1
|
Blank HM, No EG, Polymenis M. Cdk activation by phosphorylation: linking growth signals to cell cycle control. Biochem Soc Trans 2025; 53:BST20253004. [PMID: 40358525 DOI: 10.1042/bst20253004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025]
Abstract
Cells adjust their proliferation in response to extrinsic factors and nutrients. Such inputs must reach the cell cycle machinery to ensure proper cell proliferation. This minireview focuses on evidence suggesting that phosphorylating the T-loop domain of cyclin-dependent kinases may be a critical and conserved conduit for these external signals. Understanding this regulatory mechanism could provide crucial insights into how all eukaryotic cells integrate external information to decide whether or not to divide.
Collapse
Affiliation(s)
- Heidi M Blank
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd., College Station, Texas 77843, U.S.A
| | - Eun-Gyu No
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd., College Station, Texas 77843, U.S.A
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd., College Station, Texas 77843, U.S.A
| |
Collapse
|
2
|
Zhang M, Zhao Y, Cui H, Huang W, Xiong K, Yang S, Duan Y, He Y, Yang L, Su C, Lu Y. CO 2 potentiates echinocandin efficacy during invasive candidiasis therapy via dephosphorylation of Hsp90 by Ptc2 in condensates. Proc Natl Acad Sci U S A 2025; 122:e2417721122. [PMID: 39908105 PMCID: PMC11831212 DOI: 10.1073/pnas.2417721122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025] Open
Abstract
Carbon dioxide is a signaling cue critical for fungal pathogenesis. Ptc2, a type 2C protein phosphatase (PP2C), serves as a conserved CO2 sensor in fungi. By combining phosphoproteomic and biochemical assays, we identified Hsp90 as a direct target of Ptc2 at host CO2 concentrations and Ssb1 as a Ptc2 target protein regardless of CO2 levels in Candida albicans, the most prevalent human fungal pathogen. Ptc2 forms reversible condensates at elevated CO2, which enables the recruitment of Hsp90, but not Ssb1, to condensates, allowing efficient dephosphorylation. This process confers an enhanced susceptibility to caspofungin in vitro and during in vivo infection therapy. Importantly, we demonstrate this phenomenon in non-albicans Candida species. Sequential passages of C. albicans in mice with caspofungin treatment readily induce in vivo drug tolerance, causing therapeutic failure. These evolved strains display increased resistance to caspofungin under host concentrations of CO2 but remain susceptible in air. Collectively, our study reveals a profound impact of host concentrations of CO2 on antifungal drug susceptibility and connects this phenotype to therapeutic outcomes and highlights condensate formation as an efficient means that enables selective recruitment of substrates for certain signaling events.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei230032, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei230032, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan430072, China
| | - Youzhi Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan430072, China
| | - Hao Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan430072, China
| | - Wenqiang Huang
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei230032, China
| | - Kang Xiong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan430072, China
| | - Shan Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Yuanyuan Duan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan430072, China
| | - Yong He
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei230032, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei230032, China
| | - Lianjuan Yang
- Shanghai Dermatology Hospital, School of Medicine, Tongji University, Shanghai200443, China
| | - Chang Su
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Yang Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan430072, China
| |
Collapse
|
3
|
Li H, Han Z, Sun Y, Wang F, Hu P, Gao Y, Bai X, Peng S, Ren C, Xu X, Liu Z, Chen H, Yang Y, Bo X. CGMega: explainable graph neural network framework with attention mechanisms for cancer gene module dissection. Nat Commun 2024; 15:5997. [PMID: 39013885 PMCID: PMC11252405 DOI: 10.1038/s41467-024-50426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Cancer is rarely the straightforward consequence of an abnormality in a single gene, but rather reflects a complex interplay of many genes, represented as gene modules. Here, we leverage the recent advances of model-agnostic interpretation approach and develop CGMega, an explainable and graph attention-based deep learning framework to perform cancer gene module dissection. CGMega outperforms current approaches in cancer gene prediction, and it provides a promising approach to integrate multi-omics information. We apply CGMega to breast cancer cell line and acute myeloid leukemia (AML) patients, and we uncover the high-order gene module formed by ErbB family and tumor factors NRG1, PPM1A and DLG2. We identify 396 candidate AML genes, and observe the enrichment of either known AML genes or candidate AML genes in a single gene module. We also identify patient-specific AML genes and associated gene modules. Together, these results indicate that CGMega can be used to dissect cancer gene modules, and provide high-order mechanistic insights into cancer development and heterogeneity.
Collapse
Affiliation(s)
- Hao Li
- Academy of Military Medical Sciences, Beijing, China
| | - Zebei Han
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai, China
| | - Yu Sun
- Academy of Military Medical Sciences, Beijing, China
| | - Fu Wang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai, China
| | - Pengzhen Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yuang Gao
- Department of Hematology, PLA General Hospital, the Fifth Medical Center, Beijing, China
| | - Xuemei Bai
- Academy of Military Medical Sciences, Beijing, China
| | - Shiyu Peng
- Academy of Military Medical Sciences, Beijing, China
| | - Chao Ren
- Academy of Military Medical Sciences, Beijing, China
| | - Xiang Xu
- Academy of Military Medical Sciences, Beijing, China
| | - Zeyu Liu
- Academy of Military Medical Sciences, Beijing, China
| | - Hebing Chen
- Academy of Military Medical Sciences, Beijing, China.
| | - Yang Yang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai, China.
| | - Xiaochen Bo
- Academy of Military Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Liu T, Qin J, Shang W, Chen J, Subbarao KV, Hu X. The Phosphatase VdPtc3 Regulates Virulence in Verticillium dahliae by Interacting with VdAtg1. PHYTOPATHOLOGY 2023; 113:1048-1057. [PMID: 36449525 DOI: 10.1094/phyto-09-22-0320-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Type 2C protein phosphatases regulate various biological processes in eukaryotes. However, their functions in Verticillium dahliae have not been characterized. In this study, homologs VdPtc1, VdPtc3, VdPtc5, VdPtc6, and VdPtc7 were identified in V. dahliae on the basis of homologous comparison with those in Saccharomyces cerevisiae. VdPtc2 and VdPtc4 are missing in the genome of the V. dahliae XJ592 strain. VdPtc3 is the homolog of Ptc2, Ptc3, and Ptc4 proteins in S. cerevisiae, implying that VdPtc3 may play versatile functions in V. dahliae. VdPtc3 promoted conidium development, melanin, and microsclerotium formation in V. dahliae. The ΔVdPtc3 strains showed increased sensitivity to NaCl and sorbitol and augmented the phosphorylation of p38 mitogen-activated protein kinase homolog Hog1 induced by osmotic stress. Besides, the ΔVdPtc3 strains also showed milder Verticillium wilt symptom on cotton. Furthermore, VdPtc3 interacts with VdAtg1, which modulates melanin and microsclerotium formation, as well as pathogenicity.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, P.R. China
| | - Jun Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, P.R. China
| | - Wenjing Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, P.R. China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, P.R. China
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, Agricultural Research Station, Salinas, CA, U.S.A
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, P.R. China
| |
Collapse
|
5
|
Kirova DG, Judasova K, Vorhauser J, Zerjatke T, Leung JK, Glauche I, Mansfeld J. A ROS-dependent mechanism promotes CDK2 phosphorylation to drive progression through S phase. Dev Cell 2022; 57:1712-1727.e9. [PMID: 35809563 PMCID: PMC9616724 DOI: 10.1016/j.devcel.2022.06.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) at the right concentration promote cell proliferation in cell culture, stem cells, and model organisms. However, the mystery of how ROS signaling is coordinated with cell cycle progression and integrated into the cell cycle control machinery on the molecular level remains unsolved. Here, we report increasing levels of mitochondrial ROS during the cell cycle in human cell lines that target cyclin-dependent kinase 2 (CDK2). Chemical and metabolic interferences with ROS production decrease T-loop phosphorylation on CDK2 and so impede its full activation and thus its efficient DNA replication. ROS regulate CDK2 activity through the oxidation of a conserved cysteine residue near the T-loop, which prevents the binding of the T-loop phosphatase KAP. Together, our data reveal how mitochondrial metabolism is coupled with DNA replication and cell cycle progression via ROS, thereby demonstrating how KAP activity toward CDKs can be cell cycle regulated. Mitochondrial ROS drive cell cycle progression and proliferation Cyclin-dependent kinase 2 (CDK2) is increasingly oxidized during the cell cycle The oxidation state of a conserved cysteine on CDK2 regulates KAP binding CDK2 oxidation promotes T-loop phosphorylation and DNA replication
Collapse
Affiliation(s)
| | - Kristyna Judasova
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Julia Vorhauser
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK; Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Thomas Zerjatke
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jacky Kieran Leung
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jörg Mansfeld
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK; Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany.
| |
Collapse
|
6
|
PYR/PYL/RCAR Receptors Play a Vital Role in the Abscisic-Acid-Dependent Responses of Plants to External or Internal Stimuli. Cells 2022; 11:cells11081352. [PMID: 35456031 PMCID: PMC9028234 DOI: 10.3390/cells11081352] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 01/17/2023] Open
Abstract
Abscisic acid (ABA) is a phytohormone that plays a key role in regulating several developmental processes as well as in response to stressful conditions such as drought. Activation of the ABA signaling cascade allows the induction of an appropriate physiological response. The basic components of the ABA signaling pathway have been recognized and characterized in recent years. Pyrabactin resistance, pyrabactin resistance-like, and the regulatory component of ABA receptors (PYR/PYL/RCAR) are the major components responsible for the regulation of the ABA signaling pathway. Here, we review recent findings concerning the PYR/PYL/RCAR receptor structure, function, and interaction with other components of the ABA signaling pathway as well as the termination mechanism of ABA signals in plant cells. Since ABA is one of the basic elements related to abiotic stress, which is increasingly common in the era of climate changes, understanding the perception and transduction of the signal related to this phytohormone is of paramount importance in further increasing crop tolerance to various stress factors.
Collapse
|
7
|
A selective PPM1A inhibitor activates autophagy to restrict the survival of Mycobacterium tuberculosis. Cell Chem Biol 2022; 29:1126-1139.e12. [PMID: 35320734 DOI: 10.1016/j.chembiol.2022.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 12/19/2022]
Abstract
Metal-dependent protein phosphatases (PPMs) have essential roles in a variety of cellular processes, including inflammation, proliferation, differentiation, and stress responses, which are intensively investigated in cancer and metabolic diseases. Targeting PPMs to modulate host immunity in response to pathogens is an ambitious proposition. The feasibility of such a strategy is unproven because development of inhibitors against PPMs is challenging and suffers from poor selectivity. Combining a biomimetic modularization strategy with function-oriented synthesis, we design, synthesize and screen more than 500 pseudo-natural products, resulting in the discovery of a potent, selective, and non-cytotoxic small molecule inhibitor for PPM1A, SMIP-30. Inhibition of PPM1A with SMIP-30 or its genetic ablation (ΔPPM1A) activated autophagy through a mechanism dependent on phosphorylation of p62-SQSTM1, which restricted the intracellular survival of Mycobacterium tuberculosis in macrophages and in the lungs of infected mice. SMIP-30 provides proof of concept that PPMs are druggable and promising targets for the development of host-directed therapies against tuberculosis.
