1
|
Liu Y, Wang P, Li J, Chen L, Shu B, Wang H, Liu H, Zhao S, Zhou J, Chen X, Xie J. Single-cell RNA sequencing reveals the impaired epidermal differentiation and pathological microenvironment in diabetic foot ulcer. BURNS & TRAUMA 2025; 13:tkae065. [PMID: 40040959 PMCID: PMC11879498 DOI: 10.1093/burnst/tkae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/21/2024] [Accepted: 10/17/2024] [Indexed: 03/06/2025]
Abstract
Background Diabetic foot ulcer (DFU) is one of the most common and complex complications of diabetes, but the underlying pathophysiology remains unclear. Single-cell RNA sequencing (scRNA-seq) has been conducted to explore novel cell types or molecular profiles of DFU from various perspectives. This study aimed to comprehensively analyze the potential mechanisms underlying impaired re-epithelization of DFU in a single-cell perspective. Methods We conducted scRNA-seq on tissues from human normal skin, acute wound, and DFU to investigate the potential mechanisms underlying impaired epidermal differentiation and the pathological microenvironment. Pseudo-time and lineage inference analyses revealed the distinct states and transition trajectories of epidermal cells under different conditions. Transcription factor analysis revealed the potential regulatory mechanism of key subtypes of keratinocytes. Cell-cell interaction analysis revealed the regulatory network between the proinflammatory microenvironment and epidermal cells. Laser-capture microscopy coupled with RNA sequencing (LCM-seq) and multiplex immunohistochemistry were used to validate the expression and location of key subtypes of keratinocytes. Results Our research provided a comprehensive map of the phenotypic and dynamic changes that occur during epidermal differentiation, alongside the corresponding regulatory networks in DFU. Importantly, we identified two subtypes of keratinocytes: basal cells (BC-2) and diabetes-associated keratinocytes (DAK) that might play crucial roles in the impairment of epidermal homeostasis. BC-2 and DAK showed a marked increase in DFU, with an inactive state and insufficient motivation for epidermal differentiation. BC-2 was involved in the cellular response and apoptosis processes, with high expression of TXNIP, IFITM1, and IL1R2. Additionally, the pro-differentiation transcription factors were downregulated in BC-2 in DFU, indicating that the differentiation process might be inhibited in BC-2 in DFU. DAK was associated with cellular glucose homeostasis. Furthermore, increased CCL2 + CXCL2+ fibroblasts, VWA1+ vascular endothelial cells, and GZMA+CD8+ T cells were detected in DFU. These changes in the wound microenvironment could regulate the fate of epidermal cells through the TNFSF12-TNFRSF12A, IFNG-IFNGR1/2, and IL-1B-IL1R2 pathways, which might result in persistent inflammation and impaired epidermal differentiation in DFU. Conclusions Our findings offer novel insights into the pathophysiology of DFU and present potential therapeutic targets that could improve wound care and treatment outcomes for DFU patients.
Collapse
Affiliation(s)
- Yiling Liu
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Peng Wang
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Jingting Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Lei Chen
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Bin Shu
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Hanwen Wang
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Hengdeng Liu
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Shixin Zhao
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Junli Zhou
- Department of Burn and Plastic Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), No. 3 Wandao Road, Dongguan 523000, China
| | - Xiaodong Chen
- Department of Burn Surgery, The First People’s Hospital of Foshan, No. 3 Lingnan Road, Foshan 528000, China
| | - Julin Xie
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| |
Collapse
|
2
|
Bakiri L, Tichet M, Marques C, Thomsen MK, Allen EA, Stolzlechner S, Cheng K, Matsuoka K, Squatrito M, Hanahan D, Wagner EF. A new effLuc/Kate dual reporter allele for tumor imaging in mice. Dis Model Mech 2025; 18:DMM052130. [PMID: 39745082 PMCID: PMC11789939 DOI: 10.1242/dmm.052130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/19/2024] [Indexed: 02/01/2025] Open
Abstract
Genetically engineered mouse models (GEMMs) are instrumental for modelling local and systemic features of complex diseases, such as cancer. Non-invasive, longitudinal cell detection and monitoring in tumors, metastases and/or the micro-environment is paramount to achieve a better spatiotemporal understanding of cancer progression and to evaluate therapies in preclinical studies. Bioluminescent and fluorescent reporters marking tumor cells or their microenvironment are valuable for non-invasive cell detection and monitoring in vivo. Here, we report the generation of a dual reporter allele allowing simultaneous bioluminescence and fluorescence detection of cells that have undergone Cre-Lox recombination in mice. The single copy knock-in allele in the permissive collagen I locus was evaluated in the context of several cancer GEMMs, where Cre expression was achieved genetically or by ectopic virus-mediated delivery. The new reporter allele was also combined with gene-targeted alleles widely used in bone, prostate, brain and pancreas cancer research, as well as with alleles inserted into the commonly used Rosa26 and collagen I loci. This allele is, therefore, a useful addition to the portfolio of reporters to help advance preclinical research.
Collapse
Affiliation(s)
- Latifa Bakiri
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna, Vienna (MUW), Spitalgasse 23, 1090 Vienna, Austria
| | - Mélanie Tichet
- Ludwig Institute for Cancer Research, Lausanne Branch; Swiss Institute for Experimental Cancer Research (ISREC), EPFL; Swiss Cancer Center Leman (SCCL); Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
| | - Carolina Marques
- Seve Ballesteros Foundation Brain Tumor Group, Spanish National Cancer Research Centre, Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Martin K. Thomsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus, Denmark
| | - Elizabeth A. Allen
- Ludwig Institute for Cancer Research, Lausanne Branch; Swiss Institute for Experimental Cancer Research (ISREC), EPFL; Swiss Cancer Center Leman (SCCL); Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
| | - Stefanie Stolzlechner
- Laboratory Bone Cancer Metastasis, Cellular and Molecular Tumor Biology, Center for Cancer Research, Medical University of Vienna (MUW), Spitalgasse 23, 1090 Vienna, Austria
| | - Ke Cheng
- Ludwig Institute for Cancer Research, Lausanne Branch; Swiss Institute for Experimental Cancer Research (ISREC), EPFL; Swiss Cancer Center Leman (SCCL); Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
| | - Kazuhiko Matsuoka
- Laboratory Bone Cancer Metastasis, Cellular and Molecular Tumor Biology, Center for Cancer Research, Medical University of Vienna (MUW), Spitalgasse 23, 1090 Vienna, Austria
| | - Massimo Squatrito
- Seve Ballesteros Foundation Brain Tumor Group, Spanish National Cancer Research Centre, Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Douglas Hanahan
- Ludwig Institute for Cancer Research, Lausanne Branch; Swiss Institute for Experimental Cancer Research (ISREC), EPFL; Swiss Cancer Center Leman (SCCL); Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
| | - Erwin F. Wagner
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna, Vienna (MUW), Spitalgasse 23, 1090 Vienna, Austria
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna (MUW), Spitalgasse 23, 1090 Vienna, Austria
| |
Collapse
|
3
|
Chang YB, Kim HD, Kim SM, Lim JH, Woo MJ, Suh HJ, Jo K. Photoaging protective effect of enzyme extracted pomegranate peel against oxidative damage in UVB-irradiated HaCaT cells. Biomed Pharmacother 2024; 181:117679. [PMID: 39561588 DOI: 10.1016/j.biopha.2024.117679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
In this study, the ultraviolet B (UVB)-induced skin photoaging inhibitory activity of pomegranate peel extract with increased ellagic acid content through enzymatic hydrolysis was evaluated in HaCaT cells. Among various enzymes, Viscozyme with high tannase and β-glucosidase activities was used, and 1.0 % Viscozyme was added to hydrolyze pomegranate peel for 2 h at 40°C to establish the optimal reaction conditions for high ellagic acid content. Subsequently, when cells were treated with enzyme extracted pomegranate peels (40 μg/mL), the gene expression of matrix metalloproteinases (MMP)-2 and 13, which play key role in skin elasticity and moisture, and the protein expression of MMP13 were downregulated compared to the UVB-control group (UVB-C). In addition, the protein expression levels of tissue inhibitors, metalloproteinase-1 and 2, and collagen type I alpha 1 were upregulated, the gene expression of hyaluronic acid synthase-1, and filaggrin significantly increased, and interleukin-1β increased by photoaging was decreased. Furthermore, compared to the UVB-C, there was a significant increase in the gene expression of superoxide dismutase-1 and glutathione peroxidase, which resulted in a decrease in reactive oxygen species and malondialdehyde levels. These results were confirmed to be due to the inhibition of the mitogen-activated protein kinase pathway and downregulation of the protein expression of phosphorylated extracellular signal-regulated kinase, c-Jun N-terminal kinase, and P38. In conclusion, pomegranate peel, from which ellagic acid was extracted using Viscozyme, showed a reactive oxygen species inhibitory effect in UVB-irradiated HaCaT cells and thus may have a significant potential as a cosmetic ingredient with anti-aging effects.
Collapse
Affiliation(s)
- Yeok Boo Chang
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hae Dun Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Sang Min Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Ji Hoon Lim
- World Food Services, Gangneung 25451, Republic of Korea
| | - Moon Jea Woo
- World Food Services, Gangneung 25451, Republic of Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Kyungae Jo
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
Bakiri L, Wagner EF. c-Jun and Fra-2 pair up to Myc-anistically drive HCC. Cell Cycle 2024:1-9. [PMID: 39581891 DOI: 10.1080/15384101.2024.2429968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 11/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a leading cause of cancer-related death with limited therapies, is a complex disease developing in a background of Hepatitis Virus infection or systemic conditions, such as the metabolic syndrome. Investigating HCC pathogenesis in model organisms is therefore crucial for developing novel diagnostic and therapeutic tools. Genetically engineered mouse models (GEMMs) have been instrumental in recapitulating the local and systemic features of HCC. Early studies using GEMMs and patient material implicated members of the dimeric Activator Protein-1 (AP-1) transcription factor family, such as c-Jun and c-Fos, in HCC formation. In a recent report, we described how switchable, hepatocyte-restricted expression of a single-chain c-Jun~Fra-2 protein, functionally mimicking the c-Jun/Fra-2 AP-1 dimer, results in spontaneous and largely reversible liver tumors in GEMMs. Dysregulated cell cycle, inflammation, and dyslipidemia are observed at early stages and tumors display molecular HCC signatures. We demonstrate that increased c-Myc expression is an essential molecular determinant of tumor formation that can be therapeutically targeted using the BET inhibitor JQ1. Here, we discuss these findings with additional results illustrating how AP-1 GEMMs can foster preclinical research on liver diseases with novel perspectives offered by the constantly increasing wealth of HCC-related datasets.
Collapse
Affiliation(s)
- Latifa Bakiri
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria
| | - Erwin F Wagner
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna (MUW), Vienna, Austria
| |
Collapse
|
5
|
Zhang M, Lin Y, Han Z, Huang X, Zhou S, Wang S, Zhou Y, Han X, Chen H. Exploring mechanisms of skin aging: insights for clinical treatment. Front Immunol 2024; 15:1421858. [PMID: 39582871 PMCID: PMC11581952 DOI: 10.3389/fimmu.2024.1421858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
The skin is the largest organ in the human body and is made up of various cells and structures. Over time, the skin will age, which is not only influenced by internal factors, but also by external environmental factors, especially ultraviolet radiation. Aging causes immune system weakening in the elderly, which makes them more susceptible to dermatosis, such as type 2 inflammatory mediated pruritus. The immune response in this condition is marked by senescent cells consistently releasing low amounts of pro-inflammatory cytokines through a senescence-associated secretory phenotype (SASP). This continuous inflammation may accelerate immune system aging and establish a connection between immune aging and type 2 inflammatory skin diseases. In addition, two chronic pigmentation disorders, vitiligo and chloasma, are also associated with skin aging. Aged cells escape the immune system and accumulate in tissues, forming a microenvironment that promotes cancer. At the same time, "photoaging" caused by excessive exposure to ultraviolet radiation is also an important cause of skin cancer. This manuscript describes the possible links between skin aging and type 2 inflammation, chronic pigmentation disorders, and skin cancer and suggests some treatment options.
