1
|
Preston AE, Frost JN, Teh MR, Badat M, Armitage AE, Norfo R, Wideman SK, Hanifi M, White N, Roy NB, Babbs C, Ghesquiere B, Davies J, Howden AJ, Sinclair LV, Hughes JR, Kassouf M, Beagrie R, Higgs DR, Drakesmith H. Ancient genomic linkage of α-globin and Nprl3 couples metabolism with erythropoiesis. Nat Commun 2025; 16:2749. [PMID: 40128524 PMCID: PMC11933693 DOI: 10.1038/s41467-025-57683-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/28/2025] [Indexed: 03/26/2025] Open
Abstract
Red blood cell development from erythroid progenitors requires profound reshaping of metabolism and gene expression. How these transcriptional and metabolic alterations are coupled is unclear. Nprl3 (an inhibitor of mTORC1) has remained in synteny with the α-globin genes for >500 million years, and harbours most of the a-globin enhancers. However, whether Nprl3 serves an erythroid role is unknown. We found that while haematopoietic progenitors require basal Nprl3 expression, erythroid Nprl3 expression is further boosted by the α-globin enhancers. This lineage-specific upregulation is required for sufficient erythropoiesis. Loss of Nprl3 affects erythroblast metabolism via elevating mTORC1 signalling, suppressing autophagy and disrupting glycolysis. Broadly consistent with these murine findings, human NPRL3-knockout erythroid progenitors produce fewer enucleated cells and demonstrate dysregulated mTORC1 signalling in response to nutrient availability and erythropoietin. Therefore, we propose that the anciently conserved linkage of NprI3, α-globin and their associated enhancers has coupled metabolic and developmental control of erythropoiesis.
Collapse
Affiliation(s)
- Alexandra E Preston
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Joe N Frost
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Megan R Teh
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mohsin Badat
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London and Barts Health, Whitechapel, London, UK
| | - Andrew E Armitage
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Ruggiero Norfo
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Interdepartmental Centre for Stem Cells and Regenerative Medicine, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sarah K Wideman
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Muhammad Hanifi
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Natasha White
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Noémi Ba Roy
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Bart Ghesquiere
- Metabolomics Expertise Center, VIB Center for Cancer Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - James Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Oxford National Institute of Health Research Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Andrew Jm Howden
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Linda V Sinclair
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mira Kassouf
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rob Beagrie
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Hal Drakesmith
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Palacio V, Pancho A, Morabito A, Malkmus J, He Z, Soussi G, Zeller R, Treutlein B, Zuniga A. Single-cell profiling of penta- and tetradactyl mouse limb buds identifies mesenchymal progenitors controlling digit numbers and identities. Nat Commun 2025; 16:1226. [PMID: 39890843 PMCID: PMC11785988 DOI: 10.1038/s41467-025-56221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025] Open
Abstract
The cellular interactions controlling digit numbers and identities have remained largely elusive. Here, we leverage the anterior digit and identity loss in Grem1 tetradactyl mouse limb buds to identify early specified limb bud mesenchymal progenitor (LMP) populations whose size and distribution is governed by spatial modulation of BMP activity and SHH signaling. Distal-autopodial LMPs (dLMP) express signature genes required for autopod and digit development, and alterations affecting the dLMP population size prefigure the changes in digit numbers that characterize specific congenital malformations. A second, peripheral LMP (pLMP) population is anteriorly biased and reduction/loss of its asymmetric distribution underlies the loss of middle digit asymmetry and identities in Grem1 tetradactyl and pig limb buds. pLMPs depend on BMP activity, while dLMPs require GREM1-mediated BMP antagonism. Taken together, the spatial alterations in GREM1 antagonism in mouse mutant and evolutionarily diversified pig limb buds tunes BMP activity, which impacts dLMP and pLMP populations in an opposing manner.
Collapse
Affiliation(s)
- Victorio Palacio
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Anna Pancho
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Angela Morabito
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jonas Malkmus
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Zhisong He
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Geoffrey Soussi
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Zhang Y, Hill CM, Leach KA, Grillini L, Deliard S, Offley SR, Gatto M, Picone F, Zucco A, Gardini A. The enhancer module of Integrator controls cell identity and early neural fate commitment. Nat Cell Biol 2025; 27:103-117. [PMID: 39592860 PMCID: PMC11752693 DOI: 10.1038/s41556-024-01556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/09/2024] [Indexed: 11/28/2024]
Abstract
Lineage-specific transcription factors operate as master orchestrators of developmental processes by activating select cis-regulatory enhancers and proximal promoters. Direct DNA binding of transcription factors ultimately drives context-specific recruitment of the basal transcriptional machinery that comprises RNA polymerase II (RNAPII) and a host of polymerase-associated multiprotein complexes, including the metazoan-specific Integrator complex. Integrator is primarily known to modulate RNAPII processivity and to surveil RNA integrity across coding genes. Here we describe an enhancer module of Integrator that directs cell fate specification by promoting epigenetic changes and transcription factor binding at neural enhancers. Depletion of Integrator's INTS10 subunit upends neural traits and derails cells towards mesenchymal identity. Commissioning of neural enhancers relies on Integrator's enhancer module, which stabilizes SOX2 binding at chromatin upon exit from pluripotency. We propose that Integrator is a functional bridge between enhancers and promoters and a main driver of early development, providing new insight into a growing family of neurodevelopmental syndromes.
Collapse
Affiliation(s)
| | - Connor M Hill
- The Wistar Institute, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelsey A Leach
- The Wistar Institute, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Grillini
- The Wistar Institute, Philadelphia, PA, USA
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Sarah R Offley
- The Wistar Institute, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martina Gatto
- The Wistar Institute, Philadelphia, PA, USA
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | | | | |
Collapse
|
4
|
Lozovska A, Korovesi AG, Dias A, Lopes A, Fowler DA, Martins GG, Nóvoa A, Mallo M. Tgfbr1 controls developmental plasticity between the hindlimb and external genitalia by remodeling their regulatory landscape. Nat Commun 2024; 15:2509. [PMID: 38509075 PMCID: PMC10954616 DOI: 10.1038/s41467-024-46870-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
The hindlimb and external genitalia of present-day tetrapods are thought to derive from an ancestral common primordium that evolved to generate a wide diversity of structures adapted for efficient locomotion and mating in the ecological niche occupied by the species. We show that despite long evolutionary distance from the ancestral condition, the early primordium of the mouse external genitalia preserved the capacity to take hindlimb fates. In the absence of Tgfbr1, the pericloacal mesoderm generates an extra pair of hindlimbs at the expense of the external genitalia. It has been shown that the hindlimb and the genital primordia share many of their key regulatory factors. Tgfbr1 controls the response to those factors by modulating the accessibility status of regulatory elements that control the gene regulatory networks leading to the formation of genital or hindlimb structures. Our work uncovers a remarkable tissue plasticity with potential implications in the evolution of the hindlimb/genital area of tetrapods, and identifies an additional mechanism for Tgfbr1 activity that might also contribute to the control of other physiological or pathological processes.
Collapse
Affiliation(s)
- Anastasiia Lozovska
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Artemis G Korovesi
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - André Dias
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alexandre Lopes
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Donald A Fowler
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Gabriel G Martins
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
| |
Collapse
|
5
|
Das S, Maiti S. Probing the ligand binding specificity of FNBP4 WW domains and interaction with FH1 domain of FMN1. Curr Res Struct Biol 2023; 7:100119. [PMID: 38188541 PMCID: PMC10770428 DOI: 10.1016/j.crstbi.2023.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Formins are a group of actin-binding proteins that mediate nascent actin filament polymerization, filament elongation, and barbed end-capping function, thereby regulating different cellular and developmental processes. Developmental processes like vertebrate gastrulation, neural growth cone dynamics, and limb development require formins functioning in a regulated manner. Formin-binding proteins like Rho GTPase regulate the activation of auto-inhibited conformation of diaphanous formins. Unlike other diaphanous formins, Formin1 (FMN1) a non-diaphanous formin is not regulated by Rho GTPase. FMN1 acts as an antagonist of the Bone Morphogenetic Protein (BMP) signaling pathway during limb development. Several previous reports demonstrated that WW domain-containing proteins can interact with poly-proline-rich amino acid stretches of formins and play a crucial role in developmental processes. In contrast, WW domain-containing Formin-binding Protein 4 (FNBP4) protein plays an essential role in limb development. It has been hypothesized that the interaction between FNBP4 and FMN1 can further attribute to the role in limb development through the BMP signaling pathway. In this study, we have elucidated the binding kinetics of FNBP4 and FMN1 using surface plasmon resonance (SPR) and enzyme-linked immunosorbent assays (ELISA). Our findings confirm that the FNBP4 exhibits interaction with the poly-proline-rich formin homology 1 (FH1) domain of FMN1. Furthermore, only the first WW1 domains are involved in the interaction between the two domains. Thus, this study sheds light on the binding potentialities of WW domains of FNBP4 that might contribute to the regulation of FMN1 function.
Collapse
Affiliation(s)
- Shubham Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| |
Collapse
|
6
|
Pham LNG, Niimi T, Suzuki S, Nguyen MD, Nguyen LCH, Nguyen TD, Hoang KA, Nguyen DM, Sakuma C, Hayakawa T, Hiyori M, Natsume N, Furukawa H, Imura H, Akashi J, Ohta T, Natsume N. Association between IRF6, TP63, GREM1 Gene Polymorphisms and Non-Syndromic Orofacial Cleft Phenotypes in Vietnamese Population: A Case-Control and Family-Based Study. Genes (Basel) 2023; 14:1995. [PMID: 38002937 PMCID: PMC10671090 DOI: 10.3390/genes14111995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
This study aims to identify potential variants in the TP63-IRF6 pathway and GREM1 for the etiology of non-syndromic orofacial cleft (NSOFC) among the Vietnamese population. By collecting 527 case-parent trios and 527 control samples, we conducted a stratified analysis based on different NSOFC phenotypes, using allelic, dominant, recessive and over-dominant models for case-control analyses, and family-based association tests for case-parent trios. Haplotype and linkage disequilibrium analyses were also conducted. IRF6 rs2235375 showed a significant association with an increased risk for non-syndromic cleft lip and palate (NSCLP) and cleft lip with or without cleft palate (NSCL/P) in the G allele, with pallele values of 0.0018 and 0.0003, respectively. Due to the recessive model (p = 0.0011) for the NSCL/P group, the reduced frequency of the GG genotype of rs2235375 was associated with a protective effect against NSCL/P. Additionally, offspring who inherited the G allele at rs2235375 had a 1.34-fold increased risk of NSCL/P compared to the C allele holders. IRF6 rs846810 and a G-G haplotype at rs2235375-rs846810 of IRF6 impacted NSCL/P, with p-values of 0.0015 and 0.0003, respectively. In conclusion, our study provided additional evidence for the association of IRF6 rs2235375 with NSCLP and NSCL/P. We also identified IRF6 rs846810 as a novel marker associated with NSCL/P, and haplotypes G-G and C-A at rs2235375-rs846810 of IRF6 associated with NSOFC.
