1
|
Fuchs MAA, Burke EJ, Latic N, Murray SL, Li H, Sparks MA, Abraham D, Zhang H, Rosenberg P, Saleem U, Hansen A, Miller SE, Ferreira D, Hänzelmann S, Hausmann F, Huber T, Erben RG, Fisher-Wellman K, Bursac N, Wolf M, Grabner A. Fibroblast growth factor 23 and fibroblast growth factor receptor 4 promote cardiac metabolic remodeling in chronic kidney disease. Kidney Int 2025; 107:852-868. [PMID: 39923962 DOI: 10.1016/j.kint.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 12/18/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025]
Abstract
Chronic kidney disease (CKD) is a global health epidemic that greatly increases mortality due to cardiovascular disease. Left ventricular hypertrophy (LVH) is an important mechanism of cardiac injury in CKD. High serum levels of fibroblast growth factor (FGF) 23 in patients with CKD may contribute mechanistically to the pathogenesis of LVH by activating FGF receptor (FGFR) 4 signaling in cardiac myocytes. Mitochondrial dysfunction and cardiac metabolic remodeling are early features of cardiac injury that predate development of hypertrophy, but these mechanisms have been insufficiently studied in models of CKD. We found in wild-type mice with CKD induced by adenine diet, that morphological changes occurred in mitochondrial structure and cardiac mitochondrial and that metabolic dysfunction preceded the development of LVH. In bioengineered cardio-bundles and neonatal rat ventricular myocytes grown in vitro, FGF23-mediated activation of FGFR4 caused mitochondrial pathology, characterized by increased bioenergetic stress and increased glycolysis that preceded the development of cellular hypertrophy. The cardiac metabolic changes and associated mitochondrial alterations in mice with CKD were prevented by global and cardiac-specific deletion of FGFR4. Our findings indicate that metabolic remodeling and mitochondrial dysfunction are early cardiac complications of CKD that precede structural remodeling of the heart. Mechanistically, FGF23-mediated activation of FGFR4 causes mitochondrial dysfunction, suggesting that early pharmacologic inhibition of FGFR4 might serve as novel therapeutic intervention to prevent development of LVH and heart failure in patients with CKD.
Collapse
MESH Headings
- Animals
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/chemically induced
- Fibroblast Growth Factors/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Fibroblast Growth Factor-23
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/deficiency
- Disease Models, Animal
- Rats
- Male
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/ultrastructure
- Mice
- Mice, Inbred C57BL
- Ventricular Remodeling
- Mice, Knockout
- Glycolysis
- Signal Transduction
- Cells, Cultured
- Adenine
- Energy Metabolism
Collapse
Affiliation(s)
- Michaela A A Fuchs
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Emily J Burke
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nejla Latic
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA; Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Susan L Murray
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hanjun Li
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dennis Abraham
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hengtao Zhang
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Paul Rosenberg
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Umber Saleem
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Heart Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Heart Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Germany
| | - Sara E Miller
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Davis Ferreira
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Huber
- Division of Nephrology, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reinhold G Erben
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital, Vienna, Austria
| | - Kelsey Fisher-Wellman
- Department of Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA; Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA; Department of Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; Duke Regeneration Center, Duke University, Durham, North Carolina, USA
| | - Myles Wolf
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA; Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Alexander Grabner
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA; Division of Nephrology, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
2
|
Srinivasan S, Sherwood DR. The life cycle of type IV collagen. Matrix Biol 2025:S0945-053X(25)00037-X. [PMID: 40306374 DOI: 10.1016/j.matbio.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Type IV collagen is a large triple helical molecule that forms a covalently cross-linked network within basement membranes (BMs). Type IV collagen networks play key roles in mechanically supporting tissues, shaping organs, filtering blood, and cell signaling. To ensure tissue health and function, all aspects of the type IV collagen life cycle must be carried out accurately. However, the large triple helical structure and complex life-cycle of type IV collagen, poses many challenges to cells and tissues. Type IV collagen predominantly forms heterotrimers and to ensure proper construction, expression of the distinct α-chains that comprise a heterotrimer needs tight regulation. The α-chains must also be accurately modified by several enzymes, some of which are specific to collagens, to build and stabilize the triple helical trimer. In addition, type IV collagen is exceptionally long (400nm) and thus the packaging and trafficking of the triple helical trimer from the ER to the Golgi must be modified to accommodate the large type IV collagen molecule. During ER-to-Golgi trafficking, as well as during secretion and transport in the extracellular space type IV collagen also associates with specific chaperone molecules that maintain the structure and solubility of collagen IV. Type IV collagen trimers are then delivered to BMs from local and distant sources where they are integrated into BMs by interactions with cell surface receptors and many diverse BM resident proteins. Within BMs type IV collagen self-associates into a network and is crosslinked by BM resident enzymes. Finally, homeostatic type IV collagen levels in BMs are maintained by poorly understood mechanisms involving proteolysis and endocytosis. Here, we provide an overview of the life cycle of collagen IV, highlighting unique mechanisms and poorly understood aspects of type IV collagen regulation.
Collapse
Affiliation(s)
- Sandhya Srinivasan
- Department of Biology, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
3
|
Jones BA, Gisch DL, Myakala K, Sadiq A, Cheng YH, Taranenko E, Panov J, Korolowicz K, Melo Ferreira R, Yang X, Santo BA, Allen KC, Yoshida T, Wang XX, Rosenberg AZ, Jain S, Eadon MT, Levi M. NAD+ prevents chronic kidney disease by activating renal tubular metabolism. JCI Insight 2025; 10:e181443. [PMID: 40059824 PMCID: PMC11949063 DOI: 10.1172/jci.insight.181443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/22/2025] [Indexed: 03/29/2025] Open
Abstract
Chronic kidney disease (CKD) is associated with renal metabolic disturbances, including impaired fatty acid oxidation (FAO). Nicotinamide adenine dinucleotide (NAD+) is a small molecule that participates in hundreds of metabolism-related reactions. NAD+ levels are decreased in CKD, and NAD+ supplementation is protective. However, both the mechanism of how NAD+ supplementation protects from CKD, as well as the cell types involved, are poorly understood. Using a mouse model of Alport syndrome, we show that nicotinamide riboside (NR), an NAD+ precursor, stimulated renal PPARα signaling and restored FAO in the proximal tubules, thereby protecting from CKD in both sexes. Bulk RNA-sequencing showed that renal metabolic pathways were impaired in Alport mice and activated by NR in both sexes. These transcriptional changes were confirmed by orthogonal imaging techniques and biochemical assays. Single-nuclei RNA sequencing and spatial transcriptomics, both the first of their kind to our knowledge from Alport mice, showed that NAD+ supplementation restored FAO in proximal tubule cells. Finally, we also report, for the first time to our knowledge, sex differences at the transcriptional level in this Alport model. In summary, the data herein identify a nephroprotective mechanism of NAD+ supplementation in CKD, and they demonstrate that this benefit localizes to the proximal tubule cells.
Collapse
Affiliation(s)
- Bryce A. Jones
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA
| | - Debora L. Gisch
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Amber Sadiq
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Ying-Hua Cheng
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elizaveta Taranenko
- Department of Biology, University of La Verne, La Verne, California, USA
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
| | - Julia Panov
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
| | - Kyle Korolowicz
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| | - Ricardo Melo Ferreira
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiaoping Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Briana A. Santo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katherine C. Allen
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Teruhiko Yoshida
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaoxin X. Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sanjay Jain
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael T. Eadon
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, USA
| |
Collapse
|
4
|
Caparali EB, De Gregorio V, Barua M. Genotype-Based Molecular Mechanisms in Alport Syndrome. J Am Soc Nephrol 2025:00001751-990000000-00551. [PMID: 39899372 DOI: 10.1681/asn.0000000647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/29/2025] [Indexed: 02/05/2025] Open
Abstract
Alport syndrome is an inherited disorder characterized by kidney disease, sensorineural hearing loss, and ocular abnormalities. Alport syndrome is caused by pathogenic variants in COL4A3 , COL4A4 , or COL4A5 , which encode the α 3, α 4, and α 5 chains of type 4 collagen that forms a heterotrimer expressed in the glomerular basement membrane. Knowledge of its genetic basis has informed the development of different models in dogs, mice, and rats that reflect its autosomal and X-linked inheritance patterns as well as different mutation types, including protein-truncating and missense variants. A key difference between these two types is the synthesis of α 3 α 4 α 5(IV), which is not made in autosomal Alport syndrome (two pathogenic variants in trans or biallelic) or male patients with X-linked Alport syndrome due to protein-truncating variants. By contrast, α 3 α 4 α 5(IV) is synthesized in Alport syndrome because of missense variants. For missense variants, in vitro studies suggest that these cause impaired type 4 collagen trafficking and endoplasmic reticulum stress. For protein-truncating variants, knockout models suggest that persistence of an immature α 1 α 1 α 2(IV) network is associated with biomechanical strain, which activates endothelin-A receptors leading to mesangial filopodia formation. Moreover, studies suggest that activation of collagen receptors, integrins and discoidin domain receptor 1, play a role in disease propagation. In this review, we provide an overview of how these genotype-phenotype mechanisms are key for a precision medicine-based approach in the future.
Collapse
Affiliation(s)
- Emine Bilge Caparali
- Department of Internal Medicine, University of Texas Southwestern, Dallas, Texas
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
| | | | - Moumita Barua
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Chen D, Zhang L, Rao J, Zhou Y, Dai L, Huang S, Yang C, Bian Q, Zhang T, Yang X. Effects of a Novel COL4A3 Homozygous/Heterozygous Splicing Mutation on the Mild Phenotype in a Family With Autosomal Recessive Alport Syndrome and a Literature Review. Mol Genet Genomic Med 2025; 13:e70053. [PMID: 39924725 PMCID: PMC11807844 DOI: 10.1002/mgg3.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/08/2024] [Accepted: 12/31/2024] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Alport syndrome involves chronic progressive kidney failure and extrarenal organ damage caused by COL4A3, COL4A4, and COL4A5 mutations. METHODS We initially discerned a COL4A3 splicing mutation via next-generation sequencing. Next, we used bioinformatics, renal biopsy pathology, and an in vitro minigene experiment. Complementary analysis of clinical data was carried out, and we explored the expression and function of the variants to verify their pathogenicity. RESULTS A splicing mutation (c.687 + 1G > T) in COL4A3 was found in a Chinese family. Bioinformatics analysis revealed its impact on splicing, causing a translational frameshift, which was confirmed by an in vitro minigene assay. The proband's glomerular basement membrane displayed reduced type IV collagen α3, α4, and α5 chains, with some absent, suggesting disruption of collagen IV trimers in the glomerular basement membrane, potentially damaging the glomerular filtration barrier. CONCLUSION We present a novel finding of a previously unreported c.687 + 1G > T mutation in COL4A3 that disrupts transcription and translation, impairing α3α4α5 (IV) chain formation, altering the integrity of the glomerular basement membrane, causing hereditary Alport syndrome. This discovery enriches the genetic map of Alport syndrome, aiding in clinical genetic guidance, and enhancing the efficacy of prenatal testing.
Collapse
Affiliation(s)
- Dan Chen
- Department of PediatricsThe Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Children's Medical CenterGuiyangGuizhouChina
| | - Li Zhang
- Department of PediatricsThe Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Children's Medical CenterGuiyangGuizhouChina
| | - Jing Rao
- Department of PediatricsThe Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Children's Medical CenterGuiyangGuizhouChina
| | - Yan Zhou
- Department of PediatricsThe Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Children's Medical CenterGuiyangGuizhouChina
| | - Lujun Dai
- Department of PathologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Songsong Huang
- Department of PathologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Chunxia Yang
- Department of PediatricsThe Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Children's Medical CenterGuiyangGuizhouChina
| | - Qiuhan Bian
- Department of PediatricsThe Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Children's Medical CenterGuiyangGuizhouChina
| | - Tao Zhang
- Department of PediatricsThe Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Children's Medical CenterGuiyangGuizhouChina
| | - Xiaoyan Yang
- Department of PediatricsThe Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Children's Medical CenterGuiyangGuizhouChina
| |
Collapse
|
6
|
Belamkar A, Luo Q, Mahajan N, Abhyankar S, Jones BA, Sodhi RK, Pattabiraman PP, Levi M, Bhatwadekar AD. Characterization of the Ocular Phenotype in a Col4a3 Knockout Mouse Model of Alport Syndrome. Invest Ophthalmol Vis Sci 2024; 65:29. [PMID: 39680378 DOI: 10.1167/iovs.65.14.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Purpose Alport syndrome (AS) is a genetic condition caused by a dysfunctional collagen (IV) α3α4α5 heterotrimer, leading to basement membrane instability and, ultimately, abnormalities in the kidney, inner ear, and eyes. This study aimed to characterize ocular pathology of AS by focusing on inflammatory and fibrotic markers. Methods Col4a3tm1Dec knockout (KO) mice eyes were evaluated for the localization of collagen (IV) α3 and collagen (IV) α4, then stained for transforming growth factor-β1 (TGF-β1), TGF-β2, connective tissue growth factor (CTGF), and β-catenin. mRNA levels of the profibrotic genes S100a4, Acta2, Col1a1, Snai1, Snai2, and Twist1 were assessed using real-time reverse transcription quantitative PCR (RT-qPCR). Results Collagen (IV) α3 and collagen (IV) α4 were co-expressed in Descemet's and Bruch's membrane but not in the retina, lens, or other corneal substructures. Immunofluorescence quantitation revealed upregulation of TGF-β1 in the anterior lens and TGF-β2 in the retina of KO eyes. Conversely, CTGF and β-catenin were shown to be elevated in the corneal epithelium but not the retina or lens. RT-qPCR showed an increase in the transcription of Acta2, Col1a1, and Snai2 in the retinas and Snai2 in anterior segments of KO mice. Conclusions Col4a3 KO mice exhibited a differential inflammatory and profibrotic response in the cornea, retina, and lens, which may play a role in the ocular pathology of AS.