Collapse
|
8
|
Li M, Xu X, Su Y, Shao X, Zhou Y, Yan J. A comprehensive overview of PPM1A: From structure to disease. Exp Biol Med (Maywood) 2021; 247:453-461. [PMID: 34861123 DOI: 10.1177/15353702211061883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PPM1A (magnesium-dependent phosphatase 1 A, also known as PP2Cα) is a member of the Ser/Thr protein phosphatase family. Protein phosphatases catalyze the removal of phosphate groups from proteins via hydrolysis, thus opposing the role of protein kinases. The PP2C family is generally considered a negative regulator in the eukaryotic stress response pathway. PPM1A can bind and dephosphorylate various proteins and is therefore involved in the regulation of a wide range of physiological processes. It plays a crucial role in transcriptional regulation, cell proliferation, and apoptosis and has been suggested to be closely related to the occurrence and development of cancers of the lung, bladder, and breast, amongst others. Moreover, it is closely related to certain autoimmune diseases and neurodegenerative diseases. In this review, we provide an insight into currently available knowledge of PPM1A, including its structure, biological function, involvement in signaling pathways, and association with diseases. Lastly, we discuss whether PPM1A could be targeted for therapy of certain human conditions.
Collapse
Affiliation(s)
- Mao Li
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Xingfeng Xu
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Yan Su
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Xiaoyun Shao
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Yali Zhou
- Department of Microbiology, Guilin Medical University, Guilin 541004, China
| | - Jianguo Yan
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| |
Collapse
|
9
|
Licheva M, Raman B, Kraft C, Reggiori F. Phosphoregulation of the autophagy machinery by kinases and phosphatases. Autophagy 2021; 18:104-123. [PMID: 33970777 PMCID: PMC8865292 DOI: 10.1080/15548627.2021.1909407] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells use post-translational modifications to diversify and dynamically coordinate the function and properties of protein networks within various cellular processes. For example, the process of autophagy strongly depends on the balanced action of kinases and phosphatases. Highly conserved from the budding yeast Saccharomyces cerevisiae to humans, autophagy is a tightly regulated self-degradation process that is crucial for survival, stress adaptation, maintenance of cellular and organismal homeostasis, and cell differentiation and development. Many studies have emphasized the importance of kinases and phosphatases in the regulation of autophagy and identified many of the core autophagy proteins as their direct targets. In this review, we summarize the current knowledge on kinases and phosphatases acting on the core autophagy machinery and discuss the relevance of phosphoregulation for the overall process of autophagy.
Collapse
Affiliation(s)
- Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Babu Raman
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Fulvio Reggiori
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
| |
Collapse
|
10
|
Zhou R, Wu Q, Wang M, Irani S, Li X, Zhang Q, Meng F, Liu S, Zhang F, Wu L, Lin X, Wang X, Zou J, Song H, Qin J, Liang T, Feng XH, Zhang YJ, Xu P. The protein phosphatase PPM1A dephosphorylates and activates YAP to govern mammalian intestinal and liver regeneration. PLoS Biol 2021; 19:e3001122. [PMID: 33630828 PMCID: PMC7978383 DOI: 10.1371/journal.pbio.3001122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 03/19/2021] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
The Hippo-YAP pathway responds to diverse environmental cues to manage tissue homeostasis, organ regeneration, tumorigenesis, and immunity. However, how phosphatase(s) directly target Yes-associated protein (YAP) and determine its physiological activity are still inconclusive. Here, we utilized an unbiased phosphatome screening and identified protein phosphatase magnesium-dependent 1A (PPM1A/PP2Cα) as the bona fide and physiological YAP phosphatase. We found that PPM1A was associated with YAP/TAZ in both the cytoplasm and the nucleus to directly eliminate phospho-S127 on YAP, which conferring YAP the nuclear distribution and transcription potency. Accordingly, genetic ablation or depletion of PPM1A in cells, organoids, and mice elicited an enhanced YAP/TAZ cytoplasmic retention and resulted in the diminished cell proliferation, severe gut regeneration defects in colitis, and impeded liver regeneration upon injury. These regeneration defects in murine model were largely rescued via a genetic large tumor suppressor kinase 1 (LATS1) deficiency or the pharmacological inhibition of Hippo-YAP signaling. Therefore, we identify a physiological phosphatase of YAP/TAZ, describe its critical effects in YAP/TAZ cellular distribution, and demonstrate its physiological roles in mammalian organ regeneration.
Collapse
Affiliation(s)
- Ruyuan Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qirou Wu
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Mengqiu Wang
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Seema Irani
- Department of Molecular Biosciences; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Xiao Li
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qian Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fansen Meng
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengduo Liu
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fei Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Liming Wu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Lin
- Michael E. DeBakey Department of Surgery and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xiaojian Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital School of Medicine, Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Hai Song
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Hua Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Michael E. DeBakey Department of Surgery and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yan Jessie Zhang
- Department of Molecular Biosciences; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Flannery PC, Abbott KL, Pondugula SR. Correlation of PPM1A Downregulation with CYP3A4 Repression in the Tumor Liver Tissue of Hepatocellular Carcinoma Patients. Eur J Drug Metab Pharmacokinet 2020; 45:297-304. [PMID: 31792727 DOI: 10.1007/s13318-019-00595-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE In many patients with hepatocellular carcinoma (HCC), cytochrome P450 3A4 (CYP3A4) expression has been reported to be significantly reduced in the tumor liver tissue. Moreover, this CYP3A4 repression is associated with decreased CYP3A4-mediated drug metabolism in the tumor liver tissue. However, the underlying mechanisms of CYP3A4 repression are not fully understood. We have previously shown that Mg2+/Mn2+-dependent phosphatase 1A (PPM1A) positively regulates human pregnane X receptor (hPXR)-mediated CYP3A4 expression in a PPM1A expression-dependent manner. We sought to determine whether PPM1A expression is downregulated and whether PPM1A downregulation is correlated with CYP3A4 repression in the tumor liver tissue of HCC patients. METHODS Quantitative RT-PCR and western blot analyses were performed to study mRNA and protein expression, respectively. Cell-based reporter gene assays were conducted to examine the hPXR transactivation of CYP3A4 promoter activity. RESULTS Arginase-1 and glypican-3 gene expression studies confirmed that the tumor samples used in our study originate from HCC livers but not non-hepatocellular tumors. mRNA and protein expression of PPM1A and CYP3A4 was found to be significantly repressed in the tumor liver tissues compared to the matched non-tumor liver tissues. In the reporter gene assays, elevated PPM1A levels counteracted the inhibition of hPXR-mediated CYP3A4 promoter activity by signaling pathways that are upregulated in HCC, suggesting that decreased PPM1A levels in HCC could not fully counteract the hPXR-inhibiting signaling pathways. CONCLUSIONS Together, these results are consistent with the conclusion that PPM1A downregulation in the tumor liver tissue of HCC patients correlates with CYP3A4 repression. Downregulation of PPM1A levels in the tumor liver tissue may contribute to reduced hPXR-mediated CYP3A4 expression, and provide a novel mechanism of CYP3A4 repression in the tumor liver tissue of HCC patients.
Collapse
Affiliation(s)
- Patrick C Flannery
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, 109 Greene Hall, Auburn, AL, 36849, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, 36849, USA
| | - Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, 109 Greene Hall, Auburn, AL, 36849, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, 36849, USA
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, 109 Greene Hall, Auburn, AL, 36849, USA. .,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
12
|
Lu F, Wang K, Yan L, Peng Y, Qu J, Wu J, Cao Y, Yang Q, Fu F, Yu H. Isolation and characterization of maize ZmPP2C26 gene promoter in drought-response. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:2189-2197. [PMID: 33268922 PMCID: PMC7688808 DOI: 10.1007/s12298-020-00910-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 05/14/2023]
Abstract
The clade A members of serine/threonine protein phosphatase 2Cs (PP2Cs) play crucial roles in plant growth, development, and stress response via the ABA signaling pathway. But little is known about other PP2C clades in plants. Our previous study showed that maize the ZmPP2C26, a clade B member of ZmPP2Cs, negatively regulated drought tolerance in transgenic Arabidopsis. However, the upstream regulatory mechanism of ZmPP2C26 remains unclear. In the present study, the expression of ZmPP2C26 gene in maize was analyzed by quantitative real time PCR (qRT-PCR). The results showed that the expression of ZmPP2C26 in shoot and root was both significantly inhibited by drought stress. Subsequently, a 2175 bp promoter of ZmPP2C26 was isolated from maize genome (P 2175). To validate whether the promoter possess some key cis-element and negatively drive ZmPP2C26 expression in drought stress, three 5´-deletion fragments of 1505, 1084 and 215 bp was amplified from P 2175 and were fused to β-glucuronidase (GUS) and luciferase gene (LUC) to produce promoter::GUS and promoter::LUC constructs, and transformed into tobacco, respectively. Transient expression assays indicated that all promoters could drive GUS and LUC expression. The GUS and LUC activity were both significantly inhibited by PEG-6000 treatment. Notably, the - 1084 to - 215 bp promoter possess one MBS element and inhibits the expression of GUS and LUC under drought stress. Meanwhile, we found that the 215 bp length is enough to drive ZmPP2C26 expression. These findings will provide insights into understanding the transcription-regulatory mechanism of ZmPP2C26 negatively regulating drought tolerance.
Collapse
Affiliation(s)
- Fengzhong Lu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Kexin Wang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Lamei Yan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Yalin Peng
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Jingtao Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Jing Wu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Yang Cao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Qingqing Yang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Fengling Fu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Haoqiang Yu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| |
Collapse
|
13
|
Lemonnier T, Dupré A, Jessus C. The G2-to-M transition from a phosphatase perspective: a new vision of the meiotic division. Cell Div 2020; 15:9. [PMID: 32508972 PMCID: PMC7249327 DOI: 10.1186/s13008-020-00065-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Cell division is orchestrated by the phosphorylation and dephosphorylation of thousands of proteins. These post-translational modifications underlie the molecular cascades converging to the activation of the universal mitotic kinase, Cdk1, and entry into cell division. They also govern the structural events that sustain the mechanics of cell division. While the role of protein kinases in mitosis has been well documented by decades of investigations, little was known regarding the control of protein phosphatases until the recent years. However, the regulation of phosphatase activities is as essential as kinases in controlling the activation of Cdk1 to enter M-phase. The regulation and the function of phosphatases result from post-translational modifications but also from the combinatorial association between conserved catalytic subunits and regulatory subunits that drive their substrate specificity, their cellular localization and their activity. It now appears that sequential dephosphorylations orchestrated by a network of phosphatase activities trigger Cdk1 activation and then order the structural events necessary for the timely execution of cell division. This review discusses a series of recent works describing the important roles played by protein phosphatases for the proper regulation of meiotic division. Many breakthroughs in the field of cell cycle research came from studies on oocyte meiotic divisions. Indeed, the meiotic division shares most of the molecular regulators with mitosis. The natural arrests of oocytes in G2 and in M-phase, the giant size of these cells, the variety of model species allowing either biochemical or imaging as well as genetics approaches explain why the process of meiosis has served as an historical model to decipher signalling pathways involved in the G2-to-M transition. The review especially highlights how the phosphatase PP2A-B55δ critically orchestrates the timing of meiosis resumption in amphibian oocytes. By opposing the kinase PKA, PP2A-B55δ controls the release of the G2 arrest through the dephosphorylation of their substrate, Arpp19. Few hours later, the inhibition of PP2A-B55δ by Arpp19 releases its opposing kinase, Cdk1, and triggers M-phase. In coordination with a variety of phosphatases and kinases, the PP2A-B55δ/Arpp19 duo therefore emerges as the key effector of the G2-to-M transition.
