1
|
Hou L, Guo Y, Xu S, Bai M, Cao W, Zhang Y, Jia Z, Zhang A. HNF3α Targets Nckap1l and Promotes Renal Fibrosis Following Ischemia-Reperfusion Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410764. [PMID: 40091743 DOI: 10.1002/advs.202410764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Chronic Kidney Disease (CKD) is a global health challenge, with acute kidney injury (AKI) from ischemia-reperfusion injury (IRI) as a common cause. This study explored the role of Hepatocyte Nuclear Factor 3 alpha (HNF3α/FOXA1) in renal fibrosis and CKD after IRI. Kidney biopsy specimens from CKD patients and mouse models (IRI or unilateral ureteral obstruction) showed HNF3α upregulation in fibrotic kidneys, linked to renal function decline. Additional experiments demonstrated that deletion of HNF3α mitigated IRI-induced renal fibrosis, and that overexpression of HNF3α led to increased fibrosis. Examination of the potential mechanism by transcriptome sequencing and CUT&Tag sequencing suggested that HNF3α promoted renal fibrosis by increasing the expression of the NCK associated protein 1 like (Nckap1l, formerly known as hematopoietic protein 1 [Hem1]), a vital component of the WAVE complex which plays a significant role in cytoskeletal regulation and cell migration. These results underscore the critical function of HNF3α in renal fibrosis following IRI, and also identify Nckap1l as a potential therapeutic target, thus opening new avenues for research and potential therapeutic interventions for CKD and renal fibrosis.
Collapse
Affiliation(s)
- Ling Hou
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yan Guo
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in Children, Nanjing Medical University, Nanjing, 210029, China
| | - Shuang Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in Children, Nanjing Medical University, Nanjing, 210029, China
| | - Mi Bai
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in Children, Nanjing Medical University, Nanjing, 210029, China
| | - Weidong Cao
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in Children, Nanjing Medical University, Nanjing, 210029, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in Children, Nanjing Medical University, Nanjing, 210029, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in Children, Nanjing Medical University, Nanjing, 210029, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in Children, Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
2
|
Meng X, Li W, Xu J, Yao Y, Gong A, Yang Y, Qu F, Guo C, Zheng H, Cui G, Suo S, Peng G. Spatiotemporal transcriptome atlas of developing mouse lung. Sci Bull (Beijing) 2025:S2095-9273(25)00240-3. [PMID: 40118721 DOI: 10.1016/j.scib.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/07/2025] [Accepted: 02/24/2025] [Indexed: 03/23/2025]
Abstract
The functional development of the mammalian lung is a complex process that relies on the spatial and temporal organization of multiple cell types and their states. However, a comprehensive spatiotemporal transcriptome atlas of the developing lung has not yet been reported. Here we apply high-throughput spatial transcriptomics to allow for a comprehensive assessment of mouse lung development comprised of two critical developmental events: branching morphogenesis and alveologenesis. We firstly generate a spatial molecular atlas of mouse lung development spanning from E12.5 to P0 based on the integration of published single cell RNA-sequencing data and identify 10 spatial domains critical for functional lung organization. Furthermore, we create a lineage trajectory connecting spatial clusters from adjacent time points in E12.5-P0 lungs and explore TF (transcription factor) regulatory networks for each lineage specification. We observe the establishment of pulmonary airways within the developing lung, accompanied by the proximal-distal patterning with distinct characteristics of gene expression, signaling landscape and transcription factors enrichment. We characterize the alveolar niche heterogeneity with maturation state differences during the later developmental stage around birth and demonstrate differentially expressed genes, such as Angpt2 and Epha3, which may perform a critical role during alveologenesis. In addition, multiple signaling pathways, including ANGPT, VEGF and EPHA, exhibit increased levels in more maturing alveolar niche. Collectively, by integrating the spatial transcriptome with corresponding single-cell transcriptome data, we provide a comprehensive molecular atlas of mouse lung development with detailed molecular domain annotation and communication, which would pave the way for understanding human lung development and respiratory regeneration medicine.
Collapse
Affiliation(s)
- Xiaogao Meng
- Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China; Center for Cell Lineage Technology and Bioengineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Wenjia Li
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Guangzhou National Laboratory, Guangzhou 510005, China
| | - Jian Xu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Guangzhou National Laboratory, Guangzhou 510005, China
| | - Yao Yao
- Center for Cell Lineage Technology and Bioengineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - An Gong
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Yumeng Yang
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Fangfang Qu
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Chenkai Guo
- Center for Cell Lineage Technology and Bioengineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Hui Zheng
- Center for Cell Lineage Technology and Bioengineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong 999077, China
| | - Guizhong Cui
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Guangzhou National Laboratory, Guangzhou 510005, China.
| | - Shengbao Suo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Guangzhou National Laboratory, Guangzhou 510005, China.
| | - Guangdun Peng
- Center for Cell Lineage Technology and Bioengineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
3
|
Wang LN, Jia JS, Yang XL, Wen YT, Liu JX, Li DK, Chen XR, Wang JH, Li JK, Huang ZX, Yao KT. Foxa1 disruption enhances human cell integration in human-mouse interspecies chimeras. Cell Tissue Res 2025; 399:231-245. [PMID: 39708115 DOI: 10.1007/s00441-024-03941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
Blastocyst complementation can potentially generate a rodent model with humanized nasopharyngeal epithelium (NE) that supports sustained Epstein-Barr virus (EBV) infection, enabling comprehensive studies of EBV biology in nasopharyngeal carcinoma. However, during this process, the specific gene knockouts required to establish a developmental niche for NE remain unclear. We performed bioinformatics analyses and generated Foxa1 mutant mice to confirm that Foxa1 disruption could potentially create a developmental niche for NE. Subsequently, MYD88-inactivated human pluripotent stem cells (hPSCs) were constructed and complemented with Foxa1-deficient mouse blastocysts, with Nosip-deficient mouse blastocysts as a control. The chimerism of human cells in mouse embryos was evaluated from E8.5 to E12.5 using genomic DNA PCR and immunohistochemistry. Our bioinformatics analysis indicated that the expression patterns of Foxa1 in E8.5 to E16.5 mouse embryos underscore its critical role in NE development. The generated mice with Foxa1 disordered region mutations displayed morphological abnormality in NE, suggesting Foxa1-knockouts could potentially establish a developmental niche for NE. In chimeric assays, human cells integrated into 80.00% of Foxa1-deficient embryos, compared with the 4.17% in controls. Immunohistochemistry results revealed robust proliferation of human cells in Foxa1-deficient mouse embryos. However, chimeras from Foxa1-deficient mouse embryos did not survive beyond E10.5, hindering the evaluation of human cell integration in mouse NE. Foxa1 disruption in mouse embryos significantly enhances the integration of human cells in human-mouse interspecies chimeras, thereby facilitating the generation of endoderm-derived organs through blastocyst complementation. Overcoming chimeras' embryonic lethality is crucial for successfully generating humanized NE in Foxa1-deficient mouse embryos.
Collapse
Affiliation(s)
- Li-Na Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Oncology, School of Medicine, Guangzhou First People's Hospital, Southern China University of Technology, Guangzhou, 510180, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Jun-Shuang Jia
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Xing-Long Yang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Yue-Ting Wen
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Jing-Xian Liu
- Department of Oncology, Shenzen Hospital of Southern Medical University, Shenzhen, 518110, China
| | - Deng-Ke Li
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Xing-Rui Chen
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Jia-Hong Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Ji-Ke Li
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Xi Huang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| | - Kai-Tai Yao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Matrenec R, Oropeza CE, Dekoven E, Matrenec C, Maienschein-Cline M, Chau CS, Green SJ, Kaestner KH, McLachlan A. Foxa deficiency restricts hepatitis B virus biosynthesis through epigenic silencing. J Virol 2024; 98:e0137124. [PMID: 39377604 PMCID: PMC11575325 DOI: 10.1128/jvi.01371-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
In the hepatis B virus (HBV) transgenic mouse model of chronic infection, the forkhead box protein A/hepatocyte nuclear factor 3 (Foxa/HNF3) family of pioneer transcription factors are required to support postnatal viral demethylation and subsequent HBV transcription and replication. Liver-specific Foxa-deficient mice with hepatic expression of only Foxa3 do not support HBV replication but display biliary epithelial hyperplasia with bridging fibrosis. However, liver-specific Foxa-deficient mice with hepatic expression of only Foxa1 or Foxa2 also successfully restrict viral transcription and replication but display only minimal alterations in liver physiology. These observations suggest that the level of Foxa activity, rather than the combination of specific Foxa genes, is a key determinant of HBV biosynthesis. Together, these findings suggest that targeting Foxa activity could lead to HBV DNA methylation and transcriptional inactivation, resulting in the resolution of chronic HBV infections that are responsible for approximately one million deaths annually worldwide. IMPORTANCE The current absence of curative therapies capable of resolving chronic hepatis B virus (HBV) infection is a major clinical problem associated with considerable morbidity and mortality. The small viral genome limits molecular targets for drug development, suggesting that the identification of cellular factors essential for HBV biosynthesis may represent alternative targets for therapeutic intervention. Genetic Foxa deficiency in the neonatal liver of HBV transgenic mice leads to the transcriptional silencing of viral DNA by CpG methylation without affecting viability or displaying an obvious phenotype. Therefore, limiting liver Foxa activity therapeutically may lead to the methylation of viral covalently closed circular DNA (cccDNA), resulting in its transcriptional silencing and ultimately the resolution of chronic HBV infection.
Collapse
Affiliation(s)
- Rachel Matrenec
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Claudia E. Oropeza
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Eddie Dekoven
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Carly Matrenec
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark Maienschein-Cline
- Research Resources Center, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Cecilia S. Chau
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois, USA
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois, USA
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Pasterczyk KR, Li XL, Singh R, Zibitt MS, Hartford CCR, Pongor L, Jenkins LM, Hu Y, Zhao PX, Muys BR, Kumar S, Roper N, Aladjem MI, Pommier Y, Grammatikakis I, Lal A. Staufen1 Represses the FOXA1-Regulated Transcriptome by Destabilizing FOXA1 mRNA in Colorectal Cancer Cells. Mol Cell Biol 2024; 44:43-56. [PMID: 38347726 PMCID: PMC10950277 DOI: 10.1080/10985549.2024.2307574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
Transcription factors play key roles in development and disease by controlling gene expression. Forkhead box A1 (FOXA1), is a pioneer transcription factor essential for mouse development and functions as an oncogene in prostate and breast cancer. In colorectal cancer (CRC), FOXA1 is significantly downregulated and high FOXA1 expression is associated with better prognosis, suggesting potential tumor suppressive functions. We therefore investigated the regulation of FOXA1 expression in CRC, focusing on well-differentiated CRC cells, where FOXA1 is robustly expressed. Genome-wide RNA stability assays identified FOXA1 as an unstable mRNA in CRC cells. We validated FOXA1 mRNA instability in multiple CRC cell lines and in patient-derived CRC organoids, and found that the FOXA1 3'UTR confers instability to the FOXA1 transcript. RNA pulldowns and mass spectrometry identified Staufen1 (STAU1) as a potential regulator of FOXA1 mRNA. Indeed, STAU1 knockdown resulted in increased FOXA1 mRNA and protein expression due to increased FOXA1 mRNA stability. Consistent with these data, RNA-seq following STAU1 knockdown in CRC cells revealed that FOXA1 targets were upregulated upon STAU1 knockdown. Collectively, this study uncovers a molecular mechanism by which FOXA1 is regulated in CRC cells and provides insights into our understanding of the complex mechanisms of gene regulation in cancer.
