1
|
de Siqueira CD, Borges L, Dal Mora T, Saleh NA, Alves ES, Wopereis S, Mendes BG, de Moraes ACR, Hatanaka E, Filippin-Monteiro FB. Early postnatal effects of maternal obesity on breast milk composition and breastfeeding outcomes. Clin Nutr ESPEN 2025; 65:365-374. [PMID: 39644921 DOI: 10.1016/j.clnesp.2024.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/18/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND & AIMS Breastfeeding can be challenging in mothers with overweight or obesity-related chronic low-grade inflammation, resulting in negative consequences for the newborn. The pre-gestational body mass index is negatively associated with lactogenesis II, the onset of colostrum secretion. Herein, we evaluated mothers' inflammation, metabolic status, and components of breast milk after birth to associate these factors with their nutritional and breastfeeding status. METHODS The study included volunteer mothers, categorized based on their nutritional status and anthropometric parameters, who gave birth in a tertiary maternity hospital. Serum and breast milk samples were collected 24 and 48 h after birth to determine inflammatory biomarkers (SAA, leptin, CRP, IL-1β, TNF-α, IL-8, IL-6, MCP-1, IL-10, and IFN-γ), reproductive hormones (prolactin and progesterone), as well as the breast milk composition (total protein, fatty acid, percentage of fat and Kcal). Furthermore, we conducted a six-month follow-up to assess breastfeeding outcomes. Interestingly, the composition of breast milk did not vary in the different situations analyzed, indicating the stability of the breast milk's composition in meeting infant needs, regardless of age, nutritional status, and type of birth. RESULTS Our findings revealed a higher concentration of pro-inflammatory biomarkers (SAA, CRP, TNF-α, IL-8, and IFN-γ) than anti-inflammatory, IL-10, in breast milk. Our study showed that mothers who were overweight after pregnancy had a newborn with a higher birth weight compared to healthy post-pregnancy weight. Our study elucidates the intricate dynamics between maternal weight, inflammation, and breastfeeding outcomes. CONCLUSIONS While maternal overweight or obesity-related inflammation may pose challenges to lactogenesis II and influence newborn birth weight, breast milk remains a stable and reliable source of essential nutrients for infant nourishment. However, the presence of pro-inflammatory biomarkers in breast milk warrants further investigation into its potential implications for infant health.
Collapse
Affiliation(s)
- Carolina Dumke de Siqueira
- Post-Graduation Program in Pharmacy, Health Sciences Centre, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Leandro Borges
- Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Tamara Dal Mora
- Post-Graduation Program in Pharmacy, Health Sciences Centre, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Najla Adel Saleh
- Post-Graduation Program in Pharmacy, Health Sciences Centre, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Elizabeth Soethe Alves
- Post-Graduation Program in Pharmacy, Health Sciences Centre, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Sandro Wopereis
- Laboratory of Clinical Analysis, Polydoro Ernani de São Thiago University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Beatriz Garcia Mendes
- Department of Clinical Analysis, Health Sciences Centre, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Ana Carolina Rabello de Moraes
- Department of Clinical Analysis, Health Sciences Centre, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Elaine Hatanaka
- Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | | |
Collapse
|
2
|
Alawathugoda TT, Sheikh MA, Challagandla AK, Dheen ST, Emerald BS, Ansari SA. Maternal obesity alters histone modifications mediated by the interaction between EZH2 and AMPK, impairing neural differentiation in the developing embryonic brain cortex. J Biol Chem 2025; 301:108173. [PMID: 39798880 PMCID: PMC11847741 DOI: 10.1016/j.jbc.2025.108173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025] Open
Abstract
Neurodevelopmental disorders have complex origins that manifest early during embryonic growth and are associated with intricate gene regulation dynamics. A perturbed metabolic environment such as hyperglycemia or dyslipidemia, particularly due to maternal obesity, poses a threat to the optimal development of the embryonic central nervous system. Accumulating evidence suggests that these metabolic irregularities during pregnancy may alter neurogenesis pathways, thereby predisposing the developing fetus to neurodevelopmental disorders. One primary mechanism through which such disruptions may occur involves changes in histone modifications resulting from fluctuations in the expression of histone-modifying enzymes or the availability of their substrates. Herein, we have used a rat model of maternal obesity induced by a high-fat diet before and during gestation to investigate the cellular and molecular repercussions of maternal obesity on embryonic cortical neurogenesis. Maternal obesity impairs neurogenesis by reducing cell proliferation, increasing neuronal marker expression, and shifting development toward astrogliogenesis. Differentially expressed genes revealed disruptions in key developmental signaling pathways and reduced AKT phosphorylation, particularly at E14.5. These changes were associated with epigenetic alterations, mainly the differential expression and phosphorylation of EZH2 and subsequent changes in global histone modifications. Chromatin immunoprecipitation sequencing revealed reduced H3K27me3 at genes upregulated due to maternal obesity, which could have resulted from reduced expression and increased phosphorylation of EZH2 at Thr311. Interestingly, EZH2 also showed increased O-GlcNAcylation in high-fat diet embryos along with increased association with AMPK-Thr172 in accordance with previous studies showing that Ampk catalyzes EZH2-Thr311p. These results suggest that an epigenetic gene regulatory mechanism mediated by Ampk and Ezh2 interactions resulted in reduced H3K27me3 and derepression of key developmental genes, which could have led to cell fate changes observed in the developing embryo brain cortex due to maternal obesity.
Collapse
Affiliation(s)
- Thilina T Alawathugoda
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Muhammad Abid Sheikh
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Anil Kumar Challagandla
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates; ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates; ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
3
|
Lindblad V, Kragholm KH, Gaardsted PS, Hansen LEM, Lauritzen FF, Melgaard D. From illness to inactivity: Exploring the influence of physical diseases on youth Not in Education, Employment, or Training status in Europe: A systematic literature review. J Adolesc 2024; 96:1695-1712. [PMID: 39118270 PMCID: PMC11618711 DOI: 10.1002/jad.12386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/12/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
INTRODUCTION In 2010, 33% of young Europeans (ages 15-29) were Not in Education, Employment, or Training (NEET), rising to 40 million by 2015. Those with disabilities or health challenges are 40% more likely to be NEET. Hence, we conducted a systematic search to identify health challenges as NEET risk factors. METHODS A systematic search was conducted across four databases on February 21, 2023, with an update on January 15, 2024. Data collected after 1980 were included. The main findings from this search concerning risk factors are summarized in a chart. RESULTS A total of 33,314 articles were screened, resulting in the inclusion of 32 articles in this review. The review identified multiple physical risk factors associated with NEET status, which were categorized into two primary domains: congenital conditions and birth-related factors, for example, factors encompassed neonatal life in utero and experiences related to birth, and health conditions during childhood and adolescence, for example, survivors of childhood cancer and other severe health conditions during childhood and adolescents. CONCLUSIONS Our findings highlight that varying congenital conditions and birth-related factors as well as diseases from childhood to adulthood challenges or even hinder educational and job market participation, this emphasizing the importance of targeted support for children facing health challenges. These findings highlight the immediate requirement for comprehensive interventions specifically designed for children and adolescents who are for example, preterm, have experienced severe illness, or are coping with chronic diseases. These interventions should address the challenges encountered by youth in NEET. However, limited evidence on the impact of health conditions on NEET status underscores the necessity for further research into both short- and long-term effects.
Collapse
Affiliation(s)
- Victoria Lindblad
- Department of Gynecology, Pregnancy and ChildbirthNorth Denmark Regional HospitalHjoerringDenmark
| | - Kristian Hay Kragholm
- Department of CardiologyAalborg University HospitalAalborgDenmark
- Faculty of Clinical MedicineAalborg UniversityAalborgDenmark
| | | | | | - Fie Falk Lauritzen
- Department of Acute Medicine and Trauma CareAalborg University HospitalAalborgDenmark
| | - Dorte Melgaard
- Faculty of Clinical MedicineAalborg UniversityAalborgDenmark
- Department of Acute Medicine and Trauma CareAalborg University HospitalAalborgDenmark
| |
Collapse
|
4
|
Tirado-Aguilar OA, Martinez-Cruz N, Arce-Sanchez L, Borboa-Olivares H, Reyes-Muñoz E, Espino-Y-Sosa S, Villafan-Bernal JR, Martinez-Portilla RJ, Estrada-Gutierrez G, Uribe-Torres R, Tirado Aguilar RD, Lopez-Torres MF, Ramos-Mendoza C, Camacho-Martinez ZA, Aguilar-Jaimes NY, Torres-Torres J. Earlier detection of gestational diabetes impacts on medication requirements, neonatal and maternal outcomes. Diabetes Obes Metab 2024; 26:3110-3118. [PMID: 38699781 DOI: 10.1111/dom.15633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
AIM Gestational diabetes (GD) is a global health concern with significant implications for maternal and neonatal outcomes. This study investigates the association between early GD (eGD) diagnosis (<24 weeks), pharmacotherapy requirements and adverse neonatal outcomes. MATERIALS AND METHODS A cohort of 369 pregnant women underwent a 75-g oral glucose tolerance test. Maternal variables, pharmacotherapy prescriptions and neonatal outcomes were analysed employing t-tests, χ2 tests, and logistic regression. A p < .05 was considered significant. RESULTS Early GD increased the odds of neonatal hypoglycaemia [odds ratio (OR): 18.57, p = .013] and respiratory distress syndrome (OR: 4.75, p = .034). Nutritional therapy prescription by an accredited nutritionist was the most common treatment in women diagnosed after 24 weeks, but those with eGD required more frequently specialized nutritional consulting + metformin to achieve glycaemic control (p = .027). eGD was associated with a higher requirement of nutritional therapy prescription + metformin (OR: 2.26, 95% confidence interval: 1.25-4.09, p = .007) and with maternal hyperglycaemia during the post-partum period at 2 h of the oral glucose tolerance test (OR: 1.03, 95% confidence interval: 1.02-1.13, p = .024). CONCLUSION Timely diagnosis and personalized treatment of GD are desirable because an earlier presentation is related to a higher risk of adverse neonatal and maternal outcomes.
Collapse
Affiliation(s)
- Omar Alberto Tirado-Aguilar
- Department of Gynecology and Obstetrics, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - Nayeli Martinez-Cruz
- Coordination of Endocrinology, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - Lidia Arce-Sanchez
- Coordination of Endocrinology, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - Hector Borboa-Olivares
- Community Interventions Research Branch, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - Enrique Reyes-Muñoz
- Coordination of Gynecological and Perinatal Endocrinology, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - Salvador Espino-Y-Sosa
- Clinical Research Branch, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Jose Rafael Villafan-Bernal
- Laboratory of Immunogenomics and Metabolic Diseases, Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| | | | - Guadalupe Estrada-Gutierrez
- Clinical Research Branch, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Regina Uribe-Torres
- Clinical Research Branch, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
- Comisión Interinstitucional para la Formación de Recursos Humanos para la Salud, Mexico City, Mexico
| | | | - Maria Fernanda Lopez-Torres
- Department of Gynecology and Obstetrics, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - Cecilia Ramos-Mendoza
- Department of Gynecology and Obstetrics, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | | | | | - Johnatan Torres-Torres
- Clinical Research Branch, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
- Gynecology and Obstetrics Deparment, Hospital General de Mexico "Dr. Eduardo Liceaga", Mexico City, Mexico
| |
Collapse
|
5
|
Chen Q, He Z, Wang Y, Yang X, Liu N, Zhang S, Ma L, Shi X, Jia X, Yang Y, Sun Y, He Y. Effect of Maternal Pre-Pregnancy Body Mass Index on Longitudinal Fetal Growth and Mediating Role of Maternal Fasting Plasma Glucose: A Retrospective Cohort Study. Diabetes Metab Syndr Obes 2024; 17:1911-1921. [PMID: 38711675 PMCID: PMC11073526 DOI: 10.2147/dmso.s449706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Purpose To assess the impact of maternal pre-pregnancy body mass index (BMI) on longitudinal fetal growth, and the potential mediation effect of the maternal fasting plasma glucose in first trimester. Methods In this retrospective cohort study, we collected pre-pregnancy BMI data and ultrasound measurements during pregnancy of 3879 singleton pregnant women who underwent antenatal examinations and delivered at Peking Union Medical College Hospital. Generalized estimation equations, linear regression, and logistic regression were used to examine the association between pre-pregnancy BMI with fetal growth and adverse neonatal outcomes. Mediation analyses were also used to examine the mediating role of maternal fasting plasma glucose (FPG) in first trimester. Results A per 1 Kg/m² increase in pre-pregnancy BMI was associated with increase fetal body length Z-score (β 0.010, 95% CI 0.001, 0.019) and fetal body weight (β 0.017, 95% CI 0.008, 0.027). In mid pregnancy, pre-pregnancy BMI also correlated with an increase Z-score of fetal abdominal circumference, femur length (FL). Pre-pregnancy BMI was associated with an increased risk of large for gestational age and macrosomia. Mediation analysis indicated that the associations between pre-pregnancy BMI and fetal weight in mid and late pregnancy, and at birth were partially mediated by maternal FPG in first trimester (mediation proportion: 5.0%, 8.3%, 1.6%, respectively). Conclusion Maternal pre-pregnancy BMI was associated with the longitudinal fetal growth, and the association was partly driven by maternal FPG in first trimester. The study emphasized the importance of identifying and managing mothers with higher pre-pregnancy BMI to prevent fetal overgrowth.