Collapse
Affiliation(s)
- Loc Nguyen Gia Pham
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
- Odonto-Maxillo Facial Hospital of Ho Chi Minh City, 263-265 Tran Hung Dao Street, District 1, Ho Chi Minh City 71000, Vietnam; (M.D.N.); (L.C.H.N.); (T.D.N.); (K.A.H.)
| | - Teruyuki Niimi
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
- Cleft Lip and Palate Center, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan;
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| | - Satoshi Suzuki
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
| | - Minh Duc Nguyen
- Odonto-Maxillo Facial Hospital of Ho Chi Minh City, 263-265 Tran Hung Dao Street, District 1, Ho Chi Minh City 71000, Vietnam; (M.D.N.); (L.C.H.N.); (T.D.N.); (K.A.H.)
| | - Linh Cao Hoai Nguyen
- Odonto-Maxillo Facial Hospital of Ho Chi Minh City, 263-265 Tran Hung Dao Street, District 1, Ho Chi Minh City 71000, Vietnam; (M.D.N.); (L.C.H.N.); (T.D.N.); (K.A.H.)
| | - Tuan Duc Nguyen
- Odonto-Maxillo Facial Hospital of Ho Chi Minh City, 263-265 Tran Hung Dao Street, District 1, Ho Chi Minh City 71000, Vietnam; (M.D.N.); (L.C.H.N.); (T.D.N.); (K.A.H.)
| | - Kien Ai Hoang
- Odonto-Maxillo Facial Hospital of Ho Chi Minh City, 263-265 Tran Hung Dao Street, District 1, Ho Chi Minh City 71000, Vietnam; (M.D.N.); (L.C.H.N.); (T.D.N.); (K.A.H.)
| | - Duc Minh Nguyen
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
- School of Odonto-Stomatology, Hanoi Medical University, Hanoi 10000, Vietnam
| | - Chisato Sakuma
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
- Cleft Lip and Palate Center, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan;
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| | - Toko Hayakawa
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| | - Makino Hiyori
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| | - Nagana Natsume
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
- Cleft Lip and Palate Center, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan;
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| | - Hiroo Furukawa
- Cleft Lip and Palate Center, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan;
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| | - Hideto Imura
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
- Cleft Lip and Palate Center, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan;
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| | - Junko Akashi
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
| | - Tohru Ohta
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu 061-0293, Japan;
| | - Nagato Natsume
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
- Cleft Lip and Palate Center, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan;
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| |
Collapse
|
7
|
Preston AE, Frost JN, Badat M, Teh M, Armitage AE, Norfo R, Wideman SK, Hanifi M, White N, Roy N, Ghesquiere B, Babbs C, Kassouf M, Davies J, Hughes JR, Beagrie R, Higgs DR, Drakesmith H. Ancient genomic linkage couples metabolism with erythroid development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.558944. [PMID: 37808769 PMCID: PMC10557585 DOI: 10.1101/2023.09.25.558944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Generation of mature cells from progenitors requires tight coupling of differentiation and metabolism. During erythropoiesis, erythroblasts are required to massively upregulate globin synthesis then clear extraneous material and enucleate to produce erythrocytes1-3. Nprl3 has remained in synteny with the α-globin genes for >500 million years4, and harbours the majority of the α-globin enhancers5. Nprl3 is a highly conserved inhibitor of mTORC1, which controls cellular metabolism. However, whether Nprl3 itself serves an erythroid role is unknown. Here, we show that Nprl3 is a key regulator of erythroid metabolism. Using Nprl3-deficient fetal liver and adult competitive bone marrow - fetal liver chimeras, we show that NprI3 is required for sufficient erythropoiesis. Loss of Nprl3 elevates mTORC1 signalling, suppresses autophagy and disrupts erythroblast glycolysis and redox control. Human CD34+ progenitors lacking NPRL3 produce fewer enucleated cells and demonstrate dysregulated mTORC1 signalling in response to nutrient availability and erythropoietin. Finally, we show that the α-globin enhancers upregulate NprI3 expression, and that this activity is necessary for optimal erythropoiesis. Therefore, the anciently conserved linkage of NprI3, α-globin and their associated enhancers has enabled coupling of metabolic and developmental control in erythroid cells. This may enable erythropoiesis to adapt to fluctuating nutritional and environmental conditions.
Collapse
Affiliation(s)
- Alexandra E Preston
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Joe N Frost
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Mohsin Badat
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Megan Teh
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Andrew E Armitage
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Ruggiero Norfo
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Sarah K Wideman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Muhammad Hanifi
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Natasha White
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Noémi Roy
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Bart Ghesquiere
- Metabolomics Expertise Center, VIB Center for Cancer Biology, 3000 Leuven, Belgium
- Metabolomics Expertise Center, Department of Oncology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Mira Kassouf
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - James Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Rob Beagrie
- Chromatin and Disease Group, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
8
|
Chondrocyte Hypertrophy in Osteoarthritis: Mechanistic Studies and Models for the Identification of New Therapeutic Strategies. Cells 2022; 11:cells11244034. [PMID: 36552796 PMCID: PMC9777397 DOI: 10.3390/cells11244034] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022] Open
Abstract
Articular cartilage shows limited self-healing ability owing to its low cellularity and avascularity. Untreated cartilage defects display an increased propensity to degenerate, leading to osteoarthritis (OA). During OA progression, articular chondrocytes are subjected to significant alterations in gene expression and phenotype, including a shift towards a hypertrophic-like state (with the expression of collagen type X, matrix metalloproteinases-13, and alkaline phosphatase) analogous to what eventuates during endochondral ossification. Present OA management strategies focus, however, exclusively on cartilage inflammation and degradation. A better understanding of the hypertrophic chondrocyte phenotype in OA might give new insights into its pathogenesis, suggesting potential disease-modifying therapeutic approaches. Recent developments in the field of cellular/molecular biology and tissue engineering proceeded in the direction of contrasting the onset of this hypertrophic phenotype, but knowledge gaps in the cause-effect of these processes are still present. In this review we will highlight the possible advantages and drawbacks of using this approach as a therapeutic strategy while focusing on the experimental models necessary for a better understanding of the phenomenon. Specifically, we will discuss in brief the cellular signaling pathways associated with the onset of a hypertrophic phenotype in chondrocytes during the progression of OA and will analyze in depth the advantages and disadvantages of various models that have been used to mimic it. Afterwards, we will present the strategies developed and proposed to impede chondrocyte hypertrophy and cartilage matrix mineralization/calcification. Finally, we will examine the future perspectives of OA therapeutic strategies.
Collapse
|
9
|
Diaz-Payno PJ, Browe D, Freeman FE, Nulty J, Burdis R, Kelly DJ. GREM1 suppresses hypertrophy of engineered cartilage in vitro but not bone formation in vivo. Tissue Eng Part A 2022; 28:724-736. [PMID: 35297694 DOI: 10.1089/ten.tea.2021.0176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Current repair of articular cartilage (AC) often leads to a lower quality tissue with an unstable hypertrophic phenotype, susceptible to endochondral ossification and development of osteoarthritis. Engineering phenotypically stable AC remains a significant challenge in the cartilage engineering field. This motivates new strategies inspired from the extracellular matrix (ECM) proteins unique to phenotypically stable AC. We have previously shown that BMP antagonist gremlin-1 (GREM1) protein, present in permanent but not transient cartilage, suppresses the hypertrophy of chondrogenically primed bone marrow stem cells (BMSCs) in pellet culture. The goal of this study was to assess the effect of GREM1 on the in vitro and in vivo phenotypic stability of porcine BMSC derived cartilage engineered within chondro-permissive scaffolds. In addition, we explored whether GREM1 would synergise with physioxia, a potent chondrogenesis regulator, when engineering cartilage grafts. GREM1 did not influence the expression of chondrogenic markers (SOX-9, COL2A1), but did suppress the expression of hypertrophic markers (MMP13, COL10A1) in vitro. Cartilage engineered with GREM1 contained higher levels of residual cartilage after 4 weeks in vivo, but endochondral bone formation was not prevented. Higher GREM1 levels did not significantly alter the fate of engineered tissues in vitro or in vivo. The combination of physioxia and GREM1 resulted in higher sGAG deposition in vitro and greater retention of cartilage matrix in vivo than physioxia alone, but again did not suppress endochondral ossification. Therefore, while physioxia and GREM1 regulate BMSCs chondrogenesis in vitro and reduce cartilage loss in vivo, their use does not guarantee the development of stable cartilage.
Collapse
Affiliation(s)
- Pedro J Diaz-Payno
- University of Dublin Trinity College Department of Mechanical & Manufacturing Engineering, 548636, Dublin, Ireland;
| | - David Browe
- University of Dublin Trinity College Department of Mechanical & Manufacturing Engineering, 548636, Dublin, Ireland;
| | - Fiona E Freeman
- University of Dublin Trinity College Department of Mechanical & Manufacturing Engineering, 548636, Dublin, Ireland;
| | - Jessica Nulty
- University of Dublin Trinity College Department of Mechanical & Manufacturing Engineering, 548636, Dublin, Ireland;
| | - Ross Burdis
- University of Dublin Trinity College Department of Mechanical & Manufacturing Engineering, 548636, Dublin, Ireland;
| | - Daniel John Kelly
- University of Dublin Trinity College Department of Mechanical & Manufacturing Engineering, 548636, Dublin, Ireland;
| |
Collapse
|
10
|
Spatial regulation by multiple Gremlin1 enhancers provides digit development with cis-regulatory robustness and evolutionary plasticity. Nat Commun 2021; 12:5557. [PMID: 34548488 PMCID: PMC8455560 DOI: 10.1038/s41467-021-25810-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
Precise cis-regulatory control of gene expression is essential for normal embryogenesis and tissue development. The BMP antagonist Gremlin1 (Grem1) is a key node in the signalling system that coordinately controls limb bud development. Here, we use mouse reverse genetics to identify the enhancers in the Grem1 genomic landscape and the underlying cis-regulatory logics that orchestrate the spatio-temporal Grem1 expression dynamics during limb bud development. We establish that transcript levels are controlled in an additive manner while spatial regulation requires synergistic interactions among multiple enhancers. Disrupting these interactions shows that altered spatial regulation rather than reduced Grem1 transcript levels prefigures digit fusions and loss. Two of the enhancers are evolutionary ancient and highly conserved from basal fishes to mammals. Analysing these enhancers from different species reveal the substantial spatial plasticity in Grem1 regulation in tetrapods and basal fishes, which provides insights into the fin-to-limb transition and evolutionary diversification of pentadactyl limbs. The BMP antagonist Gremlin1 balances BMP and SHH signalling, endowing limb bud development with robustness. Here, the authors identify enhancers controlling Grem1 levels in an additive, and spatial regulation in a synergistic manner, providing digit patterning with cis-regulatory robustness and evolutionary plasticity.