Collapse
Affiliation(s)
- Katherine R. Pasterczyk
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Xiao Ling Li
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ragini Singh
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Meira S. Zibitt
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Corrine Corrina R. Hartford
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Lorinc Pongor
- DNA Replication Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Lisa M. Jenkins
- Mass Spectrometry Section, Laboratory of Cell Biology, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Yue Hu
- Omics Bioinformatic Facility, Genetics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Patrick X. Zhao
- Omics Bioinformatic Facility, Genetics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Bruna R. Muys
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Suresh Kumar
- Molecular Pharmacology Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Nitin Roper
- Molecular Pharmacology Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Mirit I. Aladjem
- DNA Replication Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Yves Pommier
- Molecular Pharmacology Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Ioannis Grammatikakis
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
6
|
Gao B, Wu X, Bu L, Jiang Q, Wang L, Liu H, Zhang X, Wu Y, Li X, Li J, Liang Y, Xu L, Xie W, Guo J. Atypical inflammatory kinase IKBKE phosphorylates and inactivates FoxA1 to promote liver tumorigenesis. SCIENCE ADVANCES 2024; 10:eadk2285. [PMID: 38324694 PMCID: PMC10849599 DOI: 10.1126/sciadv.adk2285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Physiologically, FoxA1 plays a key role in liver differentiation and development, and pathologically exhibits an oncogenic role in prostate and breast cancers. However, its role and upstream regulation in liver tumorigenesis remain unclear. Here, we demonstrate that FoxA1 acts as a tumor suppressor in liver cancer. Using a CRISPR-based kinome screening approach, noncanonical inflammatory kinase IKBKE has been identified to inhibit FoxA1 transcriptional activity. Notably, IKBKE directly binds to and phosphorylates FoxA1 to reduce its complex formation and DNA interaction, leading to elevated hepatocellular malignancies. Nonphosphorylated mimic Foxa1 knock-in mice markedly delay liver tumorigenesis in hydrodynamic transfection murine models, while phospho-mimic Foxa1 knock-in phenocopy Foxa1 knockout mice to exhibit developmental defects and liver inflammation. Notably, Ikbke knockout delays diethylnitrosamine (DEN)-induced mouse liver tumor development. Together, our findings not only reveal FoxA1 as a bona fide substrate and negative nuclear effector of IKBKE in hepatocellular carcinioma (HCC) but also provide a promising strategy to target IKBEK for HCC therapy.
Collapse
Affiliation(s)
- Bing Gao
- Center of Hepato-Pancreate-Biliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xueji Wu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lang Bu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Qiwei Jiang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lei Wang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Haining Liu
- Center of Hepato-Pancreate-Biliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xiaomei Zhang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Xiaoxing Li
- Center of Hepato-Pancreate-Biliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jingting Li
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Ying Liang
- Department of Nephrology, Guangzhou Eighth People′s Hospital, Guangzhou Medical University, Guangdong 510060, China
| | - Lixia Xu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
- Department of Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Xie
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|
7
|
Fan Y, Zhao M, Hao F, Sun R, Chen J, Liu J. Neuroprotective role of FOXA1 in Parkinson's disease: Involvements of NF1 transcription activation and MAPK signaling pathway inhibition. Brain Res Bull 2024; 206:110860. [PMID: 38143008 DOI: 10.1016/j.brainresbull.2023.110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Forkhead box A1 (FOXA1), a member of the forkhead family of transcription factors, plays a crucial role in the development of various organ systems and exhibits neuroprotective properties. This study aims to investigate the effect of FOXA1 on Parkinson's disease (PD) and unravel the underlying mechanism. Transcriptome analysis of PD was conducted using three GEO datasets to identify aberrantly expressed genes. A mouse model of PD was generated by injecting neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP), resulting in reduced FOXA1 expression. FOXA1 decline was also observed in 1-methyl-4-phenylpyridinium-treated SH-SY5Y cells. Artificial upregulation of FOXA1 improved motor abilities of mice according to rotarod and pole tests, and it mitigated tissue damage, cell loss, and neuronal damage in the mouse substantia nigra or in vitro. FOXA1 was found to bind to the neurofibromin 1 (NF1) promoter, thereby inducing its transcription and inactivating the mitogen-activated protein kinase (MAPK) signaling pathway. Further experimentation revealed that silencing NF1 in mice or SH-SY5Y cells counteracted the neuroprotective effects of FOXA1. In conclusion, this research suggests that FOXA1 activates NF1 transcription and inactivates the MAPK signaling pathway, ultimately ameliorating neuronal damage and motor disability in PD. The findings may offer novel ideas in the field of PD management.
Collapse
Affiliation(s)
- Yu Fan
- Department of Neurology, The Baotou Central Hospital, Baotou 014040, Inner Mongolia, PR China
| | - Meili Zhao
- Department of Neurology, The Baotou Central Hospital, Baotou 014040, Inner Mongolia, PR China
| | - Fei Hao
- Department of Neurology, The Baotou Central Hospital, Baotou 014040, Inner Mongolia, PR China
| | - Ruyi Sun
- Department of Neurology, The Baotou Central Hospital, Baotou 014040, Inner Mongolia, PR China
| | - Jinyu Chen
- Department of Neurology, The Baotou Central Hospital, Baotou 014040, Inner Mongolia, PR China
| | - Jiahui Liu
- Department of Neurology, The Baotou Central Hospital, Baotou 014040, Inner Mongolia, PR China.
| |
Collapse
|
8
|
Feng R, Liebe R, Weng HL. Transcription networks in liver development and acute liver failure. LIVER RESEARCH 2023; 7:47-55. [PMID: 39959701 PMCID: PMC11791834 DOI: 10.1016/j.livres.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/10/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Acute liver failure (ALF) is a medical emergency due to massive hepatocyte loss. In such a harsh condition, maintaining transcriptional regulation in the remaining hepatocytes while activating similar transcription factor networks in liver progenitor cells (LPCs) to ensure essential liver functions are two critical processes to rescue patients from liver failure and death. In this review, we discuss the formation and functions of transcription networks in ALF and liver development. We focus on a hierarchical network of transcription factors that responds to different pathophysiological circumstances: (1) Under normal circumstances, pioneer factor forkhead box protein A2 (FOXA2) coordinates several constitutive hepatic transcription factors, such as hepatic nuclear factor 4 alpha (HNF4α) and CCAAT-enhancer binding protein α (C/EBPα), which ensure normal liver function; (2) When the expression of both HNF4α and C/EBPα in hepatocytes are disrupted by severe inflammation, retinoic acid receptor (RAR) is the alternative transcription factor that compensates for their absence; (3) When massive hepatic necrosis occurs, a similar transcription network including FOXA2 and HNF4α, is activated as a "rescue network" in LPCs to maintain vital liver functions when hepatocytes fail, and thus ensures survival. Expression of these master transcription factors in hepatocytes and LPCs is tightly regulated by hormone signals and inflammation. The performance of this hierarchical transcription network, in particularly the "rescue network" described above, significantly affects the clinical outcome of ALF.
Collapse
Affiliation(s)
- Rilu Feng
- Department of Medicine II, Section Molecular Hepatology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Roman Liebe
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Düsseldorf, Germany
- Department of Medicine II, Saarland University Medical Centre, Saarland University, Homburg, Germany
| | - Hong-Lei Weng
- Department of Medicine II, Section Molecular Hepatology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
9
|
Yu C, Li X, Zhao Y, Hu Y. The role of FOXA family transcription factors in glucolipid metabolism and NAFLD. Front Endocrinol (Lausanne) 2023; 14:1081500. [PMID: 36798663 PMCID: PMC9927216 DOI: 10.3389/fendo.2023.1081500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Abnormal glucose metabolism and lipid metabolism are common pathological processes in many metabolic diseases, such as nonalcoholic fatty liver disease (NAFLD). Many studies have shown that the forkhead box (FOX) protein subfamily FOXA has a role in regulating glucolipid metabolism and is closely related to hepatic steatosis and NAFLD. FOXA exhibits a wide range of functions ranging from the initiation steps of metabolism such as the development of the corresponding metabolic organs and the differentiation of cells, to multiple pathways of glucolipid metabolism, to end-of-life problems of metabolism such as age-related obesity. The purpose of this article is to review and discuss the currently known targets and signal transduction pathways of FOXA in glucolipid metabolism. To provide more experimental evidence and basis for further research and clinical application of FOXA in the regulation of glucolipid metabolism and the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Chuchu Yu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affifiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojing Li
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affifiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affifiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yu Zhao, ; Yiyang Hu,
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affifiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Clinical Pharmacology, Shuguang Hospital Affifiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yu Zhao, ; Yiyang Hu,
| |
Collapse
|
10
|
Petry SF, Kandula ND, Günther S, Helker C, Schagdarsurengin U, Linn T. Valproic Acid Initiates Transdifferentiation of the Human Ductal Adenocarcinoma Cell-line Panc-1 Into α-Like Cells. Exp Clin Endocrinol Diabetes 2022; 130:638-651. [PMID: 35451037 DOI: 10.1055/a-1750-9190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Non-mesenchymal pancreatic cells are a potential source for cell replacement. Their transdifferentiation can be achieved by triggering epigenetic remodeling through e. g. post-translational modification of histones. Valproic acid, a branched-chain saturated fatty acid with histone deacetylase inhibitor activity, was linked to the expression of key transcription factors of pancreatic lineage in epithelial cells and insulin transcription. However, the potential of valproic acid to cause cellular reprogramming is not fully understood. To shed further light on it we employed next-generation RNA sequencing, real-time PCR, and protein analyses by ELISA and western blot, to assess the impact of valproic acid on transcriptome and function of Panc-1-cells. Our results indicate that valproic acid has a significant impact on the cell cycle, cell adhesion, histone H3 acetylation, and metabolic pathways as well as the initiation of epithelial-mesenchymal transition through acetylation of histone H3 resulting in α-cell-like characteristics. We conclude that human epithelial pancreatic cells can be transdifferentiated into cells with endocrine properties through epigenetic regulation by valproic acid favoring an α-cell-like phenotype.
Collapse
Affiliation(s)
- Sebastian Friedrich Petry
- Clinical Research Unit, Center of Internal Medicine, Medical Clinic and Polyclinic III, Justus Liebig University, Giessen, Germany
| | - Naga Deepa Kandula
- Clinical Research Unit, Center of Internal Medicine, Medical Clinic and Polyclinic III, Justus Liebig University, Giessen, Germany
| | - Stefan Günther
- Bioinformatics and deep sequencing platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Christian Helker
- Cell Signaling and Dynamics, Department of Biology, Philipps University, Marburg, Germany
| | - Undraga Schagdarsurengin
- Epigenetics of Urogenital System, Clinic and Polyclinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Center of Internal Medicine, Medical Clinic and Polyclinic III, Justus Liebig University, Giessen, Germany
| |
Collapse
|
11
|
Recombinant humanized IgG1 maintain liver triglyceride homeostasis through Arylacetamide deacetylase in ApoE -/- mice. Int Immunopharmacol 2022; 108:108741. [PMID: 35397394 DOI: 10.1016/j.intimp.2022.108741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND & AIMS Hyperlipidemia is a lipid metabolism disorder associated with elevated serum triglyceride (TG) and/or cholesterol. Over the years, studies have shown that hyperlipidemia is associated with combordities, incluing diabetes and obesity, gradually becoming a public health concern. Current treatment approaches remain limited due to the lack of effective drugs. Here we investigated the function of recombinant humanized IgG1 in maintaining liver TG homeostasis and the underlying mechanisms. METHODS ApoE-/- mice were fed a high-fat diet (HFD) for 20 weeks to induce hyperlipidemia. RNA sequencing (RNA-Seq) was performed to identify differences in gene expression in different groups of ApoE-/- mice liver. In vitro lipid accumulation in primary mouse hepatocytes was induced using a free fatty acid (FFA) mixture. Gene and protein expression were assessed in primary mouse hepatocytes by qPCR and Western blot. Gene reporter assays and ChIP-PCR were used to determine arylacetamide deacetylase (Aadac) promoter activity. RESULTS Recombinant humanized IgG1 could significantly decrease the serum level of TG and low-density lipoproteins (LDL-C). Moreover, hepatic TG and lipid droplets were also reduced compared to the HFD group. Mouse liver RNA-Seq revealed that administration of recombinant humanized IgG1 significantly elevated the expression of Aadac. In vitro, knock-down of Aadac could nullify the effect of recombinant humanized IgG1 on decreasing the lipid droplets induced by FFA in primary mouse hepatocytes. Gene Reporter assays and ChIP-PCR demonstrated that the foxa1 response element in the Aadac promoter played a key role in Aadac expression induced by recombinant humanized IgG1. Moreover, recombinant humanized IgG1 repressed phosphorylation of PKCδ and resulted in foxa1 elevation. Finally, neonatal Fc receptor (FcRn) knock-down reversed the effect of recombinant humanized IgG1 on the expression of PKCδ phosphorylation, foxa1 and Aadac. CONCLUSIONS Our findings suggest that recombinant humanized IgG1 plays an important role in maintaining liver TG homeostasis via the FcRn/PKCδ/foxa1/Aadac pathway.