Collapse
Affiliation(s)
- Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xuewen Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Shuwei Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Siyu Wang
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yan Zhou
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
- Department of Dermatology, Guangzhou Dermatology Hospital, Guangzhou, China
| | - Xuan Han
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
- First Clinical College of Changzhi Medical College, Changzhi, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
6
|
Paganelli A, Zaffonato M, Donati B, Torricelli F, Manicardi V, Lai M, Spadafora M, Piana S, Ciarrocchi A, Longo C. Molecular and Histopathological Characterization of Metastatic Cutaneous Squamous Cell Carcinomas: A Case-Control Study. Cancers (Basel) 2024; 16:2233. [PMID: 38927938 PMCID: PMC11202054 DOI: 10.3390/cancers16122233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND A subset of patients affected by cutaneous squamous cell carcinoma (cSCC) can exhibit locally invasive or metastatic tumors. Different staging classification systems are currently in use for cSCC. However, precise patient risk stratification has yet to be reached in clinical practice. The study aims to identify specific histological and molecular parameters characterizing metastatic cSCC. METHODS Patients affected by metastatic and non-metastatic cSCC (controls) were included in the present study and matched for clinical and histological characteristics. Skin samples from primary tumors were revised for several histological parameters and also underwent gene expression profiling with a commercially available panel testing 770 different genes. RESULTS In total, 48 subjects were enrolled in the study (24 cases, 24 controls); 67 genes were found to be differentially expressed between metastatic and non-metastatic cSCC. Most such genes were involved in immune regulation, skin integrity, angiogenesis, cell migration and proliferation. CONCLUSION The combination of histological and molecular profiles of cSCCs allows the identification of features specific to metastatic cSCC, with potential implications for more precise patient risk stratification.
Collapse
Affiliation(s)
- Alessia Paganelli
- Dermatology Unit, Arcispedale S. Maria Nuova, Azienda Unità Sanitaria Locale IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Marco Zaffonato
- Department of Dermatology, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Benedetta Donati
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (B.D.); (F.T.); (V.M.); (A.C.)
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (B.D.); (F.T.); (V.M.); (A.C.)
| | - Veronica Manicardi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (B.D.); (F.T.); (V.M.); (A.C.)
| | - Michela Lai
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy; (M.L.); (M.S.)
| | - Marco Spadafora
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy; (M.L.); (M.S.)
- Skin Cancer Center, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Simonetta Piana
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 40123 Reggio Emilia, Italy;
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (B.D.); (F.T.); (V.M.); (A.C.)
| | - Caterina Longo
- Department of Dermatology, University of Modena and Reggio Emilia, 41121 Modena, Italy;
- Skin Cancer Center, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| |
Collapse
|
7
|
Ishimura T, Ishii A, Yamada H, Osaki K, Toda N, Mori KP, Ohno S, Kato Y, Handa T, Sugioka S, Ikushima A, Nishio H, Yanagita M, Yokoi H. Matrix metalloproteinase-10 deficiency has protective effects against peritoneal inflammation and fibrosis via transcription factor NFκΒ pathway inhibition. Kidney Int 2023; 104:929-942. [PMID: 37652204 DOI: 10.1016/j.kint.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/24/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
One of the most common causes of discontinued peritoneal dialysis is impaired peritoneal function. However, its molecular mechanisms remain unclear. Previously, by microarray analysis of mouse peritoneum, we showed that MMP (matrix metalloproteinase)-10 expression is significantly increased in mice with peritoneal fibrosis, but its function remains unknown. Chlorhexidine gluconate (CG) was intraperitoneally injected to wild-type and MMP-10 knockout mice to induce fibrosis to elucidate the role of MMP-10 on peritoneal injury. We also examined function of peritoneal macrophages and mesothelial cells obtained from wild-type and MMP-10 knockout mice, MMP-10-overexpressing macrophage-like RAW 264.7 cells and MeT-5A mesothelial cells, investigated MMP-10 expression on peritoneal biopsy specimens, and the association between serum proMMP-10 and peritoneal solute transfer rates determined by peritoneal equilibration test on patients. MMP-10 was expressed in cells positive for WT1, a mesothelial marker, and for MAC-2, a macrophage marker, in the thickened peritoneum of both mice and patients. Serum proMMP-10 levels were well correlated with peritoneal solute transfer rates. Peritoneal fibrosis, inflammation, and high peritoneal solute transfer rates induced by CG were all ameliorated by MMP-10 deletion, with reduction of CD31-positive vessels and VEGF-A-positive cells. Expression of inflammatory mediators and phosphorylation of NFκΒ subunit p65 at S536 were suppressed in both MMP-10 knockout macrophages and mesothelial cells in response to lipopolysaccharide stimulation. Overexpression of MMP-10 in RAW 264.7 and MeT-5A cells upregulated pro-inflammatory cytokines with phosphorylation of NFκΒ subunit p65. Thus, our results suggest that inflammatory responses induced by MMP-10 are mediated through the NFκΒ pathway, and that systemic deletion of MMP-10 ameliorates peritoneal inflammation and fibrosis caused by NFκΒ activation of peritoneal macrophages and mesothelial cells.
Collapse
Affiliation(s)
- Takuya Ishimura
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ishii
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology, Kansai Electric Power Hospital, Osaka, Japan
| | - Hiroyuki Yamada
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Primary Care and Emergency Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keisuke Osaki
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Naohiro Toda
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology, Kansai Electric Power Hospital, Osaka, Japan
| | - Keita P Mori
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology and Dialysis, Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Shoko Ohno
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yukiko Kato
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takaya Handa
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology and Dialysis, Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Sayaka Sugioka
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akie Ikushima
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruomi Nishio
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Hideki Yokoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
8
|
Zhang R, Bu F, Wang Y, Huang M, Lin X, Wu C, Chen J, Huang Y, Wang H, Ye S, Hu X, Wang Q, Zheng L. LncRNA RP4-639F20.1 interacts with THRAP3 to attenuate atherosclerosis by regulating c-FOS in vascular smooth muscle cells proliferation and migration. Atherosclerosis 2023; 379:117183. [PMID: 37549548 DOI: 10.1016/j.atherosclerosis.2023.06.974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND AND AIMS The aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) play an essential role in the pathogenesis of atherosclerosis (AS). Long noncoding RNAs (lncRNAs) have been reported as important regulators in a number of diseases. However, very little is known regarding the functional role of lncRNAs in governing proliferation and migration of VSMCs and AS development. METHODS Both in vitro and in vivo assays were performed to investigate the role of lncRNA in the pathophysiology of AS. Our previous lncRNA arrays revealed that lncRNA RP4-639F20.1 was significantly decreased in atherosclerotic plaques. Lentivirus overexpressing RP4-639F20.1 and lncRNA RP4-639F20.1 silencing vectors (Si-lnc-RP4-639F20.1) were constructed and transfected in VSMCs. The in vitro functions of lncRNA were analyzed by CCK-8 assays, EdU assays, scratch wound assays, transwell assays, qRT-PCR and Western blot analyses. RNA fluorescence in situ hybridization, immunoprecipitation and mRNA microarrays were used to explore the underlying mechanism. Adeno-associated-virus-9 (AAV9) overexpressing RP4-639F20.1 was constructed and injected intravenously into ApoE-/- mice to explore the role of lncRNA in vivo. RESULTS In vitro experiments showed that lncRNA RP4-639F20.1 interacted with THRAP3 and downregulated c-FOS expression. Both increase of lncRNA RP4-639F20.1 expression and knockdown of c-FOS inhibited the expression of MMP10 and VEGF-α in VSMCs and suppressed VSMCs proliferation and migration. In vivo experiments using ApoE-/- mice fed a high-fat diet demonstrated that lncRNA RP4-639F20.1 overexpression deterred atherosclerosis and decreased lipid levels in atherosclerotic lesions. Patients with coronary artery disease were found to have higher c-FOS levels than healthy individuals and c-FOS expression was positively correlated with the SYNTAX score of patients. CONCLUSIONS Overall, these data indicated that lncRNA RP4-639F20.1/THRAP3/c-FOS pathway protects against the development of atherosclerosis by suppressing VSMCs proliferation and migration. LncRNA RP4-639F20.1 and c-FOS could represent potential therapeutic targets to ameliorate atherosclerosis-related diseases.
Collapse
Affiliation(s)
- Ruyi Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Fan Bu
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, People's Republic of China
| | - Yubing Wang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, People's Republic of China
| | - Mei Huang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, People's Republic of China
| | - Xiaomin Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Changmeng Wu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Juanjiang Chen
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, People's Republic of China
| | - Yiyi Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Haifang Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Shu Ye
- Cardiovascular Disease Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; Shantou University Medical College, Shantou, 515041, China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Qian Wang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, People's Republic of China.
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
9
|
Guan Q, Guo ZH, Dai DM, Fan ZX, Chen J, Wu SL, Liu XM, Miao Y, Hu ZQ, Qu Q. Platelet lysate promotes hair growth: In vitro and in vivo mechanism and randomized, controlled trial. Biomed Pharmacother 2023; 161:114517. [PMID: 36913893 DOI: 10.1016/j.biopha.2023.114517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Platelet lysate (PL), a novel platelet derivative, has been widely used in regenerative medicine and is a potential therapy for improving hair growth. It is necessary to fully clarify the potential mechanism and evaluate preliminary clinical effect of PL on hair growth. METHODS We used the C57BL/6 model, organ-cultured hair follicles, and RNA-seq analysis to explore the mechanisms of PL regulating hair growth. Then, we performed a randomized, controlled, double-blind study of 107 AGA patients to verify the therapeutic efficacy of PL. RESULTS The results confirmed that PL improved hair growth and accelerated hair cycling in mice. Organ-cultured hair follicle evaluation confirmed that PL prolonged anagen remarkably and down-regulated IL-6, C-FOS, and p-STAT5a. Clinically, diameter, hair counts, absolute anagen counts and changes from baseline in the PL group showed a significant improvement at 6 months. CONCLUSIONS We elucidated the specific molecular mechanism of PL action on hair growth and proved equal changes in hair follicle performance after PL vs PRP in AGA patients. This study provided novel knowledge of PL, making it ideal for AGA.
