1
|
Almaguer-Melian W, Mercerón-Martínez D, Alacán-Ricardo L, Piña AEV, Hsieh C, Bergado-Rosado JA, Sacktor TC. Amygdala stimulation transforms short-term memory into remote memory by persistent activation of atypical protein kinase C in the anterior cingulate cortex. Neuroscience 2025; 569:288-297. [PMID: 39900220 DOI: 10.1016/j.neuroscience.2025.01.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/16/2024] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Although many studies have addressed the role of the amygdala in modulating long-term memory, it is not known whether weak training plus amygdala stimulation can transform a short-term memory into a remote memory. Object place recognition (OPR) memory after strong training remains hippocampus-dependent through the persistent action of protein kinase Mzeta (PKMζ) for at least 6 days, but it is unknown whether weak training plus amygdala stimulation can transform short-term memory into an even longer memory, and whether such memory is stored through more persistent action of PKMζ in hippocampus. We trained male rats (150 total in our study) to acquire OPR and 15 min or 5 h later induced a brief pattern of electrical stimulation in basolateral amygdala (BLA). Our results reveal that a short-term memory lasting < 4h can be converted into remote memory lasting at least 3 weeks if the BLA is activated 15 min, but not 5 h after learning. To examine how this remote memory is maintained, we injected ZIP, an inhibitor of atypical protein kinase Cs (aPKCs), PKMζ and PKCι/λ, into either hippocampal CA1, dentate gyrus (DG), or anterior cingulate cortex (ACC). Our data reveal amygdala stimulation produces consolidation into remote memory, not by persistent aPKC activation in the hippocampal formation, but in ACC. Our data establish a powerful modulating role of the BLA in forming remote memory and open a path in the search for neurological restoration of memory, based on enhancing synaptic plasticity in aging or neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- William Almaguer-Melian
- Laboratorio de Electrofisiología Experimental del Centro Internacional de Restauración Neurológica CIREN La Habana Cuba
| | - Daymara Mercerón-Martínez
- Laboratorio de Electrofisiología Experimental del Centro Internacional de Restauración Neurológica CIREN La Habana Cuba
| | - Laura Alacán-Ricardo
- Facultad de Medicina Victoria de Girón Universidad Médica de La Habana La Habana Cuba
| | | | - Changchi Hsieh
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University NY USA
| | | | - Todd Charlton Sacktor
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University NY USA; Departments of Neurology and Anesthesiology, State University of New York Downstate Health Sciences University NY USA.
| |
Collapse
|
2
|
Darbinyan L, Simonyan K, Manukyan L, Sarkisian V, Hovhannisyan L, Hambardzumyan L. Evaluation of the Neuroprotective Potential of Sutherlandia frutescens in a Rotenone-Induced Rat Model of Parkinson's Disease. Behav Neurol 2025; 2025:6606560. [PMID: 40224523 PMCID: PMC11991776 DOI: 10.1155/bn/6606560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/27/2025] [Indexed: 04/15/2025] Open
Abstract
Sutherlandia frutescens (SF) is a plant used traditionally in South Africa for various health conditions, including neurological disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in the substantia nigra, resulting in motor symptoms. Rotenone, a pesticide, has been linked to PD-like symptoms in both in vitro and in vivo studies. However, SF-specific effects of SF on PD-related symptoms have not been extensively studied. This study was aimed at investigating the potential neuroprotective effects of SF against rotenone-induced PD using in vivo electrophysiological recordings from the hippocampus and an open-field test to assess motor behavior. Rats were divided into three groups: a control group receiving sunflower oil, a rotenone group treated with rotenone (2.0 mg/kg), and an SF group treated with hydroponically grown SF extract. Electrophysiological recordings from the hippocampus were conducted to assess neuronal activity, and an open-field test was used to evaluate motor behavior. Rats treated with SF exhibited significantly higher motor activity compared to both the sunflower oil and rotenone groups, suggesting an activating effect of SF on motor behavior. In contrast, the rotenone group displayed reduced activity levels and exploratory behavior, highlighting the suppressive impact of rotenone on motor function. These findings suggest that SF modulates hippocampal neuronal activity and may offer neuroprotective benefits against rotenone-induced PD-like symptoms. SF, a plant with traditional medicinal applications, shows potential in modulating motor behavior and hippocampal neuronal activity in a rotenone-induced PD model. Further studies are needed to clarify the underlying mechanisms and evaluate the clinical relevance of SF in PD management.
Collapse
Affiliation(s)
- Lilit Darbinyan
- Sensorimotor Integration Lab, Orbeli Institute of Physiology NAS RA, Yerevan, Armenia
| | - Karen Simonyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, Yerevan, Armenia
| | - Larisa Manukyan
- Sensorimotor Integration Lab, Orbeli Institute of Physiology NAS RA, Yerevan, Armenia
| | - Vaghinak Sarkisian
- Sensorimotor Integration Lab, Orbeli Institute of Physiology NAS RA, Yerevan, Armenia
| | | | - Lilia Hambardzumyan
- Sensorimotor Integration Lab, Orbeli Institute of Physiology NAS RA, Yerevan, Armenia
| |
Collapse
|
3
|
Wong-Guerra M, Montano-Peguero Y, Hernández-Enseñat D, Ramírez-Sánchez J, Mondelo-Rodríguez A, Padrón-Yaquis AS, García-Alfonso E, Fonseca-Fonseca LA, Nuñez-Figueredo Y. Mitochondrial protective properties exerted by JM-20 in a dementia model induced by intracerebroventricular administration of streptozotocin in mice. Behav Brain Res 2025; 480:115385. [PMID: 39667646 DOI: 10.1016/j.bbr.2024.115385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Mitochondrial dysfunction and brain insulin resistance have been related to Alzheimer's disease (AD) development. Streptozotocin (STZ) is commonly employed to disrupt glucose and insulin metabolism, even causing cognitive impairment in animal models. We aimed at studying the protective effect of JM-20 on STZ-induced memory impairment and brain mitochondrial dysfunction. METHODS Male C57Bl6 mice received 3 mg/kg STZ intracerebroventricularly and JM-20 (0.25 mg/kg or 4 mg/kg) was administered daily by gastric gavage. Episodic memory was evaluated through Y-maze, novel object recognition, and Morris water maze. Endogenous antioxidant systems (catalase and superoxide dismutase activities), total sulfhydryl groups, malondialdehyde levels were also studied and acetylcholinesterase (AChE) activity were assessed in the prefrontal cortex (PC) and hippocampus (HO). RESULTS demonstrated that STZ injection impaired recognition and spatial learning and memory and oxygen flow in all mitochondrial respiration states. Additionally, STZ increased AChE, superoxide dismutase, and catalase activity in the PC but not in HO tissue. A neuroprotective effect of JM-20 on STZ-induced memory decline, and mitochondrial dysfunction was observed, suggesting an important causal interaction. In addition, JM-20 was able to decreased AChE enzyme hyperactivity, rescued endogenous antioxidant systems, and prevented histologically observed neuronal damage CONCLUSION: Our results indicate that JM-20 protects against STZ-induced impairment in brain bioenergetic metabolism and memory, confirming its potential as a candidate for treating neurodegenerative disorders associated with mitochondrial dysfunction like AD.
Collapse
Affiliation(s)
- Maylin Wong-Guerra
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos, La Habana 10600, Cuba; Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
| | - Yanay Montano-Peguero
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos, La Habana 10600, Cuba; Facultad de Ciencias Químicas y Farmacéuticas, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Casilla 233, Santiago, Chile
| | - Daniela Hernández-Enseñat
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos, La Habana 10600, Cuba
| | - Jeney Ramírez-Sánchez
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos, La Habana 10600, Cuba
| | - Abel Mondelo-Rodríguez
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos, La Habana 10600, Cuba
| | - Alejandro Saúl Padrón-Yaquis
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos, La Habana 10600, Cuba
| | - Enrique García-Alfonso
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos, La Habana 10600, Cuba
| | - Luis Arturo Fonseca-Fonseca
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos, La Habana 10600, Cuba.
| | - Yanier Nuñez-Figueredo
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos, La Habana 10600, Cuba.
| |
Collapse
|
4
|
Elbeltagy M, Khraisat B, AlZoubi L, Hmoud L, AlJeady A, Yousef M, Salman A. The neuroprotective effects of Piracetam on cisplatin-induced cognitive decline. Int J Neurosci 2025; 135:337-344. [PMID: 38153438 DOI: 10.1080/00207454.2023.2300733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 12/29/2023]
Abstract
AIM This work explores the effect of Cisplatin-a chemotherapeutic agent known to cause deterioration in cognitive function in cancer patients, and spatial memory in mice. It also investigates the potential neuroprotective effects of Piracetam, which is a nootropic drug recognized for improving cognitive ability. MATERIALS AND METHODS The study incorporates four groups of mice receiving varied medication regimens, with memory tested using the Novel Location Recognition (NLR) method. RESULTS The findings from our study revealed that memory decline and a suppression of cellular proliferation were observed in adult male mice subjected to Cisplatin treatment; furthermore, a decline in antioxidant efficacy within the hippocampal dentate gyrus was evident. Moreover, analysis of treatment effects on the animals' weight revealed that the Cisplatin and Piracetam group exhibited the most significant weight loss during drug administration. Despite the significant weight loss, the simultaneous use of Cisplatin and Piracetam demonstrated a notable improvement in memory and an augmentation of hippocampal proliferation and antioxidant effect. LIMITATIONS It is important to note that our study was hampered by budget limits, a lack of additional animals, and mice's low tolerance for protracted treatment. CONCLUSIONS Should the outcomes of Piracetam observed in this investigation be applicable to patients, it might offer a relatively straightforward approach to mitigate the cognitive impacts endured by cancer survivors following exposure to chemotherapy. Future research will be needed to study Piracetam's effect on mice with brain cancer after Cisplatin treatment in order to extrapolate the results onto cancer patients.