Collapse
|
12
|
Ni A, Ernst C. Evidence That Substantia Nigra Pars Compacta Dopaminergic Neurons Are Selectively Vulnerable to Oxidative Stress Because They Are Highly Metabolically Active. Front Cell Neurosci 2022; 16:826193. [PMID: 35308118 PMCID: PMC8931026 DOI: 10.3389/fncel.2022.826193] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/28/2022] [Indexed: 12/21/2022] Open
Abstract
There are 400–500 thousand dopaminergic cells within each side of the human substantia nigra pars compacta (SNpc) making them a minuscule portion of total brain mass. These tiny clusters of cells have an outsized impact on motor output and behavior as seen in disorders such as Parkinson’s disease (PD). SNpc dopaminergic neurons are more vulnerable to oxidative stress compared to other brain cell types, but the reasons for this are not precisely known. Here we provide evidence to support the hypothesis that this selective vulnerability is because SNpc neurons sustain high metabolic rates compared to other neurons. A higher baseline requirement for ATP production may lead to a selective vulnerability to impairments in oxidative phosphorylation (OXPHOS) or genetic insults that impair Complex I of the electron transport chain. We suggest that the energy demands of the unique morphological and electrophysiological properties of SNpc neurons may be one reason these cells produce more ATP than other cells. We further provide evidence to support the hypothesis that transcription factors (TFs) required to drive induction, differentiation, and maintenance of midbrain dopaminergic neural progenitor cells which give rise to terminally differentiated SNpc neurons are uniquely involved in both developmental patterning and metabolism, a dual function unlike other TFs that program neurons in other brain regions. The use of these TFs during induction and differentiation may program ventral midbrain progenitor cells metabolically to higher ATP levels, allowing for the development of those specialized cell processes seen in terminally differentiated cells. This paper provides a cellular and developmental framework for understanding the selective vulnerability of SNpc dopaminergic cells to oxidative stress.
Collapse
|
13
|
Ko S, Yeom E, Chun YL, Mun H, Howard-McGuire M, Millison NT, Jung J, Lee KP, Lee C, Lee KS, Delaney JR, Yoon JH. Profiling of RNA-binding Proteins Interacting With Glucagon and Adipokinetic Hormone mRNAs. J Lipid Atheroscler 2022; 11:55-72. [PMID: 35118022 PMCID: PMC8792818 DOI: 10.12997/jla.2022.11.1.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Glucagon in mammals and its homolog (adipokinetic hormone [AKH] in Drosophila melanogaster) are peptide hormones which regulate lipid metabolism by breaking down triglycerides. Although regulatory mechanisms of glucagon and AKH expression have been widely studied, post-transcriptional gene expression of glucagon has not been investigated thoroughly. In this study, we aimed to profile proteins binding with Gcg messenger RNA (mRNA) in mouse and Akh mRNA in Drosophila. METHODS Drosophila Schneider 2 (S2) and mouse 3T3-L1 cell lysates were utilized for affinity pull down of Akh and Gcg mRNA respectively using biotinylated anti-sense DNA oligoes against target mRNAs. Mass spectrometry and computational network analysis revealed mRNA-interacting proteins residing in functional proximity. RESULTS We observed that 1) 91 proteins interact with Akh mRNA from S2 cell lysates, 2) 34 proteins interact with Gcg mRNA from 3T3-L1 cell lysates. 3) Akh mRNA interactome revealed clusters of ribosomes and known RNA-binding proteins (RBPs). 4) Gcg mRNA interactome revealed mRNA-binding proteins including Plekha7, zinc finger protein, carboxylase, lipase, histone proteins and a cytochrome, Cyp2c44. 5) Levels of Gcg mRNA and its interacting proteins are elevated in skeletal muscles isolated from old mice compared to ones from young mice. CONCLUSION Akh mRNA in S2 cells are under active translation in a complex of RBPs and ribosomes. Gcg mRNA in mouse precursor adipocyte is in a condition distinct from Akh mRNA due to biochemical interactions with a subset of RBPs and histones. We anticipate that our study contributes to investigating regulatory mechanisms of Gcg and Akh mRNA decay, translation, and localization.
Collapse
Affiliation(s)
- Seungbeom Ko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Eunbyul Yeom
- Neurophysiology and Metabolism Research Group, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Yoo Lim Chun
- Department of Biomedical Science, Graduation School, Kyung Hee University, Seoul, Korea
| | - Hyejin Mun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Marina Howard-McGuire
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Nathan T. Millison
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Kwang-Pyo Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kyu-Sun Lee
- Neurophysiology and Metabolism Research Group, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Joe R. Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
14
|
Seachrist DD, Anstine LJ, Keri RA. FOXA1: A Pioneer of Nuclear Receptor Action in Breast Cancer. Cancers (Basel) 2021; 13:cancers13205205. [PMID: 34680352 PMCID: PMC8533709 DOI: 10.3390/cancers13205205] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/26/2022] Open
Abstract
The pioneering function of FOXA1 establishes estrogen-responsive transcriptomes in luminal breast cancer. Dysregulated FOXA1 chromatin occupancy through focal amplification, mutation, or cofactor recruitment modulates estrogen receptor (ER) transcriptional programs and drives endocrine-resistant disease. However, ER is not the sole nuclear receptor (NR) expressed in breast cancers, nor is it the only NR for which FOXA1 serves as a licensing factor. Receptors for androgens, glucocorticoids, and progesterone are also found in the majority of breast cancers, and their functions are also impacted by FOXA1. These NRs interface with ER transcriptional programs and, depending on their activation level, can reprogram FOXA1-ER cistromes. Thus, NR interplay contributes to endocrine therapy response and resistance and may provide a vulnerability for future therapeutic benefit in patients. Herein, we review what is known regarding FOXA1 regulation of NR function in breast cancer in the context of cell identity, endocrine resistance, and NR crosstalk in breast cancer progression and treatment.
Collapse
Affiliation(s)
- Darcie D. Seachrist
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Lindsey J. Anstine
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ruth A. Keri
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
- Department of Cancer Biology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
15
|
Tachmatzidi EC, Galanopoulou O, Talianidis I. Transcription Control of Liver Development. Cells 2021; 10:cells10082026. [PMID: 34440795 PMCID: PMC8391549 DOI: 10.3390/cells10082026] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
During liver organogenesis, cellular transcriptional profiles are constantly reshaped by the action of hepatic transcriptional regulators, including FoxA1-3, GATA4/6, HNF1α/β, HNF4α, HNF6, OC-2, C/EBPα/β, Hex, and Prox1. These factors are crucial for the activation of hepatic genes that, in the context of compact chromatin, cannot access their targets. The initial opening of highly condensed chromatin is executed by a special class of transcription factors known as pioneer factors. They bind and destabilize highly condensed chromatin and facilitate access to other "non-pioneer" factors. The association of target genes with pioneer and non-pioneer transcription factors takes place long before gene activation. In this way, the underlying gene regulatory regions are marked for future activation. The process is called "bookmarking", which confers transcriptional competence on target genes. Developmental bookmarking is accompanied by a dynamic maturation process, which prepares the genomic loci for stable and efficient transcription. Stable hepatic expression profiles are maintained during development and adulthood by the constant availability of the main regulators. This is achieved by a self-sustaining regulatory network that is established by complex cross-regulatory interactions between the major regulators. This network gradually grows during liver development and provides an epigenetic memory mechanism for safeguarding the optimal expression of the regulators.
Collapse
Affiliation(s)
- Evangelia C. Tachmatzidi
- Institute of Molecular Biology and Biotechnology, FORTH, 70013 Herakleion, Crete, Greece; (E.C.T.); (O.G.)
- Department of Biology, University of Crete, 70013 Herakleion, Crete, Greece
| | - Ourania Galanopoulou
- Institute of Molecular Biology and Biotechnology, FORTH, 70013 Herakleion, Crete, Greece; (E.C.T.); (O.G.)
- Department of Biology, University of Crete, 70013 Herakleion, Crete, Greece
| | - Iannis Talianidis
- Institute of Molecular Biology and Biotechnology, FORTH, 70013 Herakleion, Crete, Greece; (E.C.T.); (O.G.)
- Correspondence:
| |
Collapse
|
16
|
Untargeted metabolomics and lipidomics analysis identified the role of FOXA1 in remodeling the metabolic pattern of BaP-transformed 16HBE cells. Toxicol Appl Pharmacol 2021; 426:115640. [PMID: 34242566 DOI: 10.1016/j.taap.2021.115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/14/2021] [Accepted: 07/04/2021] [Indexed: 11/20/2022]
Abstract
Benzo[a]pyrene (BaP) is a strong carcinogen for lung cancer, and forkhead-box A1 (FOXA1) plays an oncogenic role in BaP-transformed cell THBEc1. To explore the remodeling of metabolic pattern caused by BaP-induced transformation and the possible role FOXA1 might play in it, we compared metabolic patterns between THBEc1 cells and control using untargeted metabolomics and lipidomics analysis, and determined the effects of FOXA1 knockout on the metabolic pattern of THBEc1 cells. Metabolomics and lipidomics identified a total of 15 and 46 differential metabolites and lipids between THBEc1 and 16HBE cells, respectively, and a total of 4 and 1 differential metabolites and lipids between FOXA1 knockout cell THBEc1-ΔFOXA1-c34 and control cell THBEc1-ctrl, respectively. Analysis results of metabolites and metabolic pathways indicated the metabolic pattern remodeling may be related to the alteration in glucose metabolism during BaP-induced transformation. Western blotting revealed the up-regulation of enolase-2 (ENO2), pyruvate carboxylase (PCB), aconitase-2 (ACO2) and phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) (Thr202/Tyr204), the down-regulation of succinate dehydrogenase complex subunit A (SDHA) and phosphoenolpyruvate carboxykinase 2 (PCK2) in THBEc1 cells. The detection results of metabolites related to glucose metabolism demonstrated the decreasing of lactic acid content in cells, lactic acid production in culture medium and citric acid content in mitochondria, and the increasing of ATP production of THBEc1 cells. FOXA1 knockout partially reversed the changes of ENO2, SDHA, PCK2 and p-ERK1/2 (Thr202/Tyr204) levels, lactic acid release, citric acid content in mitochondria of THBEc1 cells. In conclusion, FOXA1 knockout partially reversed the remodeling of glucose metabolism caused by BaP-induced malignant transformation. Our findings provide a clue for the possible role of FOXA1 in glucose metabolism regulation.
Collapse
|
17
|
Zeigerer A, Sekar R, Kleinert M, Nason S, Habegger KM, Müller TD. Glucagon's Metabolic Action in Health and Disease. Compr Physiol 2021; 11:1759-1783. [PMID: 33792899 PMCID: PMC8513137 DOI: 10.1002/cphy.c200013] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Discovered almost simultaneously with insulin, glucagon is a pleiotropic hormone with metabolic action that goes far beyond its classical role to increase blood glucose. Albeit best known for its ability to directly act on the liver to increase de novo glucose production and to inhibit glycogen breakdown, glucagon lowers body weight by decreasing food intake and by increasing metabolic rate. Glucagon further promotes lipolysis and lipid oxidation and has positive chronotropic and inotropic effects in the heart. Interestingly, recent decades have witnessed a remarkable renaissance of glucagon's biology with the acknowledgment that glucagon has pharmacological value beyond its classical use as rescue medication to treat severe hypoglycemia. In this article, we summarize the multifaceted nature of glucagon with a special focus on its hepatic action and discuss the pharmacological potential of either agonizing or antagonizing the glucagon receptor for health and disease. © 2021 American Physiological Society. Compr Physiol 11:1759-1783, 2021.
Collapse
Affiliation(s)
- Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Revathi Sekar
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Maximilian Kleinert
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Shelly Nason
- Comprehensive Diabetes Center, Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kirk M. Habegger
- Comprehensive Diabetes Center, Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Timo D. Müller
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
18
|
Zakeri N, Mirdamadi ES, Kalhori D, Solati-Hashjin M. Signaling molecules orchestrating liver regenerative medicine. J Tissue Eng Regen Med 2020; 14:1715-1737. [PMID: 33043611 DOI: 10.1002/term.3135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022]
Abstract
The liver is in charge of more than 500 functions in the human body, which any damage and failure to the liver can significantly compromise human life. Numerous studies are being carried out in regenerative medicine, as a potential driving force, toward alleviating the need for liver donors and fabrication of a 3D-engineered transplantable hepatic tissue. Liver tissue engineering brings three main factors of cells, extracellular matrix (ECM), and signaling molecules together, while each of these three factors tries to mimic the physiological state of the tissue to direct tissue regeneration. Signaling molecules play a crucial role in directing tissue fabrication in liver tissue engineering. When mimicking the natural in vivo process of regeneration, it is tightly associated with three main phases of differentiation, proliferation (progression), and tissue maturation through vascularization while directing each of these phases is highly regulated by the specific signaling molecules. The understanding of how these signaling molecules guide the dynamic behavior of regeneration would be a tool for further tailoring of bioengineered systems to help the liver regeneration with many cellular, molecular, and tissue-level functions. Hence, the signaling molecules come to aid all these phases for further improvements toward the clinical use of liver tissue engineering as the goal.