Collapse
Affiliation(s)
- Qing Guan
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, China; Department of Plastic and Aesthetic Surgery, Guiyang First People's Hospital, Guiyang, China
| | - Ze-Hong Guo
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Da-Mao Dai
- Department of Plastic and Cosmetic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University Medical College, 1st Affiliated Hospital of Southern University of Science and Technology, China
| | - Zhe-Xiang Fan
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Chen
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Shu-Lin Wu
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Min Liu
- Department of Plastic and Aesthetic Surgery, clifford-hospital, Guangzhou, China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, China.
| | - Zhi-Qi Hu
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, China.
| | - Qian Qu
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Kurokami Y, Ishitsuka Y, Kiyohara E, Tanemura A, Fujimoto M. c-FOS Expression in Metastatic Basal Cell Carcinoma with Spontaneous Basosquamous Transition. Acta Derm Venereol 2023; 103:adv5347. [PMID: 36994778 PMCID: PMC10108615 DOI: 10.2340/actadv.v103.5347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Abstract is missing (Short communication)
Collapse
Affiliation(s)
- Yu Kurokami
- Department of Dermatology, Faculty of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Yosuke Ishitsuka
- Department of Dermatology, Faculty of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan.
| | - Eiji Kiyohara
- Department of Dermatology, Faculty of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Atsushi Tanemura
- Department of Dermatology, Faculty of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Faculty of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
11
|
Liang F, Luo YF, Guo Z, Qian Q, Meng XB, Mo ZH. MicroRNA-139-5p mediates BMSCs impairment in diabetes by targeting HOXA9/c-Fos. FASEB J 2023; 37:e22697. [PMID: 36527387 DOI: 10.1096/fj.202201059r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/13/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
The properties and functions of BMSCs were altered by the diabetic microenvironment, and its mechanism was not very clear. In recent years, the regulation of the function of BMSCs by microRNA has become a research hotspot, meanwhile, HOX genes also have been focused on and involved in multiple functions of stem cells. In this study, we investigated the role of miR-139-5p in diabetes-induced BMSC impairment. Since HOXA9 may be a target gene of miR-139-5p, we speculated that miR-139-5p/HOXA9 might be involved in regulating the biological characteristics and the function of BMSCs in diabetes. We demonstrated that the miR-139-5p expression was increased in BMSCs derived from STZ-induced diabetic rats. MiR-139-5p mimics were able to inhibit cell proliferation, and migration and promoted senescence and apoptosis in vitro. MiR-139-5p induced the down-regulated expression of HOXA9 and c-Fos in BMSCs derived from normal rats. Moreover, miR-139-5p inhibitors reversed the tendency in diabetic-derived BMSCs. Further, gain-and-loss function experiments indicated that miR-139-5p regulated the functions of BMSCs by targeting HOXA9 and c-Fos. In vivo wound model experiments showed that the downregulation of miR-139-5p further promoted the epithelialization and angiogenesis of diabetic BMSC-mediated skin. In conclusion, induction of miR-139-5p upregulation mediated the impairment of BMSCs through the HOXA9/c-Fos pathway in diabetic rats. Therefore, miR-139-5p/HOXA9 might be an important therapeutic target in treating diabetic BMSCs and diabetic complications in the future.
Collapse
Affiliation(s)
- Fang Liang
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Yu-Fang Luo
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Zi Guo
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Qiang Qian
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Xu-Biao Meng
- Department of Endocrinology, Haikou People's Hospital & Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Zhao-Hui Mo
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| |
Collapse
|
12
|
S100 Proteins as Novel Therapeutic Targets in Psoriasis and Other Autoimmune Diseases. Molecules 2022; 27:molecules27196640. [PMID: 36235175 PMCID: PMC9572071 DOI: 10.3390/molecules27196640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 01/07/2023] Open
Abstract
Psoriasis is one of the most common inflammatory skin diseases affecting about 1-3% of the population. One of the characteristic abnormalities in psoriasis is the excessive production of antimicrobial peptides and proteins, which play an essential role in the pathogenesis of the disease. Antimicrobial peptides and proteins can be expressed differently in normal and diseased skin, reflecting their usefulness as diagnostic biomarkers. Moreover, due to their very important functions in innate immunity, members of host defense peptides and proteins are currently considered to be promising new therapeutic targets for many inflammatory diseases. Koebnerisin (S100A15) belongs to an S100 family of antimicrobial proteins, which constitute the multigenetic group of calcium-binding proteins involved in ion-dependent cellular functions and regulation of immune mechanisms. S100A15 was first discovered to be overexpressed in 'koebnerized' psoriatic skin, indicating its involvement in the disease phenotype and the same promising potential as a new therapeutic target. This review describes the involvement of antimicrobial peptides and proteins in inflammatory diseases' development and therapy. The discussion focuses on S100 proteins, especially koebnerisin, which may be involved in the underlying mechanism of the Köebner phenomenon in psoriasis, as well as other immune-mediated inflammatory diseases described in the last decade.
Collapse
|
13
|
Sun Y, Xu L, Li Y, Lin J, Li H, Gao Y, Huang X, Zhu H, Zhang Y, Wei K, Yang Y, Wu B, Zhang L, Li Q, Liu C. Single-Cell Transcriptomics Uncover Key Regulators of Skin Regeneration in Human Long-Term Mechanical Stretch-Mediated Expansion Therapy. Front Cell Dev Biol 2022; 10:865983. [PMID: 35712657 PMCID: PMC9195629 DOI: 10.3389/fcell.2022.865983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Tissue expansion is a commonly performed therapy to grow extra skin invivo for reconstruction. While mechanical stretch-induced epidermal changes have been extensively studied in rodents and cell culture, little is known about the mechanobiology of the human epidermis in vivo. Here, we employed single-cell RNA sequencing to interrogate the changes in the human epidermis during long-term tissue expansion therapy in clinical settings. We also verified the main findings at the protein level by immunofluorescence analysis of independent clinical samples. Our data show that the expanding human skin epidermis maintained a cellular composition and lineage trajectory that are similar to its non-expanding neighbor, suggesting the cellular heterogeneity of long-term expanded samples differs from the early response to the expansion. Also, a decrease in proliferative cells due to the decayed regenerative competency was detected. On the other hand, profound transcriptional changes are detected for epidermal stem cells in the expanding skin versus their non-expanding peers. These include significantly enriched signatures of C-FOS, EMT, and mTOR pathways and upregulation of AREG and SERPINB2 genes. CellChat associated ligand-receptor pairs and signaling pathways were revealed. Together, our data present a single-cell atlas of human epidermal changes in long-term tissue expansion therapy, suggesting that transcriptional change in epidermal stem cells is the major mechanism underlying long-term human skin expansion therapy. We also identified novel therapeutic targets to promote human skin expansion efficiency in the future.
Collapse
Affiliation(s)
- Yidan Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luwen Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yin Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jian Lin
- Department of Orthopedics, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haizhou Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yashan Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolu Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hainan Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingfan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kunchen Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yali Yang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Laser Cosmetology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baojin Wu
- Department of Plastic Surgery, Shanghai Huashan Hospital, Fudan University School of Medicine, Shanghai, China
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caiyue Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Tang H, Roy P, Di Q, Ma X, Xiao Y, Wu Z, Quan J, Zhao J, Xiao W, Chen W. Synthesis compound XCR-7a ameliorates LPS-induced inflammatory response by inhibiting the phosphorylation of c-Fos. Biomed Pharmacother 2021; 145:112468. [PMID: 34847479 DOI: 10.1016/j.biopha.2021.112468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/26/2022] Open
Abstract
Inflammation is a biological process closely related to different kinds of diseases, such as cancer and metabolic diseases. Therefore, effective control of the occurrence and development of inflammation is of great significance for disease prevention and control. Recently, 2-substituted indoles have gradually become a research hotspot because of their stability and pharmacological activity. Here we synthesized a series of compound containing 2-substituted indoles and investigated XCR-7a's role in inflammatory response. Our data show that XCR-7a can inhibit the production of inflammatory cytokines interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and inflammatory mediator cyclooxygenase-2 (COX-2) induced by lipopolysaccharide (LPS) in mouse peritoneal macrophages. Also, XCR-7a has a protective effect on LPS-induced inflammatory response in mice. Mechanically, we found that XCR-7a could inhibit the phosphorylation of c-Fos induced by LPS, which suggested that the protective effect of XCR-7a on inflammation was related to its negative regulation to phosphorylation of c-Fos. Briefly, our results demonstrated that XCR-7a could be expected to be a potential drug for controlling inflammation.
Collapse
Affiliation(s)
- Haimei Tang
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Prasanta Roy
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Qianqian Di
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xingyu Ma
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yue Xiao
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Zherui Wu
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jiazheng Quan
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jiajing Zhao
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Weilin Chen
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
15
|
Beck MA, Fischer H, Grabner LM, Groffics T, Winter M, Tangermann S, Meischel T, Zaussinger‐Haas B, Wagner P, Fischer C, Folie C, Arand J, Schöfer C, Ramsahoye B, Lagger S, Machat G, Eisenwort G, Schneider S, Podhornik A, Kothmayer M, Reichart U, Glösmann M, Tamir I, Mildner M, Sheibani‐Tezerji R, Kenner L, Petzelbauer P, Egger G, Sibilia M, Ablasser A, Seiser C. DNA hypomethylation leads to cGAS-induced autoinflammation in the epidermis. EMBO J 2021; 40:e108234. [PMID: 34586646 PMCID: PMC8591534 DOI: 10.15252/embj.2021108234] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
DNA methylation is a fundamental epigenetic modification, important across biological processes. The maintenance methyltransferase DNMT1 is essential for lineage differentiation during development, but its functions in tissue homeostasis are incompletely understood. We show that epidermis-specific DNMT1 deletion severely disrupts epidermal structure and homeostasis, initiating a massive innate immune response and infiltration of immune cells. Mechanistically, DNA hypomethylation in keratinocytes triggered transposon derepression, mitotic defects, and formation of micronuclei. DNA release into the cytosol of DNMT1-deficient keratinocytes activated signaling through cGAS and STING, thus triggering inflammation. Our findings show that disruption of a key epigenetic mark directly impacts immune and tissue homeostasis, and potentially impacts our understanding of autoinflammatory diseases and cancer immunotherapy.
Collapse
|
16
|
Kuonen F, Li NY, Haensel D, Patel T, Gaddam S, Yerly L, Rieger K, Aasi S, Oro AE. c-FOS drives reversible basal to squamous cell carcinoma transition. Cell Rep 2021; 37:109774. [PMID: 34610301 PMCID: PMC8515919 DOI: 10.1016/j.celrep.2021.109774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/28/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
While squamous transdifferentiation within subpopulations of adenocarcinomas represents an important drug resistance problem, its underlying mechanism remains poorly understood. Here, using surface markers of resistant basal cell carcinomas (BCCs) and patient single-cell and bulk transcriptomic data, we uncover the dynamic roadmap of basal to squamous cell carcinoma transition (BST). Experimentally induced BST identifies activator protein 1 (AP-1) family members in regulating tumor plasticity, and we show that c-FOS plays a central role in BST by regulating the accessibility of distinct AP-1 regulatory elements. Remarkably, despite prominent changes in cell morphology and BST marker expression, we show using inducible model systems that c-FOS-mediated BST demonstrates reversibility. Blocking EGFR pathway activation after c-FOS induction partially reverts BST in vitro and prevents BST features in both mouse models and human tumors. Thus, by identifying the molecular basis of BST, our work reveals a therapeutic opportunity targeting plasticity as a mechanism of tumor resistance.
Collapse
MESH Headings
- Animals
- Carcinoma, Basal Cell/metabolism
- Carcinoma, Basal Cell/pathology
- Carcinoma, Basal Cell/veterinary
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/veterinary
- Cell Transdifferentiation/drug effects
- Chromatin Assembly and Disassembly
- Drug Resistance, Neoplasm/genetics
- Humans
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mucin-1/metabolism
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-fos/antagonists & inhibitors
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/metabolism
- RNA Interference
- RNA, Small Interfering/metabolism
- Signal Transduction/drug effects
- Transcription Factor AP-1/metabolism
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- François Kuonen
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, 1011 Lausanne, Switzerland.
| | - Nancy Yanzhe Li
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Haensel
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tiffany Patel
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sadhana Gaddam
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Yerly
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, 1011 Lausanne, Switzerland
| | - Kerri Rieger
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sumaira Aasi
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anthony E Oro
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
17
|
Bayazid AB, Jang YA. The Role of Andrographolide on Skin Inflammations and Modulation of Skin Barrier Functions in Human Keratinocyte. BIOTECHNOL BIOPROC E 2021; 26:804-813. [DOI: 10.1007/s12257-020-0289-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
|
18
|
Miyake T, McDermott JC. Nucleolar localization of c-Jun. FEBS J 2021; 289:748-765. [PMID: 34499807 DOI: 10.1111/febs.16187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 01/20/2023]
Abstract
Nucleoli are well defined for their function in ribosome biogenesis, but only a small fraction of the nucleolar proteome has been characterized. Here, we report that the proto-oncogene, c-Jun, is targeted to the nucleolus. Using live cell imaging in myogenic cells, we document that the c-Jun basic domain contains a unique, evolutionarily conserved motif that determines nucleolar targeting. Fos family Jun dimer partners, such as Fra2, while nuclear, do not co-localize with c-Jun in the nucleolus. A point mutation in c-Jun that mimics Fra2 (M260E) in its Nucleolar Localization sequence (NoLS) results in loss of c-Jun nucleolar targeting while still preserving nuclear localization. Fra2 can sequester c-Jun in the nucleoplasm, indicating that the stoichiometric ratio of heterodimeric partners regulates c-Jun nucleolar targeting. Finally, nucleolar localization of c-Jun modulates nucleolar architecture and ribosomal RNA accumulation. These studies highlight a novel role for Jun family proteins in the nucleolus, having potential implications for a diverse array of AP-1-regulated cellular processes.