Collapse
Affiliation(s)
- Qinzheng Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Zhen He
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yaxin Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences (CAMS) and PUMC, Beijing, People’s Republic of China
| | - Xuanjin Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences (CAMS) and PUMC, Beijing, People’s Republic of China
| | - Nana Liu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences (CAMS) and PUMC, Beijing, People’s Republic of China
| | - Suhan Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences (CAMS) and PUMC, Beijing, People’s Republic of China
| | - Liangkun Ma
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences (CAMS) and PUMC, Beijing, People’s Republic of China
| | - Xuezhong Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xiaocan Jia
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yin Sun
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences (CAMS) and PUMC, Beijing, People’s Republic of China
| | - Yuan He
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Cherkos AS, LaCourse SM, Kinuthia J, Mecha J, Enquobahrie DA, Escudero JN, John-Stewart G. Maternal breastfeeding and education impact infant growth and development more than in-utero HIV/antiretroviral therapy exposure in context of universal antiretroviral therapy. AIDS 2024; 38:537-546. [PMID: 37967230 PMCID: PMC10922740 DOI: 10.1097/qad.0000000000003785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
BACKGROUND Exposure to HIV and antiretroviral therapy (ART) in utero may influence infant growth and development. Most available evidence predates adoption of universal ART (Option B+ ART regimens). In a recent cohort, we compared growth and development in HIV-exposed uninfected (HEU) to HIV-unexposed (HUU) infants. DESIGN Prospective cohort study: data from Impact of Maternal HIV on Mycobacterium Tuberculosis Infection among Peripartum Women and their Infants (MiTIPS) in Western Kenya. METHODS Women were enrolled during pregnancy. Mother-infant pairs were followed until 24 months postpartum. We used multivariable linear mixed-effects models to compare growth rates [weight-for-age z score (WAZ) and height-for-age z score (HAZ)] and multivariable linear regression to compare overall development between HEU and HUU children. RESULTS About 51.8% (184/355) of the infants were HEU, 3.9% low birthweight (<2.5 kg), and 8.5% preterm (<37 gestational weeks). During pregnancy, all mothers of HEU received ART; 67.9% started ART prepregnancy, and 87.3% received 3TC/FTC, TDF, and EFV. In longitudinal analyses, HEU children did not differ significantly from HUU in growth or development ( P > 0.05 for all). In the combined HEU/HUU cohort, higher maternal education was associated with significantly better growth and development: WAZ [ β = 0.18 (95% CI 0.01-0.34)], HAZ [ β = 0.26 (95% CI 0.04-0.48)], and development [ β = 0.24 (95% CI 0.02-0.46)]. Breastfeeding was associated with significantly better HAZ [ β =0.42 (95% CI 0.19-0.66)] and development [ β =0.31 (95% CI 0.08-0.53)]. CONCLUSION HEU children in the setting of universal maternal ART had a similar growth trajectory and development to HUU children. Breastfeeding and maternal education improved children's weight, height, and overall development irrespective of maternal HIV status.
Collapse
Affiliation(s)
- Ashenafi S Cherkos
- Department of Population and Community Health, University of North Texas Health Science Center, Fort Worth, TX
| | - Sylvia M LaCourse
- Department of Epidemiology, School of Public Health
- Department of Medicine, Division of Allergy and Infectious Diseases
- Department of Global Health, School of Public Health, University of Washington, Seattle, WA, USA
| | - John Kinuthia
- Research and Programs
- Department of Obstetrics and Gynaecology, Kenyatta National Hospital, Nairobi, Kenya
| | | | | | - Jaclyn N Escudero
- Department of Global Health, School of Public Health, University of Washington, Seattle, WA, USA
| | - Grace John-Stewart
- Department of Epidemiology, School of Public Health
- Department of Medicine, Division of Allergy and Infectious Diseases
- Department of Global Health, School of Public Health, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Mattson MP, Leak RK. The hormesis principle of neuroplasticity and neuroprotection. Cell Metab 2024; 36:315-337. [PMID: 38211591 DOI: 10.1016/j.cmet.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Animals live in habitats fraught with a range of environmental challenges to their bodies and brains. Accordingly, cells and organ systems have evolved stress-responsive signaling pathways that enable them to not only withstand environmental challenges but also to prepare for future challenges and function more efficiently. These phylogenetically conserved processes are the foundation of the hormesis principle, in which single or repeated exposures to low levels of environmental challenges improve cellular and organismal fitness and raise the probability of survival. Hormetic principles have been most intensively studied in physical exercise but apply to numerous other challenges known to improve human health (e.g., intermittent fasting, cognitive stimulation, and dietary phytochemicals). Here we review the physiological mechanisms underlying hormesis-based neuroplasticity and neuroprotection. Approaching natural resilience from the lens of hormesis may reveal novel methods for optimizing brain function and lowering the burden of neurological disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Arslan S, Yıldıran H, Seymen CM. The Effect of Maternal High-Fat Diet on Adipose Tissue Histology and Lipid Metabolism-Related Genes Expression in Offspring Rats. Nutrients 2024; 16:150. [PMID: 38201978 PMCID: PMC10780511 DOI: 10.3390/nu16010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The developing fetus is dependent on the maternal nutritional environment. This study was conducted to determine the effects of a maternal high-fat diet (HFD) applied during pregnancy and/or lactation on the expression levels of some lipid-related genes in rat models. Half of the pregnant rats (n: 6) were fed an HFD (energy from fat: 45%), while the other half (n: 6) were fed a control diet (CD) (energy from fat, 7.7%) during the pregnancy period. During lactation, dams in both groups were divided into two subgroups, with half fed the CD and the other half fed the HFD. Thus, four groups were obtained: CD-CD, CD-HFD, HFD-CD, and HFD-HFD. At the end of lactation, all mothers and half of the offspring were sacrificed. The remaining offspring were fed a CD for five weeks. The average birth weight of the CD group offspring was found to be lower than that of the HFD group (p < 0.05). The amount of adipose tissue was highest in CD-HFD (p < 0.05), while gene expression levels were similar between groups (p > 0.05), and the most degenerative histological changes were observed in the eight-week HFD-HFD (p < 0.05). This study suggests that maternal HFD during pregnancy and lactation may increase adiposity in offspring rats, especially during the weaning period.
Collapse
Affiliation(s)
- Sabriye Arslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara 06490, Turkey;
| | - Hilal Yıldıran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara 06490, Turkey;
| | - Cemile Merve Seymen
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara 06500, Turkey;
| |
Collapse
|
9
|
Al-Beltagi M. Pre-autism: What a paediatrician should know about early diagnosis of autism. World J Clin Pediatr 2023; 12:273-294. [PMID: 38178935 PMCID: PMC10762597 DOI: 10.5409/wjcp.v12.i5.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 12/08/2023] Open
Abstract
Autism, also known as an autism spectrum disorder, is a complex neurodevelopmental disorder usually diagnosed in the first three years of a child's life. A range of symptoms characterizes it and can be diagnosed at any age, including adolescence and adulthood. However, early diagnosis is crucial for effective management, prognosis, and care. Unfortunately, there are no established fetal, prenatal, or newborn screening programs for autism, making early detection difficult. This review aims to shed light on the early detection of autism prenatally, natally, and early in life, during a stage we call as "pre-autism" when typical symptoms are not yet apparent. Some fetal, neonatal, and infant biomarkers may predict an increased risk of autism in the coming baby. By developing a biomarker array, we can create an objective diagnostic tool to diagnose and rank the severity of autism for each patient. These biomarkers could be genetic, immunological, hormonal, metabolic, amino acids, acute phase reactants, neonatal brainstem function biophysical activity, behavioral profile, body measurements, or radiological markers. However, every biomarker has its accuracy and limitations. Several factors can make early detection of autism a real challenge. To improve early detection, we need to overcome various challenges, such as raising community awareness of early signs of autism, improving access to diagnostic tools, reducing the stigma attached to the diagnosis of autism, and addressing various culturally sensitive concepts related to the disorder.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Algahrbia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Manama, Bahrain
| |
Collapse
|
10
|
Sheng JA, Handa RJ, Tobet SA. Evaluating different models of maternal stress on stress-responsive systems in prepubertal mice. Front Neurosci 2023; 17:1292642. [PMID: 38130695 PMCID: PMC10733493 DOI: 10.3389/fnins.2023.1292642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Maternal adversity during pregnancy influences neurodevelopment in human and model animal offspring. Adversity can result from stressors coming from many different directions ranging from environmental to nutritional and physiological to immune (e.g., infection). Most stressors result in fetal overexposure to glucocorticoids that have been directly linked to long- and short-term negative impacts on neurological health of offspring. Neuropsychiatric diseases postulated to have fetal origins are diverse and include such things cardiovascular disease, obesity, affective disorders, and metabolic and immune disorders. Methods The experiments in the current study compare 3 stressors: prenatal exposure to dexamethasone (DEX), maternal high fat diet (HFD), and maternal caloric restriction (CR). Offspring of mothers with these treatments were examined prepubertally to evaluate stress responsiveness and stress-related behaviors in in male and female mice. Results Prenatal exposure to synthetic glucocorticoid, DEX, resulted in decreased neonatal body weights, reduced social interaction behavior, and hypoactive stress response offspring exposed to maternal DEX. Maternal CR resulted in decreased body weights and social interaction behavior in males and females and increased anxiety-like behavior and acute stress response only in males. HFD resulted in altered body weight gain in both sex offspring with decreased anxiety-like behavior in a female-biased manner. Discussion The idea that glucocorticoid responses to different stressors might serve as a common stimulus across stress paradigms is insufficient, given that different modes of prenatal stress produced differential effects. Opposite nutritional stressors produced similar outcomes for anxiety-like behavior in both sexes, social-like behavior in females, and a hyperactive adrenal stress response in males. One common theme among the three models of maternal stress (DEX, CR, and HFD) was consistent data showing their role in activating the maternal and fetal immune response. By tuning in on the more immediate immunological aspect on the developing fetus (e.g., hormones, cytokines), additional studies may tease out more direct outcomes of maternal stress in rodents and increase their translational value to human studies.
Collapse
Affiliation(s)
- Julietta A. Sheng
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Robert J. Handa
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Stuart A. Tobet
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Psychiatry, Mass General Hospital, Harvard Medical School, Boston, MA, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
- Innovation Center on Sex Differences in Medicine, Mass General Hospital, Cambridge, MA, United States
| |
Collapse
|
11
|
Lee JY, Lee HJ, Jang YH, Kim H, Im K, Yang S, Hoh JK, Ahn JH. Maternal pre-pregnancy obesity affects the uncinate fasciculus white matter tract in preterm infants. Front Pediatr 2023; 11:1225960. [PMID: 38034827 PMCID: PMC10684693 DOI: 10.3389/fped.2023.1225960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Background A growing body of evidence suggests an association between a higher maternal pre-pregnancy body mass index (BMI) and adverse long-term neurodevelopmental outcomes for their offspring. Despite recent attention to the effects of maternal obesity on fetal and neonatal brain development, changes in the brain microstructure of preterm infants born to mothers with pre-pregnancy obesity are still not well understood. This study aimed to detect the changes in the brain microstructure of obese mothers in pre-pregnancy and their offspring born as preterm infants using diffusion tensor imaging (DTI). Methods A total of 32 preterm infants (born to 16 mothers with normal BMI and 16 mothers with a high BMI) at <32 weeks of gestation without brain injury underwent brain magnetic resonance imaging at term-equivalent age (TEA). The BMI of all pregnant women was measured within approximately 12 weeks before pregnancy or the first 2 weeks of gestation. We analyzed the brain volume using a morphologically adaptive neonatal tissue segmentation toolbox and calculated the major white matter (WM) tracts using probabilistic maps of the Johns Hopkins University neonatal atlas. We investigated the differences in brain volume and WM microstructure between preterm infants of mothers with normal and high BMI. The DTI parameters were compared among groups using analysis of covariance adjusted for postmenstrual age at scan and multiple comparisons. Results Preterm infants born to mothers with a high BMI showed significantly increased cortical gray matter volume (p = 0.001) and decreased WM volume (p = 0.003) after controlling for postmenstrual age and multiple comparisons. We found a significantly lower axial diffusivity in the uncinate fasciculus (UNC) in mothers with high BMI than that in mothers with normal BMI (1.690 ± 0.066 vs. 1.762 ± 0.101, respectively; p = 0.005). Conclusion Our study is the first to demonstrate that maternal obesity impacts perinatal brain development patterns in preterm infants at TEA, even in the absence of apparent brain injury. These findings provide evidence for the detrimental effects of maternal obesity on brain developmental trajectories in offspring and suggest potential neurodevelopmental outcomes based on an altered UNC WM microstructure, which is known to be critical for language and social-emotional functions.