Collapse
|
11
|
Yin B, Shi JY, Lin YS, Shi B, Jia ZL. SNPs at TP63 gene was specifically associated with right-side cleft lip in Han Chinese population. Oral Dis 2020; 27:559-566. [PMID: 32687624 DOI: 10.1111/odi.13566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/05/2020] [Accepted: 07/15/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Non-syndromic cleft lip with or without palate is one of the most common birth malformations. TP63 and GREM1 were recently reported to be associated with NSCL/P. However, there were few studies focused on their associations in non-syndromic cleft lip only (NSCLO). DESIGN Initial screening and replication in large cohorts were used to locate the susceptible SNPs of TP63 and GREM1. Firstly, variations were screened among 192 NSCLO cases by the Sanger sequencing. Then, we selected five associated SNPs in initial screening phase and replicated among 1,006 NSCLO cases and 1,823 normal controls. RESULTS Initial chi-square test showed that rs7653848, rs7624324, rs6790167, and rs1345186 in TP63 and rs2280738 in GREM1 achieved statistical significance (p < .05); the subsequent replication analysis showed that rs1345186 was specifically significant in right-side cleft lip (RCL; p = .017, OR = 1.33, and 95% CI: 1.05-1.69). CONCLUSION This study firstly used the subphenotype of cleft lip samples to verify the association between TP63 and GREM1, which indicated that TP63 is a promising susceptible gene for RCL in Chinese population. And further confirmed the different etiology in the right-sided cleft lip, left-sided cleft lip, and bilateral cleft lip of NSCLO. This will give new reference for the future research and genetic counseling.
Collapse
Affiliation(s)
- Bin Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia-Yu Shi
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Yan-Song Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhong-Lin Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Gooding S, Leedham SJ. Gremlin 1 - small protein, big impact: the multiorgan consequences of disrupted BMP antagonism †. J Pathol 2020; 251:349-352. [PMID: 32472605 PMCID: PMC8576570 DOI: 10.1002/path.5479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/31/2022]
Abstract
Highly conserved, complex and interacting morphogen signalling pathways regulate adult stem cells and control cell fate determination across numerous different organs. In homeostasis, the bone morphogenetic protein (BMP) pathway predominantly promotes cell differentiation. Localised expression of ligand sequestering BMP antagonists, such as Gremlin 1 (Grem1), necessarily restricts BMP activity within the stem cell niche and facilitate stemness and self‐renewal. In a new paper, Rowan, Jahns et al show that acute deletion of Grem1 in adult mice, using a ubiquitous ROSA26‐Cre recombinase, induced not only severe intestinal enteropathy but also hypocellular bone marrow failure suggestive of stem cell niche collapse in both tissues. Grem1 has an increasingly recognised pleiotrophic role in a number of organ systems and is implicated across a wide range of disease states. Although the importance of Grem1 in intestinal stem cell regulation has been well described, a putative function in haematopoietic niche maintenance is novel and requires further exploration. Moreover, the complex and context‐specific regulation of Grem1, among a host of functionally convergent but structurally disparate BMP antagonists, warrants further research as we learn more about the pathogenic consequences of deranged expression of this small, but important, protein. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sarah Gooding
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Simon J Leedham
- Intestinal Stem Cell Biology Laboratory, Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Chen H, Zhang Z, Wang Z, Li Q, Chen H, Guo S, Bao L, Wang Z, Min W, Xiang Q. Stage-specific regulation of Gremlin1 on the differentiation and expansion of human urinary induced pluripotent stem cells into endothelial progenitors. J Cell Mol Med 2020; 24:8018-8030. [PMID: 32468734 PMCID: PMC7348142 DOI: 10.1111/jcmm.15433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/07/2020] [Accepted: 05/07/2020] [Indexed: 12/23/2022] Open
Abstract
Human urinary induced pluripotent stem cells (hUiPSCs) produced from exfoliated renal epithelial cells present in urine may provide a non-invasive source of endothelial progenitors for the treatment of ischaemic diseases. However, their differentiation efficiency is unsatisfactory and the underlying mechanism of differentiation is still unknown. Gremlin1 (GREM1) is an important gene involved in cell differentiation. Therefore, we tried to elucidate the roles of GREM1 during the differentiation and expansion of endothelial progenitors. HUiPSCs were induced into endothelial progenitors by three stages. After differentiation, GREM1 was obviously increased in hUiPSC-induced endothelial progenitors (hUiPSC-EPs). RNA interference (RNAi) was used to silence GREM1 expression in three stages, respectively. We demonstrated a stage-specific effect of GREM1 in decreasing hUiPSC-EP differentiation in the mesoderm induction stage (Stage 1), while increasing differentiation in the endothelial progenitors' induction stage (Stage 2) and expansion stage (Stage 3). Exogenous addition of GREM1 recombinant protein in the endothelial progenitors' expansion stage (Stage 3) promoted the expansion of hUiPSC-EPs although the activation of VEGFR2/Akt or VEGFR2/p42/44MAPK pathway. Our study provided a new non-invasive source for endothelial progenitors, demonstrated critical roles of GREM1 in hUiPSC-EP and afforded a novel strategy to improve stem cell-based therapy for the ischaemic diseases.
Collapse
Affiliation(s)
- Haixuan Chen
- Translational Medicine Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhen Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zhecun Wang
- Department of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Quhuan Li
- Institute of Biomechanics, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Hui Chen
- Department of Gynecology and Obstetrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Song Guo
- Department of Gynecology and Obstetrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Bao
- Department of Gynecology and Obstetrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zheng Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Wang Min
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Qiuling Xiang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Dynamic and self-regulatory interactions among gene regulatory networks control vertebrate limb bud morphogenesis. Curr Top Dev Biol 2020; 139:61-88. [DOI: 10.1016/bs.ctdb.2020.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Huybrechts Y, Mortier G, Boudin E, Van Hul W. WNT Signaling and Bone: Lessons From Skeletal Dysplasias and Disorders. Front Endocrinol (Lausanne) 2020; 11:165. [PMID: 32328030 PMCID: PMC7160326 DOI: 10.3389/fendo.2020.00165] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal dysplasias are a diverse group of heritable diseases affecting bone and cartilage growth. Throughout the years, the molecular defect underlying many of the diseases has been identified. These identifications led to novel insights in the mechanisms regulating bone and cartilage growth and homeostasis. One of the pathways that is clearly important during skeletal development and bone homeostasis is the Wingless and int-1 (WNT) signaling pathway. So far, three different WNT signaling pathways have been described, which are all activated by binding of the WNT ligands to the Frizzled (FZD) receptors. In this review, we discuss the skeletal disorders that are included in the latest nosology of skeletal disorders and that are caused by genetic defects involving the WNT signaling pathway. The number of skeletal disorders caused by defects in WNT signaling genes and the clinical phenotype associated with these disorders illustrate the importance of the WNT signaling pathway during skeletal development as well as later on in life to maintain bone mass. The knowledge gained through the identification of the genes underlying these monogenic conditions is used for the identification of novel therapeutic targets. For example, the genes underlying disorders with altered bone mass are all involved in the canonical WNT signaling pathway. Consequently, targeting this pathway is one of the major strategies to increase bone mass in patients with osteoporosis. In addition to increasing the insights in the pathways regulating skeletal development and bone homeostasis, knowledge of rare skeletal dysplasias can also be used to predict possible adverse effects of these novel drug targets. Therefore, this review gives an overview of the skeletal and extra-skeletal phenotype of the different skeletal disorders linked to the WNT signaling pathway.
Collapse
|
16
|
Reinhardt R, Gullotta F, Nusspaumer G, Ünal E, Ivanek R, Zuniga A, Zeller R. Molecular signatures identify immature mesenchymal progenitors in early mouse limb buds that respond differentially to morphogen signaling. Development 2019; 146:dev.173328. [PMID: 31076486 PMCID: PMC6550019 DOI: 10.1242/dev.173328] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/01/2019] [Indexed: 12/31/2022]
Abstract
The key molecular interactions governing vertebrate limb bud development are a paradigm for studying the mechanisms controlling progenitor cell proliferation and specification during vertebrate organogenesis. However, little is known about the cellular heterogeneity of the mesenchymal progenitors in early limb buds that ultimately contribute to the chondrogenic condensations prefiguring the skeleton. We combined flow cytometric and transcriptome analyses to identify the molecular signatures of several distinct mesenchymal progenitor cell populations present in early mouse forelimb buds. In particular, jagged 1 (JAG1)-positive cells located in the posterior-distal mesenchyme were identified as the most immature limb bud mesenchymal progenitors (LMPs), which crucially depend on SHH and FGF signaling in culture. The analysis of gremlin 1 (Grem1)-deficient forelimb buds showed that JAG1-expressing LMPs are protected from apoptosis by GREM1-mediated BMP antagonism. At the same stage, the osteo-chondrogenic progenitors (OCPs) located in the core mesenchyme are already actively responding to BMP signaling. This analysis sheds light on the cellular heterogeneity of the early mouse limb bud mesenchyme and on the distinct response of LMPs and OCPs to morphogen signaling.
Collapse
Affiliation(s)
- Robert Reinhardt
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Fabiana Gullotta
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Gretel Nusspaumer
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland.,Development and Evolution, Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Erkan Ünal
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4058 Basel, Switzerland.,Bioinformatics Core Facility, Department of Biomedicine, University of Basel, 4056 Basel, Switzerland
| | - Robert Ivanek
- Swiss Institute of Bioinformatics, 4058 Basel, Switzerland.,Bioinformatics Core Facility, Department of Biomedicine, University of Basel, 4056 Basel, Switzerland
| | - Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| |
Collapse
|
17
|
Al-Qattan MM. A Review of the Genetics and Pathogenesis of Syndactyly in Humans and Experimental Animals: A 3-Step Pathway of Pathogenesis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9652649. [PMID: 31637260 PMCID: PMC6766129 DOI: 10.1155/2019/9652649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/23/2019] [Accepted: 09/01/2019] [Indexed: 12/30/2022]
Abstract
Embryology of normal web space creation and the genetics of syndactyly in humans and experimental animals are well described in the literature. In this review, the author offers a 3-step pathway of pathogenesis for syndactyly. The first step is initiated either by the overactivation of the WNT canonical pathway or the suppression of the Bone Morphogenetic Protein (BMP) canonical pathway. This leads to an overexpression of Fibroblast Growth Factor 8 (FGF8). The final step is the suppression of retinoic acid in the interdigital mesenchyme leading to suppression of both apoptosis and extracellular matrix (ECM) degradation, resulting in syndactyly.