Collapse
Affiliation(s)
- Nima Zakeri
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Elnaz Sadat Mirdamadi
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Dianoosh Kalhori
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mehran Solati-Hashjin
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
19
|
FOXA2 Is Required for Enhancer Priming during Pancreatic Differentiation. Cell Rep 2020; 28:382-393.e7. [PMID: 31291575 PMCID: PMC6636862 DOI: 10.1016/j.celrep.2019.06.034] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 04/18/2019] [Accepted: 06/08/2019] [Indexed: 12/15/2022] Open
Abstract
Transcriptional regulatory mechanisms of lineage priming in embryonic development are largely uncharacterized because of the difficulty of isolating transient progenitor populations. Directed differentiation of human pluripotent stem cells (hPSCs) combined with gene editing provides a powerful system to define precise temporal gene requirements for progressive chromatin changes during cell fate transitions. Here, we map the dynamic chromatin landscape associated with sequential stages of pancreatic differentiation from hPSCs. Our analysis of chromatin accessibility dynamics led us to uncover a requirement for FOXA2, known as a pioneer factor, in human pancreas specification not previously shown from mouse knockout studies. FOXA2 knockout hPSCs formed reduced numbers of pancreatic progenitors accompanied by impaired recruitment of GATA6 to pancreatic enhancers. Furthermore, FOXA2 is required for proper chromatin remodeling and H3K4me1 deposition during enhancer priming. This work highlights the power of combining hPSC differentiation, genome editing, and computational genomics for discovering transcriptional mechanisms during development.
Collapse
|
20
|
Horisawa K, Udono M, Ueno K, Ohkawa Y, Nagasaki M, Sekiya S, Suzuki A. The Dynamics of Transcriptional Activation by Hepatic Reprogramming Factors. Mol Cell 2020; 79:660-676.e8. [PMID: 32755593 DOI: 10.1016/j.molcel.2020.07.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/18/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Specific combinations of two transcription factors (Hnf4α plus Foxa1, Foxa2, or Foxa3) can induce direct conversion of mouse fibroblasts into hepatocyte-like cells. However, the molecular mechanisms underlying hepatic reprogramming are largely unknown. Here, we show that the Foxa protein family members and Hnf4α sequentially and cooperatively bind to chromatin to activate liver-specific gene expression. Although all Foxa proteins bind to and open regions of closed chromatin as pioneer factors, Foxa3 has the unique potential of transferring from the distal to proximal regions of the transcription start site of target genes, binding RNA polymerase II, and co-traversing target genes. These distinctive characteristics of Foxa3 are essential for inducing the hepatic fate in fibroblasts. Similar functional coupling of transcription factors to RNA polymerase II may occur in other contexts whereby transcriptional activation can induce cell differentiation.
Collapse
Affiliation(s)
- Kenichi Horisawa
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Miyako Udono
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazuko Ueno
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Masao Nagasaki
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Human Biosciences Unit for the Top Global Course, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8507, Japan
| | - Sayaka Sekiya
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
21
|
Gredler ML, Patterson SE, Seifert AW, Cohn MJ. Foxa1 and Foxa2 orchestrate development of the urethral tube and division of the embryonic cloaca through an autoregulatory loop with Shh. Dev Biol 2020; 465:23-30. [PMID: 32645357 DOI: 10.1016/j.ydbio.2020.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/04/2023]
Abstract
Congenital anomalies of external genitalia affect approximately 1 in 125 live male births. Development of the genital tubercle, the precursor of the penis and clitoris, is regulated by the urethral plate epithelium, an endodermal signaling center. Signaling activity of the urethral plate is mediated by Sonic hedgehog (SHH), which coordinates outgrowth and patterning of the genital tubercle by controlling cell cycle kinetics and expression of downstream genes. The mechanisms that govern Shh transcription in urethral plate cells are largely unknown. Here we show that deletion of Foxa1 and Foxa2 results in persistent cloaca, an incomplete separation of urinary, genital, and anorectal tracts, and severe hypospadias, a failure of urethral tubulogenesis. Loss of Foxa2 and only one copy of Foxa1 results in urethral fistula, an additional opening of the penile urethra. Foxa1/a2 participate in an autoregulatory feedback loop with Shh, in which FOXA1 and FOXA2 positively regulate transcription of Shh in the urethra, and SHH feeds back to negatively regulate Foxa1 and Foxa2 expression. These findings reveal novel roles for Foxa genes in development of the urethral tube and in division of the embryonic cloaca.
Collapse
Affiliation(s)
- Marissa L Gredler
- Department of Biology, UF Genetics Institute, University of Florida, PO Box 103610, Gainesville, FL, 32611, USA; Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, PO Box 103610, Gainesville, FL, 32611, USA
| | - Sara E Patterson
- Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, PO Box 103610, Gainesville, FL, 32611, USA
| | - Ashley W Seifert
- Department of Biology, UF Genetics Institute, University of Florida, PO Box 103610, Gainesville, FL, 32611, USA
| | - Martin J Cohn
- Department of Biology, UF Genetics Institute, University of Florida, PO Box 103610, Gainesville, FL, 32611, USA; Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, PO Box 103610, Gainesville, FL, 32611, USA.
| |
Collapse
|
22
|
Hankey W, Chen Z, Wang Q. Shaping Chromatin States in Prostate Cancer by Pioneer Transcription Factors. Cancer Res 2020; 80:2427-2436. [PMID: 32094298 PMCID: PMC7299826 DOI: 10.1158/0008-5472.can-19-3447] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/14/2020] [Accepted: 02/19/2020] [Indexed: 01/28/2023]
Abstract
The androgen receptor (AR) is a critical therapeutic target in prostate cancer that responds to antagonists in primary disease, but inevitably becomes reactivated, signaling onset of the lethal castration-resistant prostate cancer (CRPC) stage. Epigenomic investigation of the chromatin environment and interacting partners required for AR transcriptional activity has uncovered three pioneer factors that open up chromatin and facilitate AR-driven transcriptional programs. FOXA1, HOXB13, and GATA2 are required for normal AR transcription in prostate epithelial development and for oncogenic AR transcription during prostate carcinogenesis. AR signaling is dependent upon these three pioneer factors both before and after the clinical transition from treatable androgen-dependent disease to untreatable CRPC. Agents targeting their respective DNA binding or downstream chromatin-remodeling events have shown promise in preclinical studies of CRPC. AR-independent functions of FOXA1, HOXB13, and GATA2 are emerging as well. While all three pioneer factors exert effects that promote carcinogenesis, some of their functions may inhibit certain stages of prostate cancer progression. In all, these pioneer factors represent some of the most promising potential therapeutic targets to emerge thus far from the study of the prostate cancer epigenome.
Collapse
Affiliation(s)
- William Hankey
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina
| | - Zhong Chen
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina.
| | - Qianben Wang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
23
|
Gao B, Xie W, Wu X, Wang L, Guo J. Functionally analyzing the important roles of hepatocyte nuclear factor 3 (FoxA) in tumorigenesis. Biochim Biophys Acta Rev Cancer 2020; 1873:188365. [PMID: 32325165 DOI: 10.1016/j.bbcan.2020.188365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Transcriptional factors (TFs) play a central role in governing gene expression under physiological conditions including the processes of embryonic development, metabolic homeostasis and response to extracellular stimuli. Conceivably, the aberrant dysregulations of TFs would dominantly result in various human disorders including tumorigenesis, diabetes and neurodegenerative diseases. Serving as the most evolutionarily reserved TFs, Fox family TFs have been explored to exert distinct biological functions in neoplastic development, by manipulating diverse gene expression. Recently, among the Fox family members, the pilot roles of FoxAs attract more attention due to their functions as both pioneer factor and transcriptional factor in human tumorigenesis, particularly in the sex-dimorphism tumors. Therefore, the pathological roles of FoxAs in tumorigenesis have been well-explored in modulating inflammation, immune response and metabolic homeostasis. In this review, we comprehensively summarize the impressive progression of FoxA functional annotation, clinical relevance, upstream regulators and downstream effectors, as well as valuable animal models, and highlight the potential strategies to target FoxAs for cancer therapies.
Collapse
Affiliation(s)
- Bing Gao
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Xie
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xueji Wu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lei Wang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
24
|
Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30:72-130. [PMID: 31767182 PMCID: PMC6812410 DOI: 10.1016/j.molmet.2019.09.010] [Citation(s) in RCA: 1102] [Impact Index Per Article: 183.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. MAJOR CONCLUSIONS Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - B Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - S R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - D D'Alessio
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - D J Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, M5G1X5, Canada
| | - P R Flatt
- SAAD Centre for Pharmacy & Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - A Fritsche
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - F Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - H J Grill
- Institute of Diabetes, Obesity and Metabolism, Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - J J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - W Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - J J Meier
- Diabetes Division, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - M A Nauck
- Diabetes Center Bochum-Hattingen, St Josef Hospital (Ruhr-Universität Bochum), Bochum, Germany
| | - D Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | - A Pocai
- Cardiovascular & ImmunoMetabolism, Janssen Research & Development, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - F Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - D A Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DL-2200, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M Tang-Christensen
- Obesity Research, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - S C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - R D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - M H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
25
|
Bademci G, Abad C, Incesulu A, Elian F, Reyahi A, Diaz-Horta O, Cengiz FB, Sineni CJ, Seyhan S, Atli EI, Basmak H, Demir S, Nik AM, Footz T, Guo S, Duman D, Fitoz S, Gurkan H, Blanton SH, Walter MA, Carlsson P, Walz K, Tekin M. FOXF2 is required for cochlear development in humans and mice. Hum Mol Genet 2019; 28:1286-1297. [PMID: 30561639 DOI: 10.1093/hmg/ddy431] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 11/14/2022] Open
Abstract
Molecular mechanisms governing the development of the human cochlea remain largely unknown. Through genome sequencing, we identified a homozygous FOXF2 variant c.325A>T (p.I109F) in a child with profound sensorineural hearing loss (SNHL) associated with incomplete partition type I anomaly of the cochlea. This variant is not found in public databases or in over 1000 ethnicity-matched control individuals. I109 is a highly conserved residue in the forkhead box (Fox) domain of FOXF2, a member of the Fox protein family of transcription factors that regulate the expression of genes involved in embryogenic development as well as adult life. Our in vitro studies show that the half-life of mutant FOXF2 is reduced compared to that of wild type. Foxf2 is expressed in the cochlea of developing and adult mice. The mouse knockout of Foxf2 shows shortened and malformed cochleae, in addition to altered shape of hair cells with innervation and planar cell polarity defects. Expressions of Eya1 and Pax3, genes essential for cochlear development, are reduced in the cochleae of Foxf2 knockout mice. We conclude that FOXF2 plays a major role in cochlear development and its dysfunction leads to SNHL and developmental anomalies of the cochlea in humans and mice.
Collapse
Affiliation(s)
- Guney Bademci
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Clemer Abad
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Armagan Incesulu
- Department of Otolaryngology-Head and Neck Surgery, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Fahed Elian
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Azadeh Reyahi
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Oscar Diaz-Horta
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Filiz B Cengiz
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Claire J Sineni
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Serhat Seyhan
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medical Genetics, Bakirkoy Dr Sadi Konuk Research and Training Hospital, Istanbul, Turkey
| | - Emine Ikbal Atli
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Hikmet Basmak
- Department of Ophthalmology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Selma Demir
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Ali Moussavi Nik
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Tim Footz
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shengru Guo
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Duygu Duman
- Division of Pediatric Genetics, Ankara University School of Medicine, Ankara, Turkey
| | - Suat Fitoz
- Department of Radiology, Ankara University School of Medicine, Ankara, Turkey
| | - Hakan Gurkan
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Susan H Blanton
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael A Walter
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Peter Carlsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Katherina Walz
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mustafa Tekin
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
26
|
The molecular functions of hepatocyte nuclear factors - In and beyond the liver. J Hepatol 2018; 68:1033-1048. [PMID: 29175243 DOI: 10.1016/j.jhep.2017.11.026] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022]
Abstract
The hepatocyte nuclear factors (HNFs) namely HNF1α/β, FOXA1/2/3, HNF4α/γ and ONECUT1/2 are expressed in a variety of tissues and organs, including the liver, pancreas and kidney. The spatial and temporal manner of HNF expression regulates embryonic development and subsequently the development of multiple tissues during adulthood. Though the HNFs were initially identified individually based on their roles in the liver, numerous studies have now revealed that the HNFs cross-regulate one another and exhibit synergistic relationships in the regulation of tissue development and function. The complex HNF transcriptional regulatory networks have largely been elucidated in rodent models, but less so in human biological systems. Several heterozygous mutations in these HNFs were found to cause diseases in humans but not in rodents, suggesting clear species-specific differences in mutational mechanisms that remain to be uncovered. In this review, we compare and contrast the expression patterns of the HNFs, the HNF cross-regulatory networks and how these liver-enriched transcription factors serve multiple functions in the liver and beyond, extending our focus to the pancreas and kidney. We also summarise the insights gained from both human and rodent studies of mutations in several HNFs that are known to lead to different disease conditions.