Collapse
Affiliation(s)
- Joo Young Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Division of Neonatology and Development Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| | - Yong Hun Jang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Hyuna Kim
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Kiho Im
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Seung Yang
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Hanyang University Hospital, Seoul, Republic of Korea
| | - Jeong-Kyu Hoh
- Department of Obstetrics and Gynecology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Hanyang University Hospital, Seoul, Republic of Korea
| | - Ja-Hye Ahn
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Division of Neonatology and Development Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
12
|
Liu T, Jia F, Differding MK, Zhao N, Doyon M, Bouchard L, Perron P, Guérin R, Massé E, Hivert MF, Mueller NT. Pre-pregnancy body mass index and gut microbiota of mothers and children 5 years postpartum. Int J Obes (Lond) 2023; 47:807-816. [PMID: 37173396 PMCID: PMC10911130 DOI: 10.1038/s41366-023-01322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Maternal pre-pregnancy body mass index (BMI) has been linked to altered gut microbiota in women shortly after delivery and in their offspring in the first few years of life. But little is known about how long these differences persist. METHODS We followed 180 mothers and children from pregnancy until 5-year postpartum in the Gen3G cohort (Canada, enrolled 2010-2013). At 5 years postpartum we collected stool samples from mothers and children and estimated the gut microbiota by 16 S rRNA sequencing (V4 region) using Illumina MiSeq, and assigning amplicon sequence variants (ASV). We examined whether overall microbiota composition (as measured by microbiota β diversity) was more similar between mother-child pairs compared to between mothers or between children. We also assessed whether mother-child pair sharing of overall microbiota composition differed by the weight status of mothers before pregnancy and of children at 5-year. Furthermore, in mothers, we examined whether pre-pregnancy BMI, BMI 5-year postpartum, and change in BMI between time points was associated with maternal gut microbiota 5-year postpartum. In children, we further examined associations of maternal pre-pregnancy BMI and child 5-year BMI z-score with child 5-year gut microbiota. RESULTS Mother-child pairs had greater similarity in overall microbiome composition compared to between mothers and between children. In mothers, higher pre-pregnancy BMI and 5-year postpartum BMI were associated with lower microbiota observed ASV richness and Chao 1 index; in children's gut microbiota, higher maternal pre-pregnancy BMI was weakly associated with lower microbiota Shannon index, whereas child's 5-year BMI z-score was associated with higher observed ASV richness. Pre-pregnancy BMI was also linked to differential abundances of several microbial ASVs in the Ruminococcaceae and Lachnospiraceae families, but no specific ASV had overlapping associations with BMI measures in both mothers and children. CONCLUSIONS Pre-pregnancy BMI was associated with gut microbiota diversity and composition of mothers and children 5 years after birth, however, the nature and direction of most associations differed for mothers and children. Future studies are encouraged to confirm our findings and look into potential mechanisms or factors that may drive these associations.
Collapse
Affiliation(s)
- Tiange Liu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Fan Jia
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Moira K Differding
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ni Zhao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Myriam Doyon
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Luigi Bouchard
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medical Biology, CIUSSS-SLSJ, Saguenay, QC, Canada
| | - Patrice Perron
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Renée Guérin
- Department of Medical Biology, CIUSSS-SLSJ, Saguenay, QC, Canada
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-France Hivert
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA, USA
| | - Noel T Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
13
|
Gao J, Liu M, Liu J, Shi P, Cui H, Zhao S, Zhang X, Tao C. Effect of high-fat diet on the lipid profile of ovarian granulosa cells and female reproduction in mice. PLoS One 2023; 18:e0287534. [PMID: 37368884 PMCID: PMC10298767 DOI: 10.1371/journal.pone.0287534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Currently, comorbidities of obesity are becoming increasingly frequent. For example, obese women are more susceptible to reproductive diseases; however, the underlying mechanism remains poorly understood. The present study aimed to explore the effect of obesity on female reproduction and discuss changes of the lipid profile in ovarian granulosa cells. Fifty female mice were randomly divided into two groups, one group was fed high-fat diet, the other group was fed standard control diet, food and water freely. After 12 weeks of feeding, the average body weight of the high-fat diet mice (19.027g) was significantly higher than that of the standard control diet mice (36.877g) (P < 0.05). The tissue sections were stained with oil red O, and the online software mage Pro plus 6.0 analyzed the staining results, the lipids in the ovaries and endometria were found to be different between the two groups. Liquid chromatography-electrospray ionization with tandem mass spectrometry (LC-ESI-MS/MS) analysis of ovarian granulosa cells (GCs) was performed, with a total of 228 different lipids being identified, the abundant of 147 were increased and 81 were decreased in the high-fat diet group. Among them, PI (18:1/20:1) was the most different lipid, and high-fat feeding was 85 times higher than standard control group. Among these different lipids, 44% in phospholipid metabolism, 30% in glycerolipid metabolism, and 30% in fat digestion and absorption. The results of this study laid a theoretical foundation of the effects of diet-induced obesity on female reproduction.
Collapse
Affiliation(s)
- Jinchun Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Mingchao Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Jingge Liu
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, China
| | - Peihua Shi
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Haoliang Cui
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Shunran Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Xinbo Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Chenyu Tao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, China
| |
Collapse
|
14
|
Aguayo-Guerrero JA, León-Cabrera S, Escobedo G. Molecular mechanisms involved in fetal programming and disease origin in adulthood. J Pediatr Endocrinol Metab 2023; 0:jpem-2022-0491. [PMID: 37235772 DOI: 10.1515/jpem-2022-0491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
Fetal programming occurs during the gestational age when exposure to environmental stimuli can cause long-term changes in the fetus, predisposing it to develop chronic non-communicable diseases (CNCD) in adulthood. Herein, we summarized the role of low-calorie or high-fat diets during pregnancy as fetal programming agents that induce intrauterine growth restriction (IUGR), amplified de novo lipogenesis, and increased amino acid transport to the placenta, which favor the CNCD onset in the offspring. We also outlined how maternal obesity and gestational diabetes act as fetal programming stimuli by reducing iron absorption and oxygen transport to the fetus, stimulating inflammatory pathways that boost neurological disorders and CNCD in the progeny. Moreover, we reviewed the mechanisms through which fetal hypoxia elevates the offspring's risk of developing hypertension and chronic kidney disease in adult life by unbalancing the renin-angiotensin system and promoting kidney cell apoptosis. Finally, we examined how inadequate vitamin B12 and folic acid consumption during pregnancy programs the fetus to greater adiposity, insulin resistance, and glucose intolerance in adulthood. A better understanding of the fetal programming mechanisms may help us reduce the onset of insulin resistance, glucose intolerance, dyslipidemia, obesity, hypertension, diabetes mellitus, and other CNCD in the offspring during adulthood.
Collapse
Affiliation(s)
- José Alfredo Aguayo-Guerrero
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Sonia León-Cabrera
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, State of Mexico, Mexico
- Carrera de Médico Cirujano, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, State of Mexico, Mexico
| | - Galileo Escobedo
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City, Mexico
| |
Collapse
|
15
|
Sugar-Sweetened Beverages and Metabolic Risk in Children and Adolescents with Obesity: A Narrative Review. Nutrients 2023; 15:nu15030702. [PMID: 36771409 PMCID: PMC9918944 DOI: 10.3390/nu15030702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Sugar-sweetened beverages (SSBs) are major contributors of free sugars to the diet. A strong relationship between SSB intake and weight gain is described. METHODS we performed a narrative review to present an overview of the role of SSBs as a pivotal contributor in the development of obesity and metabolism-related complications. RESULTS different factors influence SSB consumption in children, including economic variables, individual attributes and behaviors to environmental factors, parent features and parents' behaviors. Data suggest that SSB intake has a negative effect on weight and obesity-related diseases. The leading mechanism linking SSB intake to the risk of gaining weight is decreased satiety and incomplete compensatory reduction in energy intake at meals following ingestion of liquid calories. Additionally, the effects of SSBs on gut microbiota and on eating behaviors were also reported. An association between SSB intake, weight gain and cardiometabolic risks is evident. Consumption of SSBs had a significant impact on the prevalence of obesity and related metabolic risks, including insulin resistance, type 2 diabetes, hypertension and metabolic syndrome. CONCLUSIONS Limiting consumption of SSBs and increasing knowledge of the effect of SSBs on early metabolic and cardiovascular disorders will be useful in developing strategies to counteract the problem and to prevent obesity and related complications.Key future research areas for which further studies are needed include investigating the long-term effects of SSBs on health outcomes as well as analyzing the health effects of sugar consumed in solid compared to liquid forms and further elucidating the biological mechanisms of sugar addiction and energy compensation.
Collapse
|
16
|
Maternal Obesity and Gut Microbiota Are Associated with Fetal Brain Development. Nutrients 2022; 14:nu14214515. [PMID: 36364776 PMCID: PMC9654759 DOI: 10.3390/nu14214515] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/28/2022] Open
Abstract
Obesity in pregnancy induces metabolic syndrome, low-grade inflammation, altered endocrine factors, placental function, and the maternal gut microbiome. All these factors impact fetal growth and development, including brain development. The lipid metabolic transporters of the maternal-fetal-placental unit are dysregulated in obesity. Consequently, the transport of essential long-chain PUFAs for fetal brain development is disturbed. The mother’s gut microbiota is vital in maintaining postnatal energy homeostasis and maternal-fetal immune competence. Obesity during pregnancy changes the gut microbiota, affecting fetal brain development. Obesity in pregnancy can induce placental and intrauterine inflammation and thus influence the neurodevelopmental outcomes of the offspring. Several epidemiological studies observed an association between maternal obesity and adverse neurodevelopment. This review discusses the effects of maternal obesity and gut microbiota on fetal neurodevelopment outcomes. In addition, the possible mechanisms of the impacts of obesity and gut microbiota on fetal brain development are discussed.
Collapse
|
17
|
Cechinel LR, Batabyal RA, Freishtat RJ, Zohn IE. Parental obesity-induced changes in developmental programming. Front Cell Dev Biol 2022; 10:918080. [PMID: 36274855 PMCID: PMC9585252 DOI: 10.3389/fcell.2022.918080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Many studies support the link between parental obesity and the predisposition to develop adult-onset metabolic syndromes that include obesity, high blood pressure, dyslipidemia, insulin resistance, and diabetes in the offspring. As the prevalence of obesity increases in persons of childbearing age, so does metabolic syndrome in their descendants. Understanding how parental obesity alters metabolic programs in the progeny, predisposing them to adult-onset metabolic syndrome, is key to breaking this cycle. This review explores the basis for altered metabolism of offspring exposed to overnutrition by focusing on critical developmental processes influenced by parental obesity. We draw from human and animal model studies, highlighting the adaptations in metabolism that occur during normal pregnancy that become maladaptive with obesity. We describe essential phases of development impacted by parental obesity that contribute to long-term alterations in metabolism in the offspring. These encompass gamete formation, placentation, adipogenesis, pancreas development, and development of brain appetite control circuits. Parental obesity alters the developmental programming of these organs in part by inducing epigenetic changes with long-term consequences on metabolism. While exposure to parental obesity during any of these phases is sufficient to alter long-term metabolism, offspring often experience multiple exposures throughout their development. These insults accumulate to increase further the susceptibility of the offspring to the obesogenic environments of modern society.
Collapse
|
18
|
Estrogen normalizes maternal HFD-induced vascular dysfunction in offspring by regulating ATR. Hypertens Res 2022; 45:1743-1753. [PMID: 35999282 DOI: 10.1038/s41440-022-01002-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 07/15/2022] [Indexed: 12/26/2022]
Abstract
Previous studies have shown that female offspring are resistant to fetal high-fat diet (HFD)-induced programming of heightened vascular contraction; however, the underlying mechanisms remain unclear. The present study tested the hypothesis that estrogen plays a key role in protecting females from fetal programming of increased vascular contraction induced by maternal HFD exposure. Pregnant rats were fed a normal diet (ND) or HFD (60% kcal from fat). Ovariectomy (OVX) and 17β-estradiol (E2) replacement were performed on 8-week-old female offspring. Aortas were isolated from adult female offspring. Maternal HFD exposure increased angiotensin II (Ang II)-induced contractions of the aorta in adult OVX offspring, which was abrogated by E2 replacement. The AT1 receptor (AT1R) antagonist losartan (10 μM), but not the AT2 receptor (AT2R) antagonist PD123319 (10 μM), completely blocked Ang II-induced contractions in both ND and HFD offspring. In addition, HFD exposure caused a decrease in endothelium-dependent relaxations induced by acetylcholine (ACh) in adult OVX but not OVX-E2 offspring. However, it had no effect on sodium nitroprusside (SNP)-induced endothelium-independent aorta relaxation in any of the six groups. Maternal HFD feeding increased AT1R, but not AT2R, leading to an increased AT1R/AT2R ratio in HFD-exposed OVX offspring, associated with selective decreases in DNA methylation at the AT1aR promoter, which was ameliorated by E2 replacement. Our results indicated that estrogen play a key role in sex differences of maternal HFD-induced vascular dysfunction and development of hypertensive phenotype in adulthood by differently regulating vascular AT1R and AT2R gene expression through a DNA methylation mechanism.