Collapse
Affiliation(s)
- Ameya Belamkar
- Indiana University of School of Medicine, Indiana, United States
| | - Qianyi Luo
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Neha Mahajan
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Surabhi Abhyankar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Bryce A Jones
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Rupinder Kaur Sodhi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Padmanabhan P Pattabiraman
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States
| | - Ashay D Bhatwadekar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
7
|
Jones BA, Gisch DL, Myakala K, Sadiq A, Cheng YH, Taranenko E, Panov J, Korolowicz K, Melo Ferreira R, Yang X, Santo BA, Allen KC, Yoshida T, Wang XX, Rosenberg AZ, Jain S, Eadon MT, Levi M. NAD + activates renal metabolism and protects from chronic kidney disease in a model of Alport syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.580911. [PMID: 38464264 PMCID: PMC10925224 DOI: 10.1101/2024.02.26.580911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Chronic kidney disease (CKD) is associated with renal metabolic disturbances, including impaired fatty acid oxidation (FAO). Nicotinamide adenine dinucleotide (NAD + ) is a small molecule that participates in hundreds of metabolism-related reactions. NAD + levels are decreased in CKD, and NAD + supplementation is protective. However, both the mechanism of how NAD + supplementation protects from CKD, as well as the cell types involved, are poorly understood. Using a mouse model of Alport syndrome, we show that nicotinamide riboside (NR), an NAD + precursor, stimulates renal peroxisome proliferator-activated receptor alpha signaling and restores FAO in the proximal tubules, thereby protecting from CKD in both sexes. Bulk RNA-sequencing shows that renal metabolic pathways are impaired in Alport mice and activated by NR in both sexes. These transcriptional changes are confirmed by orthogonal imaging techniques and biochemical assays. Single nuclei RNA-sequencing and spatial transcriptomics, both the first of their kind from Alport mice, show that NAD + supplementation restores FAO in proximal tubule cells. Finally, we also report, for the first time, sex differences at the transcriptional level in this Alport model. In summary, we identify a nephroprotective mechanism of NAD + supplementation in CKD, and we demonstrate that the proximal tubule cells substantially contribute to this benefit.
Collapse
|
8
|
Heitman K, Bollenbecker S, Bradley J, Czaya B, Fajol A, Thomas SM, Li Q, Komarova S, Krick S, Rowe GC, Alexander MS, Faul C. Hyperphosphatemia Contributes to Skeletal Muscle Atrophy in Mice. Int J Mol Sci 2024; 25:9308. [PMID: 39273260 PMCID: PMC11395169 DOI: 10.3390/ijms25179308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with various pathologic changes, including elevations in serum phosphate levels (hyperphosphatemia), vascular calcification, and skeletal muscle atrophy. Elevated phosphate can damage vascular smooth muscle cells and cause vascular calcification. Here, we determined whether high phosphate can also affect skeletal muscle cells and whether hyperphosphatemia, in the context of CKD or by itself, is associated with skeletal muscle atrophy. As models of hyperphosphatemia with CKD, we studied mice receiving an adenine-rich diet for 14 weeks and mice with deletion of Collagen 4a3 (Col4a3-/-). As models of hyperphosphatemia without CKD, we analyzed mice receiving a high-phosphate diet for three and six months as well as a genetic model for klotho deficiency (kl/kl). We found that adenine, Col4a3-/-, and kl/kl mice have reduced skeletal muscle mass and function and develop atrophy. Mice on a high-phosphate diet for six months also had lower skeletal muscle mass and function but no significant signs of atrophy, indicating less severe damage compared with the other three models. To determine the potential direct actions of phosphate on skeletal muscle, we cultured primary mouse myotubes in high phosphate concentrations, and we detected the induction of atrophy. We conclude that in experimental mouse models, hyperphosphatemia is sufficient to induce skeletal muscle atrophy and that, among various other factors, elevated phosphate levels might contribute to skeletal muscle injury in CKD.
Collapse
Affiliation(s)
- Kylie Heitman
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Seth Bollenbecker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.B.); (S.K.)
| | - Jordan Bradley
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Brian Czaya
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Abul Fajol
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Sarah Madison Thomas
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Qing Li
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Svetlana Komarova
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.B.); (S.K.)
| | - Glenn C. Rowe
- Division of Cardiovascular Disease, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Matthew S. Alexander
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Division of Neurology, Department of Pediatrics, Children’s of Alabama, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| |
Collapse
|
9
|
Cheong A, Craciun F, Husson H, Gans J, Escobedo J, Chang YC, Guo L, Goncalves M, Kaplan N, Smith LA, Moreno S, Boulanger J, Liu S, Saleh J, Zhang M, Blazier AS, Qiu W, Macklin A, Iyyanki T, Chatelain C, Khader S, Natoli TA, Ibraghimov-Beskrovnaya O, Ofengeim D, Proto JD. Glucosylceramide synthase modulation ameliorates murine renal pathologies and promotes macrophage effector function in vitro. Commun Biol 2024; 7:932. [PMID: 39095617 PMCID: PMC11297156 DOI: 10.1038/s42003-024-06606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
While significant advances have been made in understanding renal pathophysiology, less is known about the role of glycosphingolipid (GSL) metabolism in driving organ dysfunction. Here, we used a small molecule inhibitor of glucosylceramide synthase to modulate GSL levels in three mouse models of distinct renal pathologies: Alport syndrome (Col4a3 KO), polycystic kidney disease (Nek8jck), and steroid-resistant nephrotic syndrome (Nphs2 cKO). At the tissue level, we identified a core immune-enriched transcriptional signature that was shared across models and enriched in human polycystic kidney disease. Single nuclei analysis identified robust transcriptional changes across multiple kidney cell types, including epithelial and immune lineages. To further explore the role of GSL modulation in macrophage biology, we performed in vitro studies with homeostatic and inflammatory bone marrow-derived macrophages. Cumulatively, this study provides a comprehensive overview of renal dysfunction and the effect of GSL modulation on kidney-derived cells in the setting of renal dysfunction.
Collapse
Affiliation(s)
- Agnes Cheong
- Rare and Neurologic Diseases Research, Sanofi, Cambridge, MA, USA.
| | | | - Hervé Husson
- Genomics Medicine Unit, Sanofi, Waltham, MA, USA
| | - Joseph Gans
- Translational Sciences, Sanofi, Cambridge, MA, USA
| | | | | | - Lilu Guo
- Translational Sciences, Sanofi, Cambridge, MA, USA
| | | | - Nathan Kaplan
- Rare and Neurologic Diseases Research, Sanofi, Cambridge, MA, USA
| | - Laurie A Smith
- Rare and Neurologic Diseases Research, Sanofi, Cambridge, MA, USA
| | - Sarah Moreno
- Rare and Neurologic Diseases Research, Sanofi, Cambridge, MA, USA
| | - Joseph Boulanger
- Research and Development Business Office, Sanofi, Cambridge, MA, USA
| | - Shiguang Liu
- Rare Diseases and Rare Blood Disorders Research, Sanofi, Cambridge, MA, USA
| | - Jacqueline Saleh
- Rare and Neurologic Diseases Research, Sanofi, Cambridge, MA, USA
| | - Mindy Zhang
- Translational Sciences, Sanofi, Cambridge, MA, USA
| | - Anna S Blazier
- Rare and Neurologic Diseases Research, Sanofi, Cambridge, MA, USA
| | - Weiliang Qiu
- Non-Clinical Efficacy & Safety, Sanofi, Cambridge, MA, USA
| | - Andrew Macklin
- Rare and Neurologic Diseases Research, Sanofi, Cambridge, MA, USA
| | - Tejaswi Iyyanki
- Precision Medicine and Computational Biology, Sanofi, Cambridge, MA, USA
| | - Clément Chatelain
- Precision Medicine and Computational Biology, Sanofi, Cambridge, MA, USA
| | - Shameer Khader
- Precision Medicine and Computational Biology, Sanofi, Cambridge, MA, USA
| | - Thomas A Natoli
- Rare and Neurologic Diseases Research, Sanofi, Cambridge, MA, USA
| | | | - Dimitry Ofengeim
- Rare and Neurologic Diseases Research, Sanofi, Cambridge, MA, USA
| | - Jonathan D Proto
- Rare and Neurologic Diseases Research, Sanofi, Cambridge, MA, USA.
| |
Collapse
|
10
|
Weinstock BA. Lessons Learned from HERA: the First Alport Syndrome Therapeutic Clinical Trial. Clin J Am Soc Nephrol 2024; 19:946-948. [PMID: 38902862 PMCID: PMC11321724 DOI: 10.2215/cjn.0000000000000506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
|
11
|
Jackson JW, Frederick C Streich, Pal A, Coricor G, Boston C, Brueckner CT, Canonico K, Chapron C, Cote S, Dagbay KB, Danehy FT, Kavosi M, Kumar S, Lin S, Littlefield C, Looby K, Manohar R, Martin CJ, Wood M, Zawadzka A, Wawersik S, Nicholls SB, Datta A, Buckler A, Schürpf T, Carven GJ, Qatanani M, Fogel AI. An antibody that inhibits TGF-β1 release from latent extracellular matrix complexes attenuates the progression of renal fibrosis. Sci Signal 2024; 17:eadn6052. [PMID: 38980922 DOI: 10.1126/scisignal.adn6052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
Inhibitors of the transforming growth factor-β (TGF-β) pathway are potentially promising antifibrotic therapies, but nonselective simultaneous inhibition of all three TGF-β homologs has safety liabilities. TGF-β1 is noncovalently bound to a latency-associated peptide that is, in turn, covalently bound to different presenting molecules within large latent complexes. The latent TGF-β-binding proteins (LTBPs) present TGF-β1 in the extracellular matrix, and TGF-β1 is presented on immune cells by two transmembrane proteins, glycoprotein A repetitions predominant (GARP) and leucine-rich repeat protein 33 (LRRC33). Here, we describe LTBP-49247, an antibody that selectively bound to and inhibited the activation of TGF-β1 presented by LTBPs but did not bind to TGF-β1 presented by GARP or LRRC33. Structural studies demonstrated that LTBP-49247 recognized an epitope on LTBP-presented TGF-β1 that is not accessible on GARP- or LRRC33-presented TGF-β1, explaining the antibody's selectivity for LTBP-complexed TGF-β1. In two rodent models of kidney fibrosis of different etiologies, LTBP-49247 attenuated fibrotic progression, indicating the central role of LTBP-presented TGF-β1 in renal fibrosis. In mice, LTBP-49247 did not have the toxic effects associated with less selective TGF-β inhibitors. These results establish the feasibility of selectively targeting LTBP-bound TGF-β1 as an approach for treating fibrosis.
Collapse
Affiliation(s)
| | | | - Ajai Pal
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - George Coricor
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Chris Boston
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | | | | | - Shaun Cote
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Kevin B Dagbay
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | - Mania Kavosi
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Sandeep Kumar
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Susan Lin
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | - Kailyn Looby
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Rohan Manohar
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | - Marcie Wood
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
- ToxStrategies LLC, 23501 Cinco Ranch Boulevard, Katy, TX 77494, USA
| | - Agatha Zawadzka
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Stefan Wawersik
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | - Abhishek Datta
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Alan Buckler
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Thomas Schürpf
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | | | - Adam I Fogel
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| |
Collapse
|
12
|
Wang Y, Zhu R, Zhao L, Wang F, Zhang Y, Liu S, Ding J, Yang L. Characterization of Ocular Morphology in Col4a3-/- Mice as a Murine Model for Alport Syndrome. Transl Vis Sci Technol 2024; 13:16. [PMID: 39042048 PMCID: PMC11268448 DOI: 10.1167/tvst.13.7.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/27/2024] [Indexed: 07/24/2024] Open
Abstract
Purpose The purpose of this study was to investigate the ocular morphological characteristics of Col4a3-/- mice as a model of Alport syndrome (AS) and the potential pathogenesis. Methods The expression of collagen IV at 8, 12, and 21 weeks of age was evaluated by immunohistochemistry in wild-type (WT) and Col4a3-/- mice. Hematoxylin and eosin (H&E) staining and thickness measurements were performed to assess the thickness of anterior lens capsule and retina. Ultrastructure analysis of corneal epithelial basement membrane, anterior lens capsule, internal limiting membrane (ILM), and retinal pigment epithelium (RPE) basement membrane was performed using transmission electron microscopy. Finally, Müller cell activation was evaluated by glial fibrillary acidic protein (GFAP) expression. Results Collagen IV was downregulated in the corneal epithelial basement membrane and ILM of Col4a3-/- mice. The hemidesmosomes of Col4a3-/- mice corneal epithelium became flat and less electron-dense than those of the WT group. Compared with those of the WT mice, the anterior lens capsules of Col4a3-/- mice were thinner. Abnormal structure was detected at the ILM Col4a3-/- mice, and the basal folds of the RPE basement membrane in Col4a3-/- mice were thicker and shorter. The retinas of Col4a3-/- mice were thinner than those of WT mice, especially within 1000 µm away from the optic nerve. GFAP expression enhanced in each age group of Col4a3-/- mice. Conclusions Our results suggested that Col4a3-/- mice exhibit ocular anomalies similar to patients with AS. Additionally, Müller cells may be involved in AS retinal anomalies. Translational Relevance This animal model could provide an opportunity to understand the underlying mechanisms of AS ocular disorders and to investigate potential new treatments.
Collapse
MESH Headings
- Animals
- Nephritis, Hereditary/pathology
- Nephritis, Hereditary/genetics
- Nephritis, Hereditary/metabolism
- Collagen Type IV/genetics
- Collagen Type IV/metabolism
- Collagen Type IV/deficiency
- Disease Models, Animal
- Mice
- Basement Membrane/metabolism
- Basement Membrane/pathology
- Basement Membrane/ultrastructure
- Mice, Knockout
- Retinal Pigment Epithelium/pathology
- Retinal Pigment Epithelium/metabolism
- Retinal Pigment Epithelium/ultrastructure
- Microscopy, Electron, Transmission
- Mice, Inbred C57BL
- Lens Capsule, Crystalline/metabolism
- Lens Capsule, Crystalline/pathology
- Lens Capsule, Crystalline/ultrastructure
- Epithelium, Corneal/pathology
- Epithelium, Corneal/ultrastructure
- Epithelium, Corneal/metabolism
- Glial Fibrillary Acidic Protein/metabolism
- Glial Fibrillary Acidic Protein/genetics
- Retina/pathology
- Retina/metabolism
- Retina/ultrastructure
- Autoantigens/genetics
- Autoantigens/metabolism
- Ependymoglial Cells/pathology
- Ependymoglial Cells/metabolism
- Ependymoglial Cells/ultrastructure
- Immunohistochemistry
- Male
Collapse
Affiliation(s)
- Yuwei Wang
- Department of Ophthalmology, Peking University First Hospital, Xicheng District, Beijing, China
| | - Ruilin Zhu
- Department of Ophthalmology, Peking University First Hospital, Xicheng District, Beijing, China
| | - Liang Zhao
- Department of Ophthalmology, Peking University First Hospital, Xicheng District, Beijing, China
| | - Fang Wang
- Department of Pediatrics, Peking University First Hospital, Xicheng District, Beijing, China
| | - Yanqin Zhang
- Department of Pediatrics, Peking University First Hospital, Xicheng District, Beijing, China
| | | | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Xicheng District, Beijing, China
| | - Liu Yang
- Department of Ophthalmology, Peking University First Hospital, Xicheng District, Beijing, China
| |
Collapse
|
13
|
Heitman K, Alexander MS, Faul C. Skeletal Muscle Injury in Chronic Kidney Disease-From Histologic Changes to Molecular Mechanisms and to Novel Therapies. Int J Mol Sci 2024; 25:5117. [PMID: 38791164 PMCID: PMC11121428 DOI: 10.3390/ijms25105117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with significant reductions in lean body mass and in the mass of various tissues, including skeletal muscle, which causes fatigue and contributes to high mortality rates. In CKD, the cellular protein turnover is imbalanced, with protein degradation outweighing protein synthesis, leading to a loss of protein and cell mass, which impairs tissue function. As CKD itself, skeletal muscle wasting, or sarcopenia, can have various origins and causes, and both CKD and sarcopenia share common risk factors, such as diabetes, obesity, and age. While these pathologies together with reduced physical performance and malnutrition contribute to muscle loss, they cannot explain all features of CKD-associated sarcopenia. Metabolic acidosis, systemic inflammation, insulin resistance and the accumulation of uremic toxins have been identified as additional factors that occur in CKD and that can contribute to sarcopenia. Here, we discuss the elevation of systemic phosphate levels, also called hyperphosphatemia, and the imbalance in the endocrine regulators of phosphate metabolism as another CKD-associated pathology that can directly and indirectly harm skeletal muscle tissue. To identify causes, affected cell types, and the mechanisms of sarcopenia and thereby novel targets for therapeutic interventions, it is important to first characterize the precise pathologic changes on molecular, cellular, and histologic levels, and to do so in CKD patients as well as in animal models of CKD, which we describe here in detail. We also discuss the currently known pathomechanisms and therapeutic approaches of CKD-associated sarcopenia, as well as the effects of hyperphosphatemia and the novel drug targets it could provide to protect skeletal muscle in CKD.