Collapse
Affiliation(s)
- Tetsuaki Miyake
- Department of Biology, York University, Toronto, ON, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | - John C McDermott
- Department of Biology, York University, Toronto, ON, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada.,Centre for Research in Mass Spectrometry (CRMS), York University, Toronto, ON, Canada
| |
Collapse
|
19
|
Haensel D, Jin S, Sun P, Cinco R, Dragan M, Nguyen Q, Cang Z, Gong Y, Vu R, MacLean AL, Kessenbrock K, Gratton E, Nie Q, Dai X. Defining Epidermal Basal Cell States during Skin Homeostasis and Wound Healing Using Single-Cell Transcriptomics. Cell Rep 2021; 30:3932-3947.e6. [PMID: 32187560 PMCID: PMC7218802 DOI: 10.1016/j.celrep.2020.02.091] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/07/2020] [Accepted: 02/25/2020] [Indexed: 01/17/2023] Open
Abstract
Our knowledge of transcriptional heterogeneities in epithelial stem and progenitor cell compartments is limited. Epidermal basal cells sustain cutaneous tissue maintenance and drive wound healing. Previous studies have probed basal cell heterogeneity in stem and progenitor potential, but a comprehensive dissection of basal cell dynamics during differentiation is lacking. Using single-cell RNA sequencing coupled with RNAScope and fluorescence lifetime imaging, we identify three non-proliferative and one proliferative basal cell state in homeostatic skin that differ in metabolic preference and become spatially partitioned during wound re-epithelialization. Pseudotemporal trajectory and RNA velocity analyses predict a quasi-linear differentiation hierarchy where basal cells progress from Col17a1Hi/Trp63Hi state to early-response state, proliferate at the juncture of these two states, or become growth arrested before differentiating into spinous cells. Wound healing induces plasticity manifested by dynamic basal-spinous interconversions at multiple basal transcriptional states. Our study provides a systematic view of epidermal cellular dynamics, supporting a revised “hierarchical-lineage” model of homeostasis. Haensel et al. performed a comprehensive dissection of the cellular makeup of skin during homeostasis and wound healing and the molecular heterogeneity and cellular dynamics within its stem-cell-containing epidermal basal layer. Their work provides insights and stimulates further investigation into the mechanism of skin maintenance and repair.
Collapse
Affiliation(s)
- Daniel Haensel
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
- These authors contributed equally
| | - Suoqin Jin
- Department of Mathematics, University of California, Irvine, CA 92697, USA
- These authors contributed equally
| | - Peng Sun
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Rachel Cinco
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Morgan Dragan
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
| | - Quy Nguyen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Zixuan Cang
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| | - Yanwen Gong
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
| | - Remy Vu
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
| | - Adam L. MacLean
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Qing Nie
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
- Department of Mathematics, University of California, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Correspondence: (Q.N.), (X.D.)
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
- Lead Contact
- Correspondence: (Q.N.), (X.D.)
| |
Collapse
|
20
|
Guan Y, Yang YJ, Nagarajan P, Ge Y. Transcriptional and signalling regulation of skin epithelial stem cells in homeostasis, wounds and cancer. Exp Dermatol 2020; 30:529-545. [PMID: 33249665 DOI: 10.1111/exd.14247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
The epidermis and skin appendages are maintained by their resident epithelial stem cells, which undergo long-term self-renewal and multilineage differentiation. Upon injury, stem cells are activated to mediate re-epithelialization and restore tissue function. During this process, they often mount lineage plasticity and expand their fates in response to damage signals. Stem cell function is tightly controlled by transcription machineries and signalling transductions, many of which derail in degenerative, inflammatory and malignant dermatologic diseases. Here, by describing both well-characterized and newly emerged pathways, we discuss the transcriptional and signalling mechanisms governing skin epithelial homeostasis, wound repair and squamous cancer. Throughout, we highlight common themes underscoring epithelial stem cell plasticity and tissue-level crosstalk in the context of skin physiology and pathology.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Youn Joo Yang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
21
|
Arshad T, Mansur F, Palek R, Manzoor S, Liska V. A Double Edged Sword Role of Interleukin-22 in Wound Healing and Tissue Regeneration. Front Immunol 2020; 11:2148. [PMID: 33042126 PMCID: PMC7527413 DOI: 10.3389/fimmu.2020.02148] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
Wound healing and tissue regeneration is an intricate biological process that involves repair of cellular damage and maintenance of tissue integrity. Cascades involved in wound healing and tissue regeneration highly overlap with cancer causing pathways. Usually, subsequent tissue damage events include release of a number of cytokines to accomplish post-trauma restoration. IL-22 is one of the cytokines that are immediately produced to initiate immune response against several tissue impairments. IL-22 is a fundamental mediator in inflammation, mucous production, protective role against pathogens, wound healing, and tissue regeneration. However, accumulating evidence suggests pivotal role of IL-22 in instigation of various cancers due to its pro-inflammatory and tissue repairing activity. In this review, we summarize how healing effects of IL-22, when executed in an uncontrollable fashion can lead to carcinogenesis.
Collapse
Affiliation(s)
- Tanzeela Arshad
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Fizzah Mansur
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Richard Palek
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Sobia Manzoor
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Vaclav Liska
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| |
Collapse
|
22
|
Deciphering the Molecular Landscape of Cutaneous Squamous Cell Carcinoma for Better Diagnosis and Treatment. J Clin Med 2020; 9:jcm9072228. [PMID: 32674318 PMCID: PMC7408826 DOI: 10.3390/jcm9072228] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common type of neoplasia, representing a terrible burden on patients' life and clinical management. Although it seldom metastasizes, and most cases can be effectively treated with surgical intervention, once metastatic cSCC displays considerable aggressiveness leading to the death of affected individuals. No consensus has been reached as to which features better characterize the aggressive behavior of cSCC, an achievement hindered by the high mutational burden caused by chronic ultraviolet light exposure. Even though some subtypes have been recognized as high risk variants, depending on certain tumor features, cSCC that are normally thought of as low risk could pose an increased danger to the patients. In light of this, specific genetic and epigenetic markers for cutaneous SCC, which could serve as reliable diagnostic markers and possible targets for novel treatment development, have been searched for. This review aims to give an overview of the mutational landscape of cSCC, pointing out established biomarkers, as well as novel candidates, and future possible molecular therapies for cSCC.
Collapse
|
23
|
AL-Eitan LN, Alghamdi MA, Tarkhan AH, Al-Qarqaz FA. Genome-Wide Tiling Array Analysis of HPV-Induced Warts Reveals Aberrant Methylation of Protein-Coding and Non-Coding Regions. Genes (Basel) 2019; 11:E34. [PMID: 31892232 PMCID: PMC7017144 DOI: 10.3390/genes11010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 12/18/2022] Open
Abstract
The human papillomaviruses (HPV) are a group of double-stranded DNA viruses that exhibit an exclusive tropism for squamous epithelia. HPV can either be low- or high-risk depending on its ability to cause benign lesions or cancer, respectively. Unsurprisingly, the majority of epigenetic research has focused on the high-risk HPV types, neglecting the low-risk types in the process. Therefore, the main objective of this study is to better understand the epigenetics of wart formation by investigating the differences in methylation between HPV-induced cutaneous warts and normal skin. A number of clear and very significant differences in methylation patterns were found between cutaneous warts and normal skin. Around 55% of the top-ranking 100 differentially methylated genes in warts were protein coding, including the EXOC4, KCNU, RTN1, LGI1, IRF2, and NRG1 genes. Additionally, non-coding RNA genes, such as the AZIN1-AS1, LINC02008, and MGC27382 genes, constituted 11% of the top-ranking 100 differentially methylated genes. Warts exhibited a unique pattern of methylation that is a possible explanation for their transient nature. Since the genetics of cutaneous wart formation are not completely known, the findings of the present study could contribute to a better understanding of how HPV infection modulates host methylation to give rise to warts in the skin.
Collapse
Affiliation(s)
- Laith N. AL-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan;
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
| | - Amneh H. Tarkhan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Firas A. Al-Qarqaz
- Department of Internal Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
- Division of Dermatology, Department of Internal Medicine, King Abdullah University Hospital, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
24
|
Sultana S, Bishayi B. Potential anti-arthritic and anti-inflammatory effects of TNF-α processing inhibitor-1 (TAPI-1): A new approach to the treatment of S. aureus arthritis. Immunobiology 2019; 225:151887. [PMID: 31822434 DOI: 10.1016/j.imbio.2019.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
Treatment of septic arthritis has become more challenging due to the rise of multidrug resistant strains of Staphylococcus aureus (S. aureus) in recent years. Failure of antibiotic therapies has compelled to initiate the search for new alternatives. This study aimed to unveil the potential anti-arthritic effects of TAPI-1 (TNF-α processing inhibitor-1), an inhibitor that inhibits TACE (TNF-α converting enzyme) mediated release of soluble TNF-α and its receptors along with attenuation of other inflammatory and joint destructive factors responsible for the progression of arthritis. Male Swiss albino mice were inoculated with live S. aureus (5 × 106 cells/mouse) for the development of septic arthritis. TAPI-1 was administered intraperitoneally (10 mg/kg body weight) post S. aureus infection at regular intervals. Throughout the experiment, the severity of arthritis was obtained to be significantly low after TAPI-1 administration. Arthritis index and histopathology confirmed effectiveness of TAPI-1 in mitigating inflammation induced paw swelling and less bone-cartilage destruction in the arthritic knee joints. Lower levels of soluble tumor necrosis factor alpha (sTNF-α) and soluble tumor necrosis factor alpha receptor-1 (sTNFR-1) were detected in the TAPI-1 treated group suggesting TAPI-1 mediated blocking of TACE with subsequent inhibition of TNF-α signalling. Treatment with TAPI-1 lowered the levels of reactive species; matrix metalloproteinase-2 (MMP-2), receptor activator of nuclear factor kappa-B ligand (RANKL) and osteopontin (OPN) denoting less matrix degradation and less osteoclastic bone resorption. Together, this experimental work authenticates TAPI-1 as an alternative therapeutic intervention for the treatment of S. aureus arthritis.
Collapse
Affiliation(s)
- Sahin Sultana
- Department of Physiology, Immunology and Microbiology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700 009, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology and Microbiology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700 009, West Bengal, India.
| |
Collapse
|
25
|
Myricetin inhibits migration and invasion of hepatocellular carcinoma MHCC97H cell line by inhibiting the EMT process. Oncol Lett 2019; 18:6614-6620. [PMID: 31788118 PMCID: PMC6865832 DOI: 10.3892/ol.2019.10998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 08/17/2019] [Indexed: 12/15/2022] Open
Abstract
The recurrence and metastasis of hepatocellular carcinoma (HCC) are a major concern in current research. Epithelial-mesenchymal transition (EMT) is the leading cause underlying the high mobility and invasiveness of tumor cells. Myricetin is a natural flavonol with various pharmacological activities. The effects of myricetin on the migration and invasion of HCC MHCC97H cells were evaluated in the present study. Wound healing, Transwell migration and invasion assays were used to examine cell migration and invasion. Western blot analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to examine the expression of epithelial (E)-cadherin, neural (N)-cadherin and vimentin. The present study aimed to investigate the effects of myricetin on the migration and invasion of HCC MHCC97H cells. It was indicated that myricetin decreased the viability of MHCC97H cells in a concentration and time-dependent manner, and inhibited MHCC97H cells migration and invasion. As the concentration of myricetin increased, filopodia and lamellipodia in cells weakened and cells were arranged more closely. RT-qPCR and western blotting revealed that myricetin upregulated E-cadherin expression and downregulated N-cadherin. Collectively, the results of the present study demonstrate that myricetin may inhibit the migration and invasion of HCC MHCC97H cells by inhibiting the EMT process.