Collapse
|
19
|
Takiyama T, Sera T, Nakamura M, Hoshino M, Uesugi K, Horike SI, Meguro-Horike M, Bessho R, Takiyama Y, Kitsunai H, Takeda Y, Sawamoto K, Yagi N, Nishikawa Y, Takiyama Y. A maternal high-fat diet induces fetal origins of NASH-HCC in mice. Sci Rep 2022; 12:13136. [PMID: 35907977 PMCID: PMC9338981 DOI: 10.1038/s41598-022-17501-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Maternal overnutrition affects offspring susceptibility to nonalcoholic steatohepatitis (NASH). Male offspring from high-fat diet (HFD)-fed dams developed a severe form of NASH, leading to highly vascular tumor formation. The cancer/testis antigen HORMA domain containing protein 1 (HORMAD1), one of 146 upregulated differentially expressed genes in fetal livers from HFD-fed dams, was overexpressed with hypoxia-inducible factor 1 alpha (HIF-1alpha) in hepatoblasts and in NASH-based hepatocellular carcinoma (HCC) in offspring from HFD-fed dams at 15 weeks old. Hypoxia substantially increased Hormad1 expression in primary mouse hepatocytes. Despite the presence of three putative hypoxia response elements within the mouse Hormad1 gene, the Hif-1alpha siRNA only slightly decreased hypoxia-induced Hormad1 mRNA expression. In contrast, N-acetylcysteine, but not rotenone, inhibited hypoxia-induced Hormad1 expression, indicating its dependency on nonmitochondrial reactive oxygen species production. Synchrotron-based phase-contrast micro-CT of the fetuses from HFD-fed dams showed significant enlargement of the liver accompanied by a consistent size of the umbilical vein, which may cause hypoxia in the fetal liver. Based on these findings, a maternal HFD induces fetal origins of NASH/HCC via hypoxia, and HORMAD1 is a potential therapeutic target for NASH/HCC.
Collapse
Affiliation(s)
- Takao Takiyama
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Toshihiro Sera
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Masanori Nakamura
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Japan
| | - Shin-Ichi Horike
- Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | | | - Ryoichi Bessho
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yuri Takiyama
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroya Kitsunai
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yasutaka Takeda
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kazuki Sawamoto
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Japan
| | - Yuji Nishikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yumi Takiyama
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan.
| |
Collapse
|
20
|
Urbonaite G, Knyzeliene A, Bunn FS, Smalskys A, Neniskyte U. The impact of maternal high-fat diet on offspring neurodevelopment. Front Neurosci 2022; 16:909762. [PMID: 35937892 PMCID: PMC9354026 DOI: 10.3389/fnins.2022.909762] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022] Open
Abstract
A maternal high-fat diet affects offspring neurodevelopment with long-term consequences on their brain health and behavior. During the past three decades, obesity has rapidly increased in the whole human population worldwide, including women of reproductive age. It is known that maternal obesity caused by a high-fat diet may lead to neurodevelopmental disorders in their offspring, such as autism spectrum disorder, attention deficit hyperactivity disorder, anxiety, depression, and schizophrenia. A maternal high-fat diet can affect offspring neurodevelopment due to inflammatory activation of the maternal gut, adipose tissue, and placenta, mirrored by increased levels of pro-inflammatory cytokines in both maternal and fetal circulation. Furthermore, a maternal high fat diet causes gut microbial dysbiosis further contributing to increased inflammatory milieu during pregnancy and lactation, thus disturbing both prenatal and postnatal neurodevelopment of the offspring. In addition, global molecular and cellular changes in the offspring's brain may occur due to epigenetic modifications including the downregulation of brain-derived neurotrophic factor (BDNF) expression and the activation of the endocannabinoid system. These neurodevelopmental aberrations are reflected in behavioral deficits observed in animals, corresponding to behavioral phenotypes of certain neurodevelopmental disorders in humans. Here we reviewed recent findings from rodent models and from human studies to reveal potential mechanisms by which a maternal high-fat diet interferes with the neurodevelopment of the offspring.
Collapse
Affiliation(s)
- Gintare Urbonaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Agne Knyzeliene
- Centre for Cardiovascular Science, The Queen’s Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Fanny Sophia Bunn
- Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Adomas Smalskys
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Urte Neniskyte
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
21
|
Wiedmer EB, Herter-Aeberli I. The Potential of Prebiotic and Probiotic Supplementation During Obese Pregnancy to Improve Maternal and Offspring’s Metabolic Health and Reduce Obesity Risk—A Narrative Review. Front Nutr 2022; 9:819882. [PMID: 35464026 PMCID: PMC9021550 DOI: 10.3389/fnut.2022.819882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/14/2022] [Indexed: 01/14/2023] Open
Abstract
Worldwide, obesity prevalence is rising, severely impairing the health of those affected by increasing their risk for developing non-communicable diseases. The pathophysiology of obesity is complex and caused by a variety of genetic and environmental factors. Recent findings suggest that obesity is partly caused by dysbiosis, an imbalanced gut microbiome. In the context of pregnancy, maternal dysbiosis increases the child’s obesity risk, causing an intergenerational cycle of obesity. Accordingly, interventions modulating the gut microbiome have the potential to interrupt this cycle. This review discusses the potential of pre- and probiotic interventions in modulating maternal obesity associated dysbiosis to limit the child’s obesity risk. The literature search resulted in four animal studies using prebiotics as well as one animal study and six human studies using probiotics. Altogether, prebiotic supplementation in animals successfully decreased the offspring’s obesity risk, while probiotic supplementation in humans failed to show positive impacts in the offspring. However, comparability between studies is limited and considering the complexity of the topic, more studies in this field are required.
Collapse
|
22
|
Kessous R, Sheiner E, Rosen GB, Kapelushnik J, Wainstock T. Increased incidence of childhood lymphoma in children with a history of small for gestational age at birth. Arch Gynecol Obstet 2022; 306:1485-1494. [PMID: 35133455 DOI: 10.1007/s00404-022-06410-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/10/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate whether children that were born small for gestational age (SGA) have an increased risk for childhood neoplasm. STUDY DESIGN A population-based cohort analysis comparing the risk for long-term childhood neoplasms (benign and malignant) in children that were born SGA vs. those that were appropriate for gestational age (AGA), between the years1991-2014. Childhood neoplasms were predefined based on ICD-9 codes, as recorded in the hospital medical files. Kaplan-Meier survival curves were constructed to compare cumulative oncological morbidity in both groups over time. Cox proportional hazards model was used to control for confounders. RESULTS During the study period 231,973 infants met the inclusion criteria; out of those 10,998 were born with a diagnosis of SGA. Children that were SGA at birth had higher incidence of lymphoma (OR 2.50, 95% CI 1.06-5.82; p value = 0.036). In addition, cumulative incidence over time of total childhood lymphoma was significantly higher in SGA children (Log Rank = 0.030). In a Cox regression model controlling for other perinatal confounders; SGA at birth remained independently associated with an increased risk for childhood lymphoma (adjusted HR 2.41, 95% CI 1.03-5.56, p value = 0.043). CONCLUSION Being delivered SGA is associated with an increased long-term risk for childhood malignancy and specifically lymphoma.
Collapse
Affiliation(s)
- Roy Kessous
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, 84101, Beer-Sheva, Israel.
| | - Eyal Sheiner
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, 84101, Beer-Sheva, Israel
| | - Guy Beck Rosen
- Pediatric Hemato-Oncology Department, Saban Pediatric Medical Center, Soroka University Medical Center, Beer-Sheva, Israel
| | - Joseph Kapelushnik
- Pediatric Hemato-Oncology Department, Saban Pediatric Medical Center, Soroka University Medical Center, Beer-Sheva, Israel
| | - Tamar Wainstock
- The Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
23
|
Cochran DM, Jensen ET, Frazier JA, Jalnapurkar I, Kim S, Roell KR, Joseph RM, Hooper SR, Santos HP, Kuban KCK, Fry RC, O’Shea TM. Association of prenatal modifiable risk factors with attention-deficit hyperactivity disorder outcomes at age 10 and 15 in an extremely low gestational age cohort. Front Hum Neurosci 2022; 16:911098. [PMID: 36337853 PMCID: PMC9630552 DOI: 10.3389/fnhum.2022.911098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/03/2022] [Indexed: 12/31/2022] Open
Abstract
Background The increased risk of developing attention-deficit hyperactivity disorder (ADHD) in extremely preterm infants is well-documented. Better understanding of perinatal risk factors, particularly those that are modifiable, can inform prevention efforts. Methods We examined data from the Extremely Low Gestational Age Newborns (ELGAN) Study. Participants were screened for ADHD at age 10 with the Child Symptom Inventory-4 (N = 734) and assessed at age 15 with a structured diagnostic interview (MINI-KID) to evaluate for the diagnosis of ADHD (N = 575). We studied associations of pre-pregnancy maternal body mass index (BMI), pregestational and/or gestational diabetes, maternal smoking during pregnancy (MSDP), and hypertensive disorders of pregnancy (HDP) with 10-year and 15-year ADHD outcomes. Relative risks were calculated using Poisson regression models with robust error variance, adjusted for maternal age, maternal educational status, use of food stamps, public insurance status, marital status at birth, and family history of ADHD. We defined ADHD as a positive screen on the CSI-4 at age 10 and/or meeting DSM-5 criteria at age 15 on the MINI-KID. We evaluated the robustness of the associations to broadening or restricting the definition of ADHD. We limited the analysis to individuals with IQ ≥ 70 to decrease confounding by cognitive functioning. We evaluated interactions between maternal BMI and diabetes status. We assessed for mediation of risk increase by alterations in inflammatory or neurotrophic protein levels in the first week of life. Results Elevated maternal BMI and maternal diabetes were each associated with a 55-65% increase in risk of ADHD, with evidence of both additive and multiplicative interactions between the two exposures. MSDP and HDP were not associated with the risk of ADHD outcomes. There was some evidence for association of ADHD outcomes with high levels of inflammatory proteins or moderate levels of neurotrophic proteins, but there was no evidence that these mediated the risk associated with maternal BMI or diabetes. Conclusion Contrary to previous population-based studies, MSDP and HDP did not predict ADHD outcomes in this extremely preterm cohort, but elevated maternal pre-pregnancy BMI, maternal diabetes, and perinatal inflammatory markers were associated with increased risk of ADHD at age 10 and/or 15, with positive interaction between pre-pregnancy BMI and maternal diabetes.
Collapse
Affiliation(s)
- David M. Cochran
- Eunice Kennedy Shriver Center, UMass Chan Medical School, Worcester, MA, United States
- *Correspondence: David M. Cochran,
| | - Elizabeth T. Jensen
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Jean A. Frazier
- Eunice Kennedy Shriver Center, UMass Chan Medical School, Worcester, MA, United States
| | - Isha Jalnapurkar
- Eunice Kennedy Shriver Center, UMass Chan Medical School, Worcester, MA, United States
| | - Sohye Kim
- Eunice Kennedy Shriver Center, UMass Chan Medical School, Worcester, MA, United States
| | - Kyle R. Roell
- Department of Environmental Sciences and Engineering, Institute for Environmental Health Solutions, University of North Carolina School, Chapel Hill, NC, United States
| | - Robert M. Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Stephen R. Hooper
- Department of Health Sciences, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Hudson P. Santos
- School of Nursing and Health Studies, University of Miami, Coral Gables, FL, United States
| | - Karl C. K. Kuban
- Division of Neurology (Pediatric Neurology), Department of Pediatrics, Boston Medical Center and Boston University, Boston, MA, United States
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Institute for Environmental Health Solutions, University of North Carolina School, Chapel Hill, NC, United States
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - T. Michael O’Shea
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
24
|
Aguilera N, Salas-Pérez F, Ortíz M, Álvarez D, Echiburú B, Maliqueo M. Rodent models in placental research. Implications for fetal origins of adult disease. Anim Reprod 2022; 19:e20210134. [PMID: 35493783 PMCID: PMC9037606 DOI: 10.1590/1984-3143-ar2021-0134] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/21/2022] [Indexed: 11/22/2022] Open
|
25
|
Grzęda E, Matuszewska J, Ziarniak K, Gertig-Kolasa A, Krzyśko- Pieczka I, Skowrońska B, Sliwowska JH. Animal Foetal Models of Obesity and Diabetes - From Laboratory to Clinical Settings. Front Endocrinol (Lausanne) 2022; 13:785674. [PMID: 35197931 PMCID: PMC8858803 DOI: 10.3389/fendo.2022.785674] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/11/2022] [Indexed: 12/26/2022] Open
Abstract
The prenatal period, during which a fully formed newborn capable of surviving outside its mother's body is built from a single cell, is critical for human development. It is also the time when the foetus is particularly vulnerable to environmental factors, which may modulate the course of its development. Both epidemiological and animal studies have shown that foetal programming of physiological systems may alter the growth and function of organs and lead to pathology in adulthood. Nutrition is a particularly important environmental factor for the pregnant mother as it affects the condition of offspring. Numerous studies have shown that an unbalanced maternal metabolic status (under- or overnutrition) may cause long-lasting physiological and behavioural alterations, resulting in metabolic disorders, such as obesity and type 2 diabetes (T2DM). Various diets are used in laboratory settings in order to induce maternal obesity and metabolic disorders, and to alter the offspring development. The most popular models are: high-fat, high-sugar, high-fat-high-sugar, and cafeteria diets. Maternal undernutrition models are also used, which results in metabolic problems in offspring. Similarly to animal data, human studies have shown the influence of mothers' diets on the development of children. There is a strong link between the maternal diet and the birth weight, metabolic state, changes in the cardiovascular and central nervous system of the offspring. The mechanisms linking impaired foetal development and adult diseases remain under discussion. Epigenetic mechanisms are believed to play a major role in prenatal programming. Additionally, sexually dimorphic effects on offspring are observed. Therefore, further research on both sexes is necessary.
