1
|
Rizos I, Romac S, Juery C, Berthelier C, Decelle J, Bernardes J, Corre E, Bittner L, Not F. Transcriptomic analyses reveal sexual cues in reproductive life stages of uncultivated Acantharia (Radiolaria). Protist 2025; 177:126102. [PMID: 40347573 DOI: 10.1016/j.protis.2025.126102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 03/19/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025]
Abstract
The ability to reproduce is a key process for the perpetuation of organisms. Along the evolution of protist reproductive strategies, the molecular machinery of sexual recombination is estimated to have been inherited from the last eukaryotic common ancestor (LECA). Unraveling the sexual cycles of free-living protists remains challenging, given the enigmatic roles of many uncultivated life stages. For the planktonic group of Acantharia (Radiolaria), a hypothetical sexual cycle has been proposed since the late 19th century, including a gamete-like stage, referred to as swarmers. In order to investigate the sexual nature of acantharian reproductive stages, we compared transcriptomes of various acantharian life stages. Our results show distinct functional profiles for reproductive and vegetative stages, while revealing the expression of the gamete fusion genes, HAP2/GCS1 and KAR5-GEX1-BMB in swarmers. Annotation of differentially expressed life stage-specific genes, also highlighted putative meiosis-related functions among pre-swarmer and swarmer stages, while suggesting the existence of a putative zygotic stage. This original life stage-specific genetic data is coherent with morphological evidence supporting the acantharian sexual cycle, with swarmers acting as gametes. Moreover, it paves the way for a deeper understanding of radiolarian cell biology and ecology at a single-cell scale.
Collapse
Affiliation(s)
- Iris Rizos
- Sorbonne Université, CNRS, AD2M-UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France; Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.
| | - Sarah Romac
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Caroline Juery
- Cell & Plant Physiology Laboratory, UMR 5168 CEA-CNRS-Univ. Grenoble Alpes - UMR1417 INRAE, Grenoble, France
| | - Charlotte Berthelier
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Johan Decelle
- Cell & Plant Physiology Laboratory, UMR 5168 CEA-CNRS-Univ. Grenoble Alpes - UMR1417 INRAE, Grenoble, France
| | - Juliana Bernardes
- Sorbonne Université, CNRS, AD2M-UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Lucie Bittner
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France; Institut Universitaire de France, Paris, France
| | - Fabrice Not
- Sorbonne Université, CNRS, AD2M-UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France
| |
Collapse
|
2
|
Rizos I, Frada MJ, Bittner L, Not F. Life cycle strategies in free-living unicellular eukaryotes: Diversity, evolution, and current molecular tools to unravel the private life of microorganisms. J Eukaryot Microbiol 2024; 71:e13052. [PMID: 39085163 PMCID: PMC11603280 DOI: 10.1111/jeu.13052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
An astonishing range of morphologies and life strategies has arisen across the vast diversity of protists, allowing them to thrive in most environments. In model protists, like Tetrahymena, Dictyostelium, or Trypanosoma, life cycles involving multiple life stages with different morphologies have been well characterized. In contrast, knowledge of the life cycles of free-living protists, which primarily consist of uncultivated environmental lineages, remains largely fragmentary. Various life stages and lineage-specific cellular innovations have been observed in the field for uncultivated protists, but such innovations generally lack functional characterization and have unknown physiological and ecological roles. In the actual state of knowledge, evidence of sexual processes is confirmed for 20% of free-living protist lineages. Nevertheless, at the onset of eukaryotic diversification, common molecular trends emerged to promote genetic recombination, establishing sex as an inherent feature of protists. Here, we review protist life cycles from the viewpoint of life cycle transitions and genetics across major eukaryotic lineages. We focus on the scarcely observed sexual cycle of free-living protists, summarizing evidence for its existence and describing key genes governing its progression, as well as, current methods for studying the genetics of sexual cycles in both cultivable and uncultivated protist groups.
Collapse
Affiliation(s)
- Iris Rizos
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHEUniversité Des AntillesParisFrance
- CNRS, AD2M‐UMR7144 Station Biologique de RoscoffSorbonne UniversitéRoscoffFrance
| | - Miguel J. Frada
- Department of Ecology, Evolution and Behavior, Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Interuniversity Institute for Marine Sciences in EilatEilatIsrael
| | - Lucie Bittner
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHEUniversité Des AntillesParisFrance
- Institut Universitaire de FranceParisFrance
| | - Fabrice Not
- CNRS, AD2M‐UMR7144 Station Biologique de RoscoffSorbonne UniversitéRoscoffFrance
| |
Collapse
|
3
|
Li T, Zhu S, Li Y, Yao J, Wang C, Fang S, Pan J, Chen W, Zhang Y. Characteristic of GEX1 genes reveals the essential roles for reproduction in cotton. Int J Biol Macromol 2023; 253:127645. [PMID: 37879575 DOI: 10.1016/j.ijbiomac.2023.127645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/30/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
GEX1 (gamete expressed 1) proteins are critical membrane proteins conserved among flowering plants that are involved in the nuclear fusion and embryonic development. Herein, we identified the 32 GEX1 proteins from representative land plants. In cotton, GEX1 genes expressed in various tissues across all stages of the life cycle, especially in pollen. Subcellular localization indicated the position of GhGEX1 protein was localized in the endoplasmic reticulum. Experimental research has demonstrated that GhGEX1 has the potential to improve the partial abortion phenotype in Arabidopsis. CRISPR/Cas9-mediated knockout of GhGEX1 exhibited the seed abortion. Paraffin section of the ovule revealed that the polar nuclear fusion of ghgex1 plants remains at a standstill when the wild type has developed into a normal embryo. Comparative transcriptome analysis showed that the DEGs of reproductive-related processes and membrane-related processes were repressed in the pollen of knockout lines. The predicted protein interactions showed that GhGEX1 probably functioned through interactions with proteins related to reproduction and membrane. From all these investigations, it was possible to conclude that the GEX1 proteins are evolutionarily conserved in flowering plants and elucidated the pivotal roles during fertilization and early embryonic development in cotton.
Collapse
Affiliation(s)
- Tengyu Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shouhong Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Yan Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Jinbo Yao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Chenlei Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Shengtao Fang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Jingwen Pan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Wei Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China.
| | - Yongshan Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China.
| |
Collapse
|
4
|
Kobayashi N, Nishikawa SI. Nuclear Fusion in Yeast and Plant Reproduction. PLANTS (BASEL, SWITZERLAND) 2023; 12:3608. [PMID: 37896071 PMCID: PMC10609895 DOI: 10.3390/plants12203608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Nuclear fusion is essential for the sexual reproduction of various organisms, including plants, animals, and fungi. During the life cycle of flowering plants, nuclear fusion occurs three times: once during female gametogenesis and twice during double fertilization, when two sperm cells fertilize the egg and the central cell. Haploid nuclei migrate in an actin filament-dependent manner to become in close contact and, then, two nuclei fuse. The nuclear fusion process in plant reproduction is achieved through sequential nuclear membrane fusion events. Recent molecular genetic analyses using Arabidopsis thaliana showed the conservation of nuclear membrane fusion machinery between plants and the budding yeast Saccharomyces cerevisiae. These include the heat-shock protein 70 in the endoplasmic reticulum and the conserved nuclear membrane proteins. Analyses of the A. thaliana mutants of these components show that the completion of the sperm nuclear fusion at fertilization is essential for proper embryo and endosperm development.
Collapse
Affiliation(s)
- Nanami Kobayashi
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | | |
Collapse
|
5
|
Kaneko I, Nishi T, Iwanaga S, Yuda M. Differentiation of Plasmodium male gametocytes is initiated by the recruitment of a chromatin remodeler to a male-specific cis-element. Proc Natl Acad Sci U S A 2023; 120:e2303432120. [PMID: 37155862 PMCID: PMC10193995 DOI: 10.1073/pnas.2303432120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 05/10/2023] Open
Abstract
Plasmodium parasites, the causative agents of malaria, possess a complex lifecycle; however, the mechanisms of gene regulation involved in the cell-type changes remain unknown. Here, we report that gametocyte sucrose nonfermentable 2 (gSNF2), an SNF2-like chromatin remodeling ATPase, plays an essential role in the differentiation of male gametocytes. Upon disruption of gSNF2, male gametocytes lost the capacity to develop into gametes. ChIP-seq analyses revealed that gSNF2 is widely recruited upstream of male-specific genes through a five-base, male-specific cis-acting element. In gSNF2-disrupted parasites, expression of over a hundred target genes was significantly decreased. ATAC-seq analysis demonstrated that decreased expression of these genes correlated with a decrease of the nucleosome-free region upstream of these genes. These results suggest that global changes induced in the chromatin landscape by gSNF2 are the initial step in male differentiation from early gametocytes. This study provides the possibility that chromatin remodeling is responsible for cell-type changes in the Plasmodium lifecycle.
Collapse
Affiliation(s)
- Izumi Kaneko
- Department of Medical Zoology, Mie University School of Medicine, Mie, Tsu514-8507, Japan
| | - Tsubasa Nishi
- Department of Medical Zoology, Mie University School of Medicine, Mie, Tsu514-8507, Japan
| | - Shiroh Iwanaga
- Department of Molecular Protozoology, Research Center for Infectious Disease Control, Suita, Osaka565-0871, Japan
| | - Masao Yuda
- Department of Medical Zoology, Mie University School of Medicine, Mie, Tsu514-8507, Japan
| |
Collapse
|
6
|
Craig RJ, Gallaher SD, Shu S, Salomé PA, Jenkins JW, Blaby-Haas CE, Purvine SO, O’Donnell S, Barry K, Grimwood J, Strenkert D, Kropat J, Daum C, Yoshinaga Y, Goodstein DM, Vallon O, Schmutz J, Merchant SS. The Chlamydomonas Genome Project, version 6: Reference assemblies for mating-type plus and minus strains reveal extensive structural mutation in the laboratory. THE PLANT CELL 2023; 35:644-672. [PMID: 36562730 PMCID: PMC9940879 DOI: 10.1093/plcell/koac347] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 10/12/2022] [Accepted: 12/16/2022] [Indexed: 05/20/2023]
Abstract
Five versions of the Chlamydomonas reinhardtii reference genome have been produced over the last two decades. Here we present version 6, bringing significant advances in assembly quality and structural annotations. PacBio-based chromosome-level assemblies for two laboratory strains, CC-503 and CC-4532, provide resources for the plus and minus mating-type alleles. We corrected major misassemblies in previous versions and validated our assemblies via linkage analyses. Contiguity increased over ten-fold and >80% of filled gaps are within genes. We used Iso-Seq and deep RNA-seq datasets to improve structural annotations, and updated gene symbols and textual annotation of functionally characterized genes via extensive manual curation. We discovered that the cell wall-less classical reference strain CC-503 exhibits genomic instability potentially caused by deletion of the helicase RECQ3, with major structural mutations identified that affect >100 genes. We therefore present the CC-4532 assembly as the primary reference, although this strain also carries unique structural mutations and is experiencing rapid proliferation of a Gypsy retrotransposon. We expect all laboratory strains to harbor gene-disrupting mutations, which should be considered when interpreting and comparing experimental results. Collectively, the resources presented here herald a new era of Chlamydomonas genomics and will provide the foundation for continued research in this important reference organism.
