migration to the intestinal mucosal lamina propria post-homing. This study elucidates the mechanism underlying the lymphocyte-dependent dissemination of PEDV following nasal infection, providing new insights into strategies for preventing PEDV invasion.
Collapse
Affiliation(s)
- Qiu Zhong
- MOE Joint
International Research Laboratory of Animal Health and Food Safety,
College of Veterinary Medicine, Nanjing Agricultural
University, Nanjing,
Jiangsu, China
| | - Jiaxin Qi
- MOE Joint
International Research Laboratory of Animal Health and Food Safety,
College of Veterinary Medicine, Nanjing Agricultural
University, Nanjing,
Jiangsu, China
| | - Na Su
- MOE Joint
International Research Laboratory of Animal Health and Food Safety,
College of Veterinary Medicine, Nanjing Agricultural
University, Nanjing,
Jiangsu, China
| | - Zi Li
- State Key Laboratory
for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute
of Zoonosis, and College of Veterinary Medicine, Jilin
University, Changchun,
Jilin, China
| | - Chengcheng Wang
- MOE Joint
International Research Laboratory of Animal Health and Food Safety,
College of Veterinary Medicine, Nanjing Agricultural
University, Nanjing,
Jiangsu, China
| | - Hui Zeng
- MOE Joint
International Research Laboratory of Animal Health and Food Safety,
College of Veterinary Medicine, Nanjing Agricultural
University, Nanjing,
Jiangsu, China
| | - Ruiling Liu
- MOE Joint
International Research Laboratory of Animal Health and Food Safety,
College of Veterinary Medicine, Nanjing Agricultural
University, Nanjing,
Jiangsu, China
| | - Yuchen Li
- MOE Joint
International Research Laboratory of Animal Health and Food Safety,
College of Veterinary Medicine, Nanjing Agricultural
University, Nanjing,
Jiangsu, China
| | - Qian Yang
- MOE Joint
International Research Laboratory of Animal Health and Food Safety,
College of Veterinary Medicine, Nanjing Agricultural
University, Nanjing,
Jiangsu, China
| |
Collapse
|
11
|
Hou X, Chen Y, Carrillo ND, Cryns VL, Anderson RA, Sun J, Wang S, Chen M. Phosphoinositide signaling at the cytoskeleton in the regulation of cell dynamics. Cell Death Dis 2025; 16:296. [PMID: 40229242 PMCID: PMC11997203 DOI: 10.1038/s41419-025-07616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
The cytoskeleton, composed of microfilaments, intermediate filaments, and microtubules, provides the structural basis for cellular functions such as motility and adhesion. Equally crucial, phosphoinositide (PIPn) signaling is a critical regulator of these processes and other biological activities, though its precise impact on cytoskeletal dynamics has yet to be systematically investigated. This review explores the complex interplay between PIPn signaling and the cytoskeleton, detailing how PIPn modulates the dynamics of actin, intermediate filaments, and microtubules to shape cellular behavior. Dysregulation of PIPn signaling is implicated in various diseases, including cancer, highlighting promising therapeutic opportunities through targeted modulation of these pathways. Future research should aim to elucidate the intricate molecular interactions and broader cellular responses to PIPn signaling perturbations, particularly in disease contexts, to devise effective strategies for restoring cytoskeletal integrity.
Collapse
Affiliation(s)
- Xiaoting Hou
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yu Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Noah D Carrillo
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Vincent L Cryns
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jichao Sun
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Critical Care Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
| | - Songlin Wang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.
| | - Mo Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
12
|
Kornev AA, Shmakov SV, Gryschenko AM, Pronina YA, Ponyaev AI, Stepakov AV, Boitsov VM. Study of Cytotoxicity of 3-Azabicyclo[3.1.0]hexanes and Cyclopropa[ a]pyrrolizidines Spiro-Fused to Acenaphthylene-1(2 H)-one and Aceanthrylene-1(2 H)-one Fragments Against Tumor Cell Lines. Int J Mol Sci 2025; 26:3474. [PMID: 40331956 PMCID: PMC12026830 DOI: 10.3390/ijms26083474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/01/2025] [Accepted: 04/05/2025] [Indexed: 05/08/2025] Open
Abstract
A series of 3-azabicyclo[3.1.0]hexanes and cyclopropa[a]pyrrolizidines spiro-fused to acenaphthylene-1(2H)-one and aceanthrylene-1(2H)-one frameworks have been studied for their in vitro antiproliferative activity against human erythroleukemia (K562), cervical carcinoma (HeLa), melanoma (Sk-mel-2), osteosarcoma (U2OS), as well as murine melanoma (B16) cell lines. Using confocal microscopy, it was found that cultivation with the tested spiro-fused compounds led to the disappearance of stress fibers (granular actin was distributed diffusely in the cytoplasm in up to 56% of treated cells) and decrease in filopodia-like deformations (up to 69% after cultivation), which indirectly suggests a decrease in cell motility. The human melanoma cell line scratch test showed that these cells lose their ability to move after cultivation with the tested spiro-fused compounds and do not fill the scratched strip. This was also supported by docking simulations with actin-related targets (PDB ID: 8DNH, 2Q1N). Using flow cytometry, the impact on the mitochondrial membrane potential showed that the tested compounds led to a significant increase in the number of cells with decreased mitochondrial membrane potential from 10% for the control up to 55-80% for the cyclopropa[a]pyrrolizidine adducts. The obtained results support the antitumor effect of the tested spiro-compounds and encourage the extension of the study in order to improve their anticancer activity as well as reduce their toxicological risks.
Collapse
Affiliation(s)
- Anton A. Kornev
- Laboratory of Nanobiotechnologies, Saint-Petersburg National Research Academic University of the Russian Academy of Sciences, Saint Petersburg 194021, Russia
| | - Stanislav V. Shmakov
- Laboratory of Nanobiotechnologies, Saint-Petersburg National Research Academic University of the Russian Academy of Sciences, Saint Petersburg 194021, Russia
| | - Alexandra M. Gryschenko
- Laboratory of Nanobiotechnologies, Saint-Petersburg National Research Academic University of the Russian Academy of Sciences, Saint Petersburg 194021, Russia
| | - Yulia A. Pronina
- Department of Organic Chemistry, Saint-Petersburg State Institute of Technology, Saint Petersburg 190013, Russia
| | - Alexander I. Ponyaev
- Department of Organic Chemistry, Saint-Petersburg State Institute of Technology, Saint Petersburg 190013, Russia
| | - Alexander V. Stepakov
- Department of Organic Chemistry, Saint-Petersburg State Institute of Technology, Saint Petersburg 190013, Russia
- Department of Chemistry, Saint-Petersburg State University, Saint Petersburg 199034, Russia
| | - Vitali M. Boitsov
- Laboratory of Nanobiotechnologies, Saint-Petersburg National Research Academic University of the Russian Academy of Sciences, Saint Petersburg 194021, Russia
| |
Collapse
|
13
|
Kilwein MD, Miller P, Lee KY, Osterfield M, Mogilner A, Shvartsman SY, Gavis ER. Formation of Drosophila germ cells requires spatial patterning of phospholipids. Curr Biol 2025; 35:1612-1621.e3. [PMID: 40049172 DOI: 10.1016/j.cub.2025.01.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/13/2024] [Accepted: 01/31/2025] [Indexed: 04/10/2025]
Abstract
Germline-soma segregation is crucial for fertility. Primordial germ cells (PGCs) arise early in development and are the very first cells to form in the Drosophila embryo. At the time of PGC formation, the embryo is a syncytium where nuclei divide within a common cytoplasm. Whereas invaginating plasma membrane furrows enclose nuclei to form somatic lineages during the 14th nuclear division cycle, PGCs emerge from the syncytium during the 9th division cycle in a mechanistically distinct process. PGC formation depends on maternally deposited germ granules localized at the embryo's posterior pole. Germ granules trigger protrusion of membrane buds that enlarge to surround several nuclei that reach the posterior pole. Buds are remodeled to cells through mitotic division and constriction of the bud neck. Previous studies implicated F-actin,1 actin regulators,2,3 and contractile ring components4 in mitotic furrow formation, but what drives bud emergence and how germ granules provoke reshaping of the plasma membrane remain unknown. Here, we investigate the mechanism of germ-granule-induced bud formation. Treating the embryo as a pressurized elastic shell, we used mathematical modeling to examine possible mechanical mechanisms for local membrane protrusion. One mechanism, outward buckling produced by polymerization of a branched F-actin network, is supported by experimental data. Further, we show that germ granules modify membrane lipid composition, promoting local branched F-actin polymerization that initiates PGC formation. We propose that a mechanism for membrane lipid regulation of F-actin dynamics in migrating cells has been adapted for PGC formation in response to spatial cues provided by germ granules.
Collapse
Affiliation(s)
- Marcus D Kilwein
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Pearson Miller
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Kwan Yin Lee
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Miriam Osterfield
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, NY 10012, USA
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
14
|
Rekha S, Peter MCS. Effects of in vitro cytochalasin D and hypoxia on mitochondrial energetics and biogenesis, cell signal status and actin/tubulin/Hsp/MMP entity in air-breathing fish heart. Comp Biochem Physiol C Toxicol Pharmacol 2025; 290:110132. [PMID: 39864717 DOI: 10.1016/j.cbpc.2025.110132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
The cardiac actin cytoskeleton has a dynamic pattern of polymerisation. It is uncertain how far actin destabilisation impacts mitochondrial energetics and biogenesis, cell signal status, and structural entities in cardiomyocytes, particularly in hypoxic conditions. We thus tested the in vitro action of cytochalasin D (Cyt D), an inhibitor of actin polymerisation, in hypoxic ventricular explants to elucidate the role of the actin in mitochondrial energetics and biogenesis, cell signals and actin/tubulin/hsps/MMPs dynamics in hypoxic air-breathing fish hearts. The COX activity increased upon Cyt D exposure, whereas hypoxia lowered COX and SDH activities but increased LDH activity. The ROS increased, and NO decreased by Cyt D. COX and LDH activities, and NO content reversed after Cyt D exposure in hypoxic hearts. Cyt D exposure upregulated actin isoform expression (Actc1 and Actb1) but downregulated tubulin isoform (Tedc1). Hypoxia upregulated actin (Acta1a, Actb1, Actb2, Actc1a) tubulin (Tuba, Tubb5, Tedc1, Tubd1) and hsp (Hspa5, Hspa9, Hspa12a, Hspa14, Hspd1, Hsp90) isoform transcript expression and Cyt D in hypoxic hearts reversed these isoform's expression. Hypoxia upregulated Mmp2 and 9 transcript expressions but downregulated Mfn1, Fis1, Nfkb1, Prkacaa, and Aktip expressions, and Cyt D exposure reversed almost all these markers in hypoxic hearts. The data provide novel evidence for the mechanistic role of actin in integrating mitochondrial energetics and biogenesis, cell signal status and actin/tubulin/Hsp/MMP entity, indicating its critical cardioprotective role in defending against hypoxia. Besides proposing an air-breathing fish heart as a model, the study further brings the therapeutic potential of Cyt D towards hypoxia intervention.