Collapse
Affiliation(s)
- Emilia Grzęda
- Laboratory of Neurobiology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
| | - Julia Matuszewska
- Laboratory of Neurobiology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
| | - Kamil Ziarniak
- Laboratory of Neurobiology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
- Molecular and Cell Biology Unit, Poznań University of Medical Sciences, Poznań, Poland
| | - Anna Gertig-Kolasa
- Department of Paediatric Diabetes and Obesity, Poznań University of Medical Sciences, Poznań, Poland
| | - Izabela Krzyśko- Pieczka
- Department of Paediatric Diabetes and Obesity, Poznań University of Medical Sciences, Poznań, Poland
| | - Bogda Skowrońska
- Department of Paediatric Diabetes and Obesity, Poznań University of Medical Sciences, Poznań, Poland
| | - Joanna H. Sliwowska
- Laboratory of Neurobiology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
- *Correspondence: Joanna H. Sliwowska,
| |
Collapse
|
26
|
Yang Q, Wang Y, Wang H, Li H, Zhu J, Cong L, Xu J, Chen W, Jiang Y, Sun Y. NAD + repletion attenuates obesity-induced oocyte mitochondrial dysfunction and offspring metabolic abnormalities via a SIRT3-dependent pathway. Clin Transl Med 2021; 11:e628. [PMID: 34923754 PMCID: PMC8684772 DOI: 10.1002/ctm2.628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 01/17/2023] Open
Affiliation(s)
- Qingling Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujiao Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huan Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Li
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luping Cong
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianmin Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenhui Chen
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqing Jiang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Zhao L, Law NC, Gomez NA, Son J, Gao Y, Liu X, de Avila JM, Zhu M, Du M. Obesity Impairs Embryonic Myogenesis by Enhancing BMP Signaling within the Dermomyotome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102157. [PMID: 34647690 PMCID: PMC8596142 DOI: 10.1002/advs.202102157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/16/2021] [Indexed: 05/05/2023]
Abstract
Obesity during pregnancy leads to adverse health outcomes in offspring. However, the initial effects of maternal obesity (MO) on embryonic organogenesis have yet to be thoroughly examined. Using unbiased single-cell transcriptomic analyses (scRNA-seq), the effects of MO on the myogenic process is investigated in embryonic day 9.5 (E9.5) mouse embryos. The results suggest that MO induces systematic hypoxia, which is correlated with enhanced BMP signaling and impairs skeletal muscle differentiation within the dermomyotome (DM). The Notch-signaling effectors, HES1 and HEY1, which also act down-stream of BMP signaling, suppress myogenic differentiation through transcriptionally repressing the important myogenic regulator MEF2C. Moreover, the major hypoxia effector, HIF1A, enhances expression of HES1 and HEY1 and blocks myogenic differentiation in vitro. In summary, this data demonstrate that MO induces hypoxia and impairs myogenic differentiation by up-regulating BMP signaling within the DM, which may account for the disruptions of skeletal muscle development and function in progeny.
Collapse
Affiliation(s)
- Liang Zhao
- Nutrigenomics and Growth Biology LaboratoryDepartment of Animal Sciencesand School of Molecular BioscienceWashington State UniversityPullmanWA99164USA
- Department of Animal SciencesWashington State UniversityPullmanWA99164USA
| | - Nathan C. Law
- Department of Animal SciencesWashington State UniversityPullmanWA99164USA
- Center for Reproductive BiologyCollege of Veterinary MedicineWashington State UniversityPullmanWA99164USA
| | - Noe A. Gomez
- Nutrigenomics and Growth Biology LaboratoryDepartment of Animal Sciencesand School of Molecular BioscienceWashington State UniversityPullmanWA99164USA
- Department of Animal SciencesWashington State UniversityPullmanWA99164USA
| | - Junseok Son
- Nutrigenomics and Growth Biology LaboratoryDepartment of Animal Sciencesand School of Molecular BioscienceWashington State UniversityPullmanWA99164USA
- Department of Animal SciencesWashington State UniversityPullmanWA99164USA
| | - Yao Gao
- Nutrigenomics and Growth Biology LaboratoryDepartment of Animal Sciencesand School of Molecular BioscienceWashington State UniversityPullmanWA99164USA
- Department of Animal SciencesWashington State UniversityPullmanWA99164USA
| | - Xiangdong Liu
- Nutrigenomics and Growth Biology LaboratoryDepartment of Animal Sciencesand School of Molecular BioscienceWashington State UniversityPullmanWA99164USA
- Department of Animal SciencesWashington State UniversityPullmanWA99164USA
| | - Jeanene M. de Avila
- Nutrigenomics and Growth Biology LaboratoryDepartment of Animal Sciencesand School of Molecular BioscienceWashington State UniversityPullmanWA99164USA
- Department of Animal SciencesWashington State UniversityPullmanWA99164USA
| | - Mei‐Jun Zhu
- School of Food ScienceWashington State UniversityPullmanWA99164USA
| | - Min Du
- Nutrigenomics and Growth Biology LaboratoryDepartment of Animal Sciencesand School of Molecular BioscienceWashington State UniversityPullmanWA99164USA
- Department of Animal SciencesWashington State UniversityPullmanWA99164USA
| |
Collapse
|
28
|
Fauste E, Panadero MI, Donis C, Otero P, Bocos C. Pregnancy Is Enough to Provoke Deleterious Effects in Descendants of Fructose-Fed Mothers and Their Fetuses. Nutrients 2021; 13:3667. [PMID: 34684668 PMCID: PMC8539712 DOI: 10.3390/nu13103667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/06/2023] Open
Abstract
The role of fructose in the global obesity and metabolic syndrome epidemic is widely recognized. However, its consumption is allowed during pregnancy. We have previously demonstrated that maternal fructose intake in rats induces detrimental effects in fetuses. However, these effects only appeared in adult descendants after a re-exposure to fructose. Pregnancy is a physiological state that leads to profound changes in metabolism and hormone response. Therefore, we wanted to establish if pregnancy in the progeny of fructose-fed mothers was also able to provoke an unhealthy situation. Pregnant rats from fructose-fed mothers (10% w/v) subjected (FF) or not (FC) to a fructose supplementation were studied and compared to pregnant control rats (CC). An OGTT was performed on the 20th day of gestation, and they were sacrificed on the 21st day. Plasma and tissues from mothers and fetuses were analyzed. Although FF mothers showed higher AUC insulin values after OGTT in comparison to FC and CC rats, ISI was lower and leptinemia was higher in FC and FF rats than in the CC group. Accordingly, lipid accretion was observed both in liver and placenta in the FC and FF groups. Interestingly, fetuses from FC and FF mothers also showed the same profile observed in their mothers on lipid accumulation, leptinemia, and ISI. Moreover, hepatic lipid peroxidation was even more augmented in fetuses from FC dams than those of FF mothers. Maternal fructose intake produces in female progeny changes that alter their own pregnancy, leading to deleterious effects in their fetuses.
Collapse
Affiliation(s)
| | | | | | | | - Carlos Bocos
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain; (E.F.); (M.I.P.); (C.D.); (P.O.)
| |
Collapse
|
29
|
Ruebel ML, Gilley SP, Sims CR, Zhong Y, Turner D, Chintapalli SV, Piccolo BD, Andres A, Shankar K. Associations between Maternal Diet, Body Composition and Gut Microbial Ecology in Pregnancy. Nutrients 2021; 13:3295. [PMID: 34579172 PMCID: PMC8468685 DOI: 10.3390/nu13093295] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/22/2022] Open
Abstract
Maternal body composition, gestational weight gain (GWG) and diet quality influence offspring obesity risk. While the gut microbiome is thought to play a crucial role, it is understudied in pregnancy. Using a longitudinal pregnancy cohort, maternal anthropometrics, body composition, fecal microbiome and dietary intake were assessed at 12, 24 and 36 weeks of gestation. Fecal samples (n = 101, 98 and 107, at each trimester, respectively) were utilized for microbiome analysis via 16S rRNA amplicon sequencing. Data analysis included alpha- and beta-diversity measures and assessment of compositional changes using MaAsLin2. Correlation analyses of serum metabolic and anthropometric markers were performed against bacterial abundance and predicted functional pathways. α-diversity was unaltered by pregnancy stage or maternal obesity status. Actinobacteria, Lachnospiraceae, Akkermansia, Bifidobacterium, Streptococcus and Anaerotuncus abundances were associated with gestation stage. Maternal obesity status was associated with increased abundance of Lachnospiraceae, Bilophila, Dialister and Roseburia. Maternal BMI, fat mass, triglyceride and insulin levels were positively associated with Bilophila. Correlations of bacterial abundance with diet intake showed that Ruminococcus and Paraprevotella were associated with total fat and unsaturated fatty acid intake, while Collinsella and Anaerostipes were associated with protein intake. While causal relationships remain unclear, collectively, these findings indicate pregnancy- and maternal obesity-dependent interactions between dietary factors and the maternal gut microbiome.
Collapse
Affiliation(s)
- Meghan L. Ruebel
- Department of Pediatrics, Section of Nutrition, Anschutz Medical Campus, School of Medicine, University of Colorado, Aurora, CO 80045, USA; (M.L.R.); (S.P.G.)
| | - Stephanie P. Gilley
- Department of Pediatrics, Section of Nutrition, Anschutz Medical Campus, School of Medicine, University of Colorado, Aurora, CO 80045, USA; (M.L.R.); (S.P.G.)
| | - Clark R. Sims
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (C.R.S.); (Y.Z.); (D.T.); (S.V.C.); (B.D.P.); (A.A.)
- Department of Pediatrics, Section of Developmental Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ying Zhong
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (C.R.S.); (Y.Z.); (D.T.); (S.V.C.); (B.D.P.); (A.A.)
| | - Donald Turner
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (C.R.S.); (Y.Z.); (D.T.); (S.V.C.); (B.D.P.); (A.A.)
| | - Sree V. Chintapalli
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (C.R.S.); (Y.Z.); (D.T.); (S.V.C.); (B.D.P.); (A.A.)
- Department of Pediatrics, Section of Developmental Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Brian D. Piccolo
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (C.R.S.); (Y.Z.); (D.T.); (S.V.C.); (B.D.P.); (A.A.)
- Department of Pediatrics, Section of Developmental Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Aline Andres
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (C.R.S.); (Y.Z.); (D.T.); (S.V.C.); (B.D.P.); (A.A.)
- Department of Pediatrics, Section of Developmental Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, Anschutz Medical Campus, School of Medicine, University of Colorado, Aurora, CO 80045, USA; (M.L.R.); (S.P.G.)
| |
Collapse
|
30
|
Zhu S, Wang Q. Oocyte metabolites are heritable factors that drive metabolic reprogramming of the progeny. Nat Metab 2021; 3:1148-1149. [PMID: 34545254 DOI: 10.1038/s42255-021-00447-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shuai Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
31
|
Nakandakare P, Nicoletti CF, Noronha NY, Nonino CB, Argentato PP, Dejani NN, Luzia LA, Rogero MM, Rondó PHC. Associations between obesity-related gene expression in maternal and cord blood and newborn adiposity: findings from the Araraquara Cohort study. Int J Obes (Lond) 2021; 45:1958-1966. [PMID: 34002037 DOI: 10.1038/s41366-021-00857-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND/OBJECTIVES Genes involved in the regulation of metabolism, adipose tissue deposition, inflammation, and the appetite-satiety axis may play an important role in fetal development, and possibly induce permanent metabolic changes and fat accumulation. In this study we investigated: (1) obesity-related gene expression in maternal and cord blood of overweight/obese and normal-weight pregnant women; (2) associations between obesity-related gene expression in maternal and cord blood; and (3) associations of gene expression in each of maternal and cord blood with newborn adiposity. SUBJECTS/METHODS Twenty-five overweight/obese and 32 normal-weight pregnant women were selected from the Araraquara Cohort Study according to their pre-pregnancy BMI. Maternal and cord blood gene expression of LEPR, STAT3, PPARG, TLR4, IL-6, IL-10, FTO, MC4R, TNF-α, and NFκB were investigated by relative real-time PCR quantification. The body composition of the newborns was assessed by air displacement plethysmography. Associations between maternal and cord blood gene expression and markers of newborn adiposity (weight, BMI, and fat mass%) were explored by linear regression models controlling for maternal age, pre-pregnancy BMI, maternal gestational weight gain, gestational age, and newborn sex. RESULTS There was higher TLR4, NFκB, and TNF-a expression, and lower IL-6 expression, in overweight/obese pregnant women and their respective newborns compared with normal-weight women and their newborns (p < 0.001). Maternal PPARG gene expression was associated with both weight and fat mass % of the newborns, and cord blood IL-10 expression was associated with BMI and fat mass %, controlling for confounders. CONCLUSION To our knowledge, this is the first study to evaluate the relationship of maternal and cord blood gene expression with adiposity markers of the newborn. Our results provide evidence for the contribution of maternal and cord blood gene expression-particularly maternal PPARG and TLR4 expression, and cord blood IL-10 expression-to newborn weight, BMI, and fat mass %.
