1
|
Fasouli ES, Katsantoni E. Age-associated myeloid malignancies - the role of STAT3 and STAT5 in myelodysplastic syndrome and acute myeloid leukemia. FEBS Lett 2024; 598:2809-2828. [PMID: 39048534 PMCID: PMC11586607 DOI: 10.1002/1873-3468.14985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
In the last few decades, the increasing human life expectancy has led to the inflation of the elderly population and consequently the escalation of age-related disorders. Biological aging has been associated with the accumulation of somatic mutations in the Hematopoietic Stem Cell (HSC) compartment, providing a fitness advantage to the HSCs leading to clonal hematopoiesis, that includes non-malignant and malignant conditions (i.e. Clonal Hematopoiesis of Indeterminate Potential, Myelodysplastic Syndrome and Acute Myeloid Leukemia). The Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway is a key player in both normal and malignant hematopoiesis. STATs, particularly STAT3 and STAT5, are greatly implicated in normal hematopoiesis, immunity, inflammation, leukemia, and aging. Here, the pleiotropic functions of JAK-STAT pathway in age-associated hematopoietic defects and of STAT3 and STAT5 in normal hematopoiesis, leukemia, and inflammaging are reviewed. Even though great progress has been made in deciphering the role of STATs, further research is required to provide a deeper understanding of the molecular mechanisms of leukemogenesis, as well as novel biomarkers and therapeutic targets for improved management of age-related disorders.
Collapse
Affiliation(s)
- Eirini Sofia Fasouli
- Biomedical Research FoundationAcademy of Athens, Basic Research CenterAthensGreece
| | - Eleni Katsantoni
- Biomedical Research FoundationAcademy of Athens, Basic Research CenterAthensGreece
| |
Collapse
|
2
|
Sun Y, Wang Y, Wang L, Zou M, Peng X. STAT5-mediated transcription of miR-33-5p in Mycoplasma gallisepticum-infected DF-1 cells. Avian Pathol 2024; 53:68-79. [PMID: 37855868 DOI: 10.1080/03079457.2023.2272617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
RESEARCH HIGHLIGHTS MG-HS regulates the expression of transcription factor STAT5.Transcription factor STAT5 can target miR-33-5p promoter element.MG-influenced STAT5 regulates miR-33-5p and its target gene expression.
Collapse
Affiliation(s)
- Yingfei Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Lulu Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
3
|
Zhu J, Yang T, Tang M, Yang Z, Pei H, Ye H, Tang Y, Cheng Z, Lin P, Chen L. Studies on the anti-psoriasis effects and its mechanism of a dual JAK2/FLT3 inhibitor flonoltinib maleate. Biomed Pharmacother 2021; 137:111373. [PMID: 33761599 DOI: 10.1016/j.biopha.2021.111373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a chronic, inflammatory autoimmune disease mediated by T cells, and characterized with abnormal proliferation and differentiation of keratinocytes, and inflammatory infiltration. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway has been identified to play essential roles in mediating various of biological processes, and is closely related to autoimmune diseases. Dendritic cells (DCs) are important antigen presenting cells and play an important regulatory role in T cells. The proliferation, differentiation and function of DCs are regulated by JAK and FMS-like tyrosine kinase 3 (FLT3) signal pathways. Flonoltinib maleate (FM), a high selectivity dual JAK2/FLT3 inhibitor with IC50 values of 0.8 nM and 15 nM for JAK2 and FLT3, respectively, was developed by our laboratory. Moreover, FM was a potent JAK2 inhibitor with 863-fold and 696-fold selectivity over JAK1 and JAK3, respectively. In this study, the anti-psoriasis activity of FM was evaluated both in vitro and in vivo. FM effectively inhibited the proliferation of HaCaT, the inflammatory keratinocyte induced by M5 and markedly suppressed the generation and differentiation of DCs from bone marrow (BM), and inhibited the expression of FLT3 in DCs in vitro. FM effectively inhibited the ear thickening and improved the pathological changes of the ear in interleukin (IL)-23-induced psoriasis-like acanthosis mouse model. Further in keratin 14-vascular endothelial growth factor (K14-VEGF) transgenic homozygous mice model, FM could obviously improve the psoriatic symptom and pathological changes, significantly inhibit the generations of Th1 and Th17 cells in the spleen, and the accumulations of DCs in the ears. FM could also significantly reduce the expression of various inflammatory factors both in C57BL/6 and K14-VEGF mice ears, and the serum of K14-VEGF mice. Mechanism revealed that FM effectively suppressed the phosphorylation of JAK2, STAT3 and STAT5 in inflammatory keratinocytes and the mice ears of C57BL/6 and K14-VEGF, as well as the phosphorylation of FLT3 in K14-VEGF mice ears. In conclusion, FM plays an excellent anti-psoriasis activity, including inhibiting keratinocyte proliferation and regulating inflammatory response through inhibiting JAK2 and FLT3 signaling pathway.
Collapse
Affiliation(s)
- Jiali Zhu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Heying Pei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Haoyu Ye
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhixuan Cheng
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Lin
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
STAT5 is essential for IL-7-mediated viability, growth, and proliferation of T-cell acute lymphoblastic leukemia cells. Blood Adv 2019; 2:2199-2213. [PMID: 30185437 DOI: 10.1182/bloodadvances.2018021063] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/04/2018] [Indexed: 12/22/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) constitutes an aggressive subset of ALL, the most frequent childhood malignancy. Whereas interleukin-7 (IL-7) is essential for normal T-cell development, it can also accelerate T-ALL development in vivo and leukemia cell survival and proliferation by activating phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin signaling. Here, we investigated whether STAT5 could also mediate IL-7 T-ALL-promoting effects. We show that IL-7 induces STAT pathway activation in T-ALL cells and that STAT5 inactivation prevents IL-7-mediated T-ALL cell viability, growth, and proliferation. At the molecular level, STAT5 is required for IL-7-induced downregulation of p27kip1 and upregulation of the transferrin receptor, CD71. Surprisingly, STAT5 inhibition does not significantly affect IL-7-mediated Bcl-2 upregulation, suggesting that, contrary to normal T-cells, STAT5 promotes leukemia cell survival through a Bcl-2-independent mechanism. STAT5 chromatin immunoprecipitation sequencing and RNA sequencing reveal a diverse IL-7-driven STAT5-dependent transcriptional program in T-ALL cells, which includes BCL6 inactivation by alternative transcription and upregulation of the oncogenic serine/threonine kinase PIM1 Pharmacological inhibition of PIM1 abrogates IL-7-mediated proliferation on T-ALL cells, indicating that strategies involving the use of PIM kinase small-molecule inhibitors may have therapeutic potential against a majority of leukemias that rely on IL-7 receptor (IL-7R) signaling. Overall, our results demonstrate that STAT5, in part by upregulating PIM1 activity, plays a major role in mediating the leukemia-promoting effects of IL-7/IL-7R.
Collapse
|
5
|
Hasan S, Naqvi AR, Rizvi A. Transcriptional Regulation of Emergency Granulopoiesis in Leukemia. Front Immunol 2018; 9:481. [PMID: 29593731 PMCID: PMC5858521 DOI: 10.3389/fimmu.2018.00481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/23/2018] [Indexed: 12/16/2022] Open
Abstract
Neutropenic conditions are prevalent in leukemia patients and are often associated with increased susceptibility to infections. In fact, emergency granulopoiesis (EG), a process regulating neutrophil homeostasis in inflammatory conditions and infections, may occur improperly in leukemic conditions, leading to reduced neutrophil counts. Unfortunately, the mechanisms central to dysfunctional EG remain understudied in both leukemia patients and leukemic mouse models. However, despite no direct studies on EG response in leukemia are reported, recently certain transcription factors (TFs) have been found to function at the crossroads of leukemia and EG. In this review, we present an update on TFs that can potentially govern the fate of EG in leukemia. Transcriptional control of Fanconi DNA repair pathway genes is also highlighted, as well as the newly discovered role of Fanconi proteins in innate immune response and EG. Identifying the TFs regulating EG in leukemia and dissecting their underlying mechanisms may facilitate the discovery of therapeutic drugs for the treatment of neutropenia.
Collapse
Affiliation(s)
- Shirin Hasan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Afsar R Naqvi
- Department of Periodontics, University of Illinois at Chicago, Chicago, IL, United States
| | - Asim Rizvi
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
6
|
Li X, Yin X, Wang H, Huang J, Yu M, Ma Z, Li C, Zhou Y, Yan X, Huang S, Jin J. The combination effect of homoharringtonine and ibrutinib on FLT3-ITD mutant acute myeloid leukemia. Oncotarget 2017; 8:12764-12774. [PMID: 28061447 PMCID: PMC5355052 DOI: 10.18632/oncotarget.14463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 12/25/2016] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous disease and internal tandem duplication mutation in FMS-like tyrosine-kinase-3 (FLT3-ITD) has a negative impact on outcome. Finding effective treatment regimens is desperately needed. In this study, we explored the inhibitory effect and mechanism of homoharringtonine (HHT) in combination with ibrutinib on FLT3-ITD mutant AML cells. Consequently, we observed a synergistic inhibitory effect when ibrutinib was combined with HHT to inhibit cell proliferation, induce apoptosis and arrest cell cycle at G0/G1 phase in MV4-11 and MOLM-13 leukemia cells. Our results indicate that the mechanisms of the combination effect are mainly via regulating the STAT5/Pim-2/C-Myc pathway, AKT pathway and Bcl-2 family, activating p21WAF1/CIP1 and inhibiting CCND/CDK complex protein. Interestingly, synergistic cytotoxicity of ibrutinib and HHT was dependent on both FLT3 and BTK. Here we provide a novel effective therapeutic approach for the treatment of AML patients with FLT3-ITD mutation.
Collapse
Affiliation(s)
- Xia Li
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xiufeng Yin
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Mengxia Yu
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zhixin Ma
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Chenying Li
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yile Zhou
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xiao Yan
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - ShuJuan Huang
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
7
|
Atretkhany KSN, Drutskaya MS. Myeloid-Derived Suppressor Cells and Proinflammatory Cytokines as Targets for Cancer Therapy. BIOCHEMISTRY (MOSCOW) 2017; 81:1274-1283. [PMID: 27914453 DOI: 10.1134/s0006297916110055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Myeloid-derived suppressor cells represent a heterogeneous population of immature myeloid cells. Under normal conditions, these cells differentiate into macrophages, dendritic cells, and granulocytes. However, in pathological states such as inflammation, infection, or tumor growth, there is an arrest of their differentiation that results in the accumulation of immature myeloid cells in the organism. In addition, these cells acquire a suppressor phenotype, expressing anti-inflammatory cytokines and reactive oxygen and nitrogen species, and suppress T-cell immune response. Myeloid-derived suppressor cells (MDSC) contribute to cancerogenesis by forming a favorable microenvironment for tumor growth. Proinflammatory cytokines, secreted by tumor cells and the tumor microenvironment, induce angiogenesis and metastasis and promote tumor growth. They also provide signals necessary for survival, accumulation, and function of MDSC. Understanding the mechanisms of myeloid suppressor cell development and the use of proinflammatory cytokine inhibitors may prove beneficial for tumor therapy.