Collapse
Affiliation(s)
- Kylie Heitman
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Matthew S. Alexander
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
14
|
Firat EAM, Buhl EM, Bouteldja N, Smeets B, Eriksson U, Boor P, Klinkhammer BM. PDGF-D Is Dispensable for the Development and Progression of Murine Alport Syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:641-655. [PMID: 38309427 DOI: 10.1016/j.ajpath.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/05/2024]
Abstract
Alport syndrome is an inherited kidney disease, which can lead to glomerulosclerosis and fibrosis, as well as end-stage kidney disease in children and adults. Platelet-derived growth factor-D (PDGF-D) mediates glomerulosclerosis and interstitial fibrosis in various models of kidney disease, prompting investigation of its role in a murine model of Alport syndrome. In vitro, PDGF-D induced proliferation and profibrotic activation of conditionally immortalized human parietal epithelial cells. In Col4a3-/- mice, a model of Alport syndrome, PDGF-D mRNA and protein were significantly up-regulated compared with non-diseased wild-type mice. To analyze the therapeutic potential of PDGF-D inhibition, Col4a3-/- mice were treated with a PDGF-D neutralizing antibody. Surprisingly, PDGF-D antibody treatment had no effect on renal function, glomerulosclerosis, fibrosis, or other indices of kidney injury compared with control treatment with unspecific IgG. To characterize the role of PDGF-D in disease development, Col4a3-/- mice with a constitutive genetic deletion of Pdgfd were generated and analyzed. No difference in pathologic features or kidney function was observed in Col4a3-/-Pdgfd-/- mice compared with Col4a3-/-Pdgfd+/+ littermates, confirming the antibody treatment data. Mechanistically, lack of proteolytic PDGF-D activation in Col4a3-/- mice might explain the lack of effects in vivo. In conclusion, despite its established role in kidney fibrosis, PDGF-D, without further activation, does not mediate the development and progression of Alport syndrome in mice.
Collapse
Affiliation(s)
| | - Eva Miriam Buhl
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany; Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany
| | - Nassim Bouteldja
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Bart Smeets
- Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany; Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany; Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany.
| | | |
Collapse
|
15
|
Madison J, Wilhelm K, Meehan DT, Gratton MA, Vosik D, Samuelson G, Ott M, Fascianella J, Nelson N, Cosgrove D. Ramipril therapy in integrin α1-null, autosomal recessive Alport mice triples lifespan: mechanistic clues from RNA-seq analysis. J Pathol 2024; 262:296-309. [PMID: 38129319 PMCID: PMC10872630 DOI: 10.1002/path.6231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/10/2023] [Accepted: 10/29/2023] [Indexed: 12/23/2023]
Abstract
The standard of care for patients with Alport syndrome (AS) is angiotensin-converting enzyme (ACE) inhibitors. In autosomal recessive Alport (ARAS) mice, ACE inhibitors double lifespan. We previously showed that deletion of Itga1 in Alport mice [double-knockout (DKO) mice] increased lifespan by 50%. This effect seemed dependent on the prevention of laminin 211-mediated podocyte injury. Here, we treated DKO mice with vehicle or ramipril starting at 4 weeks of age. Proteinuria and glomerular filtration rates were measured at 5-week intervals. Glomeruli were analyzed for laminin 211 deposition in the glomerular basement membrane (GBM) and GBM ultrastructure was analyzed using transmission electron microscopy (TEM). RNA sequencing (RNA-seq) was performed on isolated glomeruli at all time points and the results were compared with cultured podocytes overlaid (or not) with recombinant laminin 211. Glomerular filtration rate declined in ramipril-treated DKO mice between 30 and 35 weeks. Proteinuria followed these same patterns with normalization of foot process architecture in ramipril-treated DKO mice. RNA-seq revealed a decline in the expression of Foxc2, nephrin (Nphs1), and podocin (Nphs2) mRNAs, which was delayed in the ramipril-treated DKO mice. GBM accumulation of laminin 211 was delayed in ramipril-treated DKO mice, likely due to a role for α1β1 integrin in CDC42 activation in Alport mesangial cells, which is required for mesangial filopodial invasion of the subendothelial spaces of the glomerular capillary loops. Ramipril synergized with Itga1 knockout, tripling lifespan compared with untreated ARAS mice. © 2023 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jacob Madison
- Boys Town National Research Hospital, Omaha, NE, USA
| | - Kevin Wilhelm
- Boys Town National Research Hospital, Omaha, NE, USA
| | | | | | - Denise Vosik
- Boys Town National Research Hospital, Omaha, NE, USA
| | | | - Megan Ott
- Boys Town National Research Hospital, Omaha, NE, USA
| | | | - Noa Nelson
- Boys Town National Research Hospital, Omaha, NE, USA
| | | |
Collapse
|
16
|
Pokidysheva EN, Redhair N, Ailsworth O, Page-McCaw P, Rollins-Smith L, Jamwal VS, Ohta Y, Bächinger HP, Murawala P, Flajnik M, Fogo AB, Abrahamson D, Hudson JK, Boudko SP, Hudson BG. Collagen IV of basement membranes: II. Emergence of collagen IV α345 enabled the assembly of a compact GBM as an ultrafilter in mammalian kidneys. J Biol Chem 2023; 299:105459. [PMID: 37977222 PMCID: PMC10746531 DOI: 10.1016/j.jbc.2023.105459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
The collagen IVα345 (Col-IVα345) scaffold, the major constituent of the glomerular basement membrane (GBM), is a critical component of the kidney glomerular filtration barrier. In Alport syndrome, affecting millions of people worldwide, over two thousand genetic variants occur in the COL4A3, COL4A4, and COL4A5 genes that encode the Col-IVα345 scaffold. Variants cause loss of scaffold, a suprastructure that tethers macromolecules, from the GBM or assembly of a defective scaffold, causing hematuria in nearly all cases, proteinuria, and often progressive kidney failure. How these variants cause proteinuria remains an enigma. In a companion paper, we found that the evolutionary emergence of the COL4A3, COL4A4, COL4A5, and COL4A6 genes coincided with kidney emergence in hagfish and shark and that the COL4A3 and COL4A4 were lost in amphibians. These findings opened an experimental window to gain insights into functionality of the Col-IVα345 scaffold. Here, using tissue staining, biochemical analysis and TEM, we characterized the scaffold chain arrangements and the morphology of the GBM of hagfish, shark, frog, and salamander. We found that α4 and α5 chains in shark GBM and α1 and α5 chains in amphibian GBM are spatially separated. Scaffolds are distinct from one another and from the mammalian Col-IVα345 scaffold, and the GBM morphologies are distinct. Our findings revealed that the evolutionary emergence of the Col-IVα345 scaffold enabled the genesis of a compact GBM that functions as an ultrafilter. Findings shed light on the conundrum, defined decades ago, whether the GBM or slit diaphragm is the primary filter.
Collapse
Affiliation(s)
- Elena N Pokidysheva
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Aspirnaut, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - Neve Redhair
- Aspirnaut, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Octavia Ailsworth
- Aspirnaut, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Patrick Page-McCaw
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Louise Rollins-Smith
- Department of Pathology Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Yuko Ohta
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | | | - Prayag Murawala
- Mount Desert Island Biological Laboratory, Bar Harbor, Maine, USA; Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Germany
| | - Martin Flajnik
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Agnes B Fogo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dale Abrahamson
- Department of Cell Biology and Physiology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Julie K Hudson
- Aspirnaut, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sergei P Boudko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Billy G Hudson
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Aspirnaut, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
17
|
Jones BA, Myakala K, Guha M, Davidson S, Adapa S, Lopez Santiago I, Schaffer I, Yue Y, Allegood JC, Cowart LA, Wang XX, Rosenberg AZ, Levi M. Farnesoid X receptor prevents neutrophil extracellular traps via reduced sphingosine-1-phosphate in chronic kidney disease. Am J Physiol Renal Physiol 2023; 325:F792-F810. [PMID: 37823198 PMCID: PMC10894665 DOI: 10.1152/ajprenal.00292.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
Farnesoid X receptor (FXR) activation reduces renal inflammation, but the underlying mechanisms remain elusive. Neutrophil extracellular traps (NETs) are webs of DNA formed when neutrophils undergo specialized programmed cell death (NETosis). The signaling lipid sphingosine-1-phosphate (S1P) stimulates NETosis via its receptor on neutrophils. Here, we identify FXR as a negative regulator of NETosis via repressing S1P signaling. We determined the effects of the FXR agonist obeticholic acid (OCA) in mouse models of adenosine phosphoribosyltransferase (APRT) deficiency and Alport syndrome, both genetic disorders that cause chronic kidney disease. Renal FXR activity is greatly reduced in both models, and FXR agonism reduces disease severity. Renal NETosis and sphingosine kinase 1 (Sphk1) expression are increased in diseased mice, and they are reduced by OCA in both models. Genetic deletion of FXR increases Sphk1 expression, and Sphk1 expression correlates with NETosis. Importantly, kidney S1P levels in Alport mice are two-fold higher than controls, and FXR agonism restores them back to baseline. Short-term inhibition of sphingosine synthesis in Alport mice with severe kidney disease reverses NETosis, establishing a causal relationship between S1P signaling and renal NETosis. Finally, extensive NETosis is present in human Alport kidney biopsies (six male, nine female), and NETosis severity correlates with clinical markers of kidney disease. This suggests the potential clinical relevance of the newly identified FXR-S1P-NETosis pathway. In summary, FXR agonism represses kidney Sphk1 expression. This inhibits renal S1P signaling, thereby reducing neutrophilic inflammation and NETosis.NEW & NOTEWORTHY Many preclinical studies have shown that the farnesoid X receptor (FXR) reduces renal inflammation, but the mechanism is poorly understood. This report identifies FXR as a novel regulator of neutrophilic inflammation and NETosis via the inhibition of sphingosine-1-phosphate signaling. Additionally, NETosis severity in human Alport kidney biopsies correlates with clinical markers of kidney disease. A better understanding of this signaling axis may lead to novel treatments that prevent renal inflammation and chronic kidney disease.
Collapse
Affiliation(s)
- Bryce A Jones
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia, United States
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States
| | - Mahilan Guha
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States
| | - Shania Davidson
- Department of Biology, Howard University, Washington, District of Columbia, United States
| | - Sharmila Adapa
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States
| | - Isabel Lopez Santiago
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States
| | - Isabel Schaffer
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States
| | - Yang Yue
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Jeremy C Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Xiaoxin X Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States
| |
Collapse
|
18
|
Boudko SP, Pedchenko VK, Pokidysheva EN, Budko AM, Baugh R, Coates PT, Fidler AL, Hudson HM, Ivanov SV, Luer C, Pedchenko T, Preston RL, Rafi M, Vanacore R, Bhave G, Hudson JK, Hudson BG. Collagen IV of basement membranes: III. Chloride pressure is a primordial innovation that drives and maintains the assembly of scaffolds. J Biol Chem 2023; 299:105318. [PMID: 37797699 PMCID: PMC10656227 DOI: 10.1016/j.jbc.2023.105318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
Collagen IV scaffold is a primordial innovation enabling the assembly of a fundamental architectural unit of epithelial tissues-a basement membrane attached to polarized cells. A family of six α-chains (α1 to α6) coassemble into three distinct protomers that form supramolecular scaffolds, noted as collagen IVα121, collagen IVα345, and collagen IVα121-α556. Chloride ions play a pivotal role in scaffold assembly, based on studies of NC1 hexamers from mammalian tissues. First, Cl- activates a molecular switch within trimeric NC1 domains that initiates protomer oligomerization, forming an NC1 hexamer between adjoining protomers. Second, Cl- stabilizes the hexamer structure. Whether this Cl--dependent mechanism is of fundamental importance in animal evolution is unknown. Here, we developed a simple in vitro method of SDS-PAGE to determine the role of solution Cl- in hexamer stability. Hexamers were characterized from 34 animal species across 15 major phyla, including the basal Cnidarian and Ctenophora phyla. We found that solution Cl- stabilized the quaternary hexamer structure across all phyla except Ctenophora, Ecdysozoa, and Rotifera. Further analysis of hexamers from peroxidasin knockout mice, a model for decreasing hexamer crosslinks, showed that solution Cl- also stabilized the hexamer surface conformation. The presence of sufficient chloride concentration in solution or "chloride pressure" dynamically maintains the native form of the hexamer. Collectively, our findings revealed that chloride pressure on the outside of cells is a primordial innovation that drives and maintains the quaternary and conformational structure of NC1 hexamers of collagen IV scaffolds.