Collapse
Affiliation(s)
- P Nakandakare
- Nutrition Department, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - C F Nicoletti
- Laboratory of Nutrigenomics Studies, Department of Health Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - N Y Noronha
- Department of Internal Medicine, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - C B Nonino
- Laboratory of Nutrigenomics Studies, Department of Health Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - P P Argentato
- Nutrition Department, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - N N Dejani
- Nutrition Department, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - L A Luzia
- Nutrition Department, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - M M Rogero
- Nutrition Department, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - P H C Rondó
- Nutrition Department, School of Public Health, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
32
|
Alabduljabbar S, Zaidan SA, Lakshmanan AP, Terranegra A. Personalized Nutrition Approach in Pregnancy and Early Life to Tackle Childhood and Adult Non-Communicable Diseases. Life (Basel) 2021; 11:life11060467. [PMID: 34073649 PMCID: PMC8224671 DOI: 10.3390/life11060467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
The development of childhood and adult non-communicable diseases (NCD) is associated with environmental factors, starting from intrauterine life. A new theory finds the roots of epigenetic programming in parental gametogenesis, continuing during embryo development, fetal life, and finally in post-natal life. Maternal health status and poor nutrition are widely recognized as implications in the onset of childhood and adult diseases. Early nutrition, particularly breastfeeding, also plays a primary role in affecting the health status of an individual later in life. A poor maternal diet during pregnancy and lack of breastfeeding can cause a nutrient deficiency that affects the gut microbiota, and acts as a cofactor for many pathways, impacting the epigenetic controls and transcription of genes involved in the metabolism, angiogenesis, and other pathways, leading to NCDs in adult life. Both maternal and fetal genetic backgrounds also affect nutrient adsorption and functioning at the cellular level. This review discusses the most recent evidence on maternal nutrition and breastfeeding in the development of NCD, the potentiality of the omics technologies in uncovering the molecular mechanisms underlying it, with the future prospective of applying a personalized nutrition approach to prevent and treat NCD from the beginning of fetal life.
Collapse
|
33
|
Bar-Noy N, Sheiner E, Wainstock T, Kessous R. Condensation: A Retrospective Cohort Study to Investigate the Association Between Maternal Pre-pregnancy Obesity and Childhood Respiratory Disease. Matern Child Health J 2021; 25:1420-1425. [PMID: 33950328 DOI: 10.1007/s10995-021-03165-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE We sought to explore whether maternal pre-pregnancy obesity is an independent risk factor for offspring respiratory morbidity during childhood. METHODS A population-based retrospective cohort analysis comparing childhood respiratory morbidity incidence in offspring to mothers with pre-pregnancy obesity (BMI ≥ 30 kg/m2) and those who had lower BMI was conducted. Respiratory diagnoses were pre-defined based on ICD-9 codes. The study population comprises of all deliveries that took place at the Soroka University Medical Center (SUMC), the sole tertiary hospital in the Negev (Southern Israel), between the years 1991-2014. A Kaplan-Meier survival curve was used for cumulative respiratory morbidity incidences over time and a Cox proportional hazards model was constructed to control for confounders. RESULTS During the study period, 242,342 infants met the inclusion criteria; out of which 3290 were born to mothers with a diagnosis of pre-pregnancy obesity. Offspring to mothers with pre-pregnancy obesity had a significant higher risk for obstructive sleep apnea (OR 1.43, 95% CI 1.002-2.046) as well as a higher total risk for hospitalizations due to childhood respiratory morbidity (OR 1.21, 95% CI 1.041-1.398). The cumulative respiratory morbidity incidence over time was significantly higher in the maternal pre-pregnancy obesity group (p = 0.044). Controlling for maternal age, gestational diabetes mellitus, hypertensive disorders and gestational age, pre-pregnancy obesity remained an independent risk factor for offspring respiratory morbidity (adjusted HR = 1.175, 95% CI 1.018-1.357). CONCLUSION Maternal pre-pregnancy obesity may create an environment leading to an increased risk for long-term offspring respiratory morbidity, and specifically obstructive sleep apnea.
Collapse
Affiliation(s)
- Nofar Bar-Noy
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, POB 151, 84101, Beer-Sheva, Israel
| | - Eyal Sheiner
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, POB 151, 84101, Beer-Sheva, Israel
| | - Tamar Wainstock
- The Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Roy Kessous
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, POB 151, 84101, Beer-Sheva, Israel.
| |
Collapse
|
34
|
Akhaphong B, Gregg B, Kumusoglu D, Jo S, Singer K, Scheys J, DelProposto J, Lumeng C, Bernal-Mizrachi E, Alejandro EU. Maternal High-Fat Diet During Pre-Conception and Gestation Predisposes Adult Female Offspring to Metabolic Dysfunction in Mice. Front Endocrinol (Lausanne) 2021; 12:780300. [PMID: 35111136 PMCID: PMC8801938 DOI: 10.3389/fendo.2021.780300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/24/2021] [Indexed: 01/31/2023] Open
Abstract
The risk of obesity in adulthood is subject to programming in the womb. Maternal obesity contributes to programming of obesity and metabolic disease risk in the adult offspring. With the increasing prevalence of obesity in women of reproductive age there is a need to understand the ramifications of maternal high-fat diet (HFD) during pregnancy on offspring's metabolic heath trajectory. In the present study, we determined the long-term metabolic outcomes on adult male and female offspring of dams fed with HFD during pregnancy. C57BL/6J dams were fed either Ctrl or 60% Kcal HFD for 4 weeks before and throughout pregnancy, and we tested glucose homeostasis in the adult offspring. Both Ctrl and HFD-dams displayed increased weight during pregnancy, but HFD-dams gained more weight than Ctrl-dams. Litter size and offspring birthweight were not different between HFD-dams or Ctrl-dams. A significant reduction in random blood glucose was evident in newborns from HFD-dams compared to Ctrl-dams. Islet morphology and alpha-cell fraction were normal but a reduction in beta-cell fraction was observed in newborns from HFD-dams compared to Ctrl-dams. During adulthood, male offspring of HFD-dams displayed comparable glucose tolerance under normal chow. Male offspring re-challenged with HFD displayed glucose intolerance transiently. Adult female offspring of HFD-dams demonstrated normal glucose tolerance but displayed increased insulin resistance relative to controls under normal chow diet. Moreover, adult female offspring of HFD-dams displayed increased insulin secretion in response to high-glucose treatment, but beta-cell mass were comparable between groups. Together, these data show that maternal HFD at pre-conception and during gestation predisposes the female offspring to insulin resistance in adulthood.
Collapse
Affiliation(s)
- Brian Akhaphong
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Brigid Gregg
- Department of Pediatrics, Division of Diabetes, Endocrinology, and Metabolism, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Doga Kumusoglu
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Brehm Center for Diabetes Research, Ann Arbor, United States
| | - Seokwon Jo
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Kanakadurga Singer
- Department of Pediatrics, Division of Diabetes, Endocrinology, and Metabolism, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Joshua Scheys
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Brehm Center for Diabetes Research, Ann Arbor, United States
| | - Jennifer DelProposto
- Department of Pediatrics, Division of Diabetes, Endocrinology, and Metabolism, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Carey Lumeng
- Department of Pediatrics, Division of Diabetes, Endocrinology, and Metabolism, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Brehm Center for Diabetes Research, Ann Arbor, United States
- Diabetes, VA Ann Arbor Healthcare System, Ann Arbor, MI, United States
- Miami VA Healthcare System and Division Endocrinology, Metabolism and Diabetes, University of Miami, Miami, FL, United States
- *Correspondence: Ernesto Bernal-Mizrachi, ; Emilyn U. Alejandro,
| | - Emilyn U. Alejandro
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN, United States
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Brehm Center for Diabetes Research, Ann Arbor, United States
- *Correspondence: Ernesto Bernal-Mizrachi, ; Emilyn U. Alejandro,
| |
Collapse
|
35
|
Worsham W, Dalton S, Bilder DA. The Prenatal Hormone Milieu in Autism Spectrum Disorder. Front Psychiatry 2021; 12:655438. [PMID: 34276434 PMCID: PMC8280339 DOI: 10.3389/fpsyt.2021.655438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023] Open
Abstract
Though the etiology of autism spectrum disorder (ASD) remains largely unknown, recent findings suggest that hormone dysregulation within the prenatal environment, in conjunction with genetic factors, may alter fetal neurodevelopment. Early emphasis has been placed on the potential role of in utero exposure to androgens, particularly testosterone, to theorize ASD as the manifestation of an "extreme male brain." The relationship between autism risk and obstetric conditions associated with inflammation and steroid dysregulation merits a much broader understanding of the in utero steroid environment and its potential influence on fetal neuroendocrine development. The exploration of hormone dysregulation in the prenatal environment and ASD development builds upon prior research publishing associations with obstetric conditions and ASD risk. The insight gained may be applied to the development of chronic adult metabolic diseases that share prenatal risk factors with ASD. Future research directions will also be discussed.
Collapse
Affiliation(s)
- Whitney Worsham
- University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Susan Dalton
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, United States
| | - Deborah A Bilder
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
36
|
Álvarez D, Muñoz Y, Ortiz M, Maliqueo M, Chouinard-Watkins R, Valenzuela R. Impact of Maternal Obesity on the Metabolism and Bioavailability of Polyunsaturated Fatty Acids during Pregnancy and Breastfeeding. Nutrients 2020; 13:nu13010019. [PMID: 33374585 PMCID: PMC7822469 DOI: 10.3390/nu13010019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Prenatal and postnatal development are closely related to healthy maternal conditions that allow for the provision of all nutritional requirements to the offspring. In this regard, an appropriate supply of fatty acids (FA), mainly n-3 and n-6 long-chain polyunsaturated fatty acids (LCPUFA), is crucial to ensure a normal development, because they are an integral part of cell membranes and participate in the synthesis of bioactive molecules that regulate multiple signaling pathways. On the other hand, maternal obesity and excessive gestational weight gain affect FA supply to the fetus and neonate, altering placental nutrient transfer, as well as the production and composition of breast milk during lactation. In this regard, maternal obesity modifies FA profile, resulting in low n-3 and elevated n-6 PUFA levels in maternal and fetal circulation during pregnancy, as well as in breast milk during lactation. These modifications are associated with a pro-inflammatory state and oxidative stress with short and long-term consequences in different organs of the fetus and neonate, including in the liver, brain, skeletal muscle, and adipose tissue. Altogether, these changes confer to the offspring a higher risk of developing obesity and its complications, as well as neuropsychiatric disorders, asthma, and cancer. Considering the consequences of an abnormal FA supply to offspring induced by maternal obesity, we aimed to review the effects of obesity on the metabolism and bioavailability of FA during pregnancy and breastfeeding, with an emphasis on LCPUFA homeostasis.
Collapse
Affiliation(s)
- Daniela Álvarez
- Endocrinology and Metabolism Laboratory, West Division, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (D.Á.); (Y.M.); (M.O.); (M.M.)
| | - Yasna Muñoz
- Endocrinology and Metabolism Laboratory, West Division, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (D.Á.); (Y.M.); (M.O.); (M.M.)
| | - Macarena Ortiz
- Endocrinology and Metabolism Laboratory, West Division, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (D.Á.); (Y.M.); (M.O.); (M.M.)
| | - Manuel Maliqueo
- Endocrinology and Metabolism Laboratory, West Division, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (D.Á.); (Y.M.); (M.O.); (M.M.)
| | - Raphaël Chouinard-Watkins
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
| | - Rodrigo Valenzuela
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
- Correspondence: or ; Tel.: +56-2-9786746
| |
Collapse
|
37
|
Chukwuagwu IU, Ukibe NR, Ogbu II, Ikimi CG, Agu VO, Kalu OA, Ukibe SN, Awalu JC. Evaluation of Serum Interleukin 6, Tumor Necrosis Factor-Alpha, and Interferon-Gamma Levels in Relation to Body Mass Index and Blood Pressure in HIV Seropositive Pregnant Women Coinfected with Malaria. Interdiscip Perspect Infect Dis 2020; 2020:2424802. [PMID: 33193759 PMCID: PMC7641722 DOI: 10.1155/2020/2424802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/23/2020] [Accepted: 10/15/2020] [Indexed: 11/26/2022] Open
Abstract
Malaria and HIV are leading causes of morbidity and mortality, particularly in sub-Saharan Africa. Both diseases are highly endemic and have a wide geographic overlap with severe impact on pregnancy. This was a case-control study designed to evaluate the levels of interleukin -6 (IL-6), tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ) and their relationship with some anthropometric indices such as body mass index (BMI) and blood pressure in HIV-malaria coinfected women attending antenatal clinic at Nnamdi Azikiwe University Teaching Hospital (NAUTH), Nnewi, Nigeria. 122 pregnant women and 30 nonpregnant women (control) aged between 18 and 42 years were recruited for the study. Screening of HIV antibodies was done using a national algorithm. Peripheral malaria was determined using rapid detection and the Giemsa stain technique. Cytokines were assayed using the enzyme-linked immunosorbent assay technique. HIV-malaria coinfected pregnant women showed significantly higher levels of IL-6, IFN-γ, TNF-α, and blood pressure with reduced BMI value compared with HIV seronegative pregnant and nonpregnant control participants (p ≤ 0.001, respectively). The findings indicated significant cytokine imbalance which suggests an active inflammatory process and reduced cellular immunity. The increased BMI and blood pressure level observed indicate overweight and possible hypertension which could subsequently lead to preeclampsia and other adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Ikechukwu Uzoma Chukwuagwu
- Department of Medical Laboratory, Faculty of Health Sciences and Technology, Nnamdi Azikiwe University, Nnewi Campus, PMB 5025, Nnewi, Anambra State, Nigeria
| | - Nkiruka Rose Ukibe
- Department of Medical Laboratory, Faculty of Health Sciences and Technology, Nnamdi Azikiwe University, Nnewi Campus, PMB 5025, Nnewi, Anambra State, Nigeria
| | - Innocent Ikechi Ogbu
- Department of Medical Laboratory, Faculty of Health Sciences and Technology, Nnamdi Azikiwe University, Nnewi Campus, PMB 5025, Nnewi, Anambra State, Nigeria
| | - Charles German Ikimi
- Department of Biochemistry, Faculty of Science, Federal University of Otuoke, Yenagoa, Beyalsa State, Nigeria
| | - Victoria Ogechi Agu
- Department of Medical Laboratory, Faculty of Health Sciences and Technology, Nnamdi Azikiwe University, Nnewi Campus, PMB 5025, Nnewi, Anambra State, Nigeria
| | - Ofia Anya Kalu
- Department of Medicine, Faculty of Medicine, Nnamdi Azikiwe University, Nnewi Campus, PMB 5025, Nnewi, Anambra State, Nigeria
| | - Solomon Nwabueze Ukibe
- Department of Medical Microbiology, Faculty of Medicine, Nnamdi Azikiwe University, Nnewi Campus, PMB 5025, Nnewi, Anambra State, Nigeria
| | - Joseph Chimezie Awalu
- Department of Medical Laboratory, Faculty of Health Sciences and Technology, Nnamdi Azikiwe University, Nnewi Campus, PMB 5025, Nnewi, Anambra State, Nigeria
| |
Collapse
|
38
|
Kusuyama J, Alves-Wagner AB, Makarewicz NS, Goodyear LJ. Effects of maternal and paternal exercise on offspring metabolism. Nat Metab 2020; 2:858-872. [PMID: 32929233 PMCID: PMC7643050 DOI: 10.1038/s42255-020-00274-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Maternal and paternal obesity and type 2 diabetes are recognized risk factors for the development of metabolic dysfunction in offspring, even when the offspring follow a healthful lifestyle. Multiple studies have demonstrated that regular physical activity in mothers and fathers has striking beneficial effects on offspring health, including preventing the development of metabolic disease in rodent offspring as they age. Here, we review the benefits of maternal and paternal exercise in combating the development of metabolic dysfunction in adult offspring, focusing on offspring glucose homeostasis and adaptations to metabolic tissues. We discuss recent findings regarding the roles of the placenta and sperm in mediating the effects of parental exercise on offspring metabolic health, as well as the mechanisms hypothesized to underlie these beneficial changes. Given the worldwide epidemics of obesity and type 2 diabetes, if these findings translate to humans, regular exercise during the reproductive years might limit the vicious cycles in which increased metabolic risk propagates across generations.