Collapse
Affiliation(s)
- K-S N Atretkhany
- Engelhardt Institute of Molecular Biology, Moscow, 119991, Russia.
| | | |
Collapse
|
8
|
Holtman IR, Bsibsi M, Gerritsen WH, Boddeke HWGM, Eggen BJL, van der Valk P, Kipp M, van Noort JM, Amor S. Identification of highly connected hub genes in the protective response program of human macrophages and microglia activated by alpha B-crystallin. Glia 2017; 65:460-473. [DOI: 10.1002/glia.23104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Inge R. Holtman
- Department of Medical Physiology; University of Groningen, University Medical Center Groningen; Groningen AV the Netherlands
| | | | - Wouter H. Gerritsen
- Department of Pathology; VU University Medical Center; Amsterdam HV the Netherlands
| | - Hendrikus W. G. M. Boddeke
- Department of Medical Physiology; University of Groningen, University Medical Center Groningen; Groningen AV the Netherlands
| | - Bart J. L. Eggen
- Department of Medical Physiology; University of Groningen, University Medical Center Groningen; Groningen AV the Netherlands
| | - Paul van der Valk
- Department of Pathology; VU University Medical Center; Amsterdam HV the Netherlands
| | - Markus Kipp
- Department of Neuroanatomy; University of Munich; Munich Germany
| | - Johannes M. van Noort
- Delta Crystallon BV; Beverwijk ED the Netherlands
- Department of Pathology; VU University Medical Center; Amsterdam HV the Netherlands
| | - Sandra Amor
- Department of Pathology; VU University Medical Center; Amsterdam HV the Netherlands
- Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine & Dentistry; Queen Mary University of London; London United Kingdom
| |
Collapse
|
9
|
Zerif E, Maalem A, Gaudreau S, Guindi C, Ramzan M, Véroneau S, Gris D, Stankova J, Rola-Pleszczynski M, Mourad W, Dupuis G, Amrani A. Constitutively active Stat5b signaling confers tolerogenic functions to dendritic cells of NOD mice and halts diabetes progression. J Autoimmun 2017; 76:63-74. [DOI: 10.1016/j.jaut.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/30/2016] [Accepted: 09/04/2016] [Indexed: 12/23/2022]
|
10
|
Li GB, Ma S, Yang LL, Ji S, Fang Z, Zhang G, Wang LJ, Zhong JM, Xiong Y, Wang JH, Huang SZ, Li LL, Xiang R, Niu D, Chen YC, Yang SY. Drug Discovery against Psoriasis: Identification of a New Potent FMS-like Tyrosine Kinase 3 (FLT3) Inhibitor, 1-(4-((1H-Pyrazolo[3,4-d]pyrimidin-4-yl)oxy)-3-fluorophenyl)-3-(5-(tert-butyl)isoxazol-3-yl)urea, That Showed Potent Activity in a Psoriatic Animal Model. J Med Chem 2016; 59:8293-305. [PMID: 27535613 DOI: 10.1021/acs.jmedchem.6b00604] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Guo-Bo Li
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative
Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Shuang Ma
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative
Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Ling-Ling Yang
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative
Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
- College
of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Sen Ji
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative
Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Zhen Fang
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative
Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Guo Zhang
- Key
Laboratory of Drug Targeting and Drug Delivery System of Ministry
of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li-Jiao Wang
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative
Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
- College
of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Jie-Min Zhong
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative
Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Yu Xiong
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative
Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Jiang-Hong Wang
- Key
Laboratory of Drug Targeting and Drug Delivery System of Ministry
of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shen-Zhen Huang
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative
Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Lin-Li Li
- Key
Laboratory of Drug Targeting and Drug Delivery System of Ministry
of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rong Xiang
- Department
of Clinical Medicine, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Dawen Niu
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative
Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Ying-Chun Chen
- Key
Laboratory of Drug Targeting and Drug Delivery System of Ministry
of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Sheng-Yong Yang
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative
Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| |
Collapse
|
11
|
Liu CT, Xin Y, Tong CY, Li B, Bao HL, Zhang CY, Wang XH. Production of interleukin‑4 in CD133+ cervical cancer stem cells promotes resistance to apoptosis and initiates tumor growth. Mol Med Rep 2016; 13:5068-76. [PMID: 27121303 PMCID: PMC4878543 DOI: 10.3892/mmr.2016.5195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 12/21/2015] [Indexed: 12/14/2022] Open
Abstract
The cancer stem cell (CSC) theory suggests that cancer growth and invasion is dictated by the small population of CSCs within the heterogenous tumor. The aim of the present study was to elucidate the cause for chemotherapy failure and the resistance of CSCs to apoptosis. A total of ~2.3% cluster of differentiation (CD)133+ cancer stem-like side population (SP) cells were identified in cases of uterine cervical cancer. These CD133+ SP cells were found to potently initiate tumor growth and invasion, as they exhibit transcriptional upregulation of stemness genes, including octamer-binding transcription factor-4, B-cell-specific Moloney murine leukemia virus insertion site-1, epithelial cell adhesion molecule, (sex determining region Y)-box 2, Nestin and anti-apoptotic B cell lymphoma-2. In addition, the CD133+ SP cells showed resistance to multi-drug treatment and apoptosis. The present study further showed that the secretion of interleukin-4 (IL-4) in CD133+ cervical cancer SP cells promoted cell proliferation and prevented the SP cells from apoptosis. Following the neutralization of IL-4 with anti-IL-4 antibody, the CD133+ SP cells were more sensitive to drug treatment and apoptosis. Therefore, the data obtained in the present study suggested that the autocrine secretion of IL-4 promotes increased survival and resistance to cell death in CSCs.
Collapse
Affiliation(s)
- Chun-Tao Liu
- Department of Gynecology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Ying Xin
- Department of Gynecology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Chun-Yan Tong
- Department of Gynecology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Bing Li
- Department of Gynecology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Hong-Li Bao
- Department of Gynecology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Cai-Yun Zhang
- Department of Gynecology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Xue-Hui Wang
- Department of Gynecology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| |
Collapse
|
12
|
Pascual-Mathey LI, Rojas-Duran F, Aranda-Abreu GE, Manzo J, Herrera-Covarrubias D, Muñoz-Zavaleta DA, Garcia LI, Hernandez ME. Effect of hyperprolactinemia on PRL-receptor expression and activation of Stat and Mapk cell signaling in the prostate of long-term sexually-active rats. Physiol Behav 2016; 157:170-7. [PMID: 26873413 DOI: 10.1016/j.physbeh.2016.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 02/03/2016] [Accepted: 02/07/2016] [Indexed: 11/18/2022]
Abstract
The abnormal elevation of serum PRL, referred to as hyperprolactinemia (HyperPRL), produces alterations in several reproductive parameters of male rats such as penile erection or decreased tendency to reach ejaculation. Additionally, this situation produces a significant modification of prostate histology, as observed in the epithelial structure and alveolar area, which could reach a level of hyperplasia in the long-term. In this tissue, HyperPRL produces an increase in expression of PRL receptors and activation of the Stat3 signaling pathway that is correlated with the evolution of prostate pathologies. However, the impact of HyperPRL in long-term sexually active male rats is unknown. In this work, using constantly copulating Wistar male rats with induced HyperPRL, we analyzed the level of serum PRL, the effect on prostate PRL receptors, and activation of pStat3, pStat5 and Mapk signaling pathways. Two procedures to induce HyperPRL were employed, comprising daily IP administration or adenohypophysis transplant, and although neither affected the execution of sexual behavior, the serum PRL profile following successive ejaculations was affected. Messenger RNA expression of the short and long isoforms of the PRL receptor at the ventral prostate was affected in different ways depending on the procedure to induce HyperPRL. The ventral prostate did not show any modification in terms of activation of the pStat5 signaling pathway in subjects with daily administration of PRL, although this was significantly increased in ADH transplanted subjects in the second and fourth consecutive ejaculation. A similar profile was found for the pStat3 pathway which additionally showed a significant increase in the third and fourth ejaculation of daily-injected subjects. The Mapk signaling pathway did not show any modifications in subjects with daily administration of PRL, but showed a significant increase in the second and third ejaculations of subjects with ADH transplants. Thus, although sexual behavior was not modified, HyperPRL modified the expression of PRL receptors and the activation of signal pathways in the prostate tissue. Hence, it is probable that prostatic alterations precede the sexual behavioral deficits observed in subjects with HyperPRL.
Collapse
Affiliation(s)
| | - Fausto Rojas-Duran
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Ver., Mexico
| | | | - Jorge Manzo
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Ver., Mexico
| | | | | | - Luis I Garcia
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Ver., Mexico
| | - Ma Elena Hernandez
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Ver., Mexico.
| |
Collapse
|
13
|
Halder P, Kumar R, Jana K, Chakraborty S, Ghosh Z, Kundu M, Basu J. Gene expression profiling of Mycobacterium tuberculosis Lipoarabinomannan-treated macrophages: A role of the Bcl-2 family member A1 in inhibition of apoptosis in mycobacteria-infected macrophages. IUBMB Life 2015; 67:726-36. [PMID: 26337784 DOI: 10.1002/iub.1430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 08/17/2015] [Indexed: 01/02/2023]
Abstract
Macrophages play an important role in the establishment of infection by intracellular pathogens. Mycobacterium tuberculosis is known to inhibit apoptosis and to downregulate immune responses of host cells using various strategies, including activation of peroxisome proliferator-activated receptor (PPAR)γ. Mannose-capped lipoarabinomannan (ManLAM) is one of the known bacterial effectors that plays a role in subversion of host immunity and activation of PPARγ. Here, we have used an unbiased global gene expression profiling approach to understand (a) how ManLAM regulates host cell immune responses and (b) the role of PPARγ in modulating ManLAM-induced host cell signaling. We have demonstrated that ManLAM-dependent inhibition of macrophage apoptosis is mediated by the upregulation of the antiapoptotic B-cell CLL/lymphoma 2 (Bcl2) family member A1. Our in silico analyses suggested that ManLAM-mediated PPARγ signaling is linked to important functions such as phagocytosis, cytoskeleton remodeling, cell survival, and autophagy. We have validated that ManLAM upregulates signal transducer and activator of transcription (STAT5)α, an important transcriptional regulator of cell survival in a PPARγ-dependent manner.