Collapse
Affiliation(s)
- Rory J Craig
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sean D Gallaher
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
| | - Shengqiang Shu
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
| | - Patrice A Salomé
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, USA
| | - Jerry W Jenkins
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Crysten E Blaby-Haas
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Samuel O’Donnell
- Laboratory of Computational and Quantitative Biology, UMR 7238, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, Paris 75005, France
| | - Kerrie Barry
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
| | - Jane Grimwood
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Daniela Strenkert
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
| | - Janette Kropat
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Chris Daum
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
| | - Yuko Yoshinaga
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
| | - David M Goodstein
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
| | - Olivier Vallon
- Unité Mixte de Recherche 7141, CNRS, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris 75005, France
| | - Jeremy Schmutz
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Sabeeha S Merchant
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
7
|
DMP8 and 9 regulate HAP2/GCS1 trafficking for the timely acquisition of sperm fusion competence. Proc Natl Acad Sci U S A 2022; 119:e2207608119. [PMID: 36322734 PMCID: PMC9659367 DOI: 10.1073/pnas.2207608119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sexual reproduction involves the fusion of two gametes of opposite sex. Although the sperm-expressed fusogen HAPLESS 2 (HAP2) or GENERATIVE CELL SPECIFIC 1 (GCS1) plays a vital role in this process in many eukaryotic organisms and an understanding of its regulation is emerging in unicellular systems [J. Zhang et al., Nat. Commun. 12, 4380 (2021); J. F. Pinello et al. Dev. Cell 56, 3380-3392.e9 (2021)], neither HAP2/GCS1 interactors nor mechanisms for delivery and activation at the fusion site are known in multicellular plants. Here, we show that Arabidopsis thaliana HAP2/GCS1 interacts with two sperm DUF679 membrane proteins (DMP8 and DMP9), which are required for the EGG CELL 1 (EC1)-induced translocation of HAP2/GCS1 from internal storage vesicle to the sperm plasma membrane to ensure successful fertilization. Our studies in Arabidopsis and tobacco provide evidence for a conserved function of DMP8/9-like proteins as HAP2/GCS1 partner in seed plants. Our data suggest that seed plants evolved a DMP8/9-dependent fusogen translocation process to achieve timely acquisition of sperm fusion competence in response to egg cell-derived signals, revealing a previously unknown critical step for successful fertilization.
Collapse
|
8
|
Snell WJ. Uncovering an ancestral green ménage à trois: Contributions of Chlamydomonas to the discovery of a broadly conserved triad of plant fertilization proteins. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102275. [PMID: 36007296 PMCID: PMC9899528 DOI: 10.1016/j.pbi.2022.102275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 05/10/2023]
Abstract
During sexual reproduction in the unicellular green alga Chlamydomonas, gametes undergo the conserved cellular events that define fertilization across the tree of life. After initial ciliary adhesion, plus and minus gametes attach to each other at plasma membrane sites specialized for fusion, their bilayers merge, and cell coalescence into a quadri-ciliated cell signals for nuclear fusion. Recent findings show that these conserved cellular events are driven by 3 conserved protein families, FUS1/GEX2, HAP2/GCS1, and KAR5/GEX1. New results also show that species-specific recognition in Chlamydomonas activates the ancestral, viral-like fusogen HAP2 to drive fusion; that the conserved nuclear envelope fusion protein KAR5/GEX1 is also essential for nuclear fusion in Arabidopsis; and that heterodimerization of BELL-KNOX proteins signals for nuclear fusion in Chlamydomonas through early diverging land plants. This review outlines how Chlamydomonas's Janus-like position in evolution along with the ease of working with its gametes have revealed broadly conserved mechanisms.
Collapse
Affiliation(s)
- William J Snell
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
9
|
Strenkert D, Yildirim A, Yan J, Yoshinaga Y, Pellegrini M, O'Malley RC, Merchant SS, Umen JG. The landscape of Chlamydomonas histone H3 lysine 4 methylation reveals both constant features and dynamic changes during the diurnal cycle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:352-368. [PMID: 35986497 PMCID: PMC9588799 DOI: 10.1111/tpj.15948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 05/29/2023]
Abstract
Chromatin modifications are epigenetic regulatory features with major roles in various cellular events, yet they remain understudied in algae. We interrogated the genome-wide distribution pattern of mono- and trimethylated histone H3 lysine 4 (H3K4) using chromatin-immunoprecipitation followed by deep-sequencing (ChIP-seq) during key phases of the Chlamydomonas cell cycle: early G1 phase, Zeitgeber Time 1 (ZT1), when cells initiate biomass accumulation, S/M phase (ZT13) when cells are replicating DNA and undergoing mitosis, and late G0 phase (ZT23) when they are quiescent. Tri-methylated H3K4 was predominantly enriched at transcription start sites of the majority of protein coding genes (85%). The likelihood of a gene being marked by H3K4me3 correlated with it being transcribed at some point during the life cycle but not necessarily by continuous active transcription, as exemplified by early zygotic genes, which may remain transcriptionally dormant for thousands of generations between sexual cycles. The exceptions to this rule were around 120 loci, some of which encode non-poly-adenylated transcripts, such as small nuclear RNAs and replication-dependent histones that had H3K4me3 peaks only when they were being transcribed. Mono-methylated H3K4 was the default state for the vast majority of histones that were bound outside of transcription start sites and terminator regions of genes. A small fraction of the genome that was depleted of any H3 lysine 4 methylation was enriched for DNA cytosine methylation and the genes within these DNA methylation islands were poorly expressed. Besides marking protein coding genes, H3K4me3 ChIP-seq data served also as a annotation tool for validation of hundreds of long non-coding RNA genes.
Collapse
Affiliation(s)
- Daniela Strenkert
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Asli Yildirim
- Institute of Quantitative and Computational Biosciences, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, 520 Boyer Hall, Los Angeles, CA, 90095, USA
| | - Juying Yan
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuko Yoshinaga
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Matteo Pellegrini
- Institute of Quantitative and Computational Biosciences, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Ronan C O'Malley
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sabeeha S Merchant
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| |
Collapse
|
10
|
Design and development of a self-assembling protein nanoparticle displaying PfHAP2 antigenic determinants recognized by natural acquired antibodies. PLoS One 2022; 17:e0274275. [PMID: 36094917 PMCID: PMC9467374 DOI: 10.1371/journal.pone.0274275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022] Open
Abstract
Backgrounds In order to move towards the elimination and eradication of malaria in the world, the development of vaccines is inevitable. Many modern vaccines are based on recombinant technology; however, they may not provide a fully protective, long-lasting immune response. One of the strategies to improve recombinant vaccines is designing the nanovaccines such as self-assembling protein nanoparticles (SAPNs). Hence, the presentation of epitopes in a repeat array and correct conformation should be considered. P. falciparum generative cell-specific 1 (PfGCS1) is a main transmission-blocking vaccine candidate with two highly conserved fragments, HAP2-GCS1 and cd loop, inducing partial malaria transmission inhibitory antibodies. Therefore, to design an effective malaria vaccine, we used cd loop and HAP2-GCS1 fragments at the amino and carboxy terminuses of the SAPN-forming amino acid sequence, respectively. Methodology/Principal findings The SAPN monomer (PfGCS1-SAPN) sequence was designed, and the three-dimensional (3D) structure was predicted. The result of this prediction ensured the presence of antigens on the SAPN surface. Then the accuracy of the predicted 3D structure and its stability were confirmed by 100 ns molecular dynamics (MD) simulation. The designed SAPN substructure sequence was synthesized, cloned, and expressed in Escherichia coli. With a gradual decrease in urea concentration in dialysis solutions, the purified proteins progressed to the final desired structure of the SAPN, which then was confirmed by Dynamic Light Scattering (DLS) and Field Emission Scanning Electron Microscopy (FESEM) tests. According to the Enzyme-Linked Immunosorbent Assay (ELISA), antigenic determinants were presented on the SAPN surface and interacted with antibodies in the serum of malaria patients. Conclusions/Significance Our results show that the SAPN formed by PfGCS1-SAPN has produced the correct shape and size, and the antigenic determinants are presented on the surface of the SAPN, which indicates that the designed SAPN has great potential to be used in the future as a malaria vaccine.
Collapse
|
11
|
Gualdrón-López M, Díaz-Varela M, Zanghi G, Aparici-Herraiz I, Steel RW, Schäfer C, Cuscó P, Chuenchob V, Kangwangransan N, Billman ZP, Olsen TM, González JR, Roobsoong W, Sattabongkot J, Murphy SC, Mikolajczak SA, Borràs E, Sabidó E, Fernandez-Becerra C, Flannery EL, Kappe SH, del Portillo HA. Mass Spectrometry Identification of Biomarkers in Extracellular Vesicles From Plasmodium vivax Liver Hypnozoite Infections. Mol Cell Proteomics 2022; 21:100406. [PMID: 36030044 PMCID: PMC9520272 DOI: 10.1016/j.mcpro.2022.100406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 01/18/2023] Open
Abstract
Latent liver stages termed hypnozoites cause relapsing Plasmodium vivax malaria infection and represent a major obstacle in the goal of malaria elimination. Hypnozoites are clinically undetectable, and presently, there are no biomarkers of this persistent parasite reservoir in the human liver. Here, we have identified parasite and human proteins associated with extracellular vesicles (EVs) secreted from in vivo infections exclusively containing hypnozoites. We used P. vivax-infected human liver-chimeric (huHEP) FRG KO mice treated with the schizonticidal experimental drug MMV048 as hypnozoite infection model. Immunofluorescence-based quantification of P. vivax liver forms showed that MMV048 removed schizonts from chimeric mice livers. Proteomic analysis of EVs derived from FRG huHEP mice showed that human EV cargo from infected FRG huHEP mice contain inflammation markers associated with active schizont replication and identified 66 P. vivax proteins. To identify hypnozoite-specific proteins associated with EVs, we mined the proteome data from MMV048-treated mice and performed an analysis involving intragroup and intergroup comparisons across all experimental conditions followed by a peptide compatibility analysis with predicted spectra to warrant robust identification. Only one protein fulfilled this stringent top-down selection, a putative filamin domain-containing protein. This study sets the stage to unveil biological features of human liver infections and identify biomarkers of hypnozoite infection associated with EVs.
Collapse
Affiliation(s)
- Melisa Gualdrón-López
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain,IGTP, Institute for Health Sciences Trias I Pujol, Barcelona, Spain
| | - Miriam Díaz-Varela
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain,IGTP, Institute for Health Sciences Trias I Pujol, Barcelona, Spain
| | - Gigliola Zanghi
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Iris Aparici-Herraiz
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain,IGTP, Institute for Health Sciences Trias I Pujol, Barcelona, Spain
| | - Ryan W.J. Steel
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Carola Schäfer
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Pol Cuscó
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - Vorada Chuenchob
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Niwat Kangwangransan
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Zachary P. Billman
- Department of Laboratory Medicine and Pathology, and Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Tayla M. Olsen
- Department of Laboratory Medicine and Pathology, and Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Juan R. González
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - Wanlapa Roobsoong
- MVRU, Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand
| | | | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, and Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Sebastian A. Mikolajczak
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Eva Borràs
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carmen Fernandez-Becerra
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain,IGTP, Institute for Health Sciences Trias I Pujol, Barcelona, Spain
| | - Erika L. Flannery
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Stefan H.I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Hernando A. del Portillo
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain,IGTP, Institute for Health Sciences Trias I Pujol, Barcelona, Spain,ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain,For correspondence: Hernando A. del Portillo
| |
Collapse
|
12
|
Abstract
Cilia are sensory and secretory organelles that both receive information from the environment and transmit signals. Cilia-derived vesicles (ectosomes), formed by outward budding of the ciliary membrane, carry enzymes and other bioactive products; this process represents an ancient mode of regulated secretion. Peptidergic intercellular communication controls a wide range of physiological and behavioral responses and occurs throughout eukaryotes. The Chlamydomonas reinhardtii genome encodes what appear to be numerous prepropeptides and enzymes homologous to those used to convert metazoan prepropeptides into bioactive peptide products. Since C. reinhardtii, a green alga, lack the dense core vesicles in which metazoan peptides are processed and stored, we explored the hypothesis that propeptide processing and secretion occur through the regulated release of ciliary ectosomes. A synthetic peptide (GATI-amide) that could be generated from a 91-kDa peptide precursor (proGATI) serves as a chemotactic modulator, attracting minus gametes while repelling plus gametes. Here we dissect the processing pathway that leads to formation of an amidated peptidergic sexual signal specifically on the ciliary ectosomes of plus gametes. Unlike metazoan propeptides, modeling studies identified stable domains in proGATI. Mass spectrometric analysis of a potential prohormone convertase and the amidated proGATI-derived products found in cilia and mating ectosomes link endoproteolytic cleavage to ectosome entry. Extensive posttranslational modification of proGATI confers stability to its amidated product. Analysis of this pathway affords insight into the evolution of peptidergic signaling; this will facilitate studies of the secretory functions of metazoan cilia.