Collapse
Affiliation(s)
- Joji Kusuyama
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Ana Barbara Alves-Wagner
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Nathan S Makarewicz
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Laurie J Goodyear
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Chen YT, Hu Y, Yang QY, Son JS, Liu XD, de Avila JM, Zhu MJ, Du M. Excessive Glucocorticoids During Pregnancy Impair Fetal Brown Fat Development and Predispose Offspring to Metabolic Dysfunctions. Diabetes 2020; 69:1662-1674. [PMID: 32409491 PMCID: PMC7372078 DOI: 10.2337/db20-0009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
Maternal stress during pregnancy exposes fetuses to hyperglucocorticoids, which increases the risk of metabolic dysfunctions in offspring. Despite being a key tissue for maintaining metabolic health, the impacts of maternal excessive glucocorticoids (GC) on fetal brown adipose tissue (BAT) development and its long-term thermogenesis and energy expenditure remain unexamined. For testing, pregnant mice were administered dexamethasone (DEX), a synthetic GC, in the last trimester of gestation, when BAT development is the most active. DEX offspring had glucose, insulin resistance, and adiposity and also displayed cold sensitivity following cold exposure. In BAT of DEX offspring, Ppargc1a expression was suppressed, together with reduced mitochondrial density, and the brown progenitor cells sorted from offspring BAT demonstrated attenuated brown adipogenic capacity. Increased DNA methylation in Ppargc1a promoter had a fetal origin; elevated DNA methylation was also detected in neonatal BAT and brown progenitors. Mechanistically, fetal GC exposure increased GC receptor/DNMT3b complex in binding to the Ppargc1a promoter, potentially driving its de novo DNA methylation and transcriptional silencing, which impaired fetal BAT development. In summary, maternal GC exposure during pregnancy increases DNA methylation in the Ppargc1a promoter, which epigenetically impairs BAT thermogenesis and energy expenditure, predisposing offspring to metabolic dysfunctions.
Collapse
Affiliation(s)
- Yan-Ting Chen
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA
| | - Yun Hu
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA
| | - Qi-Yuan Yang
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA
| | - Jun Seok Son
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA
| | - Xiang-Dong Liu
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA
| | - Jeanene M de Avila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA
| | - Mei-Jun Zhu
- School of Food Sciences, Washington State University, Pullman, WA
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA
| |
Collapse
|
40
|
de Souza Mesquita LM, Mennitti LV, de Rosso VV, Pisani LP. The role of vitamin A and its pro-vitamin carotenoids in fetal and neonatal programming: gaps in knowledge and metabolic pathways. Nutr Rev 2020; 79:76-87. [DOI: 10.1093/nutrit/nuaa075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Vitamin A (VA) and its pro-vitamin carotenoids are naturally occurring lipophilic compounds involved in several cellular processes and metabolic pathways. Despite their broad spectrum of activities in the general population, dietary deficiencies of these compounds can potentially affect pregnancy outcomes. Since maternal nutritional status and diet composition during pregnancy and lactation can have long-lasting effects in offspring until adulthood, this study presents an overview of VA and the role of pro-VA carotenoids during pregnancy and lactation – the nutrition, metabolism, and biological effects in the offspring. The review aimed to discuss the pro-VA carotenoids and VA-associated pathways and summarize the results with reference to gestational disorders, and VA and pro-VA carotenoids as preventive agents. Also, considering that obesity, overweight, and metabolic diseases are major public health concerns worldwide, fetal and neonatal development is discussed, highlighting the physiological role of these molecules in obesity prevention. This review comprehensively summarizes the current data and shows the potential impact of these compounds on nutritional status in pregnancy and lactation.
Collapse
Affiliation(s)
- Leonardo M de Souza Mesquita
- Departamento de Biociências, Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Vila Mathias, Santos, São Paulo, Brazil
| | - Laís V Mennitti
- Departamento de Biociências, Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Vila Mathias, Santos, São Paulo, Brazil
| | - Veridiana V de Rosso
- Departamento de Biociências, Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Vila Mathias, Santos, São Paulo, Brazil
| | - Luciana P Pisani
- Departamento de Biociências, Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Vila Mathias, Santos, São Paulo, Brazil
| |
Collapse
|
41
|
Kessous R, Wainstock T, Sheiner E. Pre-pregnancy obesity and childhood malignancies: A population-based cohort study. Pediatr Blood Cancer 2020; 67:e28269. [PMID: 32196946 DOI: 10.1002/pbc.28269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Exploring the effect of maternal obesity during pregnancy on the long-term health of offspring is of great importance. The aim of this study was to evaluate the association between maternal pre-pregnancy obesity and future risk of childhood malignancies. STUDY DESIGN A population-based cohort analysis comparing the risk for long-term childhood malignancies (up to the age of 18 years) in children born (1991-2014) to mothers with and without pre-pregnancy obesity (body mass index > 30) was conducted in July 2017. Childhood malignancies were predefined based on ICD-9 codes, as recorded in the hospital medical files. Children with congenital malformations and multiple gestations were excluded from the analysis. The Kaplan-Meier survival curve was constructed to compare cumulative oncological morbidity in both groups over time. The Cox proportional hazards model was used to control for confounders. RESULTS During the study period, 241 273 infants met the inclusion criteria; 3268 were born to mothers with pre-pregnancy obesity. Children of obese women had significantly increased risk for several childhood malignancies (including brain tumors) as well as increased risk for total hospitalizations with malignancy diagnoses, even after controlling for several confounders (adjusted HR 1.90, 95% CI 1.07-3.37, P = 0.028). Cumulative incidence of oncological morbidity was also significantly increased over time in the studied group (log-rank P = 0.023). CONCLUSION Maternal pre-pregnancy obesity is significantly associated with an increased long-term risk for general childhood malignancies, and specifically brain tumors in the offspring. These results are important when counseling mothers regarding potential future risks and recommended lifestyle modifications.
Collapse
Affiliation(s)
- Roy Kessous
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tamar Wainstock
- The Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eyal Sheiner
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
42
|
Puttabyatappa M, Sargis RM, Padmanabhan V. Developmental programming of insulin resistance: are androgens the culprits? J Endocrinol 2020; 245:R23-R48. [PMID: 32240982 PMCID: PMC7219571 DOI: 10.1530/joe-20-0044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
Insulin resistance is a common feature of many metabolic disorders. The dramatic rise in the incidence of insulin resistance over the past decade has enhanced focus on its developmental origins. Since various developmental insults ranging from maternal disease, stress, over/undernutrition, and exposure to environmental chemicals can all program the development of insulin resistance, common mechanisms may be involved. This review discusses the possibility that increases in maternal androgens associated with these various insults are key mediators in programming insulin resistance. Additionally, the intermediaries through which androgens misprogram tissue insulin sensitivity, such as changes in inflammatory, oxidative, and lipotoxic states, epigenetic, gut microbiome and insulin, as well as data gaps to be filled are also discussed.
Collapse
Affiliation(s)
| | - Robert M. Sargis
- Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | | |
Collapse
|
43
|
Shook LL, Kislal S, Edlow AG. Fetal brain and placental programming in maternal obesity: A review of human and animal model studies. Prenat Diagn 2020; 40:1126-1137. [PMID: 32362000 DOI: 10.1002/pd.5724] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/26/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
Both human epidemiologic and animal model studies demonstrate that prenatal and lactational exposure to maternal obesity and high-fat diet are associated with adverse neurodevelopmental outcomes in offspring. Neurodevelopmental outcomes described in offspring of obese women include cognitive impairment, autism spectrum disorder (ASD), attention deficit hyperactivity disorder, anxiety and depression, disordered eating, and propensity for reward-driven behavior, among others. This review synthesizes human and animal data linking maternal obesity and high-fat diet consumption to abnormal fetal brain development, and neurodevelopmental and psychiatric morbidity in offspring. It highlights key mechanisms by which maternal obesity and maternal diet impact fetal and offspring development, and sex differences in offspring programming. In addition, we review placental effects of maternal obesity, and the role the placenta might play as an indicator vs mediator of fetal programming.
Collapse
Affiliation(s)
- Lydia L Shook
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sezen Kislal
- Massachusetts General Hospital Research Institute, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrea G Edlow
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Massachusetts General Hospital Research Institute, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Nichols AR, Rundle AG, Factor-Litvak P, Insel BJ, Hoepner L, Rauh V, Perera F, Widen EM. Prepregnancy obesity is associated with lower psychomotor development scores in boys at age 3 in a low-income, minority birth cohort. J Dev Orig Health Dis 2020; 11:49-57. [PMID: 31486358 PMCID: PMC6934918 DOI: 10.1017/s2040174419000412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Whether maternal obesity and gestational weight gain (GWG) are associated with early-childhood development in low-income, urban, minority populations, and whether effects differ by child sex remain unknown. This study examined the impact of prepregnancy BMI and GWG on early childhood neurodevelopment in the Columbia Center for Children's Environmental Health Mothers and Newborns study. Maternal prepregnancy weight was obtained by self-report, and GWG was assessed from participant medical charts. At child age 3 years, the Psychomotor Development Index (PDI) and Mental Development Index (MDI) of the Bayley Scales of Infant Intelligence were completed. Sex-stratified linear regression models assessed associations between prepregnancy BMI and pregnancy weight gain z-scores with child PDI and MDI scores, adjusting for covariates. Of 382 women, 48.2% were normal weight before pregnancy, 24.1% overweight, 23.0% obese, and 4.7% underweight. At 3 years, mean scores on the PDI and MDI were higher among girls compared to boys (PDI: 102.3 vs. 97.2, P = 0.0002; MDI: 92.8 vs. 88.3, P = 0.0001). In covariate-adjusted models, maternal obesity was markedly associated with lower PDI scores in boys [b = -7.81, 95% CI: (-13.08, -2.55), P = 0.004], but not girls. Maternal BMI was not associated with MDI in girls or boys, and GWG was not associated with PDI or MDI among either sex (all-P > 0.05). We found that prepregnancy obesity was associated with lower PDI scores at 3 years in boys, but not girls. The mechanisms underlying this sex-specific association remain unclear, but due to elevated obesity exposure in urban populations, further investigation is warranted.
Collapse
Affiliation(s)
- Amy R Nichols
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
| | - Andrew G Rundle
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Beverly J Insel
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Lori Hoepner
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Environmental and Occupational Health Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Virginia Rauh
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Frederica Perera
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Elizabeth M Widen
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
45
|
Kusic DM, Roberts WN, Jarvis JP, Zhang P, Scheinfeldt LB, Rajula KD, Brenner R, Dempsey MP, Zajic SC. rs11670527 Upstream of ZNF264 Associated with Body Mass Index in the Coriell Personalized Medicine Collaborative. Mil Med 2020; 185:649-655. [PMID: 31498392 DOI: 10.1093/milmed/usz216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION the effects of obesity on health are a concern for the military as they affect the fitness to serve of active service members, increase costs to the Military Health System, and reduce quality of life for veterans and beneficiaries. Although obesity can be influenced by behavioral and environmental factors, it has also been shown to be associated with genetic risk factors that are not fully understood. MATERIALS AND METHODS we performed a genome-wide association study of 5,251 participants in the Coriell Personalized Medicine Collaborative, which includes 2,111 Air Force participants. We applied a generalized linear model, using principal component analysis to account for population structure, and analyzed single-variant associations with body mass index (BMI) as a continuous variable, using a Bonferroni-corrected P-value threshold to account for multiplicity. RESULTS we identified one genome-wide significant locus, rs11670527, upstream of the ZNF264 gene on chromosome 19, associated with BMI. CONCLUSIONS the finding of an association between rs11670527 and BMI adds to the growing body of literature characterizing the complex genetics of obesity. These efforts may eventually inform personalized interventions aimed at achieving and maintaining healthy weight.