Collapse
Affiliation(s)
- Priyanka Halder
- Department of Chemistry, Bose Institute, Kolkata, West Bengal, India
| | - Ranjeet Kumar
- Department of Chemistry, Bose Institute, Kolkata, West Bengal, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | | | - Zhumur Ghosh
- Bioinformatics Centre, Bose Institute, Kolkata, West Bengal, India
| | - Manikuntala Kundu
- Department of Chemistry, Bose Institute, Kolkata, West Bengal, India
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
14
|
Prost S, Relouzat F, Spentchian M, Ouzegdouh Y, Saliba J, Massonnet G, Beressi JP, Verhoeyen E, Raggueneau V, Maneglier B, Castaigne S, Chomienne C, Chrétien S, Rousselot P, Leboulch P. Erosion of the chronic myeloid leukaemia stem cell pool by PPARγ agonists. Nature 2015; 525:380-3. [PMID: 26331539 DOI: 10.1038/nature15248] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/28/2015] [Indexed: 12/19/2022]
Abstract
Whether cancer is maintained by a small number of stem cells or is composed of proliferating cells with approximate phenotypic equivalency is a central question in cancer biology. In the stem cell hypothesis, relapse after treatment may occur by failure to eradicate cancer stem cells. Chronic myeloid leukaemia (CML) is quintessential to this hypothesis. CML is a myeloproliferative disorder that results from dysregulated tyrosine kinase activity of the fusion oncoprotein BCR-ABL. During the chronic phase, this sole genetic abnormality (chromosomal translocation Ph(+): t(9;22)(q34;q11)) at the stem cell level causes increased proliferation of myeloid cells without loss of their capacity to differentiate. Without treatment, most patients progress to the blast phase when additional oncogenic mutations result in a fatal acute leukaemia made of proliferating immature cells. Imatinib mesylate and other tyrosine kinase inhibitors (TKIs) that target the kinase activity of BCR-ABL have improved patient survival markedly. However, fewer than 10% of patients reach the stage of complete molecular response (CMR), defined as the point when BCR-ABL transcripts become undetectable in blood cells. Failure to reach CMR results from the inability of TKIs to eradicate quiescent CML leukaemia stem cells (LSCs). Here we show that the residual CML LSC pool can be gradually purged by the glitazones, antidiabetic drugs that are agonists of peroxisome proliferator-activated receptor-γ (PPARγ). We found that activation of PPARγ by the glitazones decreases expression of STAT5 and its downstream targets HIF2α and CITED2, which are key guardians of the quiescence and stemness of CML LSCs. When pioglitazone was given temporarily to three CML patients in chronic residual disease in spite of continuous treatment with imatinib, all of them achieved sustained CMR, up to 4.7 years after withdrawal of pioglitazone. This suggests that clinically relevant cancer eradication may become a generally attainable goal by combination therapy that erodes the cancer stem cell pool.
Collapse
Affiliation(s)
- Stéphane Prost
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), F-92265 Fontenay-aux-Roses, France
| | - Francis Relouzat
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), F-92265 Fontenay-aux-Roses, France
| | - Marc Spentchian
- Département de biologie médicale, Hôpital Mignot, F-78150 Le Chesnay, France
| | - Yasmine Ouzegdouh
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), F-92265 Fontenay-aux-Roses, France
| | - Joseph Saliba
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), F-92265 Fontenay-aux-Roses, France
| | - Gérald Massonnet
- Unité de Biologie Cellulaire, UMR-S-940 Institut Universitaire d'Hématologie, Hôpital Saint Louis, F-75010 Paris, France
| | - Jean-Paul Beressi
- Service d'Endocrinologie et de Diabétologie, Hôpital Mignot, F-78150 Le Chesnay, France
| | - Els Verhoeyen
- CIRI, International Center for Infectiology Research, EVIR team, Inserm, U1111, CNRS, UMR5308, Université de Lyon-1, ENS de Lyon, 69007 Lyon, France.,Inserm, U895, Centre de Médecine Moléculaire (C3M), équipe 3, 06204 Nice, France
| | - Victoria Raggueneau
- Laboratoire d'hématologie, Centre Hospitalier de Versailles, F-78150 Le Chesnay, France
| | - Benjamin Maneglier
- Unité de Pharmacologie, Service de Biologie Médicale, Centre Hospitalier de Versailles, F-78150 Le Chesnay, France
| | - Sylvie Castaigne
- Service d'Hématologie et d'Oncologie, Hôpital Mignot, Université Versailles Saint-Quentin-en-Yvelines, F-78150 Le Chesnay, France
| | - Christine Chomienne
- Unité de Biologie Cellulaire, UMR-S-940 Institut Universitaire d'Hématologie, Hôpital Saint Louis, F-75010 Paris, France
| | - Stany Chrétien
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), F-92265 Fontenay-aux-Roses, France.,Inserm, Institute of Emerging Diseases and Innovative Therapies (iMETI), F-92265 Fontenay-aux-Roses, France
| | - Philippe Rousselot
- Unité de Biologie Cellulaire, UMR-S-940 Institut Universitaire d'Hématologie, Hôpital Saint Louis, F-75010 Paris, France.,Service d'Hématologie et d'Oncologie, Hôpital Mignot, Université Versailles Saint-Quentin-en-Yvelines, F-78150 Le Chesnay, France
| | - Philippe Leboulch
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), F-92265 Fontenay-aux-Roses, France.,Genetics Division, Brigham &Women's Hospital and Harvard Medical School, Boston, Massachussetts 02115, USA.,Hematology Division, Ramathibodi Hospital and Mahidol University, 10400 Bangkok, Thailand
| |
Collapse
|
15
|
Usman T, Wang Y, Liu C, Wang X, Zhang Y, Yu Y. Association study of single nucleotide polymorphisms in JAK2 and STAT5B genes and their differential mRNA expression with mastitis susceptibility in Chinese Holstein cattle. Anim Genet 2015; 46:371-80. [PMID: 26154111 DOI: 10.1111/age.12306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 02/03/2023]
Abstract
The JAK-STAT pathway plays a key role in mediating immune responses. The genetic effects of single nucleotide polymorphisms (SNPs) in JAK2 and STAT5B were investigated for serum cytokines, mastitis indicators and productions traits in a population of 468 Chinese Holstein cattle. Pooled DNA sequencing revealed one SNP (BTA8:g.39645396A>G) in JAK2 and two SNPs (BTA19:g.43673888A>G and BTA19:g.43660093T>C) in STAT5B. A fixed effect model considering the effects of SNPs, parity, herd, season and year of calving was used by way of the general linear model procedure of sas. Genotype frequencies of these SNPs in the population were in Hardy-Weinberg equilibrium (P > 0.05). A novel SNP (g.39645396A>G) in JAK2 was predicted to change the amino acid from lysine to asparagine and was significantly associated with the somatic cell count (SCC) and somatic cell score (SCS), whereas g.43673888A>G in STAT5B was significantly associated with SCC, SCS and interleukin-4 (IL-4) (P < 0.05). The dominant effect of g.39645396A>G in JAK2 was significant for SCS, and its additive effect was significant for SCC, whereas the dominant effect of g.43673888A>G in STAT5B was significant for SCS and IL-4 (P < 0.05). The combination of g.39645396A>G in JAK2 and g.43673888A>G in STAT5B showed a significant effect on SCC, SCS, IL-4 and TNF-α (P < 0.05). As for mRNA expression analysis, the AA genotype g.39645396A>G and GG genotype g.43673888A>G indicated higher mRNA expression level and were significantly different from other genotypes (P < 0.05). The results imply that JAK2 and STAT5B genes could be useful candidate genes, and the identified polymorphisms might potentially be strong genetic markers for selection of dairy cattle against mastitis development.
Collapse
Affiliation(s)
- T Usman
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P.R. China.,College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Y Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P.R. China
| | - C Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P.R. China
| | - X Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P.R. China
| | - Y Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P.R. China
| | - Y Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P.R. China
| |
Collapse
|
16
|
GUAN GUOFANG, ZHANG DEJUN, ZHENG YING, WEN LIANJI, YU DUOJIAO, LU YANQING, ZHAO YAN. Abnormal Wnt signaling and overexpression of ABCG2 contributes to drug efflux properties of side population cells in nasopharyngeal carcinoma. Mol Med Rep 2015; 12:4352-4357. [DOI: 10.3892/mmr.2015.3935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 04/24/2015] [Indexed: 11/06/2022] Open
|
17
|
Feng L, Wu JB, Yi FM. Isolation and phenotypic characterization of cancer stem-like side population cells in colon cancer. Mol Med Rep 2015; 12:3531-3536. [PMID: 25997915 DOI: 10.3892/mmr.2015.3801] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 02/26/2015] [Indexed: 11/05/2022] Open
Abstract
Previous studies in cancer biology suggest that chemotherapeutic drug resistance and tumor relapse are driven by cells within a tumor termed 'cancer stem cells'. In the present study, a Hoechst 33342 dye exclusion technique was used to identify cancer stem‑like side population (SP) cells in colon carcinoma, which accounted for 3.4% of the total cell population. Following treatment with verapamil, the population of SP cells was reduced to 0.6%. In addition, the sorted SP cells exhibited marked multidrug resistance and enhanced cell survival rates compared with non‑SP cells. The SP cells were able to generate more tumor spheres and were CD133 positive. Subsequent biochemical analysis revealed that the levels of the adenosine triphosphate‑binding cassette sub‑family G member 2 transporter protein, B‑cell lymphoma anti‑apoptotic factor and autocrine production of interleukin‑4 were significantly enhanced in the colon cancer SP cells, which contributed to drug resistance, protection of the cells from apoptosis and tumor recurrence. Therefore, the findings suggested that treatment failure and colon tumorigenesis is dictated by a small population of SP cells, which indicate a potential target in future therapies.
Collapse
Affiliation(s)
- Long Feng
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian-Bing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Feng-Ming Yi
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
18
|
Wang L, Jiang R, Song SD, Hua ZS, Wang JW, Wang YP. Angelica Sinensis Polysaccharide Induces Erythroid Differentiation of Human Chronic Myelogenous Leukemia K562 Cells. Asian Pac J Cancer Prev 2015; 16:3715-21. [DOI: 10.7314/apjcp.2015.16.9.3715] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
19
|
Fahrenkamp D, de Leur HSV, Küster A, Chatain N, Müller-Newen G. Src family kinases interfere with dimerization of STAT5A through a phosphotyrosine-SH2 domain interaction. Cell Commun Signal 2015; 13:10. [PMID: 25885255 PMCID: PMC4350284 DOI: 10.1186/s12964-014-0081-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/30/2014] [Indexed: 11/10/2022] Open
Abstract
Background Chronic myeloid leukemia (CML) is driven by the expression of the BCR-ABL oncoprotein. STAT5 is a BCR-ABL substrate and persistently activated by tyrosine phosphorylation in CML cells. Activated STAT5 (pSTAT5) drives proliferation and survival of leukemic cells and contributes to initial transformation and maintenance of the disease. In cytokine-induced STAT5 signaling, phosphorylation of STAT5A on Y694 leads to nuclear accumulation of the transcription factor, followed by DNA-binding and gene induction. However, Src-family kinases (SFK) mediate cytoplasmic retention of pSTAT5A leading to attenuated target gene expression and colony formation in CML cells. Results In this study we show that autophosphorylation of Y416 in the highly conserved activation loop of SFK generates a potent recruitment site for the SH2 domain of STAT5A. Binding of the SH2 domain to the activation loop is required for STAT5AY694 phosphorylation by SFK, but at the same time promotes the persistent cytoplasmic localization of the transcription factor as found in BCR-ABL+ leukemia. As a consequence of the complex formation between tyrosine-phosphorylated SFK and the SH2 domain of STAT5A, the dimerization of STAT5A is impaired. We further demonstrate that constitutively active STAT5AS710F escapes from SFK-mediated cytoplasmic retention by enhancing STAT5A dimer stability. Conclusion Our results reveal important structural aspects of cytoplasmic pSTAT5A found in myeloid leukemias and will contribute to the understanding of STAT5A mediated cytoplasmic signaling.