Collapse
|
13
|
Expression of GEX1 Orthologs of Brassica rapa and Oryza sativa Rescued the Nuclear Fusion Defect of the Arabidopsis GEX1 Mutant. PLANTS 2022; 11:plants11141808. [PMID: 35890442 PMCID: PMC9324357 DOI: 10.3390/plants11141808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022]
Abstract
Nuclear fusion is required for the sexual reproduction of various organisms, including angiosperms. During the life cycle of angiosperms, nuclear fusion occurs three times: once during female gametogenesis, when the two polar nuclei fuse in the central cell, and twice during double fertilization. Nuclear fusion in plant reproduction is achieved by sequential nuclear fusion events: outer and inner nuclear membrane fusion. Arabidopsis gamete expressed 1 (GEX1) is a nuclear membrane protein of gametes that is required for nuclear fusion during reproduction. Although orthologs of GEX1 have been identified in various land plants, sequence identities are not high, even between angiosperm GEX1 orthologs; the sequence identity between Arabidopsis GEX1 and Oryza sativa GEX1 ortholog is lower than 50%. Here, we found that the expression of GEX1 orthologs of O. sativa, as well as of Brassica rapa from the Arabidopsis GEX1 promoter, rescued the polar nuclear fusion defect of the gex1 mutant. We also found that the expression of these GEX1 orthologs rescued the lethality of the gex1 homozygous mutant, which is proposed to be caused by the sperm nuclear fusion defects upon fertilization. Our results indicate a functional conservation between Arabidopsis and O. sativa GEX1 orthologs, despite their relatively low sequence identities.
Collapse
|
14
|
Awasthi M, Ranjan P, Kelterborn S, Hegemann P, Snell WJ. A cytoplasmic protein kinase couples engagement of Chlamydomonas ciliary receptors to cAMP-dependent cellular responses. J Cell Sci 2022; 135:275490. [PMID: 35502650 DOI: 10.1242/jcs.259814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
The primary cilium is a cellular compartment specialized for receipt of extracellular signals essential for development and homeostasis. Although intraciliary responses to engagement of ciliary receptors are well studied, fundamental questions remain about the mechanisms and molecules that transduce ciliary signals into responses in the cytoplasm. During fertilization in the bi-ciliated alga Chlamydomonas reinhardtii, ciliary adhesion between plus and minus gametes triggers an immediate ∼10-fold increase in cellular cAMP and consequent responses in the cytoplasm required for cell-cell fusion. Here, we identify a new participant in ciliary signaling, Gamete-Specific Protein Kinase (GSPK). GSPK is essential for the adhesion-induced cAMP increase and for rapid gamete fusion. The protein is in the cytoplasm and the entire cellular complement responds to a signal from the cilium by becoming phosphorylated within 1 minute after ciliary receptor engagement. Unlike all other cytoplasmic events in ciliary signaling, GSPK phosphorylation is not responsive to exogenously added cAMP. Thus, during ciliary signaling in Chlamydomonas, a cytoplasmic protein is required to rapidly interpret a still uncharacterized ciliary signal to generate a cytoplasmic response.
Collapse
Affiliation(s)
- Mayanka Awasthi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Peeyush Ranjan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Simon Kelterborn
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Institute of Translational Physiology, Berlin, Germany
| | - Peter Hegemann
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - William J Snell
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| |
Collapse
|
15
|
Sakato-Antoku M, King SM. Developmental Changes in Ciliary Composition during Gametogenesis in Chlamydomonas. Mol Biol Cell 2022; 33:br10. [PMID: 35389765 PMCID: PMC9561859 DOI: 10.1091/mbc.e22-02-0033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chlamydomonas reinhardtii transitions from mitotically dividing vegetative cells to sexually competent gametes of two distinct mating types following nutrient deprivation. Gametes of opposite mating type interact via their cilia, initiating an intraciliary signaling cascade and ultimately fuse forming diploid zygotes. The process of gametogenesis is genetically encode, and a previous study revealed numerous significant changes in mRNA abundance during this life-cycle transition. Here we describe a proteomic analysis of cilia derived from vegetative and gametic cells of both mating types in an effort to assess the global changes that occur within the organelle during this process. We identify numerous membrane- and/or matrix-associated proteins in gametic cilia that were not detected in cilia from vegetative cells. This includes the pro-protein from which the GATI-amide gametic chemotactic modulator derives, as well as receptors, a dynamin-related protein, ammonium transporters, two proteins potentially involved in the intraciliary signaling cascade-driven increase in cAMP, and multiple proteins with a variety of interaction domains. These changes in ciliary composition likely directly affect the functional properties of this organelle as the cell transitions between life-cycle stages.
Collapse
Affiliation(s)
- Miho Sakato-Antoku
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030-3305, USA
| | - Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030-3305, USA
| |
Collapse
|
16
|
Plasmodium falciparum Cysteine Rich Secretory Protein uniquely localizes to one end of male gametes. Mol Biochem Parasitol 2022; 248:111447. [PMID: 34998927 PMCID: PMC8904303 DOI: 10.1016/j.molbiopara.2022.111447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/28/2021] [Accepted: 01/02/2022] [Indexed: 11/20/2022]
Abstract
Fertilization is a central event during the life cycle of most eukaryotic organisms and involves gamete recognition and fusion, ultimately resulting in zygote formation. Gamete fertilization in the malaria-causing Plasmodium parasites occurs inside the mosquito midgut and represents a major bottleneck in the life cycle. Cysteine Rich Secretory Proteins (CRISPs) are key molecules involved in fertilization in vertebrates and the presence of a CRISP ortholog in human malaria infective Plasmodium falciparum suggested a possible role in fertilization. Strikingly, P. falciparum CRISP exhibited a unique terminal localization in the male microgamete. Parasites with a CRISP gene deletion (P. falciparum crisp-) proliferated asexually similar to wildtype NF54 parasites and differentiated into gametocytes. Further analysis showed that Plasmodium falciparum crisp- gametocytes underwent exflagellation to form male gametes and no apparent defect in transmission to the mosquito vector was observed. These data show that P. falciparum CRISP is a marker for the apical end of the microgamete and that it might only have an ancillary or redundant function in the male sexual stages.
Collapse
|
17
|
Sanchez-Vera V, Landberg K, Lopez-Obando M, Thelander M, Lagercrantz U, Muñoz-Viana R, Schmidt A, Grossniklaus U, Sundberg E. The Physcomitrium patens egg cell expresses several distinct epigenetic components and utilizes homologues of BONOBO genes for cell specification. THE NEW PHYTOLOGIST 2022; 233:2614-2628. [PMID: 34942024 DOI: 10.1111/nph.17938] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Although land plant germ cells have received much attention, knowledge about their specification is still limited. We thus identified transcripts enriched in egg cells of the bryophyte model species Physcomitrium patens, compared the results with angiosperm egg cells, and selected important candidate genes for functional analysis. We used laser-assisted microdissection to perform a cell-type-specific transcriptome analysis on egg cells for comparison with available expression profiles of vegetative tissues and male reproductive organs. We made reporter lines and knockout mutants of the two BONOBO (PbBNB) genes and studied their role in reproduction. We observed an overlap in gene activity between bryophyte and angiosperm egg cells, but also clear differences. Strikingly, several processes that are male-germline specific in Arabidopsis are active in the P. patens egg cell. Among those were the moss PbBNB genes, which control proliferation and identity of both female and male germlines. Pathways shared between male and female germlines were most likely present in the common ancestors of land plants, besides sex-specifying factors. A set of genes may also be involved in the switches between the diploid and haploid moss generations. Nonangiosperm gene networks also contribute to the specification of the P. patens egg cell.
Collapse
Affiliation(s)
- Victoria Sanchez-Vera
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Katarina Landberg
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Mauricio Lopez-Obando
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Mattias Thelander
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Ulf Lagercrantz
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18 D, Uppsala, SE-752 36, Sweden
| | - Rafael Muñoz-Viana
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Anja Schmidt
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich, CH-8008, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich, CH-8008, Switzerland
| | - Eva Sundberg
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| |
Collapse
|
18
|
Pinello JF, Clark TG. HAP2-Mediated Gamete Fusion: Lessons From the World of Unicellular Eukaryotes. Front Cell Dev Biol 2022; 9:807313. [PMID: 35071241 PMCID: PMC8777248 DOI: 10.3389/fcell.2021.807313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/29/2023] Open
Abstract
Most, if not all the cellular requirements for fertilization and sexual reproduction arose early in evolution and are retained in extant lineages of single-celled organisms including a number of important model organism species. In recent years, work in two such species, the green alga, Chlamydomonas reinhardtii, and the free-living ciliate, Tetrahymena thermophila, have lent important new insights into the role of HAP2/GCS1 as a catalyst for gamete fusion in organisms ranging from protists to flowering plants and insects. Here we summarize the current state of knowledge around how mating types from these algal and ciliate systems recognize, adhere and fuse to one another, current gaps in our understanding of HAP2-mediated gamete fusion, and opportunities for applying what we know in practical terms, especially for the control of protozoan parasites.
Collapse
Affiliation(s)
- Jennifer F. Pinello
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Theodore G. Clark
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
19
|
Rashpa R, Brochet M. Expansion microscopy of Plasmodium gametocytes reveals the molecular architecture of a bipartite microtubule organisation centre coordinating mitosis with axoneme assembly. PLoS Pathog 2022; 18:e1010223. [PMID: 35077503 PMCID: PMC8789139 DOI: 10.1371/journal.ppat.1010223] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Transmission of malaria-causing parasites to mosquitoes relies on the production of gametocyte stages and their development into gametes. These stages display various microtubule cytoskeletons and the architecture of the corresponding microtubule organisation centres (MTOC) remains elusive. Combining ultrastructure expansion microscopy (U-ExM) with bulk proteome labelling, we first reconstructed in 3D the subpellicular microtubule network which confers cell rigidity to Plasmodium falciparum gametocytes. Upon activation, as the microgametocyte undergoes three rounds of endomitosis, it also assembles axonemes to form eight flagellated microgametes. U-ExM combined with Pan-ExM further revealed the molecular architecture of the bipartite MTOC coordinating mitosis with axoneme formation. This MTOC spans the nuclear membrane linking cytoplasmic basal bodies to intranuclear bodies by proteinaceous filaments. In P. berghei, the eight basal bodies are concomitantly de novo assembled in a SAS6- and SAS4-dependent manner from a deuterosome-like structure, where centrin, γ-tubulin, SAS4 and SAS6 form distinct subdomains. Basal bodies display a fusion of the proximal and central cores where centrin and SAS6 are surrounded by a SAS4-toroid in the lumen of the microtubule wall. Sequential nucleation of axonemes and mitotic spindles is associated with a dynamic movement of γ-tubulin from the basal bodies to the intranuclear bodies. This dynamic architecture relies on two non-canonical regulators, the calcium-dependent protein kinase 4 and the serine/arginine-protein kinase 1. Altogether, these results provide insights into the molecular organisation of a bipartite MTOC that may reflect a functional transition of a basal body to coordinate axoneme assembly with mitosis.