Collapse
Affiliation(s)
- Maha Elbeltagy
- Faculty of Medicine, The University of Jordan, Amman, Jordan
- Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Bann Khraisat
- Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Lujain AlZoubi
- Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Leen Hmoud
- Faculty of Dentistry, The University of Jordan, Amman, Jordan
| | | | - Mohammed Yousef
- Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Ahmed Salman
- Faculty of Medicine, The University of Jordan, Amman, Jordan
- Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
5
|
Feng Y, Diego KS, Dong Z, Christenson Wick Z, Page-Harley L, Page-Harley V, Schnipper J, Lamsifer SI, Pennington ZT, Vetere LM, Philipsberg PA, Soler I, Jurkowski A, Rosado CJ, Khan NN, Cai DJ, Shuman T. Distinct changes to hippocampal and medial entorhinal circuits emerge across the progression of cognitive deficits in epilepsy. Cell Rep 2025; 44:115131. [PMID: 39847482 PMCID: PMC11949077 DOI: 10.1016/j.celrep.2024.115131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/15/2024] [Accepted: 12/11/2024] [Indexed: 01/25/2025] Open
Abstract
Temporal lobe epilepsy (TLE) causes pervasive and progressive memory impairments, yet the specific circuit changes that drive these deficits remain unclear. To investigate how hippocampal-entorhinal dysfunction contributes to progressive memory deficits in epilepsy, we performed simultaneous in vivo electrophysiology in the hippocampus (HPC) and medial entorhinal cortex (MEC) of control and epileptic mice 3 or 8 weeks after pilocarpine-induced status epilepticus (Pilo-SE). We found that HPC synchronization deficits (including reduced theta power, coherence, and altered interneuron spike timing) emerged within 3 weeks of Pilo-SE, aligning with early-onset, relatively subtle memory deficits. In contrast, abnormal synchronization within the MEC and between HPC and MEC emerged later, by 8 weeks after Pilo-SE, when spatial memory impairment was more severe. Furthermore, a distinct subpopulation of MEC layer 3 excitatory neurons (active at theta troughs) was specifically impaired in epileptic mice. Together, these findings suggest that hippocampal-entorhinal circuit dysfunction accumulates and shifts as cognitive impairment progresses in TLE.
Collapse
Affiliation(s)
- Yu Feng
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keziah S Diego
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhe Dong
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zoé Christenson Wick
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lucia Page-Harley
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Veronica Page-Harley
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia Schnipper
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophia I Lamsifer
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zachary T Pennington
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren M Vetere
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul A Philipsberg
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivan Soler
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Albert Jurkowski
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christin J Rosado
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nadia N Khan
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denise J Cai
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tristan Shuman
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Park S, Park M, Kim EJ, Kim JJ, Cho J, Huh Y. Distinct disruptions in CA1 and CA3 place cell function in Alzheimer's disease mice. iScience 2025; 28:111631. [PMID: 39911347 PMCID: PMC11795144 DOI: 10.1016/j.isci.2024.111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/01/2024] [Accepted: 12/16/2024] [Indexed: 02/07/2025] Open
Abstract
The hippocampus, a critical brain structure for spatial learning and memory, is susceptible to neurodegenerative disorders such as Alzheimer's disease (AD). Utilizing APPswe/PSEN1dE9 (APP/PS1) mice, we investigated neurophysiological mechanisms underlying AD-associated cognitive impairments by assessing place cell activities in CA1 and CA3 hippocampal subregions, which have distinct yet complementary computational roles. Analyses revealed significant deterioration in spatial representation capabilities of APP/PS1 relative to wild-type (WT) mice. Specifically, CA1 place cells exhibited reduction in coherence and spatial information, while CA3 place cells displayed reduction in place field size. Place cells in both subregions showed disruption in stability and burst firing properties. Furthermore, theta rhythm was significantly attenuated in CA1 place cells of APP/PS1 mice. These findings elucidate that distinct physiological perturbations in CA1 and CA3 place cells, coupled with disrupted hippocampal theta rhythmicity in CA1, potentially orchestrate the impairment of hippocampal-dependent spatial learning and memory in AD pathogenesis.
Collapse
Affiliation(s)
- Sanggeon Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, Republic of Korea
| | - Mijeong Park
- Center for Neural Science, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Eun Joo Kim
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Jeansok J. Kim
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Jeiwon Cho
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, Republic of Korea
| | - Yeowool Huh
- Institute for Bio-Medical Convergence, International St. Mary’s Hospital, Catholic Kwandong University, Incheon, Republic of Korea
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| |
Collapse
|
7
|
Boullon L, Finn DP, Llorente-Berzal Á. Sex differences in the affective-cognitive dimension of neuropathic pain: Insights from the spared nerve injury rat model. THE JOURNAL OF PAIN 2025; 27:104752. [PMID: 39626836 DOI: 10.1016/j.jpain.2024.104752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024]
Abstract
Over 40% of neuropathic pain patients experience mood and cognitive disturbances, often showing reduced response to analgesics, with most affected individuals being female. This highlights the critical role of biological sex in pain-related affective and cognitive disorders, making it essential to understand the emotional and cognitive circuits linked to pain for improving treatment strategies. However, research on sex differences in preclinical pain models is lacking. This study aimed to investigate these differences using the spared nerve injury (SNI) rat model, conducting a comprehensive series of behavioural tests over 100 days post-injury to identify key time points for observing sex-specific behaviours indicative of pain-related conditions. The findings revealed that female rats exhibited greater mechanical and cold hypersensitivity compared to males following nerve injury and showed earlier onset of depression-related behaviours, while males were more prone to anxiety, social, and memory-related alterations. Interestingly, by the 14th week post-injury, females displayed no signs of these emotional and cognitive impairments. Additionally, fluctuations in the oestrous cycle or changes in testosterone and oestradiol levels did not correlate with sex differences in pain sensitivity or negative affect. Recognizing the influence of biological sex on pain-induced affective and cognitive alterations, especially in later stages post-injury, is crucial for enhancing our understanding of this complex pain disorder. PERSPECTIVE: This manuscript reports the relevance of long-term investigations of sex differences in chronic pain. It shows differential development of somatosensory sensitivity, negative affective states and cognitive impairments in males and females. It emphasizes the importance of including subjects of both sexes in the investigation of pain-related mechanisms and therapeutic management.
Collapse
Affiliation(s)
- Laura Boullon
- Pharmacology and Therapeutics, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland; Galway Neuroscience Centre, University of Galway, Galway, Ireland; Centre for Pain Research, University of Galway, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland; Galway Neuroscience Centre, University of Galway, Galway, Ireland; Centre for Pain Research, University of Galway, Galway, Ireland
| | - Álvaro Llorente-Berzal
- Pharmacology and Therapeutics, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland; Galway Neuroscience Centre, University of Galway, Galway, Ireland; Centre for Pain Research, University of Galway, Galway, Ireland; Department of Physiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain.
| |
Collapse
|
8
|
Vetere LM, Galas AM, Vaughan N, Feng Y, Wick ZC, Philipsberg PA, Liobimova O, Fernandez-Ruiz A, Cai DJ, Shuman T. Medial entorhinal-hippocampal desynchronization parallels the emergence of memory impairment in a mouse model of Alzheimer's disease pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633171. [PMID: 39868201 PMCID: PMC11761809 DOI: 10.1101/2025.01.15.633171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive impairments in episodic and spatial memory, as well as circuit and network-level dysfunction. While functional impairments in medial entorhinal cortex (MEC) and hippocampus (HPC) have been observed in patients and rodent models of AD, it remains unclear how communication between these regions breaks down in disease, and what specific physiological changes are associated with the onset of memory impairment. We used silicon probes to simultaneously record neural activity in MEC and hippocampus before or after the onset of spatial memory impairment in the 3xTg mouse model of AD pathology. We found that reduced hippocampal theta power, reduced MEC-CA1 theta coherence, and altered phase locking of MEC and hippocampal neurons all coincided with the emergence of spatial memory impairment in 3xTg mice. Together, these findings indicate that disrupted temporal coordination of neural activity in the MEC-hippocampal system parallels the emergence of memory impairment in a model of AD pathology.
Collapse
Affiliation(s)
| | | | - Nick Vaughan
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yu Feng
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | | | | | - Denise J Cai
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
9
|
Toyoshima M, Takahashi K, Sato E, Shimoda S, Yamada K. Two distinct enriched housings differentially ameliorate object and place recognition deficits in a rat model of schizophrenia. Behav Brain Res 2025; 476:115276. [PMID: 39366555 DOI: 10.1016/j.bbr.2024.115276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Schizophrenia is a psychiatric disorder characterized by cognitive dysfunctions. These dysfunctions significantly impact the daily lives of schizophrenic patients, yet effective interventions remain scarce. In this study, we explored the effects of two enriched housing types-cognitive and physical-on cognitive dysfunctions in a rat model of schizophrenia. Male neonatal Wistar-Imamichi rats were administered MK-801, a noncompetitive NMDAR antagonist, twice daily from postnatal day (PND) 7 to PND 20. Physical enrichment ameliorated memory deficits in both object and place recognition tests, while cognitive enrichment primarily improved object recognition performance. Our findings suggest that exercise therapy could be a potential approach to address cognitive dysfunctions in schizophrenia patients.