Collapse
Affiliation(s)
- Dirk Fahrenkamp
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Hildegard Schmitz-Van de Leur
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Andrea Küster
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Nicolas Chatain
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany. .,Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
20
|
Schepers H, Wierenga ATJ, Vellenga E, Schuringa JJ. STAT5-mediated self-renewal of normal hematopoietic and leukemic stem cells. JAKSTAT 2014; 1:13-22. [PMID: 24058747 PMCID: PMC3670129 DOI: 10.4161/jkst.19316] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 01/07/2023] Open
Abstract
The level of transcription factor activity critically regulates cell fate decisions such as hematopoietic stem cell self-renewal and differentiation. The balance between hematopoietic stem cell self-renewal and differentiation needs to be tightly controlled, as a shift toward differentiation might exhaust the stem cell pool, while a shift toward self-renewal might mark the onset of leukemic transformation. A number of transcription factors have been proposed to be critically involved in governing stem cell fate and lineage commitment, such as Hox transcription factors, c-Myc, Notch1, β-catenin, C/ebpα, Pu.1 and STAT5. It is therefore no surprise that dysregulation of these transcription factors can also contribute to the development of leukemias. This review will discuss the role of STAT5 in both normal and leukemic hematopoietic stem cells as well as mechanisms by which STAT5 might contribute to the development of human leukemias.
Collapse
Affiliation(s)
- Hein Schepers
- Department of Experimental Hematology; University Medical Center Groningen; Groningen, The Netherlands ; Department of Stem Cell Biology; University Medical Center Groningen; Groningen, The Netherlands
| | | | | | | |
Collapse
|
21
|
Yan HX, Li WW, Zhang Y, Wei XW, Fu LX, Shen GB, Yin T, Li XY, Shi HS, Wan Y, Zhang QY, Li J, Yang SY, Wei YQ. Accumulation of FLT3+ CD11c+ dendritic cells in psoriatic lesions and the anti-psoriatic effect of a selective FLT3 inhibitor. Immunol Res 2014; 60:112-26. [DOI: 10.1007/s12026-014-8521-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Lin WC, Schmidt JW, Creamer BA, Triplett AA, Wagner KU. Gain-of-function of Stat5 leads to excessive granulopoiesis and lethal extravasation of granulocytes to the lung. PLoS One 2013; 8:e60902. [PMID: 23565285 PMCID: PMC3614894 DOI: 10.1371/journal.pone.0060902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/05/2013] [Indexed: 11/25/2022] Open
Abstract
The Signal Transducer and Activator of Transcription 5 (Stat5) plays a significant role in normal hematopoiesis and a variety of hematopoietic malignancies. Deficiency in Stat5 causes impaired cytokine-mediated proliferation and survival of progenitors and their differentiated descendants along major hematopoietic lineages such as erythroid, lymphoid, and myeloid cells. Overexpression and persistent activation of Stat5 are sufficient for neoplastic transformation and development of multi-lineage leukemia in a transplant model. Little is known, however, whether a continuous activation of this signal transducer is essential for the maintenance of hematopoietic malignancies. To address this issue, we developed transgenic mice that express a hyperactive mutant of Stat5 in hematopoietic progenitors and derived lineages in a ligand-controlled manner. In contrast to the transplant model, expression of mutant Stat5 did not adversely affect normal hematopoiesis in the presence of endogenous wildtype Stat5 alleles. However, the gain-of-function of this signal transducer in mice that carry Stat5a/b hypomorphic alleles resulted in abnormally high numbers of circulating granulocytes that caused severe airway obstruction. Downregulation of hyperactive Stat5 in diseased animals restored normal granulopoiesis, which also resulted in a swift clearance of granulocytes from the lung. Moreover, we demonstrate that Stat5 promotes the initiation and maintenance of severe granulophilia in a cell autonomous manner. The results of this study show that the gain-of-function of Stat5 causes excessive granulopoiesis and prolonged survival of granulocytes in circulation. Collectively, our findings underline the critical importance of Stat5 in maintaining a normal balance between myeloid and lymphoid cells during hematopoiesis, and we provide direct evidence for a function of Stat5 in granulophilia–associated pulmonary dysfunction.
Collapse
Affiliation(s)
- Wan-chi Lin
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jeffrey W. Schmidt
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Bradley A. Creamer
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Aleata A. Triplett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
23
|
Tibes R, Bogenberger JM, Geyer HL, Mesa RA. JAK2 inhibitors in the treatment of myeloproliferative neoplasms. Expert Opin Investig Drugs 2012; 21:1755-74. [PMID: 22991927 DOI: 10.1517/13543784.2012.721352] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Dysregulation of JAK-STAT signaling is a pathogenetic hallmark of myeloproliferative neoplasms (MPNs) arising from several distinct molecular aberrations, including mutations in JAK2, the thrombopoietin receptor (MPL), mutations in negative regulators of JAK-STAT signaling, such as lymphocyte-specific adapter protein (SH2B3), and epigenetic dysregulation as seen with Suppressor of Cytokine Signaling (SOCS) proteins. In addition, growth factor/cytokine stimulatory events activate JAK-STAT signaling independent of mutations. AREAS COVERED The various mutations and molecular events activating JAK-STAT signaling in MPNs are reviewed. Detailed inhibitory kinase profiles of the currently developed JAK inhibitors are presented. Clinical trial results for currently developed JAK targeting agents are comprehensively summarized. The limitations of JAK-STAT targeting in MPNs, as well as potential rational combination therapies with JAK2 inhibitors, are discussed. EXPERT OPINION Aberrant JAK-STAT signaling is an underlying theme in the pathogenesis of MPNs. While JAK2 inhibitors are active in JAK2V617F and wild-type JAK2 MPNs, JAK2V617F mutation-specific or JAK2-selective inhibitors may possess unique clinical attributes. Complimentary targeting of parallel pathways operating in MPNs may offer novel therapeutic approaches in combination with JAK inhibition. Understanding the intricacies of JAK-STAT pathway activation, including growth factor/cytokine-driven signaling, will open new avenues for therapeutic intervention at known and novel molecular vulnerabilities of MPNs.
Collapse
Affiliation(s)
- Raoul Tibes
- Mayo Clinic, Hematology, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
24
|
Abstract
Since its discovery two decades ago, the activation of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway by numerous cytokines and growth factors has resulted in it becoming one of the most well-studied intracellular signalling networks. The field has progressed from the identification of the individual components to high-resolution crystal structures of both JAK and STAT, and an understanding of the complexities of the molecular activation and deactivation cycle which results in a diverse, yet highly specific and regulated pattern of transcriptional responses. While there is still more to learn, we now appreciate how disruption and deregulation of this pathway can result in clinical disease and look forward to adoption of the next generation of JAK inhibitors in routine clinical treatment.
Collapse
Affiliation(s)
- Hiu Kiu
- Walter & Eliza Hall Institute, 1G Royal Parade, Parkville 3052, Australia
| | | |
Collapse
|
25
|
Ong YC, Boyle JP, Boothroyd JC. Strain-dependent host transcriptional responses to Toxoplasma infection are largely conserved in mammalian and avian hosts. PLoS One 2011; 6:e26369. [PMID: 22022607 PMCID: PMC3192797 DOI: 10.1371/journal.pone.0026369] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/25/2011] [Indexed: 11/19/2022] Open
Abstract
Toxoplasma gondii has a remarkable ability to infect an enormous variety of mammalian and avian species. Given this, it is surprising that three strains (Types I/II/III) account for the majority of isolates from Europe/North America. The selective pressures that have driven the emergence of these particular strains, however, remain enigmatic. We hypothesized that strain selection might be partially driven by adaptation of strains for mammalian versus avian hosts. To test this, we examine in vitro, strain-dependent host responses in fibroblasts of a representative avian host, the chicken (Gallus gallus). Using gene expression profiling of infected chicken embryonic fibroblasts and pathway analysis to assess host response, we show here that chicken cells respond with distinct transcriptional profiles upon infection with Type II versus III strains that are reminiscent of profiles observed in mammalian cells. To identify the parasite drivers of these differences, chicken fibroblasts were infected with individual F1 progeny of a Type II x III cross and host gene expression was assessed for each by microarray. QTL mapping of transcriptional differences suggested, and deletion strains confirmed, that, as in mammalian cells, the polymorphic rhoptry kinase ROP16 is the major driver of strain-specific responses. We originally hypothesized that comparing avian versus mammalian host response might reveal an inversion in parasite strain-dependent phenotypes; specifically, for polymorphic effectors like ROP16, we hypothesized that the allele with most activity in mammalian cells might be less active in avian cells. Instead, we found that activity of ROP16 alleles appears to be conserved across host species; moreover, additional parasite loci that were previously mapped for strain-specific effects on mammalian response showed similar strain-specific effects in chicken cells. These results indicate that if different hosts select for different parasite genotypes, the selection operates downstream of the signaling occurring during the beginning of the host's immune response.
Collapse
Affiliation(s)
- Yi-Ching Ong
- Stanford University, Department of Microbiology and Immunology, Stanford, California, United States of America
| | - Jon P. Boyle
- University of Pittsburgh, Department of Molecular Biology, Pittsburgh, Pennsylvania, United States of America
| | - John C. Boothroyd
- Stanford University, Department of Microbiology and Immunology, Stanford, California, United States of America
| |
Collapse
|
26
|
Type I diabetes-associated tolerogenic properties of interleukin-2. Clin Dev Immunol 2011; 2011:289343. [PMID: 21647403 PMCID: PMC3102343 DOI: 10.1155/2011/289343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 03/08/2011] [Indexed: 11/27/2022]
Abstract
Type 1 Diabetes (T1D) results from insulin-producing beta cells destruction by diabetogenic T lymphocytes in humans and nonobese diabetic (NOD) mice. The breakdown of tolerance has been associated with a defect in the number and the function of naturally occurring regulatory T cells (nTreg) that are the master player in peripheral tolerance. Gene knockout experiments in mouse models have shown a nonredundant activity of IL-2 related to its critical role in inducing nTreg and controlling peripheral T cell tolerance. Whereas strong evidence has suggested that IL-2 is critically required for nTreg-mediated T1D control, several fundamental questions remain to be addressed. In this paper, we highlight the recent findings and controversies regarding the tolerogenic properties of IL-2 mediated through nTreg. We further discuss a potential link between the immunomodulatory role of interleukin-2 and the pathogenesis of type 1 diabetes.
Collapse
|
27
|
Dhennin-Duthille I, Nyga R, Yahiaoui S, Gouilleux-Gruart V, Régnier A, Lassoued K, Gouilleux F. The tumor suppressor hTid1 inhibits STAT5b activity via functional interaction. J Biol Chem 2010; 286:5034-42. [PMID: 21106534 DOI: 10.1074/jbc.m110.155903] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
STAT5a and -5b (signal transducers and activators of transcription 5a and 5b) proteins play an essential role in hematopoietic cell proliferation and survival and are frequently constitutively active in hematologic neoplasms and solid tumors. Because STAT5a and STAT5b differ mainly in the carboxyl-terminal transactivation domain, we sought to identify new proteins that bind specifically to this domain by using a bacterial two-hybrid screening. We isolated hTid1, a human DnaJ protein that acts as a tumor suppressor in various solid tumors. hTid1 interacts specifically with STAT5b but not with STAT5a in hematopoietic cell lines. This interaction involves the cysteine-rich region of the hTid1 DnaJ domain. We also demonstrated that hTid1 negatively regulates the expression and transcriptional activity of STAT5b and suppresses the growth of hematopoietic cells transformed by an oncogenic form of STAT5b. Our findings define hTid1 as a novel partner and negative regulator of STAT5b.