Collapse
|
26
|
Gao X, Sun Y, Li X. Identification of key gene modules and transcription factors for human osteoarthritis by weighted gene co-expression network analysis. Exp Ther Med 2019; 18:2479-2490. [PMID: 31572500 PMCID: PMC6755469 DOI: 10.3892/etm.2019.7848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 07/08/2019] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent causes of joint disease. However, the pathological mechanisms of OA have remained to be completely elucidated, and further investigation into the underlying mechanisms of OA development and the identification of novel therapeutic targets are urgently required. In the present study, the dataset GSE114007 was downloaded from the Gene Expression Omnibus database. Based on weighted gene co-expression network analysis (WGCNA) and the identification of differentially expressed genes (DEGs), the microarray data were further analyzed to identify hub genes, key transcription factors (TFs) and pivotal signaling pathways involved in the pathogenesis of OA. A total of 1,898 genes were identified to be differentially expressed between OA samples and normal samples. Based on WGCNA, the present study identified 5 hub modules closely associated with OA, and the potential key TFs for hub modules were further explored based on CisTargetX. The results demonstrated that B-Cell Lymphoma 6, Myelin Gene Expression Factor 2, Activating Transcription Factor 3, CCAAT Enhancer Binding Protein γ, Nuclear Factor Interleukin-3-Regulated, FOS Like Antigen-2, FOS-Like Antigen-1, Fos Proto-Oncogene, JunD Proto-Oncogene, Transcription Factor CP2 Like 1, RELA proto-oncogene NF-kB subunit, SRY-box transcription factor 3, V-Ets Avian Erythroblastosis Virus E26 Oncogene Homolog 2, Interferon Regulatory Factor 4 and REL proto-oncogene, NF-kB subunit were the potential key TFs. In addition, osteoclast differentiation, FoxO, MAPK and PI3K/Akt signaling pathways were revealed to be imperative for the pathogenesis of OA, as these 4 pivotal signaling pathways were observed to be tightly linked through 4 key TFs Fos Proto-Oncogene, JUN, JunD Proto-Oncogene and MYC, and 4 DEGs Vascular Endothelial Growth Factor A, Growth Arrest and DNA Damage Inducible α, Growth Arrest and DNA Damage Inducible β and Cyclin D1. The present study identified a set of potential key genes and signaling pathways, and provided an important opportunity to advance the current understanding of OA.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Orthopedic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Yu Sun
- Department of Orthopedic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Xu Li
- Department of Orthopedic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
27
|
Grafanaki K, Anastasakis D, Kyriakopoulos G, Skeparnias I, Georgiou S, Stathopoulos C. Translation regulation in skin cancer from a tRNA point of view. Epigenomics 2018; 11:215-245. [PMID: 30565492 DOI: 10.2217/epi-2018-0176] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein synthesis is a central and dynamic process, frequently deregulated in cancer through aberrant activation or expression of translation initiation factors and tRNAs. The discovery of tRNA-derived fragments, a new class of abundant and, in some cases stress-induced, small Noncoding RNAs has perplexed the epigenomics landscape and highlights the emerging regulatory role of tRNAs in translation and beyond. Skin is the biggest organ in human body, which maintains homeostasis of its multilayers through regulatory networks that induce translational reprogramming, and modulate tRNA transcription, modification and fragmentation, in response to various stress signals, like UV irradiation. In this review, we summarize recent knowledge on the role of translation regulation and tRNA biology in the alarming prevalence of skin cancer.
Collapse
Affiliation(s)
- Katerina Grafanaki
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece.,Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Dimitrios Anastasakis
- National Institute of Musculoskeletal & Arthritis & Skin, NIH, 50 South Drive, Room 1152, Bethesda, MD 20892, USA
| | - George Kyriakopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Ilias Skeparnias
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Sophia Georgiou
- Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | | |
Collapse
|
28
|
Inman GJ, Wang J, Nagano A, Alexandrov LB, Purdie KJ, Taylor RG, Sherwood V, Thomson J, Hogan S, Spender LC, South AP, Stratton M, Chelala C, Harwood CA, Proby CM, Leigh IM. The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature. Nat Commun 2018; 9:3667. [PMID: 30202019 PMCID: PMC6131170 DOI: 10.1038/s41467-018-06027-1] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) has a high tumour mutational burden (50 mutations per megabase DNA pair). Here, we combine whole-exome analyses from 40 primary cSCC tumours, comprising 20 well-differentiated and 20 moderately/poorly differentiated tumours, with accompanying clinical data from a longitudinal study of immunosuppressed and immunocompetent patients and integrate this analysis with independent gene expression studies. We identify commonly mutated genes, copy number changes and altered pathways and processes. Comparisons with tumour differentiation status suggest events which may drive disease progression. Mutational signature analysis reveals the presence of a novel signature (signature 32), whose incidence correlates with chronic exposure to the immunosuppressive drug azathioprine. Characterisation of a panel of 15 cSCC tumour-derived cell lines reveals that they accurately reflect the mutational signatures and genomic alterations of primary tumours and provide a valuable resource for the validation of tumour drivers and therapeutic targets.
Collapse
Affiliation(s)
- Gareth J Inman
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| | - Jun Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| | - Ai Nagano
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Karin J Purdie
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Richard G Taylor
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Victoria Sherwood
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Jason Thomson
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Sarah Hogan
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Lindsay C Spender
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Michael Stratton
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Claude Chelala
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Charlotte M Proby
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Irene M Leigh
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
29
|
Amôr NG, de Oliveira CE, Gasparoto TH, Vilas Boas VG, Perri G, Kaneno R, Lara VS, Garlet GP, da Silva JS, Martins GA, Hogaboam C, Cavassani KA, Campanelli AP. ST2/IL-33 signaling promotes malignant development of experimental squamous cell carcinoma by decreasing NK cells cytotoxicity and modulating the intratumoral cell infiltrate. Oncotarget 2018; 9:30894-30904. [PMID: 30112116 PMCID: PMC6089399 DOI: 10.18632/oncotarget.25768] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 05/19/2018] [Indexed: 02/06/2023] Open
Abstract
Squamous cell carcinoma (SCC) is the second most common form of skin cancer and the mechanism(s) involved in the progression of this tumor are unknown. Increases in the expression of IL-33/ST2 axis components have been demonstrated to contribute to neoplastic transformation in several tumor models and interleukin-33 is correlated with poor prognosis of patients with squamous cell carcinoma of the tongue. Based on these observations, we sought to determine the role of the IL-33/ST2 pathway during the development of SCC. Our findings show that ST2-deficiency led to a marked decrease in the severity of skin lesions, suggesting that ST2 signaling contributed to tumor development. An analysis of tumor lesions in wild-type and ST2KO mice revealed that a lack of ST2 was associated with specific and significant reductions in the numbers of CD4+ T cells, CD8+ T cells, dendritic cells, and macrophages. In addition, NK cells that were isolated from ST2KO mice exhibited higher cytotoxic activity than cells isolated from wild-type mice. Notably, ST2 deficiency resulted in lower IFN-γ, TNF-α, IL-10, and IL-17 production in tumor samples. Our findings indicate that the IL-33/ST2 pathway contributes to the development of SCC by affecting leukocyte migration to tumor microenvironment and impairing NK cytotoxic activity.
Collapse
Affiliation(s)
- Nádia Ghinelli Amôr
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Dr. Octávio Pinheiro Brisolla, Bauru, SP, 17012-901, Brazil
| | - Carine Ervolino de Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Dr. Octávio Pinheiro Brisolla, Bauru, SP, 17012-901, Brazil
| | - Thaís Helena Gasparoto
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Dr. Octávio Pinheiro Brisolla, Bauru, SP, 17012-901, Brazil
| | - Vanessa Garcia Vilas Boas
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Dr. Octávio Pinheiro Brisolla, Bauru, SP, 17012-901, Brazil
| | - Graziela Perri
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Dr. Octávio Pinheiro Brisolla, Bauru, SP, 17012-901, Brazil
| | - Ramon Kaneno
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, São Paulo State University, R. Prof. Dr. Antônio Celso Wagner Zanin, Botucatu, SP, 18618-689, Brazil
| | - Vanessa Soares Lara
- Department of Stomatology - Oral Pathology, Bauru School of Dentistry, University of São Paulo, Al. Dr. Octávio Pinheiro Brisolla, Bauru, SP, 17012-901, Brazil
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Dr. Octávio Pinheiro Brisolla, Bauru, SP, 17012-901, Brazil
| | - João Santana da Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Gislâine A Martins
- Department of Biomedical Sciences (Research Division of Immunology) and Medicine, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Cory Hogaboam
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Karen A Cavassani
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ana Paula Campanelli
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Dr. Octávio Pinheiro Brisolla, Bauru, SP, 17012-901, Brazil
| |
Collapse
|
30
|
Increased S100A15 expression and decreased DNA methylation of its gene promoter are involved in high metastasis potential and poor outcome of lung adenocarcinoma. Oncotarget 2018; 8:45710-45724. [PMID: 28498804 PMCID: PMC5542220 DOI: 10.18632/oncotarget.17391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/10/2017] [Indexed: 01/02/2023] Open
Abstract
Purpose This study aims to determine the functional role of S100A15 and its promoter DNA methylation patterns in lung cancer progression. Experimental Design We analyzed 178 formalin-fixed paraffin embedded specimens from lung cancer patients, including 24 early stage and 91 advanced stage adenocarcinoma. S100A15 protein expression was evaluated by immunohistochemistry stain, and its DNA methylation levels were measured by pyrosequencing. Results S100A15 nuclear staining was increased in lung adenocarcinoma patients with distant metastasis versus those without distant metastasis. There was reduced one/three-year overall survival in adenocarcinoma patients receiving first line target therapy and harboring high nuclear expressions of S100A15. Both DNA methylation levels over -423 and -248 CpG sites of the S100A15 gene promoter were decreased in adenocarcinoma patients with distant metastasis, and the former was associated with lower one-year overall survival. The highly invasive CL1-5 cell lines display decreased DNA methylation over −412/−248/−56 CpG sites of the S100A15 gene promoter and increased S100A15 gene/protein expressions as compared with the less invasive CL1-0 cell lines. Knockdown of S100A15 in CL1-5 cell line inhibited cell proliferation, migration, and invasion, while over-expression of S100A15 in CL1-0 cell line promoted cell proliferation, migration, and invasion. RNA sequencing analysis revealed potential biological effects of S100A15 over-expression and knock-down with CTNNB1, ZEB1, CDC42, HSP90AA1, BST2, and PCNA being the pivotal down-stream mediators. Conclusions Increased S100A15 expression and decreased DNA methylation of its gene promoter region were associated with high metastasis potential and poor outcome in lung adenocarcinoma, probably through triggering CTNNB1 -centered pathways.