Collapse
Affiliation(s)
- S Rekha
- Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India
| | - M C Subhash Peter
- Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India; Inter-University Centre for Evolutionary and Integrative Biology-iCEIB, School of Life Sciences, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India; Sastrajeevan Integrative Project, Centre for Integrative Stress and Ease-cRISE, Gregorian College of Advanced Studies, Sreekariyam, Thiruvananthapuram 695017, Kerala, India.
| |
Collapse
|
15
|
Schahl A, Lagardère L, Walker B, Ren P, Wioland H, Ballet M, Jégou A, Chavent M, Piquemal JP. Histidine 73 methylation coordinates β-actin plasticity in response to key environmental factors. Nat Commun 2025; 16:2304. [PMID: 40055316 PMCID: PMC11889246 DOI: 10.1038/s41467-025-57458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 02/24/2025] [Indexed: 05/13/2025] Open
Abstract
The functional importance of the methylation of histidine 73 (H73) in actin remains unclear. Focusing on cytoplasmic β-actin, present in all mammalian cells, we use molecular dynamics simulations with a polarizable force field and adaptive sampling to examine the effects of H73 methylation. Our results show that methylation enhances nucleotide binding cleft opening, alters allosteric pathways connecting subdomains 2 and 4 (SD2 and SD4) in G-actin, and affects backdoor openings and inorganic phosphate release in F-actin, as validated by biochemical assays. These effects depend on the nucleotide and ions interacting with the actin. Together, our findings reveal how H73 methylation regulates β-actin plasticity and integrates environmental cues.
Collapse
Affiliation(s)
- Adrien Schahl
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Toulouse, France
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS, Paris, France
| | - Louis Lagardère
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS, Paris, France
| | - Brandon Walker
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Hugo Wioland
- Institut Jacques Monod, Université Paris Cité, CNRS, Paris, France
| | - Maya Ballet
- Institut Jacques Monod, Université Paris Cité, CNRS, Paris, France
| | - Antoine Jégou
- Institut Jacques Monod, Université Paris Cité, CNRS, Paris, France
| | - Matthieu Chavent
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Toulouse, France.
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France.
| | - Jean-Philip Piquemal
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS, Paris, France.
| |
Collapse
|
16
|
Sato K, Okada T, Okada R, Yasui H, Yamada M, Isobe Y, Nishinaga Y, Shimizu M, Koike C, Fukushima R, Takahashi K, Taki S, Kato A, Sato M, Ogura T. Photoinduced Actin Aggregation Involves Cell Death: A Mechanism of Cancer Cell Cytotoxicity after Near-Infrared Photoimmunotherapy. ACS NANO 2025; 19:8338-8356. [PMID: 39964399 PMCID: PMC11887486 DOI: 10.1021/acsnano.5c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a cancer treatment modality that uses antibody-photoabsorber (IR700) conjugates to destroy specific cells. The reaction between the antibody and photoabsorber is triggered by NIR-light, and this alters the shape and hydrophilicity of the conjugate. This photochemical reaction is responsible for NIR-PIT-induced cell death; however, the detailed mechanism underlying this effect remains unknown. In this study, we demonstrated that actin filaments underneath the cell membrane play an important role in NIR-PIT-induced cell death and that IR700 mediates the photochemical reaction of the conjugates, leading to actin filament aggregation upon NIR-light irradiation. The destruction of cortical actin beneath the cell plasma membrane allows water to flow into the cell based on osmotic conditions, resulting in cell rupture. This sequence of events may constitute the mechanism of NIR-PIT-induced cell death, making NIR-PIT a promising cancer treatment modality.
Collapse
Affiliation(s)
- Kazuhide Sato
- Nagoya
University Graduate School of Medicine, Nagoya 466-8550, Japan
- Nagoya
University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical
Engineering Unit (MEU), B3 Unit Frontier, Nagoya 466-8550, Japan
- CREST,
JST, Tokyo 102-8666, Japan
- Nagoya
University Institute for Advanced Research, Nagoya 464-8601, Japan
- FOREST-Souhatsu,
JST, Tokyo 102-8666, Japan
| | - Tomoko Okada
- CREST,
JST, Tokyo 102-8666, Japan
- Health and
Medical Research Institute, National Institute of Advanced Industrial
Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Ryu Okada
- Nagoya
University Graduate School of Medicine, Nagoya 466-8550, Japan
- Nagoya
University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical
Engineering Unit (MEU), B3 Unit Frontier, Nagoya 466-8550, Japan
| | - Hirotoshi Yasui
- Nagoya
University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical
Engineering Unit (MEU), B3 Unit Frontier, Nagoya 466-8550, Japan
| | - Mizuki Yamada
- Nagoya
University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical
Engineering Unit (MEU), B3 Unit Frontier, Nagoya 466-8550, Japan
- Division
of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Yoshitaka Isobe
- Nagoya
University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical
Engineering Unit (MEU), B3 Unit Frontier, Nagoya 466-8550, Japan
| | - Yuko Nishinaga
- Nagoya
University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical
Engineering Unit (MEU), B3 Unit Frontier, Nagoya 466-8550, Japan
| | - Misae Shimizu
- Nagoya
University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical
Engineering Unit (MEU), B3 Unit Frontier, Nagoya 466-8550, Japan
| | - Chiaki Koike
- Nagoya
University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical
Engineering Unit (MEU), B3 Unit Frontier, Nagoya 466-8550, Japan
| | - Rika Fukushima
- Nagoya
University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical
Engineering Unit (MEU), B3 Unit Frontier, Nagoya 466-8550, Japan
- Division
of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Kazuomi Takahashi
- Nagoya
University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical
Engineering Unit (MEU), B3 Unit Frontier, Nagoya 466-8550, Japan
| | - Shunichi Taki
- Nagoya
University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical
Engineering Unit (MEU), B3 Unit Frontier, Nagoya 466-8550, Japan
| | - Ayako Kato
- Nagoya
University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical
Engineering Unit (MEU), B3 Unit Frontier, Nagoya 466-8550, Japan
| | - Mitsuo Sato
- Division
of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Toshihiko Ogura
- CREST,
JST, Tokyo 102-8666, Japan
- Health and
Medical Research Institute, National Institute of Advanced Industrial
Science and Technology (AIST), Tsukuba 305-8566, Japan
| |
Collapse
|
17
|
Noureddine M, Mikolajek H, Morgan NV, Denning C, Loughna S, Gehmlich K, Mohammed F. Structural and functional insights into α-actinin isoforms and their implications in cardiovascular disease. J Gen Physiol 2025; 157:e202413684. [PMID: 39918740 PMCID: PMC11804879 DOI: 10.1085/jgp.202413684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/11/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025] Open
Abstract
α-actinin (ACTN) is a pivotal member of the actin-binding protein family, crucial for the anchoring and organization of actin filaments within the cytoskeleton. Four isoforms of α-actinin exist: two non-muscle isoforms (ACTN1 and ACTN4) primarily associated with actin stress fibers and focal adhesions, and two muscle-specific isoforms (ACTN2 and ACTN3) localized to the Z-disk of the striated muscle. Although these isoforms share structural similarities, they exhibit distinct functional characteristics that reflect their specialized roles in various tissues. Genetic variants in α-actinin isoforms have been implicated in a range of pathologies, including cardiomyopathies, thrombocytopenia, and non-cardiovascular diseases, such as nephropathy. However, the precise impact of these genetic variants on the α-actinin structure and their contribution to disease pathogenesis remains poorly understood. This review provides a comprehensive overview of the structural and functional attributes of the four α-actinin isoforms, emphasizing their roles in actin crosslinking and sarcomere stabilization. Furthermore, we present detailed structural modeling of select ACTN1 and ACTN2 variants to elucidate mechanisms underlying disease pathogenesis, with a particular focus on macrothrombocytopenia and hypertrophic cardiomyopathy. By advancing our understanding of α-actinin's role in both normal cellular function and disease states, this review lays the groundwork for future research and the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Maya Noureddine
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health University of Birmingham, Birmingham, UK
| | - Halina Mikolajek
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Neil V. Morgan
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health University of Birmingham, Birmingham, UK
| | - Chris Denning
- Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Siobhan Loughna
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Katja Gehmlich
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health University of Birmingham, Birmingham, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK
| | - Fiyaz Mohammed
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
18
|
Ma N, Huang L, Zhou Q, Zhang X, Luo Q, Song G. Mechanical stretch promotes the migration of mesenchymal stem cells via Piezo1/F-actin/YAP axis. Exp Cell Res 2025; 446:114461. [PMID: 39988125 DOI: 10.1016/j.yexcr.2025.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/15/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
Mesenchymal stem cells (MSCs) have self-renewal ability and the potential for multi-directional differentiation, and their clinical application has promising prospects, but improving the migration ability of MSCs in vivo is one of the challenges. We previously determined mechanical stretch at 1 Hz with 10 % strain for 8 h can significantly promote MSC migration, however, the molecular mechanism remains poorly understood. Here, we reported that the expression and activity of yes-associated protein (YAP) are upregulated after mechanical stretch. As a classical inhibitor of the YAP-TEAD activity and YAP protein, the treatment of verteporfin (VP) suppressed mechanical stretch-promoted MSC migration. We also observed F-actin polymerization after mechanical stretch. Next, we used Latrunculin A (Lat A), the most widely used reagent to depolymerize actin filaments, to treat MSCs and we found that Lat A treatment inhibits MSC migration by suppressing YAP expression and activity. In addition, the protein expression of Piezo1 was also upregulated after mechanical stretch. Knockdown of Piezo1 suppressed mechanical stretch-promoted MSC migration by restraining F-actin polymerization. Together, these findings demonstrate the role of Piezo1/F-actin/YAP signaling pathway in MSC migration under mechanical stretch, providing new experimental evidence for an in-depth understanding the mechanobiological mechanism of MSC migration.