Collapse
Affiliation(s)
- Michimasa Toyoshima
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Katsumasa Takahashi
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Eri Sato
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Shota Shimoda
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kazuo Yamada
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
10
|
Ng DQ, Hudson C, Nguyen T, Gupta SK, Koh YQ, Acharya MM, Chan A. Dynamin-1 is a potential mediator in cancer-related cognitive impairment. Neurotherapeutics 2025; 22:e00480. [PMID: 39516074 PMCID: PMC11742811 DOI: 10.1016/j.neurot.2024.e00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Dynamin-1 (DNM1) is crucial for synaptic activity, neurotransmission, and associative memory, positioning it as a potential biomarker of cancer-related cognitive impairment (CRCI), a neurological consequence of cancer treatment characterized by memory loss, poor concentration, and impaired executive function. Through a stepwise approach, this study investigated the role of DNM1 in CRCI pathogenesis, incorporating both human data and animal models. The human study recruited newly diagnosed, chemotherapy-naïve adolescent and young adult cancer and non-cancer controls to complete a cognitive instrument (FACT-Cog) and blood draws for up to three time points. Following that, a syngeneic young-adult WT (C57BL/6) female mouse model of breast cancer chemobrain was developed to study DNM1 expression in the hippocampus. Samples from eighty-six participants with 30 adolescent and young adult (AYA) cancer and 56 non-cancer participants were analyzed. DNM1 levels were 32 % lower (P = 0.041) among cancer participants compared to non-cancer prior to treatment. After receiving cytotoxic treatment, cognitively impaired cancer patients were found to have 46 % lower DNM1 levels than those without impairment (P = 0.049). In murine breast cancer-bearing mice receiving chemotherapy, we found a greater than 40 % decline (P < 0.0001) in DNM1 immunoreactivity in the hippocampal CA1 and CA3 subregions concurrent with a deterioration in spatial recognition memory (P < 0.02), compared to control mice without exposure to cancer and chemotherapy. Consistently observed in both human and animal studies, the downregulation of DNM1 is linked with the onset of CRCI. DNM1 might be a biomarker and therapeutic target for CRCI.
Collapse
Affiliation(s)
- Ding Quan Ng
- Department of Clinical Pharmacy Practice, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Casey Hudson
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Tracy Nguyen
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Sukesh Kumar Gupta
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Yong Qin Koh
- Department of Clinical Pharmacy Practice, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Munjal M Acharya
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, USA; Department of Radiation Oncology, School of Medicine, University of California Irvine, Irvine, CA, USA.
| | - Alexandre Chan
- Department of Clinical Pharmacy Practice, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA; Department of Oncology Pharmacy, National Cancer Centre Singapore, Singapore.
| |
Collapse
|
11
|
Easton A, Horner AJ, James SJ, Kendal J, Sutton J, Ainge JA. Context in memory is reconstructed, not encoded. Neurosci Biobehav Rev 2024; 167:105934. [PMID: 39477177 DOI: 10.1016/j.neubiorev.2024.105934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/14/2024] [Accepted: 10/26/2024] [Indexed: 12/07/2024]
Abstract
Context has long been regarded as an important element of long-term memory, and episodic memory in particular. The ability to remember not only the object or focus of a memory but also contextual details allow us to reconstruct integrated representations of events. However, despite its prevalence in the memory literature, context remains difficult to define and identify, with different studies using context to refer to different sets of stimuli or concepts. These varying definitions of context have not prevented it from being a key element of many models of memory. Within these models, context is usually explicitly encoded as an element of an event and processed through different neural pathways to other elements of the event, such as objects. Here we challenge the notion that context in memory is encoded. We offer an alternative where context in memory takes a variety of forms depending on the question being asked. We propose events are simply encoded, but the focus of retrieval (object) and context are not defined until recall.
Collapse
Affiliation(s)
| | - Aidan J Horner
- Department of Psychology, University of York, UK; York Biomedical Research Institute, University of York, UK
| | - Simon J James
- Department of English Studies, Durham University, UK
| | | | - John Sutton
- Department of Philosophy, University of Stirling, UK; Centre for the Sciences of Place and Memory, University of Stirling, UK
| | - James A Ainge
- School of Psychology & Neuroscience, University of St Andrews, UK
| |
Collapse
|
12
|
Park S, Park M, Kim EJ, Kim JJ, Huh Y, Cho J. Distinct Disruptions in CA1 and CA3 Place Cell Function in Alzheimer's Disease Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614631. [PMID: 39386433 PMCID: PMC11463587 DOI: 10.1101/2024.09.23.614631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The hippocampus, a critical brain structure for spatial learning and memory, is susceptible to neurodegenerative disorders such as Alzheimer's disease (AD). The APPswe/PSEN1dE9 (APP/PS1) transgenic mouse model is widely used to study the pathology of AD. Although previous research has established AD-associated impairments in hippocampal-dependent learning and memory, the neurophysiological mechanisms underlying these cognitive dysfunctions remain less understood. To address this gap, we investigated the activities of place cells in both CA1 and CA3 hippocampal subregions, which have distinct yet complementary computational roles. Behaviorally, APP/PS1 mice demonstrated impaired spatial recognition memory compared to wild-type (WT) mice in the object location test. Physiologically, place cells in APP/PS1 mice showed deterioration in spatial representation compared to WT. Specifically, CA1 place cells exhibited significant reductions in coherence and spatial information, while CA3 place cells displayed a significant reduction in place field size. Both CA1 and CA3 place cells in APP/PS1 mice also showed significant disruptions in their ability to stably encode the same environment. Furthermore, the burst firing properties of these cells were altered to forms correlated with reduced cognition. Additionally, the theta rhythm was significantly attenuated in CA1 place cells of APP/PS1 mice compared to WT. Our results suggest that distinct alteration in the physiological properties of CA1 and CA3 place cells, coupled with disrupted hippocampal theta rhythm in CA1, may collectively contribute to impaired hippocampal-dependent spatial learning and memory in AD.
Collapse
Affiliation(s)
- Sanggeon Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, Republic of Korea
| | - Mijeong Park
- Center for Neural Science, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Eun Joo Kim
- Department of Psychology, University of Washington, Seattle, U.S.A
| | - Jeansok J. Kim
- Department of Psychology, University of Washington, Seattle, U.S.A
| | - Yeowool Huh
- Institute for Bio-Medical Convergence, International St. Mary’s Hospital, Catholic Kwandong University, Incheon, Republic of Korea
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Jeiwon Cho
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Llana T, Garces-Arilla S, Juan MC, Mendez-Lopez M, Mendez M. An immersive virtual reality-based object-location memory task reveals spatial long-term memory alterations in Long-COVID. Behav Brain Res 2024; 471:115127. [PMID: 38936427 DOI: 10.1016/j.bbr.2024.115127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Object-location memory (OLM) is a type of declarative memory for spatial information and consists of the individual's ability to establish accurate associations between objects and their spatial locations. Long-COVID describes the long-term effects of the COVID-19 disease. Long-COVID patients show medial temporal lobe dysfunction and neuropsychological alterations affecting memory. This study aimed to assess OLM in a group of Long-COVID patients, n=66, and a Control group of healthy individuals with similar age and sex composition, n=21, using an immersive virtual reality (iVR)-based OLM task. We also explored associations between the performance in the iVR-based OLM task and general cognitive function (MoCA), and both verbal (VSTM) and visuospatial (SSTM) span. The Long-COVID group showed fewer correct responses, made more task attempts, and invested more time in the iVR-based OLM task than the Control group. Delayed memory was more severely altered than immediate memory in Long-COVID participants. Better MoCA scores of the Long-COVID group were strongly associated with shorter times to complete the immediate recall of the iVR-based OLM task. Besides, the months elapsed since the COVID-19 infection were slightly associated with fewer correct responses in the immediate and 24-hour recalls. These results corroborate previous findings of memory alterations in the Long-COVID syndrome using an iVR-based OLM task, adding new evidence on spatial memory and long-term memory in this population. Implementing spatial iVR tasks to clinical research may improve our understanding of neuropsychological disorders.
Collapse
Affiliation(s)
- Tania Llana
- Neuroscience Institute of Principado de Asturias (INEUROPA), Faculty of Psychology, Plaza Feijoo s/n, Oviedo, Asturias 33003, Spain; Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, Oviedo, Asturias 33003, Spain.
| | - Sara Garces-Arilla
- Department of Psychology and Sociology, University of Zaragoza, Pedro Cerbuna 12, Zaragoza, Aragón 50009, Spain.
| | - M-Carmen Juan
- Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, C/Camino de Vera, s/n, Valencia 46022, Spain.
| | - Magdalena Mendez-Lopez
- Department of Psychology and Sociology, University of Zaragoza, Pedro Cerbuna 12, Zaragoza, Aragón 50009, Spain; IIS Aragón, San Juan Bosco, 13, Zaragoza, Aragón 50009, Spain.
| | - Marta Mendez
- Neuroscience Institute of Principado de Asturias (INEUROPA), Faculty of Psychology, Plaza Feijoo s/n, Oviedo, Asturias 33003, Spain; Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, Oviedo, Asturias 33003, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, Oviedo, Asturias 33011, Spain.
| |
Collapse
|
14
|
Murao N, Matsuda T, Kadowaki H, Matsushita Y, Tanimoto K, Katagiri T, Nakashima K, Nishitoh H. The Derlin-1-Stat5b axis maintains homeostasis of adult hippocampal neurogenesis. EMBO Rep 2024; 25:3678-3706. [PMID: 39080439 PMCID: PMC11316036 DOI: 10.1038/s44319-024-00205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 08/11/2024] Open
Abstract
Adult neural stem cells (NSCs) in the hippocampal dentate gyrus continuously proliferate and generate new neurons throughout life. Although various functions of organelles are closely related to the regulation of adult neurogenesis, the role of endoplasmic reticulum (ER)-related molecules in this process remains largely unexplored. Here we show that Derlin-1, an ER-associated degradation component, spatiotemporally maintains adult hippocampal neurogenesis through a mechanism distinct from its established role as an ER quality controller. Derlin-1 deficiency in the mouse central nervous system leads to the ectopic localization of newborn neurons and impairs NSC transition from active to quiescent states, resulting in early depletion of hippocampal NSCs. As a result, Derlin-1-deficient mice exhibit phenotypes of increased seizure susceptibility and cognitive dysfunction. Reduced Stat5b expression is responsible for adult neurogenesis defects in Derlin-1-deficient NSCs. Inhibition of histone deacetylase activity effectively induces Stat5b expression and restores abnormal adult neurogenesis, resulting in improved seizure susceptibility and cognitive dysfunction in Derlin-1-deficient mice. Our findings indicate that the Derlin-1-Stat5b axis is indispensable for the homeostasis of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Naoya Murao
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hisae Kadowaki
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Yosuke Matsushita
- Division of Genome Medicine, Tokushima University, Tokushima, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kousuke Tanimoto
- High-risk Infectious Disease Control, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Tokushima University, Tokushima, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Hideki Nishitoh
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan.