Collapse
Affiliation(s)
- Tom Lemonnier
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| | - Aude Dupré
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| | - Catherine Jessus
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
14
|
Nunez‐Rodriguez JC, Ruiz‐Roldán C, Lemos P, Membrives S, Hera C. The phosphatase Ptc6 is involved in virulence and MAPK signalling in Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2020; 21:206-217. [PMID: 31802599 PMCID: PMC6988432 DOI: 10.1111/mpp.12889] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mitogen-activated kinase (MAPK) signalling pathways are involved in several important processes related to the development and virulence of Fusarium oxysporum. Reversible phosphorylation of the protein members of these pathways is a major regulator of essential biological processes. Among the phosphatases involved in dephosphorylation of MAPKs, type 2C protein phosphatases (PP2Cs) play important roles regulating many developmental strategies and stress responses in yeasts. Nevertheless, the PP2C family is poorly known in filamentous fungi. The F. oxysporum PP2C family includes seven proteins, but only Ptc1 has been studied so far. Here we show the involvement of Ptc6 in the stress response and virulence of F. oxysporum. Expression analysis revealed increased expression of ptc6 in response to cell wall and oxidative stresses. Additionally, targeted inactivation of ptc6 entailed enhanced susceptibility to cell wall stresses caused by Calcofluor White (CFW). We also demonstrate that the lack of Ptc6 deregulates both the Mpk1 phosphorylation induced by CFW and, more importantly, the Fmk1 dephosphorylation induced by pH acidification of the extracellular medium, indicating that Ptc6 is involved in the regulation of these MAPKs. Finally, we showed, for the first time, the involvement of a phosphatase in the invasive growth and virulence of F. oxysporum.
Collapse
Affiliation(s)
| | - Carmen Ruiz‐Roldán
- Departamento de GeneticaUniversidad de CordobaCampus de Excelencia Agroalimentario CeiA3Cordoba14071Spain
| | - Pedro Lemos
- Departamento de GeneticaUniversidad de CordobaCampus de Excelencia Agroalimentario CeiA3Cordoba14071Spain
| | - Sergio Membrives
- Departamento de GeneticaUniversidad de CordobaCampus de Excelencia Agroalimentario CeiA3Cordoba14071Spain
| | - Concepcion Hera
- Departamento de GeneticaUniversidad de CordobaCampus de Excelencia Agroalimentario CeiA3Cordoba14071Spain
| |
Collapse
|
15
|
Bhaskara GB, Wong MM, Verslues PE. The flip side of phospho-signalling: Regulation of protein dephosphorylation and the protein phosphatase 2Cs. PLANT, CELL & ENVIRONMENT 2019; 42:2913-2930. [PMID: 31314921 DOI: 10.1111/pce.13616] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/21/2019] [Accepted: 06/29/2019] [Indexed: 05/12/2023]
Abstract
Protein phosphorylation is a key signalling mechanism and has myriad effects on protein function. Phosphorylation by protein kinases can be reversed by protein phosphatases, thus allowing dynamic control of protein phosphorylation. Although this may suggest a straightforward kinase-phosphatase relationship, plant genomes contain five times more kinases than phosphatases. Here, we examine phospho-signalling from a protein phosphatase centred perspective and ask how relatively few phosphatases regulate many phosphorylation sites. The most abundant class of plant phosphatases, the protein phosphatase 2Cs (PP2Cs), is surrounded by a web of regulation including inhibitor and activator proteins as well as posttranslational modifications that regulate phosphatase activity, control phosphatase stability, or determine the subcellular locations where the phosphatase is present and active. These mechanisms are best established for the Clade A PP2Cs, which are key components of stress and abscisic acid signalling. We also describe other PP2C clades and illustrate how these phosphatases are highly regulated and involved in a wide range of physiological functions. Together, these examples of multiple layers of phosphatase regulation help explain the unbalanced kinase-phosphatase ratio. Continued use of phosphoproteomics to examine phosphatase targets and phosphatase-kinase relationships will be important for deeper understanding of phosphoproteome regulation.
Collapse
Affiliation(s)
| | - Min May Wong
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
16
|
Rodriguez-Iglesias A, Schmoll M. Protein phosphatases regulate growth, development, cellulases and secondary metabolism in Trichoderma reesei. Sci Rep 2019; 9:10995. [PMID: 31358805 PMCID: PMC6662751 DOI: 10.1038/s41598-019-47421-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Trichoderma reesei represents one of the most prolific producers of plant cell wall degrading enzymes. Recent research showed broad regulation by phosphorylation in T. reesei, including important transcription factors involved in cellulase regulation. To evaluate factors crucial for changes in these phosphorylation events, we studied non-essential protein phosphatases (PPs) of T. reesei. Viable deletion strains were tested for growth on different carbon sources, osmotic and oxidative stress response, asexual and sexual development, cellulase and protease production as well as secondary metabolism. Six PPs were found to be positive or negative regulators for cellulase production. A correlation of the effects of PPs on protease activities and cellulase activities was not detected. Hierarchical clustering of regulation patterns and phenotypes of deletion indicated functional specialization within PP classes and common as well as variable effects. Our results confirmed the central role of catalytic and regulatory subunits of PP2A which regulates several aspects of cell growth and metabolism. Moreover we show that the additional homologue of PPH5 in Trichoderma spp., PPH5-2 assumes distinct functions in metabolism, development and stress response, different from PPH5. The influence of PPs on both cellulase gene expression and secondary metabolite production support an interrelationship in the underlying regulation mechanisms.
Collapse
Affiliation(s)
- Aroa Rodriguez-Iglesias
- Austrian Institute of Technology GmbH, Health & Environment, Bioresources, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Monika Schmoll
- Austrian Institute of Technology GmbH, Health & Environment, Bioresources, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria.
| |
Collapse
|
17
|
Mazumdar A, Tahaney WM, Reddy Bollu L, Poage G, Hill J, Zhang Y, Mills GB, Brown PH. The phosphatase PPM1A inhibits triple negative breast cancer growth by blocking cell cycle progression. NPJ Breast Cancer 2019; 5:22. [PMID: 31372497 PMCID: PMC6659706 DOI: 10.1038/s41523-019-0118-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/26/2019] [Indexed: 12/31/2022] Open
Abstract
Estrogen receptor (ER)-negative, progesterone receptor (PR)-negative and HER2-negative, or "triple negative," breast cancer (TNBC) is a poor prognosis clinical subtype that occurs more frequently in younger women and is commonly treated with toxic chemotherapy. Effective targeted therapy for TNBC is urgently needed. Our previous studies have identified several kinases critical for TNBC growth. Since phosphatases regulate the function of kinase signaling pathways, we sought to identify critical growth-regulatory phosphatases that are expressed differentially in ER-negative, as compared to ER-positive, breast cancers. In this study, we examined the role of one of these differentially expressed phosphatases, the protein phosphatase Mg + 2/Mn + 2 dependent 1A (PPM1A) which is underexpressed in ER-negative breast cancer as compared to ER-positive breast cancers, in regulating TNBC growth. We found that PPM1A is deleted in ~40% of ER-negative breast cancers, and that induced expression of PPM1A suppresses in vitro and in vivo growth of TNBC cells. This study demonstrates that induction of PPM1A expression blocks the cell cycle and reduces CDK and Rb phosphorylation. These results suggest PPM1A is a crucial regulator of cell cycle progression in triple negative breast cancer. Our results also suggest that PPM1A loss should be explored as a predictive biomarker of CDK inhibitor sensitivity.
Collapse
Affiliation(s)
- Abhijit Mazumdar
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - William M. Tahaney
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Lakshmi Reddy Bollu
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Texas, USA
| | | | - Jamal Hill
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Yun Zhang
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Gordon B. Mills
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Oregon, USA
| | - Powel H. Brown
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
18
|
CO 2 Signaling through the Ptc2-Ssn3 Axis Governs Sustained Hyphal Development of Candida albicans by Reducing Ume6 Phosphorylation and Degradation. mBio 2019; 10:mBio.02320-18. [PMID: 30647154 PMCID: PMC6336421 DOI: 10.1128/mbio.02320-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Candida albicans is the most common cause of invasive fungal infections in humans. Its ability to sense and adapt to changing carbon dioxide levels is crucial for its pathogenesis. Carbon dioxide promotes hyphal development. The hypha-specific transcription factor Ume6 is rapidly degraded in air, but is stable under physiological CO2 and hypoxia to sustain hyphal elongation. Here, we show that Ume6 stability is regulated by two parallel E3 ubiquitin ligases, SCFGrr1 and Ubr1, in response to CO2 and O2, respectively. To uncover the CO2 signaling pathway that regulates Ume6 stability, we performed genetic screens for mutants unable to respond to CO2 for sustained filamentation. We find that the type 2C protein phosphatase Ptc2 is specifically required for CO2-induced stabilization of Ume6 and hyphal elongation. In contrast, the cyclin-dependent kinase Ssn3 is found to be required for Ume6 phosphorylation and degradation in atmospheric CO2 Furthermore, we find that Ssn3 is dephosphorylated in 5% CO2 in a Ptc2-dependent manner, whereas deletion of PTC2 has no effect on Ssn3 phosphorylation in air. Our study uncovers the Ptc2-Ssn3 axis as a new CO2 signaling pathway that controls hyphal elongation by regulating Ume6 stability in C. albicans IMPORTANCE The capacity to sense and adapt to changing carbon dioxide levels is crucial for all organisms. In fungi, CO2 is a key determinant involved in fundamental biological processes, including growth, morphology, and virulence. In the pathogenic fungus Candida albicans, high CO2 is directly sensed by adenylyl cyclase to promote hyphal growth. However, little is known about the mechanism by which hyphal development is maintained in response to physiological levels of CO2 Here we report that a signal transduction system mediated by a phosphatase-kinase pair controls CO2-responsive Ume6 phosphorylation and stability that in turn dictate hyphal elongation. Our results unravel a new regulatory mechanism of CO2 signaling in fungi.