Collapse
|
31
|
IL27 controls skin tumorigenesis via accumulation of ETAR-positive CD11b cells in the pre-malignant skin. Oncotarget 2018; 7:77138-77151. [PMID: 27738312 PMCID: PMC5363575 DOI: 10.18632/oncotarget.12581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 09/02/2016] [Indexed: 12/13/2022] Open
Abstract
Establishment of a permissive pre-malignant niche in concert with mutant stem are key triggers to initiate skin carcinogenesis. An understudied area of research is finding upstream regulators of both these triggers. IL27, a pleiotropic cytokine with both pro- and anti-inflammatory properties, was found to be a key regulator of both. Two step skin carcinogenesis model and K15-KRASG12D mouse model were used to understand the role of IL27 in skin tumors. CD11b−/− mice and small-molecule of ETAR signaling (ZD4054) inhibitor were used in vivo to understand mechanistically how IL27 promotes skin carcinogenesis. Interestingly, using in vivo studies, IL27 promoted papilloma incidence primarily through IL27 signaling in bone-marrow derived cells. Mechanistically, IL27 initiated the establishment of the pre-malignant niche and expansion of mutated stem cells in K15-KRASG12D mouse model by driving the accumulation of Endothelin A receptor (ETAR)-positive CD11b cells in the skin—a novel category of pro-tumor inflammatory identified in this study. These findings are clinically relevant, as the number of IL27RA-positive cells in the stroma is highly related to tumor de-differentiation in patients with squamous cell carcinomas.
Collapse
|
32
|
Suppression of skin tumorigenesis in CD109-deficient mice. Oncotarget 2018; 7:82836-82850. [PMID: 27756876 PMCID: PMC5347736 DOI: 10.18632/oncotarget.12653] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/02/2016] [Indexed: 12/17/2022] Open
Abstract
CD109 is a glycosylphosphatidylinositol-anchored glycoprotein that is highly expressed in several types of human cancers, particularly squamous cell carcinomas. We previously reported that CD109-deficient mice exhibit epidermal hyperplasia and chronic skin inflammation. Although we found that CD109 regulates differentiation of keratinocytes in vivo, the function of CD109 in tumorigenesis remains unknown. In this study, we investigated the role of CD109 in skin tumorigenesis using a two-stage carcinogenesis model in CD109-deficient mice with chronic skin inflammation. Immunohistochemical analysis revealed a higher level of TGF-β protein expression in the dermis of CD109-deficient mice than in that of wild-type mice. Additionally, immunofluorescence analysis showed that Smad2 phosphorylation and Nrf2 expression were enhanced in primary keratinocytes from CD109-deficient mice compared with in those from wild-type mice. Although no significant difference was found in conversion rates from papilloma to carcinoma between wild-type and CD109-deficient mice in the carcinogenesis model, we observed fewer and smaller papillomas in CD109-deficient mice than in wild-type mice. Apoptosis and DNA damage marker levels were significantly reduced in CD109-deficient skin compared with in wild-type skin at 24 h after 7, 12-dimethylbenz (α) anthracene treatment. Furthermore, mutation-specific PCR revealed that the mutation frequency of the H-ras gene was less in CD109-deficient skin than in wild-type skin in this model. These results suggest that CD109 deficiency suppresses skin tumorigenesis by enhancing TGF-β/Smad/Nrf2 pathway activity and decreasing the mutation frequency of the H-ras gene.
Collapse
|
33
|
Ocular surface squamous neoplasia in a setting of fungal keratitis: a rare co-occurrence. Int Ophthalmol 2018; 39:717-720. [DOI: 10.1007/s10792-018-0864-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
|
34
|
Hao Y, Zhu L, Yan L, Liu J, Liu D, Gao N, Tan M, Gao S, Lin B. c-Fos mediates α1, 2-fucosyltransferase 1 and Lewis y expression in response to TGF-β1 in ovarian cancer. Oncol Rep 2017; 38:3355-3366. [PMID: 29130097 PMCID: PMC5783580 DOI: 10.3892/or.2017.6052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 10/06/2017] [Indexed: 12/16/2022] Open
Abstract
FUT1 is a key rate-limiting enzyme in the synthesis of Lewis y, a membrane-associated carbohydrate antigen. The aberrant upregulation of FUT1 and Lewis y antigen is related to proliferation, invasion and prognosis in malignant epithelial tumors. A c-Fos/activator protein-1 (AP-1) binding site was found in the FUT1 promoter. However, the mechanisms of transcriptional regulation of FUT1 remain poorly understood. TGF-β1 is positively correlated to Lewis y. In the present study, we investigated the molecular mechanism of FUT1 gene expression in response to TGF-β1. We demonstrated that c-Fos was highly expressed in 77.50% of ovarian epithelial carcinoma cases and was significantly correlated with Lewis y. Using luciferase activity and chromatin immunoprecipitation (ChIP) assay, we further revealed that c-Fos interacted with the FUT1 promoter in ovarian cancer cells and transcriptional capacity of the heterodimer formed by c-Fos and c-Jun was stronger than that of the c-Fos or c-Jun homodimers. Then, we demonstrated that TGF-β1 induced dose-dependent c-Fos expression, which was involved in TGF-β1-induced ovarian cancer cell proliferation. In addition, inhibition of MAPK activation or TGF-β1 receptor by pharmacological agents prevented TGF-β1-induced c-Fos and Lewis y expression. Silencing of c-Fos prevented TGF-β1-induced Lewis y expression. Collectively, the results of these studies demonstrated that TGF-β1 regulated FUT1 and Lewis y expression by activating the MAPK/c-Fos pathway.
Collapse
Affiliation(s)
- Yingying Hao
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Limei Yan
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Dawo Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Na Gao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Mingzi Tan
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
35
|
Papanagnou P, Stivarou T, Papageorgiou I, Papadopoulos GE, Pappas A. Marketed drugs used for the management of hypercholesterolemia as anticancer armament. Onco Targets Ther 2017; 10:4393-4411. [PMID: 28932124 PMCID: PMC5598753 DOI: 10.2147/ott.s140483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The design of novel pharmacologic agents as well as their approval for sale in markets all over the world is a tedious and pricey process. Inevitably, oncologic patients commonly experience unwanted effects of new anticancer drugs, while the acquisition of clinical experience for these drugs is largely based on doctor–patient partnership which is not always effective. The repositioning of marketed non-antineoplastic drugs that hopefully exhibit anticancer properties into the field of oncology is a challenging option that gains ground and attracts preclinical and clinical research in an effort to override all these hindrances and minimize the risk for reduced efficacy and/or personalized toxicity. This review aims to present the anticancer properties of drugs used for the management of hypercholesterolemia. A global view of the antitumorigenicity of all marketed antihypercholesterolemic drugs is of major importance, given that atherosclerosis, which is etiologically linked to hypercholesterolemia, is a leading worldwide cause of morbidity and mortality, while hypercholesterolemia and tumorigenesis are known to be interrelated. In vitro, in vivo and clinical literature data accumulated so far outline the mechanistic basis of the antitumor function of these agents and how they could find application at the clinical setting.
Collapse
Affiliation(s)
| | - Theodora Stivarou
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, Athens, Greece
| | | | | | | |
Collapse
|
36
|
Bakiri L, Hamacher R, Graña O, Guío-Carrión A, Campos-Olivas R, Martinez L, Dienes HP, Thomsen MK, Hasenfuss SC, Wagner EF. Liver carcinogenesis by FOS-dependent inflammation and cholesterol dysregulation. J Exp Med 2017; 214:1387-1409. [PMID: 28356389 PMCID: PMC5413325 DOI: 10.1084/jem.20160935] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/12/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular cancers arise in a background of liver damage and inflammation. Bakiri et al. describe the function of the transcription factor c-Fos/AP-1 using mouse models and human data. c-Fos affects cholesterol and bile acid metabolism and induces DNA damage and inflammation, thus promoting liver cancer. Human hepatocellular carcinomas (HCCs), which arise on a background of chronic liver damage and inflammation, express c-Fos, a component of the AP-1 transcription factor. Using mouse models, we show that hepatocyte-specific deletion of c-Fos protects against diethylnitrosamine (DEN)-induced HCCs, whereas liver-specific c-Fos expression leads to reversible premalignant hepatocyte transformation and enhanced DEN-carcinogenesis. c-Fos–expressing livers display necrotic foci, immune cell infiltration, and altered hepatocyte morphology. Furthermore, increased proliferation, dedifferentiation, activation of the DNA damage response, and gene signatures of aggressive HCCs are observed. Mechanistically, c-Fos decreases expression and activity of the nuclear receptor LXRα, leading to increased hepatic cholesterol and accumulation of toxic oxysterols and bile acids. The phenotypic consequences of c-Fos expression are partially ameliorated by the anti-inflammatory drug sulindac and largely prevented by statin treatment. An inverse correlation between c-FOS and the LXRα pathway was also observed in human HCC cell lines and datasets. These findings provide a novel link between chronic inflammation and metabolic pathways important in liver cancer.
Collapse
Affiliation(s)
- Latifa Bakiri
- Genes, Development and Disease Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), E-28029 Madrid, Spain
| | - Rainer Hamacher
- Genes, Development and Disease Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), E-28029 Madrid, Spain
| | - Osvaldo Graña
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), E-28029 Madrid, Spain
| | - Ana Guío-Carrión
- Genes, Development and Disease Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), E-28029 Madrid, Spain
| | - Ramón Campos-Olivas
- Spectroscopy and Nuclear Magnetic Resonance Spectroscopy Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), E-28029 Madrid, Spain
| | - Lola Martinez
- Flow Cytometry Core Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), E-28029 Madrid, Spain
| | - Hans P Dienes
- Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin K Thomsen
- Department of Clinical Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Sebastian C Hasenfuss
- Genes, Development and Disease Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), E-28029 Madrid, Spain
| | - Erwin F Wagner
- Genes, Development and Disease Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), E-28029 Madrid, Spain
| |
Collapse
|
37
|
Yamamoto H, Ryu J, Min E, Oi N, Bai R, Zykova TA, Yu DH, Moriyama K, Bode AM, Dong Z. TRAF1 Is Critical for DMBA/Solar UVR-Induced Skin Carcinogenesis. J Invest Dermatol 2017; 137:1322-1332. [PMID: 28131816 DOI: 10.1016/j.jid.2016.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/27/2016] [Accepted: 12/30/2016] [Indexed: 12/15/2022]
Abstract
TRAF1 is a member of the TRAF protein family, which regulates the canonical and noncanonical NF-κB signaling cascades. Although aberrant TRAF1 expression in tumors has been reported, the role of TRAF1 remains elusive. Here, we report that TRAF1 is required for solar UV-induced skin carcinogenesis. Immunohistochemical analysis showed that TRAF1 expression is up-regulated in human actinic keratosis and squamous cell carcinoma. In vivo studies indicated that TRAF1 expression levels in mouse skin are induced by short-term solar UV irradiation, and a long-term skin carcinogenesis study showed that deletion of TRAF1 in mice results in a significant inhibition of skin tumor formation. Moreover, we show that TRAF1 is required for solar UV-induced extracellular signal-regulated kinase-5 (ERK5) phosphorylation and the expression of AP-1 family members (c-Fos/c-Jun). Mechanistic studies showed that TRAF1 expression enhances the ubiquitination of ERK5 on lysine 184, which is necessary for its kinase activity and AP-1 activation. Overall, our results suggest that TRAF1 mediates ERK5 activity by regulating the upstream effectors of ERK5 and also by modulating its ubiquitination status. Targeting TRAF1 function might lead to strategies for preventing and treating skin cancer.
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Joohyun Ryu
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Eli Min
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Naomi Oi
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Ruihua Bai
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Tatyana A Zykova
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Dong Hoon Yu
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Kenji Moriyama
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA.
| |
Collapse
|
38
|
Santana AL, Felsen D, Carucci JA. Interleukin-22 and Cyclosporine in Aggressive Cutaneous Squamous Cell Carcinoma. Dermatol Clin 2017; 35:73-84. [PMID: 27890239 PMCID: PMC5409835 DOI: 10.1016/j.det.2016.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cutaneous squamous cell carcinomas (SCCs) account for up to 10,000 deaths annually in the United States. Most of the more than 700,000 SCCs diagnosed are cured by excision with clear margins; however, metastasis can occur despite seemingly adequate treatment in some cases. Immune-suppressed organ transplant recipients are 60 to 100 times more likely to develop SCC than immune-competent individuals. Transplant-associated SCCs occur more frequently and behave more aggressively, showing higher risk of recurrence and metastasis. This article identifies a potential role for interleukin-22 in driving SCC proliferation, particularly in solid organ transplant recipients taking cyclosporine.