Collapse
Affiliation(s)
- Sergei P Boudko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
| | - Vadim K Pedchenko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elena N Pokidysheva
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Rachel Baugh
- Department of Medical Education and Administration, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Patrick Toby Coates
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, Australia
| | - Aaron L Fidler
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Heather M Hudson
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sergey V Ivanov
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Carl Luer
- Mote Marine Laboratory, Sarasota, Florida, USA
| | - Tetyana Pedchenko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Robert L Preston
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Mohamed Rafi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Roberto Vanacore
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gautam Bhave
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Julie K Hudson
- Department of Medical Education and Administration, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Billy G Hudson
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
19
|
Guo KS, Brodsky AS. Tumor collagens predict genetic features and patient outcomes. NPJ Genom Med 2023; 8:15. [PMID: 37414817 DOI: 10.1038/s41525-023-00358-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/14/2023] [Indexed: 07/08/2023] Open
Abstract
The extracellular matrix (ECM) is a critical determinant of tumor fate that reflects the output from myriad cell types in the tumor. Collagens constitute the principal components of the tumor ECM. The changing collagen composition in tumors along with their impact on patient outcomes and possible biomarkers remains largely unknown. The RNA expression of the 43 collagen genes from solid tumors in The Cancer Genome Atlas (TCGA) was clustered to classify tumors. PanCancer analysis revealed how collagens by themselves can identify the tissue of origin. Clustering by collagens in each cancer type demonstrated strong associations with survival, specific immunoenvironments, somatic gene mutations, copy number variations, and aneuploidy. We developed a machine learning classifier that predicts aneuploidy, and chromosome arm copy number alteration (CNA) status based on collagen expression alone with high accuracy in many cancer types with somatic mutations, suggesting a strong relationship between the collagen ECM context and specific molecular alterations. These findings have broad implications in defining the relationship between cancer-related genetic defects and the tumor microenvironment to improve prognosis and therapeutic targeting for patient care, opening new avenues of investigation to define tumor ecosystems.
Collapse
Affiliation(s)
- Kevin S Guo
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Alexander S Brodsky
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
20
|
Cosgrove D, Gratton MA, Madison J, Vosik D, Samuelson G, Meehan D, Delimont D, Phillips G, Smyth B, Pramparo T, Jarocki D, Nguyen M, Komers R, Jenkinson C. Dual inhibition of the endothelin and angiotensin receptor ameliorates renal and inner ear pathologies in Alport mice. J Pathol 2023; 260:353-364. [PMID: 37256677 PMCID: PMC10330771 DOI: 10.1002/path.6087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 06/01/2023]
Abstract
Alport syndrome (AS), a type IV collagen disorder, leads to glomerular disease and, in some patients, hearing loss. AS is treated with inhibitors of the renin-angiotensin system; however, a need exists for novel therapies, especially those addressing both major pathologies. Sparsentan is a single-molecule dual endothelin type-A and angiotensin II type 1 receptor antagonist (DEARA) under clinical development for focal segmental glomerulosclerosis and IgA nephropathy. We report the ability of sparsentan to ameliorate both renal and inner ear pathologies in an autosomal-recessive Alport mouse model. Sparsentan significantly delayed onset of glomerulosclerosis, interstitial fibrosis, proteinuria, and glomerular filtration rate decline. Sparsentan attenuated glomerular basement membrane defects, blunted mesangial filopodial invasion into the glomerular capillaries, increased lifespan more than losartan, and lessened changes in profibrotic/pro-inflammatory gene pathways in both the glomerular and the renal cortical compartments. Notably, treatment with sparsentan, but not losartan, prevented accumulation of extracellular matrix in the strial capillary basement membranes in the inner ear and reduced susceptibility to hearing loss. Improvements in lifespan and in renal and strial pathology were observed even when sparsentan was initiated after development of renal pathologies. These findings suggest that sparsentan may address both renal and hearing pathologies in Alport syndrome patients. © 2023 Travere Therapeutics, Inc and The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Dominic Cosgrove
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Michael Anne Gratton
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jacob Madison
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Denise Vosik
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Gina Samuelson
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Daniel Meehan
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Duane Delimont
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Grady Phillips
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | - Brendan Smyth
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Diana Jarocki
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | - Mai Nguyen
- Travere Therapeutics, San Diego, CA, USA
| | | | | |
Collapse
|
21
|
Bollenbecker S, Heitman K, Czaya B, Easter M, Hirsch MJ, Vang S, Harris E, Helton ES, Barnes JW, Faul C, Krick S. Phosphate induces inflammation and exacerbates injury from cigarette smoke in the bronchial epithelium. Sci Rep 2023; 13:4898. [PMID: 36966182 PMCID: PMC10039898 DOI: 10.1038/s41598-023-32053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023] Open
Abstract
An elevation in serum phosphate-also called hyperphosphatemia-is associated with reduced kidney function in chronic kidney disease (CKD). Reports show CKD patients are more likely to develop lung disease and have poorer kidney function that positively correlates with pulmonary obstruction. However, the underlying mechanisms are not well understood. Here, we report that two murine models of CKD, which both exhibit increased serum levels of phosphate and fibroblast growth factor (FGF) 23, a regulator of phosphate homeostasis, develop concomitant airway inflammation. Our in vitro studies point towards a similar increase of phosphate-induced inflammatory markers in human bronchial epithelial cells. FGF23 stimulation alone does not induce a proinflammatory response in the non-COPD bronchial epithelium and phosphate does not cause endogenous FGF23 release. Upregulation of the phosphate-induced proinflammatory cytokines is accompanied by activation of the extracellular-signal regulated kinase (ERK) pathway. Moreover, the addition of cigarette smoke extract (CSE) during phosphate treatments exacerbates inflammation as well as ERK activation, whereas co-treatment with FGF23 attenuates both the phosphate as well as the combined phosphate- and CS-induced inflammatory response, independent of ERK activation. Together, these data demonstrate a novel pathway that potentially explains pathological kidney-lung crosstalk with phosphate as a key mediator.
Collapse
Affiliation(s)
- Seth Bollenbecker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, 1918 University Blvd, MCLM 718, Birmingham, AL, 35294, USA
| | - Kylie Heitman
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian Czaya
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Molly Easter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, 1918 University Blvd, MCLM 718, Birmingham, AL, 35294, USA
| | - Meghan June Hirsch
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, 1918 University Blvd, MCLM 718, Birmingham, AL, 35294, USA
| | - Shia Vang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, 1918 University Blvd, MCLM 718, Birmingham, AL, 35294, USA
| | - Elex Harris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, 1918 University Blvd, MCLM 718, Birmingham, AL, 35294, USA
| | - E Scott Helton
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, 1918 University Blvd, MCLM 718, Birmingham, AL, 35294, USA
| | - Jarrod W Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, 1918 University Blvd, MCLM 718, Birmingham, AL, 35294, USA
| | - Christian Faul
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, 1918 University Blvd, MCLM 718, Birmingham, AL, 35294, USA.
| |
Collapse
|
22
|
Korcari A, Nichols AEC, Buckley MR, Loiselle AE. Scleraxis-lineage cells are required for tendon homeostasis and their depletion induces an accelerated extracellular matrix aging phenotype. eLife 2023; 12:e84194. [PMID: 36656751 PMCID: PMC9908079 DOI: 10.7554/elife.84194] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Aged tendons have disrupted homeostasis, increased injury risk, and impaired healing capacity. Understanding mechanisms of homeostatic disruption is crucial for developing therapeutics to retain tendon health through the lifespan. Here, we developed a novel model of accelerated tendon extracellular matrix (ECM) aging via depletion of Scleraxis-lineage cells in young mice (Scx-DTR). Scx-DTR recapitulates many aspects of tendon aging including comparable declines in cellularity, alterations in ECM structure, organization, and composition. Single-cell RNA sequencing demonstrated a conserved decline in tenocytes associated with ECM biosynthesis in aged and Scx-DTR tendons, identifying the requirement for Scleraxis-lineage cells during homeostasis. However, the remaining cells in aged and Scx-DTR tendons demonstrate functional divergence. Aged tenocytes become pro-inflammatory and lose proteostasis. In contrast, tenocytes from Scx-DTR tendons demonstrate enhanced remodeling capacity. Collectively, this study defines Scx-DTR as a novel model of accelerated tendon ECM aging and identifies novel biological intervention points to maintain tendon function through the lifespan.
Collapse
Affiliation(s)
- Antonion Korcari
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Anne EC Nichols
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical CenterRochesterUnited States
| | - Mark R Buckley
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| |
Collapse
|
23
|
Naylor RW, Lemarie E, Jackson-Crawford A, Davenport JB, Mironov A, Lowe M, Lennon R. A novel nanoluciferase transgenic reporter measures proteinuria in zebrafish. Kidney Int 2022; 102:815-827. [PMID: 35716957 DOI: 10.1101/2021.07.19.452884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 05/28/2023]
Abstract
The zebrafish is an important animal system for modeling human diseases. This includes kidney dysfunction as the embryonic kidney (pronephros) shares considerable molecular and morphological homology with the human nephron. A key clinical indicator of kidney disease is proteinuria, but a high-throughput readout of proteinuria in the zebrafish is currently lacking. To remedy this, we used the Tol2 transposon system to generate a transgenic zebrafish line that uses the fabp10a liver-specific promoter to over-express a nanoluciferase molecule fused with the D3 domain of Receptor-Associated Protein (a type of molecular chaperone) which we term NL-D3. Using a luminometer, we quantified proteinuria in NL-D3 zebrafish larvae by measuring the intensity of luminescence in the embryo medium. In the healthy state, NL-D3 is not excreted, but when embryos were treated with chemicals that affected either proximal tubular reabsorption (cisplatin, gentamicin) or glomerular filtration (angiotensin II, Hanks Balanced Salt Solution, Bovine Serum Albumin), NL-D3 is detected in fish medium. Similarly, depletion of several gene products associated with kidney disease (nphs1, nphs2, lrp2a, ocrl, col4a3, and col4a4) also induced NL-D3 proteinuria. Treating col4a4 depleted zebrafish larvae (a model of Alport syndrome) with captopril reduced proteinuria in this system. Thus, our findings validate the use of the NL-D3 transgenic zebrafish as a robust and quantifiable proteinuria reporter. Hence, given the feasibility of high-throughput assays in zebrafish, this novel reporter will permit screening for drugs that ameliorate proteinuria, thereby prioritizing candidates for further translational studies.
Collapse
Affiliation(s)
- Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Emmanuel Lemarie
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | | | - J Bernard Davenport
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Aleksandr Mironov
- EM Core Facility (RRID: SCR_021147), Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Martin Lowe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
24
|
Naylor RW, Lemarie E, Jackson-Crawford A, Davenport JB, Mironov A, Lowe M, Lennon R. A novel nanoluciferase transgenic reporter measures proteinuria in zebrafish. Kidney Int 2022; 102:815-827. [PMID: 35716957 PMCID: PMC7614274 DOI: 10.1016/j.kint.2022.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022]
Abstract
The zebrafish is an important animal system for modeling human diseases. This includes kidney dysfunction as the embryonic kidney (pronephros) shares considerable molecular and morphological homology with the human nephron. A key clinical indicator of kidney disease is proteinuria, but a high-throughput readout of proteinuria in the zebrafish is currently lacking. To remedy this, we used the Tol2 transposon system to generate a transgenic zebrafish line that uses the fabp10a liver-specific promoter to over-express a nanoluciferase molecule fused with the D3 domain of Receptor-Associated Protein (a type of molecular chaperone) which we term NL-D3. Using a luminometer, we quantified proteinuria in NL-D3 zebrafish larvae by measuring the intensity of luminescence in the embryo medium. In the healthy state, NL-D3 is not excreted, but when embryos were treated with chemicals that affected either proximal tubular reabsorption (cisplatin, gentamicin) or glomerular filtration (angiotensin II, Hanks Balanced Salt Solution, Bovine Serum Albumin), NL-D3 is detected in fish medium. Similarly, depletion of several gene products associated with kidney disease (nphs1, nphs2, lrp2a, ocrl, col4a3, and col4a4) also induced NL-D3 proteinuria. Treating col4a4 depleted zebrafish larvae (a model of Alport syndrome) with captopril reduced proteinuria in this system. Thus, our findings validate the use of the NL-D3 transgenic zebrafish as a robust and quantifiable proteinuria reporter. Hence, given the feasibility of high-throughput assays in zebrafish, this novel reporter will permit screening for drugs that ameliorate proteinuria, thereby prioritizing candidates for further translational studies.
Collapse
Affiliation(s)
- Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Emmanuel Lemarie
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | | | - J Bernard Davenport
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Aleksandr Mironov
- EM Core Facility (RRID: SCR_021147), Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Martin Lowe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
25
|
Madison J, Wilhelm K, Meehan DT, Delimont D, Samuelson G, Cosgrove D. Glomerular basement membrane deposition of collagen α1(III) in Alport glomeruli by mesangial filopodia injures podocytes via aberrant signaling through DDR1 and integrin α2β1. J Pathol 2022; 258:26-37. [PMID: 35607980 PMCID: PMC9378723 DOI: 10.1002/path.5969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/29/2022] [Accepted: 05/20/2022] [Indexed: 11/20/2022]
Abstract
In Alport mice, activation of the endothelin A receptor (ETA R) in mesangial cells results in sub-endothelial invasion of glomerular capillaries by mesangial filopodia. Filopodia deposit mesangial matrix in the glomerular basement membrane (GBM), including laminin 211 which activates NF-κB, resulting in induction of inflammatory cytokines. Herein we show that collagen α1(III) is also deposited in the GBM. Collagen α1(III) localized to the mesangium in wild-type mice and was found in both the mesangium and the GBM in Alport mice. We show that collagen α1(III) activates discoidin domain receptor family, member 1 (DDR1) receptors both in vitro and in vivo. To elucidate whether collagen α1(III) might cause podocyte injury, cultured murine Alport podocytes were overlaid with recombinant collagen α1(III), or not, for 24 h and RNA was analyzed by RNA sequencing (RNA-seq). These same cells were subjected to siRNA knockdown for integrin α2 or DDR1 and the RNA was analyzed by RNA-seq. Results were validated in vivo using RNA-seq from RNA isolated from wild-type and Alport mouse glomeruli. Numerous genes associated with podocyte injury were up- or down-regulated in both Alport glomeruli and cultured podocytes treated with collagen α1(III), 18 of which have been associated previously with podocyte injury or glomerulonephritis. The data indicate α2β1 integrin/DDR1 co-receptor signaling as the dominant regulatory mechanism. This may explain earlier studies where deletion of either DDR1 or α2β1 integrin in Alport mice ameliorates renal pathology. © 2022 Boys Town National Research Hospital. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
|
26
|
Mukherjee K, Gu C, Collins A, Mettlen M, Samelko B, Altintas MM, Sudhini YR, Wang X, Bouley R, Brown D, Pedro BP, Bane SL, Gupta V, Brinkkoetter PT, Hagmann H, Reiser J, Sever S. Simultaneous stabilization of actin cytoskeleton in multiple nephron-specific cells protects the kidney from diverse injury. Nat Commun 2022; 13:2422. [PMID: 35504916 PMCID: PMC9065033 DOI: 10.1038/s41467-022-30101-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/04/2022] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney diseases and acute kidney injury are mechanistically distinct kidney diseases. While chronic kidney diseases are associated with podocyte injury, acute kidney injury affects renal tubular epithelial cells. Despite these differences, a cardinal feature of both acute and chronic kidney diseases is dysregulated actin cytoskeleton. We have shown that pharmacological activation of GTPase dynamin ameliorates podocyte injury in murine models of chronic kidney diseases by promoting actin polymerization. Here we establish dynamin's role in modulating stiffness and polarity of renal tubular epithelial cells by crosslinking actin filaments into branched networks. Activation of dynamin's crosslinking capability by a small molecule agonist stabilizes the actomyosin cortex of the apical membrane against injury, which in turn preserves renal function in various murine models of acute kidney injury. Notably, a dynamin agonist simultaneously attenuates podocyte and tubular injury in the genetic murine model of Alport syndrome. Our study provides evidence for the feasibility and highlights the benefits of novel holistic nephron-protective therapies.