Collapse
Affiliation(s)
- Dara M Kusic
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ 08103
| | - Wendy N Roberts
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ 08103
| | - Joseph P Jarvis
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ 08103
| | - Pan Zhang
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ 08103
| | | | - Kaveri D Rajula
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ 08103
| | - Ruth Brenner
- Immunization Healthcare Division, Defense Health Agency, Falls Church, VA 22042
| | - Michael P Dempsey
- Defense Threat Reduction Agency, 8725 John J Kingman Rd., Fort Belvoir, VA 22060 Presented as a poster at the 2018 Military Health System Research Symposium, August 2018, Kissimmee, FL: abstract # MHSRS-18-1288
| | - Stefan C Zajic
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ 08103
| |
Collapse
|
46
|
Dreisbach C, Prescott S, Alhusen J. Influence of Maternal Prepregnancy Obesity and Excessive Gestational Weight Gain on Maternal and Child Gastrointestinal Microbiome Composition: A Systematic Review. Biol Res Nurs 2020; 22:114-125. [PMID: 31597472 PMCID: PMC7140212 DOI: 10.1177/1099800419880615] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Maternal obesity is a well-known risk factor for significant obstetric and neonatal complications. The influence of the gastrointestinal microbiome in the setting of maternal obesity during pregnancy is less understood. The purpose of this systematic review is to synthesize the literature on the relationships between maternal obesity and excessive gestational weight gain (EGWG) and the composition of maternal and child gastrointestinal microbiomes. METHOD We searched CINHAL, OVID Medline, Web of Science, and PubMed for relevant literature using medical subject heading terms related to obesity, pregnancy, and the gastrointestinal microbiome. We assessed 249 articles for potential inclusion using the preferred reporting items for systematic review and meta-analyses framework and deemed 11 articles as relevant for this review. RESULTS Maternal obesity was associated with significant microbial changes in both maternal and infant fecal microbiome biospecimens including increases in Bacteroidetes, Firmicutes, and the Actinobacteria phyla and decreases in Bifidobacteria. However, inconsistencies in uniform taxonomic results across all studies mean that evidence of specific microbial associations with obesity and EGWG is inconclusive. CONCLUSION Our findings suggest that both maternal and child gastrointestinal microbiome composition is altered in the setting of maternal obesity and EGWG during pregnancy. Future microbiome studies should concentrate on the investigation of metagenomic sequencing to elucidate microbial function rather than solely taxonomic composition. More diverse populations of mothers should be sampled to address health disparities and adverse outcomes of underrepresented populations. Finally, analytic pipelines should be standardized across studies to aid in reproducibility.
Collapse
Affiliation(s)
- Caitlin Dreisbach
- School of Nursing, University of Virginia, Charlottesville, VA, USA
- Data Science Institute, University of Virginia, Charlottesville, VA,
USA
| | - Stephanie Prescott
- School of Nursing, University of Virginia, Charlottesville, VA, USA
- Center for Cancer Research, National Cancer Institute, Bethesda, MD,
USA
| | - Jeanne Alhusen
- School of Nursing, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
47
|
Widen EM, Nichols AR, Kahn LG, Factor-Litvak P, Insel BJ, Hoepner L, Dube SM, Rauh V, Perera F, Rundle A. Prepregnancy obesity is associated with cognitive outcomes in boys in a low-income, multiethnic birth cohort. BMC Pediatr 2019; 19:507. [PMID: 31862007 PMCID: PMC6924019 DOI: 10.1186/s12887-019-1853-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/22/2019] [Indexed: 01/13/2023] Open
Abstract
Background Maternal obesity and high gestational weight gain (GWG) disproportionally affect low-income populations and may be associated with child neurodevelopment in a sex-specific manner. We examined sex-specific associations between prepregnancy BMI, GWG, and child neurodevelopment at age 7. Methods Data are from a prospective low-income cohort of African American and Dominican women (n = 368; 44.8% male offspring) enrolled during the second half of pregnancy from 1998 to 2006. Neurodevelopment was measured using the Wechsler Intelligence Scale for Children (WISC-IV) at approximately child age 7. Linear regression estimated associations between prepregnancy BMI, GWG, and child outcomes, adjusting for race/ethnicity, marital status, gestational age at delivery, maternal education, maternal IQ and child age. Results Overweight affected 23.9% of mothers and obesity affected 22.6%. At age 7, full-scale IQ was higher among girls (99.7 ± 11.6) compared to boys (96.9 ± 13.3). Among boys, but not girls, prepregnancy overweight and obesity were associated with lower full-scale IQ scores [overweight β: − 7.1, 95% CI: (− 12.1, − 2.0); obesity β: − 5.7, 95% CI: (− 10.7, − 0.7)]. GWG was not associated with full-scale IQ in either sex. Conclusions Prepregnancy overweight and obesity were associated with lower IQ among boys, but not girls, at 7 years. These findings are important considering overweight and obesity prevalence and the long-term implications of early cognitive development.
Collapse
Affiliation(s)
- Elizabeth M Widen
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, 103 W 24TH ST A2703, Austin, TX, 78712, USA. .,Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, 12th Floor, New York, NY, 10032, USA.
| | - Amy R Nichols
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, 103 W 24TH ST A2703, Austin, TX, 78712, USA.,Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, 12th Floor, New York, NY, 10032, USA
| | - Linda G Kahn
- Department of Pediatrics, New York University School of Medicine, 403 East 34th St, New York, NY, 10016, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street Room 1614, New York, NY, 10032, USA
| | - Beverly J Insel
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street Room 1614, New York, NY, 10032, USA.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Lori Hoepner
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, 12th Floor, New York, NY, 10032, USA.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.,Department of Environmental and Occupational Health Sciences, SUNY Downstate Medical Center, School of Public Health, 450 Clarkson Avenue, MSC 43, Brooklyn, NY, 11203, USA
| | - Sara M Dube
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, 103 W 24TH ST A2703, Austin, TX, 78712, USA.,Department of Nutritional Sciences, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - Virginia Rauh
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, 60 Haven Avenue, B-2, Room 213, New York, NY, 10032, USA
| | - Frederica Perera
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, 12th Floor, New York, NY, 10032, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street Room 1614, New York, NY, 10032, USA
| | - Andrew Rundle
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, 12th Floor, New York, NY, 10032, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street Room 1614, New York, NY, 10032, USA
| |
Collapse
|
48
|
Şanlı E, Kabaran S. Maternal Obesity, Maternal Overnutrition and Fetal Programming: Effects of Epigenetic Mechanisms on the Development of Metabolic Disorders. Curr Genomics 2019; 20:419-427. [PMID: 32476999 PMCID: PMC7235386 DOI: 10.2174/1389202920666191030092225] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Maternal obesity and maternal overnutrition, can lead to epigenetic alterations during pregnancy and these alterations can influence fetal and neonatal phenotype which increase the risk of metabolic disorders in later stages of life. OBJECTIVE The effects of maternal obesity on fetal programming and potential mechanisms of maternal epigenetic regulation of gene expression which have persistent effects on fetal health and development were investigated. METHODS Review of the literature was carried out in order to discuss the effects of maternal obesity and epigenetic mechanisms in fetal programming of metabolic disorders. All abstracts and full-text articles were examined and the most relevant articles were included in this review. RESULTS Maternal obesity and maternal overnutrition during fetal period has important overall effects on long-term health. Maternal metabolic alterations during early stages of fetal development can lead to permanent changes in organ structures, cell numbers and metabolism. Epigenetic modifications (DNA methylation, histone modifications, microRNAs) play an important role in disease susceptibility in the later stages of human life. Maternal nutrition alter expression of hypothalamic genes which can increase fetal and neonatal energy intake. Epigenetic modifications may affect the increasing rate of obesity and other metabolic disorders worldwide since the impact of these changes can be passed through generations. CONCLUSION Weight management before and during pregnancy, together with healthy nutritional intakes may improve the maternal metabolic environment, which can reduce the risks of fetal programming of metabolic diseases. Further evidence from long-term follow-up studies are needed in order to determine the role of maternal obesity on epigenetic mechanisms.
Collapse
Affiliation(s)
- Ezgi Şanlı
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Eastern Mediterranean University, Famagusta, T.R. North Cyprus via Mersin 10, Turkey
| | - Seray Kabaran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Eastern Mediterranean University, Famagusta, T.R. North Cyprus via Mersin 10, Turkey
| |
Collapse
|
49
|
Kuo K, Roberts VHJ, Gaffney J, Takahashi DL, Morgan T, Lo JO, Stouffer RL, Frias AE. Maternal High-Fat Diet Consumption and Chronic Hyperandrogenemia Are Associated With Placental Dysfunction in Female Rhesus Macaques. Endocrinology 2019; 160:1937-1949. [PMID: 31180495 PMCID: PMC6656425 DOI: 10.1210/en.2019-00149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/04/2019] [Indexed: 01/25/2023]
Abstract
The risk of adverse perinatal outcomes with maternal polycystic ovary syndrome may differ among hyperandrogenic and nonhyperandrogenic phenotypes and is likely modulated by maternal obesity and diet. The relative contribution of maternal hyperandrogenism and nutritional status to placental dysfunction is unknown. Female rhesus macaques (N = 39) were assigned at puberty to one of four treatment groups: subcutaneous cholesterol implants and a standard chow diet (controls); testosterone (T) implants and a normal diet; cholesterol implants and a high-fat, Western-style diet (WSD); and testosterone implants in combination with a high-fat diet. After 3.5 years of treatment, contrast-enhanced and Doppler ultrasound analyses of placental blood flow were performed for a representative subset of animals from each treatment group during pregnancy, and placental architecture assessed with stereological analysis. Placental growth factors, cellular nutrient sensors, and angiogenic markers were measured with ELISA and Western blotting. WSD consumption was associated with a 30% increase in placental flux rate relative to that in animals receiving a normal diet. T and WSD treatments were each independently associated with increased villous volume, and T also was associated with an ∼ 40% decrease fetal capillary volume on stereological analysis. T treatment was associated with significantly increased mTOR and SOCS3 expression. WSD consumption was associated with decreased GLUT1 expression and microvillous membrane localization. Hyperandrogenemic and nonhyperandrogenemic phenotypes are associated with altered placental angiogenesis, nutrient sensing, and glucose transport. WSD and T appear to have distinct effects on vascular impedance and capillary angiogenesis.
Collapse
Affiliation(s)
- Kelly Kuo
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon
- Correspondence: Kelly Kuo, MD, Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, SJH 2356, Portland, Oregon 97239. E-mail:
| | - Victoria H J Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Jessica Gaffney
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Diana L Takahashi
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Terry Morgan
- Department of Pathology, Oregon Health & Science University, Portland, Oregon
| | - Jamie O Lo
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Richard L Stouffer
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Antonio E Frias
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| |
Collapse
|
50
|
Wang H, Chen Y, Mao X, Du M. Maternal obesity impairs fetal mitochondriogenesis and brown adipose tissue development partially via upregulation of miR-204-5p. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2706-2715. [PMID: 31351130 DOI: 10.1016/j.bbadis.2019.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/06/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
Abstract
Maternal obesity (MO) predisposes offspring to metabolic disorders, but the mechanisms remain poorly defined. Recent studies emphasize the importance of brown adipose tissue (BAT) in maintaining metabolic health, and MO was recently demonstrated to impair BAT thermogenic function in offspring. The current study aimed to investigate the mechanisms leading to the impairment in fetal BAT development due to MO. Female C57BL/6J mice were fed a control diet or a 60% high-fat diet for 10 weeks, mated and maintained on their respective diets during pregnancy. Fetal tissue was collected at E18.5, the late stage of pregnancy. Fetal BAT contained more triglycerides compared to the control, which was correlated with higher expression of white adipogenic markers. On the other hand, the expression of BAT markers was down-regulated in the MO fetal BAT. Based on RNA-sequencing analyses, genes related to mitochondriogenesis and myogenesis were found to be down-regulated, while those related to white adipocyte differentiation were up-regulated in MO fetal BAT. Because brown adipocytes are derived from myogenic progenitors, the down-regulation of myogenic genes might partially explain hampered brown adipogenesis in MO fetal BAT. Consistently, mitochondrial DNA and mitochondrial biogenesis markers were also down-regulated in MO fetal BAT. MicroRNA-sequencing identified that miR-204-5p expression was elevated in MO fetal BAT. This microRNA targeted the 3'-untranslated regions of PGC1α and Sirt1 mRNA to suppress their expression and impair mitochondriogenesis. In summary, MO impaired fetal BAT development through suppressing myogenesis and brown adipogenesis while enhancing white adipogenic commitment, and inhibited mitochondriogenesis partially through enhancing miR-204-5p expression.
Collapse
Affiliation(s)
- Hanning Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100194, China; College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanting Chen
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Xueying Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100194, China; College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Min Du
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100194, China; Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|