Collapse
|
19
|
Role of the phosphatase Ptc1 in stress responses mediated by CWI and HOG pathways in Fusarium oxysporum. Fungal Genet Biol 2018; 118:10-20. [DOI: 10.1016/j.fgb.2018.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/24/2018] [Accepted: 05/27/2018] [Indexed: 01/09/2023]
|
20
|
Coates RF, Gardner JA, Gao Y, Cortright VM, Mitchell JM, Ashikaga T, Skelly J, Yang MX. Significance of positive and inhibitory regulators in the TGF-β signaling pathway in colorectal cancers. Hum Pathol 2017; 66:34-39. [PMID: 28601657 DOI: 10.1016/j.humpath.2017.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022]
Abstract
Inactivation of genes in the transforming growth factor (TGF)-β/SMAD signaling pathway is a well-known step for the progression of colorectal cancers (CRCs). Genetic mutations can occur in the precursors, and the combined prevalence of SMAD4, SMAD2, and SMAD3 mutations was seen in up to 50% of CRCs. High levels of serum TGF-β1 were reported in patients with CRC and were associated with poor clinical outcome. PPM1A is an important inhibitory regulator in the TGF-β signaling pathway and contributes to terminating the TGF-β/SMAD signaling activity. We recently showed that PPM1A expression was lost in approximately 45% of pancreatic ductal adenocarcinomas and loss of PPM1A was associated with worse overall survival. Genome-wide analyses from The Cancer Genome Atlas revealed that abnormal TGF-β signaling pathway is among the most common molecular changes in CRC. The complexity of the TGF-β signaling pathway is its dual function as a tumor suppressor and tumor-promoting factor, depending on the cellular and molecular context. In this study, we simultaneously investigated the protein expression pattern of 3 regulators in the TGF-β/SMAD signaling pathway, including SMAD4, PPM1A, and TGF-β1, and their clinicopathological correlations in CRCs by immunohistochemistry. We observed that loss of SMAD4 and PPM1A was seen in 37.8% and 7.3% of CRCs, respectively. Loss of SMAD4, lymphovascular invasion, and distant metastasis were independently associated with worse overall survival in multivariate analysis. However, loss of PPM1A was associated with worse overall survival with less statistical strength. Our findings would provide new insights into the pathophysiological function of different components in the TGF-β signaling pathway in CRC.
Collapse
Affiliation(s)
- Ryan F Coates
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, VT 05401, United States
| | - Juli-Anne Gardner
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, VT 05401, United States
| | - Yuan Gao
- Department of Gastrointestinal Surgery, Changzhou 2nd People's Hospital, Changzhou, Jiangsu Province, 213000, China
| | - Valerie M Cortright
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, VT 05401, United States
| | - Jeannette M Mitchell
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, VT 05401, United States
| | - Takamaru Ashikaga
- University of Vermont Medical Biostatistics Department, Burlington, VT, 05401, United States
| | - Joan Skelly
- University of Vermont Medical Biostatistics Department, Burlington, VT, 05401, United States
| | - Michelle X Yang
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, VT 05401, United States.
| |
Collapse
|
21
|
Xiang W, Zhang Q, Lin X, Wu S, Zhou Y, Meng F, Fan Y, Shen T, Xiao M, Xia Z, Zou J, Feng XH, Xu P. PPM1A silences cytosolic RNA sensing and antiviral defense through direct dephosphorylation of MAVS and TBK1. SCIENCE ADVANCES 2016; 2:e1501889. [PMID: 27419230 PMCID: PMC4942338 DOI: 10.1126/sciadv.1501889] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/31/2016] [Indexed: 05/20/2023]
Abstract
Cytosolic RNA sensing is a prerequisite for initiation of innate immune response against RNA viral pathogens. Signaling through RIG-I (retinoic acid-inducible gene I)-like receptors (RLRs) to TBK1 (Tank-binding kinase 1)/IKKε (IκB kinase ε) kinases is transduced by mitochondria-associated MAVS (mitochondrial antiviral signaling protein). However, the precise mechanism of how MAVS-mediated TBK1/IKKε activation is strictly controlled still remains obscure. We reported that protein phosphatase magnesium-dependent 1A (PPM1A; also known as PP2Cα), depending on its catalytic ability, dampened the RLR-IRF3 (interferon regulatory factor 3) axis to silence cytosolic RNA sensing signaling. We demonstrated that PPM1A was an inherent partner of the TBK1/IKKε complex, targeted both MAVS and TBK1/IKKε for dephosphorylation, and thus disrupted MAVS-driven formation of signaling complex. Conversely, a high level of MAVS can dissociate the TBK1/PPM1A complex to override PPM1A-mediated inhibition. Loss of PPM1A through gene ablation in human embryonic kidney 293 cells and mouse primary macrophages enabled robustly enhanced antiviral responses. Consequently, Ppm1a(-/-) mice resisted to RNA virus attack, and transgenic zebrafish expressing PPM1A displayed profoundly increased RNA virus vulnerability. These findings identify PPM1A as the first known phosphatase of MAVS and elucidate the physiological function of PPM1A in antiviral immunity on whole animals.
Collapse
Affiliation(s)
- Weiwen Xiang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Qian Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Xia Lin
- Michael E. DeBakey Department of Surgery and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shiying Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Yao Zhou
- Eye Center of the Second Affiliated Hospital School of Medicine, Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Fansen Meng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Yunyun Fan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Tao Shen
- Michael E. DeBakey Department of Surgery and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mu Xiao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Zongping Xia
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital School of Medicine, Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xin-Hua Feng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
- Michael E. DeBakey Department of Surgery and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Corresponding author. (X.-H.F.); (P.X.)
| | - Pinglong Xu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
- Corresponding author. (X.-H.F.); (P.X.)
| |
Collapse
|
22
|
Tatjer L, González A, Serra-Cardona A, Barceló A, Casamayor A, Ariño J. The Saccharomyces cerevisiae Ptc1 protein phosphatase attenuates G2-M cell cycle blockage caused by activation of the cell wall integrity pathway. Mol Microbiol 2016; 101:671-87. [PMID: 27169355 DOI: 10.1111/mmi.13416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2016] [Indexed: 01/24/2023]
Abstract
Lack of the yeast Ptc1 Ser/Thr protein phosphatase results in numerous phenotypic defects. A parallel search for high-copy number suppressors of three of these phenotypes (sensitivity to Calcofluor White, rapamycin and alkaline pH), allowed the isolation of 25 suppressor genes, which could be assigned to three main functional categories: maintenance of cell wall integrity (CWI), vacuolar function and protein sorting, and cell cycle regulation. The characterization of these genetic interactions strengthens the relevant role of Ptc1 in downregulating the Slt2-mediated CWI pathway. We show that under stress conditions activating the CWI pathway the ptc1 mutant displays hyperphosphorylated Cdc28 kinase and that these cells accumulate with duplicated DNA content, indicative of a G2-M arrest. Clb2-associated Cdc28 activity was also reduced in ptc1 cells. These alterations are attenuated by mutation of the MKK1 gene, encoding a MAP kinase kinase upstream Slt2. Therefore, our data show that Ptc1 is required for proper G2-M cell cycle transition after activation of the CWI pathway.
Collapse
Affiliation(s)
- Laura Tatjer
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Asier González
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Albert Serra-Cardona
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Anna Barceló
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Antonio Casamayor
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| |
Collapse
|
23
|
Albataineh MT, Kadosh D. Regulatory roles of phosphorylation in model and pathogenic fungi. Med Mycol 2015; 54:333-52. [PMID: 26705834 PMCID: PMC4818690 DOI: 10.1093/mmy/myv098] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/01/2015] [Indexed: 12/25/2022] Open
Abstract
Over the past 20 years, considerable advances have been made toward our understanding
of how post-translational modifications affect a wide variety of biological
processes, including morphology and virulence, in medically important fungi.
Phosphorylation stands out as a key molecular switch and regulatory modification that
plays a critical role in controlling these processes. In this article, we first
provide a comprehensive and up-to-date overview of the regulatory roles that both
Ser/Thr and non-Ser/Thr kinases and phosphatases play in model and pathogenic fungi.
Next, we discuss the impact of current global approaches that are being used to
define the complete set of phosphorylation targets (phosphoproteome) in medically
important fungi. Finally, we provide new insights and perspectives into the potential
use of key regulatory kinases and phosphatases as targets for the development of
novel and more effective antifungal strategies.
Collapse
Affiliation(s)
- Mohammad T Albataineh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - David Kadosh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|
24
|
Li Z, Liu G, Sun L, Teng Y, Guo X, Jia J, Sha J, Yang X, Chen D, Sun Q. PPM1A regulates antiviral signaling by antagonizing TBK1-mediated STING phosphorylation and aggregation. PLoS Pathog 2015; 11:e1004783. [PMID: 25815785 PMCID: PMC4376777 DOI: 10.1371/journal.ppat.1004783] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/03/2015] [Indexed: 12/12/2022] Open
Abstract
Stimulator of interferon genes (STING, also known as MITA and ERIS) is critical in protecting the host against DNA pathogen invasion. However, the molecular mechanism underlying the regulation of STING remains unclear. Here, we show that PPM1A negatively regulates antiviral signaling by targeting STING in its phosphatase activity-dependent manner, and in a line with this, PPM1A catalytically dephosphorylates STING and TBK1 in vitro. Importantly, we provide evidence that whereas TBK1 promotes STING aggregation in a phosphorylation-dependent manner, PPM1A antagonizes STING aggregation by dephosphorylating both STING and TBK1, emphasizing that phosphorylation is crucial for the efficient activation of STING. Our findings demonstrate a novel regulatory circuit in which STING and TBK1 reciprocally regulate each other to enable efficient antiviral signaling activation, and PPM1A dephosphorylates STING and TBK1, thereby balancing this antiviral signal transduction. Innate antiviral immunity is essential for the host defense system that rapidly detects and eliminates invading viruses. STING, an endoplasmic reticulum (ER)-associated protein, plays important roles in the activation of type I IFN in response to DNA virus infection. Whereas excessive activation of STING can potentially cause lethal inflammatory diseases, STING activity must thus be precisely controlled to ensure the proper antiviral signaling transduction. However, the mechanisms of how STING activation is regulated are not fully understood. In this study, we find that PPM1A physically interacts with STING and negatively regulates STING-mediated antiviral signaling. Mechanistically, we find that PPM1A functions as a phosphatase that targets both STING and TBK1 for their dephosphorylation. Moreover, our study demonstrates that while TBK1 enhances STING aggregation in a kinase activity-dependent manner, PPM1A suppresses STING aggregation by dephosphorylating both STING and TBK1. Collectively, our study not only reveals that STING and TBK1 reciprocally regulate each other’s activity to elicit antiviral signaling, but also shows that PPM1A antagonizes STING aggregation by targeting both STING and TBK1, thereby maintaining proper antiviral responses.