Collapse
Affiliation(s)
- Kamalika Mukherjee
- Department of Medicine, Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
| | - Changkyu Gu
- Department of Medicine, Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
| | - Agnieszka Collins
- Department of Medicine, Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beata Samelko
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | | | - Xuexiang Wang
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Richard Bouley
- Department of Medicine, Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
| | - Dennis Brown
- Department of Medicine, Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
| | - Bradley P Pedro
- Department of Medicine, Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
| | - Susan L Bane
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Vineet Gupta
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Paul T Brinkkoetter
- Department of Internal Medicine-Center for Molecular Medicine Cologne, University of Cologne and Faculty of Medicine-University Hospital Cologne, Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol), Cologne, Germany
| | - Henning Hagmann
- Department of Internal Medicine-Center for Molecular Medicine Cologne, University of Cologne and Faculty of Medicine-University Hospital Cologne, Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol), Cologne, Germany
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA.
| | - Sanja Sever
- Department of Medicine, Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
27
|
Boudko SP, Pokidysheva E, Hudson BG. Prospective collagen IVα345 therapies for Alport syndrome. Curr Opin Nephrol Hypertens 2022; 31:213-220. [PMID: 35283436 PMCID: PMC9159491 DOI: 10.1097/mnh.0000000000000789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW In Alport syndrome, over 1,700 genetic variants in the COL4A3, COL4A4, and COL4A5 genes cause the absence or malfunctioning of the collagen IVα345 scaffold - an essential component of the glomerular basement membrane (GBM). Therapies are limited to treatment with Angiotensin-Converting enzyme (ACE) inhibitors to slow progression of the disease. Here, we review recent progress in therapy development to replace the scaffold or restore its function. RECENT FINDINGS Multiple approaches emerged recently for development of therapies that target different stages of production and assembly of the collagen IVα345 scaffold in the GBM. These approaches are based on (1) recent advances in technologies allowing to decipher pathogenic mechanisms that underlie scaffold assembly and dysfunction, (2) development of DNA editing tools for gene therapy, (3) RNA splicing interference, and (4) control of mRNA translation. SUMMARY There is a growing confidence that these approaches will ultimately provide cure for Alport patients. The development of therapy will be accelerated by studies that provide a deeper understanding of mechanisms that underlie folding, assembly, and function of the collagen IVα345 scaffold.
Collapse
Affiliation(s)
- Sergei P. Boudko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Elena Pokidysheva
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Billy G. Hudson
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
28
|
Klinkhammer BM, Buchtler S, Djudjaj S, Bouteldja N, Palsson R, Edvardsson VO, Thorsteinsdottir M, Floege J, Mack M, Boor P. Current kidney function parameters overestimate kidney tissue repair in reversible experimental kidney disease. Kidney Int 2022; 102:307-320. [PMID: 35483527 DOI: 10.1016/j.kint.2022.02.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022]
Abstract
Although underlying mechanisms and the clinical course of kidney disease progression are well described, less is known about potential disease reversibility. Therefore, to analyze kidney recovery, we adapted a commonly used murine chronic kidney disease (CKD) model of 2,8- dihydroxyadenine (2,8-DHA) crystal-induced nephropathy to study disease recovery and efficacy of disease-modifying interventions. The recovery phase after CKD was characterized by improved kidney function after two weeks which remained stable thereafter. By contrast, even after eight weeks recovery, tubular injury and inflammation were only partially reduced and fibrosis persisted. Deep-learning-based histologic analysis of 8,604 glomeruli and 596,614 tubular cross sections revealed numerous tubules had undergone either prominent dilation or complete atrophy, leading to atubular glomeruli and irreversible nephron loss. We confirmed these findings in a second CKD model, reversible unilateral ureteral obstruction, in which a rapid improvement of glomerular filtration rate during recovery also did not reflect the permanent histologic kidney injury. In 2,8-DHA nephropathy, increased drinking volume was highly effective in disease prevention. However, in therapeutic approaches, high fluid intake was only effective in moderate but not severe CKD and established tissue injury was again poorly reflective of kidney function parameters. The injury was particularly localized in the medulla, which is often not analyzed. Thus, recovery after crystal- or obstruction-induced CKD is characterized by ongoing tissue injury, fibrosis, and nephron loss, but not reflected by standard measures of kidney function. Hence, our data might aid in designing kidney recovery studies and suggest the need for biomarkers specifically monitoring intra-kidney tissue injury.
Collapse
Affiliation(s)
| | - Simone Buchtler
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Sonja Djudjaj
- Institute of Pathology, RWTH University Hospital Aachen, Aachen, Germany
| | - Nassim Bouteldja
- Institute of Pathology, RWTH University Hospital Aachen, Aachen, Germany
| | - Runolfur Palsson
- Division of Nephrology, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Vidar Orn Edvardsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland; Children´s Medical Center, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Jürgen Floege
- Division of Nephrology and Immunology, RWTH University Hospital Aachen, Aachen, Germany
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Peter Boor
- Institute of Pathology, RWTH University Hospital Aachen, Aachen, Germany; Division of Nephrology and Immunology, RWTH University Hospital Aachen, Aachen, Germany; Department of Electron Microscopy, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
29
|
Iida M, Ohtomo S, Wada NA, Ueda O, Tsuboi Y, Kurata A, Jishage KI, Horiba N. TNF-α induces Claudin-1 expression in renal tubules in Alport mice. PLoS One 2022; 17:e0265081. [PMID: 35271660 PMCID: PMC8912176 DOI: 10.1371/journal.pone.0265081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/23/2022] [Indexed: 11/26/2022] Open
Abstract
Claudin-1 (CL-1) is responsible for the paracellular barrier function of glomerular parietal epithelial cells (PEC) in kidneys, but the role of CL-1 in proximal tubules remains to be elucidated. In this study, to evaluate CL-1 as a potential therapeutic drug target for chronic kidney disease, we investigated change of CL-1 expression in the proximal tubules of diseased kidney and elucidated the factors that induced this change. We established Alport mice as a kidney disease model and investigated the expression of CL-1 in diseased kidney using quantitative PCR and immunohistochemistry (IHC). Compared to wild type mice, Alport mice showed significant increases in plasma creatinine, urea nitrogen and urinary albumin excretion. CL-1 mRNA was increased significantly in the kidney cortex and CL-1 was localized on the adjacent cell surfaces of PECs and proximal tubular epithelial cells. The infiltration of inflammatory cells around proximal tubules and a significant increase in TNF-α mRNA were observed in diseased kidneys. To reveal factors that induce CL-1, we analyzed the induction of CL-1 by albumin or tumor necrosis factor (TNF)-α in human proximal tubular cells (RPTEC/TERT1) using quantitative PCR and Western blotting. TNF-α increased CL-1 expression dose-dependently, though albumin did not affect CL-1 expression in RPTEC/TERT1. In addition, both CL-1 and TNF-α expression were significantly increased in UUO mice, which are commonly used as a model of tubulointerstitial inflammation without albuminuria. These results indicate that CL-1 expression is induced by inflammation, not by albuminuria in diseased proximal tubules. Moreover, we examined the localization of CL-1 in the kidney of IgA nephropathy patients by IHC and found CL-1 expression was also elevated in the proximal tubular cells. Taken together, CL-1 expression is increased in the proximal tubular epithelial cells of diseased kidney. Inflammatory cells around the tubular epithelium may produce TNF-α which in turn induces CL-1 expression.
Collapse
Affiliation(s)
- Manami Iida
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Shuichi Ohtomo
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Naoko A. Wada
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Otoya Ueda
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Yoshinori Tsuboi
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Atsuo Kurata
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Kou-ichi Jishage
- Chugai Research Institute for Medical Science Inc., Gotemba, Shizuoka, Japan
| | - Naoshi Horiba
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
- * E-mail:
| |
Collapse
|
30
|
Thulasiram MR, Ogier JM, Dabdoub A. Hearing Function, Degeneration, and Disease: Spotlight on the Stria Vascularis. Front Cell Dev Biol 2022; 10:841708. [PMID: 35309932 PMCID: PMC8931286 DOI: 10.3389/fcell.2022.841708] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
The stria vascularis (SV) is a highly vascularized tissue lining the lateral wall of the cochlea. The SV maintains cochlear fluid homeostasis, generating the endocochlear potential that is required for sound transduction. In addition, the SV acts as an important blood-labyrinth barrier, tightly regulating the passage of molecules from the blood into the cochlea. A healthy SV is therefore vital for hearing function. Degeneration of the SV is a leading cause of age-related hearing loss, and has been associated with several hearing disorders, including Norrie disease, Meniere's disease, Alport syndrome, Waardenburg syndrome, and Cytomegalovirus-induced hearing loss. Despite the SV's important role in hearing, there is still much that remains to be discovered, including cell-specific function within the SV, mechanisms of SV degeneration, and potential protective or regenerative therapies. In this review, we discuss recent discoveries elucidating the molecular regulatory networks of SV function, mechanisms underlying degeneration of the SV, and otoprotective strategies for preventing drug-induced SV damage. We also highlight recent clinical developments for treating SV-related hearing loss and discuss future research trajectories in the field.
Collapse
Affiliation(s)
- Matsya R Thulasiram
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jacqueline M Ogier
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Alain Dabdoub
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Rubel D, Boulanger J, Craciun F, Xu EY, Zhang Y, Phillips L, Callahan M, Weber W, Song W, Ngai N, Bukanov NO, Shi X, Hariri A, Husson H, Ibraghimov-Beskrovnaya O, Liu S, Gross O. Anti-microRNA-21 Therapy on Top of ACE Inhibition Delays Renal Failure in Alport Syndrome Mouse Models. Cells 2022; 11:cells11040594. [PMID: 35203245 PMCID: PMC8869926 DOI: 10.3390/cells11040594] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
Col4a3−/− Alport mice serve as an animal model for renal fibrosis. MicroRNA-21 (miR-21) expression has been shown to be increased in the kidneys of Alport syndrome patients. Here, we investigated the nephroprotective effects of Lademirsen anti-miR-21 therapy. We used a fast-progressing Col4a3−/− mouse model with a 129/SvJ background and an intermediate-progressing F1 hybrid mouse model with a mixed genetic background, with angiotensin-converting enzyme inhibitor (ACEi) monotherapy in combination with anti-miR-21 therapy. In the fast-progressing model, the anti miR-21 and ACEi therapies showed an additive effect in the reduction in fibrosis, the decline of proteinuria, the preservation of kidney function and increased survival. In the intermediate-progressing F1 model, the anti-miR-21 and ACEi therapies individually improved kidney pathology. Both also improved kidney function and survival; however, the combination showed a significant additive effect, particularly for survival. RNA sequencing (RNA-seq) gene expression profiling revealed that the anti-miR-21 and ACEi therapies modulate several common pathways. However, anti-miR-21 was particularly effective at normalizing the expression profiles of the genes involved in renal tubulointerstitial injury pathways. In conclusion, significant additive effects were detected for the combination of anti-miR-21 and ACEi therapies on kidney function, pathology and survival in Alport mouse models, as well as a strong differential effect of anti-miR-21 on the renal expression of fibrotic factors. These results support the addition of anti-miR-21 to the current standard of care (ACEi) in ongoing clinical trials in patients with Alport syndrome.
Collapse
Affiliation(s)
- Diana Rubel
- Clinic for Nephrology and Rheumatology, University Medical Center Goettingen, 37075 Goettingen, Germany; (D.R.); (Y.Z.)
| | | | - Florin Craciun
- Sanofi-Genzyme Research and Development, Framingham, MA 02118, USA; (F.C.); (E.Y.X.); (L.P.); (M.C.); (W.W.); (W.S.); (N.N.); (N.O.B.); (X.S.); (H.H.); (O.I.-B.)
| | - Ethan Y. Xu
- Sanofi-Genzyme Research and Development, Framingham, MA 02118, USA; (F.C.); (E.Y.X.); (L.P.); (M.C.); (W.W.); (W.S.); (N.N.); (N.O.B.); (X.S.); (H.H.); (O.I.-B.)
- Excision BioTherapeutics, San Francisco, CA 94111, USA
| | - Yanqin Zhang
- Clinic for Nephrology and Rheumatology, University Medical Center Goettingen, 37075 Goettingen, Germany; (D.R.); (Y.Z.)
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Lucy Phillips
- Sanofi-Genzyme Research and Development, Framingham, MA 02118, USA; (F.C.); (E.Y.X.); (L.P.); (M.C.); (W.W.); (W.S.); (N.N.); (N.O.B.); (X.S.); (H.H.); (O.I.-B.)
- Abbvie Bioresearch Center, Worcester, MA 01605, USA
| | - Michelle Callahan
- Sanofi-Genzyme Research and Development, Framingham, MA 02118, USA; (F.C.); (E.Y.X.); (L.P.); (M.C.); (W.W.); (W.S.); (N.N.); (N.O.B.); (X.S.); (H.H.); (O.I.-B.)
| | - William Weber
- Sanofi-Genzyme Research and Development, Framingham, MA 02118, USA; (F.C.); (E.Y.X.); (L.P.); (M.C.); (W.W.); (W.S.); (N.N.); (N.O.B.); (X.S.); (H.H.); (O.I.-B.)
- Takeda Pharmaceuticals, Cambridge, MA 02139, USA
| | - Wenping Song
- Sanofi-Genzyme Research and Development, Framingham, MA 02118, USA; (F.C.); (E.Y.X.); (L.P.); (M.C.); (W.W.); (W.S.); (N.N.); (N.O.B.); (X.S.); (H.H.); (O.I.-B.)
| | - Nicholas Ngai
- Sanofi-Genzyme Research and Development, Framingham, MA 02118, USA; (F.C.); (E.Y.X.); (L.P.); (M.C.); (W.W.); (W.S.); (N.N.); (N.O.B.); (X.S.); (H.H.); (O.I.-B.)
| | - Nikolay O. Bukanov
- Sanofi-Genzyme Research and Development, Framingham, MA 02118, USA; (F.C.); (E.Y.X.); (L.P.); (M.C.); (W.W.); (W.S.); (N.N.); (N.O.B.); (X.S.); (H.H.); (O.I.-B.)