Collapse
Affiliation(s)
- Ravish Rashpa
- University of Geneva, Department of Microbiology and Molecular Medicine, Faculty of Medicine, Geneva, Switzerland
| | - Mathieu Brochet
- University of Geneva, Department of Microbiology and Molecular Medicine, Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
20
|
Pinello JF, Liu Y, Snell WJ. MAR1 links membrane adhesion to membrane merger during cell-cell fusion in Chlamydomonas. Dev Cell 2021; 56:3380-3392.e9. [PMID: 34813735 DOI: 10.1016/j.devcel.2021.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 09/22/2021] [Accepted: 10/28/2021] [Indexed: 01/17/2023]
Abstract
Union of two gametes to form a zygote is a defining event in the life of sexual eukaryotes, yet the mechanisms that underlie cell-cell fusion during fertilization remain poorly characterized. Here, in studies of fertilization in the green alga, Chlamydomonas, we report identification of a membrane protein on minus gametes, Minus Adhesion Receptor 1 (MAR1), that is essential for the membrane attachment with plus gametes that immediately precedes lipid bilayer merger. We show that MAR1 forms a receptor pair with previously identified receptor FUS1 on plus gametes, whose ectodomain architecture we find is identical to a sperm adhesion protein conserved throughout plant lineages. Strikingly, before fusion, MAR1 is biochemically and functionally associated with the ancient, evolutionarily conserved eukaryotic Class II fusion protein HAP2 on minus gametes. Thus, the integral membrane protein MAR1 provides a molecular link between membrane adhesion and bilayer merger during fertilization in Chlamydomonas.
Collapse
Affiliation(s)
- Jennifer F Pinello
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Yanjie Liu
- Department of Cell Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9039, USA
| | - William J Snell
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
21
|
Sharma V, Clark AJ, Kawashima T. Insights into the molecular evolution of fertilization mechanism in land plants. PLANT REPRODUCTION 2021; 34:353-364. [PMID: 34061252 DOI: 10.1007/s00497-021-00414-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/14/2021] [Indexed: 05/27/2023]
Abstract
Comparative genetics and genomics among green plants, including algae, provide deep insights into the evolution of land plant sexual reproduction. Land plants have evolved successive changes during their conquest of the land and innovations in sexual reproduction have played a major role in their terrestrialization. Recent years have seen many revealing dissections of the molecular mechanisms of sexual reproduction and much new genomics data from the land plant lineage, including early diverging land plants, as well as algae. This new knowledge is being integrated to further understand how sexual reproduction in land plants evolved, identifying highly conserved factors and pathways, but also molecular changes that underpinned the emergence of new modes of sexual reproduction. Here, we review recent advances in the knowledge of land plant sexual reproduction from an evolutionary perspective and also revisit the evolution of angiosperm double fertilization.
Collapse
Affiliation(s)
- Vijyesh Sharma
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Anthony J Clark
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
22
|
Hisanaga T, Fujimoto S, Cui Y, Sato K, Sano R, Yamaoka S, Kohchi T, Berger F, Nakajima K. Deep evolutionary origin of gamete-directed zygote activation by KNOX/BELL transcription factors in green plants. eLife 2021; 10:57090. [PMID: 34579806 PMCID: PMC8478417 DOI: 10.7554/elife.57090] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/02/2021] [Indexed: 02/03/2023] Open
Abstract
KNOX and BELL transcription factors regulate distinct steps of diploid development in plants. In the green alga Chlamydomonas reinhardtii, KNOX and BELL proteins are inherited by gametes of the opposite mating types and heterodimerize in zygotes to activate diploid development. By contrast, in land plants such as Physcomitrium patens and Arabidopsis thaliana, KNOX and BELL proteins function in sporophyte and spore formation, meristem maintenance and organogenesis during the later stages of diploid development. However, whether the contrasting functions of KNOX and BELL were acquired independently in algae and land plants is currently unknown. Here, we show that in the basal land plant species Marchantia polymorpha, gamete-expressed KNOX and BELL are required to initiate zygotic development by promoting nuclear fusion in a manner strikingly similar to that in C. reinhardtii. Our results indicate that zygote activation is the ancestral role of KNOX/BELL transcription factors, which shifted toward meristem maintenance as land plants evolved.
Collapse
Affiliation(s)
- Tetsuya Hisanaga
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan.,Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Shota Fujimoto
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Yihui Cui
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Katsutoshi Sato
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Ryosuke Sano
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
23
|
Gibson W. The sexual side of parasitic protists. Mol Biochem Parasitol 2021; 243:111371. [PMID: 33872659 DOI: 10.1016/j.molbiopara.2021.111371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 01/09/2023]
Abstract
Much of the vast evolutionary landscape occupied by Eukaryotes is dominated by protists. Though parasitism has arisen in many lineages, there are three main groups of parasitic protists of relevance to human and livestock health: the Apicomplexa, including the malaria parasite Plasmodium and coccidian pathogens of livestock such as Eimeria; the excavate flagellates, encompassing a diverse range of protist pathogens including trypanosomes, Leishmania, Giardia and Trichomonas; and the Amoebozoa, including pathogenic amoebae such as Entamoeba. These three groups represent separate, deep branches of the eukaryote tree, underlining their divergent evolutionary histories. Here, I explore what is known about sex in these three main groups of parasitic protists.
Collapse
Affiliation(s)
- Wendy Gibson
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, BS8 1TQ, United Kingdom.
| |
Collapse
|
24
|
Berdieva MA, Pozdnyakov IA, Kalinina VO, Skarlato SO. Putative Meiotic Toolkit in the Dinoflagellate Prorocentrum cordatum: Additional Evidence for Sexual Process from Transcriptome. J Eukaryot Microbiol 2021; 68:e12845. [PMID: 33624379 DOI: 10.1111/jeu.12845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 01/25/2021] [Accepted: 02/13/2021] [Indexed: 01/16/2023]
Abstract
Prorocentrum cordatum (Ostenfeld) Dodge-is a planktonic armored dinoflagellate that is a bloom-forming, potentially toxic cosmopolitan species. The transition from vegetative reproduction to the sexual process has been recently shown for this organism. Here, we present the results of transcriptomic data analysis that uncovered one syngamy-associated and 16 meiosis-associated proteins in P. cordatum. We also detected an amino acid sequence homologous to bacterial MutS2 protein. The MutS2 presence and origin in dinoflagellates are discussed for the first time.
Collapse
Affiliation(s)
- Mariia A Berdieva
- Institute of Cytology of the Russian Academy of Science, Tikhoretsky Avenue 4, St. Petersburg, 194064, Russia
| | - Ilya A Pozdnyakov
- Institute of Cytology of the Russian Academy of Science, Tikhoretsky Avenue 4, St. Petersburg, 194064, Russia
| | - Vera O Kalinina
- Institute of Cytology of the Russian Academy of Science, Tikhoretsky Avenue 4, St. Petersburg, 194064, Russia
| | - Sergei O Skarlato
- Institute of Cytology of the Russian Academy of Science, Tikhoretsky Avenue 4, St. Petersburg, 194064, Russia
| |
Collapse
|
25
|
Nishikawa SI, Yamaguchi Y, Suzuki C, Yabe A, Sato Y, Kurihara D, Sato Y, Susaki D, Higashiyama T, Maruyama D. Arabidopsis GEX1 Is a Nuclear Membrane Protein of Gametes Required for Nuclear Fusion During Reproduction. FRONTIERS IN PLANT SCIENCE 2020; 11:548032. [PMID: 33154760 PMCID: PMC7586128 DOI: 10.3389/fpls.2020.548032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/15/2020] [Indexed: 05/25/2023]
Abstract
During the life cycle of flowering plants, nuclear fusion, or karyogamy, occurs three times: once during female gametogenesis, when the two polar nuclei fuse in the central cell, and twice during double fertilization. In Arabidopsis thaliana, nuclear fusion events during sexual reproduction proceed without the breakdown of the nuclear envelope, indicating that nuclear membrane fusion is essential for the completion of this process. Arabidopsis gamete expressed 1 (GEX1) is a membrane protein that is conserved among plant species. GEX1 shares homology with the yeast karyogamy protein Kar5, which is primarily expressed in the nuclear membrane. The GEX1 family represents a putative karyogamy factor. Herein, we show that GEX1 is required for the nuclear fusion events in Arabidopsis reproduction. GEX1-deficient mature female gametophytes were found to contain two unfused polar nuclei in close proximity within the central cell. Electron microscopy showed that the outer membrane of the polar nuclei was connected via the endoplasmic reticulum, whereas the inner membrane remained unfused. These results indicate that GEX1 is involved in polar nuclear membrane fusion following the fusion of the outer nuclear membrane. Furthermore, sperm nuclear fusion events were defective in the fertilized egg and central cell following plasmogamy in the fertilization of gex1-1 female gametophytes by gex1-1 pollen. An analysis of GEX1 localization in the female gametophyte using a transgenic line expressing GFP-tagged GEX1 driven by the GEX1 promoter showed that GEX1 is a nuclear membrane protein in the egg and central cell. Time-lapse live-cell imaging showed that in developing female gametophytes, the nuclear GFP-GEX1 signal was first detectable in the central cell shortly before the polar nuclei came in close contact, and then in the egg cell. Thus, we suggest that the GEX1-family proteins are nuclear membrane proteins involved in karyogamy in the reproduction of eukaryotes including flowering plants.
Collapse
Affiliation(s)
| | - Yuki Yamaguchi
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Chiharu Suzuki
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Ayaka Yabe
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Yuzuru Sato
- Biology Program, Faculty of Science, Niigata University, Niigata, Japan
| | - Daisuke Kurihara
- Japan Science and Technology Agency, PRESTO, Nagoya, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
26
|
Moi D, Kilchoer L, Aguilar PS, Dessimoz C. Scalable phylogenetic profiling using MinHash uncovers likely eukaryotic sexual reproduction genes. PLoS Comput Biol 2020; 16:e1007553. [PMID: 32697802 PMCID: PMC7423146 DOI: 10.1371/journal.pcbi.1007553] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 08/12/2020] [Accepted: 05/18/2020] [Indexed: 01/09/2023] Open
Abstract
Phylogenetic profiling is a computational method to predict genes involved in the same biological process by identifying protein families which tend to be jointly lost or retained across the tree of life. Phylogenetic profiling has customarily been more widely used with prokaryotes than eukaryotes, because the method is thought to require many diverse genomes. There are now many eukaryotic genomes available, but these are considerably larger, and typical phylogenetic profiling methods require at least quadratic time as a function of the number of genes. We introduce a fast, scalable phylogenetic profiling approach entitled HogProf, which leverages hierarchical orthologous groups for the construction of large profiles and locality-sensitive hashing for efficient retrieval of similar profiles. We show that the approach outperforms Enhanced Phylogenetic Tree, a phylogeny-based method, and use the tool to reconstruct networks and query for interactors of the kinetochore complex as well as conserved proteins involved in sexual reproduction: Hap2, Spo11 and Gex1. HogProf enables large-scale phylogenetic profiling across the three domains of life, and will be useful to predict biological pathways among the hundreds of thousands of eukaryotic species that will become available in the coming few years. HogProf is available at https://github.com/DessimozLab/HogProf. Genes that are involved in the same biological process tend to co-evolve. This property is exploited by the technique of phylogenetic profiling, which identifies co-evolving (and therefore likely functionally related) genes through patterns of correlated gene retention and loss in evolution and across species. However, conventional methods to computing and clustering these correlated genes do not scale with increasing numbers of genomes. HogProf is a novel phylogenetic profiling tool built on probabilistic data structures. It allows the user to construct searchable databases containing the evolutionary history of hundreds of thousands of protein families. Such fast detection of coevolution takes advantage of the rapidly increasing amount of genomic data publicly available, and can uncover unknown biological networks and guide in-vivo research and experimentation. We have applied our tool to describe the biological networks underpinning sexual reproduction in eukaryotes.