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
15
|
Lehtonen SM, Puumalainen V, Nokia MS, Lensu S. Effects of unilateral hippocampal surgical procedures needed for calcium imaging on mouse behavior and adult hippocampal neurogenesis. Behav Brain Res 2024; 468:115042. [PMID: 38723676 DOI: 10.1016/j.bbr.2024.115042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Hippocampus is essential for episodic memory formation, lesion studies demonstrating its role especially in processing spatial and temporal information. Further, adult hippocampal neurogenesis (AHN) in the dentate gyrus (DG) has also been linked to learning. To study hippocampal neuronal activity during events like learning, in vivo calcium imaging has become increasingly popular. It relies on the use of adeno-associated viral (AAV) vectors, which seem to lead to a decrease in AHN when applied on the DG. More notably, imaging requires the implantation of a relatively large lens into the tissue. Here, we examined how injection of an AAV vector and implantation of a 1-mm-diameter lens into the dorsal DG routinely used to image calcium activity impact the behavior of adult male C57BL/6 mice. To this aim, we conducted open-field, object-recognition and object-location tasks at baseline, after AAV vector injection, and after lens implantation. Finally, we determined AHN from hippocampal slices using a doublecortin-antibody. According to our results, the operations needed for in vivo imaging of the dorsal DG did not have adverse effects on behavior, although we noticed a decrease in AHN ipsilaterally to the operations. Thus, our results suggest that in vivo imaging can be safely used to, for example, correlate patterns of calcium activity with learned behavior. One should still keep in mind that the defects on the operated side might be functionally compensated by the (hippocampus in the) contralateral hemisphere.
Collapse
Affiliation(s)
- Suvi-Maaria Lehtonen
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyvaskyla, Finland.
| | - Veera Puumalainen
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyvaskyla, Finland
| | - Miriam S Nokia
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyvaskyla, Finland
| | - Sanna Lensu
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyvaskyla, Finland
| |
Collapse
|
16
|
Parra Bravo C, Krukowski K, Barker S, Wang C, Li Y, Fan L, Vázquez-Rosa E, Shin MK, Wong MY, McCullough LD, Kitagawa RS, Choi HA, Cacace A, Sinha SC, Pieper AA, Rosi S, Chen X, Gan L. Anti-acetylated-tau immunotherapy is neuroprotective in tauopathy and brain injury. Mol Neurodegener 2024; 19:51. [PMID: 38915105 PMCID: PMC11197196 DOI: 10.1186/s13024-024-00733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Tau is aberrantly acetylated in various neurodegenerative conditions, including Alzheimer's disease, frontotemporal lobar degeneration (FTLD), and traumatic brain injury (TBI). Previously, we reported that reducing acetylated tau by pharmacologically inhibiting p300-mediated tau acetylation at lysine 174 reduces tau pathology and improves cognitive function in animal models. METHODS We investigated the therapeutic efficacy of two different antibodies that specifically target acetylated lysine 174 on tau (ac-tauK174). We treated PS19 mice, which harbor the P301S tauopathy mutation that causes FTLD, with anti-ac-tauK174 and measured effects on tau pathology, neurodegeneration, and neurobehavioral outcomes. Furthermore, PS19 mice received treatment post-TBI to evaluate the ability of the immunotherapy to prevent TBI-induced exacerbation of tauopathy phenotypes. Ac-tauK174 measurements in human plasma following TBI were also collected to establish a link between trauma and acetylated tau levels, and single nuclei RNA-sequencing of post-TBI brain tissues from treated mice provided insights into the molecular mechanisms underlying the observed treatment effects. RESULTS Anti-ac-tauK174 treatment mitigates neurobehavioral impairment and reduces tau pathology in PS19 mice. Ac-tauK174 increases significantly in human plasma 24 h after TBI, and anti-ac-tauK174 treatment of PS19 mice blocked TBI-induced neurodegeneration and preserved memory functions. Anti-ac-tauK174 treatment rescues alterations of microglial and oligodendrocyte transcriptomic states following TBI in PS19 mice. CONCLUSIONS The ability of anti-ac-tauK174 treatment to rescue neurobehavioral impairment, reduce tau pathology, and rescue glial responses demonstrates that targeting tau acetylation at K174 is a promising neuroprotective therapeutic approach to human tauopathies resulting from TBI or genetic disease.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Brain and Mind Research Institute, Helen and Appel Alzheimer Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Karen Krukowski
- Department of Physical Therapy & Rehabilitation Science, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah Barker
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Chao Wang
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Yaqiao Li
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Li Fan
- Brain and Mind Research Institute, Helen and Appel Alzheimer Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Edwin Vázquez-Rosa
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA
| | - Min-Kyoo Shin
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Man Ying Wong
- Brain and Mind Research Institute, Helen and Appel Alzheimer Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ryan S Kitagawa
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - H Alex Choi
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Subhash C Sinha
- Brain and Mind Research Institute, Helen and Appel Alzheimer Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Susanna Rosi
- Department of Physical Therapy & Rehabilitation Science, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Xu Chen
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.
- Department of Neurosciences, School of Medicine, University of California, San Diego, USA.
| | - Li Gan
- Brain and Mind Research Institute, Helen and Appel Alzheimer Disease Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Mardones MD, Rostam KD, Nickerson MC, Gupta K. Canonical Wnt activator Chir99021 prevents epileptogenesis in the intrahippocampal kainate mouse model of temporal lobe epilepsy. Exp Neurol 2024; 376:114767. [PMID: 38522659 PMCID: PMC11058011 DOI: 10.1016/j.expneurol.2024.114767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The Wnt signaling pathway mediates the development of dentate granule cell neurons in the hippocampus. These neurons are central to the development of temporal lobe epilepsy and undergo structural and physiological remodeling during epileptogenesis, which results in the formation of epileptic circuits. The pathways responsible for granule cell remodeling during epileptogenesis have yet to be well defined, and represent therapeutic targets for the prevention of epilepsy. The current study explores Wnt signaling during epileptogenesis and for the first time describes the effect of Wnt activation using Wnt activator Chir99021 as a novel anti-epileptogenic therapeutic approach. Focal mesial temporal lobe epilepsy was induced by intrahippocampal kainate (IHK) injection in wild-type and POMC-eGFP transgenic mice. Wnt activator Chir99021 was administered daily, beginning 3 h after seizure induction, and continued up to 21-days. Immature granule cell morphology was quantified in the ipsilateral epileptogenic zone and the contralateral peri-ictal zone 14 days after IHK, targeting the end of the latent period. Bilateral hippocampal electrocorticographic recordings were performed for 28-days, 7-days beyond treatment cessation. Hippocampal behavioral tests were performed after completion of Chir99021 treatment. Consistent with previous studies, IHK resulted in the development of epilepsy after a 14 day latent period in this well-described mouse model. Activation of the canonical Wnt pathway with Chir99021 significantly reduced bilateral hippocampal seizure number and duration. Critically, this effect was retained after treatment cessation, suggesting a durable antiepileptogenic change in epileptic circuitry. Morphological analyses demonstrated that Wnt activation prevented pathological remodeling of the primary dendrite in both the epileptogenic zone and peri-ictal zone, changes in which may serve as a biomarker of epileptogenesis and anti-epileptogenic treatment response in pre-clinical studies. These findings were associated with improved object location memory with Chir99021 treatment after IHK. This study provides novel evidence that canonical Wnt activation prevents epileptogenesis in the IHK mouse model of mesial temporal lobe epilepsy, preventing pathological remodeling of dentate granule cells. Wnt signaling may therefore play a key role in mesial temporal lobe epileptogenesis, and Wnt modulation may represent a novel therapeutic strategy in the prevention of epilepsy.