- Janssen Pharmaceuticals, Boston, MA 02115, USA
| | - Xingyi Shi
- Sanofi-Genzyme Research and Development, Framingham, MA 02118, USA; (F.C.); (E.Y.X.); (L.P.); (M.C.); (W.W.); (W.S.); (N.N.); (N.O.B.); (X.S.); (H.H.); (O.I.-B.)
- Novartis Institute for BioMedical Research, Boston, MA 02139, USA
| | - Ali Hariri
- Sanofi-Genzyme, Clinical Development, Cambridge, MA 02142, USA; (A.H.); (S.L.)
- Eloxx Pharmaceuticals, Watertown, MA 02140, USA
| | - Hervé Husson
- Sanofi-Genzyme Research and Development, Framingham, MA 02118, USA; (F.C.); (E.Y.X.); (L.P.); (M.C.); (W.W.); (W.S.); (N.N.); (N.O.B.); (X.S.); (H.H.); (O.I.-B.)
| | - Oxana Ibraghimov-Beskrovnaya
- Sanofi-Genzyme Research and Development, Framingham, MA 02118, USA; (F.C.); (E.Y.X.); (L.P.); (M.C.); (W.W.); (W.S.); (N.N.); (N.O.B.); (X.S.); (H.H.); (O.I.-B.)
- Dyne Therapeutics, Waltham, MA 02451, USA
| | - Shiguang Liu
- Sanofi-Genzyme, Clinical Development, Cambridge, MA 02142, USA; (A.H.); (S.L.)
| | - Oliver Gross
- Clinic for Nephrology and Rheumatology, University Medical Center Goettingen, 37075 Goettingen, Germany; (D.R.); (Y.Z.)
- Correspondence: ; Tel.: +49-551-39-60488
| |
Collapse
|
32
|
Czaya B, Heitman K, Campos I, Yanucil C, Kentrup D, Westbrook D, Gutierrez O, Babitt JL, Jung G, Salusky IB, Hanudel M, Faul C. Hyperphosphatemia increases inflammation to exacerbate anemia and skeletal muscle wasting independently of FGF23-FGFR4 signaling. eLife 2022; 11:74782. [PMID: 35302487 PMCID: PMC8963881 DOI: 10.7554/elife.74782] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/17/2022] [Indexed: 12/01/2022] Open
Abstract
Elevations in plasma phosphate concentrations (hyperphosphatemia) occur in chronic kidney disease (CKD), in certain genetic disorders, and following the intake of a phosphate-rich diet. Whether hyperphosphatemia and/or associated changes in metabolic regulators, including elevations of fibroblast growth factor 23 (FGF23) directly contribute to specific complications of CKD is uncertain. Here, we report that similar to patients with CKD, mice with adenine-induced CKD develop inflammation, anemia, and skeletal muscle wasting. These complications are also observed in mice fed high phosphate diet even without CKD. Ablation of pathologic FGF23-FGFR4 signaling did not protect mice on an increased phosphate diet or mice with adenine-induced CKD from these sequelae. However, low phosphate diet ameliorated anemia and skeletal muscle wasting in a genetic mouse model of CKD. Our mechanistic in vitro studies indicate that phosphate elevations induce inflammatory signaling and increase hepcidin expression in hepatocytes, a potential causative link between hyperphosphatemia, anemia, and skeletal muscle dysfunction. Our study suggests that high phosphate intake, as caused by the consumption of processed food, may have harmful effects irrespective of pre-existing kidney injury, supporting not only the clinical utility of treating hyperphosphatemia in CKD patients but also arguing for limiting phosphate intake in healthy individuals.
Collapse
Affiliation(s)
- Brian Czaya
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States,Department of Medicine, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Kylie Heitman
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States
| | - Isaac Campos
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States
| | - Christopher Yanucil
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States
| | - David Westbrook
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States
| | - Orlando Gutierrez
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States
| | - Jodie L Babitt
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Grace Jung
- Department of Medicine, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Isidro B Salusky
- Department of Pediatrics, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Mark Hanudel
- Department of Pediatrics, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Christian Faul
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
33
|
Namba M, Kobayashi T, Kohno M, Koyano T, Hirose T, Fukushima M, Matsuyama M. Creation of X-linked Alport syndrome rat model with Col4a5 deficiency. Sci Rep 2021; 11:20836. [PMID: 34675305 PMCID: PMC8531394 DOI: 10.1038/s41598-021-00354-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/12/2021] [Indexed: 12/31/2022] Open
Abstract
Alport syndrome is an inherited chronic human kidney disease, characterized by glomerular basement membrane abnormalities. This disease is caused by mutations in COL4A3, COL4A4, or COL4A5 gene. The knockout mice for Col4α3, Col4α4, and Col4α5 are developed and well characterized for the study of Alport syndrome. However, disease progression and effects of pharmacological therapy depend on the genetic variability. This model was reliable only to mouse. In this study, we created a novel Alport syndrome rat model utilizing the rGONAD technology, which generated rat with a deletion of the Col4α5 gene. Col4α5 deficient rats showed hematuria, proteinuria, high levels of BUN, Cre, and then died at 18 to 28 weeks of age (Hemizygous mutant males). Histological and ultrastructural analyses displayed the abnormalities including parietal cell hyperplasia, mesangial sclerosis, and interstitial fibrosis. Then, we demonstrated that α3/α4/α5 (IV) and α5/α5/α6 (IV) chains of type IV collagen disrupted in Col4α5 deficient rats. Thus, Col4α5 mutant rat is a reliable candidate for the Alport syndrome model for underlying the mechanism of kidney diseases and further identifying potential therapeutic targets for human renal diseases.
Collapse
Affiliation(s)
- Masumi Namba
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Tomoe Kobayashi
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Mayumi Kohno
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Takayuki Koyano
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Takuo Hirose
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Department of Endocrinology and Applied Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Fukushima
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan.,Shigei Medical Research Hospital, Okayama, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan.
| |
Collapse
|
34
|
Martínez-Pulleiro R, García-Murias M, Fidalgo-Díaz M, García-González MÁ. Molecular Basis, Diagnostic Challenges and Therapeutic Approaches of Alport Syndrome: A Primer for Clinicians. Int J Mol Sci 2021; 22:ijms222011063. [PMID: 34681722 PMCID: PMC8541626 DOI: 10.3390/ijms222011063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
Alport syndrome is a genetic and hereditary disease, caused by mutations in the type IV collagen genes COL4A3, COL4A4 and COL4A5, that affects the glomerular basement membrane of the kidney. It is a rare disease with an underestimated prevalence. Genetic analysis of population cohorts has revealed that it is the second most common inherited kidney disease after polycystic kidney disease. Renal involvement is the main manifestation, although it may have associated extrarenal manifestations such as hearing loss or ocular problems. The degree of expression of the disease changes according to the gene affected and other factors, known or yet to be known. The pathophysiology is not yet fully understood, although some receptors, pathways or molecules are known to be linked to the disease. There is also no specific treatment for Alport syndrome; the most commonly used are renin–angiotensin–aldosterone system inhibitors. In recent years, diagnosis has come a long way, thanks to advances in DNA sequencing technologies such as next-generation sequencing (NGS). Further research at the genetic and molecular levels in the future will complete the partial vision of the pathophysiological mechanism that we have, and will allow us to better understand what is happening and how to solve it.
Collapse
Affiliation(s)
- Raquel Martínez-Pulleiro
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (R.M.-P.); (M.G.-M.)
- Grupo de Medicina Xenómica (GMX), 15706 Santiago de Compostela, Spain
| | - María García-Murias
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (R.M.-P.); (M.G.-M.)
- Grupo de Medicina Xenómica (GMX), 15706 Santiago de Compostela, Spain
| | - Manuel Fidalgo-Díaz
- Departamento de Nefrología, Complexo Hospitalario Universitario de Santiago (CHUS), 15706 Santiago de Compostela, Spain;
| | - Miguel Ángel García-González
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (R.M.-P.); (M.G.-M.)
- Grupo de Medicina Xenómica (GMX), 15706 Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- Correspondence: ; Tel.: +34-981-555-197
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Chronic kidney disease-mineral and bone disorder (CKD-MBD) has become a global health crisis with very limited therapeutic options. Dentin matrix protein 1 (DMP1) is a matrix extracellular protein secreted by osteocytes that has generated recent interest for its possible involvement in CKD-MBD pathogenesis. This is a review of DMP1 established regulation and function, and early studies implicating DMP1 in CKD-MBD. RECENT FINDINGS Patients and mice with CKD show perturbations of DMP1 expression in bone, associated with impaired osteocyte maturation, mineralization, and increased fibroblast growth factor 23 (FGF23) production. In humans with CKD, low circulating DMP1 levels are independently associated with increased cardiovascular events. We recently showed that DMP1 supplementation lowers circulating FGF23 levels and improves bone mineralization and cardiac outcomes in mice with CKD. Mortality rates are extremely high among patients with CKD and have only marginally improved over decades. Bone disease and FGF23 excess contribute to mortality in CKD by increasing the risk of bone fractures and cardiovascular disease, respectively. Previous studies focused on DMP1 loss-of-function mutations have established its role in the regulation of FGF23 and bone mineralization. Recent studies show that DMP1 supplementation may fill a crucial therapeutic gap by improving bone and cardiac health in CKD.
Collapse
Affiliation(s)
- Aline Martin
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA.
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
36
|
Zhang P, Liu X, Abegg D, Tanaka T, Tong Y, Benhamou RI, Baisden J, Crynen G, Meyer SM, Cameron MD, Chatterjee AK, Adibekian A, Childs-Disney JL, Disney MD. Reprogramming of Protein-Targeted Small-Molecule Medicines to RNA by Ribonuclease Recruitment. J Am Chem Soc 2021; 143:13044-13055. [PMID: 34387474 DOI: 10.1021/jacs.1c02248] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reprogramming known medicines for a novel target with activity and selectivity over the canonical target is challenging. By studying the binding interactions between RNA folds and known small-molecule medicines and mining the resultant dataset across human RNAs, we identified that Dovitinib, a receptor tyrosine kinase (RTK) inhibitor, binds the precursor to microRNA-21 (pre-miR-21). Dovitinib was rationally reprogrammed for pre-miR-21 by using it as an RNA recognition element in a chimeric compound that also recruits RNase L to induce the RNA's catalytic degradation. By enhancing the inherent RNA-targeting activity and decreasing potency against canonical RTK protein targets in cells, the chimera shifted selectivity for pre-miR-21 by 2500-fold, alleviating disease progression in mouse models of triple-negative breast cancer and Alport Syndrome, both caused by miR-21 overexpression. Thus, targeted degradation can dramatically improve selectivity even across different biomolecules, i.e., protein versus RNA.
Collapse
Affiliation(s)
- Peiyuan Zhang
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| | - Xiaohui Liu
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| | - Daniel Abegg
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| | - Toru Tanaka
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| | - Yuquan Tong
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| | - Raphael I Benhamou
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| | - Jared Baisden
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| | - Gogce Crynen
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| | - Samantha M Meyer
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| | - Michael D Cameron
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| | - Arnab K Chatterjee
- California Institute for Biomedical Research (CALIBR), Scripps Research, La Jolla, California 92037, United States
| | - Alexander Adibekian
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| | | | - Matthew D Disney
- Department of Chemistry, Scripps Research, Jupiter, Florida 33458, United States
| |
Collapse
|
37
|
Wright MB, Varona Santos J, Kemmer C, Maugeais C, Carralot JP, Roever S, Molina J, Ducasa GM, Mitrofanova A, Sloan A, Ahmad A, Pedigo C, Ge M, Pressly J, Barisoni L, Mendez A, Sgrignani J, Cavalli A, Merscher S, Prunotto M, Fornoni A. Compounds targeting OSBPL7 increase ABCA1-dependent cholesterol efflux preserving kidney function in two models of kidney disease. Nat Commun 2021; 12:4662. [PMID: 34341345 PMCID: PMC8329197 DOI: 10.1038/s41467-021-24890-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/06/2021] [Indexed: 02/08/2023] Open
Abstract
Impaired cellular cholesterol efflux is a key factor in the progression of renal, cardiovascular, and autoimmune diseases. Here we describe a class of 5-arylnicotinamide compounds, identified through phenotypic drug discovery, that upregulate ABCA1-dependent cholesterol efflux by targeting Oxysterol Binding Protein Like 7 (OSBPL7). OSBPL7 was identified as the molecular target of these compounds through a chemical biology approach, employing a photoactivatable 5-arylnicotinamide derivative in a cellular cross-linking/immunoprecipitation assay. Further evaluation of two compounds (Cpd A and Cpd G) showed that they induced ABCA1 and cholesterol efflux from podocytes in vitro and normalized proteinuria and prevented renal function decline in mouse models of proteinuric kidney disease: Adriamycin-induced nephropathy and Alport Syndrome. In conclusion, we show that small molecule drugs targeting OSBPL7 reveal an alternative mechanism to upregulate ABCA1, and may represent a promising new therapeutic strategy for the treatment of renal diseases and other disorders of cellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Matthew B Wright
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Javier Varona Santos
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Christian Kemmer
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Cyrille Maugeais
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jean-Philippe Carralot
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Stephan Roever
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Judith Molina
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - G Michelle Ducasa
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Alexis Sloan
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Anis Ahmad
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Christopher Pedigo
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Mengyuan Ge
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jeffrey Pressly
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Laura Barisoni
- Department of Pathology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Armando Mendez
- Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Marco Prunotto
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA.
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
38
|
Wang D, Sant S, Ferrell N. A Biomimetic In Vitro Model of the Kidney Filtration Barrier Using Tissue-Derived Glomerular Basement Membrane. Adv Healthc Mater 2021; 10:e2002275. [PMID: 34218528 DOI: 10.1002/adhm.202002275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/24/2021] [Indexed: 01/28/2023]
Abstract
The glomerular filtration barrier (GFB) filters the blood to remove toxins while retaining high molecular weight proteins in the circulation. The glomerular basement membrane (GBM) and podocytes, highly specialized epithelial cells, are critical components of the filtration barrier. The GBM serves as a physical barrier to passage of molecules into the filtrate. Podocytes adhere to the filtrate side of the GBM and further restrict passage of high molecular weight molecules into the filtrate. Here, a 3D cell culture model of the glomerular filtration barrier to evaluate the role of the GBM and podocytes in mediating molecular diffusion is developed. GBM is isolated from mammalian kidneys to recapitulate the composition and mechanics of the in vivo basement membrane. The GFB model exhibits molecular selectivity that is comparable to the in vivo filtration barrier. The GBM alone provides a stringent barrier to passage of albumin and Ficoll. Podocytes further restrict molecular diffusion. Damage to the GBM that is typical of diabetic kidney disease is simulated using hypochlorous acid and results in increased molecular diffusion. This system can serve as a platform to evaluate the effects of GBM damage, podocyte injury, and reciprocal effects of altered podocyte-GBM interactions on kidney microvascular permeability.