Collapse
Affiliation(s)
- Zexing Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Ge Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Liwei Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Yan Teng
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jianhang Jia
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, The University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, China
| | - Dahua Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Qinmiao Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- * E-mail:
| |
Collapse
|
25
|
Pondugula SR, Flannery PC, Apte U, Babu JR, Geetha T, Rege SD, Chen T, Abbott KL. Mg2+/Mn2+-dependent phosphatase 1A is involved in regulating pregnane X receptor-mediated cytochrome p450 3A4 gene expression. Drug Metab Dispos 2015; 43:385-91. [PMID: 25561723 PMCID: PMC11024896 DOI: 10.1124/dmd.114.062083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/05/2015] [Indexed: 04/20/2024] Open
Abstract
Variations in the expression of human pregnane X receptor (hPXR)-mediated cytochrome p450 3A4 (CYP3A4) in liver can alter therapeutic response to a variety of drugs and may lead to potential adverse drug interactions. We sought to determine whether Mg(2+)/Mn(2+)-dependent phosphatase 1A (PPM1A) regulates hPXR-mediated CYP3A4 expression. PPM1A was found to be coimmunoprecipitated with hPXR. Genetic or pharmacologic activation of PPM1A led to a significant increase in hPXR transactivation of CYP3A4 promoter activity. In contrast, knockdown of endogenous PPM1A not only attenuated hPXR transactivation, but also increased proliferation of HepG2 human liver carcinoma cells, suggesting that PPM1A expression levels regulate hPXR, and that PPM1A expression is regulated in a proliferation-dependent manner. Indeed, PPM1A expression and hPXR transactivation were found to be significantly reduced in subconfluent HepG2 cells compared with confluent HepG2 cells, suggesting that both PPM1A expression and hPXR-mediated CYP3A4 expression may be downregulated in proliferating livers. Elevated PPM1A levels led to attenuation of hPXR inhibition by tumor necrosis factor-α and cyclin-dependent kinase-2, which are known to be upregulated and essential during liver regeneration. In mouse regenerating livers, similar to subconfluent HepG2 cells, expression of both PPM1A and the mouse PXR target gene cyp3a11 was found to be downregulated. Our results show that PPM1A can positively regulate PXR activity by counteracting PXR inhibitory signaling pathways that play a major role in liver regeneration. These results implicate a novel role for PPM1A in regulating hPXR-mediated CYP3A4 expression in hepatocytes and may explain a mechanism for CYP3A repression in regenerating livers.
Collapse
Affiliation(s)
- Satyanarayana R Pondugula
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| | - Patrick C Flannery
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| | - Udayan Apte
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| | - Jeganathan Ramesh Babu
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| | - Thangiah Geetha
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| | - Shraddha D Rege
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| | - Taosheng Chen
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| | - Kodye L Abbott
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| |
Collapse
|
26
|
Pan C, Tang JY, Xu YF, Xiao P, Liu HD, Wang HA, Wang WB, Meng FG, Yu X, Sun JP. The catalytic role of the M2 metal ion in PP2Cα. Sci Rep 2015; 5:8560. [PMID: 25708299 PMCID: PMC5390078 DOI: 10.1038/srep08560] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/26/2015] [Indexed: 01/16/2023] Open
Abstract
PP2C family phosphatases (the type 2C family of protein phosphatases; or metal-dependent phosphatase, PPM) constitute an important class of signaling enzymes that regulate many fundamental life activities. All PP2C family members have a conserved binuclear metal ion active center that is essential for their catalysis. However, the catalytic role of each metal ion during catalysis remains elusive. In this study, we discovered that mutations in the structurally buried D38 residue of PP2Cα (PPM1A) redefined the water-mediated hydrogen network in the active site and selectively disrupted M2 metal ion binding. Using the D38A and D38K mutations of PP2Cα as specific tools in combination with enzymology analysis, our results demonstrated that the M2 metal ion determines the rate-limiting step of substrate hydrolysis, participates in dianion substrate binding and stabilizes the leaving group after P-O bond cleavage. The newly characterized catalytic role of the M2 metal ion in this family not only provides insight into how the binuclear metal centers of the PP2C phosphatases are organized for efficient catalysis but also helps increase our understanding of the function and substrate specificity of PP2C family members.
Collapse
Affiliation(s)
- Chang Pan
- 1] Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, China [2] Qilu Hospital of Shandong University, Jinan, China
| | - Jun-yi Tang
- 1] Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, China [2] Department of Physiology, Shandong University, School of Medicine, Jinan, Shandong, China
| | - Yun-fei Xu
- 1] Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, China [2] Qilu Hospital of Shandong University, Jinan, China
| | - Peng Xiao
- 1] Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, China [2] Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, China
| | - Hong-da Liu
- 1] Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, China [2] Qilu Hospital of Shandong University, Jinan, China [3] Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, China
| | - Hao-an Wang
- Department of Human Biology, University of Toronto, Toronto, Ontario, Canada
| | - Wen-bo Wang
- 1] Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, China [2] Qilu Hospital of Shandong University, Jinan, China [3] Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, China
| | - Fan-guo Meng
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
| | - Xiao Yu
- 1] Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, China [2] Department of Physiology, Shandong University, School of Medicine, Jinan, Shandong, China
| | - Jin-peng Sun
- 1] Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, China [2] Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, China [3] Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
27
|
Abraham S, Paknikar R, Bhumbra S, Luan D, Garg R, Dressler GR, Patel SR. The Groucho-associated phosphatase PPM1B displaces Pax transactivation domain interacting protein (PTIP) to switch the transcription factor Pax2 from a transcriptional activator to a repressor. J Biol Chem 2015; 290:7185-94. [PMID: 25631048 DOI: 10.1074/jbc.m114.607424] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pax genes encode developmental regulatory proteins that specify cell lineages and tissues in metazoans. Upon binding to DNA through the conserved paired domain, Pax proteins can recruit both activating and repressing complexes that imprint distinct patterns of histone methylation associated with either gene activation or silencing. How the switch from Pax-mediated activation to repression is regulated remains poorly understood. In this report, we identify the phosphatase PPM1B as an essential component of the Groucho4 repressor complex that is recruited by Pax2 to chromatin. PPM1B can dephosphorylate the Pax2 activation domain and displace the adaptor protein PTIP, thus inhibiting H3K4 methylation and gene activation. Loss of PPM1B prevents Groucho-mediated gene repression. Thus, PPM1B helps switch Pax2 from a transcriptional activator to a repressor protein. This can have profound implications for developmental regulation by Pax proteins and suggests a model for imprinting specific epigenetic marks depending on the availability of co-factors.
Collapse
Affiliation(s)
| | | | | | - Danny Luan
- From the Departments of Internal Medicine and
| | - Rohan Garg
- From the Departments of Internal Medicine and
| | | | | |
Collapse
|
28
|
Sharmin D, Sasano Y, Sugiyama M, Harashima S. Effects of deletion of different PP2C protein phosphatase genes on stress responses in Saccharomyces cerevisiae. Yeast 2014; 31:393-409. [PMID: 25088474 DOI: 10.1002/yea.3032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 06/02/2014] [Accepted: 07/12/2014] [Indexed: 11/06/2022] Open
Abstract
A key mechanism of signal transduction in eukaryotes is reversible protein phosphorylation, mediated through protein kinases and protein phosphatases (PPases). Modulation of signal transduction by this means regulates many biological processes. Saccharomyces cerevisiae has 40 PPases, including seven protein phosphatase 2C (PP2C PPase) genes (PTC1-PTC7). However, their precise functions remain poorly understood. To elucidate their cellular functions and to identify those that are redundant, we constructed 127 strains with deletions of all possible combinations of the seven PP2C PPase genes. All 127 disruptants were viable under nutrient-rich conditions, demonstrating that none of the combinations induced synthetic lethality under these conditions. However, several combinations exhibited novel phenotypes, e.g. the Δptc5Δptc7 double disruptant and the Δptc2Δptc3Δptc5Δptc7 quadruple disruptant exhibited low (13°C) and high (37°C) temperature-sensitive growth, respectively. Interestingly, the septuple disruptant Δptc1Δptc2Δptc3Δptc4Δptc5Δptc6Δptc7 showed an essentially normal growth phenotype at 37°C. The Δptc2Δptc3Δptc5Δptc7 quadruple disruptant was sensitive to LiCl (0.4 m). Two double disruptants, Δptc1Δptc2 and Δptc1Δptc4, displayed slow growth and Δptc1Δptc2Δptc4 could not grow on medium containing 1.5 m NaCl. The Δptc1Δptc6 double disruptant showed increased sensitivity to caffeine, congo red and calcofluor white compared to each single deletion. Our observations indicate that S. cerevisiae PP2C PPases have a shared and important role in responses to environmental stresses. These disruptants also provide a means for exploring the molecular mechanisms of redundant PTC gene functions under defined conditions.
Collapse
Affiliation(s)
- Dilruba Sharmin
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan
| | | | | | | |
Collapse
|
29
|
Global analysis of serine/threonine and tyrosine protein phosphatase catalytic subunit genes in Neurospora crassa reveals interplay between phosphatases and the p38 mitogen-activated protein kinase. G3-GENES GENOMES GENETICS 2014; 4:349-65. [PMID: 24347630 PMCID: PMC3931568 DOI: 10.1534/g3.113.008813] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein phosphatases are integral components of the cellular signaling machinery in eukaryotes, regulating diverse aspects of growth and development. The genome of the filamentous fungus and model organism Neurospora crassa encodes catalytic subunits for 30 protein phosphatase genes. In this study, we have characterized 24 viable N. crassa phosphatase catalytic subunit knockout mutants for phenotypes during growth, asexual development, and sexual development. We found that 91% of the mutants had defects in at least one of these traits, whereas 29% possessed phenotypes in all three. Chemical sensitivity screens were conducted to reveal additional phenotypes for the mutants. This resulted in the identification of at least one chemical sensitivity phenotype for 17 phosphatase knockout mutants, including novel chemical sensitivities for two phosphatase mutants lacking a growth or developmental phenotype. Hence, chemical sensitivity or growth/developmental phenotype was observed for all 24 viable mutants. We investigated p38 mitogen-activated protein kinase (MAPK) phosphorylation profiles in the phosphatase mutants and identified nine potential candidates for regulators of the p38 MAPK. We demonstrated that the PP2C class phosphatase pph-8 (NCU04600) is an important regulator of female sexual development in N. crassa. In addition, we showed that the Δcsp-6 (ΔNCU08380) mutant exhibits a phenotype similar to the previously identified conidial separation mutants, Δcsp-1 and Δcsp-2, that lack transcription factors important for regulation of conidiation and the circadian clock.