Collapse
Affiliation(s)
- Mohammad M Al-Qattan
- Professor of Hand Surgery, King Saud University, Riyadh, Saudi Arabia
- King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Al-Qattan MM, Alkuraya FS. Cenani-Lenz syndrome and other related syndactyly disorders due to variants in LRP4, GREM1/FMN1, and APC: Insight into the pathogenesis and the relationship to polyposis through the WNT and BMP antagonistic pathways. Am J Med Genet A 2018; 179:266-279. [PMID: 30569497 DOI: 10.1002/ajmg.a.60694] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 11/10/2022]
Abstract
Cenani-Lenz (C-L) syndrome is characterized by oligosyndactyly, metacarpal synostosis, phalangeal disorganization, and other variable facial and systemic features. Most cases are caused by homozygous and compound heterozygous missense and splice mutations of the LRP4 gene. Currently, the syndrome carries one OMIM number (212780). However, C-L syndrome-like phenotypes as well as other syndactyly disorders with or without metacarpal synostosis/phalangeal disorganization are also known to be associated with specific LRP4 mutations, adenomatous polyposis coli (APC) truncating mutations, genomic rearrangements of the GREM1-FMN1 locus, as well as FMN1 mutations. Surprisingly, patients with C-L syndrome-like phenotype caused by APC truncating mutations have no polyposis despite the increased levels of β catenin. The LRP4 and APC proteins act on the WNT (wingless-type integration site family) canonical pathway, whereas the GREM-1 and FMN1 proteins act on the bone morphogenetic protein (BMP) pathway. In this review, we discuss the different mutations associated with C-L syndrome, classify its clinical features, review familial adenomatous polyposis caused by truncating APC mutations and compare these mutations to the splicing APC mutation associated with syndactyly, and finally, explore the pathophysiology through a review of the cross talks between the WNT canonical and the BMP antagonistic pathways.
Collapse
Affiliation(s)
- Mohammad M Al-Qattan
- Division of Plastic Surgery, King Saud University, Riyadh, Saudi Arabia.,Division of Plastic Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Schoenfelder S, Javierre BM, Furlan-Magaril M, Wingett SW, Fraser P. Promoter Capture Hi-C: High-resolution, Genome-wide Profiling of Promoter Interactions. J Vis Exp 2018. [PMID: 30010637 PMCID: PMC6102006 DOI: 10.3791/57320] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The three-dimensional organization of the genome is linked to its function. For example, regulatory elements such as transcriptional enhancers control the spatio-temporal expression of their target genes through physical contact, often bridging considerable (in some cases hundreds of kilobases) genomic distances and bypassing nearby genes. The human genome harbors an estimated one million enhancers, the vast majority of which have unknown gene targets. Assigning distal regulatory regions to their target genes is thus crucial to understand gene expression control. We developed Promoter Capture Hi-C (PCHi-C) to enable the genome-wide detection of distal promoter-interacting regions (PIRs), for all promoters in a single experiment. In PCHi-C, highly complex Hi-C libraries are specifically enriched for promoter sequences through in-solution hybrid selection with thousands of biotinylated RNA baits complementary to the ends of all promoter-containing restriction fragments. The aim is to then pull-down promoter sequences and their frequent interaction partners such as enhancers and other potential regulatory elements. After high-throughput paired-end sequencing, a statistical test is applied to each promoter-ligated restriction fragment to identify significant PIRs at the restriction fragment level. We have used PCHi-C to generate an atlas of long-range promoter interactions in dozens of human and mouse cell types. These promoter interactome maps have contributed to a greater understanding of mammalian gene expression control by assigning putative regulatory regions to their target genes and revealing preferential spatial promoter-promoter interaction networks. This information also has high relevance to understanding human genetic disease and the identification of potential disease genes, by linking non-coding disease-associated sequence variants in or near control sequences to their target genes.
Collapse
Affiliation(s)
- Stefan Schoenfelder
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus;
| | - Biola-Maria Javierre
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus; IJC Building, Campus ICO-Germans Trias i Pujol, Josep Carreras Leukemia Research Institute;
| | - Mayra Furlan-Magaril
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus; Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México
| | - Steven W Wingett
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus; Bioinformatics Group, The Babraham Institute, Babraham Research Campus
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus; Department of Biological Science, Florida State University;
| |
Collapse
|
20
|
Deletion of a Long-Range Dlx5 Enhancer Disrupts Inner Ear Development in Mice. Genetics 2018; 208:1165-1179. [PMID: 29301908 DOI: 10.1534/genetics.117.300447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/09/2017] [Indexed: 12/19/2022] Open
Abstract
Distal enhancers are thought to play important roles in the spatiotemporal regulation of gene expression during embryonic development, but few predicted enhancer elements have been shown to affect transcription of their endogenous genes or to alter phenotypes when disrupted. Here, we demonstrate that a 123.6-kb deletion within the mouse Slc25a13 gene is associated with reduced transcription of Dlx5, a gene located 660 kb away. Mice homozygous for the Slc25a13 deletion mutation [named hyperspin (hspn)] have malformed inner ears and are deaf with balance defects, whereas previously reported Slc25a13 knockout mice showed no phenotypic abnormalities. Inner ears of Slc25a13hspn/hspn mice have malformations similar to those of Dlx5-/- embryos, and Dlx5 expression is severely reduced in the otocyst but not the branchial arches of Slc25a13hspn/hspn embryos, indicating that the Slc25a13hspn deletion affects otic-specific enhancers of Dlx5 In addition, transheterozygous Slc25a13+/hspn Dlx5+/- mice exhibit noncomplementation with inner ear dysmorphologies similar to those of Slc25a13hspn/hspn and Dlx5-/-embryos, verifying a cis-acting effect of the Slc25a13hspn deletion on Dlx5 expression. CRISPR/Cas9-mediated deletions of putative enhancer elements located within the Slc25a13hspn deleted region failed to phenocopy the defects of Slc25a13hspn/hspn mice, suggesting the possibility of multiple enhancers with redundant functions. Our findings in mice suggest that analogous enhancer elements in the human SLC25A13 gene may regulate DLX5 expression and underlie the hearing loss that is associated with split-hand/-foot malformation 1 syndrome. Slc25a13hspn/hspn mice provide a new animal model for studying long-range enhancer effects on Dlx5 expression in the developing inner ear.
Collapse
|
21
|
Satoh A, Mitogawa K, Saito N, Suzuki M, Suzuki KIT, Ochi H, Makanae A. Reactivation of larval keratin gene (krt62.L) in blastema epithelium during Xenopus froglet limb regeneration. Dev Biol 2017; 432:265-272. [PMID: 29079423 DOI: 10.1016/j.ydbio.2017.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
Limb regeneration is considered a form of limb redevelopment because of the molecular and morphological similarities. Forming a regeneration blastema is, in essence, creating a developing limb bud in an adult body. This reactivation of a developmental process in a mature body is worth studying. Xenopus laevis has a biphasic life cycle that involves distinct larval and adult stages. These distinct developmental stages are useful for investigating the reactivation of developmental processes in post-metamorphic frogs (froglets). In this study, we focused on the re-expression of a larval gene (krt62.L) during Xenopus froglet limb regeneration. Recently renamed krt62.L, this gene was known as the larval keratin (xlk) gene, which is specific to larval-tadpole stages. During limb regeneration in a froglet, krt62.L was re-expressed in a basal layer of blastema epithelium, where adult-specific keratin (Krt12.6.S) expression was also observable. Nerves produce important regulatory factors for amphibian limb regeneration, and also play a role in blastema formation and maintenance. The effect of nerve function on krt62.L expression could be seen in the maintenance of krt62.L expression, but not in its induction. When an epidermis-stripped limb bud was grafted in a froglet blastema, the grafted limb bud could reach the digit-forming stage. This suggests that krt62.L-positive froglet blastema epithelium is able to support the limb development process. These findings imply that the developmental process is locally reactivated in an postmetamorphic body during limb regeneration.
Collapse
Affiliation(s)
- Akira Satoh
- Okayama University, Research Core for Interdisciplinary Sciences (RCIS), 3-1-1, Tushimanaka, Kita-ku, Okayama 700-6230, Japan.
| | - Kazumasa Mitogawa
- Okayama University, Research Core for Interdisciplinary Sciences (RCIS), 3-1-1, Tushimanaka, Kita-ku, Okayama 700-6230, Japan
| | - Nanami Saito
- Okayama University, Research Core for Interdisciplinary Sciences (RCIS), 3-1-1, Tushimanaka, Kita-ku, Okayama 700-6230, Japan
| | - Miyuki Suzuki
- Hiroshima University, Department of Mathematical and Life Sciences, Graduate School of Science, 1-3-1, Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Ken-Ichi T Suzuki
- Hiroshima University, Department of Mathematical and Life Sciences, Graduate School of Science, 1-3-1, Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Yamagata University, Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata-shi, Yamagata 990-9585, Japan
| | - Aki Makanae
- Okayama University, Research Core for Interdisciplinary Sciences (RCIS), 3-1-1, Tushimanaka, Kita-ku, Okayama 700-6230, Japan
| |
Collapse
|
22
|
Wang X, Song H, Jiao X, Hao Y, Zhang W, Gao Y, Li Y, Mi N, Yan J. Association between a single-nucleotide polymorphism in the GREM1 gene and non-syndromic orofacial cleft in the Chinese population. J Oral Pathol Med 2017; 47:206-210. [PMID: 29149498 DOI: 10.1111/jop.12662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Non-syndromic orofacial cleft (NSOC) is a common craniofacial deformity among newborns. The GREM1 gene is correlated with orofacial development. The aim of our study was to investigate the association between a single-nucleotide polymorphism in the GREM1 gene and this malformation in the Chinese population. METHODS The SNaPshot mini-sequencing technique was used to genotype the locus rs1258763 of the GREM1 gene in 331 patients with NSOC and 271 individuals in a control group. RESULTS For GREM1 rs1258763, there was a significant difference between the NSOC case group and control group (P = .022). Children carrying GA and GA/AA genotypes had an increased risk of NSOC (OR=1.62, 95%CI: 1.15-2.30; OR=1.52, 95%CI: 1.09-2.12). In the cleft subgroup, we found that the GREM1 rs1258763 GA genotype might contribute to the elevated risk of the cleft lip with or without cleft palate (CL/P) (P = .029). Non-significant differences were found between the cleft palate only (CPO) and control groups (P = .077). CONCLUSION Our findings revealed that the GREM1 polymorphism was significantly associated with the risk of NSOC in the Chinese population.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hongquan Song
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaohui Jiao
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yanru Hao
- Department of Stomatology, Plastic surgery hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shijingshan District, Beijing
| | - Wei Zhang
- Department of Oral Maxillofacial Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yuwei Gao
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yong Li
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Na Mi
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jiaqun Yan
- Department of Stomatology, Tumor Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
23
|
Tycko J, Van MV, Elowitz MB, Bintu L. Advancing towards a global mammalian gene regulation model through single-cell analysis and synthetic biology. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017. [DOI: 10.1016/j.cobme.2017.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Deleting the mouse Hsd17b1 gene results in a hypomorphic Naglu allele and a phenotype mimicking a lysosomal storage disease. Sci Rep 2017; 7:16406. [PMID: 29180785 PMCID: PMC5703720 DOI: 10.1038/s41598-017-16618-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
HSD17B1 is a steroid metabolising enzyme. We have previously generated knockout mice that had the entire coding region of Hsd17b1 replaced with lacZ-neo cassette (Hsd17b1-LacZ/Neo mice). This resulted in a 90% reduction of HSD17B1 activity, associated with severe subfertility in the knockout females. The present study indicates that Hsd17b1-LacZ/Neo male mice have a metabolic phenotype, including reduced adipose mass, increased lean mass and lipid accumulation in the liver. During the characterisation of this metabolic phenotype, it became evident that the expression of the Naglu gene, located closely upstream of Hsd17b1, was severely reduced in all tissues analysed. Similar results were obtained from Hsd17b1-LacZ mice after removing the neo cassette from the locus or by crossing the Hsd17b1-LacZ/Neo mice with transgenic mice constitutively expressing human HSD17B1. The deficiency of Naglu caused the accumulation of glycosaminoglycans in all studied mouse models lacking the Hsd17b1 gene. The metabolic phenotypes of the Hsd17b1 knockout mouse models were recapitulated in Naglu knockout mice. Based on the data we propose that the Hsd17b1 gene includes a regulatory element controlling Naglu expression and the metabolic phenotype in mice lacking the Hsd17b1 genomic region is caused by the reduced expression of Naglu rather than the lack of Hsd17b1.