Collapse
Affiliation(s)
- Dan Wang
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, 1161 21st Ave. South, Nashville, TN, 37232, USA
| | - Snehal Sant
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, 1161 21st Ave. South, Nashville, TN, 37232, USA
| | - Nicholas Ferrell
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, 1161 21st Ave. South, Nashville, TN, 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Vanderbilt Center for Kidney Disease, S3223 Medical Center North, Nashville, TN, 37232, USA
| |
Collapse
|
39
|
Stenvinkel P, Chertow GM, Devarajan P, Levin A, Andreoli SP, Bangalore S, Warady BA. Chronic Inflammation in Chronic Kidney Disease Progression: Role of Nrf2. Kidney Int Rep 2021; 6:1775-1787. [PMID: 34307974 PMCID: PMC8258499 DOI: 10.1016/j.ekir.2021.04.023] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Despite recent advances in the management of chronic kidney disease (CKD), morbidity and mortality rates in these patients remain high. Although pressure-mediated injury is a well-recognized mechanism of disease progression in CKD, emerging data indicate that an intermediate phenotype involving chronic inflammation, oxidative stress, hypoxia, senescence, and mitochondrial dysfunction plays a key role in the etiology, progression, and pathophysiology of CKD. A variety of factors promote chronic inflammation in CKD, including oxidative stress and the adoption of a proinflammatory phenotype by resident kidney cells. Regulation of proinflammatory and anti-inflammatory factors through NF-κB- and nuclear factor, erythroid 2 like 2 (Nrf2)-mediated gene transcription, respectively, plays a critical role in the glomerular and tubular cell response to kidney injury. Chronic inflammation contributes to the decline in glomerular filtration rate (GFR) in CKD. Whereas the role of chronic inflammation in diabetic kidney disease (DKD) has been well-elucidated, there is now substantial evidence indicating unresolved inflammatory processes lead to fibrosis and eventual end-stage kidney disease (ESKD) in several other diseases, such as Alport syndrome, autosomal-dominant polycystic kidney disease (ADPKD), IgA nephropathy (IgAN), and focal segmental glomerulosclerosis (FSGS). In this review, we aim to clarify the mechanisms of chronic inflammation in the pathophysiology and disease progression across the spectrum of kidney diseases, with a focus on Nrf2.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Department of Renal Medicine M99, Karolinska University Hospital at Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Glenn M Chertow
- Division of Nephrology, Stanford University, Stanford, California, USA
| | - Prasad Devarajan
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Adeera Levin
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Sharon P Andreoli
- Department of Pediatrics, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Sripal Bangalore
- Division of Cardiology, New York University, New York, New York, USA
| | - Bradley A Warady
- Division of Pediatric Nephrology, Children's Mercy Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
40
|
Solagna F, Tezze C, Lindenmeyer MT, Lu S, Wu G, Liu S, Zhao Y, Mitchell R, Meyer C, Omairi S, Kilic T, Paolini A, Ritvos O, Pasternack A, Matsakas A, Kylies D, zur Wiesch JS, Turner JE, Wanner N, Nair V, Eichinger F, Menon R, Martin IV, Klinkhammer BM, Hoxha E, Cohen CD, Tharaux PL, Boor P, Ostendorf T, Kretzler M, Sandri M, Kretz O, Puelles VG, Patel K, Huber TB. Pro-cachectic factors link experimental and human chronic kidney disease to skeletal muscle wasting programs. J Clin Invest 2021; 131:135821. [PMID: 34060483 PMCID: PMC8159690 DOI: 10.1172/jci135821] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle wasting is commonly associated with chronic kidney disease (CKD), resulting in increased morbidity and mortality. However, the link between kidney and muscle function remains poorly understood. Here, we took a complementary interorgan approach to investigate skeletal muscle wasting in CKD. We identified increased production and elevated blood levels of soluble pro-cachectic factors, including activin A, directly linking experimental and human CKD to skeletal muscle wasting programs. Single-cell sequencing data identified the expression of activin A in specific kidney cell populations of fibroblasts and cells of the juxtaglomerular apparatus. We propose that persistent and increased kidney production of pro-cachectic factors, combined with a lack of kidney clearance, facilitates a vicious kidney/muscle signaling cycle, leading to exacerbated blood accumulation and, thereby, skeletal muscle wasting. Systemic pharmacological blockade of activin A using soluble activin receptor type IIB ligand trap as well as muscle-specific adeno-associated virus-mediated downregulation of its receptor ACVR2A/B prevented muscle wasting in different mouse models of experimental CKD, suggesting that activin A is a key factor in CKD-induced cachexia. In summary, we uncovered a crosstalk between kidney and muscle and propose modulation of activin signaling as a potential therapeutic strategy for skeletal muscle wasting in CKD.
Collapse
Affiliation(s)
- Francesca Solagna
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Caterina Tezze
- Veneto Institute of Molecular Medicine, Padua, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Maja T. Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shun Lu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guochao Wu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shuya Liu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yu Zhao
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Mitchell
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Charlotte Meyer
- Renal Division, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Saleh Omairi
- College of Medicine, University of Wasit, Kut, Iraq
| | - Temel Kilic
- Renal Division, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Andrea Paolini
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull, United Kingdom
| | - Dominik Kylies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viji Nair
- Michigan Medicine, Ann Arbor, Michigan, USA
| | | | | | - Ina V. Martin
- Department of Nephrology and Clinical Immunology and
| | | | - Elion Hoxha
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clemens D. Cohen
- Nephrological Center, Medical Clinic and Polyclinic IV, University of Munich, Munich, Germany
| | - Pierre-Louis Tharaux
- Paris Centre de Recherche Cardiovasculaire, INSERM, Université de Paris, Paris, France
| | - Peter Boor
- Department of Nephrology and Clinical Immunology and
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | | | | | - Marco Sandri
- Veneto Institute of Molecular Medicine, Padua, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victor G. Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, United Kingdom
- Freiburg Institute for Advanced Studies and Center for Biological System Analysis, University of Freiburg, Freiburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Freiburg Institute for Advanced Studies and Center for Biological System Analysis, University of Freiburg, Freiburg, Germany
| |
Collapse
|
41
|
Pokidysheva EN, Seeger H, Pedchenko V, Chetyrkin S, Bergmann C, Abrahamson D, Cui ZW, Delpire E, Fervenza FC, Fidler AL, Fogo AB, Gaspert A, Grohmann M, Gross O, Haddad G, Harris RC, Kashtan C, Kitching AR, Lorenzen JM, McAdoo S, Pusey CD, Segelmark M, Simmons A, Voziyan PA, Wagner T, Wüthrich RP, Zhao MH, Boudko SP, Kistler AD, Hudson BG. Collagen IV α345 dysfunction in glomerular basement membrane diseases. I. Discovery of a COL4A3 variant in familial Goodpasture's and Alport diseases. J Biol Chem 2021; 296:100590. [PMID: 33774048 PMCID: PMC8100070 DOI: 10.1016/j.jbc.2021.100590] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/11/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Diseases of the glomerular basement membrane (GBM), such as Goodpasture’s disease (GP) and Alport syndrome (AS), are a major cause of chronic kidney failure and an unmet medical need. Collagen IVα345 is an important architectural element of the GBM that was discovered in previous research on GP and AS. How this collagen enables GBM to function as a permselective filter and how structural defects cause renal failure remain an enigma. We found a distinctive genetic variant of collagen IVα345 in both a familial GP case and four AS kindreds that provided insights into these mechanisms. The variant is an 8-residue appendage at the C-terminus of the α3 subunit of the α345 hexamer. A knock-in mouse harboring the variant displayed GBM abnormalities and proteinuria. This pathology phenocopied AS, which pinpointed the α345 hexamer as a focal point in GBM function and dysfunction. Crystallography and assembly studies revealed underlying hexamer mechanisms, as described in Boudko et al. and Pedchenko et al. Bioactive sites on the hexamer surface were identified where pathogenic pathways of GP and AS converge and, potentially, that of diabetic nephropathy (DN). We conclude that the hexamer functions include signaling and organizing macromolecular complexes, which enable GBM assembly and function. Therapeutic modulation or replacement of α345 hexamer could therefore be a potential treatment for GBM diseases, and this knock-in mouse model is suitable for developing gene therapies.
Collapse
Affiliation(s)
- Elena N Pokidysheva
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Harald Seeger
- Nephrology Division, University Hospital Zurich, Zurich, Switzerland
| | - Vadim Pedchenko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sergei Chetyrkin
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Carsten Bergmann
- Department of Medicine and Nephrology, University Hospital Freiburg, Freiburg, Germany; Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | - Dale Abrahamson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Zhao Wei Cui
- Renal Division, Peking University First Hospital, Beijing, PR China
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Fernando C Fervenza
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Aaron L Fidler
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Aspirnaut Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Agnes B Fogo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ariana Gaspert
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Maik Grohmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | - Oliver Gross
- Clinic of Nephrology and Rheumatology, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - George Haddad
- Nephrology Division, University Hospital Zurich, Zurich, Switzerland
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Clifford Kashtan
- Division of Pediatric Nephrology, University of Minnesota Medical School and Masonic Children's Hospital, Minneapolis, Minnesota, USA
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department Medicine, Nephrology, Monash Health, Clayton, VIC, Australia
| | - Johan M Lorenzen
- Nephrology Division, University Hospital Zurich, Zurich, Switzerland
| | - Stephen McAdoo
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Charles D Pusey
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Marten Segelmark
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Alicia Simmons
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Aspirnaut Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paul A Voziyan
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Timo Wagner
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | - Rudolf P Wüthrich
- Nephrology Division, University Hospital Zurich, Zurich, Switzerland
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital, Beijing, PR China
| | - Sergei P Boudko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Andreas D Kistler
- Department of Internal Medicine, Kantonsspital Frauenfeld, Frauenfeld, Switzerland
| | - Billy G Hudson
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Aspirnaut Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
42
|
Suh SH, Mathew AP, Choi HS, Vasukutty A, Kim CS, Kim IJ, Ma SK, Kim SW, Park IK, Bae EH. Kidney-accumulating olmesartan-loaded nanomicelles ameliorate the organ damage in a murine model of Alport syndrome. Int J Pharm 2021; 600:120497. [PMID: 33753165 DOI: 10.1016/j.ijpharm.2021.120497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
ACE inhibitors or angiotensin II receptor blockers (ACEi/ARBs) have been a cornerstone of the management in kidney disease, but their use is often limited by undesired systemic effects, such as symptomatic hypotension. To minimize the extra-renal effects of ACEi/ARBs, we formulated hydrophobically modified glycol chitosan (HGC) nanomicelles releasing olmesartan (HGC-Olm) that specifically accumulated in the kidney, and investigated whether kidney-specific delivery of olmesartan by HGC nanomicelles could ameliorate organ damage in Col4a3-/- mouse, a murine model of progressive chronic kidney disease mimicking human Alport syndrome. Ex vivo tracing demonstrated that intravenously injected HGC-Olm nanomicelles were specifically delivered to the kidney, with sustained release of olmesartan for more than 48 h. Contrary to the conventional delivery of olmesartan via oral route, injection of HGC-Olm nanomicelles did not alter blood pressure in Col4a3-/- mice. Immunohistochemistry revealed that HGC nanomicelles were diffusely distributed from the cortex and glomeruli to the outer medulla, sparing the inner medulla. Phenotypic analysis showed that the attenuation of kidney fibrosis in the kidney of Col4a3-/- mice by HGC-Olm nanomicelles was comparable to that noted with conventionally delivered olmesartan. Therefore, our results suggest that HGC-Olm nanomicelles could be a safe and effective alternative drug delivery system for kidney diseases.
Collapse
Affiliation(s)
- Sang Heon Suh
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ansuja Pulickal Mathew
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hong Sang Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Arathy Vasukutty
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - In Jin Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea.
| |
Collapse
|
43
|
Kashtan CE, Gross O. Clinical practice recommendations for the diagnosis and management of Alport syndrome in children, adolescents, and young adults-an update for 2020. Pediatr Nephrol 2021; 36:711-719. [PMID: 33159213 DOI: 10.1007/s00467-020-04819-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022]
Abstract
In 2013, we published a set of clinical practice recommendations for the treatment of Alport syndrome in this journal. We recommended delaying the initiation of angiotensin-converting enzyme inhibition until the onset of overt proteinuria or, in some cases, microalbuminuria. Developments that have occurred over the past 7 years have prompted us to revise these recommendations. We now recommend the initiation of treatment at the time of diagnosis in males with X-linked Alport syndrome and in males and females with autosomal recessive Alport syndrome. We further recommend starting treatment at the onset of microalbuminuria in females with X-linked Alport syndrome and in males and females with autosomal dominant Alport syndrome. This article presents the rationale for these revisions as well as recommendations for diagnostic tactics intended to ensure the early diagnosis of Alport syndrome.
Collapse
Affiliation(s)
- Clifford E Kashtan
- Department of Pediatrics, Division of Pediatric Nephrology, University of Minnesota Medical School, 2450 Riverside Avenue, Minneapolis, MN, 55454, USA.
| | - Oliver Gross
- Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
44
|
Panizo S, Martínez-Arias L, Alonso-Montes C, Cannata P, Martín-Carro B, Fernández-Martín JL, Naves-Díaz M, Carrillo-López N, Cannata-Andía JB. Fibrosis in Chronic Kidney Disease: Pathogenesis and Consequences. Int J Mol Sci 2021; 22:E408. [PMID: 33401711 PMCID: PMC7795409 DOI: 10.3390/ijms22010408] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is a process characterized by an excessive accumulation of the extracellular matrix as a response to different types of tissue injuries, which leads to organ dysfunction. The process can be initiated by multiple and different stimuli and pathogenic factors which trigger the cascade of reparation converging in molecular signals responsible of initiating and driving fibrosis. Though fibrosis can play a defensive role, in several circumstances at a certain stage, it can progressively become an uncontrolled irreversible and self-maintained process, named pathological fibrosis. Several systems, molecules and responses involved in the pathogenesis of the pathological fibrosis of chronic kidney disease (CKD) will be discussed in this review, putting special attention on inflammation, renin-angiotensin system (RAS), parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), Klotho, microRNAs (miRs), and the vitamin D hormonal system. All of them are key factors of the core and regulatory pathways which drive fibrosis, having a great negative kidney and cardiac impact in CKD.