Collapse
|
30
|
Feng J, Zhao Y, Duan Y, Jiang L. Genetic interactions between protein phosphatases CaPtc2p and CaPph3p in response to genotoxins and rapamycin inCandida albicans. FEMS Yeast Res 2013; 13:85-96. [DOI: 10.1111/1567-1364.12012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 01/19/2023] Open
Affiliation(s)
- Jinrong Feng
- Department of Pathogen Biology; School of Medicine; Nantong University; Nantong; China
| | | | - Yinong Duan
- Department of Pathogen Biology; School of Medicine; Nantong University; Nantong; China
| | | |
Collapse
|
31
|
Ptc6 is required for proper rapamycin-induced down-regulation of the genes coding for ribosomal and rRNA processing proteins in S. cerevisiae. PLoS One 2013; 8:e64470. [PMID: 23704987 PMCID: PMC3660562 DOI: 10.1371/journal.pone.0064470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 04/16/2013] [Indexed: 11/23/2022] Open
Abstract
Ptc6 is one of the seven components (Ptc1-Ptc7) of the protein phosphatase 2C family in the yeast Saccharomyces cerevisiae. In contrast to other type 2C phosphatases, the cellular role of this isoform is poorly understood. We present here a comprehensive characterization of this gene product. Cells lacking Ptc6 are sensitive to zinc ions, and somewhat tolerant to cell-wall damaging agents and to Li+. Ptc6 mutants are sensitive to rapamycin, albeit to lesser extent than ptc1 cells. This phenotype is not rescued by overexpression of PTC1 and mutation of ptc6 does not reproduce the characteristic genetic interactions of the ptc1 mutation with components of the TOR pathway, thus suggesting different cellular roles for both isoforms. We show here that the rapamycin-sensitive phenotype of ptc6 cells is unrelated to the reported role of Pt6 in controlling pyruvate dehydrogenase activity. Lack of Ptc6 results in substantial attenuation of the transcriptional response to rapamycin, particularly in the subset of repressed genes encoding ribosomal proteins or involved in rRNA processing. In contrast, repressed genes involved in translation are Ptc6-independent. These effects cannot be attributed to the regulation of the Sch9 kinase, but they could involve modulation of the binding of the Ifh1 co-activator to specific gene promoters.
Collapse
|
32
|
Abstract
Cyclin-dependent kinases (CDKs) play essential roles in cell proliferation and gene expression. Although distinct sets of CDKs work in cell division and transcription by RNA polymerase II (Pol II), they share a CDK-activating kinase (CAK), which is itself a CDK-Cdk7-in metazoans. Thus a unitary CDK network controls and may coordinate cycles of cell division and gene expression. Recent work reveals decisive roles for Cdk7 in both pathways. The CAK function of Cdk7 helps determine timing of activation and cyclin-binding preferences of different CDKs during the cell cycle. In the transcription cycle, Cdk7 is both an effector kinase, which phosphorylates Pol II and other proteins and helps establish promoter-proximal pausing; and a CAK for Cdk9 (P-TEFb), which releases Pol II from the pause. By governing the transition from initiation to elongation, Cdk7, Cdk9 and their substrates influence expression of genes important for developmental and cell-cycle decisions, and ensure co-transcriptional maturation of Pol II transcripts. Cdk7 engaged in transcription also appears to be regulated by phosphorylation within its own activation (T) loop. Here I review recent studies of CDK regulation in cell division and gene expression, and propose a model whereby mitogenic signals trigger a cascade of CDK T-loop phosphorylation that drives cells past the restriction (R) point, when continued cell-cycle progression becomes growth factor-independent. Because R-point control is frequently deregulated in cancer, the CAK-CDK pathway is an attractive target for chemical inhibition aimed at impeding the inappropriate commitment to cell division.
Collapse
|
33
|
Yang Q, Jiang J, Mayr C, Hahn M, Ma Z. Involvement of two type 2C protein phosphatases BcPtc1 and BcPtc3 in the regulation of multiple stress tolerance and virulence of Botrytis cinerea. Environ Microbiol 2013; 15:2696-711. [PMID: 23601355 DOI: 10.1111/1462-2920.12126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 03/03/2013] [Accepted: 03/20/2013] [Indexed: 01/17/2023]
Abstract
Type 2C Ser/Thr phosphatases (PP2Cs) are involved in various cellular processes in many eukaryotes, but little has been known about their functions in filamentous fungi. Botrytis cinerea contains four putative PP2C genes, named BcPTC1, -3, -5, and -6. Biological functions of these genes were analysed by gene deletion and complementation. While no phenotypes aberrant from the wild type were observed with mutants of BcPTC5 and BcPTC6, mutants of BcPTC1 and BcPTC3 had reduced hyphal growth, increased conidiation, and impaired sclerotium development. Additionally, BcPTC1 and BcPTC3 mutants exhibited increased sensitivity to osmotic and oxidative stresses, and to cell wall degrading enzymes. Both mutants exhibited dramatically decreased virulence on host plant tissues. All of the defects were restored by genetic complementation of the mutants with wild-type BcPTC1 and BcPTC3 respectively. Different from what is known in Saccharomyces cerevisiae, BcPtc3, but not BcPtc1, negatively regulates phosphorylation of BcSak1 (the homologue of S. cerevisiae Hog1) in B. cinerea, although both BcPTC1 and BcPTC3 were able to rescue the growth defects of a yeast PTC1 deletion mutant under various stress conditions. These results demonstrated that BcPtc1 and BcPtc3 play important roles in the regulation of multiple stress tolerance and virulence of B. cinerea.
Collapse
Affiliation(s)
- Qianqian Yang
- Institute of Biotechnology, Zhejiang University, 388 Yuhangtang Road, Hangzhou, 310058, China
| | | | | | | | | |
Collapse
|
34
|
Aburai N, Yoshida J, Kobayashi M, Mizunuma M, Ohnishi M, Kimura KI. Pisiferdiol restores the growth of a mutant yeast suffering from hyperactivated Ca2+signalling through calcineurin inhibition. FEMS Yeast Res 2012; 13:16-22. [DOI: 10.1111/1567-1364.12003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 08/16/2012] [Accepted: 08/29/2012] [Indexed: 11/27/2022] Open
Affiliation(s)
- Nobuhiro Aburai
- The United Graduate School of Agricultural Sciences; Iwate University; Morioka; Japan
| | - Jun Yoshida
- Center for Liberal Arts and Sciences; Iwate Medical University; Yahaba; Iwate; Japan
| | - Miki Kobayashi
- Faculty of Agriculture; Iwate University; Morioka; Japan
| | - Masaki Mizunuma
- Department of Molecular Biotechnology; Graduate School of Advanced Sciences of Matter; Hiroshima University; Higashi-Hiroshima; Japan
| | - Motoko Ohnishi
- Department of Biological Chemistry; College of Bioscience and Biotechnology; Chubu University; Kasugai; Japan
| | | |
Collapse
|
35
|
Zhao Y, Feng J, Li J, Jiang L. Mithochondrial type 2C protein phosphatases CaPtc5p, CaPtc6p, and CaPtc7p play vital roles in cellular responses to antifungal drugs and cadmium inCandida albicans. FEMS Yeast Res 2012; 12:897-906. [DOI: 10.1111/j.1567-1364.2012.00840.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 12/29/2022] Open
Affiliation(s)
- Yunying Zhao
- Department of Molecular and Cellular Pharmacology; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin; China
| | - Jinrong Feng
- Department of Pathogen Biology; School of Medicine; Nantong University; Nantong; China
| | - Jing Li
- Department of Molecular and Cellular Pharmacology; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin; China
| | | |
Collapse
|
36
|
Spatial positive feedback at the onset of mitosis. Cell 2012; 149:1500-13. [PMID: 22726437 DOI: 10.1016/j.cell.2012.05.028] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 03/08/2012] [Accepted: 05/08/2012] [Indexed: 01/10/2023]
Abstract
Mitosis is triggered by the activation of Cdk1-cyclin B1 and its translocation from the cytoplasm to the nucleus. Positive feedback loops regulate the activation of Cdk1-cyclin B1 and help make the process irreversible and all-or-none in character. Here we examine whether an analogous process, spatial positive feedback, regulates Cdk1-cyclin B1 redistribution. We used chemical biology approaches and live-cell microscopy to show that nuclear Cdk1-cyclin B1 promotes the translocation of Cdk1-cyclin B1 to the nucleus. Mechanistic studies suggest that cyclin B1 phosphorylation promotes nuclear translocation and, conversely, nuclear translocation promotes cyclin B1 phosphorylation, accounting for the feedback. Interfering with the abruptness of Cdk1-cyclin B1 translocation affects the timing and synchronicity of subsequent mitotic events, underscoring the functional importance of this feedback. We propose that spatial positive feedback ensures a rapid, complete, robust, and irreversible transition from interphase to mitosis and suggest that bistable spatiotemporal switches may be widespread in biological regulation.
Collapse
|
37
|
Shohat M, Ben-Meir D, Lavi S. Protein phosphatase magnesium dependent 1A (PPM1A) plays a role in the differentiation and survival processes of nerve cells. PLoS One 2012; 7:e32438. [PMID: 22384250 PMCID: PMC3288098 DOI: 10.1371/journal.pone.0032438] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/27/2012] [Indexed: 12/22/2022] Open
Abstract
The serine/threonine phosphatase type 2C (PPM1A) has a broad range of substrates, and its role in regulating stress response is well established. We have investigated the involvement of PPM1A in the survival and differentiation processes of PC6-3 cells, a subclone of the PC12 cell line. This cell line can differentiate into neuron like cells upon exposure to nerve growth factor (NGF). Overexpression of PPM1A in naive PC6-3 cells caused cell cycle arrest at the G2/M phase followed by apoptosis. Interestingly, PPM1A overexpression did not affect fully differentiated cells. Using PPM1A overexpressing cells and PPM1A knockdown cells, we show that this phosphatase affects NGF signaling in PC6-3 cells and is engaged in neurite outgrowth. In addition, the ablation of PPM1A interferes with NGF-induced growth arrest during differentiation of PC6-3 cells.