Collapse
Affiliation(s)
- David Moi
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail: (DM); (CD)
| | - Laurent Kilchoer
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pablo S. Aguilar
- Instituto de Investigaciones Biotecnologicas (IIBIO), Universidad Nacional de San Martín, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Buenos Aires, Argentina
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
- Department of Computer Science, University College London, London, United Kingdom
- * E-mail: (DM); (CD)
| |
Collapse
|
27
|
Shin JM, Yuan L, Ohme-Takagi M, Kawashima T. Cellular dynamics of double fertilization and early embryogenesis in flowering plants. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:642-651. [PMID: 32638525 DOI: 10.1002/jez.b.22981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Flowering plants (angiosperms) perform a unique double fertilization in which two sperm cells fuse with two female gamete cells in the embryo sac to develop a seed. Furthermore, during land plant evolution, the mode of sexual reproduction has been modified dramatically from motile sperm in the early-diverging land plants, such as mosses and ferns as well as some gymnosperms (Ginkgo and cycads) to nonmotile sperm that are delivered to female gametes by the pollen tube in flowering plants. Recent studies have revealed the cellular dynamics and molecular mechanisms for the complex series of double fertilization processes and elucidated differences and similarities between animals and plants. Here, together with a brief comparison with animals, we review the current understanding of flowering plant zygote dynamics, covering from gamete nuclear migration, karyogamy, and polyspermy block, to zygotic genome activation as well as asymmetrical division of the zygote. Further analyses of the detailed molecular and cellular mechanisms of flowering plant fertilization should shed light on the evolution of the unique sexual reproduction of flowering plants.
Collapse
Affiliation(s)
- Ji Min Shin
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky.,Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky.,Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky.,Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky
| | - Masaru Ohme-Takagi
- Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
28
|
Sex in Symbiodiniaceae dinoflagellates: genomic evidence for independent loss of the canonical synaptonemal complex. Sci Rep 2020; 10:9792. [PMID: 32555361 PMCID: PMC7299967 DOI: 10.1038/s41598-020-66429-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/19/2020] [Indexed: 01/07/2023] Open
Abstract
Dinoflagellates of the Symbiodiniaceae family encompass diverse symbionts that are critical to corals and other species living in coral reefs. It is well known that sexual reproduction enhances adaptive evolution in changing environments. Although genes related to meiotic functions were reported in Symbiodiniaceae, cytological evidence of meiosis and fertilisation are however yet to be observed in these taxa. Using transcriptome and genome data from 21 Symbiodiniaceae isolates, we studied genes that encode proteins associated with distinct stages of meiosis and syngamy. We report the absence of genes that encode main components of the synaptonemal complex (SC), a protein structure that mediates homologous chromosomal pairing and class I crossovers. This result suggests an independent loss of canonical SCs in the alveolates, that also includes the SC-lacking ciliates. We hypothesise that this loss was due in part to permanently condensed chromosomes and repeat-rich sequences in Symbiodiniaceae (and other dinoflagellates) which favoured the SC-independent class II crossover pathway. Our results reveal novel insights into evolution of the meiotic molecular machinery in the ecologically important Symbiodiniaceae and in other eukaryotes.
Collapse
|
29
|
Stanway RR, Bushell E, Chiappino-Pepe A, Roques M, Sanderson T, Franke-Fayard B, Caldelari R, Golomingi M, Nyonda M, Pandey V, Schwach F, Chevalley S, Ramesar J, Metcalf T, Herd C, Burda PC, Rayner JC, Soldati-Favre D, Janse CJ, Hatzimanikatis V, Billker O, Heussler VT. Genome-Scale Identification of Essential Metabolic Processes for Targeting the Plasmodium Liver Stage. Cell 2020; 179:1112-1128.e26. [PMID: 31730853 PMCID: PMC6904910 DOI: 10.1016/j.cell.2019.10.030] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/23/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022]
Abstract
Plasmodium gene functions in mosquito and liver stages remain poorly characterized due to limitations in the throughput of phenotyping at these stages. To fill this gap, we followed more than 1,300 barcoded P. berghei mutants through the life cycle. We discover 461 genes required for efficient parasite transmission to mosquitoes through the liver stage and back into the bloodstream of mice. We analyze the screen in the context of genomic, transcriptomic, and metabolomic data by building a thermodynamic model of P. berghei liver-stage metabolism, which shows a major reprogramming of parasite metabolism to achieve rapid growth in the liver. We identify seven metabolic subsystems that become essential at the liver stages compared with asexual blood stages: type II fatty acid synthesis and elongation (FAE), tricarboxylic acid, amino sugar, heme, lipoate, and shikimate metabolism. Selected predictions from the model are individually validated in single mutants to provide future targets for drug development. 1,342 barcoded P. berghei knockout (KO) mutants analyzed for stage-specific phenotypes Life-stage-specific metabolic models reveal reprogramming of cellular function High agreement between blood/liver stage metabolic models and genetic screening data Essential metabolic pathways for parasite development and mechanistic origin revealed
Collapse
Affiliation(s)
- Rebecca R Stanway
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - Ellen Bushell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå 901 87, Sweden
| | - Anush Chiappino-Pepe
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Magali Roques
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - Theo Sanderson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Parasitology, Center of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden 2333ZA, the Netherlands
| | - Reto Caldelari
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | | | - Mary Nyonda
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Vikash Pandey
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland; Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå 901 87, Sweden
| | - Frank Schwach
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Séverine Chevalley
- Leiden Malaria Research Group, Parasitology, Center of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden 2333ZA, the Netherlands
| | - Jai Ramesar
- Leiden Malaria Research Group, Parasitology, Center of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden 2333ZA, the Netherlands
| | - Tom Metcalf
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Colin Herd
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Paul-Christian Burda
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland; Bernhard Nocht Institute for Tropical Medicine, Hamburg 20359, Germany
| | - Julian C Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2, 0XY, UK
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Chris J Janse
- Leiden Malaria Research Group, Parasitology, Center of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden 2333ZA, the Netherlands
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Oliver Billker
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå 901 87, Sweden.
| | - Volker T Heussler
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland.
| |
Collapse
|
30
|
Lin YL, Chung CL, Chen MH, Chen CH, Fang SC. SUMO Protease SMT7 Modulates Ribosomal Protein L30 and Regulates Cell-Size Checkpoint Function. THE PLANT CELL 2020; 32:1285-1307. [PMID: 32060174 PMCID: PMC7145494 DOI: 10.1105/tpc.19.00301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 01/02/2020] [Accepted: 02/11/2020] [Indexed: 05/10/2023]
Abstract
Proliferating cells actively coordinate growth and cell division to ensure cell-size homeostasis; however, the underlying mechanism through which size is controlled is poorly understood. Defect in a SUMO protease protein, suppressor of mat3 7 (SMT7), has been shown to reduce cell division number and increase cell size of the small-size mutant mating type locus 3-4 (mat3-4), which contains a defective retinoblastoma tumor suppressor-related protein of Chlamydomonas (Chlamydomonas reinhardtii). Here we describe development of an in vitro SUMOylation system using Chlamydomonas components and use it to provide evidence that SMT7 is a bona fide SUMO protease. We further demonstrate that the SUMO protease activity is required for supernumerous mitotic divisions of the mat3-4 cells. In addition, we identified RIBOSOMAL PROTEIN L30 (RPL30) as a prime SMT7 target and demonstrated that its SUMOylation is an important modulator of cell division in mat3-4 cells. Loss of SMT7 caused elevated SUMOylated RPL30 levels. Importantly, overexpression of the translational fusion version of RPL30-SUMO4, which mimics elevation of the SUMOylated RPL30 protein in mat3-4, caused a decrease in mitotic division and recapitulated the size-increasing phenotype of the smt7-1 mat3-4 cells. In summary, our study reveals a novel mechanism through which a SUMO protease regulates cell division in the mat3-4 mutant of Chlamydomonas and provides yet another important example of the role that protein SUMOylation can play in regulating key cellular processes, including cell division.
Collapse
Affiliation(s)
- Yen-Ling Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 402, Taiwan
| | - Chin-Lin Chung
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ming-Hui Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Han Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
31
|
Abrams EW, Fuentes R, Marlow FL, Kobayashi M, Zhang H, Lu S, Kapp L, Joseph SR, Kugath A, Gupta T, Lemon V, Runke G, Amodeo AA, Vastenhouw NL, Mullins MC. Molecular genetics of maternally-controlled cell divisions. PLoS Genet 2020; 16:e1008652. [PMID: 32267837 PMCID: PMC7179931 DOI: 10.1371/journal.pgen.1008652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 04/23/2020] [Accepted: 02/04/2020] [Indexed: 02/01/2023] Open
Abstract
Forward genetic screens remain at the forefront of biology as an unbiased approach for discovering and elucidating gene function at the organismal and molecular level. Past mutagenesis screens targeting maternal-effect genes identified a broad spectrum of phenotypes ranging from defects in oocyte development to embryonic patterning. However, earlier vertebrate screens did not reach saturation, anticipated classes of phenotypes were not uncovered, and technological limitations made it difficult to pinpoint the causal gene. In this study, we performed a chemically-induced maternal-effect mutagenesis screen in zebrafish and identified eight distinct mutants specifically affecting the cleavage stage of development and one cleavage stage mutant that is also male sterile. The cleavage-stage phenotypes fell into three separate classes: developmental arrest proximal to the mid blastula transition (MBT), irregular cleavage, and cytokinesis mutants. We mapped each mutation to narrow genetic intervals and determined the molecular basis for two of the developmental arrest mutants, and a mutation causing male sterility and a maternal-effect mutant phenotype. One developmental arrest mutant gene encodes a maternal specific Stem Loop Binding Protein, which is required to maintain maternal histone levels. The other developmental arrest mutant encodes a maternal-specific subunit of the Minichromosome Maintenance Protein Complex, which is essential for maintaining normal chromosome integrity in the early blastomeres. Finally, we identify a hypomorphic allele of Polo-like kinase-1 (Plk-1), which results in a male sterile and maternal-effect phenotype. Collectively, these mutants expand our molecular-genetic understanding of the maternal regulation of early embryonic development in vertebrates.