Collapse
Affiliation(s)
- Muriel D Mardones
- Indiana University, Stark Neurosciences Research Institute, W 15th St, Indianapolis, IN 46202, United States of America; Indiana University, Department of Neurosurgery, W 16th St, Indianapolis, IN 46202, United States of America.
| | - Kevin D Rostam
- Indiana University, Stark Neurosciences Research Institute, W 15th St, Indianapolis, IN 46202, United States of America.
| | - Margaret C Nickerson
- Indiana University, Stark Neurosciences Research Institute, W 15th St, Indianapolis, IN 46202, United States of America.
| | - Kunal Gupta
- Medical College of Wisconsin, Department of Neurosurgery, 8701 Watertown Plank Rd, Milwaukee, WI 53226, United States of America; Medical College of Wisconsin, Neuroscience Research Center, 8701 Watertown Plank Rd, Milwaukee, WI 53226, United States of America; Indiana University, Stark Neurosciences Research Institute, W 15th St, Indianapolis, IN 46202, United States of America; Indiana University, Department of Neurosurgery, W 16th St, Indianapolis, IN 46202, United States of America.
| |
Collapse
|
18
|
Ventura S, Duncan S, Ainge JA. Increased flexibility of CA3 memory representations following environmental enrichment. Curr Biol 2024; 34:2011-2019.e7. [PMID: 38636511 DOI: 10.1016/j.cub.2024.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/16/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
Environmental enrichment (EE) improves memory, particularly the ability to discriminate similar past experiences.1,2,3,4,5,6 The hippocampus supports this ability via pattern separation, the encoding of similar events using dissimilar memory representations.7 This is carried out in the dentate gyrus (DG) and CA3 subfields.8,9,10,11,12 Upregulation of adult neurogenesis in the DG improves memory through enhanced pattern separation.1,2,3,4,5,6,11,13,14,15,16 Adult-born granule cells (abGCs) in DG are suggested to contribute to pattern separation by driving inhibition in regions such as CA3,13,14,15,16,17,18 leading to sparser, nonoverlapping representations of similar events (although a role for abGCs in driving excitation in the hippocampus has also been reported16). Place cells in the hippocampus contribute to pattern separation by remapping to spatial and contextual alterations to the environment.19,20,21,22,23,24,25,26,27 How spatial responses in CA3 are affected by EE and input from increased numbers of abGCs in DG is, however, unknown. Here, we investigate the neural mechanisms facilitating improved memory following EE using associative recognition memory tasks that model the automatic and integrative nature of episodic memory. We find that EE-dependent improvements in difficult discriminations are related to increased neurogenesis and sparser memory representations across the hippocampus. Additionally, we report for the first time that EE changes how CA3 place cells discriminate similar contexts. CA3 place cells of enriched rats show greater spatial tuning, increased firing rates, and enhanced remapping to contextual changes. These findings point to more precise and flexible CA3 memory representations in enriched rats, which provides a putative mechanism for EE-dependent improvements in fine memory discrimination.
Collapse
Affiliation(s)
- Silvia Ventura
- School of Psychology & Neuroscience, University of St. Andrews, St. Mary's Quad, South Street, St. Andrews, Fife, Scotland KY16 9JP, UK
| | - Stephen Duncan
- School of Psychology & Neuroscience, University of St. Andrews, St. Mary's Quad, South Street, St. Andrews, Fife, Scotland KY16 9JP, UK; School of Psychological & Brain Sciences, Indiana University, 1101 E 10th Street, Bloomington, IN 47405, USA
| | - James A Ainge
- School of Psychology & Neuroscience, University of St. Andrews, St. Mary's Quad, South Street, St. Andrews, Fife, Scotland KY16 9JP, UK.
| |
Collapse
|
19
|
Hales JB, Olivas L, Abouchedid D, Blaser RE. Contribution of the medial entorhinal cortex to performance on the Traveling Salesperson Problem in rats. Behav Brain Res 2024; 463:114883. [PMID: 38281708 DOI: 10.1016/j.bbr.2024.114883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
In order to successfully navigate through space, animals must rely on multiple cognitive processes, including orientation in space, memory of object locations, and navigational decisions based on that information. Although highly-controlled behavioral tasks are valuable for isolating and targeting specific processes, they risk producing a narrow understanding of complex behavior in natural contexts. The Traveling Salesperson Problem (TSP) is an optimization problem that can be used to study naturalistic foraging behaviors, in which subjects select routes between multiple baited targets. Foraging is a spontaneous, yet complex, behavior, involving decision-making, attention, course planning, and memory. Previous research found that hippocampal lesions in rats impaired TSP task performance, particularly on measures of spatial memory. Although traditional laboratory tests have shown the medial entorhinal cortex (MEC) to play an important role in spatial memory, if and how the MEC is involved in finding efficient solutions to the TSP remains unknown. In the current study, rats were trained on the TSP, learning to retrieve bait from targets in a variety of spatial configurations. After recovering from either an MEC lesion or control sham surgery, the rats were tested on eight new configurations. Our results showed that, similar to rats with hippocampal lesions, MEC-lesioned rats were impaired on measures of spatial memory, but not spatial decision-making, with greatest impairments on configurations requiring a global navigational strategy for selecting the optimal route. These findings suggest that the MEC is important for effective spatial navigation, especially when global cue processing is required.
Collapse
Affiliation(s)
- Jena B Hales
- University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | - Larissa Olivas
- University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA
| | | | - Rachel E Blaser
- University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| |
Collapse
|
20
|
Feng Y, Diego KS, Dong Z, Wick ZC, Page-Harley L, Page-Harley V, Schnipper J, Lamsifer SI, Pennington ZT, Vetere LM, Philipsberg PA, Soler I, Jurkowski A, Rosado CJ, Khan NN, Cai DJ, Shuman T. Distinct changes to hippocampal and medial entorhinal circuits emerge across the progression of cognitive deficits in epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584697. [PMID: 38559224 PMCID: PMC10979962 DOI: 10.1101/2024.03.12.584697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Temporal lobe epilepsy (TLE) causes pervasive and progressive memory impairments, yet the specific circuit changes that drive these deficits remain unclear. To investigate how hippocampal-entorhinal dysfunction contributes to progressive memory deficits in epilepsy, we performed simultaneous in vivo electrophysiology in hippocampus (HPC) and medial entorhinal cortex (MEC) of control and epileptic mice 3 or 8 weeks after pilocarpine-induced status epilepticus (Pilo-SE). We found that HPC synchronization deficits (including reduced theta power, coherence, and altered interneuron spike timing) emerged within 3 weeks of Pilo-SE, aligning with early-onset, relatively subtle memory deficits. In contrast, abnormal synchronization within MEC and between HPC-MEC emerged later, by 8 weeks after Pilo-SE, when spatial memory impairment was more severe. Furthermore, a distinct subpopulation of MEC layer 3 excitatory neurons (active at theta troughs) was specifically impaired in epileptic mice. Together, these findings suggest that hippocampal-entorhinal circuit dysfunction accumulates and shifts as cognitive impairment progresses in TLE.
Collapse
Affiliation(s)
- Yu Feng
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Zhe Dong
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | | | | | | | | | | | | | - Ivan Soler
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | - Nadia N Khan
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Denise J Cai
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
21
|
Hallquist MN, Hwang K, Luna B, Dombrovski AY. Reward-based option competition in human dorsal stream and transition from stochastic exploration to exploitation in continuous space. SCIENCE ADVANCES 2024; 10:eadj2219. [PMID: 38394198 PMCID: PMC10889364 DOI: 10.1126/sciadv.adj2219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Primates exploring and exploiting a continuous sensorimotor space rely on dynamic maps in the dorsal stream. Two complementary perspectives exist on how these maps encode rewards. Reinforcement learning models integrate rewards incrementally over time, efficiently resolving the exploration/exploitation dilemma. Working memory buffer models explain rapid plasticity of parietal maps but lack a plausible exploration/exploitation policy. The reinforcement learning model presented here unifies both accounts, enabling rapid, information-compressing map updates and efficient transition from exploration to exploitation. As predicted by our model, activity in human frontoparietal dorsal stream regions, but not in MT+, tracks the number of competing options, as preferred options are selectively maintained on the map, while spatiotemporally distant alternatives are compressed out. When valuable new options are uncovered, posterior β1/α oscillations desynchronize within 0.4 to 0.7 s, consistent with option encoding by competing β1-stabilized subpopulations. Together, outcomes matching locally cached reward representations rapidly update parietal maps, biasing choices toward often-sampled, rewarded options.
Collapse
Affiliation(s)
| | - Kai Hwang
- Department of Psychological and Brain Sciences, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
22
|
Aksamaz S, Mölle M, Akinola EO, Gromodka E, Bazhenov M, Marshall L. Single closed-loop acoustic stimulation targeting memory consolidation suppressed hippocampal ripple and thalamo-cortical spindle activity in mice. Eur J Neurosci 2024; 59:595-612. [PMID: 37605315 PMCID: PMC11214843 DOI: 10.1111/ejn.16116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023]
Abstract
Brain rhythms of sleep reflect neuronal activity underlying sleep-associated memory consolidation. The modulation of brain rhythms, such as the sleep slow oscillation (SO), is used both to investigate neurophysiological mechanisms as well as to measure the impact of sleep on presumed functional correlates. Previously, closed-loop acoustic stimulation in humans targeted to the SO Up-state successfully enhanced the slow oscillation rhythm and phase-dependent spindle activity, although effects on memory retention have varied. Here, we aim to disclose relations between stimulation-induced hippocampo-thalamo-cortical activity and retention performance on a hippocampus-dependent object-place recognition task in mice by applying acoustic stimulation at four estimated SO phases compared to sham condition. Across the 3-h retention interval at the beginning of the light phase closed-loop stimulation failed to improve retention significantly over sham. However, retention during SO Up-state stimulation was significantly higher than for another SO phase. At all SO phases, acoustic stimulation was accompanied by a sharp increase in ripple activity followed by about a second-long suppression of hippocampal sharp wave ripple and longer maintained suppression of thalamo-cortical spindle activity. Importantly, dynamics of SO-coupled hippocampal ripple activity distinguished SOUp-state stimulation. Non-rapid eye movement (NREM) sleep was not impacted by stimulation, yet preREM sleep duration was effected. Results reveal the complex effect of stimulation on the brain dynamics and support the use of closed-loop acoustic stimulation in mice to investigate the inter-regional mechanisms underlying memory consolidation.