Collapse
Affiliation(s)
- Ning Ma
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Lei Huang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Qianxu Zhou
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Xiaomei Zhang
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Qing Luo
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Guanbin Song
- College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
19
|
Abdioğlu HB, Işık Y, Sevgi M, Demircali AA, Gorkem Kirabali U, Esmer GB, Uvet H. Noninvasive holographic sensor system for measuring stiffness of soft micro samples. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:036501. [PMID: 40093760 PMCID: PMC11907929 DOI: 10.1117/1.jbo.30.3.036501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/02/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Significance: Measuring cell stiffness is essential in cellular biomechanics, particularly in understanding disease progression, including cancer metastasis and tissue mechanics. However, conventional techniques such as atomic force microscopy and optical stretching present limitations, including invasiveness, low throughput, and complex sample preparation. These factors restrict their applicability in dynamic and sensitive biological environments. Aim: This study introduces a noninvasive holographic sensor system for evaluating the stiffness of soft microscale samples. Approach: The proposed system integrates holographic imaging with acoustic stimulation using an off-axis Mach-Zehnder interferometer combined with bulk acoustic waves. This setup allows for label-free, high-throughput measurements while preserving sample integrity. The system was validated with polyacrylamide beads engineered to mimic cellular stiffness, ensuring precise and repeatable stiffness assessments. Results: Measurement errors caused by spatial variations were minimized through a structured imaging approach and a calibration strategy, improving uniformity across different regions. These corrections enhanced the consistency and reliability of stiffness assessments. Experimental validation demonstrated stable stiffness measurements regardless of sample size variations. Repeatability tests further confirmed the system's robustness, producing consistent results across multiple trials. Conclusion: The findings highlight the potential of this holographic sensor system in advancing cell biomechanics research, cancer diagnostics, and mechanobiology. By offering a noninvasive, high-throughput alternative for mechanical property assessments in biological samples, this method contributes to improved characterization of cellular stiffness in biomedical applications.
Collapse
Affiliation(s)
- Hasan Berkay Abdioğlu
- Yıldız Technical University, Department of Mechatronics Engineering, Istanbul, Turkey
| | - Yağmur Işık
- Yıldız Technical University, Department of Mechatronics Engineering, Istanbul, Turkey
| | - Merve Sevgi
- Yıldız Technical University, Department of Bioengineering, Istanbul, Turkey
| | - Ali Anil Demircali
- Imperial College London, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, London, United Kingdom
| | | | - Gokhan Bora Esmer
- Marmara University, Department of Electrical and Electronics Engineering, Faculty of Engineering, Istanbul, Turkey
| | - Huseyin Uvet
- Yıldız Technical University, Department of Mechatronics Engineering, Istanbul, Turkey
| |
Collapse
|
20
|
Bock F, Li S, Pozzi A, Zent R. Integrins in the kidney - beyond the matrix. Nat Rev Nephrol 2025; 21:157-174. [PMID: 39643697 DOI: 10.1038/s41581-024-00906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 12/09/2024]
Abstract
The development and proper functioning of the kidney is dependent on the interaction of kidney cells with the surrounding extracellular matrix (ECM). These interactions are mediated by heterodimeric membrane-bound receptors called integrins, which bind to the ECM via their extracellular domain and via their cytoplasmic tail to intracellular adaptor proteins, to assemble large macromolecular adhesion complexes. These interactions enable integrins to control cellular functions such as intracellular signalling and organization of the actin cytoskeleton and are therefore crucial to organ function. The different nephron segments and the collecting duct system have unique morphologies, functions and ECM environments and are thus equipped with unique sets of integrins with distinct specificities for the ECM with which they interact. These cell-type-specific functions are facilitated by specific intracellular integrin binding proteins, which are critical in determining the integrin activation status, ligand-binding affinity and the type of ECM signals that are relayed to the intracellular structures. The spatiotemporal expression of integrins and their specific interactions with binding partners underlie the proper development, function and repair processes of the kidney. This Review summarizes our current understanding of how integrins, their binding partners and the actin cytoskeleton regulate kidney development, physiology and pathology.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Shensen Li
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Department of Physiology and Molecular Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
21
|
Master K, El Khalki L, Bayachou M, Sossey‐Alaoui K. Role of WAVE3 as an actin binding protein in the pathology of triple negative breast cancer. Cytoskeleton (Hoboken) 2025; 82:130-144. [PMID: 39021344 PMCID: PMC11904861 DOI: 10.1002/cm.21898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Breast cancer, a prevalent global health concern, has sparked extensive research efforts, particularly focusing on triple negative breast cancer (TNBC), a subtype lacking estrogen receptor (ER), progesterone receptor, and epidermal growth factor receptor. TNBC's aggressive nature and resistance to hormone-based therapies heightens the risk of tumor progression and recurrence. Actin-binding proteins, specifically WAVE3 from the Wiskott-Aldrich syndrome protein (WASP) family, have emerged as major drivers in understanding TNBC biology. This review delves into the intricate molecular makeup of TNBC, shedding light on actin's fundamental role in cellular processes. Actin, a structural element in the cytoskeleton, regulates various cellular pathways essential for homeostasis. Its dynamic nature enables functions such as cell migration, motility, intracellular transport, cell division, and signal transduction. Actin-binding proteins, including WAVE3, play pivotal roles in these processes. WAVE3, a member of the WASP family, remains the focus of this review due to its potential involvement in TNBC progression. While actin-binding proteins are studied for their roles in healthy cellular cycles, their significance in TNBC remains underexplored. This review aims to discuss WAVE3's impact on TNBC, exploring its molecular makeup, functions, and significance in tumor progression. The intricate structure of WAVE3, featuring elements like the verprolin-cofilin-acidic domain and regulatory elements, plays a crucial role in regulating actin dynamics. Dysregulation of WAVE3 in TNBC has been linked to enhanced cell migration, invasion, extracellular matrix remodeling, epithelial-mesenchymal transition, tumor proliferation, and therapeutic resistance. Understanding the role of actin-binding proteins in cancer biology has potential clinical implications, making them potential prognostic biomarkers and promising therapeutic targets. The review emphasizes the need for further research into actin-binding proteins' clinical applications, diagnostic value, and therapeutic interventions. In conclusion, this comprehensive review explores the complex interplay between actin and actin-binding proteins, with special emphasis on WAVE3, in the context of TNBC. By unraveling the molecular intricacies, structural characteristics, and functional significance, the review paves the way for future research directions, clinical applications, and potential therapeutic strategies in the challenging landscape of TNBC.
Collapse
Affiliation(s)
- Kruyanshi Master
- Department of ChemistryCleveland State UniversityClevelandOhioUSA
| | - Lamyae El Khalki
- MetroHealth SystemClevelandOhioUSA
- Case Western Reserve UniversityClevelandOhioUSA
- Case Comprehensive Cancer CenterClevelandOhioUSA
| | - Mekki Bayachou
- Department of ChemistryCleveland State UniversityClevelandOhioUSA
| | - Khalid Sossey‐Alaoui
- MetroHealth SystemClevelandOhioUSA
- Case Western Reserve UniversityClevelandOhioUSA
- Case Comprehensive Cancer CenterClevelandOhioUSA
| |
Collapse
|
22
|
Gao X, Chen X, Yu L, Zhao S, Jiu Y. Host cytoskeleton and membrane network remodeling in the regulation of viral replication. BIOPHYSICS REPORTS 2025; 11:34-45. [PMID: 40070659 PMCID: PMC11891074 DOI: 10.52601/bpr.2024.240040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/15/2024] [Indexed: 03/14/2025] Open
Abstract
Viral epidemics pose major threats to global health and economies. A hallmark of viral infection is the reshaping of host cell membranes and cytoskeletons to form organelle-like structures, known as viral factories, which support viral genome replication. Viral infection in many cases induces the cytoskeletal network to form cage-like structures around viral factories, including actin rings, microtubule cages, and intermediate filament cages. Viruses hijack various organelles to create these replication factories, such as viroplasms, spherules, double-membrane vesicles, tubes, and nuclear viral factories. This review specifically examines the roles of cytoskeletal elements and the endomembrane system in material transport, structural support, and biochemical regulation during viral factory formation. Furthermore, we discuss the broader implications of these interactions for viral replication and highlight potential future research directions.
Collapse
Affiliation(s)
- Xuedi Gao
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinming Chen
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Letian Yu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuangshuang Zhao
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
23
|
Giles KA, Taberlay PC, Cesare AJ, Jones MJK. Roles for the 3D genome in the cell cycle, DNA replication, and double strand break repair. Front Cell Dev Biol 2025; 13:1548946. [PMID: 40083661 PMCID: PMC11903485 DOI: 10.3389/fcell.2025.1548946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Large eukaryotic genomes are packaged into the restricted area of the nucleus to protect the genetic code and provide a dedicated environment to read, copy and repair DNA. The physical organisation of the genome into chromatin loops and self-interacting domains provides the basic structural units of genome architecture. These structural arrangements are complex, multi-layered, and highly dynamic and influence how different regions of the genome interact. The role of chromatin structures during transcription via enhancer-promoter interactions is well established. Less understood is how nuclear architecture influences the plethora of chromatin transactions during DNA replication and repair. In this review, we discuss how genome architecture is regulated during the cell cycle to influence the positioning of replication origins and the coordination of DNA double strand break repair. The role of genome architecture in these cellular processes highlights its critical involvement in preserving genome integrity and cancer prevention.