Collapse
Affiliation(s)
- Elliott W. Abrams
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Purchase College, The State University of New York, Purchase, New York, United States of America
| | - Ricardo Fuentes
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Florence L. Marlow
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Hong Zhang
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sumei Lu
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Lee Kapp
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Shai R. Joseph
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Amy Kugath
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Tripti Gupta
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Virginia Lemon
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Greg Runke
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Amanda A. Amodeo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | | | - Mary C. Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
32
|
Qiu Y, Zhao Y, Liu F, Ye B, Zhao Z, Thongpoon S, Roobsoong W, Sattabongkot J, Cui L, Fan Q, Cao Y. Evaluation of Plasmodium vivax HAP2 as a transmission-blocking vaccine candidate. Vaccine 2020; 38:2841-2848. [PMID: 32093983 DOI: 10.1016/j.vaccine.2020.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022]
Abstract
Transmission-blocking vaccine (TBV) is a promising strategy to interfere with the transmission of malaria. To date, only limited TBV candidate antigens have been identified for Plasmodium vivax. HAP2 is a gamete membrane fusion protein, with homology to the class II viral fusion proteins. Herein we reported the characterization of the PvHAP2 for its potential as a TBV candidate for P. vivax. The HAP2/GCS1 domain of PvHAP2 was expressed in the baculovirus expression system and the recombinant protein was used to raise antibodies in rabbits. Indirect immunofluorescence assays showed that anti-PvHAP2 antibodies reacted only with the male gametocytes on blood smears. Direct membrane feeding assays were conducted using four field P. vivax isolates in Anopheles dirus. At a mean infection intensity of 72.4, 70.7, 51.3, and 15.6 oocysts/midgut with the control antibodies, anti-PvHAP2 antibodies significantly reduced the midgut oocyst intensity by 40.3, 44.4, 61.9, and 89.7%. Whereas the anti-PvHAP2 antibodies were not effective in reducing the infection prevalence at higher parasite exposure (51.3-72.4 oocysts/midgut in the control group), the anti-PvHAP2 antibodies reduced infection prevalence by 50% at a low challenge (15.6 oocysts/midgut). Multiple sequence alignment showed 100% identity among these Thai P. vivax isolates, suggesting that polymorphism may not be an impediment for the utilization of PvHAP2 as a TBV antigen. In conclusion, our results suggest that PvHAP2 could serve as a TBV candidate for P. vivax, and further optimization and evaluation are warranted.
Collapse
Affiliation(s)
- Yue Qiu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Bo Ye
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Zhenjun Zhao
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Sataporn Thongpoon
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL 33612, USA
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
33
|
Rahman M, Chang IY, Harned A, Maheshwari R, Amoateng K, Narayan K, Cohen-Fix O. C. elegans pronuclei fuse after fertilization through a novel membrane structure. J Cell Biol 2020; 219:e201909137. [PMID: 31834351 PMCID: PMC7041684 DOI: 10.1083/jcb.201909137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
After fertilization, parental genomes are enclosed in two separate pronuclei. In Caenorhabditis elegans, and possibly other organisms, when the two pronuclei first meet, the parental genomes are separated by four pronuclear membranes. To understand how these membranes are breached to allow merging of parental genomes we used focused ion beam scanning electron microscopy (FIB-SEM) to study the architecture of the pronuclear membranes at nanometer-scale resolution. We find that at metaphase, the interface between the two pronuclei is composed of two membranes perforated by fenestrations ranging from tens of nanometers to several microns in diameter. The parental chromosomes come in contact through one of the large fenestrations. Surrounding this fenestrated, two-membrane region is a novel membrane structure, a three-way sheet junction, where the four membranes of the two pronuclei fuse and become two. In the plk-1 mutant, where parental genomes fail to merge, these junctions are absent, suggesting that three-way sheet junctions are needed for formation of a diploid genome.
Collapse
Affiliation(s)
- Mohammad Rahman
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD
| | - Irene Y. Chang
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Adam Harned
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Richa Maheshwari
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD
| | - Kwabena Amoateng
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Orna Cohen-Fix
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD
| |
Collapse
|
34
|
Bloomfield G. The molecular foundations of zygosis. Cell Mol Life Sci 2020; 77:323-330. [PMID: 31203379 PMCID: PMC11105095 DOI: 10.1007/s00018-019-03187-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
Zygosis is the generation of new biological individuals by the sexual fusion of gamete cells. Our current understanding of eukaryotic phylogeny indicates that sex is ancestral to all extant eukaryotes. Although sexual development is extremely diverse, common molecular elements have been retained. HAP2-GCS1, a protein that promotes the fusion of gamete cell membranes that is related in structure to certain viral fusogens, is conserved in many eukaryotic lineages, even though gametes vary considerably in form and behaviour between species. Similarly, although zygotes have dramatically different forms and fates in different organisms, diverse eukaryotes share a common developmental programme in which homeodomain-containing transcription factors play a central role. These common mechanistic elements suggest possible common evolutionary histories that, if correct, would have profound implications for our understanding of eukaryogenesis.
Collapse
|
35
|
Kariyawasam T, Joo S, Lee J, Toor D, Gao AF, Noh KC, Lee JH. TALE homeobox heterodimer GSM1/GSP1 is a molecular switch that prevents unwarranted genetic recombination in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:938-953. [PMID: 31368133 DOI: 10.1111/tpj.14486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Eukaryotic sexual life cycles alternate between haploid and diploid stages, the transitions between which are delineated by cell fusion and meiotic division. Transcription factors in the TALE-class homeobox family, GSM1 and GSP1, predominantly control gene expression for the haploid-to-diploid transition during sexual reproduction in the unicellular green alga, Chlamydomonas reinhardtii. To understand the roles that GSM1 and GSP1 play in zygote development, we used gsm1 and gsp1 mutants and examined fused gametes that normally undergo the multiple organellar fusions required for the genetic unity of the zygotes. In gsm1 and gsp1 zygotes, no fusion was observed for the nucleus and chloroplast. Surprisingly, mitochondria and endoplasmic reticulum, which undergo dynamic autologous fusion/fission, did not undergo heterologous fusions in gsm1 or gsp1 zygotes. Furthermore, the mutants failed to resorb their flagella, an event that normally renders the zygotes immotile. When gsm1 and gsp1 zygotes resumed the mitotic cycle, their two nuclei fused prior to mitosis, but neither chloroplastic nor mitochondrial fusion took place, suggesting that these fusions are specifically turned on by GSM1/GSP1. Taken together, this study shows that organellar restructuring during zygotic diploidization does not occur by default but is triggered by a combinatorial switch, the GSM1/GSP1 dyad. This switch may represent an ancient mechanism that evolved to restrict genetic recombination during sexual development.
Collapse
Affiliation(s)
| | - Sunjoo Joo
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Jenny Lee
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Deepak Toor
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Ally F Gao
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Kyung-Chul Noh
- Department of Biology, Washington University, St. Louis, MO, USA
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, Vancouver, Canada
| |
Collapse
|
36
|
Luxmi R, Kumar D, Mains RE, King SM, Eipper BA. Cilia-based peptidergic signaling. PLoS Biol 2019; 17:e3000566. [PMID: 31809498 PMCID: PMC6919629 DOI: 10.1371/journal.pbio.3000566] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/18/2019] [Accepted: 11/15/2019] [Indexed: 01/05/2023] Open
Abstract
Peptide-based intercellular communication is a ubiquitous and ancient process that predates evolution of the nervous system. Cilia are essential signaling centers that both receive information from the environment and secrete bioactive extracellular vesicles (ectosomes). However, the nature of these secreted signals and their biological functions remain poorly understood. Here, we report the developmentally regulated release of the peptide amidating enzyme, peptidylglycine α-amidating monooxygenase (PAM), and the presence of peptidergic signaling machinery (including propeptide precursors, subtilisin-like prohormone convertases, amidated products, and receptors) in ciliary ectosomes from the green alga Chlamydomonas. One identified amidated PAM product serves as a chemoattractant for mating-type minus gametes but repels plus gametes. Thus, cilia provide a previously unappreciated route for the secretion of amidated signaling peptides. Our study in Chlamydomonas and the presence of PAM in mammalian cilia suggest that ciliary ectosome-mediated peptidergic signaling dates to the early eukaryotes and plays key roles in metazoan physiology.
Collapse
Affiliation(s)
- Raj Luxmi
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Dhivya Kumar
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Richard E. Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Electron Microscopy Facility, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Betty A. Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| |
Collapse
|
37
|
Craig EW, Mueller DM, Bigge BM, Schaffer M, Engel BD, Avasthi P. The elusive actin cytoskeleton of a green alga expressing both conventional and divergent actins. Mol Biol Cell 2019; 30:2827-2837. [PMID: 31532705 PMCID: PMC6789165 DOI: 10.1091/mbc.e19-03-0141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022] Open
Abstract
The green alga Chlamydomonas reinhardtii is a leading model system to study photosynthesis, cilia, and the generation of biological products. The cytoskeleton plays important roles in all of these cellular processes, but to date, the filamentous actin network within Chlamydomonas has remained elusive. By optimizing labeling conditions, we can now visualize distinct linear actin filaments at the posterior of the nucleus in both live and fixed vegetative cells. Using in situ cryo-electron tomography, we confirmed this localization by directly imaging actin filaments within the native cellular environment. The fluorescently labeled structures are sensitive to the depolymerizing agent latrunculin B (Lat B), demonstrating the specificity of our optimized labeling method. Interestingly, Lat B treatment resulted in the formation of a transient ring-like filamentous actin structure around the nucleus. The assembly of this perinuclear ring is dependent upon a second actin isoform, NAP1, which is strongly up-regulated upon Lat B treatment and is insensitive to Lat B-induced depolymerization. Our study combines orthogonal strategies to provide the first detailed visual characterization of filamentous actins in Chlamydomonas, allowing insights into the coordinated functions of two actin isoforms expressed within the same cell.
Collapse
Affiliation(s)
- Evan W. Craig
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - David M. Mueller
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Brae M. Bigge
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Miroslava Schaffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Benjamin D. Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Prachee Avasthi
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Ophthalmology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
38
|
Cronmiller E, Toor D, Shao NC, Kariyawasam T, Wang MH, Lee JH. Cell wall integrity signaling regulates cell wall-related gene expression in Chlamydomonas reinhardtii. Sci Rep 2019; 9:12204. [PMID: 31434930 PMCID: PMC6704257 DOI: 10.1038/s41598-019-48523-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
An intact cell wall is critical for cellular interactions with the environment and protecting the cell from environmental challenges. Signaling mechanisms are necessary to monitor cell wall integrity and to regulate cell wall production and remodeling during growth and division cycles. The green alga, Chlamydomonas, has a proteinaceous cell wall of defined structure that is readily removed by gametolysin (g-lysin), a metalloprotease released during sexual mating. Naked cells treated with g-lysin induce the mRNA accumulation of >100 cell wall-related genes within an hour, offering a system to study signaling and regulatory mechanisms for de novo cell wall assembly. Combining quantitative RT-PCR and luciferase reporter assays to probe transcript accumulation and promoter activity, we revealed that up to 500-fold upregulation of cell wall-related genes was driven at least partly by transcriptional activation upon g-lysin treatment. To investigate how naked cells trigger this rapid transcriptional activation, we tested whether osmotic stress and cell wall integrity are involved in this process. Under a constant hypotonic condition, comparable levels of cell wall-gene activation were observed by g-lysin treatment. In contrast, cells in an iso- or hypertonic condition showed up to 80% reduction in the g-lysin-induced gene activation, suggesting that osmotic stress is required for full-scale responses to g-lysin treatment. To test whether mechanical perturbation of cell walls is involved, we isolated and examined a new set of cell wall mutants with defective or little cell walls. All cell wall mutants examined showed a constitutive upregulation of cell wall-related genes at a level that is only achieved by treatment with g-lysin in wild-type cells. Our study suggests a cell wall integrity monitoring mechanism that senses both osmotic stress and mechanical defects of cell walls and regulates cell wall-gene expression in Chlamydomonas, which may relate to cell wall integrity signaling mechanisms in other organisms.