Collapse
Affiliation(s)
- Sonat Aksamaz
- Institute of Experimental and Clinical Pharmacology,
University of Lübeck, Lübeck, Germany
- University Medical Center Schleswig-Holstein,
Lübeck, Germany
| | - Matthias Mölle
- University Medical Center Schleswig-Holstein,
Lübeck, Germany
- Center of Brain, Behavior and Metabolism, Lübeck,
Germany
| | - Esther Olubukola Akinola
- Institute of Experimental and Clinical Pharmacology,
University of Lübeck, Lübeck, Germany
- University Medical Center Schleswig-Holstein,
Lübeck, Germany
| | - Erik Gromodka
- Institute of Experimental and Clinical Pharmacology,
University of Lübeck, Lübeck, Germany
| | - Maxim Bazhenov
- Department of Medicine, University of California San Diego,
La Jolla, CA, USA
| | - Lisa Marshall
- Institute of Experimental and Clinical Pharmacology,
University of Lübeck, Lübeck, Germany
- University Medical Center Schleswig-Holstein,
Lübeck, Germany
- Center of Brain, Behavior and Metabolism, Lübeck,
Germany
| |
Collapse
|
23
|
Leckey S, Bhagath S, Johnson EG, Ghetti S. Attention to novelty interferes with toddlers' emerging memory decision-making. Child Dev 2024; 95:98-113. [PMID: 37409734 PMCID: PMC10770300 DOI: 10.1111/cdev.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
Memory decision-making in 26- to 32-month-olds was investigated using visual-paired comparison paradigms, requiring toddlers to select familiar stimuli (Active condition) or view familiar and novel stimuli (Passive condition). In Experiment 1 (N = 108, 54.6% female, 62% White; replication N = 98), toddlers with higher accuracy in the Active condition showed reduced novelty preference in that condition, but not in the Passive condition (d = -.11). In Experiment 2 (N = 78; 52.6% female; 70.5% White), a brief 5% increase in target size boosted gaze transitions across conditions (d = .50) and accuracy in the Active condition (d = .53). Overall, evidence suggests that better attentional distribution can support decision-making. Research was conducted between 2014 and 2020 in Northern California.
Collapse
Affiliation(s)
- Sarah Leckey
- Center for Mind and Brain, University of California, Davis
- Department of Psychology, University of California, Davis
| | - Shefali Bhagath
- Center for Mind and Brain, University of California, Davis
- Department of Psychology, University of California, Davis
| | | | - Simona Ghetti
- Center for Mind and Brain, University of California, Davis
- Department of Psychology, University of California, Davis
| |
Collapse
|
24
|
Schroeder MN, Fullio CL, Ballarini F, Moncada D. Modulation of memory reconsolidation by adjacent novel tasks: timing defines the nature of change. Commun Biol 2023; 6:1288. [PMID: 38114781 PMCID: PMC10730840 DOI: 10.1038/s42003-023-05666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Reconsolidation turns memories into a responsive state that allows their modulation until they stabilize again. This phenomenon attracted remarkable attention due to its potential impact on therapeutics and education. Recent evidence revealed that different memories undergo reconsolidation via a behavioral tagging process. Thus, their re-stabilization involves setting "reconsolidation-tags" and synthesizing plasticity-related proteins for their capture at the tagged sites. Here, we studied the possibility of affecting these fundamental mechanisms to modulate reconsolidation. Our findings, in laboratory rats, indicate that exploring a novel environment 60 min before or after memory reactivation improves spatial object recognition memory by promoting protein synthesis. Conversely, experiencing novelty immediately after reactivation impairs the reconsolidation by affecting the tags. Similar effects, but with a different optimal time window for improvement, occur in inhibitory avoidance memory. These results highlight the possibility of modulating existing memories using non-invasive interventions that selectively affect the fundamental mechanisms of behavioral tagging during their reconsolidation.
Collapse
Affiliation(s)
- Matías Nicolás Schroeder
- Laboratorio de Neurofisiología de la Memoria, Instituto de Biología Celular y Neurociencia, Facultad de Medicina (UBA/CONICET) - Instituto Tecnológico de Buenos Aires (ITBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Camila L Fullio
- Laboratorio de Neurofisiología de la Memoria, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fabricio Ballarini
- Laboratorio de neurociencia translacional, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires, Av. Madero 399, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diego Moncada
- Laboratorio de Neurofisiología de la Memoria, Instituto de Biología Celular y Neurociencia, Facultad de Medicina (UBA/CONICET) - Instituto Tecnológico de Buenos Aires (ITBA), Ciudad Autónoma de Buenos Aires, Argentina.
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
25
|
Brown A, Martins M, Richard I, Chaudhri N. Context-induced renewal of passive but not active coping behaviours in the shock-probe defensive burying task. Learn Behav 2023; 51:468-481. [PMID: 37095421 DOI: 10.3758/s13420-023-00583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
Renewal is the return of extinguished responding after removal from the extinction context. Renewal has been extensively studied using classical aversive conditioning procedures that measure a passive freezing response to an aversive conditioned stimulus. However, coping responses to aversive stimuli are complex and can be reflected in passive and active behaviours. Using the shock-probe defensive burying task, we investigated whether different coping responses are susceptible to renewal. During conditioning, male, Long-Evans rats were placed into a specific context (Context A) where an electrified shock-probe delivered a 3 mA shock upon contact. During extinction, the shock-probe was unarmed in either the same (Context A) or a different context (Context B). Renewal of conditioned responses was assessed in the conditioning context (ABA) or in a novel context (ABC or AAB). Renewal of passive coping responses, indicated by an increased latency and a decreased duration of shock-probe contacts, was observed in all groups. However, renewal of passive coping, measured by increased time spent on the side of the chamber opposite the shock-probe, was only found in the ABA group. Renewal of active coping responses linked to defensive burying was not observed in any group. The present findings highlight the presence of multiple psychological processes underlying even basic forms of aversive conditioning and demonstrate the importance of assessing a broader set of behaviours to tease apart these different underlying mechanisms. The current findings suggest that passive coping responses may be more reliable indicators for assessing renewal than active coping behaviours associated with defensive burying.
Collapse
Affiliation(s)
- Alexa Brown
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B-1R6, Canada.
| | - Melissa Martins
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B-1R6, Canada
| | - Isabelle Richard
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B-1R6, Canada
| | - Nadia Chaudhri
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B-1R6, Canada
| |
Collapse
|
26
|
Lacoursiere SG, McAllister BB, Hadikin C, Tschetter WW, Lehmann H, Sutherland RJ. Hippocampal damage causes retrograde amnesia for objects' visual, but not odour, properties in male rats. Eur J Neurosci 2023; 58:3618-3629. [PMID: 37723853 DOI: 10.1111/ejn.16141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 09/20/2023]
Abstract
Damage to the hippocampus produces profound retrograde amnesia, but odour and object discrimination memories can be spared in the retrograde direction. Prior lesion studies testing retrograde amnesia for object/odour discriminations are problematic due to sparing of large parts of the hippocampus, which may support memory recall, and/or the presence of uncontrolled, distinctive odours that may support object discrimination. To address these issues, we used a simple object discrimination test to assess memory in male rats. Two visually distinct objects, paired with distinct odour cues, were presented. One object was associated with a reward. Following training, neurotoxic hippocampal lesions were made using N-methyl-D-aspartate (NMDA). The rats were then tested on the preoperatively learned object discrimination problem, with and without the availability of odour or visual cues during testing. The rats were also postoperatively trained on a new object discrimination problem. Lesion sizes ranged from 67% to 97% of the hippocampus (average of 87%). On the preoperatively learned discrimination problem, the rats with hippocampal lesions showed preserved object discrimination memory when tested in the dark (i.e., without visual cues) but not when the explicit odour cues were removed from the objects. Hippocampal lesions increased the number of trials required to reach criterion but did not prevent rats from solving the postoperatively learned discrimination problem. Our results support the idea that long-term memories for odours, unlike recall of visual properties of objects, do not depend on the hippocampus in rats, consistent with previous observations that hippocampal damage does not cause retrograde amnesia for odour memories.
Collapse
Affiliation(s)
- Sean G Lacoursiere
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, Alberta, Canada
| | - Brendan B McAllister
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, Alberta, Canada
| | - Crystal Hadikin
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, Alberta, Canada
- Canadian School of Natural Nutrition, Sooke, British Columbia, Canada
| | - Wayne W Tschetter
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Ophthalmology, Oregon Health and Science University, Portland, Oregon, USA
| | - Hugo Lehmann
- Department of Psychology, Trent University, Peterborough, Ontario, Canada
| | - Robert J Sutherland
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
27
|
Villa BR, Bhatt D, Wolff MD, Addo-Osafo K, Epp JR, Teskey GC. Repeated episodes of postictal hypoxia are a mechanism for interictal cognitive impairments. Sci Rep 2023; 13:15474. [PMID: 37726428 PMCID: PMC10509159 DOI: 10.1038/s41598-023-42741-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023] Open
Abstract
Comorbidities during the period between seizures present a significant challenge for individuals with epilepsy. Despite their clinical relevance, the pathophysiology of the interictal symptomatology is largely unknown. Postictal severe hypoxia (PIH) in those brain regions participating in the seizure has been indicated as a mechanism underlying several negative postictal manifestations. It is unknown how repeated episodes of PIH affect interictal symptoms in epilepsy. Using a rat model, we observed that repeated seizures consistently induced episodes of PIH that become increasingly severe with each seizure occurrence. Additionally, recurrent seizure activity led to decreased levels of oxygen in the hippocampus during the interictal period. However, these reductions were prevented when we repeatedly blocked PIH using either the COX-inhibitor acetaminophen or the L-type calcium channel antagonist nifedipine. Moreover, we found that interictal cognitive deficits caused by seizures were completely alleviated by repeated attenuation of PIH events. Lastly, mitochondrial dysfunction may contribute to the observed pathological outcomes during the interictal period. These findings provide evidence that seizure-induced hypoxia may play a crucial role in several aspects of epilepsy. Consequently, developing and implementing treatments that specifically target and prevent PIH could potentially offer significant benefits for individuals with refractory epilepsy.