Collapse
Affiliation(s)
- Katherine A. Giles
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Phillippa C. Taberlay
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Anthony J. Cesare
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW, Australia
| | - Mathew J. K. Jones
- Faculty of Medicine, Frazer Institute, University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
24
|
Elblová P, Andělová H, Lunova M, Anthi J, Henry SJW, Tu X, Dejneka A, Jirsa M, Stephanopoulos N, Lunov O. Geometrically constrained cytoskeletal reorganisation modulates DNA nanostructures uptake. J Mater Chem B 2025; 13:2335-2351. [PMID: 39835937 PMCID: PMC11749194 DOI: 10.1039/d5tb00074b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
DNA nanostructures (DNs) have gained popularity in various biomedical applications due to their unique properties, including structural programmability, ease of synthesis and functionalization, and low cytotoxicity. Effective utilization of DNs in biomedical applications requires a fundamental understanding of their interactions with living cells and the mechanics of cellular uptake. Current knowledge primarily focuses on how the physicochemical properties of DNs, such as mass, shape, size, and surface functionalization, affect uptake efficacy. However, the role of cellular mechanics and morphology in DN uptake remains largely unexplored. In this work, we show that cells subjected to geometric constraints remodel their actin cytoskeleton, resulting in differential mechanical force generation that facilitates DN uptake. The length, number, and orientation of F-actin fibers are influenced by these constraints, leading to distinct mechanophenotypes. Overall, DN uptake is governed by F-actin forces arising from filament reorganisation under geometric constraints. These results underscore the importance of actin dynamics in the cellular uptake of DNs and suggest that leveraging geometric constraints to induce specific cell morphology adaptations could enhance the uptake of therapeutically designed DNs.
Collapse
Affiliation(s)
- Petra Elblová
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-121 16 Prague 2, Czech Republic
| | - Hana Andělová
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Judita Anthi
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| | - Skylar J W Henry
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA.
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, USA
| | - Xinyi Tu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA.
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, USA
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA.
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, USA
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| |
Collapse
|
25
|
Wu KY, Chen YJ, Lin SF, Hsu HM. Iron triggers TvPI4P5K proteostasis and Arf-mediated cell membrane trafficking to regulate PIP 2 signaling crucial for multiple pathogenic activities of the parasitic protozoan Trichomonas vaginalis. mBio 2025; 16:e0186424. [PMID: 39714186 PMCID: PMC11796385 DOI: 10.1128/mbio.01864-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Trichomonas vaginalis is the etiologic agent of trichomoniasis, one of the most common non-viral sexually transmitted infections globally. Our previous work reported the role of phosphatidylinositol 4,5-bisphosphates (PIP2) signaling in the actin-dependent pathogenicity of T. vaginalis. This study further demonstrated that iron transiently regulated T. vaginalis phosphatidylinositol-4-phosphate 5-kinase (TvPI4P5K) proteostasis and its complex formation with an active ADP ribosylation factor TvArf220, facilitating co-trafficking to the plasma membrane, crucial for PIP2 production. In dominant-active HA-TvArf220 Q71L mutant, TvPI4P5K plasma membrane trafficking, PIP2 production, and intracellular calcium levels were increased, while these processes were inhibited in dominant-negative T31N mutant or those by Brefeldin A (BFA) treatment. Additionally, PIP2 replenishment reversed these inhibitions in the T31N mutant, suggesting the critical role of TvArf220 activation in PIP2-calcium signaling. Also, T31N mutant and BFA treatment impaired actin dynamics and cytoskeleton-dependent processes in T. vaginalis, further linking the role of TvArf220 to PIP2-calcium-dependent actin dynamics. Beyond cytoadherence, during host-parasite interactions, TvArf220 influenced both contact-dependent and -independent cytotoxicity, as well as phagocytotic capacity, contributing to the cytopathogenesis of human vaginal epithelial cells. Our findings underscore the key upstream regulation mechanisms of the PIP2 signaling, orchestrating the interplay between TvArf220-PIP2-calcium signaling and downstream actin cytoskeleton-driven pathogenicity in T. vaginalis.IMPORTANCETrichomonas vaginalis actin cytoskeleton-centric pathogenicity is regulated by the phosphatidylinositol 4,5-bisphosphates (PIP2)-triggered calcium signaling cascade in response to environmental iron, though the detailed mechanism by which iron modulates PIP2 signaling remains unclear. Our findings reveal that iron rapidly induces T. vaginalis phosphatidylinositol-4-phosphate 5-kinase (TvPI4P5K) translation followed by its degradation, while simultaneously activating TvArf220 binding, which facilitates TvPI4P5K localization to the plasma membrane for PIP2 production. In contrast to the TvArf220 Q71L mutant, the reduced PIP2 production, intracellular calcium, actin assembly, morphogenesis, and cytoadherence in the dominant-negative T31N mutant were recovered by PIP2 supplementation, indicating the essential role of TvArf220 in PIP2-dependent calcium signaling. Additionally, the contact-dependent or -independent cytotoxicity, along with the phagocytosis, was impaired in the TvPI4P5K- or TvArf220-deficient parasites, as well as in those treated with BAPTA or Latrunculin B. These findings highlight that TvArf220-mediated PIP2-calcium signaling cascade regulates actin cytoskeleton and cytopathogenicity of T. vaginalis. This study uncovers a novel pathogenic mechanism and suggests potential therapeutic targets for parasite control.
Collapse
Affiliation(s)
- Kuan-Yi Wu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Ju Chen
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Fan Lin
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hong-Ming Hsu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
26
|
Noguchi H. Spatiotemporal pattern formation of membranes induced by surface molecular binding/unbinding. SOFT MATTER 2025; 21:1113-1121. [PMID: 39810697 DOI: 10.1039/d4sm01277a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Nonequilibrium membrane pattern formation is studied using meshless membrane simulation. We consider that molecules bind to either surface of a bilayer membrane and move to the opposite leaflet by flip-flop. When binding does not modify the membrane properties and the transfer rates among the three states are cyclically symmetric, the membrane exhibits spiral-wave and homogeneous-cycling modes at high and low binding rates, respectively, as in an off-lattice cyclic Potts model. When binding changes the membrane spontaneous curvature, these spatiotemporal dynamics are coupled with microphase separation. When two symmetric membrane surfaces are in thermal equilibrium, the membrane domains form 4.8.8 tiling patterns in addition to stripe and spot patterns. In nonequilibrium conditions, moving biphasic domains and time-irreversible fluctuating patterns appear. The domains move ballistically or diffusively depending on the conditions.
Collapse
Affiliation(s)
- Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
| |
Collapse
|
27
|
Earnhardt-San AL, Baker EC, Cilkiz KZ, Cardoso RC, Ghaffari N, Long CR, Riggs PK, Randel RD, Riley DG, Welsh TH. Evaluation of Prenatal Transportation Stress on DNA Methylation (DNAm) and Gene Expression in the Hypothalamic-Pituitary-Adrenal (HPA) Axis Tissues of Mature Brahman Cows. Genes (Basel) 2025; 16:191. [PMID: 40004522 PMCID: PMC11855312 DOI: 10.3390/genes16020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The experience of prenatal stress results in various physiological disorders due to an alteration of an offspring's methylome and transcriptome. The objective of this study was to determine whether PNS affects DNA methylation (DNAm) and gene expression in the stress axis tissues of mature Brahman cows. Methods: Samples were collected from the paraventricular nucleus (PVN), anterior pituitary (PIT), and adrenal cortex (AC) of 5-year-old Brahman cows that were prenatally exposed to either transportation stress (PNS, n = 6) or were not transported (Control, n = 8). The isolated DNA and RNA samples were, respectively, used for methylation and RNA-Seq analyses. A gene ontology and KEGG pathway enrichment analysis of each data set within each sample tissue was conducted with the DAVID Functional Annotation Tool. Results: The DNAm analysis revealed 3, 64, and 99 hypomethylated and 2, 93, and 90 hypermethylated CpG sites (FDR < 0.15) within the PVN, PIT, and AC, respectively. The RNA-Seq analysis revealed 6, 25, and 5 differentially expressed genes (FDR < 0.15) in the PVN, PIT, and AC, respectively, that were up-regulated in the PNS group relative to the Control group, as well as 24 genes in the PIT that were down-regulated. Based on the enrichment analysis, several developmental and cellular processes, such as maintenance of the actin cytoskeleton, cell motility, signal transduction, neurodevelopment, and synaptic function, were potentially modulated. Conclusions: The methylome and transcriptome were altered in the stress axis tissues of mature cows that had been exposed to prenatal transportation stress. These findings are relevant to understanding how prenatal experiences may affect postnatal neurological functions.
Collapse
Affiliation(s)
- Audrey L. Earnhardt-San
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Texas A&M AgriLife Research Center, Overton, TX 75684, USA
| | - Emilie C. Baker
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Kubra Z. Cilkiz
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Rodolfo C. Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Noushin Ghaffari
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - Charles R. Long
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - Penny K. Riggs
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Ronald D. Randel
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| |
Collapse
|
28
|
Niu L, Liu S, Shen J, Chang J, Li X, Zhang L. ATF3 regulates CDC42 transcription and influences cytoskeleton remodeling, thus inhibiting the proliferation, migration and invasion of malignant skin melanoma cells. Melanoma Res 2025; 35:37-49. [PMID: 39591541 DOI: 10.1097/cmr.0000000000001011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Cutaneous malignant melanoma (CMM) is one of the most aggressive and lethal types of skin cancer. Cytoskeletal remodeling is a key factor in the progression of CMM. Previous research has shown that activating transcription factor 3 (ATF3) inhibits metastasis in bladder cancer by regulating actin cytoskeleton remodeling through gelsolin. However, whether ATF3 plays a similar role in cytoskeletal remodeling in CMM cells remains unknown. Various gene and protein expression analyses were performed using techniques such as reverse transcription quantitative PCR, western blot, immunofluorescent staining, and immunohistochemical staining. CMM viability, migration, and invasion were examined through cell counting kit-8 and transwell assays. The interactions between cell division cycle 42 (CDC42) and ATF3 were investigated using chromatin immunoprecipitation and dual-luciferase reporter assays. CDC42 was upregulated in CMM tissues and cells. Cytoskeletal remodeling of CMM cells, as well as CMM cell proliferation, migration, and invasion, were inhibited by CDC42 or ATF3. ATF3 targeted the CDC42 promoter region to regulate its transcriptional activity. ATF3 suppresses cytoskeletal remodeling in CMM cells, thereby inhibiting CMM progression and metastasis through CDC42. This research may provide a foundation for using ATF3 as a therapeutic target for CMM.