Collapse
Affiliation(s)
| | | | - Sara Lavi
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
38
|
Willis RE. Human gene control by vital oncogenes: revisiting a theoretical model and its implications for targeted cancer therapy. Int J Mol Sci 2011; 13:316-35. [PMID: 22312254 PMCID: PMC3269688 DOI: 10.3390/ijms13010316] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/18/2011] [Accepted: 12/20/2011] [Indexed: 12/31/2022] Open
Abstract
An important assumption of our current understanding of the mechanisms of carcinogenesis has been the belief that clarification of the cancer process would inevitably reveal some of the crucial mechanisms of normal human gene regulation. Since the momentous work of Bishop and Varmus, both the molecular and the biochemical processes underlying the events in the development of cancer have become increasingly clear. The identification of cellular signaling pathways and the role of protein kinases in the events leading to gene activation have been critical to our understanding not only of normal cellular gene control mechanisms, but also have clarified some of the important molecular and biochemical events occurring within a cancer cell. We now know that oncogenes are dysfunctional proto-oncogenes and that dysfunctional tumor suppressor genes contribute to the cancer process. Furthermore, Weinstein and others have hypothesized the phenomenon of oncogene addiction as a distinct characteristic of the malignant cell. It can be assumed that cancer cells, indeed, become dependent on such vital oncogenes. The products of these vital oncogenes, such as c-myc, may well be the Achilles heel by which targeted molecular therapy may lead to truly personalized cancer therapy. The remaining problem is the need to introduce relevant molecular diagnostic tests such as genome microarray analysis and proteomic methods, especially protein kinase identification arrays, for each individual patient. Genome wide association studies on cancers with gene analysis of single nucleotide and other mutations in functional proto-oncogenes will, hopefully, identify dysfunctional proto-oncogenes and allow the development of more specific targeted drugs directed against the protein products of these vital oncogenes. In 1984 Willis proposed a molecular and biochemical model for eukaryotic gene regulation suggesting how proto-oncogenes might function within the normal cell. That model predicted the existence of vital oncogenes and can now be used to hypothesize the biochemical and molecular mechanisms that drive the processes leading to disruption of the gene regulatory machinery, resulting in the transformation of normal cells into cancer.
Collapse
Affiliation(s)
- Rudolph E Willis
- Department of Medical Oncology, Cancer Treatment Centers of America, Eastern Regional Medical Center, 1331 Wyoming Ave, Philadelphia, PA 19124, USA; E-Mail: ; Tel.: +1-215-537-7545
| |
Collapse
|
39
|
Yang X, Teng Y, Hou N, Fan X, Cheng X, Li J, Wang L, Wang Y, Wu X, Yang X. Delayed re-epithelialization in Ppm1a gene-deficient mice is mediated by enhanced activation of Smad2. J Biol Chem 2011; 286:42267-42273. [PMID: 21990361 DOI: 10.1074/jbc.m111.292284] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Protein phosphatase magnesium-dependent 1A (PPM1A), a protein serine/threonine phosphatase, controls several signal pathways through cleavage of phosphate from its substrates. However, the in vivo function of Ppm1a in mammals remains unknown. Here we reported that mice lacking Ppm1a developed normally but were impaired in re-epithelialization process during cutaneous wound healing. Specifically, complete or keratinocyte-specific deletion of Ppm1a led to delayed re-epithelialization with reduced keratinocyte migration upon wounding. We showed that this effect was the result of an increase in Smad2/3 phosphorylation in keratinocytes. Keratinocyte-specific Smad2 deficient mice displayed accelerated re-epithelialization with enhanced keratinocyte migration. Importantly, Smad2 and Ppm1a double mutant mice also exhibited accelerated re-epithelialization, demonstrating that the effect of Ppm1a on promoting re-epithelialization is mediated by Smad2 signaling. Furthermore, the decreased expression of specific integrins and matrix metalloproteinases (MMPs) may contribute to the retarded re-epithelialization in Ppm1a mutant mice. These data indicate that Ppm1a, through suppressing Smad2 signaling, plays a critical role in re-epithelialization during wound healing.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China; Model Organism Division, E-institutes of Shanghai Universities, Shanghai JiaoTong University, Shanghai 200025, P.R. China
| | - Yan Teng
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China.
| | - Ning Hou
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China
| | - Xiongwei Fan
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China; College of Life Sciences, Hunan Normal University, Changsha 410081, P.R. China
| | - Xuan Cheng
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China
| | - Jun Li
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China
| | - Lijuan Wang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China
| | - Youliang Wang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China
| | - Xiushan Wu
- College of Life Sciences, Hunan Normal University, Changsha 410081, P.R. China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China; Model Organism Division, E-institutes of Shanghai Universities, Shanghai JiaoTong University, Shanghai 200025, P.R. China.
| |
Collapse
|
40
|
Jiang J, Yun Y, Yang Q, Shim WB, Wang Z, Ma Z. A type 2C protein phosphatase FgPtc3 is involved in cell wall integrity, lipid metabolism, and virulence in Fusarium graminearum. PLoS One 2011; 6:e25311. [PMID: 21980420 PMCID: PMC3182220 DOI: 10.1371/journal.pone.0025311] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 08/31/2011] [Indexed: 01/11/2023] Open
Abstract
Type 2C protein phosphatases (PP2Cs) play important roles in regulating many biological processes in eukaryotes. Currently, little is known about functions of PP2Cs in filamentous fungi. The causal agent of wheat head blight, Fusarium graminearum, contains seven putative PP2C genes, FgPTC1, -3, -5, -5R, -6, -7 and -7R. In order to investigate roles of these PP2Cs, we constructed deletion mutants for all seven PP2C genes in this study. The FgPTC3 deletion mutant (ΔFgPtc3-8) exhibited reduced aerial hyphae formation and deoxynivalenol (DON) production, but increased production of conidia. The mutant showed increased resistance to osmotic stress and cell wall-damaging agents on potato dextrose agar plates. Pathogencity assays showed that ΔFgPtc3-8 is unable to infect flowering wheat head. All of the defects were restored when ΔFgPtc3-8 was complemented with the wild-type FgPTC3 gene. Additionally, the FgPTC3 partially rescued growth defect of a yeast PTC1 deletion mutant under various stress conditions. Ultrastructural and histochemical analyses showed that conidia of ΔFgPtc3-8 contained an unusually high number of large lipid droplets. Furthermore, the mutant accumulated a higher basal level of glycerol than the wild-type progenitor. Quantitative real-time PCR assays showed that basal expression of FgOS2, FgSLT2 and FgMKK1 in the mutant was significantly higher than that in the wild-type strain. Serial analysis of gene expression in ΔFgPtc3-8 revealed that FgPTC3 is associated with various metabolic pathways. In contrast to the FgPTC3 mutant, the deletion mutants of FgPTC1, FgPTC5, FgPTC5R, FgPTC6, FgPTC7 or FgPTC7R did not show aberrant phenotypic features when grown on PDA medium or inoculated on wheat head. These results indicate FgPtc3 is the key PP2C that plays a critical role in a variety of cellular and biological functions, including cell wall integrity, lipid and secondary metabolisms, and virulence in F. graminearum.
Collapse
Affiliation(s)
- Jinhua Jiang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yingzi Yun
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Qianqian Yang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Zhengyi Wang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhonghua Ma
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Feng J, Zhao J, Li J, Zhang L, Jiang L. Functional characterization of the PP2C phosphatase CaPtc2p in the human fungal pathogen Candida albicans. Yeast 2010; 27:753-64. [PMID: 20641018 DOI: 10.1002/yea.1778] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Type 2C protein phosphatases (PP2C) are monomeric enzymes and their activities require the presence of magnesium or manganese ion. There are seven PP2C-like genes in Candida albicans. In this study, we demonstrate that CaPtc2p is a PP2C phosphatase. Surprisingly, in addition to the cytoplasmic localization, CaPtc2p is partially associated with mitochondria in yeast-form and filamentous cells of C. albicans. Expression of CaPTC2 is developmentally regulated during the serum-induced filamentation. Deletion of CaPTC2 renders C. albicans cells sensitive to SDS and azole antifungals, as well as the DNA methylation agent methylmethane sulphonate and the DNA synthesis inhibitor hydroxyurea. Therefore, CaPtc2p might fulfil multiple functions, including the regulation of mitochondrial physiology and checkpoint recovery from DNA damage in C. albicans cells.
Collapse
Affiliation(s)
- Jinrong Feng
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | | | |
Collapse
|
42
|
Abstract
Type 2C Ser/Thr phosphatases are a remarkable class of protein phosphatases, which are conserved in eukaryotes and involved in a large variety of functional processes. Unlike in other Ser/Thr phosphatases, the catalytic polypeptide is not usually associated with regulatory subunits, and functional specificity is achieved by encoding multiple isoforms. For fungi, most information comes from the study of type 2C protein phosphatase (PP2C) enzymes in Saccharomyces cerevisiae, where seven PP2C-encoding genes (PTC1 to -7) with diverse functions can be found. More recently, data on several Candida albicans PP2C proteins became available, suggesting that some of them can be involved in virulence. In this work we review the available literature on fungal PP2Cs and explore sequence databases to provide a comprehensive overview of these enzymes in fungi.
Collapse
|
43
|
Pondugula SR, Tong AA, Wu J, Cui J, Chen T. Protein phosphatase 2Cbetal regulates human pregnane X receptor-mediated CYP3A4 gene expression in HepG2 liver carcinoma cells. Drug Metab Dispos 2010; 38:1411-6. [PMID: 20538721 PMCID: PMC2939471 DOI: 10.1124/dmd.110.032128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 06/09/2010] [Indexed: 01/18/2023] Open
Abstract
The human pregnane X receptor (hPXR) regulates the expression of CYP3A4, which plays a vital role in hepatic drug metabolism and has considerably reduced expression levels in proliferating hepatocytes. We have recently shown that cyclin-dependent kinase 2 (CDK2) negatively regulates hPXR-mediated CYP3A4 gene expression. CDK2 can be dephosphorylated and inactivated by protein phosphatase type 2C beta isoform long (PP2Cbetal), a unique phosphatase that was originally cloned from human liver. In this study, we sought to determine whether PP2Cbetal is involved in regulating hPXR's transactivation activity and whether PP2Cbetal affects CDK2 regulation of this activity in HepG2 liver carcinoma cells. In transactivation assays, transiently coexpressed PP2Cbetal significantly enhanced the hPXR-mediated CYP3A4 promoter activity and decreased the inhibitory effect of CDK2 on hPXR transactivation activity. In addition, shRNA-mediated down-regulation of endogenous PP2Cbetal promoted cell proliferation, inhibited the interaction of hPXR with steroid receptor coactivator-1, and attenuated the hPXR transcriptional activity. The levels of PP2Cbetal did not affect hPXR expression. Our results show for the first time that PP2Cbetal is essential for hPXR activity and can positively regulate this activity by counteracting the inhibitory effect of CDK2. Our results implicate a novel and important role for PP2Cbetal in regulating hPXR activity and CYP3A4 expression by inhibiting or desensitizing signaling pathways that negatively regulate the function of pregnane X receptor in liver cells and are consistent with the notion that both the activity of hPXR and the expression of CYP3A4 are regulated in a cell cycle-dependent and cell proliferation-dependent manner.