Collapse
Affiliation(s)
- Evan Cronmiller
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada
| | - Deepak Toor
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada
| | - Nai Chun Shao
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada
| | - Thamali Kariyawasam
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada
| | - Ming Hsiu Wang
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada.
| |
Collapse
|
39
|
Takahashi T, Mori T, Ueda K, Yamada L, Nagahara S, Higashiyama T, Sawada H, Igawa T. The male gamete membrane protein DMP9/DAU2 is required for double fertilization in flowering plants. Development 2018; 145:145/23/dev170076. [DOI: 10.1242/dev.170076] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/29/2018] [Indexed: 11/20/2022]
Abstract
ABSTRACT
All flowering plants exhibit a unique type of sexual reproduction called ‘double fertilization’ in which each pollen tube-delivered sperm cell fuses with an egg and a central cell. Proteins that localize to the plasma membrane of gametes regulate one-to-one gamete pairing and fusion between male and female gametes for successful double fertilization. Here, we have identified a membrane protein from Lilium longiflorum generative cells using proteomic analysis and have found that the protein is an ortholog of Arabidopsis DUF679 DOMAIN MEMBRANE PROTEIN 9 (DMP9)/DUO1-ACTIVATED UNKNOWN 2 (DAU2). The flowering plant DMP9 proteins analyzed in this study were predicted to have four transmembrane domains and be specifically expressed in both generative and sperm cells. Knockdown of DMP9 resulted in aborted seeds due to single fertilization of the central cell. Detailed imaging of DMP9-knockdown sperm cells during in vivo and semi-in vitro double fertilization revealed that DMP9 is involved in gamete interaction that leads to correct double fertilization.
Collapse
Affiliation(s)
- Taro Takahashi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-shi, Chiba 271-8510, Japan
| | - Toshiyuki Mori
- Department of Tropical Medicine and Parasitology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kenji Ueda
- Department of Biological Production, Akita Prefectural University, 41-438 Kaidobata-Nishi, Nakano Shimoshinjo, Akita-shi, Akita 010-0195, Japan
| | - Lixy Yamada
- Sugashima Marine Biological Laboratory, Nagoya University, Sugashima, Toba-shi, Mie 517-0004, Japan
| | - Shiori Nagahara
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Nagoya University, Sugashima, Toba-shi, Mie 517-0004, Japan
| | - Tomoko Igawa
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-shi, Chiba 271-8510, Japan
| |
Collapse
|
40
|
Hofstatter PG, Brown MW, Lahr DJG. Comparative Genomics Supports Sex and Meiosis in Diverse Amoebozoa. Genome Biol Evol 2018; 10:3118-3128. [PMID: 30380054 PMCID: PMC6263441 DOI: 10.1093/gbe/evy241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2018] [Indexed: 12/30/2022] Open
Abstract
Sex and reproduction are often treated as a single phenomenon in animals and plants, as in these organisms reproduction implies mixis and meiosis. In contrast, sex and reproduction are independent biological phenomena that may or may not be linked in the majority of other eukaryotes. Current evidence supports a eukaryotic ancestor bearing a mating type system and meiosis, which is a process exclusive to eukaryotes. Even though sex is ancestral, the literature regarding life cycles of amoeboid lineages depicts them as asexual organisms. Why would loss of sex be common in amoebae, if it is rarely lost, if ever, in plants and animals, as well as in fungi? One way to approach the question of meiosis in the "asexuals" is to evaluate the patterns of occurrence of genes for the proteins involved in syngamy and meiosis. We have applied a comparative genomic approach to study the occurrence of the machinery for plasmogamy, karyogamy, and meiosis in Amoebozoa, a major amoeboid supergroup. Our results support a putative occurrence of syngamy and meiotic processes in all major amoebozoan lineages. We conclude that most amoebozoans may perform mixis, recombination, and ploidy reduction through canonical meiotic processes. The present evidence indicates the possibility of sexual cycles in many lineages traditionally held as asexual.
Collapse
Affiliation(s)
- Paulo G Hofstatter
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University
| | - Daniel J G Lahr
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Brazil
| |
Collapse
|
41
|
Proteases Shape the Chlamydomonas Secretome: Comparison to Classical Neuropeptide Processing Machinery. Proteomes 2018; 6:proteomes6040036. [PMID: 30249063 PMCID: PMC6313938 DOI: 10.3390/proteomes6040036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 12/25/2022] Open
Abstract
The recent identification of catalytically active peptidylglycine α-amidating monooxygenase (PAM) in Chlamydomonas reinhardtii, a unicellular green alga, suggested the presence of a PAM-like gene and peptidergic signaling in the last eukaryotic common ancestor (LECA). We identified prototypical neuropeptide precursors and essential peptide processing enzymes (subtilisin-like prohormone convertases and carboxypeptidase B-like enzymes) in the C.
reinhardtii genome. Reasoning that sexual reproduction by C. reinhardtii requires extensive communication between cells, we used mass spectrometry to identify proteins recovered from the soluble secretome of mating gametes, and searched for evidence that the putative peptidergic processing enzymes were functional. After fractionation by SDS-PAGE, signal peptide-containing proteins that remained intact, and those that had been subjected to cleavage, were identified. The C. reinhardtii mating secretome contained multiple matrix metalloproteinases, cysteine endopeptidases, and serine carboxypeptidases, along with one subtilisin-like proteinase. Published transcriptomic studies support a role for these proteases in sexual reproduction. Multiple extracellular matrix proteins (ECM) were identified in the secretome. Several pherophorins, ECM glycoproteins homologous to the Volvox sex-inducing pheromone, were present; most contained typical peptide processing sites, and many had been cleaved, generating stable N- or C-terminal fragments. Our data suggest that subtilisin endoproteases and matrix metalloproteinases similar to those important in vertebrate peptidergic and growth factor signaling play an important role in stage transitions during the life cycle of C.
reinhardtii.
Collapse
|
42
|
Targeting the Conserved Fusion Loop of HAP2 Inhibits the Transmission of Plasmodium berghei and falciparum. Cell Rep 2018; 21:2868-2878. [PMID: 29212032 PMCID: PMC5732318 DOI: 10.1016/j.celrep.2017.11.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/05/2017] [Accepted: 11/02/2017] [Indexed: 01/01/2023] Open
Abstract
Inhibiting transmission of Plasmodium is a central strategy in malarial eradication, and the biological process of gamete fusion during fertilization is a proven target for this approach. The lack of a structure or known molecular function of current anti-malarial vaccine targets has previously been a hindrance in the development of transmission-blocking vaccines. Structure/function studies have indicated that the conserved gamete membrane fusion protein HAP2 is a class II viral fusion protein. Here, we demonstrate that targeting a function-critical site of the fusion/cd loop with species-specific antibodies reduces Plasmodium berghei transmission in vivo by 58.9% and in vitro fertilization by up to 89.9%. A corresponding reduction in P. falciparum transmission (75.5%/36.4% reductions in intensity/prevalence) is observed in complimentary field studies. These results emphasize conserved mechanisms of fusion in Apicomplexa, while highlighting an approach to design future anti-malarial transmission-blocking vaccines. Plasmodium HAP2 is a class II fusion protein Class II proteins are targetable to inhibit fertilization/transmission A short synthetically generated peptide can induce transmission-blocking immunity
Collapse
|
43
|
Wood FC, Heidari A, Tekle YI. Genetic Evidence for Sexuality in Cochliopodium (Amoebozoa). J Hered 2018; 108:769-779. [PMID: 29036297 PMCID: PMC5892394 DOI: 10.1093/jhered/esx078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022] Open
Abstract
Microbial eukaryotes, including amoeboids, display diverse and complex life cycles that may or may not involve sexual reproduction. A recent comprehensive gene inventory study concluded that the Amoebozoa are ancestrally sexual. However, the detection of sex genes in some lineages known for their potentially sexual life cycle was very low. Particularly, the genus Cochliopodium, known to undergo a process of cell fusion, karyogamy, and subsequent fission previously described as parasexual, had no meiosis genes detected. This is likely due to low data representation, given the extensive nuclear fusion observed in the genus. In this study, we generate large amounts of transcriptome data for 2 species of Cochliopodium, known for their high frequency of cellular and nuclear fusion, in order to study the genetic basis of the complex life cycle observed in the genus. We inventory 60 sex-related genes, including 11 meiosis-specific genes, and 31 genes involved in fusion and karyogamy. We find a much higher detection of sex-related genes, including 5 meiosis-specific genes not previously detected in Cochliopodium, in this large transcriptome data. The expressed genes form a near-complete recombination machinery, indicating that Cochliopodium is an actively recombining sexual lineage. We also find 9 fusion-related genes in Cochliopodium, although no conserved fusion-specific genes were detected in the transcriptomes. Cochliopodium thus likely uses lineage specific genes for the fusion and depolyploidization processes. Our results demonstrate that Cochliopodium possess the genetic toolkit for recombination, while the mechanism involving fusion and genome reduction remains to be elucidated.
Collapse
Affiliation(s)
- Fiona C Wood
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314
| | - Alireza Heidari
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314
| | - Yonas I Tekle
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314
| |
Collapse
|
44
|
Single-Cell Analysis Reveals Distinct Gene Expression and Heterogeneity in Male and Female Plasmodium falciparum Gametocytes. mSphere 2018; 3:3/2/e00130-18. [PMID: 29643077 PMCID: PMC5909122 DOI: 10.1128/msphere.00130-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/22/2018] [Indexed: 01/19/2023] Open
Abstract
Most human deaths that result from malaria are caused by the eukaryotic parasite Plasmodium falciparum. The only form of this parasite that is transmitted to the mosquito is the sexual form, called the gametocyte. The production of mature gametocytes can take up to 2 weeks and results in phenotypically distinct males and females, although what causes this gender-specific differentiation remains largely unknown. Here, we demonstrate the first use of microfluidic technology to capture single gametocytes and determine their temporal sex-specific gene expression in an unbiased manner. We were able to determine male or female identity of single cells based on the upregulation of gender-specific genes as early as mid-stage gametocytes. This analysis has revealed strong markers for male and female gametocyte differentiation that were previously concealed in population analyses. Similar single-cell analyses in eukaryotic pathogens using this method may uncover rare cell types and heterogeneity previously masked in population studies. Sexual reproduction is an obligate step in the Plasmodium falciparum life cycle, with mature gametocytes being the only form of the parasite capable of human-to-mosquito transmission. Development of male and female gametocytes takes 9 to 12 days, and although more than 300 genes are thought to be specific to gametocytes, only a few have been postulated to be male or female specific. Because these genes are often expressed during late gametocyte stages and for some, male- or female-specific transcript expression is debated, the separation of male and female populations is technically challenging. To overcome these challenges, we have developed an unbiased single-cell approach to determine which transcripts are expressed in male versus female gametocytes. Using microfluidic technology, we isolated single mid- to late-stage gametocytes to compare the expression of 91 genes, including 87 gametocyte-specific genes, in 90 cells. Such analysis identified distinct gene clusters whose expression was associated with male, female, or all gametocytes. In addition, a small number of male gametocytes clustered separately from female gametocytes based on sex-specific expression independent of stage. Many female-enriched genes also exhibited stage-specific expression. RNA fluorescent in situ hybridization of male and female markers validated the mutually exclusive expression pattern of male and female transcripts in gametocytes. These analyses uncovered novel male and female markers that are expressed as early as stage III gametocytogenesis, providing further insight into Plasmodium sex-specific differentiation previously masked in population analyses. Our single-cell approach reveals the most robust markers for sex-specific differentiation in Plasmodium gametocytes. Such single-cell expression assays can be generalized to all eukaryotic pathogens. IMPORTANCE Most human deaths that result from malaria are caused by the eukaryotic parasite Plasmodium falciparum. The only form of this parasite that is transmitted to the mosquito is the sexual form, called the gametocyte. The production of mature gametocytes can take up to 2 weeks and results in phenotypically distinct males and females, although what causes this gender-specific differentiation remains largely unknown. Here, we demonstrate the first use of microfluidic technology to capture single gametocytes and determine their temporal sex-specific gene expression in an unbiased manner. We were able to determine male or female identity of single cells based on the upregulation of gender-specific genes as early as mid-stage gametocytes. This analysis has revealed strong markers for male and female gametocyte differentiation that were previously concealed in population analyses. Similar single-cell analyses in eukaryotic pathogens using this method may uncover rare cell types and heterogeneity previously masked in population studies.