Collapse
|
27
|
MafB Is Critical for Glucagon Production and Secretion in Mouse Pancreatic α Cells In Vivo. Mol Cell Biol 2018; 38:MCB.00504-17. [PMID: 29378833 DOI: 10.1128/mcb.00504-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
The MafB transcription factor is expressed in pancreatic α and β cells during development but becomes exclusive to α cells in adult rodents. Mafb-null (Mafb-/- ) mice were reported to have reduced α- and β-cell numbers throughout embryonic development. To further analyze the postnatal function of MafB in the pancreas, we generated endocrine cell-specific (MafbΔEndo ) and tamoxifen-dependent (MafbΔTAM ) Mafb knockout mice. MafbΔEndo mice exhibited reduced populations of insulin-positive (insulin+) and glucagon+ cells at postnatal day 0, but the insulin+ cell population recovered by 8 weeks of age. In contrast, the Arx+ glucagon+ cell fraction and glucagon expression remained decreased even in adulthood. MafbΔTAM mice, with Mafb deleted after pancreas maturation, also demonstrated diminished glucagon+ cells and glucagon content without affecting β cells. A decreased Arx+ glucagon+ cell population in MafbΔEndo mice was compensated for by an increased Arx+ pancreatic polypeptide+ cell population. Furthermore, gene expression analyses from both MafbΔEndo and MafbΔTAM islets revealed that MafB is a key regulator of glucagon expression in α cells. Finally, both mutants failed to respond to arginine, likely due to impaired arginine transporter gene expression and glucagon production ability. Taken together, our findings reveal that MafB is critical for the functional maintenance of mouse α cells in vivo, including glucagon production and secretion, as well as in development.
Collapse
|
28
|
Yang B, Cui L, Perez-Enciso M, Traspov A, Crooijmans RPMA, Zinovieva N, Schook LB, Archibald A, Gatphayak K, Knorr C, Triantafyllidis A, Alexandri P, Semiadi G, Hanotte O, Dias D, Dovč P, Uimari P, Iacolina L, Scandura M, Groenen MAM, Huang L, Megens HJ. Genome-wide SNP data unveils the globalization of domesticated pigs. Genet Sel Evol 2017; 49:71. [PMID: 28934946 PMCID: PMC5609043 DOI: 10.1186/s12711-017-0345-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 08/31/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pigs were domesticated independently in Eastern and Western Eurasia early during the agricultural revolution, and have since been transported and traded across the globe. Here, we present a worldwide survey on 60K genome-wide single nucleotide polymorphism (SNP) data for 2093 pigs, including 1839 domestic pigs representing 122 local and commercial breeds, 215 wild boars, and 39 out-group suids, from Asia, Europe, America, Oceania and Africa. The aim of this study was to infer global patterns in pig domestication and diversity related to demography, migration, and selection. RESULTS A deep phylogeographic division reflects the dichotomy between early domestication centers. In the core Eastern and Western domestication regions, Chinese pigs show differentiation between breeds due to geographic isolation, whereas this is less pronounced in European pigs. The inferred European origin of pigs in the Americas, Africa, and Australia reflects European expansion during the sixteenth to nineteenth centuries. Human-mediated introgression, which is due, in particular, to importing Chinese pigs into the UK during the eighteenth and nineteenth centuries, played an important role in the formation of modern pig breeds. Inbreeding levels vary markedly between populations, from almost no runs of homozygosity (ROH) in a number of Asian wild boar populations, to up to 20% of the genome covered by ROH in a number of Southern European breeds. Commercial populations show moderate ROH statistics. For domesticated pigs and wild boars in Asia and Europe, we identified highly differentiated loci that include candidate genes related to muscle and body development, central nervous system, reproduction, and energy balance, which are putatively under artificial selection. CONCLUSIONS Key events related to domestication, dispersal, and mixing of pigs from different regions are reflected in the 60K SNP data, including the globalization that has recently become full circle since Chinese pig breeders in the past decades started selecting Western breeds to improve local Chinese pigs. Furthermore, signatures of ongoing and past selection, acting at different times and on different genetic backgrounds, enhance our insight in the mechanism of domestication and selection. The global diversity statistics presented here highlight concerns for maintaining agrodiversity, but also provide a necessary framework for directing genetic conservation.
Collapse
Affiliation(s)
- Bin Yang
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Nanchang, China
| | - Leilei Cui
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Nanchang, China
| | - Miguel Perez-Enciso
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona Spain
- Institut Catala de Recerca i Estudis Avancats (ICREA), Carrer de Lluís Companys, Barcelona, Spain
| | - Aleksei Traspov
- All-Russian Research Institute of Animal Husbandry named after Academy Member L.K. Ernst, Dubrovitzy, Moscow Region Russia
| | | | - Natalia Zinovieva
- All-Russian Research Institute of Animal Husbandry named after Academy Member L.K. Ernst, Dubrovitzy, Moscow Region Russia
| | - Lawrence B. Schook
- Institute of Genomic Biology, University of Illinois, Urbana, Champaign, IL USA
| | - Alan Archibald
- Division of Genetics and Genomics, The Roslin Institute, R(D)SVS, University of Edinburgh, Edinburgh, UK
| | - Kesinee Gatphayak
- Animal and Aquatic Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Christophe Knorr
- Division of Biotechnology and Reproduction of Livestock, Department of Animal Sciences, Georg-August-University, Göttingen, Germany
| | - Alex Triantafyllidis
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloníki, Thessaloniki, Greece
| | - Panoraia Alexandri
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloníki, Thessaloniki, Greece
| | - Gono Semiadi
- Research Centre for Biology- Zoology Division, LIPI, Bogor, Indonesia
| | - Olivier Hanotte
- School of Biology, University of Nottingham, Notttingham, UK
| | - Deodália Dias
- Faculdade de Ciências and CESAM, Universidade de Lisboa, Lisbon, Portugal
| | - Peter Dovč
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Pekka Uimari
- Animal Breeding, Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Laura Iacolina
- Department of Chemistry and Bioscience, Aalborg University, Aalborg East, Denmark
- Department of Science for Nature and Environmental Resources, University of Sassari, Sassari, Italy
| | - Massimo Scandura
- Department of Science for Nature and Environmental Resources, University of Sassari, Sassari, Italy
| | | | - Lusheng Huang
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Nanchang, China
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
29
|
Müller TD, Finan B, Clemmensen C, DiMarchi RD, Tschöp MH. The New Biology and Pharmacology of Glucagon. Physiol Rev 2017; 97:721-766. [PMID: 28275047 DOI: 10.1152/physrev.00025.2016] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the last two decades we have witnessed sizable progress in defining the role of gastrointestinal signals in the control of glucose and energy homeostasis. Specifically, the molecular basis of the huge metabolic benefits in bariatric surgery is emerging while novel incretin-based medicines based on endogenous hormones such as glucagon-like peptide 1 and pancreas-derived amylin are improving diabetes management. These and related developments have fostered the discovery of novel insights into endocrine control of systemic metabolism, and in particular a deeper understanding of the importance of communication across vital organs, and specifically the gut-brain-pancreas-liver network. Paradoxically, the pancreatic peptide glucagon has reemerged in this period among a plethora of newly identified metabolic macromolecules, and new data complement and challenge its historical position as a gut hormone involved in metabolic control. The synthesis of glucagon analogs that are biophysically stable and soluble in aqueous solutions has promoted biological study that has enriched our understanding of glucagon biology and ironically recruited glucagon agonism as a central element to lower body weight in the treatment of metabolic disease. This review summarizes the extensive historical record and the more recent provocative direction that integrates the prominent role of glucagon in glucose elevation with its under-acknowledged effects on lipids, body weight, and vascular health that have implications for the pathophysiology of metabolic diseases, and the emergence of precision medicines to treat metabolic diseases.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - B Finan
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - C Clemmensen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - R D DiMarchi
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - M H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| |
Collapse
|
30
|
Cheng M, Liu X, Yang M, Han L, Xu A, Huang Q. Computational analyses of type 2 diabetes-associated loci identified by genome-wide association studies. J Diabetes 2017; 9:362-377. [PMID: 27121852 DOI: 10.1111/1753-0407.12421] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/31/2016] [Accepted: 04/23/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) of type 2 diabetes (T2D) have discovered a number of loci that contribute to susceptibility to the disease. Future challenges include elucidation of functional mechanisms through which these GWAS-identified loci modulate T2D disease risk. The aim of the present study was to comprehensively characterize T2D associated single nucleotide polymorphisms (SNPs) and genes through computational approaches. METHODS Computational biology approaches used in the present study included comparative genomic analyses and functional annotation using GWAS3D and RegulomeDB, investigation of the effects of T2D-associated SNPs on miRNA binding and protein phosphorylation, and gene ontology, pathway enrichment, protein-protein interaction (PPI) networks and functional module analysis of T2D-associated genes from previously published GWAS. RESULTS Computational analysis identified a number of T2D GWAS-associated SNPs that were located at protein binding sites, including CCCTC-binding factor (CTCF), E1A binding protein p300 (EP300), hepatocyte nuclear factor 4alpha (HNF4A), transcription factor 7 like 2 (TCF7L2), forkhead box A1 (FOXA1) and A2 (FOXA2), and potentially affected the binding of miRNAs and protein phosphorylation. Pathway enrichment analysis confirmed two well-known maturity onset diabetes of the young and T2D pathways, whereas PPI network analysis identified highly interconnected "hub" genes, such as TCF7L2, melatonin receptor 1B (MTNR1B), and solute carrier family 30 (zinc transporter), member 8 (SLC30A8), that created two tight subnetworks. CONCLUSIONS The results provide objectives and clues for future experimental studies and further insights into the molecular pathogenesis of T2D.
Collapse
Affiliation(s)
- Mengrong Cheng
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Xinhong Liu
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Mei Yang
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Lanchun Han
- College of Life Sciences, Central China Normal University, Wuhan, China
- Institute of Public Health and Molecular Medicine Analysis, Central China Normal University, Wuhan, China
| | - Aimin Xu
- Li Cha Chung Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qingyang Huang
- College of Life Sciences, Central China Normal University, Wuhan, China
- Institute of Public Health and Molecular Medicine Analysis, Central China Normal University, Wuhan, China
| |
Collapse
|
31
|
Dong R, Yang Y, Shen Z, Zheng C, Jin Z, Huang Y, Zhang Z, Zheng S, Chen G. Forkhead box A3 attenuated the progression of fibrosis in a rat model of biliary atresia. Cell Death Dis 2017; 8:e2719. [PMID: 28358366 PMCID: PMC5386589 DOI: 10.1038/cddis.2017.99] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/06/2017] [Accepted: 02/14/2017] [Indexed: 12/13/2022]
Abstract
Biliary atresia is a rare, devastating disease of infants where a fibroinflammatory process destroys the bile ducts, leading to fibrosis and biliary cirrhosis, and death if untreated. The cause and pathogenesis remain largely unknown. We tried to investigate factors involved in biliary atresia, especially forkhead box A3 (Foxa3), which might exert a role in the treatment of liver disease. We used RNA sequencing to sequence the whole transcriptomes of livers from six biliary atresia and six choledochal cysts patients. Then, we employed a rat disease model by bile duct ligation (BDL) and adenovirus transduction to address the function of Foxa3 in biliary atresia. We found that tight junction, adherence junction, cell cycle, apoptosis, chemokine singling, VEGF and MAPK signaling pathways were enriched in biliary atresia livers. We showed that Foxa3 expression was notably decreased in liver samples from biliary atresia patients. More importantly, we found that its lower expression predicted a poorer overall survival of biliary atresia patients. Rats that received BDL surgery and Foxa3 expression adenovirus resulted in a significant decrease in the deposition of collagen, and expression of profibrotic cytokines (transforming growth factor-β and connective tissue growth factor) and fibrosis markers (α-smooth muscle actin, collagen I and collagen III), as compared with rats that received BDL surgery and control adenovirus. Our data suggested a protection role for Foxa3 during the progression of liver fibrosis in biliary atresia, and thereby supported increasing Foxa3 as a targeted treatment strategy.