Collapse
Affiliation(s)
- Alexis L Santana
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Diane Felsen
- Institute for Pediatric Urology, Department of Urology, Weill Cornell Medical College, 1300 York Avenue, Box 94, New York, NY 10065, USA
| | - John A Carucci
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
39
|
Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis. Int J Mol Sci 2016; 17:ijms17060868. [PMID: 27271600 PMCID: PMC4926402 DOI: 10.3390/ijms17060868] [Citation(s) in RCA: 657] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/13/2016] [Accepted: 05/30/2016] [Indexed: 12/23/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-containing endopeptidases with an extensive range of substrate specificities. Collectively, these enzymes are able to degrade various components of extracellular matrix (ECM) proteins. Based on their structure and substrate specificity, they can be categorized into five main subgroups, namely (1) collagenases (MMP-1, MMP-8 and MMP-13); (2) gelatinases (MMP-2 and MMP-9); (3) stromelysins (MMP-3, MMP-10 and MMP-11); (4) matrilysins (MMP-7 and MMP-26); and (5) membrane-type (MT) MMPs (MMP-14, MMP-15, and MMP-16). The alterations made to the ECM by MMPs might contribute in skin wrinkling, a characteristic of premature skin aging. In photocarcinogenesis, degradation of ECM is the initial step towards tumor cell invasion, to invade both the basement membrane and the surrounding stroma that mainly comprises fibrillar collagens. Additionally, MMPs are involved in angiogenesis, which promotes cancer cell growth and migration. In this review, we focus on the present knowledge about premature skin aging and skin cancers such as basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma, with our main focus on members of the MMP family and their functions.
Collapse
Affiliation(s)
- Pavida Pittayapruek
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12000, Thailand.
| | - Jitlada Meephansan
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12000, Thailand.
| | - Ornicha Prapapan
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12000, Thailand.
| | - Mayumi Komine
- Department of Dermatology, Jichi Medical University, Tochigi 329-0498, Japan.
| | - Mamitaro Ohtsuki
- Department of Dermatology, Jichi Medical University, Tochigi 329-0498, Japan.
| |
Collapse
|
40
|
Agilan B, Rajendra Prasad N, Kanimozhi G, Karthikeyan R, Ganesan M, Mohana S, Velmurugan D, Ananthakrishnan D. Caffeic Acid Inhibits Chronic UVB-Induced Cellular Proliferation Through JAK-STAT3 Signaling in Mouse Skin. Photochem Photobiol 2016; 92:467-74. [DOI: 10.1111/php.12588] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/29/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Balupillai Agilan
- Department of Biochemistry and Biotechnology; Annamalai University; Chidambaram Tamilnadu India
| | - N. Rajendra Prasad
- Department of Biochemistry and Biotechnology; Annamalai University; Chidambaram Tamilnadu India
| | - Govindasamy Kanimozhi
- Department of Biochemistry and Biotechnology; Annamalai University; Chidambaram Tamilnadu India
| | - Ramasamy Karthikeyan
- Department of Biochemistry and Biotechnology; Annamalai University; Chidambaram Tamilnadu India
| | - Muthusamy Ganesan
- Department of Biochemistry and Biotechnology; Annamalai University; Chidambaram Tamilnadu India
| | - Shanmugam Mohana
- Department of Biochemistry and Biotechnology; Annamalai University; Chidambaram Tamilnadu India
| | - Devadasan Velmurugan
- Bioinformatics Infrastructure Facility (BIF); University of Madras; Chennai Tamilnadu India
| | | |
Collapse
|
41
|
Tong WY, Sweetman MJ, Marzouk ER, Fraser C, Kuchel T, Voelcker NH. Towards a subcutaneous optical biosensor based on thermally hydrocarbonised porous silicon. Biomaterials 2016; 74:217-30. [DOI: 10.1016/j.biomaterials.2015.09.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 11/28/2022]
|
42
|
Roos J, Grösch S, Werz O, Schröder P, Ziegler S, Fulda S, Paulus P, Urbschat A, Kühn B, Maucher I, Fettel J, Vorup-Jensen T, Piesche M, Matrone C, Steinhilber D, Parnham MJ, Maier TJ. Regulation of tumorigenic Wnt signaling by cyclooxygenase-2, 5-lipoxygenase and their pharmacological inhibitors: A basis for novel drugs targeting cancer cells? Pharmacol Ther 2016; 157:43-64. [PMID: 26549540 DOI: 10.1016/j.pharmthera.2015.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Hu X, Zhao M, Wang Y, Wang Y, Zhao S, Wu J, Li X, Peng S. Tetrahydro-β-carboline-3-carboxyl-thymopentin: a nano-conjugate for releasing pharmacophores to treat tumor and complications. J Mater Chem B 2015; 4:1384-1397. [PMID: 32263105 DOI: 10.1039/c5tb01930c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To improve the therapeutic efficacy of cancer patients a novel conjugate of thymopentin (TP5) and (1S,3S)-1-methyl-tetrahydro-β-carboline-3-carboxylic acid (MTC) was presented. In water and mouse plasma MTCTP5 forms the nanoparticles of 14-139 nm in diameter, the suitable size for delivery in blood circulation. In mouse plasma MTCTP5 releases MTC, while in the presence of trypsin MTCTP5 releases MTC and TP5. On mouse and rat models the MTCTP5 dose dependently slows down the tumor growth, inhibits inflammatory response and blocks thrombosis. The anti-tumor activity as well as the anti-inflammation activity and anti-thrombotic activity of MTCTP5 are 100 fold and 10 fold higher than those of MTC, respectively, which are attributed to the fact that it down-regulates the plasma levels of TNF-α and IL-8 of the treated animals. The immunology enhancing activities in vitro and in vivo of MTCTP5 are similar to those of TP5, which is attributed to the fact that MTCTP5 up-regulates the plasma levels of IL-2 and CD4 as well as down-regulates the plasma level of CD8 of the treated animals. The plasma alanine transaminase, aspartate transaminase and creatinine assays indicate that MTCTP5 therapy does not injure the liver and the kidney of the animals. The survival time of MTCTP5 treated mice is significantly longer than that of TP5 treated mice.
Collapse
Affiliation(s)
- Xi Hu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Yang H, Schramek D, Adam RC, Keyes BE, Wang P, Zheng D, Fuchs E. ETS family transcriptional regulators drive chromatin dynamics and malignancy in squamous cell carcinomas. eLife 2015; 4:e10870. [PMID: 26590320 PMCID: PMC4739765 DOI: 10.7554/elife.10870] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/20/2015] [Indexed: 01/08/2023] Open
Abstract
Tumor-initiating stem cells (SCs) exhibit distinct patterns of transcription factors and gene expression compared to healthy counterparts. Here, we show that dramatic shifts in large open-chromatin domain (super-enhancer) landscapes underlie these differences and reflect tumor microenvironment. By in vivo super-enhancer and transcriptional profiling, we uncover a dynamic cancer-specific epigenetic network selectively enriched for binding motifs of a transcription factor cohort expressed in squamous cell carcinoma SCs (SCC-SCs). Many of their genes, including Ets2 and Elk3, are themselves regulated by SCC-SC super-enhancers suggesting a cooperative feed-forward loop. Malignant progression requires these genes, whose knockdown severely impairs tumor growth and prohibits progression from benign papillomas to SCCs. ETS2-deficiency disrupts the SCC-SC super-enhancer landscape and downstream cancer genes while ETS2-overactivation in epidermal-SCs induces hyperproliferation and SCC super-enhancer-associated genes Fos, Junb and Klf5. Together, our findings unearth an essential regulatory network required for the SCC-SC chromatin landscape and unveil its importance in malignant progression. DOI:http://dx.doi.org/10.7554/eLife.10870.001 Many cancers contain a mixture of different types of cells. Of these, cells known as cancer stem cells can form new tumours and drive the growth and spread of the cancer around the body. A central question is how cancer stem cells differ from healthy adult stem cells. Recent evidence suggests that, in addition to having genetic mutations, cancer stem cells live in a very different environment to other cells within the tumour. This 'microenvironment'also has a major impact on how these cells behave compared to normal stem cells. Together, the genetic and environmental differences profoundly change the way genes are expressed in the cancer cells. In 2013, a group of researchers identified regions of DNA called super-enhancers. These regions are long stretches of DNA that proteins called transcription factors can interact with to coordinate the expression of nearby genes to alter the production of certain proteins. Super-enhancers contain several transcription factor-binding sites that are close to each other with the different sites being associated with transcription factors that are only active in specific types of cells. Furthermore, super-enhancers are often self-regulatory, meaning that the binding of transcription factors to a super-enhancer can lead to an increase in the expression of the genes that encode the same transcription factors. Yang, Schramek et al. have now identified the super-enhancers in a skin cancer called squamous cell carcinoma and showed that they differ dramatically from the super-enhancers of normal skin stem cells. Their experiments show that the active super-enhancers in cancer stem cells are associated with a very different set of genes that are highly and often specifically expressed in cancer stem cells. In the cancer stem cells, a transcription factor called ETS2 binds to the super-enhancers and reprograms the expression of genes to promote the development of cancer. Yang, Schramek et al. also show that over-active ETS2 is a major driver of squamous cell carcinoma. Furthermore, ETS2 also increases the expression of genes that cause inflammation and promote the growth of cancers. Yang, Schramek et al.’s findings reveal a new regulatory network that governs the expression of genes involved in cancer. Furthermore, the experiments show that high levels of ETS2 are linked with poor outcomes for patients with head and neck squamous cell carcinoma, which is one of the most life-threatening cancers world-wide. In the future, these findings might lead to the development of new therapies to treat these cancers. DOI:http://dx.doi.org/10.7554/eLife.10870.002
Collapse
Affiliation(s)
- Hanseul Yang
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
| | - Daniel Schramek
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
| | - Rene C Adam
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
| | - Brice E Keyes
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
| | - Ping Wang
- Department of Neurology, Albert Einstein College of Medicine, New York, United States
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, New York, United States.,Departments of Genetics and Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
| |
Collapse
|
45
|
Lewis JM, Bürgler CD, Freudzon M, Golubets K, Gibson JF, Filler RB, Girardi M. Langerhans Cells Facilitate UVB-Induced Epidermal Carcinogenesis. J Invest Dermatol 2015; 135:2824-2833. [PMID: 26053049 PMCID: PMC4640962 DOI: 10.1038/jid.2015.207] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 12/29/2022]
Abstract
UVB light is considered the major environmental inducer of human keratinocyte (KC) DNA mutations, including within the tumor-suppressor gene p53, and chronic exposure is associated with cutaneous squamous cell carcinoma formation. Langerhans cells (LCs) comprise a dendritic network within the suprabasilar epidermis, yet the role of LCs in UVB-induced carcinogenesis is largely unknown. Herein we show that LC-intact epidermis develops UVB-induced tumors more readily than LC-deficient epidermis. Although levels of epidermal cyclopyrimidine dimers following acute UVB exposure are equivalent in the presence or absence of LCs, chronic UVB-induced p53 mutant clonal islands expand more readily in association with LCs, which remain largely intact and are preferentially found in proximity to the expanding mutant KC populations. The observed LC facilitation of mutant p53 clonal expansion is completely αβ and γδ T-cell independent and is associated with increased intraepidermal expression of IL-22 and the presence of group 3 innate lymphoid cells. These data demonstrate that LCs have a key role in UVB-induced cutaneous carcinogenesis and suggest that LCs locally stimulate KC proliferation and innate immune cells that provoke tumor outgrowth.