Collapse
Affiliation(s)
- Sara Panizo
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Laura Martínez-Arias
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Cristina Alonso-Montes
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Pablo Cannata
- Pathology Department, Fundación Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Retic REDinREN-ISCIII, 28040 Madrid, Spain;
| | - Beatriz Martín-Carro
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - José L. Fernández-Martín
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Natalia Carrillo-López
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Jorge B. Cannata-Andía
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| |
Collapse
|
45
|
Odiatis C, Savva I, Pieri M, Ioannou P, Petrou P, Papagregoriou G, Antoniadou K, Makrides N, Stefanou C, Ljubanović DG, Nikolaou G, Borza DB, Stylianou K, Gross O, Deltas C. A glycine substitution in the collagenous domain of Col4a3 in mice recapitulates late onset Alport syndrome. Matrix Biol Plus 2020; 9:100053. [PMID: 33718859 PMCID: PMC7930875 DOI: 10.1016/j.mbplus.2020.100053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Alport syndrome (AS) is a severe inherited glomerulopathy caused by mutations in the genes encoding the α-chains of type-IV collagen, the most abundant component of the extracellular glomerular basement membrane (GBM). Currently most AS mouse models are knockout models for one of the collagen-IV genes. In contrast, about half of AS patients have missense mutations, with single aminoacid substitutions of glycine being the most common. The only mouse model for AS with a homozygous knockin missense mutation, Col4a3-p.Gly1332Glu, was partly described before by our group. Here, a detailed in-depth description of the same mouse is presented, along with another compound heterozygous mouse that carries the glycine substitution in trans with a knockout allele. Both mice recapitulate essential features of AS, including shorten lifespan by 30–35%, increased proteinuria, increased serum urea and creatinine, pathognomonic alternate GBM thinning and thickening, and podocyte foot process effacement. Notably, glomeruli and tubuli respond differently to mutant collagen-IV protomers, with reduced expression in tubules but apparently normal in glomeruli. However, equally important is the fact that in the glomeruli the mutant α3-chain as well as the normal α4/α5 chains seem to undergo a cleavage at, or near the point of the mutation, possibly by the metalloproteinase MMP-9, producing a 35 kDa C-terminal fragment. These mouse models represent a good tool for better understanding the spectrum of molecular mechanisms governing collagen-IV nephropathies and could be used for pre-clinical studies aimed at better treatments for AS. Two mouse models were generated that recapitulate essential features of AS patients. Glomeruli and tubuli respond differently to mutant collagen IV protomers. The mutant colIV protomers in glomeruli probably undergo a cleavage process by MMP9. The two AS mouse models represent a good tool for studying collagen-IV nephropathies. These models could be used for pre-clinical studies aimed at better treatments.
Collapse
Key Words
- ARAS, autosomal recessive alport syndrome
- AS, alport syndrome
- Alport syndrome
- BSA, bovine serum albumin
- Collagen-IV
- EM, electron microscopy
- ESRD, end stage renal disease
- GBM, glomerular basement membrane
- Glomerular basement membrane
- Glycine missense mutation
- Kidney disease
- Mouse model
- PAS, periodic acid schiff
- TBM, tubular basement membrane
- TGF-b1, transforming growth factor beta1
- UPR, unfolded protein response
Collapse
Affiliation(s)
- Christoforos Odiatis
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus Medical School, Cyprus
| | - Isavella Savva
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus Medical School, Cyprus
| | - Myrtani Pieri
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, Cyprus
| | - Pavlos Ioannou
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus Medical School, Cyprus
| | - Petros Petrou
- Department of Biochemistry, The Cyprus Institute of Neurology and Genetics, Cyprus
| | - Gregory Papagregoriou
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus Medical School, Cyprus
| | - Kyriaki Antoniadou
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus Medical School, Cyprus
| | - Neoklis Makrides
- Department of Developmental Functional Genetics, The Cyprus Institute of Neurology and Genetics, Cyprus
| | - Charalambos Stefanou
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus Medical School, Cyprus
| | | | - Georgios Nikolaou
- Veterinary diagnostic laboratory, Vet ex Machina LTD, Nicosia, Cyprus
| | - Dorin-Bogdan Borza
- Dept. of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN, United States of America
| | - Kostas Stylianou
- Department of Nephrology, University of Crete Medical School, Greece
| | - Oliver Gross
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Constantinos Deltas
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus Medical School, Cyprus
| |
Collapse
|
46
|
Clerin V, Saito H, Filipski KJ, Nguyen AH, Garren J, Kisucka J, Reyes M, Jüppner H. Selective pharmacological inhibition of the sodium-dependent phosphate cotransporter NPT2a promotes phosphate excretion. J Clin Invest 2020; 130:6510-6522. [PMID: 32853180 PMCID: PMC7685737 DOI: 10.1172/jci135665] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
The sodium-phosphate cotransporter NPT2a plays a key role in the reabsorption of filtered phosphate in proximal renal tubules, thereby critically contributing to phosphate homeostasis. Inadequate urinary phosphate excretion can lead to severe hyperphosphatemia as in tumoral calcinosis and chronic kidney disease (CKD). Pharmacological inhibition of NPT2a may therefore represent an attractive approach for treating hyperphosphatemic conditions. The NPT2a-selective small-molecule inhibitor PF-06869206 was previously shown to reduce phosphate uptake in human proximal tubular cells in vitro. Here, we investigated the acute and chronic effects of the inhibitor in rodents and report that administration of PF-06869206 was well tolerated and elicited a dose-dependent increase in fractional phosphate excretion. This phosphaturic effect lowered plasma phosphate levels in WT mice and in rats with CKD due to subtotal nephrectomy. PF-06869206 had no effect on Npt2a-null mice, but promoted phosphate excretion and reduced phosphate levels in normophophatemic mice lacking Npt2c and in hyperphosphatemic mice lacking Fgf23 or Galnt3. In CKD rats, once-daily administration of PF-06869206 for 8 weeks induced an unabated acute phosphaturic and hypophosphatemic effect, but had no statistically significant effect on FGF23 or PTH levels. Selective pharmacological inhibition of NPT2a thus holds promise as a therapeutic option for genetic and acquired hyperphosphatemic disorders.
Collapse
Affiliation(s)
- Valerie Clerin
- Pfizer Inc., Worldwide Research, Development and Medical, Cambridge, Massachusetts, USA
| | | | - Kevin J. Filipski
- Pfizer Inc., Worldwide Research, Development and Medical, Cambridge, Massachusetts, USA
| | - An Hai Nguyen
- Pfizer Inc., Worldwide Research, Development and Medical, Cambridge, Massachusetts, USA
| | - Jeonifer Garren
- Pfizer Inc., Worldwide Research, Development and Medical, Cambridge, Massachusetts, USA
| | - Janka Kisucka
- Pfizer Inc., Worldwide Research, Development and Medical, Cambridge, Massachusetts, USA
| | | | - Harald Jüppner
- Endocrine Unit and
- Pediatric Nephrology Unit, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Bidirectional, non-necrotizing glomerular crescents are the critical pathology in X-linked Alport syndrome mouse model harboring nonsense mutation of human COL4A5. Sci Rep 2020; 10:18891. [PMID: 33144651 PMCID: PMC7642296 DOI: 10.1038/s41598-020-76068-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
X-linked Alport syndrome (XLAS) is a progressive kidney disease caused by genetic abnormalities of COL4A5. Lack of collagen IV α5 chain staining and “basket-weave” by electron microscopy (EM) in glomerular basement membrane (GBM) are its typical pathology. However, the causal relationship between GBM defects and progressive nephropathy is unknown. We analyzed sequential pathology in a mouse model of XLAS harboring a human nonsense mutation of COL4A5. In mutant mice, nephropathy commenced from focal GBM irregularity by EM at 6 weeks of age, prior to exclusive crescents at 13 weeks of age. Low-vacuum scanning EM demonstrated substantial ragged features in GBM, and crescents were closely associated with fibrinoid exudate, despite lack of GBM break and podocyte depletion at 13 weeks of age. Crescents were derived from two sites by different cellular components. One was CD44 + cells, often with fibrinoid exudate in the urinary space, and the other was accumulation of α-SMA + cells in the thickened Bowman’s capsule. These changes finally coalesced, leading to global obliteration. In conclusion, vulnerability of glomerular and capsular barriers to the structural defect in collagen IV may cause non-necrotizing crescents via activation of PECs and migration of interstitial fibroblasts, promoting kidney disease in this model.
Collapse
|
48
|
Egea G, Jiménez-Altayó F, Campuzano V. Reactive Oxygen Species and Oxidative Stress in the Pathogenesis and Progression of Genetic Diseases of the Connective Tissue. Antioxidants (Basel) 2020; 9:antiox9101013. [PMID: 33086603 PMCID: PMC7603119 DOI: 10.3390/antiox9101013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Connective tissue is known to provide structural and functional “glue” properties to other tissues. It contains cellular and molecular components that are arranged in several dynamic organizations. Connective tissue is the focus of numerous genetic and nongenetic diseases. Genetic diseases of the connective tissue are minority or rare, but no less important than the nongenetic diseases. Here we review the impact of reactive oxygen species (ROS) and oxidative stress on the onset and/or progression of diseases that directly affect connective tissue and have a genetic origin. It is important to consider that ROS and oxidative stress are not synonymous, although they are often closely linked. In a normal range, ROS have a relevant physiological role, whose levels result from a fine balance between ROS producers and ROS scavenge enzymatic systems. However, pathology arises or worsens when such balance is lost, like when ROS production is abnormally and constantly high and/or when ROS scavenge (enzymatic) systems are impaired. These concepts apply to numerous diseases, and connective tissue is no exception. We have organized this review around the two basic structural molecular components of connective tissue: The ground substance and fibers (collagen and elastic fibers).
Collapse
Affiliation(s)
- Gustavo Egea
- Department of Biomedical Science, University of Barcelona School of Medicine and Health Sciences, 08036 Barcelona, Spain;
- Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
- Institut de Nanociencies I Nanotecnologia (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-021-909
| | - Francesc Jiménez-Altayó
- Departament of Pharmacology, Therapeutics, and Toxicology, Neuroscience Institute, Autonomous University of Barcelona, 08193 Barcelona, Spain;
| | - Victoria Campuzano
- Department of Biomedical Science, University of Barcelona School of Medicine and Health Sciences, 08036 Barcelona, Spain;
| |
Collapse
|
49
|
Kuang X, Sun L, Wu Y, Huang W. A novel missense mutation of COL4A5 gene alter collagen IV α5 chain to cause X-linked Alport syndrome in a Chinese family. Transl Pediatr 2020; 9:587-595. [PMID: 33209720 PMCID: PMC7658769 DOI: 10.21037/tp-20-47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND X-linked Alport syndrome (XLAS) is the most common form of Alport syndrome (AS), involves mutations in the COL4A5 gene encoding the type IV collagen a5 chain. In this research, we will report the analysis of the COL4A5 gene in a Chinese family with XLAS, and investigate the effect of the missense mutation of this family on type IV collagen. METHODS Targeted sequencing using next-generation sequencing (NGS) was conducted for genes (COL4A3/4/5). Normal and mutation COL4A5 plasmids were constructed and then transfected into human podocytes, none plasmid and empty plasmid transfection as control. And then real-time PCR, western blot and indirect immunofluorescence were used to detect the COL4A1/3/5 mRNA, protein, and immunofluorescence expression of each group. RESULTS In this study, we found an Alport family, and the whole exon sequencing found a new missense mutation c.1844G>C in exon 25. The results of real-time PCR, western blot and immunofluorescence showed that in the mutation group, both the mRNA and protein levels of COL4A5 were significantly reduced. CONCLUSIONS c.1844G>C is a functional variation of COL4A5, which might play a very important role in the occurrence and development of AS.
Collapse
Affiliation(s)
- Xinyu Kuang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Children's Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Lei Sun
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Children's Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wu
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Children's Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Wenyan Huang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Children's Hospital of Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
50
|
Dufek B, Meehan DT, Delimont D, Wilhelm K, Samuelson G, Coenen R, Madison J, Doyle E, Smyth B, Phillips G, Gratton MA, Cosgrove D. RNA-seq analysis of gene expression profiles in isolated stria vascularis from wild-type and Alport mice reveals key pathways underling Alport strial pathogenesis. PLoS One 2020; 15:e0237907. [PMID: 32822386 PMCID: PMC7446819 DOI: 10.1371/journal.pone.0237907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Previous work demonstrates that the hearing loss in Alport mice is caused by defects in the stria vascularis. As the animals age, progressive thickening of strial capillary basement membranes (SCBMs) occurs associated with elevated levels of extracellular matrix expression and hypoxia-related gene and protein expression. These conditions render the animals susceptible to noise-induced hearing loss. In an effort to develop a more comprehensive understanding of how the underlying mutation in the COL4A3 gene influences homeostasis in the stria vascularis, we performed vascular permeability studies combined with RNA-seq analysis using isolated stria vascularis from 7-week old wild-type and Alport mice on the 129 Sv background. Alport SCBMs were found to be less permeable than wild-type littermates. RNA-seq and bioinformatics analysis revealed 68 genes were induced and 61 genes suppressed in the stria from Alport mice relative to wild-type using a cut-off of 2-fold. These included pathways involving transcription factors associated with the regulation of pro-inflammatory responses as well as cytokines, chemokines, and chemokine receptors that are up- or down-regulated. Canonical pathways included modulation of genes associated with glucose and glucose-1-PO4 degradation, NAD biosynthesis, histidine degradation, calcium signaling, and glutamate receptor signaling (among others). In all, the data point to the Alport stria being in an inflammatory state with disruption in numerous metabolic pathways indicative of metabolic stress, a likely cause for the susceptibility of Alport mice to noise-induced hearing loss under conditions that do not cause permanent hearing loss in age/strain-matched wild-type mice. The work lays the foundation for studies aimed at understanding the nature of strial pathology in Alport mice. The modulation of these genes under conditions of therapeutic intervention may provide important pre-clinical data to justify trials in humans afflicted with the disease.
Collapse
Affiliation(s)
- Brianna Dufek
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Daniel T. Meehan
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Duane Delimont
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Kevin Wilhelm
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Gina Samuelson
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Ross Coenen
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Jacob Madison
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Edward Doyle
- Department of Otolaryngology, Wake Forest School of Medicine, Washington University, Saint Louis, MO, United States of America
| | - Brendan Smyth
- Department of Otolaryngology, Wake Forest School of Medicine, Washington University, Saint Louis, MO, United States of America
| | - Grady Phillips
- Department of Otolaryngology, Wake Forest School of Medicine, Washington University, Saint Louis, MO, United States of America
| | - Michael Anne Gratton
- Department of Otolaryngology, Wake Forest School of Medicine, Washington University, Saint Louis, MO, United States of America
| | - Dominic Cosgrove
- Boys Town National Research Hospital, Omaha, NE, United States of America
| |
Collapse
|