Collapse
Affiliation(s)
- Isabelle Dhennin-Duthille
- INSERM, U925, Université de Picardie Jules Verne, UFR de Médecine, 3 Rue des Louvels, 80036 Amiens, France
| | | | | | | | | | | | | |
Collapse
|
28
|
STAT5 requires the N-domain to maintain hematopoietic stem cell repopulating function and appropriate lymphoid-myeloid lineage output. Exp Hematol 2008; 35:1684-94. [PMID: 17976521 DOI: 10.1016/j.exphem.2007.08.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 08/20/2007] [Accepted: 08/20/2007] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Signal transducer and activator of transcription 5 (STAT5) is a critical regulator of hematopoietic development and its impaired activation is associated with hematopoietic and immune cell defects. However, much of this information has been learned from knockout mice that still retain the potential for expression of STAT5 proteins that are N-terminally truncated due to alternative internal translation initiation codons. The goal of these studies was to use transplantation-based assays to analyze the degree of STAT5 deltaN activity in hematopoietic stem cells (HSC) and throughout lymphomyeloid development. METHODS We have directly compared E14.5 fetal liver cells from mice with potential to express STAT5ab deltaN (STAT5ab(deltaN/deltaN)) with mice completely lacking STAT5a and STAT5b (STAT5abnull/null). We have also utilized retroviral complementation of STAT5abnull/null fetal liver HSC to enforce expression of full-length STAT5a or STAT5a lacking the first 136 amino acids (STAT5a deltaN). RESULTS We report that STAT5 is required for HSC, lymphocyte, and erythrocyte development. We demonstrate that restored expression of STAT5a in STAT5abnull/null HSC provides a strong selective advantage, correcting T- and B-lymphocyte and erythrocyte development. Interestingly, Gr-1(+) blood cells were inversely correlated with B lymphocytes and both were normalized by STAT5a expression. In contrast, transduction of STAT5a deltaN only provided partial B-lymphocyte development. CONCLUSIONS These studies define the role of STAT5 in maintaining normal lymphoid vs myeloid balance during hematopoiesis and highlight a major role for the N-domain in HSC function. The platform of retroviral complementation described here will be particularly useful for future studies to subdefine the N-domain regions that are critical for hematopoiesis.
Collapse
|
29
|
Abstract
Universal and essential to cytokine receptor signaling, the JAK-STAT pathway is one of the best understood signal transduction cascades. Almost 40 cytokine receptors signal through combinations of four JAK and seven STAT family members, suggesting commonality across the JAK-STAT signaling system. Despite intense study, there remain substantial gaps in understanding how the cascades are activated and regulated. Using the examples of the IL-6 and IL-10 receptors, I will discuss how diverse outcomes in gene expression result from regulatory events that effect the JAK1-STAT3 pathway, common to both receptors. I also consider receptor preferences by different STATs and interpretive problems in the use of STAT-deficient cells and mice. Finally, I consider how the suppressor of cytokine signaling (SOCS) proteins regulate the quality and quantity of STAT signals from cytokine receptors. New data suggests that SOCS proteins introduce additional diversity into the JAK-STAT pathway by adjusting the output of activated STATs that alters downstream gene activation.
Collapse
Affiliation(s)
- Peter J Murray
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38104, USA.
| |
Collapse
|
30
|
Abstract
The production of mature, differentiated myeloid cells is regulated by the action of hematopoietic cytokines on progenitor cells in the bone marrow. Cytokines drive the process of myeloid differentiation by binding to specific cell-surface receptors in a stage- and lineage-specific manner. Following the binding of a cytokine to its cognate receptor, intracellular signal-transduction pathways become activated that facilitate the myeloid differentiation process. These intracellular signaling pathways may promote myelopoiesis by stimulating expansion of a progenitor pool, supporting cellular survival during the differentiation process, or by directly driving the phenotypic changes associated with differentiation. Ultimately, pathways that drive the differentiation process converge on myeloid transcription factors, including PU.1 and the C/EBP family, that are critical for differentiation to proceed. While much is known about the cytokines, cytokine receptors and transcription factors that regulate myeloid differentiation, less is known about the precise roles that specific signaling mediators play in promoting myeloid differentiation. Recently, however, the application of novel pharmacologic inhibitors, siRNA strategies, and transgenic and knockout models has begun to shed light on the involvement and function of signaling pathways in normal myeloid differentiation. This review will discuss the roles that key signaling pathways and mediators play in myeloid differentiation.
Collapse
Affiliation(s)
- M B Miranda
- Department of Medicine, University of Pittsburgh and the University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
31
|
Shi M, Cooper JC, Yu CL. A constitutively active Lck kinase promotes cell proliferation and resistance to apoptosis through signal transducer and activator of transcription 5b activation. Mol Cancer Res 2006; 4:39-45. [PMID: 16446405 DOI: 10.1158/1541-7786.mcr-05-0202] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lck is a Src family protein tyrosine kinase and is expressed predominantly in T cells. Aberrant expression or activation of Lck kinase has been reported in both lymphoid and nonlymphoid malignancies. However, the mechanisms underlying Lck-mediated oncogenesis remain largely unclear. In this report, we establish a tetracycline-inducible system to study the biochemical and biological effects of a constitutively active Lck mutant with a point mutation at the negative regulatory tyrosine. Expression of the active Lck kinase induces both tyrosine phosphorylation and DNA-binding activity of signal transducer and activator of transcription 5b (STAT5b), a STAT family member activated in a variety of tumor cells. The active Lck kinase interacts with STAT5b in cells, suggesting that Lck may directly phosphorylate STAT5b. Expression of the constitutively active Lck mutant in interleukin-3 (IL-3)-dependent BaF3 cells promotes cell proliferation. In addition, the active Lck kinase protects BaF3 cells from IL-3 withdrawal-induced apoptotic death and leads to IL-3-independent growth. These transforming properties of the oncogenic Lck kinase can be further augmented by expression of exogenous wild-type STAT5b but attenuated by a dominant-negative form of STAT5b. All together, our results suggest the potential involvement of STAT5b in Lck-mediated cellular transformation.
Collapse
Affiliation(s)
- Mingjian Shi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
| | | | | |
Collapse
|
32
|
Dolznig H, Grebien F, Deiner EM, Stangl K, Kolbus A, Habermann B, Kerenyi MA, Kieslinger M, Moriggl R, Beug H, Müllner EW. Erythroid progenitor renewal versus differentiation: genetic evidence for cell autonomous, essential functions of EpoR, Stat5 and the GR. Oncogene 2006; 25:2890-900. [PMID: 16407844 PMCID: PMC3035873 DOI: 10.1038/sj.onc.1209308] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 11/02/2005] [Accepted: 11/03/2005] [Indexed: 01/17/2023]
Abstract
The balance between hematopoietic progenitor commitment and self-renewal versus differentiation is controlled by various transcriptional regulators cooperating with cytokine receptors. Disruption of this balance is increasingly recognized as important in the development of leukemia, by causing enhanced renewal and differentiation arrest. We studied regulation of renewal versus differentiation in primary murine erythroid progenitors that require cooperation of erythropoietin receptor (EpoR), the receptor tyrosine kinase c-Kit and a transcriptional regulator (glucocorticoid receptor; GR) for sustained renewal. However, mice defective for GR- (GR(dim/dim)), EpoR- (EpoR(H)) or STAT5ab function (Stat5ab(-/-)) show no severe erythropoiesis defects in vivo. Using primary erythroblast cultures from these mutants, we present genetic evidence that functional GR, EpoR, and Stat5 are essential for erythroblast renewal in vitro. Cells from GR(dim/dim), EpoR(H), and Stat5ab(-/-) mice showed enhanced differentiation instead of renewal, causing accumulation of mature cells and gradual proliferation arrest. Stat5ab was additionally required for Epo-induced terminal differentiation: differentiating Stat5ab(-/-) erythroblasts underwent apoptosis instead of erythrocyte maturation, due to absent induction of the antiapoptotic protein Bcl-X(L). This defect could be fully rescued by exogenous Bcl-X(L). These data suggest that signaling molecules driving leukemic proliferation may also be essential for prolonged self-renewal of normal erythroid progenitors.
Collapse
Affiliation(s)
- H Dolznig
- Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, Austria
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology, Medical University of Vienna, Vienna, Austria
| | - F Grebien
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology, Medical University of Vienna, Vienna, Austria
| | - EM Deiner
- Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, Austria
| | - K Stangl
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology, Medical University of Vienna, Vienna, Austria
| | - A Kolbus
- Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, Austria
| | - B Habermann
- Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, Austria
| | - MA Kerenyi
- Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, Austria
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology, Medical University of Vienna, Vienna, Austria
| | - M Kieslinger
- Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, Austria
| | - R Moriggl
- Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, Austria
| | - H Beug
- Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, Austria
| | - EW Müllner
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Ito T, Arimitsu N, Takeuchi M, Kawamura N, Nagata M, Saso K, Akimitsu N, Hamamoto H, Natori S, Miyajima A, Sekimizu K. Transcription elongation factor S-II is required for definitive hematopoiesis. Mol Cell Biol 2006; 26:3194-203. [PMID: 16581793 PMCID: PMC1446961 DOI: 10.1128/mcb.26.8.3194-3203.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Transcription elongation factor S-II/TFIIS promotes readthrough of transcriptional blocks by stimulating nascent RNA cleavage activity of RNA polymerase II in vitro. The biologic significance of S-II function in higher eukaryotes, however, remains unclear. To determine its role in mammalian development, we generated S-II-deficient mice through targeted gene disruption. Homozygous null mutants died at midgestation with marked pallor, suggesting severe anemia. S-II(-/-) embryos had a decreased number of definitive erythrocytes in the peripheral blood and disturbed erythroblast differentiation in fetal liver. There was a dramatic increase in apoptotic cells in S-II(-/-) fetal liver, which was consistent with a reduction in Bcl-x(L) gene expression. The presence of phenotypically defined hematopoietic stem cells and in vitro colony-forming hematopoietic progenitors in S-II(-/-) fetal liver indicates that S-II is dispensable for the generation and differentiation of hematopoietic stem cells. S-II-deficient fetal liver cells, however, exhibited a loss of long-term repopulating potential when transplanted into lethally irradiated adult mice, indicating that S-II deficiency causes an intrinsic defect in the self-renewal of hematopoietic stem cells. Thus, S-II has critical and nonredundant roles in definitive hematopoiesis.