Collapse
Affiliation(s)
- Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Yifan Yang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Zhen Shen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Chao Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Zhu Jin
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Yanlei Huang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Zhien Zhang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Shan Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Gong Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| |
Collapse
|
32
|
Bonnavion R, Teinturier R, Gherardi S, Leteurtre E, Yu R, Cordier-Bussat M, Du R, Pattou F, Vantyghem MC, Bertolino P, Lu J, Zhang CX. Foxa2, a novel protein partner of the tumour suppressor menin, is deregulated in mouse and human MEN1 glucagonomas. J Pathol 2017; 242:90-101. [PMID: 28188614 DOI: 10.1002/path.4885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/17/2017] [Accepted: 01/30/2017] [Indexed: 11/10/2022]
Abstract
Foxa2, known as one of the pioneer factors, plays a crucial role in islet development and endocrine functions. Its expression and biological functions are regulated by various factors, including, in particular, insulin and glucagon. However, its expression and biological role in adult pancreatic α-cells remain elusive. In the current study, we showed that Foxa2 was overexpressed in islets from α-cell-specific Men1 mutant mice, at both the transcriptional level and the protein level. More importantly, immunostaining analyses showed its prominent nuclear accumulation, specifically in α-cells, at a very early stage after Men1 disruption. Similar nuclear FOXA2 expression was also detected in a substantial proportion (12/19) of human multiple endocrine neoplasia type 1 (MEN1) glucagonomas. Interestingly, our data revealed an interaction between Foxa2 and menin encoded by the Men1 gene. Furthermore, using several approaches, we demonstrated the relevance of this interaction in the regulation of two tested Foxa2 target genes, including the autoregulation of the Foxa2 promoter by Foxa2 itself. The current study establishes menin, a novel protein partner of Foxa2, as a regulator of Foxa2, the biological functions of which extend beyond the pancreatic endocrine cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rémy Bonnavion
- INSERM U1052, Lyon, France.,CNRS UMR5286, Lyon, France.,Université de Lyon, Lyon, France
| | - Romain Teinturier
- INSERM U1052, Lyon, France.,CNRS UMR5286, Lyon, France.,Université de Lyon, Lyon, France
| | - Samuele Gherardi
- INSERM U1052, Lyon, France.,CNRS UMR5286, Lyon, France.,Université de Lyon, Lyon, France
| | - Emmanuelle Leteurtre
- Institut de Pathologie, CHRU de Lille, Lille, France.,Department of Endocrinology and Metabolism, Univ. Lille 2, INSERM UMR 1190, Lille, France
| | - Run Yu
- Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Martine Cordier-Bussat
- INSERM U1052, Lyon, France.,CNRS UMR5286, Lyon, France.,Université de Lyon, Lyon, France
| | - Rui Du
- The E-Institute of Shanghai, Sino-French Life Science and Genomic Centre, Ruijin Hospital, Shanghai, PR China.,Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-Tong University, Shanghai, PR China
| | - François Pattou
- Department of Endocrinology and Metabolism, Univ. Lille 2, INSERM UMR 1190, Lille, France.,CHRU Lille, Endocrine Surgery, Lille, France
| | - Marie-Christine Vantyghem
- Department of Endocrinology and Metabolism, Univ. Lille 2, INSERM UMR 1190, Lille, France.,CHRU Lille, Endocrinology, Lille, France
| | - Philippe Bertolino
- INSERM U1052, Lyon, France.,CNRS UMR5286, Lyon, France.,Université de Lyon, Lyon, France
| | - Jieli Lu
- INSERM U1052, Lyon, France.,CNRS UMR5286, Lyon, France.,Université de Lyon, Lyon, France.,The E-Institute of Shanghai, Sino-French Life Science and Genomic Centre, Ruijin Hospital, Shanghai, PR China.,Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-Tong University, Shanghai, PR China
| | - Chang Xian Zhang
- INSERM U1052, Lyon, France.,CNRS UMR5286, Lyon, France.,Université de Lyon, Lyon, France.,The E-Institute of Shanghai, Sino-French Life Science and Genomic Centre, Ruijin Hospital, Shanghai, PR China
| |
Collapse
|
33
|
Abstract
Forkhead box (Fox) transcription factors are evolutionarily conserved in organisms ranging from yeast to humans. They regulate diverse biological processes both during development and throughout adult life. Mutations in many Fox genes are associated with human disease and, as such, various animal models have been generated to study the function of these transcription factors in mechanistic detail. In many cases, the absence of even a single Fox transcription factor is lethal. In this Primer, we provide an overview of the Fox family, highlighting several key Fox transcription factor families that are important for mammalian development.
Collapse
Affiliation(s)
- Maria L Golson
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Foxa1 is essential for development and functional integrity of the subthalamic nucleus. Sci Rep 2016; 6:38611. [PMID: 27934886 PMCID: PMC5146925 DOI: 10.1038/srep38611] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 11/10/2016] [Indexed: 01/15/2023] Open
Abstract
Inactivation of transcription factor Foxa1 in mice results in neonatal mortality of unknown cause. Here, we report that ablation of Foxa1 causes impaired development and loss of the subthalamic nucleus (STN). Functional deficits in the STN have been implicated in the etiology of Huntington's and Parkinson's disease. We show that neuronal ablation by Synapsin1-Cre-mediated Foxa1 deletion is sufficient to induce hyperlocomotion in mice. Transcriptome profiling of STN neurons in conditional Foxa1 knockout mice revealed changes in gene expression reminiscent of those in neurodegenerative diseases. We identified Ppargc1a, a transcriptional co-activator that is implicated in neurodegeneration, as a Foxa1 target. These findings were substantiated by the observation of Foxa1-dependent demise of STN neurons in conditional models of Foxa1 mutant mice. Finally, we show that the spontaneous firing activity of Foxa1-deficient STN neurons is profoundly impaired. Our data reveal so far elusive roles of Foxa1 in the development and maintenance of STN function.
Collapse
|
35
|
Liu Y, Zhao Y, Skerry B, Wang X, Colin-Cassin C, Radisky DC, Kaestner KH, Li Z. Foxa1 is essential for mammary duct formation. Genesis 2016; 54:277-85. [PMID: 26919034 DOI: 10.1002/dvg.22929] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/24/2016] [Accepted: 02/24/2016] [Indexed: 01/20/2023]
Abstract
The transcription factor forkhead box protein A1 (FOXA1) plays a critical role in the proliferation of human breast cancer cells, particularly estrogen receptor alpha (ERα)-positive luminal breast cancer cells. However, genetic studies of the requirement for Foxa1 in mammary tumor formation in mice have been hampered by the lack of a conditional gene ablation. We examined three mouse models of mammary-specific ablation of Foxa1 in ductal epithelial cells to identify the best system for complete and mammary-specific ablation of Foxa1. We found that MMTV-Cre and MMTV-rtTA;Tet-On-Cre led to partial deletion of Foxa1 and attenuated mammary duct formation, whereas Krt14-Cre led to complete ablation of Foxa1 and abolished mammary duct formation, in Foxa1(loxP/loxP) mice. These results demonstrate that Foxa1 is essential for mammary duct formation, and reveal a series of mouse models in which mammary expression of Foxa1 can be attenuated or completely blocked. Our study also suggests a potentially powerful model for complete ablation of Foxa1 in mammary epithelial cells using Krt14-driven Cre expression in an inducible manner, such as Krt14-rtTA;Tet-On-Cre. This model system will facilitate further in vivo functional studies of Foxa1 or other factors in mammary gland development and tumor formation and progression. genesis 54:277-285, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi Liu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Yongbing Zhao
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Benjamin Skerry
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Xiao Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | | | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Klaus H Kaestner
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zhaoyu Li
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
36
|
Spaeth JM, Hunter CS, Bonatakis L, Guo M, French CA, Slack I, Hara M, Fisher SE, Ferrer J, Morrisey EE, Stanger BZ, Stein R. The FOXP1, FOXP2 and FOXP4 transcription factors are required for islet alpha cell proliferation and function in mice. Diabetologia 2015; 58:1836-44. [PMID: 26021489 PMCID: PMC4785827 DOI: 10.1007/s00125-015-3635-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/28/2015] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Several forkhead box (FOX) transcription factor family members have important roles in controlling pancreatic cell fates and maintaining beta cell mass and function, including FOXA1, FOXA2 and FOXM1. In this study we have examined the importance of FOXP1, FOXP2 and FOXP4 of the FOXP subfamily in islet cell development and function. METHODS Mice harbouring floxed alleles for Foxp1, Foxp2 and Foxp4 were crossed with pan-endocrine Pax6-Cre transgenic mice to generate single and compound Foxp mutant mice. Mice were monitored for changes in glucose tolerance by IPGTT, serum insulin and glucagon levels by radioimmunoassay, and endocrine cell development and proliferation by immunohistochemistry. Gene expression and glucose-stimulated hormone secretion experiments were performed with isolated islets. RESULTS Only the triple-compound Foxp1/2/4 conditional knockout (cKO) mutant had an overt islet phenotype, manifested physiologically by hypoglycaemia and hypoglucagonaemia. This resulted from the reduction in glucagon-secreting alpha cell mass and function. The proliferation of alpha cells was profoundly reduced in Foxp1/2/4 cKO islets through the effects on mediators of replication (i.e. decreased Ccna2, Ccnb1 and Ccnd2 activators, and increased Cdkn1a inhibitor). Adult islet Foxp1/2/4 cKO beta cells secrete insulin normally while the remaining alpha cells have impaired glucagon secretion. CONCLUSIONS/INTERPRETATION Collectively, these findings reveal an important role for the FOXP1, 2, and 4 proteins in governing postnatal alpha cell expansion and function.
Collapse
Affiliation(s)
- Jason M. Spaeth
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, 723 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Chad S. Hunter
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, 723 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA
- Department of Medicine, Division of Endocrinology Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lauren Bonatakis
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, 723 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Min Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, 723 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Catherine A. French
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ian Slack
- Department of Medicine and Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Manami Hara
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jorge Ferrer
- Department of Medicine, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Edward E. Morrisey
- Department of Medicine and Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ben Z. Stanger
- Department of Medicine and Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, 723 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA
| |
Collapse
|
37
|
Abstract
FOXA1 (also known as hepatocyte nuclear factor 3α, or HNF-3α) is a protein of the FKHD family transcription factors. FOXA1 has been termed as a pioneer transcription factor due to its unique ability of chromatin remodeling in which the chromatin can be de-compacted to allow genomic access by nuclear hormone receptors, including androgen receptor (AR) and estrogen receptor (ER). In this review, we discuss our current understanding of FOXA1 regulation of prostatic and non-prostatic AR-chromatin targeting. We present an updated model wherein FOXA1:AR equilibrium in the nuclei defines prostatic AR binding profile, which is perturbed in prostate cancer with FOXA1 and/or AR de-regulation. Finally, we discuss recent efforts in exploring new horizons of AR-independent functions of FOXA1 in prostate cancer and interesting directions to pursue in future studies.
Collapse
Affiliation(s)
- Yeqing Angela Yang
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA ; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
38
|
De Vas MG, Kopp JL, Heliot C, Sander M, Cereghini S, Haumaitre C. Hnf1b controls pancreas morphogenesis and the generation of Ngn3+ endocrine progenitors. Development 2015; 142:871-82. [PMID: 25715395 DOI: 10.1242/dev.110759] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Heterozygous mutations in the human HNF1B gene are associated with maturity-onset diabetes of the young type 5 (MODY5) and pancreas hypoplasia. In mouse, Hnf1b heterozygous mutants do not exhibit any phenotype, whereas the homozygous deletion in the entire epiblast leads to pancreas agenesis associated with abnormal gut regionalization. Here, we examine the specific role of Hnf1b during pancreas development, using constitutive and inducible conditional inactivation approaches at key developmental stages. Hnf1b early deletion leads to a reduced pool of pancreatic multipotent progenitor cells (MPCs) due to decreased proliferation and increased apoptosis. Lack of Hnf1b either during the first or the secondary transitions is associated with cystic ducts. Ductal cells exhibit aberrant polarity and decreased expression of several cystic disease genes, some of which we identified as novel Hnf1b targets. Notably, we show that Glis3, a transcription factor involved in duct morphogenesis and endocrine cell development, is downstream Hnf1b. In addition, a loss and abnormal differentiation of acinar cells are observed. Strikingly, inactivation of Hnf1b at different time points results in the absence of Ngn3(+) endocrine precursors throughout embryogenesis. We further show that Hnf1b occupies novel Ngn3 putative regulatory sequences in vivo. Thus, Hnf1b plays a crucial role in the regulatory networks that control pancreatic MPC expansion, acinar cell identity, duct morphogenesis and generation of endocrine precursors. Our results uncover an unappreciated requirement of Hnf1b in endocrine cell specification and suggest a mechanistic explanation of diabetes onset in individuals with MODY5.