Collapse
|
25
|
Zhu J, Mackem S. John Saunders' ZPA, Sonic hedgehog and digit identity - How does it really all work? Dev Biol 2017; 429:391-400. [PMID: 28161524 PMCID: PMC5540801 DOI: 10.1016/j.ydbio.2017.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/28/2017] [Accepted: 02/01/2017] [Indexed: 01/02/2023]
Abstract
Among John Saunders' many seminal contributions to developmental biology, his discovery of the limb 'zone of polarizing activity' (ZPA) is arguably one of the most memorable and ground-breaking. This discovery introduced the limb as a premier model for understanding developmental patterning and promoted the concept of patterning by a morphogen gradient. In the 50 years since the discovery of the ZPA, Sonic hedgehog (Shh) has been identified as the ZPA factor and the basic components of the signaling pathway and many aspects of its regulation have been elucidated. Although much has also been learned about how it regulates growth, the mechanism by which Shh patterns the limb, how it acts to instruct digit 'identity', nevertheless remains an enigma. This review focuses on what has been learned about Shh function in the limb and the outstanding puzzles that remain to be solved.
Collapse
Affiliation(s)
- Jianjian Zhu
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, MD 21702, United States
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, MD 21702, United States.
| |
Collapse
|
26
|
Zhao K, Xiao L, Zhao M, Ji C. Lichen extracts regulate the expression of BMP7 via miR-194-5p targeting to decrease the risk atrial fibrillation. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9092-9103. [PMID: 31966782 PMCID: PMC6965457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/20/2017] [Indexed: 06/10/2023]
Abstract
BACKGROUND Atrial fibrillation (AF), the most common cardiac supraventricular arrhythmia, affects more than 5 million people worldwide. Increasing evidence has demonstrated that genetic factors play an important role in the pathogenesis of AF, and multiple genes responsible for AF have been identified. A better understanding of the genetic mechanism underlying AF would be expected to lead to more accurate risk stratification of AF and optimal clinical treatment strategies. METHODS Immunofluorescence staining was performed to find the components which would have effects on the H9c2 cells development. The changes of BMP7 and miR-194-5p expressions were detected before and after Human Cardiac Myocytes (HCM) were treated with Lichen extraction. In order to confirm whether Lichen could increase the expression of BMP7 through inhibiting the expression of miR-194-5p, the mRNA levels of BMP7 and miR-194-5p were determined in HCM before and after the treatment of Lichen on the conditions that miR-194-5p was over-expressed or not. RESULTS After 48 hours' treatment with 20 µg/mL Lichen extracts, the Collagen I expression level significantly decreased. The expressions of several genes in H9c2 cells could were changed after the treatment of Lichen extracts and some mRNA of them could also be targeted by miR-194-5p including BMP7. Lichen could depress the expression of miR-194-5p in HCM no matter miR-194-5p was overexpressed or not and correspondingly, the expression of BMP7 could be increased in both conditions. CONCLUSIONS It is indicated that Lichen extracts could regulate the expression of atrial fibrillation-associated genes via miR-194-5a targeting.
Collapse
Affiliation(s)
- Kailin Zhao
- Department of Cardiology, Yantai Yeda HospitalShandong, China
| | - Liyun Xiao
- Department of Cardiology, Jinxiang People’s Hospital Affiliated to Jining Medical SchoolShandong, China
| | - Meili Zhao
- Department of Cardiology, Jinxiang People’s Hospital Affiliated to Jining Medical SchoolShandong, China
| | - Changjian Ji
- Department of Cardiology, Jinxiang People’s Hospital Affiliated to Jining Medical SchoolShandong, China
| |
Collapse
|
27
|
Suzuki A, Yoshida H, van Heeringen SJ, Takebayashi-Suzuki K, Veenstra GJC, Taira M. Genomic organization and modulation of gene expression of the TGF-β and FGF pathways in the allotetraploid frog Xenopus laevis. Dev Biol 2017; 426:336-359. [DOI: 10.1016/j.ydbio.2016.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
|
28
|
Zhang YQ, Wan LY, He XM, Ni YR, Wang C, Liu CB, Wu JF. Gremlin1 Accelerates Hepatic Stellate Cell Activation Through Upregulation of TGF-Beta Expression. DNA Cell Biol 2017; 36:603-610. [PMID: 28467108 DOI: 10.1089/dna.2017.3707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Gremlin1, the antagonist of bone morphogenetic protein-7 and one of the target genes of transforming growth factor (TGF)-β signal pathway, plays an important role in embryonic development and its expression decreases along with aging. To explore the expression of gremlin1 in liver fibrosis and the causal link between gremlin1 and hepatic stellate cell (HSC) activation, we detected the expression of gremlin1 in mice with hepatic fibrosis induced by porcine serum using real time quantitative PCR (RT-qPCR) and immunohistochemical staining. The hepatic fibrosis mice were evaluated by the external feature of the liver, histology, hepatic function, collagen deposition, and the expression of fibrosis-related genes (genes COLIα2 and COLIVα2) in the liver. In the HSC-T6, western blotting was used to analyze the expression of α-smooth muscle actin (α-SMA), COL1α, and TGF-β1 in conditions of overexpression of gremlin1 or gremlin1 being knocked down by specific siRNA, respectively. The results showed that the mRNA expression of the gremlin1 gene was significantly increased consistent with increased expression of COLIα2 and COLIVα2 in the liver tissue of the hepatic fibrosis mice. Increased expression of gremlin1 coincided with the same area of the collagen deposition. Furthermore, the results also showed that the expression of α-SMA, COLIα1, and TGF-β1 was consistent with the expression of gremlin1 not only in the HSC-T6 overexpressing gremlin1 but also in the HSC-T6 that gremlin1 is knocked down by specific siRNA. The findings suggest that gremlin1 might play an important role in the progression of hepatic fibrosis and that it modulates HSC activation.
Collapse
Affiliation(s)
- Yan-Qiong Zhang
- 1 Department of Anatomy, Medical College, China Three Gorges University , Yichang, China
| | - Lin-Yan Wan
- 1 Department of Anatomy, Medical College, China Three Gorges University , Yichang, China
- 2 Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University , Yichang, China
- 3 Digestive Medicine, The First People's Hospital of Yichang , Hubei, China
| | - Xiao-Min He
- 1 Department of Anatomy, Medical College, China Three Gorges University , Yichang, China
- 2 Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University , Yichang, China
| | - Yi-Ran Ni
- 1 Department of Anatomy, Medical College, China Three Gorges University , Yichang, China
| | - Chang Wang
- 1 Department of Anatomy, Medical College, China Three Gorges University , Yichang, China
- 2 Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University , Yichang, China
| | - Chang-Bai Liu
- 1 Department of Anatomy, Medical College, China Three Gorges University , Yichang, China
- 2 Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University , Yichang, China
| | - Jiang-Feng Wu
- 1 Department of Anatomy, Medical College, China Three Gorges University , Yichang, China
- 2 Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University , Yichang, China
| |
Collapse
|
29
|
Symmons O, Pan L, Remeseiro S, Aktas T, Klein F, Huber W, Spitz F. The Shh Topological Domain Facilitates the Action of Remote Enhancers by Reducing the Effects of Genomic Distances. Dev Cell 2016; 39:529-543. [PMID: 27867070 PMCID: PMC5142843 DOI: 10.1016/j.devcel.2016.10.015] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/01/2016] [Accepted: 10/18/2016] [Indexed: 11/18/2022]
Abstract
Gene expression often requires interaction between promoters and distant enhancers, which occur within the context of highly organized topologically associating domains (TADs). Using a series of engineered chromosomal rearrangements at the Shh locus, we carried out an extensive fine-scale characterization of the factors that govern the long-range regulatory interactions controlling Shh expression. We show that Shh enhancers act pervasively, yet not uniformly, throughout the TAD. Importantly, changing intra-TAD distances had no impact on Shh expression. In contrast, inversions disrupting the TAD altered global folding of the region and prevented regulatory contacts in a distance-dependent manner. Our data indicate that the Shh TAD promotes distance-independent contacts between distant regions that would otherwise interact only sporadically, enabling functional communication between them. In large genomes where genomic distances per se can limit regulatory interactions, this function of TADs could be as essential for gene expression as the formation of insulated neighborhoods.
Collapse
Affiliation(s)
- Orsolya Symmons
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Leslie Pan
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Silvia Remeseiro
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Tugce Aktas
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Felix Klein
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
30
|
Spitz F. Gene regulation at a distance: From remote enhancers to 3D regulatory ensembles. Semin Cell Dev Biol 2016; 57:57-67. [PMID: 27364700 DOI: 10.1016/j.semcdb.2016.06.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
Large-scale identification of elements associated with gene expression revealed that many of them are located extremely far from gene transcriptional start sites. We review here the growing evidence that show that distal cis-acting elements provide key instructions to genes, as genetic variation affecting them is growingly identified as an importance source of phenotypic diversity and disease. We discuss the different mechanisms that allow these elements to exert their regulatory functions, in a robust and specific manner, despite the large genomic distances separating them from their target genes. We particularly focus on the role of the structural organization of the genome in guiding such regulatory interactions.