Collapse
Affiliation(s)
- Takahiro Ito
- Division of Developmental Biochemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang Y, Kirken RA, Furian L, Janczewska S, Qu X, Hancock WW, Wang M, Tejpal N, Kerman R, Kahan BD, Stepkowski SM. Allograft rejection requires STAT5a/b-regulated antiapoptotic activity in T cells but not B cells. THE JOURNAL OF IMMUNOLOGY 2006; 176:128-37. [PMID: 16365403 DOI: 10.4049/jimmunol.176.1.128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
STATs play key roles in immune function. We examined the role of STAT5a/b in allograft rejection. STAT5a/b-deficient mice showed a 4-fold increased survival time of heart allografts (p < 0.01). Unlike wild type, purified STAT5a/b-/- T cells transferred to Rag1-/- recipients failed to mediate heart allograft rejection until supplemented with STAT5a/b-/- B cells. In vitro, STAT5a/b-/- T cells did not proliferate in response to Con A or alloantigens but entered apoptosis within 48 h (95%). Activated STAT5a/b-/- T cells showed increased expression of proapoptotic (caspases, DNA repair genes, TNF/TNFR-associated factor family genes) and decreased antiapoptotic mRNAs in microarrays, while Western blots confirmed reduced antiapoptotic Bcl-2 and elevated proapoptotic Bax protein expression. Interestingly, at 24 h postactivation, STAT5a/b+/+ and STAT5a/b-/- T cells produced similar levels of IL-2, IL-4, IL-10, and IFN-gamma mRNA; ELISPOT assay showed an equivalent number of IL-4- and IFN-gamma-producing T cells in both STAT5a/b+/+ and STAT5a/b-/- splenic populations. Sera from STAT5a/b+/+ and STAT5a/b-/- rejectors had donor-specific IgM, IgG1, IgG2a, and IgG2b Ab, while STAT5a/b deficiency had no impact on B cell survival or proliferation in response to LPS. Compared with allografts from STAT5a/b+/+ recipients, heart allografts from STAT5a/b-/- recipients had markedly reduced infiltration by CD4 and CD8 T cells but increased infiltration by B cells and dense endothelial deposition of C4d, a marker of humoral rejection. Thus, activated STAT5a/b-/- T cells produce cytokines prior to entering apoptosis, thereby promoting differentiation of B cells yielding donor-specific IgM and IgG Ab that mediate allograft rejection.
Collapse
Affiliation(s)
- Ye Zhang
- Division of Immunology and Organ Transplantation, Department of Surgery, University of Texas Medical School, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nyga R, Pecquet C, Harir N, Gu H, Dhennin-Duthille I, Régnier A, Gouilleux-Gruart V, Lassoued K, Gouilleux F. Activated STAT5 proteins induce activation of the PI 3-kinase/Akt and Ras/MAPK pathways via the Gab2 scaffolding adapter. Biochem J 2005; 390:359-66. [PMID: 15833084 PMCID: PMC1188271 DOI: 10.1042/bj20041523] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The active forms of STAT5A (signal transducer and activator of transcription 5A) and STAT5B are able to relieve the cytokine dependence of haematopoietic cells and to induce leukaemia in mice. We have demonstrated previously that activation of the PI3K (phosphoinositide 3-kinase) signalling cascade plays a major role in cell growth and survival induced by these proteins. Interaction between STAT5 and p85, the regulatory subunit of the PI3K, has been suggested to be required for this activation. We show in the present study that the scaffolding protein Gab2 [Grb2 (growth-factor-receptor-bound protein 2)-associated binder-2] is an essential component of this interaction. Gab2 is persistently tyrosine-phosphorylated in Ba/F3 cells expressing caSTAT5 (constitutively activated STAT5), independent of JAK2 (Janus kinase 2) activation where it interacts with STAT5, p85 and Grb2, but not with Shp2 [SH2 (Src homology 2)-domain-containing tyrosine phosphatase] proteins. Interaction of STAT5 with Gab2 was also observed in Ba/F3 cells stimulated with interleukin-3 or expressing the oncogenic fusion protein Tel-JAK2. The MAPKs (mitogen-activated protein kinases) ERK1 (extracellular-signal-regulated kinase 1) and ERK2 were constitutively activated in the caSTAT5-expressing cells and were found to be required for caSTAT5-induced cell proliferation. Overexpression of Gab2-3YF, a mutant of Gab2 incapable of binding PI3K, inhibited the proliferation and survival of caSTAT5-expressing cells as well as ERK1/2 and Akt/protein kinase B phosphorylation. Taken together, our results indicate that Gab2 is required for caSTAT5-induced cell proliferation by regulating both the PI3K/Akt and the Ras/MAPK pathways.
Collapse
Affiliation(s)
- Rémy Nyga
- *INSERM E0351, Laboratoire d'Immunologie, Faculté de Médecine, Université de Picardie Jule Verne, 3 rue des Louvels, 80036 Amiens, France
| | - Christian Pecquet
- *INSERM E0351, Laboratoire d'Immunologie, Faculté de Médecine, Université de Picardie Jule Verne, 3 rue des Louvels, 80036 Amiens, France
| | - Noria Harir
- *INSERM E0351, Laboratoire d'Immunologie, Faculté de Médecine, Université de Picardie Jule Verne, 3 rue des Louvels, 80036 Amiens, France
| | - Haihua Gu
- †Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, U.S.A
| | - Isabelle Dhennin-Duthille
- *INSERM E0351, Laboratoire d'Immunologie, Faculté de Médecine, Université de Picardie Jule Verne, 3 rue des Louvels, 80036 Amiens, France
| | - Aline Régnier
- *INSERM E0351, Laboratoire d'Immunologie, Faculté de Médecine, Université de Picardie Jule Verne, 3 rue des Louvels, 80036 Amiens, France
| | - Valérie Gouilleux-Gruart
- *INSERM E0351, Laboratoire d'Immunologie, Faculté de Médecine, Université de Picardie Jule Verne, 3 rue des Louvels, 80036 Amiens, France
| | - Kaïss Lassoued
- *INSERM E0351, Laboratoire d'Immunologie, Faculté de Médecine, Université de Picardie Jule Verne, 3 rue des Louvels, 80036 Amiens, France
| | - Fabrice Gouilleux
- *INSERM E0351, Laboratoire d'Immunologie, Faculté de Médecine, Université de Picardie Jule Verne, 3 rue des Louvels, 80036 Amiens, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
36
|
Abraham N, Ma MC, Snow JW, Miners MJ, Herndier BG, Goldsmith MA. Haploinsufficiency identifies STAT5 as a modifier of IL-7-induced lymphomas. Oncogene 2005; 24:5252-7. [PMID: 15870688 DOI: 10.1038/sj.onc.1208726] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The requirement for receptor components and the signalling effector, signal transducer and activator of transcription (STAT) 5A/5B, was assessed genetically in a lymphoma development model induced by interleukin-7 (IL-7). This growth factor for T- and B-cell progenitors and mature lymphocytes activates survival and proliferative pathways including Bcl-2, phosphatidylinositol-3 kinase and STAT5. Overexpression of IL-7 in vivo causes early mortality from lymphoma development. Mice overexpressing IL-7 that were heterozygous for the IL-7Ralpha subunit showed improved survival compared to wild-type mice. In addition, STAT5A/5B+/- compound heterozygous mice with one targeted allele each of STAT5A and STAT5B showed striking amelioration of IL-7-induced mortality and disease development. STAT5A/5B+/- compound heterozygous mice were otherwise normal in stem cell and lymphocyte development and cellularity. Lower STAT5 protein levels accompanied the reduction in STAT5A/5B copy number, which suggests that STAT5 haploinsufficiency is a modifier of IL-7 signal strength.
Collapse
Affiliation(s)
- Ninan Abraham
- Department of Microbiology and Immunology, The University of British Columbia, #300-6174, University Boulevard, BC, Canada.
| | | | | | | | | | | |
Collapse
|
37
|
Hieronymus T, Gust TC, Kirsch RD, Jorgas T, Blendinger G, Goncharenko M, Supplitt K, Rose-John S, Müller AM, Zenke M. Progressive and Controlled Development of Mouse Dendritic Cells from Flt3+CD11b+Progenitors In Vitro. THE JOURNAL OF IMMUNOLOGY 2005; 174:2552-62. [PMID: 15728461 DOI: 10.4049/jimmunol.174.5.2552] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DC) represent key regulators of the immune system, yet their development from hemopoietic precursors is poorly defined. In this study, we describe an in vitro system for amplification of a Flt3(+)CD11b(+) progenitor from mouse bone marrow with specific cytokines. Such progenitor cells develop into both CD11b(+) and CD11b(-) DC, and CD8alpha(+) and CD8alpha(-) DC in vivo. Furthermore, with GM-CSF, these progenitors synchronously differentiated into fully functional DC in vitro. This two-step culture system yields homogeneous populations of Flt3(+)CD11b(+) progenitor cells in high numbers and allows monitoring the consecutive steps of DC development in vitro under well-defined conditions. We used phenotypic and functional markers and transcriptional profiling by DNA microarrays to study the Flt3(+)CD11b(+) progenitor and differentiated DC. We report here on an extensive analysis of the surface Ag expression of Flt3(+)CD11b(+) progenitor cells and relate that to surface Ag expression of hemopoietic stem cells. Flt3(+)CD11b(+) progenitors studied exhibit a broad overlap of surface Ags with stem cells and express several stem cell Ags such as Flt3, IL-6R, c-kit/SCF receptor, and CD93/AA4.1, CD133/AC133, and CD49f/integrin alpha(6). Thus, Flt3(+)CD11b(+) progenitors express several stem cell surface Ags and develop into both CD11b(+) and CD11b(-) DC, and CD8alpha(+) and CD8alpha(-) DC in vivo, and thus into both of the main conventional DC subtypes.
Collapse
Affiliation(s)
- Thomas Hieronymus
- Institute for Biomedical Engineering-Cell Biology, University Medical School Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cook AD, Braine EL, Hamilton JA. Stimulus-Dependent Requirement for Granulocyte-Macrophage Colony-Stimulating Factor in Inflammation. THE JOURNAL OF IMMUNOLOGY 2004; 173:4643-51. [PMID: 15383599 DOI: 10.4049/jimmunol.173.7.4643] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Data from several inflammation/autoimmunity models indicate that GM-CSF can be a key inflammatory mediator. Convenient models in readily accessible tissues are needed to enable the GM-CSF-dependent cellular responses to be elaborated. In this study, we show that, in contrast to the response to the commonly used i.p. irritant, thioglycolate medium, an Ag-specific methylated BSA-induced peritonitis in GM-CSF(-/-) mice was severely compromised. The reduced response in the latter peritonitis model was characterized by fewer neutrophils and macrophages, as well as by deficiencies in the properties of the remaining macrophages, namely size and granularity, phagocytosis, allogeneic T cell triggering, and proinflammatory cytokine production. B1 lymphocytes were more evident in the GM-CSF(-/-) Ag-specific exudates, indicating perhaps that GM-CSF can act on a common macrophage-B1 lymphocyte precursor in the inflamed peritoneum. We propose that these findings contribute to our understanding of how GM-CSF acts as a proinflammatory cytokine in many chronic inflammatory/autoimmune diseases. Of general significance, the findings also indicate that the nature of the stimulus is quite critical in determining whether a particular inflammatory mediator, such as GM-CSF, plays a role in an ensuing inflammatory reaction.