Collapse
Affiliation(s)
- Matias G De Vas
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France INSERM U969, Paris F-75005, France
| | - Janel L Kopp
- Department of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California-San Diego, La Jolla, CA 92093-0695, USA
| | - Claire Heliot
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France INSERM U969, Paris F-75005, France
| | - Maike Sander
- Department of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California-San Diego, La Jolla, CA 92093-0695, USA
| | - Silvia Cereghini
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France INSERM U969, Paris F-75005, France
| | - Cécile Haumaitre
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France INSERM U969, Paris F-75005, France
| |
Collapse
|
39
|
Tsai EA, Grochowski CM, Falsey AM, Rajagopalan R, Wendel D, Devoto M, Krantz ID, Loomes KM, Spinner NB. Heterozygous deletion of FOXA2 segregates with disease in a family with heterotaxy, panhypopituitarism, and biliary atresia. Hum Mutat 2015; 36:631-7. [PMID: 25765999 DOI: 10.1002/humu.22786] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 03/04/2015] [Indexed: 12/12/2022]
Abstract
Biliary atresia (BA) is a pediatric cholangiopathy with unknown etiology occurring in isolated and syndromic forms. Laterality defects affecting the cardiovascular and gastrointestinal systems are the most common features present in syndromic BA. Most cases are sporadic, although reports of familial cases have led to the hypothesis of genetic susceptibility in some patients. We identified a child with BA, malrotation, and interrupted inferior vena cava whose father presented with situs inversus, polysplenia, panhypopituitarism, and mildly dysmorphic facial features. Chromosomal microarray analysis demonstrated a 277 kb heterozygous deletion on chromosome 20, which included a single gene, FOXA2, in the proband and her father. This deletion was confirmed to be de novo in the father. The proband and her father share a common diagnosis of heterotaxy, but they also each presented with a variety of other issues. Further genetic screening revealed that the proband carried an additional protein-altering polymorphism (rs1904589; p.His165Arg) in the NODAL gene that is not present in the father, and this variant has been shown to decrease expression of the gene. As FOXA2 can be a regulator of NODAL expression, we propose that haploinsufficiency for FOXA2 combined with a decreased expression of NODAL is the likely cause for syndromic BA in this proband.
Collapse
Affiliation(s)
- Ellen A Tsai
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christopher M Grochowski
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alexandra M Falsey
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ramakrishnan Rajagopalan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Danielle Wendel
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Marcella Devoto
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Ian D Krantz
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathleen M Loomes
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nancy B Spinner
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
40
|
van der Meulen T, Huising MO. Role of transcription factors in the transdifferentiation of pancreatic islet cells. J Mol Endocrinol 2015; 54:R103-17. [PMID: 25791577 PMCID: PMC4373662 DOI: 10.1530/jme-14-0290] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The α and β cells act in concert to maintain blood glucose. The α cells release glucagon in response to low levels of glucose to stimulate glycogenolysis in the liver. In contrast, β cells release insulin in response to elevated levels of glucose to stimulate peripheral glucose disposal. Despite these opposing roles in glucose homeostasis, α and β cells are derived from a common progenitor and share many proteins important for glucose sensing and hormone secretion. Results from recent work have underlined these similarities between the two cell types by revealing that β-to-α as well as α-to-β transdifferentiation can take place under certain experimental circumstances. These exciting findings highlight unexpected plasticity of adult islets and offer hope of novel therapeutic paths to replenish β cells in diabetes. In this review, we focus on the transcription factor networks that establish and maintain pancreatic endocrine cell identity and how they may be perturbed to facilitate transdifferentiation.
Collapse
Affiliation(s)
- Talitha van der Meulen
- Department of NeurobiologyPhysiology and Behavior, College of Biological SciencesDepartment of Physiology and Membrane BiologySchool of Medicine, University of California, 193 Briggs Hall, One Shields Avenue, Davis, California 95616, USA
| | - Mark O Huising
- Department of NeurobiologyPhysiology and Behavior, College of Biological SciencesDepartment of Physiology and Membrane BiologySchool of Medicine, University of California, 193 Briggs Hall, One Shields Avenue, Davis, California 95616, USA Department of NeurobiologyPhysiology and Behavior, College of Biological SciencesDepartment of Physiology and Membrane BiologySchool of Medicine, University of California, 193 Briggs Hall, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
41
|
Heddad Masson M, Poisson C, Guérardel A, Mamin A, Philippe J, Gosmain Y. Foxa1 and Foxa2 regulate α-cell differentiation, glucagon biosynthesis, and secretion. Endocrinology 2014; 155:3781-92. [PMID: 25057789 DOI: 10.1210/en.2013-1843] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Forkhead box A transcription factors are major regulators of glucose homeostasis. They show both distinct and redundant roles during pancreas development and in adult mouse β-cells. In vivo ablation studies have revealed critical implications of Foxa1 on glucagon biosynthesis and requirement of Foxa2 in α-cell terminal differentiation. In order to examine the respective role of these factors in mature α-cells, we used small interfering RNA (siRNA) directed against Foxa1 and Foxa2 in rat primary pancreatic α-cells and rodent α-cell lines leading to marked decreases in Foxa1 and Foxa2 mRNA levels and proteins. Both Foxa1 and Foxa2 control glucagon gene expression specifically through the G2 element. Although we found that Foxa2 controls the expression of the glucagon, MafB, Pou3f4, Pcsk2, Nkx2.2, Kir6.2, and Sur1 genes, Foxa1 only regulates glucagon gene expression. Interestingly, the Isl1 and Gipr genes were not controlled by either Foxa1 or Foxa2 alone but by their combination. Foxa1 and Foxa2 directly activate and bind the promoter region the Nkx2.2, Kir6.2 and Sur1, Gipr, Isl1, and Pou3f4 genes. We also demonstrated that glucagon secretion is affected by the combined effects of Foxa1 and Foxa2 but not by either one alone. Our results indicate that Foxa1 and Foxa2 control glucagon biosynthesis and secretion as well as α-cell differentiation with both common and unique target genes.
Collapse
Affiliation(s)
- Mounia Heddad Masson
- Department of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital of Geneva, Medical School, 1211 Geneva 14, Switzerland
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Aging is associated with increased adiposity and diminished thermogenesis, but the critical transcription factors influencing these metabolic changes late in life are poorly understood. We recently demonstrated that the winged helix factor forkhead box protein A3 (Foxa3) regulates the expansion of visceral adipose tissue in high-fat diet regimens; however, whether Foxa3 also contributes to the increase in adiposity and the decrease in brown fat activity observed during the normal aging process is currently unknown. Here we report that during aging, levels of Foxa3 are significantly and selectively up-regulated in brown and inguinal white fat depots, and that midage Foxa3-null mice have increased white fat browning and thermogenic capacity, decreased adipose tissue expansion, improved insulin sensitivity, and increased longevity. Foxa3 gain-of-function and loss-of-function studies in inguinal adipose depots demonstrated a cell-autonomous function for Foxa3 in white fat tissue browning. Furthermore, our analysis revealed that the mechanisms of Foxa3 modulation of brown fat gene programs involve the suppression of peroxisome proliferator activated receptor γ coactivtor 1 α (PGC1α) levels through interference with cAMP responsive element binding protein 1-mediated transcriptional regulation of the PGC1α promoter. Overall, our data demonstrate a role for Foxa3 in energy expenditure and in age-associated metabolic disorders.
Collapse
|
43
|
Johnson ME, Schug J, Wells AD, Kaestner KH, Grant SFA. Genome-wide analyses of ChIP-Seq derived FOXA2 DNA occupancy in liver points to genetic networks underpinning multiple complex traits. J Clin Endocrinol Metab 2014; 99:E1580-5. [PMID: 24878043 PMCID: PMC4121035 DOI: 10.1210/jc.2013-4503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Forkhead Box A2 (FOXA2) exerts an influence on glucose homeostasis via activity in the liver. In addition, a key genome-wide association study (GWAS) recently demonstrated that genetic variation, namely rs6048205, at the FOXA2 locus is robustly associated with fasting glucose levels. Our hypothesis was that this DNA-binding protein regulates the expression of a set of molecular pathways critical to endocrine traits. METHODS Drawing on our laboratory and bioinformatic experience with chromatin immunoprecipitation followed by massively parallel sequencing, we analyzed our existing FOXA2 chromatin immunoprecipitation followed by massively parallel sequencing data generated in human liver, using the algorithm hypergeometric optimization of motif enrichment, to gain insight into its global genomic binding pattern from a disease perspective. RESULTS We performed a pathway analysis of the gene list using the gene set enrichment analysis algorithm, which yielded a number of significant annotations. Motivated by the fact that the FOXA2 locus has been implicated by GWAS, we cross-referenced the occupancy sites with the National Institutes of Health GWAS catalog and found strong evidence for the enrichment of loci implicated in endocrine, neuropsychiatric, cardiovascular, and cancer trait categories, but interestingly there was no evidence for enrichment for inflammation related traits. Intriguingly, a FOXA2 occupancy site coincided with rs6048205, suggesting that this variant confers its effect, at least partially, via a perturbation of a FOXA2 feedback mechanism. CONCLUSION Our data strongly suggest that FOXA2 is acting as a master regulator of key pathways that are enriched for loci implicated by GWAS for most trait categories, with the clear exception of inflammation, suggesting that this factor exerts its effect in this context via noninflammatory processes.
Collapse
Affiliation(s)
- Matthew E Johnson
- Division of Human Genetics (M.E.J., S.F.A.G.) and Department of Pathology and Laboratory Medicine (A.D.W.), The Children's Hospital of Philadelphia, and Department of Genetics and Institute of Diabetes, Obesity, and Metabolism (J.S., K.H.K., S.F.A.G.), and Department of Pediatrics (S.F.A.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | | | | | | |
Collapse
|
44
|
Liu CT, Young KL, Brody J, Olden M, Wojczynski MK, Heard-Costa N, Li G, Morrison AC, Muzny D, Gibbs RA, Reid JG, Shao Y, Zhou Y, Boerwinkle E, Heiss G, Wagenknecht L, McKnight B, Borecki IB, Fox CS, North KE, Cupples LA. Sequence variation in TMEM18 in association with body mass index: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. CIRCULATION. CARDIOVASCULAR GENETICS 2014; 7:344-9. [PMID: 24951660 PMCID: PMC4135723 DOI: 10.1161/circgenetics.13.000067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Genome-wide association studies for body mass index (BMI) previously identified a locus near TMEM18. We conducted targeted sequencing of this region to investigate the role of common, low-frequency, and rare variants influencing BMI. METHODS AND RESULTS We sequenced TMEM18 and regions downstream of TMEM18 on chromosome 2 in 3976 individuals of European ancestry from 3 community-based cohorts (Atherosclerosis Risk in Communities, Cardiovascular Health Study, and Framingham Heart Study), including 200 adults selected for high BMI. We examined the association between BMI and variants identified in the region from nucleotide position 586 432 to 677 539 (hg18). Rare variants (minor allele frequency, <1%) were analyzed using a burden test and the sequence kernel association test. Results from the 3 cohort studies were meta-analyzed. We estimate that mean BMI is 0.43 kg/m(2) higher for each copy of the G allele of single-nucleotide polymorphism rs7596758 (minor allele frequency, 29%; P=3.46×10(-4)) using a Bonferroni threshold of P<4.6×10(-4). Analyses conditional on previous genome-wide association study single-nucleotide polymorphisms associated with BMI in the region led to attenuation of this signal and uncovered another independent (r(2)<0.2), statistically significant association, rs186019316 (P=2.11×10(-4)). Both rs186019316 and rs7596758 or proxies are located in transcription factor binding regions. No significant association with rare variants was found in either the exons of TMEM18 or the 3' genome-wide association study region. CONCLUSIONS Targeted sequencing around TMEM18 identified 2 novel BMI variants with possible regulatory function.