Collapse
Affiliation(s)
- Bianca R Villa
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Dhyey Bhatt
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Marshal D Wolff
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Kwaku Addo-Osafo
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Jonathan R Epp
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - G Campbell Teskey
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
28
|
Feng E, Yang X, Zhao K, Li Y, Zhu H, Wang Z, Zhang Z. Gut microbiota is associated with spatial memory and seed-hoarding behavior of South China field mice ( Apodemus draco). Front Microbiol 2023; 14:1236359. [PMID: 37771706 PMCID: PMC10525317 DOI: 10.3389/fmicb.2023.1236359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
Background Scatter-hoarding animals store food in multiple locations within their home range and rely on spatial memory for subsequent localization and retrieval. The relationship between memory and scatter-hoarding behavior has been widely demonstrated, but the association of gut microbiota with spatial memory and seed-hoarding behavior of animals remains unclear. Methods In this study, by using enclosure behavior tests, memory tests including an object location test (OLT) and a novel object recognition test (NORT), and fecal microbiota transplantation (FMT) experiment, we evaluated the role of gut microbiota in affecting the memory and seed-hoarding behavior of rodents. According to their scatter-hoarding intensity, South China field mice (Apodemus draco) were divided into scatter-hoarding group (SG) and non-scatter-hoarding group (NG). Results We found that the SG performed better than the NG in the NORT. FMT from SG donor mice altered the NG recipient mice's gut microbiota structure. Further tests demonstrated FMT from SG donor mice increased memory of NG recipient mice in laboratory tests and seed larder hoarding intensity of NG recipient mice in enclosures. Conclusion Our results suggest gut microbiota could modulate the memory and seed-hoarding behavior of animals.
Collapse
Affiliation(s)
- Enping Feng
- College of Life Science, Hebei University, Baoding, Hebei Province, China
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xifu Yang
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Kunming Zhao
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Ying Li
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hanyi Zhu
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenshan Wang
- College of Life Science, Hebei University, Baoding, Hebei Province, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Brossaud J, Bosch-Bouju C, Marissal-Arvy N, Campas-Lebecque MN, Helbling JC, Webster SP, Walker BR, Fioramonti X, Ferreira G, Barat P, Corcuff JB, Moisan MP. Memory deficits in a juvenile rat model of type 1 diabetes are due to excess 11β-HSD1 activity, which is upregulated by high glucose concentrations rather than insulin deficiency. Diabetologia 2023; 66:1735-1747. [PMID: 37300580 DOI: 10.1007/s00125-023-05942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/28/2023] [Indexed: 06/12/2023]
Abstract
AIMS/HYPOTHESIS Children with diabetes may display cognitive alterations although vascular disorders have not yet appeared. Variations in glucose levels together with relative insulin deficiency in treated type 1 diabetes have been reported to impact brain function indirectly through dysregulation of the hypothalamus-pituitary-adrenal axis. We have recently shown that enhancement of glucocorticoid levels in children with type 1 diabetes is dependent not only on glucocorticoid secretion but also on glucocorticoid tissue concentrations, which is linked to 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity. Hypothalamus-pituitary-adrenal axis dysfunction and memory alteration were further dissected in a juvenile rat model of diabetes showing that excess 11β-HSD1 activity within the hippocampus is associated with hippocampal-dependent memory deficits. Here, to investigate the causal relationships between diabetes, 11β-HSD1 activity and hippocampus-dependent memory deficits, we evaluated the beneficial effect of 11β-HSD1 inhibition on hippocampal-related memory in juvenile diabetic rats. We also examined whether diabetes-associated enhancement of hippocampal 11β-HSD1 activity is due to an increase in brain glucose concentrations and/or a decrease in insulin signalling. METHODS Diabetes was induced in juvenile rats by daily i.p. injection of streptozotocin for 2 consecutive days. Inhibition of 11β-HSD1 was obtained by administrating the compound UE2316 twice daily by gavage for 3 weeks, after which hippocampal-dependent object location memory was assessed. Hippocampal 11β-HSD1 activity was estimated by the ratio of corticosterone/dehydrocorticosterone measured by LC/MS. Regulation of 11β-HSD1 activity in response to changes in glucose or insulin levels was determined ex vivo on acute brain hippocampal slices. The insulin regulation of 11β-HSD1 was further examined in vivo using virally mediated knockdown of insulin receptor expression specifically in the hippocampus. RESULTS Our data show that inhibiting 11β-HSD1 activity prevents hippocampal-related memory deficits in diabetic juvenile rats. A significant increase (53.0±9.9%) in hippocampal 11β-HSD1 activity was found in hippocampal slices incubated in high glucose conditions (13.9 mmol/l) vs normal glucose conditions (2.8 mmol/l) without insulin. However, 11β-HSD1 activity was not affected by variations in insulin concentration either in the hippocampal slices or after a decrease in hippocampal insulin receptor expression. CONCLUSIONS/INTERPRETATION Together, these data demonstrate that an increase in 11β-HSD1 activity contributes to memory deficits observed in juvenile diabetic rats and that an excess of hippocampal 11β-HSD1 activity stems from high glucose levels rather than insulin deficiency. 11β-HSD1 might be a therapeutic target for treating cognitive impairments associated with diabetes.
Collapse
Affiliation(s)
- Julie Brossaud
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux, France.
- CHU Bordeaux, Nuclear Medicine, Pessac, France.
| | | | | | | | | | - Scott P Webster
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Brian R Walker
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Xavier Fioramonti
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux, France
| | - Guillaume Ferreira
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux, France
| | - Pascal Barat
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux, France
- CHU Bordeaux, Pediatric Endocrinology and DiaBEA Unit, Hôpital des Enfants, Bordeaux, France
| | - Jean-Benoît Corcuff
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux, France
- CHU Bordeaux, Nuclear Medicine, Pessac, France
| | - Marie-Pierre Moisan
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux, France
| |
Collapse
|
30
|
Budriesi P, Tintorelli R, Correa J, Villar ME, Marchal P, Giurfa M, Viola H. A behavioral tagging account of kinase contribution to memory formation after spaced aversive training. iScience 2023; 26:107278. [PMID: 37520708 PMCID: PMC10372744 DOI: 10.1016/j.isci.2023.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/14/2022] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Long-term memory (LTM) can be induced by repeated spaced training trials. Using the weak inhibitory avoidance (wIA) task, we showed that one wIA session does not lead to a 24-h LTM, whereas two identical wIA sessions spaced by 15 min to 6 h induce a 24-h LTM. This LTM promotion depends both on hippocampal protein synthesis and the activity of several kinases. In agreement with the behavioral tagging (BT) hypothesis, our results suggest that the two training sessions induce transient learning tags and lead, via a cooperative effect, to the synthesis of plasticity-related proteins (PRPs) that become available and captured by the tag from the second session. Although ERKs1/2 are needed for PRPs synthesis and CaMKs are required for tag setting, PKA participates in both processes. We conclude that the BT mechanism accounts for the molecular constraints underlying the classic effect of spaced learning on LTM formation.
Collapse
Affiliation(s)
- Pablo Budriesi
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ramiro Tintorelli
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julieta Correa
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Eugenia Villar
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Biología y Geología, Física y Química Inorgánica, Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Madrid, Spain
| | - Paul Marchal
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
- Poe Lab, Integrative Biology and Physiology department, University of California Los Angeles, Los Angeles, CA, USA
| | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse cedex 9, France
- Institut Universitaire de France (IUF), Paris, France
| | - Haydee Viola
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular “Dr. Héctor Maldonado” (FBMC), Facultad de Ciencias Exactas y Naturales, UBA, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
31
|
Wang L, Ling H, He H, Hu N, Xiao L, Zhang Y, Xie L, You Z. Dysfunctional synaptic pruning by microglia correlates with cognitive impairment in sleep-deprived mice: Involvement of CX3CR1 signaling. Neurobiol Stress 2023; 25:100553. [PMID: 37547773 PMCID: PMC10401339 DOI: 10.1016/j.ynstr.2023.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023] Open
Abstract
Microglia are involved in sleep/wake cycles and the response to sleep loss. Synaptic pruning by microglia is necessary for central nervous system circuit refinement and contributes to cognitive function. Here, we investigated whether and how microglia-mediated synaptic pruning may be involved in cognitive deficits induced by sleep deprivation in mice. Mice were deprived of sleep by leaving them in a spontaneously rotating rod for 72 h, after which their cognitive function was assessed using an object location test, Y maze, and novel object recognition test. Sleep deprivation lowered the discrimination index for familiar locations in the object location test and Y maze. Microglial morphology was assessed using immunostaining Iba1, while microglia-mediated synaptic pruning was examined based on immunostaining PSD95, CD68, and Iba1. Sleep deprivation also activated microglial cells in the hippocampus, as reflected in bigger soma as well as fewer and shorter branches than normal sleep. Sleep deprivation downregulated phagocytic markers and internalization of postsynaptic protein 95 (PSD95), suggesting impaired synaptic pruning. CX3C motif chemokine receptor 1 (CX3CR1) signaling was detected in in vitro experiments. Sleep deprivation also downregulated CX3CR1. Activation of CX3CR1 signaling increased phagocytosis activity of BV2 microglia in vitro. Sleep deprivation dysregulates microglial CX3CR1 signaling and inhibits synaptic pruning, contributing to associated cognitive deficits. These findings identify CX3CR1-dependent synaptic pruning as a potential therapeutic target in which sleep deprivation causes recognition impairments.