Collapse
MESH Headings
- Animals
- Ascitic Fluid/genetics
- Ascitic Fluid/immunology
- Ascitic Fluid/pathology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/pathology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Lineage/genetics
- Cell Lineage/immunology
- Cytokines/biosynthesis
- Dose-Response Relationship, Immunologic
- Eosinophils/immunology
- Eosinophils/pathology
- Epitopes/administration & dosage
- Epitopes/immunology
- Flow Cytometry
- Granulocyte-Macrophage Colony-Stimulating Factor/deficiency
- Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Granulocyte-Macrophage Colony-Stimulating Factor/physiology
- Histocompatibility Antigens Class II/biosynthesis
- Immunophenotyping
- Inflammation Mediators/physiology
- Injections, Intraperitoneal
- Injections, Subcutaneous
- Integrins/biosynthesis
- Lymphocyte Activation/genetics
- Lymphocyte Culture Test, Mixed
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Peritonitis/genetics
- Peritonitis/immunology
- Peritonitis/pathology
- Phagocytosis/genetics
- Phagocytosis/immunology
- Serum Albumin, Bovine/administration & dosage
- Serum Albumin, Bovine/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- Thioglycolates/administration & dosage
Collapse
Affiliation(s)
- Andrew D Cook
- Arthritis and Inflammation Research Centre, Department of Medicine, Royal Melbourne Hospital, and Cooperative Research Centre for Chronic Inflammatory Diseases, University of Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
39
|
Lanvin O, Gouilleux F, Mullié C, Mazière C, Fuentes V, Bissac E, Dantin F, Mazière JC, Régnier A, Lassoued K, Gouilleux-Gruart V. Interleukin-7 induces apoptosis of 697 pre-B cells expressing dominant-negative forms of STAT5: evidence for caspase-dependent and -independent mechanisms. Oncogene 2004; 23:3040-7. [PMID: 15048088 DOI: 10.1038/sj.onc.1207450] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The transcription factors STAT5A and STAT5B (STAT: signal transducer and activator of transcription) play a major role in the signaling events elicited by a number of growth factor and cytokine receptors. In this work, we aimed to investigate the role of STAT5 in human precursor B cell survival by introducing dominant-negative (DN) forms of STAT5A or STAT5B in the 697 pre-B cell line. All clones expressing DN forms of either transcription factor exhibited a higher spontaneous apoptotic rate that was massively enhanced upon interleukin-7 (IL-7) stimulation. This was associated with caspase 8 cleavage, mitochondrial transmembrane potential disruption and caspase 3 activation. However, the DN forms of STAT5 did not alter the expression of Bcl-2, Bax, Bcl-x, Bim, A1 and Mcl1 proteins in IL-7-stimulated cells. The pancaspase inhibitor Z-Val-Ala-Asp-fluoromylmethyl ketone partially suppressed IL-7-mediated mitochondrial transmembrane potential disruption and cell death, suggesting that IL-7 induced the death of DN STAT5 expressing 697 cells through caspase-dependent and -independent mechanisms that both require mitochondrial activation.
Collapse
Affiliation(s)
- Olivia Lanvin
- Laboratoire d'Immunologie, INSERM, EMI 0351, 3 rue des Louvels, 80036 Amiens, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Erythropoiesis is a complex multistep process encompassing the differentiation of hemopoietic stem cells to mature erythrocytes. The steps involved in this complex differentiation process are numerous and involve first the differentiation to early erythoid progenitors (burst-forming units-erythroid, BFU-E), then to late erythroid progenitors (colony-forming units-erythroid) and finally to morphologically recognizable erythroid precursors. A key event of late stages of erythropoiesis is nuclear condensation, followed by extrusion of the nucleus to produce enucleated reticulocytes and finally mature erythrocytes. During the differentiation process, the cells became progressively sensitive to erythropoietin that controls both the survival and proliferation of erythroid cells. A normal homeostasis of the erythropoietic system requires an appropriate balance between the rate of erythroid cell production and red blood cell destruction. Growing evidences outlined in the present review indicate that apoptotic mechanism play a relevant role in the control of erythropoiesis under physiologic and pathologic conditions. Withdrawal of erythropoietin or stimulation of death receptors such as Fas or TRAIL-Rs leads to activation of a subset of caspase-3, -7 and -8, which then cleave the transcription factors GATA-1 and TAL-1 and trigger apoptosis. In addition, there is evidence that a number of caspases are physiologically activated during erythroid differentiation and are functionally required for erythroid maturation. Several caspase substrates are cleaved in differentiating cells, including the protein acinus whose activation by cleavage is required for chromatin condensation. The studies on normal erythropoiesis have clearly indicated that immature erythroid precursors are sensitive to apoptotic triggering mediated by activation of the intrinsic and extrinsic apoptotic pathways. These apoptotic mechanisms are frequently exacerbated in some pathologic conditions, associated with the development of anemia (ie, thalassemias, multiple myeloma, myelodysplasia, aplastic anemia). The considerable progress in our understanding of the apoptotic mechanisms underlying normal and pathologic erythropoiesis may offer the way to improve the treatment of several pathologic conditions associated with the development of anemia.
Collapse
Affiliation(s)
- U Testa
- Department of Hematology and Oncology, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
41
|
Snow JW, Abraham N, Ma MC, Herndier BG, Pastuszak AW, Goldsmith MA. Loss of tolerance and autoimmunity affecting multiple organs in STAT5A/5B-deficient mice. THE JOURNAL OF IMMUNOLOGY 2004; 171:5042-50. [PMID: 14607901 DOI: 10.4049/jimmunol.171.10.5042] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
STAT5 has previously been reported to be dispensable for the maintenance of tolerance in vivo. However, in examining hemopoiesis in mice lacking both isoforms of STAT5, STAT5A, and STAT5B, we noted that a subset of these mice demonstrated dramatic alterations in several bone marrow progenitor populations concomitant with lymphocytic infiltration of the bone marrow. In addition, cellular infiltration affecting the colon, liver, and kidney was observed in these mice. Survival analysis revealed that STAT5A/5B(-/-) mice exhibited early death. The increased mortality and the pathology affecting multiple organs observed in these mice were abrogated on the recombination-activating gene 1(-/-) background. In light of the similarities between STAT5A/5B-deficient mice and mice unable to signal through the IL-2R, we hypothesized that the tolerizing role of STAT5A/5B was triggered via activation of the IL-2R. In agreement with this, we found that IL-2Rbeta chain-deficient mice exhibited similar hemopoietic abnormalities. Because IL-2 signaling is thought to contribute to tolerance through maintenance of a CD4(+)CD25(+) regulatory T cell population, we examined these cells and observed a numerical reduction in STAT5A/5B(-/-) mice along with a higher rate of apoptosis. These data provide strong evidence for a requirement for STAT5 in the maintenance of tolerance in vivo.
Collapse
Affiliation(s)
- Jonathan W Snow
- Gladstone Institute of Virology and Immunology, and Department of Microbiology and Immunology, University of California, San Francisco, CA 94114, USA
| | | | | | | | | | | |
Collapse
|
42
|
Pestina TI, Jackson CW. Differential role of Stat5 isoforms in effecting hematopoietic recovery induced by Mpl-ligand in lethally myelosuppressed mice. Exp Hematol 2004; 31:1198-205. [PMID: 14662325 DOI: 10.1016/j.exphem.2003.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine the role of the c-terminal half of c-Mpl in Mpl-L-induced myeloprotection and the importance of Stat5 isoforms in the survival signaling pathways induced by Mpl ligand. MATERIALS AND METHODS Delta60-Mpl knockin mice, Stat5a(-/-)/b(-/-), Stat5a(-/-), and Stat5b(-/-) mice and wild-type (WT) controls were given a lethal myelosuppressive regimen: 80 mg/kg carboplatin intravenously followed by 7.5 or 6.5 Gy 137Cs total-body irradiation. A single dose of PEG-rmMGDF (65 microg/kg) was intravenously injected immediately after myelosuppression. Mice survival and blood counts were monitored for 22 days posttreatment. RESULTS Knockin Delta60-Mpl mice lacking the c-terminal half of the intracellular domain of c-Mpl show reduced ability of Mpl-L to prevent lethal myelosuppression and an impaired thrombopoietic response to exogenous c-Mpl ligand. The survival of Mpl-L-treated Stat5a(-/-)/b(-/-) mice exposed to the lethal myelosuppressive regimen was substantially compromised compared to that of WT mice. Reduced survival of Stat5a(-/-)/b(-/-) mice was due to more severe hematopoietic suppression. Deletion of Stat5a did not result in a defect in hematopoietic recovery. In contrast, Mpl-L-treated Stat5b-deficient mice demonstrated significantly delayed hematopoietic recovery compared to WT controls. CONCLUSIONS Myeloprotective signaling transduced by the terminal 60 amino acids of the intracellular domain of c-Mpl is essential for complete protection from lethal myelosuppression provided by Mpl-L. Our studies differentiate the functions of Stat5 isoforms in hematopoietic stress and reveal a pivotal role of Stat5b in Mpl-L-induced hematopoietic recovery in this lethal myelosuppression model.
Collapse
Affiliation(s)
- Tamara I Pestina
- Division of Experimental Hematology, Department of Hematology-Oncology, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105-2794, USA.
| | | |
Collapse
|
43
|
Magné S, Caron S, Charon M, Rouyez MC, Dusanter-Fourt I. STAT5 and Oct-1 form a stable complex that modulates cyclin D1 expression. Mol Cell Biol 2004; 23:8934-45. [PMID: 14645506 PMCID: PMC309603 DOI: 10.1128/mcb.23.24.8934-8945.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Signal transducer and activator of transcription 5 (STAT5) is activated by numerous cytokines that control blood cell development. STAT5 was also shown to actively participate in leukemogenesis. Among the target genes involved in cell growth, STAT5 had been shown to activate cyclin D1 gene expression. We now show that thrombopoietin-dependent activation of the cyclin D1 promoter depends on the integrity of a new bipartite proximal element that specifically binds STAT5A and -B transcription factors. We demonstrate that the stable recruitment of STAT5 to this element in vitro requires the integrity of an adjacent octamer element that constitutively binds the ubiquitous POU homeodomain protein Oct-1. We observe that cytokine-activated STAT5 and Oct-1 form a unique complex with the cyclin D1 promoter sequence. We find that STAT5 interacts with Oct-1 in vivo, following activation by different cytokines in various cellular contexts. This interaction involves a small motif in the carboxy-terminal region of STAT5 which, remarkably, is similar to an Oct-1 POU-interacting motif present in two well-known partners of Oct-1, namely, OBF-1/Bob and SNAP190. Our data offer new insights into the transcriptional regulation of the key cell cycle regulator cyclin D1 and emphasize the active roles of both STAT5 and Oct-1 in this process.