Collapse
Affiliation(s)
- Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Kristin L. Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC
- Carolina Population Center, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Jennifer Brody
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA
| | | | - Mary K. Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University, St. Louis, MO
| | - Nancy Heard-Costa
- NHLBI Framingham Heart Study, Framingham, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
| | - Guo Li
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA
| | - Alanna C. Morrison
- Division of Epidemiology, School of Public Health, University of Texas Health Science Center, Houston, TX
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Jeffrey G. Reid
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Yaming Shao
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC
| | - Yanhua Zhou
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Eric Boerwinkle
- Division of Epidemiology, School of Public Health, University of Texas Health Science Center, Houston, TX
| | - Geraldo Heiss
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC
| | - Lynne Wagenknecht
- Department of Epidemiology and Prevention, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Barbara McKnight
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA
| | - Ingrid B. Borecki
- Division of Statistical Genomics, Department of Genetics, Washington University, St. Louis, MO
| | | | - Kari E. North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
- NHLBI Framingham Heart Study, Framingham, MA
| |
Collapse
|
45
|
van Gent R, Di Sanza C, van den Broek NJF, Fleskens V, Veenstra A, Stout GJ, Brenkman AB. SIRT1 mediates FOXA2 breakdown by deacetylation in a nutrient-dependent manner. PLoS One 2014; 9:e98438. [PMID: 24875183 PMCID: PMC4038515 DOI: 10.1371/journal.pone.0098438] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 05/02/2014] [Indexed: 12/23/2022] Open
Abstract
The Forkhead transcription factor FOXA2 plays a fundamental role in controlling metabolic homeostasis in the liver during fasting. The precise molecular regulation of FOXA2 in response to nutrients is not fully understood. Here, we studied whether FOXA2 could be controlled at a post-translational level by acetylation. By means of LC-MS/MS analyses, we identified five acetylated residues in FOXA2. Sirtuin family member SIRT1 was found to interact with and deacetylate FOXA2, the latter process being dependent on the NAD+-binding catalytic site of SIRT1. Deacetylation by SIRT1 reduced protein stability of FOXA2 by targeting it towards proteasomal degradation, and inhibited transcription from the FOXA2-driven G6pase and CPT1a promoters. While mutation of the five identified acetylated residues weakly affected protein acetylation and stability, mutation of at least seven additional lysine residues was required to abolish acetylation and reduce protein levels of FOXA2. The importance of acetylation of FOXA2 became apparent upon changes in nutrient levels. The interaction of FOXA2 and SIRT1 was strongly reduced upon nutrient withdrawal in cell culture, while enhanced Foxa2 acetylation levels were observed in murine liver in vivo after starvation for 36 hours. Collectively, this study demonstrates that SIRT1 controls the acetylation level of FOXA2 in a nutrient-dependent manner and in times of nutrient shortage the interaction between SIRT1 and FOXA2 is reduced. As a result, FOXA2 is protected from degradation by enhanced acetylation, hence enabling the FOXA2 transcriptional program to be executed to maintain metabolic homeostasis.
Collapse
Affiliation(s)
- Rogier van Gent
- Center for Molecular Medicine, Department of Molecular Cancer Research, Section Metabolic Diseases, University Medical Center Utrecht, Utrecht, The Netherlands, and Netherlands Metabolomics Centre, Leiden, The Netherlands
- Erasmus Medical Center Rotterdam, Department of Gastroenterology and Hepatology, Rotterdam, The Netherlands
| | - Claudio Di Sanza
- Center for Molecular Medicine, Department of Molecular Cancer Research, Section Metabolic Diseases, University Medical Center Utrecht, Utrecht, The Netherlands, and Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Niels J. F. van den Broek
- Center for Molecular Medicine, Department of Molecular Cancer Research, Section Metabolic Diseases, University Medical Center Utrecht, Utrecht, The Netherlands, and Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Veerle Fleskens
- University Medical Center Utrecht, Department of Cell Biology, Utrecht, The Netherlands
| | - Aukje Veenstra
- Center for Molecular Medicine, Department of Molecular Cancer Research, Section Metabolic Diseases, University Medical Center Utrecht, Utrecht, The Netherlands, and Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Gerdine J. Stout
- Center for Molecular Medicine, Department of Molecular Cancer Research, Section Metabolic Diseases, University Medical Center Utrecht, Utrecht, The Netherlands, and Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Arjan B. Brenkman
- Center for Molecular Medicine, Department of Molecular Cancer Research, Section Metabolic Diseases, University Medical Center Utrecht, Utrecht, The Netherlands, and Netherlands Metabolomics Centre, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
46
|
Metzger DE, Liu C, Ziaie AS, Naji A, Zaret KS. Grg3/TLE3 and Grg1/TLE1 induce monohormonal pancreatic β-cells while repressing α-cell functions. Diabetes 2014; 63:1804-16. [PMID: 24487024 PMCID: PMC3994953 DOI: 10.2337/db13-0867] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the pancreas, α- and β-cells possess a degree of plasticity. In vitro differentiation of pluripotent cells yields mostly α- and polyhormonal β-like cells, indicating a gap in understanding of how functional monohormonal β-cells are formed and of the endogenous repressive mechanisms used to maintain β-cell identity. We show that the corepressor Grg3 is expressed in almost all β-cells throughout embryogenesis to adulthood. However, Grg3 is expressed in fewer nascent α-cells and is progressively lost from α-cells as endocrine cells mature into adulthood. We show that mouse Grg3(+/-) β-cells have increased α-specific gene expression, and Grg3(+/-) pancreata have more α-cells and more polyhormonal cells, indicating that Grg3 is required for the physiologic maintenance of monohormonal β-cell identity. Ectopic expression of Grg3 in α-cells represses glucagon and Arx, and the addition of Pdx1 induces Glut2 expression and glucose-responsive insulin secretion. Furthermore, we found that Grg1 is the predominant Groucho expressed in human β-cells but acts functionally similarly to Grg3. Overall, we find that Grg3 and Grg1 establish a monohormonal β-cell identity, and Groucho family members may be useful tools or markers for making functional β-cells.
Collapse
Affiliation(s)
- David E. Metzger
- Institute for Regenerative Medicine, Institute for Diabetes Obesity and Metabolism, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA
| | - Amin Sam Ziaie
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA
| | - Kenneth S. Zaret
- Institute for Regenerative Medicine, Institute for Diabetes Obesity and Metabolism, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Corresponding author: Kenneth S. Zaret,
| |
Collapse
|
47
|
Cao F, Fukuda A, Watanabe H, Kono T. The transcriptomic architecture of mouse Sertoli cell clone embryos reveals temporal–spatial-specific reprogramming. Reproduction 2013; 145:277-88. [PMID: 23580949 PMCID: PMC3607486 DOI: 10.1530/rep-12-0435] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Somatic cell nuclear transfer, a technique used to generate clone embryos by transferring the nucleus of a somatic cell into an enucleated oocyte, is an excellent approach to study the reprogramming of the nuclei of differentiated cells. Here, we conducted a transcriptomic study by performing microarray analysis on single Sertoli cell nuclear transfer (SeCNT) embryos throughout preimplantation development. The extensive data collected from the oocyte to the blastocyst stage helped to identify specific genes that were incorrectly reprogrammed at each stage, thereby providing a novel perspective for understanding reprogramming progression in SeCNT embryos.This attempt provided an opportunity to discuss the possibility that ectopic gene expression could be involved in the developmental failure of SeCNT embryos. Network analysis at each stage suggested that in total, 127 networks were involved in developmental and functional disorders in SeCNT embryos. Furthermore, chromosome mapping using our time-lapse expression data highlighted temporal–spatial changes of the abnormal expression, showing the characteristic distribution of the genes on each chromosome.Thus, the present study revealed that the preimplantation development of SeCNT embryos appears normal; however, the progression of incorrect reprogramming is concealed throughout development.
Collapse
Affiliation(s)
- Feng Cao
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | |
Collapse
|
48
|
Elimination of von Hippel-Lindau function perturbs pancreas endocrine homeostasis in mice. PLoS One 2013; 8:e72213. [PMID: 23977255 PMCID: PMC3748057 DOI: 10.1371/journal.pone.0072213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 07/08/2013] [Indexed: 12/23/2022] Open
Abstract
Mutations in the human homolog of the Vhlh gene [encoding the von-Hippel Lindau (VHL) protein] lead to tumor development. In mice, depletion of Vhlh in pancreatic ß-cells causes perturbed glucose homeostasis, but the role of this gene in other pancreatic cells is poorly understood. To investigate the function of VHL/HIF pathway in pancreatic cells, we inactivated Vhlh in the pancreatic epithelium as well as in the endocrine and exocrine lineages. Our results show that embryonic depletion of Vhlh within the pancreatic epithelium causes postnatal lethality due to severe hypoglycemia. The hypoglycemia is recapitulated in mice with endocrine-specific removal of Vhlh, while animals with loss of Vhlh predominantly in the exocrine compartment survive to adulthood with no overt defects in glucose metabolism. Mice with hypoglycemia display diminished insulin release in response to elevated glucose. Significantly, the glucagon response is impaired both in vivo (circulating glucagon levels) as well as in an in vitro secretion assay in isolated islets. Hypoxia also impairs glucagon secretion in a glucagon-expressing cell line in culture. Our results reveal a novel role for the hypoxia/HIF pathway in islet hormone secretion and maintenance of the fine balance that allows for the establishment of normoglycemia.
Collapse
|
49
|
Gosmain Y, Masson MH, Philippe J. Glucagon: the renewal of an old hormone in the pathophysiology of diabetes. J Diabetes 2013; 5:102-9. [PMID: 23302052 DOI: 10.1111/1753-0407.12022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 12/14/2012] [Indexed: 12/24/2022] Open
Abstract
Type 2 diabetes (T2D) is one of the most common diseases, affecting 5-10% of the population in most countries; the progression of its prevalence has been constant over the past 50 years in all countries worldwide, creating a major public health problem in terms of disease management and financial burden. Although the pathophysiology of T2D has been attributed for decades to insulin resistance and decreased insulin secretion, particularly in response to glucose, the contributing role of glucagon in hyperglycemia has been highlighted since the early 1970s by demonstrating its glycogenolytic, gluconeogenic and ketogenic properties. More recently, the importance of glucagon in diabetes has been highlighted in a model of streptozotocin-induced diabetic mice becoming euglycemic in the absence of glucagon receptors and without insulin treatment. Understanding the dysregulation of α-cells in diabetes will be critical to better define the pathophysiology of diabetes and develop new antidiabetic treatment.
Collapse
Affiliation(s)
- Yvan Gosmain
- Service of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
50
|
Li Q, Zhang Y, Fu J, Han L, Xue L, Lv C, Wang P, Li G, Tong T. FOXA1 mediates p16(INK4a) activation during cellular senescence. EMBO J 2013; 32:858-873. [PMID: 23443045 PMCID: PMC3604725 DOI: 10.1038/emboj.2013.35] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 02/01/2013] [Indexed: 12/22/2022] Open
Abstract
Mechanisms governing the transcription of p16(INK4a), one of the master regulators of cellular senescence, have been extensively studied. However, little is known about chromatin dynamics taking place at its promoter and distal enhancer. Here, we report that Forkhead box A1 protein (FOXA1) is significantly upregulated in both replicative and oncogene-induced senescence, and in turn activates transcription of p16(INK4a) through multiple mechanisms. In addition to acting as a classic sequence-specific transcriptional activator, FOXA1 binding leads to a decrease in nucleosome density at the p16(INK4a) promoter in senescent fibroblasts. Moreover, FOXA1, itself a direct target of Polycomb-mediated repression, antagonizes Polycomb function at the p16(INK4a) locus. Finally, a systematic survey of putative FOXA1 binding sites in the p16(INK4a) genomic region revealed an ∼150 kb distal element that could loop back to the promoter and potentiate p16(INK4a) expression. Overall, our findings establish several mechanisms by which FOXA1 controls p16(INK4a) expression during cellular senescence.
Collapse
Affiliation(s)
- Qian Li
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Yu Zhang
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Jingxuan Fu
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Limin Han
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Lixiang Xue
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Cuicui Lv
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Pan Wang
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Guodong Li
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Tanjun Tong
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| |
Collapse
|