Collapse
Affiliation(s)
- Julia M Lewis
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christina D Bürgler
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Marianna Freudzon
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kseniya Golubets
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Juliet F Gibson
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Renata B Filler
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
46
|
Zanconato F, Forcato M, Battilana G, Azzolin L, Quaranta E, Bodega B, Rosato A, Bicciato S, Cordenonsi M, Piccolo S. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol 2015; 17:1218-27. [PMID: 26258633 PMCID: PMC6186417 DOI: 10.1038/ncb3216] [Citation(s) in RCA: 840] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/02/2015] [Indexed: 12/14/2022]
Abstract
YAP/TAZ are nuclear effectors of the Hippo pathway regulating organ growth and tumorigenesis. Yet, their function as transcriptional regulators remains underinvestigated. By ChIP-seq analyses in breast cancer cells, we discovered that the YAP/TAZ transcriptional response is pervasively mediated by a dual element: TEAD factors, through which YAP/TAZ bind to DNA, co-occupying chromatin with activator protein-1 (AP-1, dimer of JUN and FOS proteins) at composite cis-regulatory elements harbouring both TEAD and AP-1 motifs. YAP/TAZ/TEAD and AP-1 form a complex that synergistically activates target genes directly involved in the control of S-phase entry and mitosis. This control occurs almost exclusively from distal enhancers that contact target promoters through chromatin looping. YAP/TAZ-induced oncogenic growth is strongly enhanced by gain of AP-1 and severely blunted by its loss. Conversely, AP-1-promoted skin tumorigenesis is prevented in YAP/TAZ conditional knockout mice. This work highlights a new layer of signalling integration, feeding on YAP/TAZ function at the chromatin level.
Collapse
Affiliation(s)
- Francesca Zanconato
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Mattia Forcato
- Center for Genome Research, Department of Biomedical Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41100 Modena, Italy
| | - Giusy Battilana
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Luca Azzolin
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Erika Quaranta
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Beatrice Bodega
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare (INGM) 'Romeo and Enrica Invernizzi', via Francesco Sforza 35, Milan 20126, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padua School of Medicine, Via Gattamelata 64, 35126 Padua, Italy
- Istituto Oncologico Veneto IRCCS, Via Gattamelata 64, 35126 Padua, Italy
| | - Silvio Bicciato
- Center for Genome Research, Department of Biomedical Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41100 Modena, Italy
| | - Michelangelo Cordenonsi
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| |
Collapse
|
47
|
García-Irigoyen O, Latasa MU, Carotti S, Uriarte I, Elizalde M, Urtasun R, Vespasiani-Gentilucci U, Morini S, Benito P, Ladero JM, Rodriguez JA, Prieto J, Orbe J, Páramo JA, Fernández-Barrena MG, Berasain C, Avila MA. Matrix metalloproteinase 10 contributes to hepatocarcinogenesis in a novel crosstalk with the stromal derived factor 1/C-X-C chemokine receptor 4 axis. Hepatology 2015; 62:166-78. [PMID: 25808184 DOI: 10.1002/hep.27798] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/18/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Matrix metalloproteinases (MMPs) participate in tissue repair after acute injury, but also participate in cancer by promoting a protumorigenic microenvironment. Previously, we reported on a key role for MMP10 in mouse liver regeneration. Herein, we investigated MMP10 expression and function in human hepatocellular carcinoma (HCC) and diethylnitrosamine (DEN)-induced mouse hepatocarcinogenesis. MMP10 was induced in human and murine HCC tissues and cells. MMP10-deficient mice showed less HCC incidence, smaller histological lesions, reduced tumor vascularization, and less lung metastases. Importantly, expression of the protumorigenic, C-X-C chemokine receptor-4 (CXCR4), was reduced in DEN-induced MMP10-deficient mice livers. Human HCC cells stably expressing MMP10 had increased CXCR4 expression and migratory capacity. Pharmacological inhibition of CXCR4 significantly reduced MMP10-stimulated HCC cell migration. Furthermore, MMP10 expression in HCC cells was induced by hypoxia and the CXCR4 ligand, stromal-derived factor-1 (SDF1), through the extracellular signal-regulated kinase 1/2 pathway, involving an activator protein 1 site in MMP10 gene promoter. CONCLUSION MMP10 contributes to HCC development, participating in tumor angiogenesis, growth, and dissemination. We identified a new reciprocal crosstalk between MMP10 and the CXCR4/SDF1 axis contributing to HCC progression and metastasis. To our knowledge, this is the first report addressing the role of a MMP in hepatocarcinogenesis in the corresponding genetic mouse model.
Collapse
Affiliation(s)
| | - Maria U Latasa
- Division of Hepatology, CIMA, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Simone Carotti
- Microscopic and Ultrastructural Anatomy, Center for Integrated Biomedical Research- CIR, University Campus Bio-Medico of Rome, Rome, Italy
| | - Iker Uriarte
- Division of Hepatology, CIMA, University of Navarra, Pamplona, Spain.,CIBEREHD, University Clinic Navarra, Instituto de Salud Carlos III, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Maria Elizalde
- Division of Hepatology, CIMA, University of Navarra, Pamplona, Spain
| | - Raquel Urtasun
- Division of Hepatology, CIMA, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | | | - Sergio Morini
- Microscopic and Ultrastructural Anatomy, Center for Integrated Biomedical Research- CIR, University Campus Bio-Medico of Rome, Rome, Italy
| | - Patricia Benito
- Department of Digestive Diseases, Hospital Clinico San Carlos, Madrid, Spain
| | - Jose M Ladero
- Department of Digestive Diseases, Hospital Clinico San Carlos, Madrid, Spain
| | - Jose A Rodriguez
- Division of Cardiovascular Sciences, CIMA, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Jesus Prieto
- Division of Hepatology, CIMA, University of Navarra, Pamplona, Spain.,CIBEREHD, University Clinic Navarra, Instituto de Salud Carlos III, Pamplona, Spain
| | - Josune Orbe
- Division of Cardiovascular Sciences, CIMA, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Jose A Páramo
- Division of Cardiovascular Sciences, CIMA, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Maite G Fernández-Barrena
- Division of Hepatology, CIMA, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Carmen Berasain
- Division of Hepatology, CIMA, University of Navarra, Pamplona, Spain.,CIBEREHD, University Clinic Navarra, Instituto de Salud Carlos III, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Matias A Avila
- Division of Hepatology, CIMA, University of Navarra, Pamplona, Spain.,CIBEREHD, University Clinic Navarra, Instituto de Salud Carlos III, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
48
|
Age-associated inflammation connects RAS-induced senescence to stem cell dysfunction and epidermal malignancy. Cell Death Differ 2015; 22:1764-74. [PMID: 26434982 DOI: 10.1038/cdd.2015.21] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 01/14/2015] [Accepted: 02/03/2015] [Indexed: 12/11/2022] Open
Abstract
Aging is the single biggest risk factor for malignant transformation. Among the most common age-associated malignancies are non-melanoma skin cancers, comprising the most common types of human cancer. Here we show that mutant H-Ras activation in mouse epidermis, a frequent event in cutaneous squamous cell carcinoma (SCC), elicits a differential outcome in aged versus young mice. Whereas H-Ras activation in the young skin results in hyperplasia that is mainly accompanied by rapid hair growth, H-Ras activation in the aged skin results in more dysplasia and gradual progression to in situ SCC. Progression is associated with increased inflammation, pronounced accumulation of immune cells including T cells, macrophages and mast cells as well as excessive cell senescence. We found not only an age-dependent increase in expression of several pro-inflammatory mediators, but also activation of a strong anti-inflammatory response involving enhanced IL4/IL10 expression and immune skewing toward a Th2 response. In addition, we observed an age-dependent increase in the expression of Pdl1, encoding an immune suppressive ligand that promotes cancer immune evasion. Moreover, upon switching off oncogenic H-Ras activity, young but not aged skin regenerates successfully, suggesting a failure of the aged epidermal stem cells to repair damaged tissue. Our findings support an age-dependent link between accumulation of senescent cells, immune infiltration and cancer progression, which may contribute to the increased cancer risk associated with old age.
Collapse
|
49
|
Expression of c-fos was associated with clinicopathologic characteristics and prognosis in pancreatic cancer. PLoS One 2015; 10:e0120332. [PMID: 25789763 PMCID: PMC4366380 DOI: 10.1371/journal.pone.0120332] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/30/2015] [Indexed: 01/28/2023] Open
Abstract
It has long been regarded that pancreatic cancer (PC) is a life-threatening malignant tumor. Thus, much attention has been paid for factors, especially relative molecules, predictive for prognosis of PC. However, c-fos expression in PC was less investigated. In addition, its association with clinicopathologic variables and prognosis remains unknown. In the present study, expression of c-fos was detected by tissue microarray-based immunohistochemical staining in cancer and adjacent tissues from 333 patients with PC. The staining results were correlated with clinicopathologic parameters and overall survival. Furthermore, prognostic significance of c-fos in subsets of PC was also evaluated. It was shown that low expression of c-fos was more often in cancer than in adjacent tissues of PC (P<0.001). Besides, high cancerous c-fos expression was significantly associated with tumor site and T stage, whereas peri-neural invasion was of a borderline significant relevance. Log-rank test revealed that high expression of c-fos in cancer tissues was a significant marker of poor overall survival, accompanied by some conventional clinicopathologic variables, such as sex, grade, peri-neural invasion, T and N stages. More importantly, cancerous c-fos expression was identified as an independent prognosticator in multivariate analysis. Finally, the prognostic implication of c-fos expression was proven in four subsets of patients with PC. These data suggested that c-fos expression was of relationships with progression and dismal prognosis of PC.
Collapse
|
50
|
Pawitan Y, Yin L, Setiawan A, Auer G, Smedby KE, Czene K. Distinct effects of anti-inflammatory and anti-thrombotic drugs on cancer characteristics at diagnosis. Eur J Cancer 2015; 51:751-7. [PMID: 25726091 DOI: 10.1016/j.ejca.2015.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/30/2015] [Accepted: 02/03/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND A previous study showed that regular use of low-dose aspirin was associated with smaller tumour size and fewer metastases for colorectal and lung cancer. We aim to explain these distinct effects in terms of the anti-inflammatory and anti-thrombotic properties of aspirin. METHODS From the Swedish Cancer Register, we identified patients diagnosed with colorectal and lung cancers between 1st October 2006 and 31st December 2009; each cancer was assessed in terms of tumour size/extent (T), lymph-node (N) and metastatic (M) status. Linkage with the Swedish Prescribed Drug Register was performed to obtain information on the use of low-dose aspirin, anti-inflammatory and anti-thrombotic drugs prior to cancer diagnosis. RESULTS We identified 14,743 individuals with colorectal cancer and 5888 with lung cancer. For low-dose aspirin users we observed a statistically significant association with smaller tumour size and fewer metastases. For both cancers, the use of non-aspirin anti-inflammatory drugs was associated with smaller tumour size in all categories T2-T4 odds ratio (OR = 0.76, 95% confidence interval (CI) 0.63-0.92 for T2 versus T1 in colorectal cancer), but not with metastatic status (OR = 0.94, 95% CI 0.84-1.06 in colorectal cancer). In contrast, anti-thrombotic drug use was associated with fewer metastases, but not with tumour categories T2 and T3. CONCLUSIONS The results suggest that the use of anti-inflammatories is associated with tumour-growth inhibition at the primary site, while the use of anti-thrombotics is associated with restriction of cancer-cell metastasising capability. These have clinical implications on the potential use of these drugs for chemoprevention or chemotherapy.
Collapse
Affiliation(s)
- Yudi Pawitan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Li Yin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Setiawan
- Department of Integrative Biology, University of California, Berkeley, United States
| | - Gert Auer
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Karin E Smedby
- Unit of Clinical Epidemiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|