Collapse
Affiliation(s)
- François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Department of Developmental Biology and Stem Cells, Institut Pasteur, Paris, France.
| |
Collapse
|
31
|
3D genomics imposes evolution of the domain model of eukaryotic genome organization. Chromosoma 2016; 126:59-69. [DOI: 10.1007/s00412-016-0604-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/11/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
|
32
|
Ludwig KU, Ahmed ST, Böhmer AC, Sangani NB, Varghese S, Klamt J, Schuenke H, Gültepe P, Hofmann A, Rubini M, Aldhorae KA, Steegers-Theunissen RP, Rojas-Martinez A, Reiter R, Borck G, Knapp M, Nakatomi M, Graf D, Mangold E, Peters H. Meta-analysis Reveals Genome-Wide Significance at 15q13 for Nonsyndromic Clefting of Both the Lip and the Palate, and Functional Analyses Implicate GREM1 As a Plausible Causative Gene. PLoS Genet 2016; 12:e1005914. [PMID: 26968009 PMCID: PMC4788144 DOI: 10.1371/journal.pgen.1005914] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 02/15/2016] [Indexed: 12/22/2022] Open
Abstract
Nonsyndromic orofacial clefts are common birth defects with multifactorial etiology. The most common type is cleft lip, which occurs with or without cleft palate (nsCLP and nsCLO, respectively). Although genetic components play an important role in nsCLP, the genetic factors that predispose to palate involvement are largely unknown. In this study, we carried out a meta-analysis on genetic and clinical data from three large cohorts and identified strong association between a region on chromosome 15q13 and nsCLP (P = 8.13×10−14 for rs1258763; relative risk (RR): 1.46, 95% confidence interval (CI): 1.32–1.61)) but not nsCLO (P = 0.27; RR: 1.09 (0.94–1.27)). The 5 kb region of strongest association maps downstream of Gremlin-1 (GREM1), which encodes a secreted antagonist of the BMP4 pathway. We show during mouse embryogenesis, Grem1 is expressed in the developing lip and soft palate but not in the hard palate. This is consistent with genotype-phenotype correlations between rs1258763 and a specific nsCLP subphenotype, since a more than two-fold increase in risk was observed in patients displaying clefts of both the lip and soft palate but who had an intact hard palate (RR: 3.76, CI: 1.47–9.61, Pdiff<0.05). While we did not find lip or palate defects in Grem1-deficient mice, wild type embryonic palatal shelves developed divergent shapes when cultured in the presence of ectopic Grem1 protein (P = 0.0014). The present study identified a non-coding region at 15q13 as the second, genome-wide significant locus specific for nsCLP, after 13q31. Moreover, our data suggest that the closely located GREM1 gene contributes to a rare clinical nsCLP entity. This entity specifically involves abnormalities of the lip and soft palate, which develop at different time-points and in separate anatomical regions. Clefts of the lip and palate are common birth defects, and require long-term multidisciplinary management. Their etiology involves genetic factors and environmental influences and/or a combination of both, however, these interactions are poorly defined. Moreover, although clefts of the lip may or may not involve the palate, the determinants predisposing to specific subphenotypes are largely unknown. Here we demonstrate that variations in the non-coding region near the GREM1 gene show a highly significant association with a particular phenotype in which cleft lip and cleft palate co-occur (nsCLP; P = 8.13×10−14). Our data suggest that the risk is even higher for patients who have a cleft lip and a cleft of the soft palate, but not of the hard palate. Interestingly, this subphenotype corresponds to the expression of the mouse Grem1 gene, which is found in the developing lip and soft palate but not in the hard palate. While Grem1-deficient mice display no lip or palate defects, we demonstrate that ectopic Grem1 protein alters palatal shelve morphogenesis. Together, our results identify a region near GREM1 as the second, genome-wide significant risk locus for nsCLP, and suggest that deregulated GREM1 expression during craniofacial development may contribute to this common birth defect.
Collapse
Affiliation(s)
- Kerstin U. Ludwig
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life&Brain Center, University of Bonn, Bonn, Germany
- * E-mail: (KUL); (HP)
| | - Syeda Tasnim Ahmed
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Anne C. Böhmer
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life&Brain Center, University of Bonn, Bonn, Germany
| | - Nasim Bahram Sangani
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Sheryil Varghese
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Johanna Klamt
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life&Brain Center, University of Bonn, Bonn, Germany
| | - Hannah Schuenke
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life&Brain Center, University of Bonn, Bonn, Germany
| | - Pinar Gültepe
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life&Brain Center, University of Bonn, Bonn, Germany
| | - Andrea Hofmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life&Brain Center, University of Bonn, Bonn, Germany
| | - Michele Rubini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Italy
| | | | - Regine P. Steegers-Theunissen
- Department of Obstetrics and Gynaecology, ErasmusMC, Rotterdam, Netherlands
- Department of Epidemiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Augusto Rojas-Martinez
- Department of Biochemistry and Molecular Medicine, School of Medicine, and Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Rudolf Reiter
- Department of Otolaryngology—Head and Neck Surgery, Section of Phoniatrics and Pedaudiology, University of Ulm, Ulm, Germany
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Michael Knapp
- Institute of Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | | | - Daniel Graf
- Orofacial Development and Regeneration, Institute of Oral Biology, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
- Departments of Dentistry and Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | | | - Heiko Peters
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
- * E-mail: (KUL); (HP)
| |
Collapse
|
33
|
West DB, Engelhard EK, Adkisson M, Nava AJ, Kirov JV, Cipollone A, Willis B, Rapp J, de Jong PJ, Lloyd KC. Transcriptome Analysis of Targeted Mouse Mutations Reveals the Topography of Local Changes in Gene Expression. PLoS Genet 2016; 12:e1005691. [PMID: 26839965 PMCID: PMC4739719 DOI: 10.1371/journal.pgen.1005691] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/30/2015] [Indexed: 01/21/2023] Open
Abstract
The unintended consequences of gene targeting in mouse models have not been thoroughly studied and a more systematic analysis is needed to understand the frequency and characteristics of off-target effects. Using RNA-seq, we evaluated targeted and neighboring gene expression in tissues from 44 homozygous mutants compared with C57BL/6N control mice. Two allele types were evaluated: 15 targeted trap mutations (TRAP); and 29 deletion alleles (DEL), usually a deletion between the translational start and the 3' UTR. Both targeting strategies insert a bacterial beta-galactosidase reporter (LacZ) and a neomycin resistance selection cassette. Evaluating transcription of genes in +/- 500 kb of flanking DNA around the targeted gene, we found up-regulated genes more frequently around DEL compared with TRAP alleles, however the frequency of alleles with local down-regulated genes flanking DEL and TRAP targets was similar. Down-regulated genes around both DEL and TRAP targets were found at a higher frequency than expected from a genome-wide survey. However, only around DEL targets were up-regulated genes found with a significantly higher frequency compared with genome-wide sampling. Transcriptome analysis confirms targeting in 97% of DEL alleles, but in only 47% of TRAP alleles probably due to non-functional splice variants, and some splicing around the gene trap. Local effects on gene expression are likely due to a number of factors including compensatory regulation, loss or disruption of intragenic regulatory elements, the exogenous promoter in the neo selection cassette, removal of insulating DNA in the DEL mutants, and local silencing due to disruption of normal chromatin organization or presence of exogenous DNA. An understanding of local position effects is important for understanding and interpreting any phenotype attributed to targeted gene mutations, or to spontaneous indels.
Collapse
Affiliation(s)
- David B. West
- Children’s Hospital Oakland Research Institute (CHORI), Oakland, California, United States of America
- * E-mail:
| | - Eric K. Engelhard
- Mouse Biology Program, University of California, Davis, California, United States of America
| | - Michael Adkisson
- Children’s Hospital Oakland Research Institute (CHORI), Oakland, California, United States of America
| | - A. J. Nava
- Children’s Hospital Oakland Research Institute (CHORI), Oakland, California, United States of America
| | - Julia V. Kirov
- Children’s Hospital Oakland Research Institute (CHORI), Oakland, California, United States of America
| | - Andreanna Cipollone
- Mouse Biology Program, University of California, Davis, California, United States of America
| | - Brandon Willis
- Mouse Biology Program, University of California, Davis, California, United States of America
| | - Jared Rapp
- Mouse Biology Program, University of California, Davis, California, United States of America
| | - Pieter J. de Jong
- Children’s Hospital Oakland Research Institute (CHORI), Oakland, California, United States of America
| | - Kent C. Lloyd
- Mouse Biology Program, University of California, Davis, California, United States of America
| |
Collapse
|
34
|
Wang YH, Keenan SR, Lynn J, McEwan JC, Beck CW. Gremlin1 induces anterior–posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regeneration. Mech Dev 2015; 138 Pt 3:256-67. [DOI: 10.1016/j.mod.2015.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/21/2015] [Indexed: 02/02/2023]
|
35
|
Welsh IC, Kwak H, Chen FL, Werner M, Shopland LS, Danko CG, Lis JT, Zhang M, Martin JF, Kurpios NA. Chromatin Architecture of the Pitx2 Locus Requires CTCF- and Pitx2-Dependent Asymmetry that Mirrors Embryonic Gut Laterality. Cell Rep 2015; 13:337-49. [PMID: 26411685 PMCID: PMC4617833 DOI: 10.1016/j.celrep.2015.08.075] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/20/2015] [Accepted: 08/24/2015] [Indexed: 11/24/2022] Open
Abstract
Expression of Pitx2 on the left side of the embryo patterns left-right (LR) organs including the dorsal mesentery (DM), whose asymmetric cell behavior directs gut looping. Despite the importance of organ laterality, chromatin-level regulation of Pitx2 remains undefined. Here, we show that genes immediately neighboring Pitx2 in chicken and mouse, including a long noncoding RNA (Pitx2 locus-asymmetric regulated RNA or Playrr), are expressed on the right side and repressed by Pitx2. CRISPR/Cas9 genome editing of Playrr, 3D fluorescent in situ hybridization (FISH), and variations of chromatin conformation capture (3C) demonstrate that mutual antagonism between Pitx2 and Playrr is coordinated by asymmetric chromatin interactions dependent on Pitx2 and CTCF. We demonstrate that transcriptional and morphological asymmetries driving gut looping are mirrored by chromatin architectural asymmetries at the Pitx2 locus. We propose a model whereby Pitx2 auto-regulation directs chromatin topology to coordinate LR transcription of this locus essential for LR organogenesis.