Collapse
Affiliation(s)
- Liang Niu
- Department of Dermatology, Affiliated Hospital of Hebei Engineering University
| | - Shuo Liu
- Department of Stomatology, Handan First Hospital
| | - Jiuxiao Shen
- Medical Cosmetic Center, Affiliated Hospital of Hebei Engineering University, Handan City, Hebei Province, China
| | - Jin Chang
- Medical Cosmetic Center, Affiliated Hospital of Hebei Engineering University, Handan City, Hebei Province, China
| | - Xiaojing Li
- Department of Dermatology, Affiliated Hospital of Hebei Engineering University
| | - Ling Zhang
- Department of Dermatology, Affiliated Hospital of Hebei Engineering University
| |
Collapse
|
29
|
Heissler SM, Chinthalapudi K. Structural and functional mechanisms of actin isoforms. FEBS J 2025; 292:468-482. [PMID: 38779987 PMCID: PMC11796330 DOI: 10.1111/febs.17153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Actin is a highly conserved and fundamental protein in eukaryotes and participates in a broad spectrum of cellular functions. Cells maintain a conserved ratio of actin isoforms, with muscle and non-muscle actins representing the main actin isoforms in muscle and non-muscle cells, respectively. Actin isoforms have specific and redundant functional roles and display different biochemistries, cellular localization, and interactions with myosins and actin-binding proteins. Understanding the specific roles of actin isoforms from the structural and functional perspective is crucial for elucidating the intricacies of cytoskeletal dynamics and regulation and their implications in health and disease. Here, we review how the structure contributes to the functional mechanisms of actin isoforms with a special emphasis on the questions of how post-translational modifications and disease-linked mutations affect actin isoforms biochemistry, function, and interaction with actin-binding proteins and myosin motors.
Collapse
Affiliation(s)
- Sarah M. Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research InstituteThe Ohio State UniversityColumbusOHUSA
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research InstituteThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
30
|
Lanz M, Cortada M, Lu Y, Levano S, Bodmer D. mTORC2 Regulates Actin Polymerization in Auditory Cells. J Neurochem 2025; 169:e70012. [PMID: 39921391 DOI: 10.1111/jnc.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/10/2025]
Abstract
Mammalian target of rapamycin complex 2 (mTORC2) is essential for hearing by regulating auditory hair cell structure and function. However, mechanistic details of how mTORC2 regulates intracellular processes in sensory hair cells have not yet been clarified. To further elucidate the role of mTORC2 in auditory cells, we generated a Rictor knockout cell line from HEI-OC1 auditory cells. mTORC2-deficient auditory cells exhibited significant alterations in actin cytoskeleton morphology and decreased proliferation rates. Additionally, we observed a reduction in phosphorylation of protein kinase C alpha (PKCα) and disrupted actin polymerization in mTORC2-deficient cells. Using proteomics, we found that mTORC2 disruption altered expression of cytoskeleton-related proteins in auditory cells. These findings provide valuable mechanistic insights into the functional role of mTORC2 in auditory cells, potentially opening new perspectives to address sensorineural hearing loss.
Collapse
Affiliation(s)
- Michael Lanz
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Maurizio Cortada
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinic for Otorhinolaryngology, Head and Neck Surgery, University of Basel Hospital, Basel, Switzerland
| | - Yu Lu
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Soledad Levano
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Daniel Bodmer
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinic for Otorhinolaryngology, Head and Neck Surgery, University of Basel Hospital, Basel, Switzerland
| |
Collapse
|
31
|
Cheung BCH, Chen X, Davis HJ, Nordmann CS, Toth J, Hodgson L, Segall JE, Shenoy VB, Wu M. Identification of CD44 as a key engager to hyaluronic acid-rich extracellular matrices for cell traction force generation and tumor invasion in 3D. Matrix Biol 2025; 135:1-11. [PMID: 39528207 PMCID: PMC11729355 DOI: 10.1016/j.matbio.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Mechanical properties of the extracellular matrix (ECM) critically regulate a number of important cell functions including growth, differentiation and migration. Type I collagen and glycosaminoglycans (GAGs) are two primary components of ECMs that contribute to mammalian tissue mechanics, with the collagen fiber network sustaining tension, and GAGs withstanding compression. The architecture and stiffness of the collagen network are known to be important for cell-ECM mechanical interactions via cell surface adhesion receptor integrin. In contrast, studies of GAGs in modulating cell-ECM interactions are limited. Here, we present experimental studies on the roles of hyaluronic acid (HA) in single tumor cell traction force generation using a recently developed 3D cell traction force microscopy method. Our work reveals that CD44, a cell surface receptor to HA, is engaged in cell traction force generation in conjunction with β1-integrin. We find that HA significantly modifies the architecture and mechanics of the collagen fiber network, decreasing tumor cells' propensity to remodel the collagen network, attenuating traction force generation, transmission distance, and tumor invasion. Our findings point to a novel role for CD44 in traction force generation, which can be a potential therapeutic target for diseases involving HA rich ECMs such as breast cancer and glioblastoma.
Collapse
Affiliation(s)
- Brian C H Cheung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Xingyu Chen
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah J Davis
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA; Department of Biological Sciences, Cornell University, Ithaca, NY, USA
| | - Cassidy S Nordmann
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joshua Toth
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Louis Hodgson
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeffrey E Segall
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vivek B Shenoy
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
32
|
Yu H, Wei X, Jiang H, Qi H, Zhang Y, Hu M. Tensile force promotes osteogenic differentiation via ephrinB2-EphB4 signaling pathway in orthodontic tooth movement. BMC Oral Health 2025; 25:118. [PMID: 39844202 PMCID: PMC11755856 DOI: 10.1186/s12903-025-05491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
OBJECTIVE To investigating whether osteogenic differentiation of osteoblasts promoted by tension force (TF) is mediated by ephrinB2-EphB4 signaling. METHODS TF was applied to MC3T3-E1 cells, then CCK-8 and live/dead staining were used to detect cell proliferation. Levels of osteogenic differentiation-related factors were detected by ALP staining, ARS staining, qPCR and western blot. NVP-BHG712 was used to block EphB4 receptor. Establishing a rat orthodontic tooth movement (OTM) model, ephrinB2-Fc and NVP-BHG712 were used to treat rats. Micro-CT and H&E staining were used to detect alveolar bone. Changes of MAPK pathways were detected to investigate whether they were downstream of ephrinB2-EphB4 signaling in mediating TF promote osteogenic differentiation. RESULT We explored the effect of TF on MC3T3-E1 cells, and found that TF significantly promoted osteogenic differentiation, but when EphB4 receptor was blocked, the promotion was inhibited. In vivo, we found that TF improved alveolar bone formation through ephrinB2-EphB4 signaling. Further investigation into the signaling pathways revealed that TF significantly increased levels of MAPK pathways, however, when EphB4 receptor was blocked, only the promotion of p-ERK1/2 was decreased. CONCLUSION TF promotes osteogenic differentiation through ephrinB2-EphB4 signaling and ERK1/2 pathway is a downstream of ephrinB2-EphB4 signaling partially mediate mediates TF-induced promotion of osteogenic differentiation.
Collapse
Affiliation(s)
- Hang Yu
- Department of Orthodontics, Stomatology School of Jilin University, No. 1500 Qinghua Road, ChaoYang Area, Changchun City, Jilin Province, P.R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun City, Jilin Province, P.R. China
- Jilin Provincial Clinical Medicine Research Center of Orthodontics, Changchun City, Jilin Province, P.R. China
| | - Xiaoxi Wei
- Department of Orthodontics, Stomatology School of Jilin University, No. 1500 Qinghua Road, ChaoYang Area, Changchun City, Jilin Province, P.R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun City, Jilin Province, P.R. China
- Jilin Provincial Clinical Medicine Research Center of Orthodontics, Changchun City, Jilin Province, P.R. China
| | - Huan Jiang
- Department of Orthodontics, Stomatology School of Jilin University, No. 1500 Qinghua Road, ChaoYang Area, Changchun City, Jilin Province, P.R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun City, Jilin Province, P.R. China
- Jilin Provincial Clinical Medicine Research Center of Orthodontics, Changchun City, Jilin Province, P.R. China
| | - Huichuan Qi
- Department of Orthodontics, Stomatology School of Jilin University, No. 1500 Qinghua Road, ChaoYang Area, Changchun City, Jilin Province, P.R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun City, Jilin Province, P.R. China
- Jilin Provincial Clinical Medicine Research Center of Orthodontics, Changchun City, Jilin Province, P.R. China
| | - Yi Zhang
- Department of Orthodontics, Stomatology School of Jilin University, No. 1500 Qinghua Road, ChaoYang Area, Changchun City, Jilin Province, P.R. China.
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun City, Jilin Province, P.R. China.
- Jilin Provincial Clinical Medicine Research Center of Orthodontics, Changchun City, Jilin Province, P.R. China.
| | - Min Hu
- Department of Orthodontics, Stomatology School of Jilin University, No. 1500 Qinghua Road, ChaoYang Area, Changchun City, Jilin Province, P.R. China.
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun City, Jilin Province, P.R. China.
- Jilin Provincial Clinical Medicine Research Center of Orthodontics, Changchun City, Jilin Province, P.R. China.
| |
Collapse
|
33
|
P A H, Basavaraju N, Gupta A, Kommaddi RP. Actin Cytoskeleton at the Synapse: An Alzheimer's Disease Perspective. Cytoskeleton (Hoboken) 2025. [PMID: 39840749 DOI: 10.1002/cm.21993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 12/18/2024] [Accepted: 01/05/2025] [Indexed: 01/23/2025]
Abstract
Actin, a ubiquitous and highly conserved cytoskeletal protein, plays a pivotal role in various cellular functions such as structural support, facilitating cell motility, and contributing to the dynamic processes of synaptic function. Apart from its established role in inducing morphological changes, recent developments in the field indicate an active involvement of actin in modulating both the structure and function of pre- and postsynaptic terminals. Within the presynapse, it is involved in the organization and trafficking of synaptic vesicles, contributing to neurotransmitter release. In the postsynapse, actin dynamically modulates dendritic spines, influencing the postsynaptic density organization and anchoring of neurotransmitter receptors. In addition, the dynamic interplay of actin at the synapse underscores its essential role in regulating neural communication. This review strives to offer a comprehensive overview of the recent advancements in understanding the multifaceted role of the actin cytoskeleton in synaptic functions. By emphasizing its aberrant regulation, we aim to provide valuable insights into the underlying mechanisms of Alzheimer's disease pathophysiology.