Collapse
|
45
|
Geng S, Miyagi A, Umen JG. Evolutionary divergence of the sex-determining gene MID uncoupled from the transition to anisogamy in volvocine algae. Development 2018; 145:dev.162537. [PMID: 29549112 DOI: 10.1242/dev.162537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/13/2018] [Indexed: 12/28/2022]
Abstract
Volvocine algae constitute a unique comparative model for investigating the evolution of oogamy from isogamous mating types. The sex- or mating type-determining gene MID encodes a conserved RWP-RK transcription factor found in either the MT- or male mating locus of dioecious volvocine species. We previously found that MID from the isogamous species Chlamydomonas reinhardtii (CrMID) could not induce ectopic spermatogenesis when expressed heterologously in Volvox carteri females, suggesting coevolution of Mid function with gamete dimorphism. Here we found that ectopic expression of MID from the anisogamous species Pleodorina starrii (PsMID) could efficiently induce spermatogenesis when expressed in V. carteri females and, unexpectedly, that GpMID from the isogamous species Gonium pectorale was also able to induce V. carteri spermatogenesis. Neither VcMID nor GpMID could complement a C. reinhardtii mid mutant, at least partly owing to instability of heterologous Mid proteins. Our data show that Mid divergence was not a major contributor to the transition between isogamy and anisogamy/oogamy in volvocine algae, and instead implicate changes in cis-regulatory interactions and/or trans-acting factors of the Mid network in the evolution of sexual dimorphism.
Collapse
Affiliation(s)
- Sa Geng
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, MO 63132, USA
| | - Ayano Miyagi
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, MO 63132, USA
| | - James G Umen
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, MO 63132, USA
| |
Collapse
|
46
|
Fu C, Heitman J. PRM1 and KAR5 function in cell-cell fusion and karyogamy to drive distinct bisexual and unisexual cycles in the Cryptococcus pathogenic species complex. PLoS Genet 2017; 13:e1007113. [PMID: 29176784 PMCID: PMC5720818 DOI: 10.1371/journal.pgen.1007113] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/07/2017] [Accepted: 11/13/2017] [Indexed: 11/18/2022] Open
Abstract
Sexual reproduction is critical for successful evolution of eukaryotic organisms in adaptation to changing environments. In the opportunistic human fungal pathogens, the Cryptococcus pathogenic species complex, C. neoformans primarily undergoes bisexual reproduction, while C. deneoformans undergoes both unisexual and bisexual reproduction. During both unisexual and bisexual cycles, a common set of genetic circuits regulates a yeast-to-hyphal morphological transition, that produces either monokaryotic or dikaryotic hyphae. As such, both the unisexual and bisexual cycles can generate genotypic and phenotypic diversity de novo. Despite the similarities between these two cycles, genetic and morphological differences exist, such as the absence of an opposite mating-type partner and monokaryotic instead of dikaryotic hyphae during C. deneoformans unisexual cycle. To better understand the similarities and differences between these modes of sexual reproduction, we focused on two cellular processes involved in sexual reproduction: cell-cell fusion and karyogamy. We identified orthologs of the plasma membrane fusion protein Prm1 and the nuclear membrane fusion protein Kar5 in both Cryptococcus species, and demonstrated their conserved roles in cell fusion and karyogamy during C. deneoformans α-α unisexual reproduction and C. deneoformans and C. neoformans a-α bisexual reproduction. Notably, karyogamy occurs inside the basidum during bisexual reproduction in C. neoformans, but often occurs earlier following cell fusion during bisexual reproduction in C. deneoformans. Characterization of these two genes also showed that cell fusion is dispensable for solo unisexual reproduction in C. deneoformans. The blastospores produced along hyphae during C. deneoformans unisexual reproduction are diploid, suggesting that diploidization occurs early during hyphal development, possibly through either an endoreplication pathway or cell fusion-independent karyogamy events. Taken together, our findings suggest distinct mating mechanisms for unisexual and bisexual reproduction in Cryptococcus, exemplifying distinct evolutionary trajectories within this pathogenic species complex.
Collapse
Affiliation(s)
- Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|
47
|
Joo S, Nishimura Y, Cronmiller E, Hong RH, Kariyawasam T, Wang MH, Shao NC, El Akkad SED, Suzuki T, Higashiyama T, Jin E, Lee JH. Gene Regulatory Networks for the Haploid-to-Diploid Transition of Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2017; 175:314-332. [PMID: 28710131 PMCID: PMC5580766 DOI: 10.1104/pp.17.00731] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/12/2017] [Indexed: 05/20/2023]
Abstract
The sexual cycle of the unicellular Chlamydomonas reinhardtii culminates in the formation of diploid zygotes that differentiate into dormant spores that eventually undergo meiosis. Mating between gametes induces rapid cell wall shedding via the enzyme g-lysin; cell fusion is followed by heterodimerization of sex-specific homeobox transcription factors, GSM1 and GSP1, and initiation of zygote-specific gene expression. To investigate the genetic underpinnings of the zygote developmental pathway, we performed comparative transcriptome analysis of both pre- and post-fertilization samples. We identified 253 transcripts specifically enriched in early zygotes, 82% of which were not up-regulated in gsp1 null zygotes. We also found that the GSM1/GSP1 heterodimer negatively regulates the vegetative wall program at the posttranscriptional level, enabling prompt transition from vegetative wall to zygotic wall assembly. Annotation of the g-lysin-induced and early zygote genes reveals distinct vegetative and zygotic wall programs, supported by concerted up-regulation of genes encoding cell wall-modifying enzymes and proteins involved in nucleotide-sugar metabolism. The haploid-to-diploid transition in Chlamydomonas is masterfully controlled by the GSM1/GSP1 heterodimer, translating fertilization and gamete coalescence into a bona fide differentiation program. The fertilization-triggered integration of genes required to make related, but structurally and functionally distinct organelles-the vegetative versus zygote cell wall-presents a likely scenario for the evolution of complex developmental gene regulatory networks.
Collapse
Affiliation(s)
- Sunjoo Joo
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Yoshiki Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kita-Shirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Evan Cronmiller
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Ran Ha Hong
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Thamali Kariyawasam
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Ming Hsiu Wang
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Nai Chun Shao
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Saif-El-Din El Akkad
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Takamasa Suzuki
- ERATO, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tetsuya Higashiyama
- ERATO, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Eonseon Jin
- Department Life Sciences, Research Institute for Natural Sciences, Hanyang University, 222 Wangsipri-ro, Sungdong-gu, Seoul 133-791, Republic of Korea
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| |
Collapse
|
48
|
The Ancient Gamete Fusogen HAP2 Is a Eukaryotic Class II Fusion Protein. Cell 2017; 168:904-915.e10. [PMID: 28235200 PMCID: PMC5332557 DOI: 10.1016/j.cell.2017.01.024] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/03/2017] [Accepted: 01/19/2017] [Indexed: 02/01/2023]
Abstract
Sexual reproduction is almost universal in eukaryotic life and involves the fusion of male and female haploid gametes into a diploid cell. The sperm-restricted single-pass transmembrane protein HAP2-GCS1 has been postulated to function in membrane merger. Its presence in the major eukaryotic taxa—animals, plants, and protists (including important human pathogens like Plasmodium)—suggests that many eukaryotic organisms share a common gamete fusion mechanism. Here, we report combined bioinformatic, biochemical, mutational, and X-ray crystallographic studies on the unicellular alga Chlamydomonas reinhardtii HAP2 that reveal homology to class II viral membrane fusion proteins. We further show that targeting the segment corresponding to the fusion loop by mutagenesis or by antibodies blocks gamete fusion. These results demonstrate that HAP2 is the gamete fusogen and suggest a mechanism of action akin to viral fusion, indicating a way to block Plasmodium transmission and highlighting the impact of virus-cell genetic exchanges on the evolution of eukaryotic life. The primordial gamete fusogen HAP2 exhibits homology to class II viral fusion proteins HAP2 inserts into the target gamete membrane via a hydrophobic fusion loop HAP2 links virus entry into target cells and the origins of sexual reproduction HAP2 is a sex-specific target for blocking fertilization in multiple kingdoms
Collapse
|
49
|
Abstract
Compared with the animal kingdom, fertilization is particularly complex in flowering plants (angiosperms). Sperm cells of angiosperms have lost their motility and require transportation as a passive cargo by the pollen tube cell to the egg apparatus (egg cell and accessory synergid cells). Sperm cell release from the pollen tube occurs after intensive communication between the pollen tube cell and the receptive synergid, culminating in the lysis of both interaction partners. Following release of the two sperm cells, they interact and fuse with two dimorphic female gametes (the egg and the central cell) forming the major seed components embryo and endosperm, respectively. This process is known as double fertilization. Here, we review the current understanding of the processes of sperm cell reception, gamete interaction, their pre-fertilization activation and fusion, as well as the mechanisms plants use to prevent the fusion of egg cells with multiple sperm cells. The role of Ca(2+) is highlighted in these various processes and comparisons are drawn between fertilization mechanisms in flowering plants and other eukaryotes, including mammals.
Collapse
Affiliation(s)
- Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040 Regensburg, Germany.
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040 Regensburg, Germany
| | - Gary M Wessel
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
50
|
Carmell MA, Dokshin GA, Skaletsky H, Hu YC, van Wolfswinkel JC, Igarashi KJ, Bellott DW, Nefedov M, Reddien PW, Enders GC, Uversky VN, Mello CC, Page DC. A widely employed germ cell marker is an ancient disordered protein with reproductive functions in diverse eukaryotes. eLife 2016; 5. [PMID: 27718356 PMCID: PMC5098910 DOI: 10.7554/elife.19993] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/05/2016] [Indexed: 12/17/2022] Open
Abstract
The advent of sexual reproduction and the evolution of a dedicated germline in multicellular organisms are critical landmarks in eukaryotic evolution. We report an ancient family of GCNA (germ cell nuclear antigen) proteins that arose in the earliest eukaryotes, and feature a rapidly evolving intrinsically disordered region (IDR). Phylogenetic analysis reveals that GCNA proteins emerged before the major eukaryotic lineages diverged; GCNA predates the origin of a dedicated germline by a billion years. Gcna gene expression is enriched in reproductive cells across eukarya - either just prior to or during meiosis in single-celled eukaryotes, and in stem cells and germ cells of diverse multicellular animals. Studies of Gcna-mutant C. elegans and mice indicate that GCNA has functioned in reproduction for at least 600 million years. Homology to IDR-containing proteins implicated in DNA damage repair suggests that GCNA proteins may protect the genomic integrity of cells carrying a heritable genome.
Collapse
Affiliation(s)
| | - Gregoriy A Dokshin
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Helen Skaletsky
- Whitehead Institute, Cambridge, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | | | | | | | | | - Michael Nefedov
- BACPAC Resources, Children's Hospital Oakland, Oakland, United States
| | - Peter W Reddien
- Whitehead Institute, Cambridge, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - George C Enders
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, United States
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - David C Page
- Whitehead Institute, Cambridge, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|