Collapse
Affiliation(s)
- Ian C Welsh
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Frances L Chen
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Melissa Werner
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Lindsay S Shopland
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Eastern Maine Medical Center Cancer Care, 33 Whiting Hill Road, Brewer, ME 04412, USA
| | - Charles G Danko
- Department of Biomedical Sciences, The Baker Institute for Animal Health, Cornell University, Ithaca, NY 14853, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Min Zhang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Heart Institute, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
36
|
Diaz RE, Trainor PA. Hand/foot splitting and the 're-evolution' of mesopodial skeletal elements during the evolution and radiation of chameleons. BMC Evol Biol 2015; 15:184. [PMID: 26382964 PMCID: PMC4574539 DOI: 10.1186/s12862-015-0464-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/21/2015] [Indexed: 01/07/2023] Open
Abstract
Background One of the most distinctive traits found within Chamaeleonidae is their split/cleft autopodia and the simplified and divergent morphology of the mesopodial skeleton. These anatomical characteristics have facilitated the adaptive radiation of chameleons to arboreal niches. To better understand the homology of chameleon carpal and tarsal elements, the process of syndactyly, cleft formation, and how modification of the mesopodial skeleton has played a role in the evolution and diversification of chameleons, we have studied the Veiled Chameleon (Chamaeleo calyptratus). We analysed limb patterning and morphogenesis through in situ hybridization, in vitro whole embryo culture and pharmacological perturbation, scoring for apoptosis, clefting, and skeletogenesis. Furthermore, we framed our data within a phylogenetic context by performing comparative skeletal analyses in 8 of the 12 currently recognized genera of extant chameleons. Results Our study uncovered a previously underappreciated degree of mesopodial skeletal diversity in chameleons. Phylogenetically derived chameleons exhibit a ‘typical’ outgroup complement of mesopodial elements (with the exception of centralia), with twice the number of currently recognized carpal and tarsal elements considered for this clade. In contrast to avians and rodents, mesenchymal clefting in chameleons commences in spite of the maintenance of a robust apical ectodermal ridge (AER). Furthermore, Bmp signaling appears to be important for cleft initiation but not for maintenance of apoptosis. Interdigital cell death therefore may be an ancestral characteristic of the autopodium, however syndactyly is an evolutionary novelty. In addition, we find that the pisiform segments from the ulnare and that chameleons lack an astragalus-calcaneum complex typical of amniotes and have evolved an ankle architecture convergent with amphibians in phylogenetically higher chameleons. Conclusion Our data underscores the importance of comparative and phylogenetic approaches when studying development. Body size may have played a role in the characteristic mesopodial skeletal architecture of chameleons by constraining deployment of the skeletogenic program in the smaller and earliest diverged and basal taxa. Our study challenges the ‘re-evolution’ of osteological features by showing that ‘re-evolving’ a ‘lost’ feature de novo (contrary to Dollo’s Law) may instead be due to so called ‘missing structures’ being present but underdeveloped and/or fused to other adjacent elements (cryptic features) whose independence may be re-established under changes in adaptive selective pressure. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0464-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raul E Diaz
- Department of Biology, La Sierra University, Riverside, CA, 92515, USA. .,Natural History Museum of Los Angeles County, Los Angeles, CA, 90007, USA.
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA. .,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
37
|
Reporter Gene Silencing in Targeted Mouse Mutants Is Associated with Promoter CpG Island Methylation. PLoS One 2015; 10:e0134155. [PMID: 26275310 PMCID: PMC4537176 DOI: 10.1371/journal.pone.0134155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/06/2015] [Indexed: 11/19/2022] Open
Abstract
Targeted mutations in mouse disrupt local chromatin structure and may lead to unanticipated local effects. We evaluated targeted gene promoter silencing in a group of six mutants carrying the tm1a Knockout Mouse Project allele containing both a LacZ reporter gene driven by the native promoter and a neo selection cassette. Messenger RNA levels of the reporter gene and targeted gene were assessed by qRT-PCR, and methylation of the promoter CpG islands and LacZ coding sequence were evaluated by sequencing of bisulfite-treated DNA. Mutants were stratified by LacZ staining into presumed Silenced and Expressed reporter genes. Silenced mutants had reduced relative quantities LacZ mRNA and greater CpG Island methylation compared with the Expressed mutant group. Within the silenced group, LacZ coding sequence methylation was significantly and positively correlated with CpG Island methylation, while promoter CpG methylation was only weakly correlated with LacZ gene mRNA. The results support the conclusion that there is promoter silencing in a subset of mutants carrying the tm1a allele. The features of targeted genes which promote local silencing when targeted remain unknown.
Collapse
|
38
|
Li N, Mruk DD, Tang EI, Wong CK, Lee WM, Silvestrini B, Cheng CY. Formins: Actin nucleators that regulate cytoskeletal dynamics during spermatogenesis. SPERMATOGENESIS 2015; 5:e1066476. [PMID: 26413414 DOI: 10.1080/21565562.2015.1066476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/18/2015] [Accepted: 06/18/2015] [Indexed: 12/21/2022]
Abstract
Formins are a growing class of actin nucleation proteins that promote the polymerization of actin microfilaments, forming long stretches of actin microfilaments to confer actin filament bundling in mammalian cells. As such, microfilament bundles can be formed in specific cellular domains, in particular in motile mammalian cells, such as filopodia. Since ectoplasmic specialization (ES), a testis-specific adherens junction (AJ), at the Sertoli cell-cell and Sertoli-spermatid interface is constituted by arrays of actin microfilament bundles, it is likely that formins are playing a significant physiological role on the homeostasis of ES during the epithelial cycle of spermatogenesis. In this Commentary, we provide a timely discussion on formin 1 which was recently shown to be a crucial regulator of actin microfilaments at the ES in the rat testis (Li N et al. Endocrinology, 2015, in press; DOI: 10.1210/en.2015-1161, PMID:25901598). We also highlight research that is needed to unravel the functional significance of formins in spermatogenesis.
Collapse
Affiliation(s)
- Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council ; New York, NY USA
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council ; New York, NY USA
| | - Elizabeth I Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council ; New York, NY USA
| | - Chris Kc Wong
- Department of Biology; Hong Kong Baptist University ; Hong Kong, China
| | - Will M Lee
- School of Biological Sciences; University of Hong Kong ; Hong Kong, China
| | | | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council ; New York, NY USA
| |
Collapse
|
39
|
Using transgenic reporter assays to functionally characterize enhancers in animals. Genomics 2015; 106:185-192. [PMID: 26072435 DOI: 10.1016/j.ygeno.2015.06.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/11/2015] [Accepted: 06/09/2015] [Indexed: 11/21/2022]
Abstract
Enhancers or cis-regulatory modules play an instructive role in regulating gene expression during animal development and in response to the environment. Despite their importance, we only have an incomplete map of enhancers in the genome and our understanding of the mechanisms governing their function is still limited. Recent advances in genomics provided powerful tools to generate genome-wide maps of potential enhancers. However, most of these methods are based on indirect measures of enhancer activity and have to be followed by functional testing. Animal transgenesis has been a valuable method to functionally test and characterize enhancers in vivo. In this review I discuss how different transgenic strategies are utilized to characterize enhancers in model organisms focusing on studies in Drosophila and mouse. I will further discuss recent large-scale transgenic efforts to systematically identify and catalog enhancers as well as highlight the challenges and future directions in the field.
Collapse
|
40
|
Mostowska A, Hozyasz KK, Wójcicki P, Żukowski K, Dąbrowska A, Lasota A, Zadurska M, Radomska A, Dunin-Wilczyńska I, Jagodziński PP. Association between polymorphisms at theGREM1locus and the risk of nonsyndromic cleft lip with or without cleft palate in the Polish population. ACTA ACUST UNITED AC 2015; 103:847-56. [DOI: 10.1002/bdra.23391] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Adrianna Mostowska
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan Poland
| | - Kamil K. Hozyasz
- Department of Paediatrics; Institute of Mother and Child; Warsaw Poland
| | - Piotr Wójcicki
- University Clinic of Medical Academy in Wroclaw and Department of Plastic Surgery Specialist Medical Center in Polanica Zdroj; Poland
| | - Kacper Żukowski
- Department of Animal Genetics and Breeding; National Research Institute of Animal Production; Balice Poland
| | - Anna Dąbrowska
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan Poland
| | - Agnieszka Lasota
- Department of Jaw Orthopaedics; Medical University of Lublin; Lublin Poland
| | - Małgorzata Zadurska
- Department of Orthodontics; Institute of Dentistry, The Medical University of Warsaw; Poland
| | - Agnieszka Radomska
- Department of Orthodontics; Institute of Dentistry, The Medical University of Warsaw; Poland
| | | | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan Poland
| |
Collapse
|
41
|
Reber I, Keller I, Becker D, Flury C, Welle M, Drögemüller C. Wattles in goats are associated with the FMN1/GREM1 region on chromosome 10. Anim Genet 2015; 46:316-20. [PMID: 25736034 PMCID: PMC5024000 DOI: 10.1111/age.12279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2015] [Indexed: 01/29/2023]
Abstract
The presence of congenital appendages (wattles) on the throat of goats is supposed to be under genetic control with a dominant mode of inheritance. Wattles contain a cartilaginous core covered with normal skin resembling early stages of extremities. To map the dominant caprine wattles (W) locus, we collected samples of 174 goats with wattles and 167 goats without wattles from nine different Swiss goat breeds. The samples were genotyped with the 53k goat SNP chip for a subsequent genome-wide association study. We obtained a single strong association signal on chromosome 10 in a region containing functional candidate genes for limb development and outgrowth. We sequenced the whole genomes of an informative family trio containing an offspring without wattles and its heterozygous parents with wattles. In the associated goat chromosome 10 region, a total of 1055 SNPs and short indels perfectly co-segregate with the W allele. None of the variants were perfectly associated with the phenotype after analyzing the genome sequences of eight additional goats. We speculate that the causative mutation is located in one of the numerous gaps in the current version of the goat reference sequence and/or represents a larger structural variant which influences the expression of the FMN1 and/or GREM1 genes. Also, we cannot rule out possible genetic or allelic heterogeneity. Our genetic findings support earlier assumptions that wattles are rudimentary developed extremities.