Collapse
Affiliation(s)
- Haseena P A
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Nimisha Basavaraju
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Anant Gupta
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | | |
Collapse
|
34
|
Yoshihara S, Nakata T, Kashiwazaki J, Aoyama K, Mabuchi I. In Vitro Formation of Actin Ring in the Fission Yeast Cell Extracts. Cytoskeleton (Hoboken) 2025. [PMID: 39835694 DOI: 10.1002/cm.21997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/18/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Cytokinesis in animal and fungal cells requires the contraction of actomyosin-based contractile rings formed in the division cortex of the cell during late mitosis. However, the detailed mechanism remains incompletely understood. Here, we aim to develop a novel cell-free system by encapsulating cell extracts obtained from fission yeast cells within lipid vesicles, which subsequently leads to the formation of a contractile ring-like structure inside the vesicles. Using this system, we found that an actin ring structure formed in vesicles of a size similar to that of fission yeast cells, with the frequency of ring appearance increasing in the presence of PI(4,5)P2 (PIP2). In contrast, larger vesicles tended to form actin bundles, which were sometimes associated with ring structures or network-like structures. The effects of various inhibitors affecting cytoskeleton formation were investigated, revealing that actin polymerization was essential for the formation of these actin structures. Additionally, the involvement of ATP, the Schizosaccharomyces pombe PLK "Plo1," and the small GTPase Rho was suggested to play a crucial role in this process. Examination of mitotic extracts revealed the formation of actin dot structures in phosphatidylethanolamine vesicles. However, most of these structures disappeared in the presence of PIP2, leading to the formation of actin Rings instead. Using extracts from cells expressing α-actinin Ain1 or myosin-II light chain Rlc1, both fused with fluorescent proteins, we found that these proteins colocalized with actin bundles. In summary, we have developed a new semi-in vitro system to investigate mechanisms such as cell division and cytoskeleton formation.
Collapse
Affiliation(s)
- Shogo Yoshihara
- Department of Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- The Center for Brain Integration Research (CBIR), TMDU, Tokyo, Japan
- Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo, Japan
| | - Takao Nakata
- Department of Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- The Center for Brain Integration Research (CBIR), TMDU, Tokyo, Japan
| | - Jun Kashiwazaki
- Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo, Japan
- Radioisotope Division, Research Facility Center for Science and Technology, Kobe University, Kobe, Hyogo, Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, Japan
| | - Kazuhiro Aoyama
- NanoPort Japan, Application Laboratory, Thermo Fisher Scientific, Tokyo, Japan
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Issei Mabuchi
- Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Institute of Human Culture Studies, Otsuma Women's University, Tokyo, Japan
| |
Collapse
|
35
|
Kakati A, Karmakar T, Kalra AP. Triplet Energy Migration in Cytoskeletal Polymers. J Phys Chem B 2025; 129:128-138. [PMID: 39721596 DOI: 10.1021/acs.jpcb.4c06748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Dexter energy transfer (DET) of triplet electronic states is used to direct energy in photovoltaics, quench reactive singlet oxygen species in biological systems, and generate them in photodynamic therapy. However, the extent to which repeated DET between aromatic residues can lead to triplet energy migration in proteins has not been investigated. Here, we computationally describe DET rates in microtubules, actin filaments and the intermediate filament, vimentin. We discover instances where interaromatic residue Dexter couplings within individual protein subunits of these polymers are similar those of small molecules used for organic electronics. However, interaromatic residue coupling is mostly weak (<10-3 eV), limiting triplet energy diffusion lengths to 6.1, 0.5 and 1.0 Å in microtubules, actin filaments and vimentin, respectively. On the other hand, repeated förster resonance energy transfer (FRET) between aromatic residues leads to singlet energy diffusion lengths of 12.4 Å for actin filaments and about 8.6 Å for both microtubules and vimentin filaments. Our work shows that singlet energy migration dominates over triplet energy migration in cytoskeletal polymers.
Collapse
Affiliation(s)
- Arnab Kakati
- Centre for Biomedical Engineering, Indian Institute of Technology, Delhi 110016, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi 110016, India
| | - Aarat P Kalra
- Centre for Biomedical Engineering, Indian Institute of Technology, Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, Delhi 110029 New Delhi, India
- Amar Nath and Shashi Khosla School of Information Technology, Indian Institute of Technology, Delhi 110016 New Delhi, India
| |
Collapse
|
36
|
McNicol GR, Dalby MJ, Stewart PS. A theoretical model for focal adhesion and cytoskeleton formation in non-motile cells. J Theor Biol 2025; 596:111965. [PMID: 39442686 DOI: 10.1016/j.jtbi.2024.111965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/25/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
To function and survive cells need to be able to sense and respond to their local environment through mechanotransduction. Crucially, mechanical and biochemical perturbations initiate cell signalling cascades, which can induce responses such as growth, apoptosis, proliferation and differentiation. At the heart of this process are actomyosin stress fibres (SFs), which form part of the cell cytoskeleton, and focal adhesions (FAs), which bind this cytoskeleton to the extra-cellular matrix (ECM). The formation and maturation of these structures (connected by a positive feedback loop) is pivotal in non-motile cells, where SFs are generally of ventral type, interconnecting FAs and producing isometric tension. In this study we formulate a one-dimensional bio-chemo-mechanical continuum model to describe the coupled formation and maturation of ventral SFs and FAs. We use a set of reaction-diffusion-advection equations to describe three sets of biochemical events: the polymerisation of actin and subsequent bundling into activated SFs; the formation and maturation of cell-substrate adhesions; and the activation of signalling proteins in response to FA and SF formation. The evolution of these key proteins is coupled to a Kelvin-Voigt viscoelastic description of the cell cytoplasm and the ECM. We employ this model to understand how cells respond to external and intracellular cues in vitro and are able to reproduce experimentally observed phenomena including non-uniform cell striation and cells forming weaker SFs and FAs on softer substrates.
Collapse
Affiliation(s)
- Gordon R McNicol
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - Peter S Stewart
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
| |
Collapse
|
37
|
da Silva MRG, Veroneze R, Marques DBD, da Silva DA, Machado II, Brito LF, Lopes PS. A meta-analysis of genome-wide association studies to identify candidate genes associated with feed efficiency traits in pigs. J Anim Sci 2025; 103:skaf010. [PMID: 39847436 PMCID: PMC11833465 DOI: 10.1093/jas/skaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/21/2025] [Indexed: 01/24/2025] Open
Abstract
Pig production is an agricultural sector of great economic and social relevance to Brazil and global markets. Feed efficiency traits directly influence the sustainability of pig production due to the economic impact of feed costs on the production system and the environmental footprint of the industry. Therefore, breeding for improved feed efficiency has been a target of worldwide pig breeding programs. Genome-wide association studies (GWAS) enable the assessment of the genetic background of complex traits, which contributes to a better understanding of the biological mechanisms regulating their phenotypic expression. In this context, the primary objective of this study was to identify and validate genomic regions and candidate genes associated with feed conversion ratio (FCR) and residual feed intake (RFI) in pigs based on a comprehensive systematic review and meta-analysis of GWAS. The METAL software was used to implement the meta-analysis and the Bonferroni multiple testing correction considering a significance threshold 0.05. The significant single nucleotide polymorphisms (SNPs) in the meta-analysis were used to identify candidate genes, followed by a functional genomic enrichment analysis. The systematic review identified 13 studies, of which 7 evaluated FCR, 3 evaluated RFI, and 3 studies investigated both traits, with 160 and 96 SNPs identified for FCR and RFI, respectively. After the meta-analysis, 145 markers were significantly associated with FCR and 90 with RFI. The gene annotation process resulted in 105 and 114 genes for FCR and RFI, respectively. The enrichment analysis for FCR resulted in 16 significant gene ontology (GO) terms, while 6 terms were identified for RFI. The main GO terms were actin cytoskeleton (GO_BP:0030036), membrane (GO_CC:0016020), integral components of the peroxisomal membrane (GO_CC:0005779), and carbohydrate-binding (GO_MF:0030246). The main candidate genes identified were MED18, PHACTR4, ABCC2, TRHDE, FRS2, FAR2 and FIS1 for FCR, and ADGRL2, ASGR1, ASGR2, and MAN2B1 for RFI. These findings contribute to a better understanding of the genetic mechanisms associated with feed efficiency traits in pigs, providing a foundation for future improvements in pig breeding programs.
Collapse
Affiliation(s)
- Maria Rita Gonçalves da Silva
- Department of Animal Science, Federal University of Viçosa, Viçosa, MG, Brazil
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Renata Veroneze
- Department of Animal Science, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Daniele B D Marques
- Department of Animal Science, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Delvan A da Silva
- Department of Animal Science, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Inaê I Machado
- Department of Animal Science, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Paulo S Lopes
- Department of Animal Science, Federal University of Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
38
|
Perera PGT, Vongsvivut J, Linklater D, Vilagosh Z, Appadoo D, Nguyen THP, Tobin MJ, Croft R, Ivanova EP. Shedding light on biochemical changes in single neuron-like pheochromocytoma cells following exposure to synchrotron sourced terahertz radiation using synchrotron source Fourier transform infrared microspectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:155-161. [PMID: 39692724 PMCID: PMC11708867 DOI: 10.1107/s1600577524010944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024]
Abstract
Synchrotron sourced Fourier transform infrared (SS FTIR) microspectroscopy was employed to investigate the biological effects on the neuron-like pheochromocytoma (PC 12) cells after exposure to synchrotron sourced terahertz (SS THz) radiation. Over 10 min of exposure, the PC 12 cells received a total energy of 600 J m2, with a total incident power density of ∼1.0 W m-2 (0.10 mW cm-2) at the beam extraction port (BEP) of the THz beamline at the Australian Synchrotron. To investigate the metabolic response of PC 12 cells after synchrotron THz radiation exposure, we utilized the FTIR microscope at the Infrared Microspectroscopy IRM beamline, which offers high photon flux and diffraction-limited spatial resolution enabling the detection of functional group variations in biological molecules at a single-cell level. Principal component analysis (PCA) based on the SS FTIR spectral data revealed a distinct separation of SS THz-exposed and control (non-exposed) cells. According to the PCA loadings, the key changes in the exposed cells involved lipid and protein compositions as indicated by the stretching vibrations of CH2/CH3 groups and amide I/II bands, respectively. An increase in lipids, such as cholesterol, or notable changes in their compositions and in some protein secondary structures were observed in the SS THz-exposed cells. The PCA analysis further suggests that PC 12 cells might maintain cell membrane stability after SS THz irradiation through higher volumes of cholesterol and cell morphology via regulation of the synthesis of cytoskeleton proteins such as actin-related proteins. The outcome of this study re-emphasized the exceptional SS FTIR capability to perform single-cell analysis directly, providing (i) unique biological information on cell variability within the population as well as between different groups, and (ii) evidence of molecular changes in the exposed cells that could lead to a deeper understanding of the effect of THz exposure at a single-cell level.