Collapse
Affiliation(s)
- Sophie Magné
- Department of Hematology, Institut Cochin, INSERM U567, CNRS UMR 8104, Université René Descartes, 123 Boulevard Port-Royal, 75014 Paris, France
| | | | | | | | | |
Collapse
|
44
|
Behbod F, Nagy ZS, Stepkowski SM, Karras J, Johnson CR, Jarvis WD, Kirken RA. Specific inhibition of Stat5a/b promotes apoptosis of IL-2-responsive primary and tumor-derived lymphoid cells. THE JOURNAL OF IMMUNOLOGY 2004; 171:3919-27. [PMID: 14530308 DOI: 10.4049/jimmunol.171.8.3919] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stat5a/b exhibits 96% homology and are required for normal immune function. The present studies examined Stat5a/b function in lymphoid cells by specific and simultaneous disruption of both proteins using novel phosphorothioate-2'-O-methoxyethyl antisense oligodeoxynucleotides (asODN). Efficient delivery was confirmed by the presence of fluorescent TAMRA-labeled ODN in >or=55 and 95% in human primary and tumor cell lines, respectively. Acute asODN administration reduced levels of Stat5a (90%) in 6 h, whereas Stat5b required nearly 48 h to attain the same inhibition, suggesting that the apparent turnover rate for Stat5a was 8-fold higher than that for Stat5b. Expression of the closely related Stat3 protein was unchanged after asODN treatment, however. Molecular ablation of Stat5a/b promoted apoptotic cell death in a significant population of primary PHA-activated T cells (72%) and lymphoid tumor cell line (e.g., YT; 74%) within 24 h, as assessed by 1) visualization of karyolytic nuclear degeneration and other generalized cytoarchitectural alterations, 2) enzymatic detection of TdT-positive DNA degradation, and 3) automated cytometric detection of annexin V translocation. Contrary to findings from Stat5a/b-null mice, cell cycle progression did not appear to be significantly affected. Interestingly, IL-2-insensitive and unprimed T cells and Jurkat cells remained mostly unaffected. Finally, evidence is provided that the cytotoxicity associated with Stat5a/b ablation may derive from activation of caspase-8, an initiator protease that contributes to apoptotic cell commitment. We propose that in lymphoid cells competent to activate Stat5a and Stat5b, both proteins preferentially mediate an antiapoptotic survival influence.
Collapse
Affiliation(s)
- Fariba Behbod
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Snow JW, Abraham N, Ma MC, Bronson SK, Goldsmith MA. Transgenic bcl-2 is not sufficient to rescue all hematolymphoid defects in STAT5A/5B-deficient mice. Exp Hematol 2003; 31:1253-8. [PMID: 14662332 DOI: 10.1016/j.exphem.2003.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Cytokines bind high-affinity receptors expressed on hematopoietic cells to initiate signaling cascades that regulate differentiation, proliferation, and survival. Previous studies have established a role for STAT5 in transducing survival signals for hematopoietic progenitor cells in response to cytokines. MATERIALS AND METHODS To determine if constitutive expression of a member of the bcl-2 family of anti-apoptotic proteins could compensate for the loss of STAT5, we utilized combinatorial genetics to generate STAT5A/5B-deficient mice expressing a bcl-2 transgene. RESULTS Although bcl-2 expression restored peripheral blood counts to normal in STAT5A/5B(-/-) mice, we noted a striking failure of this transgene to correct defects in hematopoietic stem and progenitor cells. CONCLUSION These data imply important effects of STAT5 in modulating hematopoietic cells in addition to promoting survival per se.
Collapse
Affiliation(s)
- Jonathan W Snow
- Gladstone Institute of Virology and Immunology, Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94141-9100, USA
| | | | | | | | | |
Collapse
|
46
|
Snow JW, Abraham N, Ma MC, Goldsmith MA. Bone marrow transplant completely rescues hematolymphoid defects in STAT5A/5B-deficient mice. Exp Hematol 2003; 31:1247-52. [PMID: 14662331 DOI: 10.1016/j.exphem.2003.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE STAT5A/5B-deficient mice are recognized to manifest defects in multiple cell types and tissues. In particular, the hematopoietic defects in these mice are widespread, affecting multiple lineages and multiple stages of development. Previous studies indicate that deficiencies intrinsic to hematopoietic cells contribute substantially to the observed defects. However, in light of the broad physiologic effects of STAT5 in the context of the organism outside the blood system, we wished to investigate the possibility of STAT5-dependent environmental influence of nonhematopoietic origin on hematopoietic development in these mice. MATERIALS AND METHODS We transplanted wild-type bone marrow into STAT5A/5B-deficient mice to determine the effects of loss of STAT5 in nonhematopoietic tissue on hematopoietic development. RESULTS We observed that transplantation of wild-type marrow completely corrects hematopoietic defects in STAT5A/5B-deficient recipient mice, including peripheral blood counts, bone marrow cellularity, and reductions in specific progenitor subsets. CONCLUSION These results indicate that the important role of STAT5 in hematolymphoid development are mediated directly through effects on hematopoietic cells and not indirectly.
Collapse
Affiliation(s)
- Jonathan W Snow
- Gladstone Institute of Virology and Immunology, Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94141-9100, USA
| | | | | | | |
Collapse
|
47
|
Mikula M, Gotzmann J, Fischer ANM, Wolschek MF, Thallinger C, Schulte-Hermann R, Beug H, Mikulits W. The proto-oncoprotein c-Fos negatively regulates hepatocellular tumorigenesis. Oncogene 2003; 22:6725-38. [PMID: 14555986 DOI: 10.1038/sj.onc.1206781] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hepatocytes adopt an invasive and metastatic phenotype caused by the cooperation of transforming growth factor (TGF)-beta and oncogenic Ha-Ras. In the initial phase of this process, c-Fos is rapidly induced by TGF-beta, but then decreases to undetectable levels. Here, we investigated the functional implications of c-Fos activation and its contribution to hepatocellular tumorigenesis. By employing conditional c-Fos expression, we observed that continuous activation of c-Fos and consequently AP-1 activity leads to depolarization of differentiated murine epithelial hepatocytes. Most remarkably, this change in morphology was associated with inhibition of proliferation and induction of cell death. Coexpression of antiapoptotic Bcl-XL or scavenging of reactive oxygen species was sufficient to prevent the c-Fos-mediated phenotype. In contrast, the cooperation of c-Fos with oncogenic Ha-Ras or a Ras mutant selectively activating the MAPK pathway even enhanced c-Fos-induced effects. Showing the negative role in hepatocellular tumorigenesis, c-Fos repressed oncogenic Ras-driven anchorage-independent growth in vitro and strongly suppressed tumour formation in vivo. Taken together, we demonstrate that c-Fos modulates plasticity of epithelial hepatocytes and acts tumour suppressive in neoplastic hepatocytes by stimulating cell cycle inhibition and cell death.
Collapse
Affiliation(s)
- Mario Mikula
- Institute of Cancer Research, University of Vienna, Borschke-Gasse 8a, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ren R. The molecular mechanism of chronic myelogenous leukemia and its therapeutic implications: studies in a murine model. Oncogene 2002; 21:8629-42. [PMID: 12476309 DOI: 10.1038/sj.onc.1206090] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chronic myelogenous leukemia (CML) is a malignant disease resulting from the neoplastic transformation of a hematopoietic stem cell. Generation of the BCR-ABL fusion gene plays an essential role in causing the vast majority of CML. Clinical and laboratory studies have indicated that development of CML involves both the effects of BCR-ABL within its correct target cells and interactions of BCR-ABL target cells with the rest of the in vivo environment, and that the progression of the disease to blast crisis involves multiple genetic alterations. An efficient mouse bone marrow transduction and transplantation model for CML has recently been developed. This review summarizes the analysis of the roles of functional domains and downstream signaling pathways of BCR-ABL, of altered cytokine production, of interferon signaling pathways and of oncogene cooperation in the pathogenesis of CML using this murine model. The in vivo studies of leukemogenesis will help to advance mechanism-based therapies for CML, as well as to understand fundamental rules of leukemogenesis and hematopoiesis.
Collapse
Affiliation(s)
- Ruibao Ren
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| |
Collapse
|
49
|
Wurster AL, Rodgers VL, White MF, Rothstein TL, Grusby MJ. Interleukin-4-mediated protection of primary B cells from apoptosis through Stat6-dependent up-regulation of Bcl-xL. J Biol Chem 2002; 277:27169-75. [PMID: 12023955 DOI: 10.1074/jbc.m201207200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptosis is an integral aspect of B lymphocyte development and homeostasis and is regulated by the engagement of antigen costimulatory and cytokine receptors. Although it is well established that interleukin 4 (IL-4) is a potent anti-apoptotic cytokine for B lymphocytes, little is known about the IL-4-induced molecular events regulating cell survival. Stat6 is rapidly activated after IL-4 stimulation, but its role in B lymphocyte apoptosis has not been explored. In this report we demonstrate that Stat6 is a critical signaling molecule for IL-4 in protecting primary B cells from passive and Fas-induced cell death. We show that expression of the Bcl-2 family member, Bcl-xL, is induced maximally by IL-4 and anti-IgM/IL-4 in a Stat6-dependent manner. Additionally, we demonstrate that bcl-xL transcription is likely to be directly activated through a Stat6 binding site in the bcl-xL-flanking region. Finally, reconstitution of Stat6-deficient splenic B cells with Bcl-xL was able to protect those cells from Fas-induced cell death. These results suggest that the anti-apoptotic activity of IL-4 in B cells is mediated through the activation of Stat6 and subsequent transcription of Bcl-xL.
Collapse
Affiliation(s)
- Andrea L Wurster
- Department of Immunology and Infectious Diseases, School of Public Health, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
50
|
Ren S, Cai HR, Li M, Furth PA. Loss of Stat5a delays mammary cancer progression in a mouse model. Oncogene 2002; 21:4335-9. [PMID: 12082622 DOI: 10.1038/sj.onc.1205484] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2002] [Revised: 02/28/2002] [Accepted: 03/18/2002] [Indexed: 01/05/2023]
Abstract
A genetic study was conducted to determine if activated Stat5a contributes to mammary carcinogenesis and to evaluate the mechanism. Similar to human breast cancers, a proportion of mammary adenocarcinomas in the WAP-TAg transgenic mouse model demonstrate constitutive Stat5a/b and Stat3 activation. Stat5a activation is linked to mammary epithelial cell survival and differentiation, and proliferation in hematopoetic cell lineages. Breeding WAP-TAg mice to mice carrying germ-line deletions of the Stat5a gene generated mice with reduced levels of Stat5a. Hemizygous loss of the Stat5a allele significantly reduced levels of Stat5a expression without altering mammary gland development or transgene expression levels. In comparison to mice carrying two wild-type Stat5a alleles, hemizygous loss of the Stat5a allele reduced the number of mice with palpable tumors at 7 months of age (67% from 100%, P<0.05), resulted in smaller tumors at 7 months of age (3.8 cm3 from 7.6 cm3, P=0.003), delayed first tumor appearance (208 days from 188 days, P=0.01), and increased the apoptotic index in the adenocarcinomas (4.3+/-0.3 from 1.2+/-0.2, P=0.016). Neither cell proliferation nor differentiation in the cancers was altered. Decreasing Stat5a activation levels could be a therapeutic approach for reducing survival of breast cancer cells.
Collapse
Affiliation(s)
- Shuxun Ren
- Lombardi Cancer Center, Department of Oncology, Georgetown University, Washington, DC 20007, USA
| | | | | | | |
Collapse
|