Collapse
Affiliation(s)
- Satyanarayana R Pondugula
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | | | | | | | |
Collapse
|
44
|
Zhang M, Siedow M, Saia G, Chakravarti A. Inhibition of p21-activated kinase 6 (PAK6) increases radiosensitivity of prostate cancer cells. Prostate 2010; 70:807-16. [PMID: 20054820 PMCID: PMC2860659 DOI: 10.1002/pros.21114] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND p21-activated kinase 6 (PAK6) is a serine/threonine kinase belonging to the p21-activated kinase (PAK) family. We investigated the role of PAK6 in radiation-induced cell death in human prostate cancer cells. METHODS We used a short hairpin RNA (shRNA) strategy to stably knock down PAK6 in PC3 and DU145 cells. Radiation sensitivities were compared in PAK6 stably knockdown cells versus the scrambled shRNA-expressing control cells. RESULTS PAK6 mRNA and protein levels in PC3 and DU145 cells were upregulated upon exposure to 6 Gy of radiation. After irradiation, an increased percentage of apoptotic cells and cleaved caspase-3 levels were demonstrated in combination with a decrease in cell viability and a reduction in clonogenic survival in PAK6-knockdown cells. In addition, transfection with PAK6 shRNA blocked cells in a more radiosensitive G2-M phase and increased levels of DNA double-strand breaks. We further explored the potential mechanisms by which PAK6 mediates resistance to radiation-induced apoptosis. Inhibition of PAK6 caused a decrease in Ser(112) phosphorylation of BAD, a proapoptotic member of the Bcl-2 family, which led to enhanced binding of BAD to Bcl-2 and Bcl-X(L) and release of cytochrome c culminating into caspase activation and cell apoptosis. CONCLUSIONS The combination of PAK6 inhibition and irradiation resulted in significantly decreased survival of prostate cancer cells. The underlying mechanisms by which targeting PAK6 may improve radiation response seem to be multifaceted, and involve alterations in cell cycle distribution and impaired DNA double-strand break repair as well as relieved BAD phosphorylation.
Collapse
Affiliation(s)
- Min Zhang
- Department of Radiation Oncology, The Ohio State University Medical School, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
45
|
Zhao J, Sun X, Fang J, Liu W, Feng C, Jiang L. Identification and characterization of the type 2C protein phosphatase Ptc4p in the human fungal pathogen Candida albicans. Yeast 2010; 27:149-57. [PMID: 20014041 DOI: 10.1002/yea.1739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Type 2C protein phosphatases (PP2C) are monomeric enzymes and their activities require the presence of magnesium or manganese ions. There are seven PP2C genes, named from PTC1 to PTC7, in Saccharomyces cerevisiae. In the current study we identified the CaPTC4 gene in Candida albicans and demonstrated that the CaPtc4p protein is a typical PP2C enzyme, which is highly conserved in fungal species. Deletion of CaPTC4 renders Candida cells sensitive to sodium and potassium ions as well as to antifungal azole drugs. In addition, we have shown that CaPtc4p is localized in the mitochondrion, suggesting that CaPtc4p is likely to be involved in the regulation of a mitochondrial function related to ion homeostasis.
Collapse
Affiliation(s)
- Jingwen Zhao
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Taylor EJ, Campbell SG, Griffiths CD, Reid PJ, Slaven JW, Harrison RJ, Sims PFG, Pavitt GD, Delneri D, Ashe MP. Fusel alcohols regulate translation initiation by inhibiting eIF2B to reduce ternary complex in a mechanism that may involve altering the integrity and dynamics of the eIF2B body. Mol Biol Cell 2010; 21:2202-16. [PMID: 20444979 PMCID: PMC2893985 DOI: 10.1091/mbc.e09-11-0962] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study highlights a connection between the eIF2B body and the regulation of translation initiation as a response to stress in Saccharomyces cerevisiae. Fusel alcohols are involved in signaling nitrogen scarcity to the cell and they inhibit protein synthesis by preventing the movement of the eIF2B body throughout the cell. Recycling of eIF2-GDP to the GTP-bound form constitutes a core essential, regulated step in eukaryotic translation. This reaction is mediated by eIF2B, a heteropentameric factor with important links to human disease. eIF2 in the GTP-bound form binds to methionyl initiator tRNA to form a ternary complex, and the levels of this ternary complex can be a critical determinant of the rate of protein synthesis. Here we show that eIF2B serves as the target for translation inhibition by various fusel alcohols in yeast. Fusel alcohols are endpoint metabolites from amino acid catabolism, which signal nitrogen scarcity. We show that the inhibition of eIF2B leads to reduced ternary complex levels and that different eIF2B subunit mutants alter fusel alcohol sensitivity. A DNA tiling array strategy was developed that overcame difficulties in the identification of these mutants where the phenotypic distinctions were too subtle for classical complementation cloning. Fusel alcohols also lead to eIF2α dephosphorylation in a Sit4p-dependent manner. In yeast, eIF2B occupies a large cytoplasmic body where guanine nucleotide exchange on eIF2 can occur and be regulated. Fusel alcohols impact on both the movement and dynamics of this 2B body. Overall, these results confirm that the guanine nucleotide exchange factor, eIF2B, is targeted by fusel alcohols. Moreover, they highlight a potential connection between the movement or integrity of the 2B body and eIF2B regulation.
Collapse
Affiliation(s)
- Eleanor J Taylor
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cho S, Schroeder S, Ott M. CYCLINg through transcription: posttranslational modifications of P-TEFb regulate transcription elongation. Cell Cycle 2010; 9:1697-705. [PMID: 20436276 PMCID: PMC2956491 DOI: 10.4161/cc.9.9.11346] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The cyclin T/CDK9 complex, also called positive transcription elongation factor b (P-TEFb) phosphorylates the C-terminal domain of the large fragment of the RNA polymerase II. This action is a hallmark of the transition from transcription initiation to elongation. P-TEFb is itself modified by phosphorylation and ubiquitination. Recently, the core components of P-TEFb, cyclin T1 and CDK9, were identified as novel substrates of histone acetyltransferases. Here, we review how posttranslational modifications regulate the activity of the P-TEFb complex and discuss how acetylation of the complex optimizes transcription elongation in the context of other posttranslational modifications.
Collapse
Affiliation(s)
| | | | - Melanie Ott
- Gladstone Institute of Virology and Immunology; University of California, San Francisco; San Francisco, CA USA
| |
Collapse
|
48
|
Merrick KA, Fisher RP. Putting one step before the other: distinct activation pathways for Cdk1 and Cdk2 bring order to the mammalian cell cycle. Cell Cycle 2010; 9:706-14. [PMID: 20139727 PMCID: PMC2851199 DOI: 10.4161/cc.9.4.10732] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic cell division is controlled by the activity of cyclin-dependent kinases (CDKs). Cdk1 and Cdk2, which function at different stages of the mammalian cell cycle, both require cyclin-binding and phosphorylation of the activation (T-) loop for full activity, but differ with respect to the order in which the two steps occur in vivo. To form stable complexes with either of its partners-cyclins A and B-Cdk1 must be phosphorylated on its T-loop, but that phosphorylation in turn depends on the presence of cyclin. Cdk2 can follow a kinetically distinct path to activation in which T-loop phosphorylation precedes cyclin-binding, and thereby out-compete the more abundant Cdk1 for limiting amounts of cyclin A. Mathematical modeling suggests this could be a principal basis for the temporal ordering of CDK activation during S phase, which may dictate the sequence in which replication origins fire. Still to be determined are how: (1) the activation machinery discriminates between closely related CDKs, and (2) coordination of the cell cycle is affected when this mechanism of pathway insulation breaks down.
Collapse
Affiliation(s)
- Karl A. Merrick
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1677, New York, NY 10029-6574
- Programs in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
| | - Robert P. Fisher
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1677, New York, NY 10029-6574
| |
Collapse
|
49
|
Yu L, Zhao J, Feng J, Fang J, Feng C, Jiang Y, Cao Y, Jiang L. Candida albicans CaPTC6 is a functional homologue for Saccharomyces cerevisiae ScPTC6 and encodes a type 2C protein phosphatase. Yeast 2009; 27:197-206. [PMID: 20033882 DOI: 10.1002/yea.1743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 2C protein phosphatases (PP2C) are monomeric enzymes and their activities require the presence of magnesium or manganese ions. There are seven PP2C genes, ScPTC1, ScPTC2, ScPTC3, ScPTC4, ScPTC5, ScPTC6 and ScPTC7, in Saccharomyces cerevisiae. PTC6 is highly conserved in pathogenic and nonpathogenic yeasts. In the current study we have demonstrated that the Candida albicans CaPTC6 gene could complement the functions of ScPTC6 in the rapamycin and caffeine sensitivities of S. cerevisiae cells, indicating that they are functional homologues. We have also demonstrated that the CaPTC6-encoded protein is a typical PP2C enzyme and that CaPtc6p is localized in the mitochondrion of yeast-form and hyphal cells. However, deletion of CaPTC6 neither affects cell and hyphal growth nor renders Candida cells sensitive to rapamycin and caffeine. Therefore, possibly with a functional redundancy to other mitochondrial phosphatases, CaPtc6p is likely to be involved in the regulation of a mitochondrial physiology.
Collapse
Affiliation(s)
- Liquan Yu
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ho CK, Lam AF, Symington LS. Identification of nucleases and phosphatases by direct biochemical screen of the Saccharomyces cerevisiae proteome. PLoS One 2009; 4:e6993. [PMID: 19753119 PMCID: PMC2737285 DOI: 10.1371/journal.pone.0006993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 08/19/2009] [Indexed: 11/23/2022] Open
Abstract
The availability of yeast strain collections expressing individually tagged proteins to facilitate one-step purification provides a powerful approach to identify proteins with particular biochemical activities. To identify novel exo- and endo-nucleases that might function in DNA repair, we undertook a proteomic screen making use of the movable ORF (MORF) library of yeast expression plasmids. This library consists of 5,854 yeast strains each expressing a unique yeast ORF fused to a tripartite tag consisting of His6, an HA epitope, a protease 3C cleavage site, and the IgG-binding domain (ZZ) from protein A, under the control of the GAL1 promoter for inducible expression. Pools of proteins were partially purified on IgG sepharose and tested for nuclease activity using three different radiolabeled DNA substrates. Several known nucleases and phosphatases were identified, as well as two new members of the histidine phosphatase superfamily, which includes phosphoglycerate mutases and phosphatases. Subsequent characterization revealed YDR051c/Det1 to be an acid phosphatase with broad substrate specificity, whereas YOR283w has a broad pH range and hydrolyzes hydrophilic phosphorylated substrates. Although no new nuclease activities were identified from this screen, we did find phosphatase activity associated with a protein of unknown function, YOR283w, and with the recently characterized protein Det1. This knowledge should guide further genetic and biochemical characterization of these proteins.
Collapse
Affiliation(s)
- Chu Kwen Ho
- Department of Microbiology, Columbia University College of Physicians & Surgeons, New York, New York, United States of America
| | - Alicia F. Lam
- Department of Microbiology, Columbia University College of Physicians & Surgeons, New York, New York, United States of America
| | - Lorraine S. Symington
- Department of Microbiology, Columbia University College of Physicians & Surgeons, New York, New York, United States of America
- * E-mail:
| |
Collapse
|