Collapse
Affiliation(s)
- Palalle G. Tharushi Perera
- School of ScienceRMIT University2476MelbourneVictoria3001Australia
- School of Science, Computing and EngineeringSwinburne University of TechnologyMelbourneVictoria3122Australia
| | - Jitraporn Vongsvivut
- IR Microspectroscopy (IRM) BeamlineANSTO-Australian Synchrotron800 Blackburn RoadClaytonVictoria3168Australia
| | - Denver Linklater
- School of ScienceRMIT University2476MelbourneVictoria3001Australia
- Biomedical engineering, Faculty of engineering and Information technologyUniversity of MelbourneMelbourneVictoria3010Australia
| | - Zoltan Vilagosh
- School of ScienceRMIT University2476MelbourneVictoria3001Australia
- School of Science, Computing and EngineeringSwinburne University of TechnologyMelbourneVictoria3122Australia
| | - Dominique Appadoo
- THz BeamlineAustralian Synchrotron800 Blackburn RoadMelbourneVictoria3168Australia
| | - The Hong Phong Nguyen
- School of ScienceRMIT University2476MelbourneVictoria3001Australia
- School of Science, Computing and EngineeringSwinburne University of TechnologyMelbourneVictoria3122Australia
| | - Mark J. Tobin
- IR Microspectroscopy (IRM) BeamlineANSTO-Australian Synchrotron800 Blackburn RoadClaytonVictoria3168Australia
| | - Rodney Croft
- School of Psychology, Illawara and Medical Research InstituteUniversity of WollongongWollongongNew South Wales2522Australia
| | - Elena P. Ivanova
- School of ScienceRMIT University2476MelbourneVictoria3001Australia
| |
Collapse
|
39
|
Soggia G, ElMaghloob Y, Boromangnaeva AK, Al Jord A. Mechanical Remodeling of Nuclear Biomolecular Condensates. Physiology (Bethesda) 2025; 40:0. [PMID: 39109673 DOI: 10.1152/physiol.00027.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Organism health relies on cell proliferation, migration, and differentiation. These universal processes depend on cytoplasmic reorganization driven notably by the cytoskeleton and its force-generating motors. Their activity generates forces that mechanically agitate the cell nucleus and its interior. New evidence from reproductive cell biology revealed that these cytoskeletal forces can be tuned to remodel nuclear membraneless compartments, known as biomolecular condensates, and regulate their RNA processing function for the success of subsequent cell division that is critical for fertility. Both cytoskeletal and nuclear condensate reorganization are common to numerous physiological and pathological contexts, raising the possibility that mechanical remodeling of nuclear condensates may be a much broader mechanism regulating their function. Here, we review this newfound mechanism of condensate remodeling and venture into the contexts of health and disease where it may be relevant, with a focus on reproduction, cancer, and premature aging.
Collapse
Affiliation(s)
- Giulia Soggia
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Yasmin ElMaghloob
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Systems Biology and Immunology Lab, Children's Cancer Hospital Egypt, Cairo, Egypt
| | | | - Adel Al Jord
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
40
|
Clevenger AJ, Jha A, Moore E, Raghavan SA. Manipulating immune activity of macrophages: a materials and mechanics perspective. Trends Biotechnol 2025; 43:131-144. [PMID: 39155172 PMCID: PMC11717646 DOI: 10.1016/j.tibtech.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024]
Abstract
Macrophage immune cells exist on a plastic spectrum of phenotypes governed by their physical and biochemical environment. Controlling macrophage function to facilitate immunological regeneration or fighting pathology has emerged as a therapeutic possibility. The rate-limiting step in translating macrophage immunomodulation therapies has been the absence of fundamental knowledge of how physics and biochemistry in the macrophage microenvironment converge to inform phenotype. In this review we explore recent trends in bioengineered model systems that integrate physical and biochemical variables applied to macrophage mechanosensing and plasticity. We focus on how tuning of mechanical forces and biomaterial composition orchestrate macrophage function in physiological and pathological contexts. Ultimately, a broader understanding of stimuli-responsiveness in macrophages leads to informed design for future modulatory therapies.
Collapse
Affiliation(s)
- Abigail J Clevenger
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Aakanksha Jha
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Erika Moore
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| | - Shreya A Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
41
|
Mokin YI, Povarova OI, Silonov SA, Antifeeva IA, Uversky VN, Turoverov KK, Kuznetsova IM, Fonin AV. Bioinformatics analysis of proteins interacting with different actin isoforms. Biochem Biophys Res Commun 2025; 743:151165. [PMID: 39675169 DOI: 10.1016/j.bbrc.2024.151165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Actin is one of the most widespread and most conserved proteins. At the same time, six actin isoforms are known, encoded by different genes. These isoforms differ slightly in amino acid sequence and have similar structures, but differ in localization and functioning. During functioning, actin interacts with a large number of proteins, which are combined according to this feature into a pool of so-called actin-binding proteins. The question arises whether and how the proteins interacting with different actin isoforms differ. Since the pool of actin-binding proteins includes hundreds of proteins, it was logical to use bioinformatics analysis to solve the questions. In this work, it is shown that the functionality of the α-, β-, and γ-actin interactomes differ significantly, but their structural characteristics are close.
Collapse
Affiliation(s)
- Yakov I Mokin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russian Federation
| | - Olga I Povarova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russian Federation
| | - Sergey A Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russian Federation
| | - Iuliia A Antifeeva
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russian Federation
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL, 33612, USA.
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russian Federation
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russian Federation.
| | - Alexander V Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russian Federation.
| |
Collapse
|
42
|
Maddala R, Gorijavolu P, Lankford LK, Skiba NP, Challa P, Singh RK, Nair KS, Choquet H, Rao PV. Dysregulation of septin cytoskeletal organization in the trabecular meshwork contributes to ocular hypertension. JCI Insight 2024; 9:e179468. [PMID: 39641270 PMCID: PMC11623952 DOI: 10.1172/jci.insight.179468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
Ocular hypertension, believed to result partly from increased contractile activity, cell adhesive interactions, and stiffness within the trabecular meshwork (TM), is a major risk factor for glaucoma, a leading cause of blindness. However, the identity of molecular mechanisms governing organization of actomyosin and cell adhesive interactions in the TM remains limited. Based on our previous findings, in which proteomics analyses revealed elevated levels of septins, including septin-9 in human TM cells treated with the ocular hypertensive agent dexamethasone, here, we evaluated the effects of septin-9 overexpression, deficiency, and pharmacological targeting in TM cells. These studies demonstrated a profound impact on actomyosin organization, cell adhesion, contraction, and phagocytosis. Overexpression raised intraocular pressure (IOP) in mice, while inhibition increased cell permeability. In addition, we replicated a significant association between a common variant (rs9038) in SEPT9 with IOP in the Genetic Epidemiology Research on Adult Healthy and Aging (GERA) cohort. Collectively, these data reveal a link between dysregulated septin cytoskeletal organization in the TM and increased IOP, likely due to enhanced cell contraction, adhesive interactions, and fibrotic activity. This suggests that targeting the septin cytoskeleton could offer a novel approach for lowering IOP in patients with glaucoma.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Pallavi Gorijavolu
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Levi K. Lankford
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nikolai P. Skiba
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Pratap Challa
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Rakesh K. Singh
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - K. Saidas Nair
- Department of Ophthalmology, UCSF, San Francisco, California, USA
| | - Hélène Choquet
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, California, USA
| | - Ponugoti V. Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
43
|
Rötte M, Höhne MY, Klug D, Ramlow K, Zedler C, Lehne F, Schneider M, Bischoff MC, Bogdan S. CYRI controls epidermal wound closure and cohesion of invasive border cell cluster in Drosophila. J Cell Biol 2024; 223:e202310153. [PMID: 39453414 PMCID: PMC11519390 DOI: 10.1083/jcb.202310153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/19/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
Cell motility is crucial for many biological processes including morphogenesis, wound healing, and cancer invasion. The WAVE regulatory complex (WRC) is a central Arp2/3 regulator driving cell motility downstream of activation by Rac GTPase. CYFIP-related Rac1 interactor (CYRI) proteins are thought to compete with WRC for interaction with Rac1 in a feedback loop regulating lamellipodia dynamics. However, the physiological role of CYRI proteins in vivo in healthy tissues is unclear. Here, we used Drosophila as a model system to study CYRI function at the cellular and organismal levels. We found that CYRI is not only a potent WRC regulator in single macrophages that controls lamellipodial spreading but also identified CYRI as a molecular brake on the Rac-WRC-Arp2/3 pathway to slow down epidermal wound healing. In addition, we found that CYRI limits invasive border cell migration by controlling cluster cohesion and migration. Thus, our data highlight CYRI as an important regulator of cellular and epithelial tissue dynamics conserved across species.
Collapse
Affiliation(s)
- Marvin Rötte
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Mila Y. Höhne
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Dennis Klug
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Kirsten Ramlow
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Caroline Zedler
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Franziska Lehne
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Meike Schneider
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Maik C. Bischoff
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Sven Bogdan
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
44
|
Levandosky K, Copos C. Model supports asymmetric regulation across the intercellular junction for collective cell polarization. PLoS Comput Biol 2024; 20:e1012216. [PMID: 39689113 DOI: 10.1371/journal.pcbi.1012216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/31/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024] Open
Abstract
Symmetry breaking, which is ubiquitous in biological cells, functionally enables directed cell movement and organized embryogenesis. Prior to movement, cells break symmetry to form a well-defined cell front and rear in a process called polarization. In developing and regenerating tissues, collective cell movement requires the coordination of the polarity of the migration machineries of neighboring cells. Though several works shed light on the molecular basis of polarity, fewer studies have focused on the regulation across the cell-cell junction required for collective polarization, thus limiting our ability to connect tissue-level dynamics to subcellular interactions. Here, we investigated how polarity signals are communicated from one cell to its neighbor to ensure coordinated front-to-rear symmetry breaking with the same orientation across the group. In a theoretical setting, we systematically searched a variety of intercellular interactions and identified that co-alignment arrangement of the polarity axes in groups of two and four cells can only be achieved with strong asymmetric regulation of Rho GTPases or enhanced assembly of complementary F-actin structures across the junction. Our results held if we further assumed the presence of an external stimulus, intrinsic cell-to-cell variability, or larger groups. The results underline the potential of using quantitative models to probe the molecular interactions required for macroscopic biological phenomena. Lastly, we posit that asymmetric regulation is achieved through junction proteins and predict that in the absence of cytoplasmic tails of such linker proteins, the likeliness of doublet co-polarity is greatly diminished.