Collapse
Affiliation(s)
- I Reber
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland; DermFocus, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
42
|
Tsujimura T, Klein FA, Langenfeld K, Glaser J, Huber W, Spitz F. A discrete transition zone organizes the topological and regulatory autonomy of the adjacent tfap2c and bmp7 genes. PLoS Genet 2015; 11:e1004897. [PMID: 25569170 PMCID: PMC4288730 DOI: 10.1371/journal.pgen.1004897] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/17/2014] [Indexed: 12/11/2022] Open
Abstract
Despite the well-documented role of remote enhancers in controlling developmental gene expression, the mechanisms that allocate enhancers to genes are poorly characterized. Here, we investigate the cis-regulatory organization of the locus containing the Tfap2c and Bmp7 genes in vivo, using a series of engineered chromosomal rearrangements. While these genes lie adjacent to one another, we demonstrate that they are independently regulated by distinct sets of enhancers, which in turn define non-overlapping regulatory domains. Chromosome conformation capture experiments reveal a corresponding partition of the locus in two distinct structural entities, demarcated by a discrete transition zone. The impact of engineered chromosomal rearrangements on the topology of the locus and the resultant gene expression changes indicate that this transition zone functionally organizes the structural partition of the locus, thereby defining enhancer-target gene allocation. This partition is, however, not absolute: we show that it allows competing interactions across it that may be non-productive for the competing gene, but modulate expression of the competed one. Altogether, these data highlight the prime role of the topological organization of the genome in long-distance regulation of gene expression. The specificity of enhancer-gene interactions is fundamental to the execution of gene regulatory programs underpinning embryonic development and cell differentiation. However, our understanding of the mechanisms conferring specificity to enhancers and target gene interactions is limited. In this study, we characterize the cis-regulatory organization of a large genomic locus consisting of two developmental genes, Tfap2c and Bmp7. We show that this locus is structurally partitioned into two distinct domains by the constitutive action of a discrete transition zone located between the two genes. This separation restricts selectively the functional action of enhancers to the genes present within the same domain. Interestingly, the effects of this region as a boundary are relative, as it allows some competing interactions to take place across domains. We show that these interactions modulate the functional output of a brain enhancer on its primary target gene resulting in the spatial restriction of its expression domain. These results support a functional link between topological chromatin domains and allocation of enhancers to genes. They further show that a precise adjustment of chromatin interaction levels fine-tunes gene regulation by long-range enhancers.
Collapse
Affiliation(s)
- Taro Tsujimura
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Felix A. Klein
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Katja Langenfeld
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Juliane Glaser
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
43
|
Nolte MJ, Wang Y, Deng JM, Swinton PG, Wei C, Guindani M, Schwartz RJ, Behringer RR. Functional analysis of limb transcriptional enhancers in the mouse. Evol Dev 2014; 16:207-23. [PMID: 24920384 DOI: 10.1111/ede.12084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transcriptional enhancers are genomic sequences bound by transcription factors that act together with basal transcriptional machinery to regulate gene transcription. Several high-throughput methods have generated large datasets of tissue-specific enhancer sequences with putative roles in developmental processes. However, few enhancers have been deleted from the genome to determine their roles in development. To understand the roles of two enhancers active in the mouse embryonic limb bud we deleted them from the genome. Although the genes regulated by these enhancers are unknown, they were selected because they were identified in a screen for putative limb bud-specific enhancers associated with p300, an acetyltransferase that participates in protein complexes that promote active transcription, and because the orthologous human enhancers (H1442 and H280) drive distinct lacZ expression patterns in limb buds of embryonic day (E) 11.5 transgenic mice. We show that the orthologous mouse sequences, M1442 and M280, regulate dynamic expression in the developing limb. Although significant transcriptional differences in enhancer-proximal genes in embryonic limb buds accompany the deletion of M1442 and M280 no gross limb malformations during embryonic development were observed, demonstrating that M1442 and M280 are not required for mouse limb development. However, M280 is required for the development and/or maintenance of body size; M280 mice are significantly smaller than controls. M280 also harbors an "ultraconserved" sequence that is identical between human, rat, and mouse. This is the first report of a phenotype resulting from the deletion of an ultraconserved element. These studies highlight the importance of determining enhancer regulatory function by experiments that manipulate them in situ and suggest that some of an enhancer's regulatory capacities may be developmentally tolerated rather than developmentally required.
Collapse
Affiliation(s)
- Mark J Nolte
- Graduate Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA; Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Schwarzer W, Spitz F. The architecture of gene expression: integrating dispersed cis-regulatory modules into coherent regulatory domains. Curr Opin Genet Dev 2014; 27:74-82. [PMID: 24907448 DOI: 10.1016/j.gde.2014.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 02/06/2023]
Abstract
Specificity and precision of expression are essential for the genes that regulate developmental processes. The specialized cis-acting modules, such as enhancers, that define gene expression patterns can be distributed across large regions, raising questions about the nature of the mechanisms that underline their action. Recent data has exposed the structural 3D context in which these long-range enhancers are operating. Here, we present how these studies shed new light on principles driving long-distance regulatory relationships. We discuss the molecular mechanisms that enable and accompany the action of long-range acting elements and the integration of multiple distributed regulatory inputs into the coherent and specific regulatory programs that are key to embryonic development.
Collapse
Affiliation(s)
- Wibke Schwarzer
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
45
|
Randall TS, Ehler E. A formin-g role during development and disease. Eur J Cell Biol 2014; 93:205-11. [PMID: 24342720 DOI: 10.1016/j.ejcb.2013.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 11/22/2022] Open
Abstract
Several different protein families were shown to be involved in the regulation of actin filament formation and have been studied extensively in processes such as cell migration. Among them are members of the formin family, which tend to promote the formation of linear actin filaments. Studies in recent years, often using loss of function animal models, have indicated that formin family members play roles beyond cell motility in vitro and are involved in processes ranging from tissue morphogenesis and cell differentiation to diseases such as cancer and cardiomyopathy. Therefore the aim of this review is to discuss these findings and to start putting them into a subcellular context.
Collapse
Affiliation(s)
- Thomas S Randall
- Randall Division of Cell and Molecular Biophysics, Cardiovascular Division, British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
| | - Elisabeth Ehler
- Randall Division of Cell and Molecular Biophysics, Cardiovascular Division, British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
46
|
Pignatti E, Zeller R, Zuniga A. To BMP or not to BMP during vertebrate limb bud development. Semin Cell Dev Biol 2014; 32:119-27. [PMID: 24718318 DOI: 10.1016/j.semcdb.2014.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/01/2014] [Indexed: 12/01/2022]
Abstract
The analysis of vertebrate limb bud development provides insight of general relevance into the signaling networks that underlie the controlled proliferative expansion of large populations of mesenchymal progenitors, cell fate determination and initiation of differentiation. In particular, extensive genetic analysis of mouse and experimental manipulation of chicken limb bud development has revealed the self-regulatory feedback signaling systems that interlink the main morphoregulatory signaling pathways including BMPs and their antagonists. It this review, we showcase the key role of BMPs and their antagonists during limb bud development. This review provides an understanding of the key morphoregulatory interactions that underlie the highly dynamic changes in BMP activity and signal transduction as limb bud development progresses from initiation and setting-up the signaling centers to determination and formation of the chondrogenic primordia for the limb skeletal elements.
Collapse
Affiliation(s)
- Emanuele Pignatti
- Developmental Genetics, Department Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Rolf Zeller
- Developmental Genetics, Department Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Aimée Zuniga
- Developmental Genetics, Department Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland.
| |
Collapse
|
47
|
Li Q, Lewandowski JP, Powell MB, Norrie JL, Cho SH, Vokes SA. A Gli silencer is required for robust repression of gremlin in the vertebrate limb bud. Development 2014; 141:1906-14. [PMID: 24700818 DOI: 10.1242/dev.104299] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The transcriptional response to the Hedgehog (Hh) pathway is mediated by Gli proteins, which function as context-dependent transcriptional activators or repressors. However, the mechanism by which Gli proteins regulate their target genes is poorly understood. Here, we have performed the first genetic characterization of a Gli-dependent cis-regulatory module (CRM), focusing on its regulation of Grem1 in the mouse limb bud. The CRM, termed GRE1 (Gli responsive element 1), can act as both an enhancer and a silencer. The enhancer activity requires sustained Hh signaling. As a Gli-dependent silencer, GRE1 prevents ectopic transcription of Grem1 driven through additional CRMs. In doing so, GRE1 works with additional GREs to robustly regulate Grem1. We suggest that multiple Gli CRMs may be a general mechanism for mediating a robust transcriptional response to the Hh pathway.
Collapse
Affiliation(s)
- Qiang Li
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | | | | | | | | | | |
Collapse
|
48
|
Symmons O, Uslu VV, Tsujimura T, Ruf S, Nassari S, Schwarzer W, Ettwiller L, Spitz F. Functional and topological characteristics of mammalian regulatory domains. Genome Res 2014; 24:390-400. [PMID: 24398455 PMCID: PMC3941104 DOI: 10.1101/gr.163519.113] [Citation(s) in RCA: 327] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/19/2013] [Indexed: 01/04/2023]
Abstract
Long-range regulatory interactions play an important role in shaping gene-expression programs. However, the genomic features that organize these activities are still poorly characterized. We conducted a large operational analysis to chart the distribution of gene regulatory activities along the mouse genome, using hundreds of insertions of a regulatory sensor. We found that enhancers distribute their activities along broad regions and not in a gene-centric manner, defining large regulatory domains. Remarkably, these domains correlate strongly with the recently described TADs, which partition the genome into distinct self-interacting blocks. Different features, including specific repeats and CTCF-binding sites, correlate with the transition zones separating regulatory domains, and may help to further organize promiscuously distributed regulatory influences within large domains. These findings support a model of genomic organization where TADs confine regulatory activities to specific but large regulatory domains, contributing to the establishment of specific gene expression profiles.
Collapse
Affiliation(s)
- Orsolya Symmons
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Veli Vural Uslu
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Taro Tsujimura
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Sandra Ruf
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Sonya Nassari
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Wibke Schwarzer
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Laurence Ettwiller
- Centre for Organismal Studies, University of Heidelberg, 69111 Heidelberg, Germany
| | - François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
49
|
Bhatia S, Kleinjan DA. Disruption of long-range gene regulation in human genetic disease: a kaleidoscope of general principles, diverse mechanisms and unique phenotypic consequences. Hum Genet 2014; 133:815-45. [DOI: 10.1007/s00439-014-1424-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/18/2014] [Indexed: 01/05/2023]
|
50
|
de Laat W, Duboule D. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 2013; 502:499-506. [PMID: 24153303 DOI: 10.1038/nature12753] [Citation(s) in RCA: 375] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 09/02/2013] [Indexed: 12/26/2022]
Abstract
How a complex animal can arise from a fertilized egg is one of the oldest and most fascinating questions of biology, the answer to which is encoded in the genome. Body shape and organ development, and their integration into a functional organism all depend on the precise expression of genes in space and time. The orchestration of transcription relies mostly on surrounding control sequences such as enhancers, millions of which form complex regulatory landscapes in the non-coding genome. Recent research shows that high-order chromosome structures make an important contribution to enhancer functionality by triggering their physical interactions with target genes.
Collapse
Affiliation(s)
- Wouter de Laat
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | | |
Collapse
|