Collapse
Affiliation(s)
- Katherine Levandosky
- Department of Mathematics, Northeastern University, Boston, Massachusetts, United States of America
| | - Calina Copos
- Department of Mathematics, Northeastern University, Boston, Massachusetts, United States of America
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
45
|
Ree R, Lin SJ, Sti Dahl LO, Huang K, Petree C, Varshney GK, Arnesen T. Naa80 is required for actin N-terminal acetylation and normal hearing in zebrafish. Life Sci Alliance 2024; 7:e202402795. [PMID: 39384430 PMCID: PMC11465159 DOI: 10.26508/lsa.202402795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
Actin is a critical component of the eukaryotic cytoskeleton. In animals, actins undergo unique N-terminal processing by dedicated enzymes resulting in mature acidic and acetylated forms. The final step, N-terminal acetylation, is catalyzed by NAA80 in humans. N-terminal acetylation of actin is crucial for maintaining normal cytoskeletal dynamics and cell motility in human cell lines. However, the physiological impact of actin N-terminal acetylation remains to be fully understood. We developed a zebrafish naa80 knockout model and demonstrated that Naa80 acetylates both muscle and non-muscle actins in vivo. Assays with purified Naa80 revealed a preference for acetylating actin N-termini. Zebrafish lacking actin N-terminal acetylation exhibited normal development, morphology, and behavior. In contrast, humans with pathogenic actin variants can present with hypotonia and hearing impairment. Whereas zebrafish lacking naa80 showed no obvious muscle defects or abnormalities, we observed abnormal inner ear development, small otoliths, and impaired response to sound. In conclusion, we have established that zebrafish Naa80 N-terminally acetylates actins in vitro and in vivo, and that actin N-terminal acetylation is essential for normal hearing.
Collapse
Affiliation(s)
- Rasmus Ree
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Sheng-Jia Lin
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Kevin Huang
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Cassidy Petree
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Gaurav K Varshney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
46
|
Pinchiaroli J, Saldanha R, Patteson AE, Robertson-Anderson RM, Gurmessa BJ. Scale-dependent interactions enable emergent microrheological stress response of actin-vimentin composites. SOFT MATTER 2024; 20:9007-9021. [PMID: 39495192 DOI: 10.1039/d4sm00988f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The mechanical properties of the mammalian cell regulate many cellular functions and are largely dictated by the cytoskeleton, a composite network of protein filaments, including actin, microtubules, and intermediate filaments. Interactions between these distinct filaments give rise to emergent mechanical properties that are difficult to generate synthetically, and recent studies have made great strides in advancing our understanding of the mechanical interplay between actin and microtubule filaments. While intermediate filaments play critical roles in the stress response of cells, their effect on the rheological properties of the composite cytoskeleton remains poorly understood. Here, we use optical tweezers microrheology to measure the linear viscoelastic properties and nonlinear stress response of composites of actin and vimentin with varying molar ratios of actin to vimentin. We reveal a surprising, nearly opposite effect of actin-vimentin network mechanics compared to single-component networks in the linear versus nonlinear regimes. Namely, the linear elastic plateau modulus and zero-shear viscosity are markedly reduced in composites compared to single-component networks of actin or vimentin, whereas the initial response force and stiffness are maximized in composites versus single-component networks in the nonlinear regime. While these emergent trends are indicative of distinct interactions between actin and vimentin, nonlinear stiffening and long-time stress response appear to both be dictated primarily by actin, at odds with previous bulk rheology studies. We demonstrate that these complex, scale-dependent effects arise from the varied contributions of network density, filament stiffness, non-specific interactions, and poroelasticity to the mechanical response at different spatiotemporal scales. Cells may harness this complex behavior to facilitate distinct stress responses at different scales and in response to different stimuli to allow for their hallmark multifunctionality.
Collapse
Affiliation(s)
- Julie Pinchiaroli
- Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837, USA.
| | - Renita Saldanha
- Department of Physics and BioInspired Institute, Syracuse University, Syracuse, NY 13210, USA
| | - Alison E Patteson
- Department of Physics and BioInspired Institute, Syracuse University, Syracuse, NY 13210, USA
| | | | - Bekele J Gurmessa
- Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837, USA.
| |
Collapse
|
47
|
Abdullah AR, Gamal El-Din AM, Ismail Y, El-Husseiny AA. The FSCN1 gene rs2966447 variant is associated with increased serum fascin-1 levels and breast cancer susceptibility. Gene 2024; 927:148743. [PMID: 38964493 DOI: 10.1016/j.gene.2024.148743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Fascin-1 (FSCN1) is recognized as an actin-binding protein, commonly exhibits up-regulation in breast cancer (BC) and is crucial for tumor invasion and metastasis. The existence of FSCN1 gene polymorphisms may raise the potential for developing BC, and there are still no studies focusing on the relationship between the FSCN1 rs2966447 variant and BC risk in Egyptian females. Thus, we investigated the serum fascin-1 levels in BC patients and the association between the FSCN1 rs2966447 variant with its serum levels and BC susceptibility. Genotyping was conducted in 153 treatment-naïve BC females with different stages and 144 apparent healthy females by TaqMan® allelic discrimination assay, whereas serum fascin-1 level quantification was employed by ELISA. The FSCN1 rs2966447 variant demonstrated a significant association with BC susceptibility under all utilized genetic models, cancer stages and estrogen receptor negativity. Also, BC females with AT and TT genotypes had higher serum fascin-1 levels and tumor size than those with the AA genotype. Moreover, serum fascin-1 levels were significantly elevated in the BC females, notably in those with advanced-stages. Furthermore, serum fascin-1 levels were markedly positively correlated with number of positive lymph nodes as well as tumor size. Collectively, these findings revealed that the FSCN1 rs2966447 variant may be regarded as a strong candidate for BC susceptibility. Also, this intronic variant is associated with increased serum fascin-1 levels and tumor size.
Collapse
Affiliation(s)
- Ahmed R Abdullah
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ayman M Gamal El-Din
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Yahia Ismail
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt.
| |
Collapse
|
48
|
Boldyreva LV, Evtushenko AA, Lvova MN, Morozova KN, Kiseleva EV. Underneath the Gut-Brain Axis in IBD-Evidence of the Non-Obvious. Int J Mol Sci 2024; 25:12125. [PMID: 39596193 PMCID: PMC11594934 DOI: 10.3390/ijms252212125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The gut-brain axis (GBA) plays a pivotal role in human health and wellness by orchestrating complex bidirectional regulation and influencing numerous critical processes within the body. Over the past decade, research has increasingly focused on the GBA in the context of inflammatory bowel disease (IBD). Beyond its well-documented effects on the GBA-enteric nervous system and vagus nerve dysregulation, and gut microbiota misbalance-IBD also leads to impairments in the metabolic and cellular functions: metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton dysregulation. These systemic effects are currently underexplored in relation to the GBA; however, they are crucial for the nervous system cells' functioning. This review summarizes the studies on the particular mechanisms of metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton impairments in IBD. Understanding the involvement of these processes in the GBA may help find new therapeutic targets and develop systemic approaches to improve the quality of life in IBD patients.
Collapse
Affiliation(s)
- Lidiya V. Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Anna A. Evtushenko
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Maria N. Lvova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Ksenia N. Morozova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Elena V. Kiseleva
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| |
Collapse
|
49
|
Huang Y, Zhou Z, Liu T, Tang S, Xin X. Exploring heterogeneous cell population dynamics in different microenvironments by novel analytical strategy based on images. NPJ Syst Biol Appl 2024; 10:129. [PMID: 39505883 PMCID: PMC11542073 DOI: 10.1038/s41540-024-00459-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Understanding the dynamic states and transitions of heterogeneous cell populations is crucial for addressing fundamental biological questions. High-content imaging provides rich datasets, but it remains increasingly difficult to integrate and annotate high-dimensional and time-resolved datasets to profile heterogeneous cell population dynamics in different microenvironments. Using hepatic stellate cells (HSCs) LX-2 as model, we proposed a novel analytical strategy for image-based integration and annotation to profile dynamics of heterogeneous cell populations in 2D/3D microenvironments. High-dimensional features were extracted from extensive image datasets, and cellular states were identified based on feature profiles. Time-series clustering revealed distinct temporal patterns of cell shape and actin cytoskeleton reorganization. We found LX-2 showed more complex membrane dynamics and contractile systems with an M-shaped actin compactness trend in 3D culture, while they displayed rapid spreading in early 2D culture. This image-based integration and annotation strategy enhances our understanding of HSCs heterogeneity and dynamics in complex extracellular microenvironments.
Collapse
Affiliation(s)
- Yihong Huang
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zidong Zhou
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Tianqi Liu
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Shengnan Tang
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xuegang Xin
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
50
|
Recho P, Truskinovsky L. Optimal crawling: From mechanical to chemical actuation. Phys Rev E 2024; 110:054413. [PMID: 39690689 DOI: 10.1103/physreve.110.054413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/16/2024] [Indexed: 12/19/2024]
Abstract
Taking inspiration from the crawling motion of biological cells on a substrate, we consider a physical model of self-propulsion where the spatiotemporal driving can involve both a mechanical actuation by active force couples and a chemical actuation through controlled mass turnover. When the material turnover is slow and the mechanical driving dominates, we find that the highest velocity at a given energetic cost is reached when the actuation takes the form of an active force configuration propagating as a traveling wave. As the rate of material turnover increases, and the chemical driving starts to dominate the mechanical one, such a peristalsis-type control progressively loses its efficacy, yielding to a standing-wave-type driving which involves an interplay between the mechanical and chemical actuation. Our analysis suggests a paradigm for the optimal design of crawling biomimetic robots where the conventional purely mechanical driving through distributed force actuators is complemented by a distributed chemical control of the material remodeling inside the force-transmitting machinery.
Collapse
|