Collapse
Affiliation(s)
- Lu Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hanyi Ling
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hui He
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Nan Hu
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lin Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yue Zhang
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lei Xie
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Zili You
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
32
|
Acun AD, Kantar D, Er H, Erkan O, Derin N, Yargıcoglu P. Investigation of Cyclo-Z Therapeutic Effect on Insulin Pathway in Alzheimer's Rat Model: Biochemical and Electrophysiological Parameters. Mol Neurobiol 2023; 60:4030-4048. [PMID: 37020122 DOI: 10.1007/s12035-023-03334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
Cyclo (his-pro-CHP) plus zinc (Zn+2) (Cyclo-Z) is the only known chemical that increases the production of insulin-degrading enzyme (IDE) and decreases the number of inactive insulin fragments in cells. The aim of the present study was to systematically characterize the effects of Cyclo-Z on the insulin pathway, memory functions, and brain oscillations in the Alzheimer's disease (AD) rat model. The rat model of AD was established by bilateral injection of Aβ42 oligomer (2,5nmol/10μl) into the lateral ventricles. Cyclo-Z (10mg Zn+2/kg and 0.2mg CHP/kg) gavage treatment started seven days after Aβ injection and lasted for 21 days. At the end of the experimental period, memory tests and electrophysiological recordings were performed, which were followed by the biochemical analysis. Aβ42 oligomers led to a significant increase in fasting blood glucose, serum insulin, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) and phospho-tau-Ser356 levels. Moreover, Aβ42 oligomers caused a significant decrement in body weight, hippocampal insulin, brain insulin receptor substrate (IRS-Ser612), and glycogen synthase kinase-3 beta (GSK-3β) levels. Also, Aβ42 oligomers resulted in a significant reduction in memory. The Cyclo-Z treatment prevented the observed alterations in the ADZ group except for phospho-tau levels and attenuated the increased Aβ42 oligomer levels in the ADZ group. We also found that the Aβ42 oligomer decreased the left temporal spindle and delta power during ketamine anesthesia. Cyclo-Z treatment reversed the Aβ42 oligomer-related alterations in the left temporal spindle power. Cyclo-Z prevents Aβ oligomer-induced changes in the insulin pathway and amyloid toxicity, and may contribute to the improvement of memory deficits and neural network dynamics in this rat model.
Collapse
Affiliation(s)
- Alev Duygu Acun
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey.
| | - Deniz Kantar
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| | - Hakan Er
- Department of Medical Imaging Techniques, Vocational School of Health Services, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| | - Orhan Erkan
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| | - Narin Derin
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| | - Piraye Yargıcoglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| |
Collapse
|
33
|
Ros-Bernal F, Gil-Miravet I, Lucerón J, Navarro-Sánchez M, Castillo-Gómez E, Gundlach AL, Olucha-Bordonau FE. Postnatal development of the relaxin-3 innervation of the rat medial septum. Front Neurosci 2023; 17:1176587. [PMID: 37234259 PMCID: PMC10206071 DOI: 10.3389/fnins.2023.1176587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction The septal area provides a rich innervation to the hippocampus regulating hippocampal excitability to different behavioral states and modulating theta rhythmogenesis. However, little is known about the neurodevelopmental consequences of its alterations during postnatal development. The activity of the septohippocampal system is driven and/or modulated by ascending inputs, including those arising from the nucleus incertus (NI), many of which contain the neuropeptide, relaxin-3 (RLN3). Methods We examined at the molecular and cellular level the ontogeny of RLN3 innervation of the septal area in postnatal rat brains. Results Up until P13-15 there were only scattered fibers in the septal area, but a dense plexus had appeared by P17 that was extended and consolidated throughout the septal complex by P20. There was a decrease in the level of colocalization of RLN3 and synaptophysin between P15 and P20 that was reversed between P20 and adulthood. Biotinylated 3-kD dextran amine injections into the septum, revealed retrograde labeling present in the brainstem at P10-P13, but a decrease in anterograde fibers in the NI between P10-20. Simultaneously, a differentiation process began during P10-17, resulting in fewer NI neurons double-labeled for serotonin and RLN3. Discussion The onset of the RLN3 innervation of the septum complex between P17-20 is correlated with the onset of hippocampal theta rhythm and several learning processes associated with hippocampal function. Together, these data highlight the relevance and need for further analysis of this stage for normal and pathological septohippocampal development.
Collapse
Affiliation(s)
- Francisco Ros-Bernal
- Unitat Predepartamental de Medicina, Facultad de Ciencias de la Slud, Universitat Jaume I, Castellón, Spain
| | - Isis Gil-Miravet
- Unitat Predepartamental de Medicina, Facultad de Ciencias de la Slud, Universitat Jaume I, Castellón, Spain
| | - Jorge Lucerón
- Unitat Predepartamental de Medicina, Facultad de Ciencias de la Slud, Universitat Jaume I, Castellón, Spain
| | - Mónica Navarro-Sánchez
- Unitat Predepartamental de Medicina, Facultad de Ciencias de la Slud, Universitat Jaume I, Castellón, Spain
| | - Esther Castillo-Gómez
- Unitat Predepartamental de Medicina, Facultad de Ciencias de la Slud, Universitat Jaume I, Castellón, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, (CIBERSAM), Madrid, Spain
| | - Andrew L. Gundlach
- The Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience and Mental Health and Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Francisco E. Olucha-Bordonau
- Unitat Predepartamental de Medicina, Facultad de Ciencias de la Slud, Universitat Jaume I, Castellón, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, (CIBERSAM), Madrid, Spain
| |
Collapse
|
34
|
Wang P, Wang X, Wang Q, Jiao Y, Wang X, Chen C, Chen H, Song T. Cognitive improvement via a modulated rhythmic pulsed magnetic field in D-galactose-induced accelerated aging mice. Brain Res 2023; 1810:148372. [PMID: 37094765 DOI: 10.1016/j.brainres.2023.148372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023]
Abstract
Rhythmic physical stimulations have emerged as effective noninvasive intervention strategies in the treatment of pathological cognitive deficits. Transcranial magnetic stimulation (TMS) can regulate neural firing and improve the learning and memory abilities of rodents or patients with cognitive deterioration. However, the effects of elaborate magnetic stimulation with low intensity during aging or other neurological disordering processes on cognitive decline remain unclear. In this study, we developed an elaborate modulated pulsed magnetic field (PMF) stimulation with a complex pattern in the theta repeated frequency and gamma carrier frequency and then determined the effects of this rhythmic PMF on the cognitive function of accelerated aging mice established by chronic subcutaneous injection of D-galactose (D-gal). The results of the Morris water maze (MWM) test showed that mice treated with modulated PMF displayed shorter swimming distance and latency time in the spatial exploration acquisition trial and exhibited a significant preference in the target presumptive platform area in the probe trial, all of which indicated the enhancement in spatial learning and memory abilities upon PMF stimulation of the accelerated aging mice. The novel object recognition (NOR) test results showed a similar tendency as the MWM results although without statistical significance. Further determination of histological structures demonstrated that the cognitive function-related hippocampal CA3 neurons degenerated upon D-gal injection, which could also be partially rescued by PMF application. In comparison with the high-intensity TMS approach, low-intensity magnetic stimulation could be much safer and allow deeper penetration without adverse effects such as seizure. In summary, modulated PMF, even with low intensity, could effectively improve rodent cognitive functions impaired by D-gal-induced accelerated aging, which might provide a new safe therapeutic strategy for cognitive deficits as well as other neurological disorders.
Collapse
Affiliation(s)
- Pingping Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xue Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qingmeng Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yangkun Jiao
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xuting Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Changyou Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Haitao Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Song
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
35
|
McNaughton KA, Williamson LL. Effects of sex and pro-inflammatory cytokines on context discrimination memory. Behav Brain Res 2023; 442:114320. [PMID: 36720350 PMCID: PMC9930642 DOI: 10.1016/j.bbr.2023.114320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
In learning and memory tasks, immune overactivation is associated with impaired performance, while normal immune activation is associated with optimal performance. In one specific domain of memory, context discrimination memory, peripheral immune stimulation has been shown to impair performance on the context-object discrimination memory task in male rats. In order to evaluate potential sex differences in this task, as well as potential mechanisms for the memory impairment, we evaluated the ability of peripheral immune stimulation to impair task performance in both males and females. Next, we examined whether treatment with interleukin-1 receptor antagonist (IL-1ra), a receptor antagonist for the pro-inflammatory cytokine interleukin (IL)-1β, was able to rescue the memory deficit. We examined microglial morphology in the hippocampus and cytokine mRNA and protein expression in the hippocampus and the periphery. Male rats displayed memory impairment in response to LPS, and this impairment was not rescued by IL-1ra. Female rats did not have significant memory impairments and IL-1ra administration improved memory following inflammation. A subset of cytokines and chemokines were increased only in LPS-treated males. Inflammation alone did not alter microglia morphology, but IL-1ra did in certain sub-regions of the hippocampus. Together, these results indicate that sex differences exist in the ability of a peripheral immune stimulus to influence context discrimination memory and specific cytokine signals may be altered in impaired males. This study highlights the importance of sex differences in response to inflammatory challenges, especially related to memory impairments in context discrimination memory.
Collapse
Affiliation(s)
- Kathryn A McNaughton
- University of Maryland (UMD), 0112 Biology-Psychology Building, Department of Psychology, College Park, MD 20742, United States.
| | - Lauren L Williamson
- Northern Kentucky University, 100 Nunn Dr, FH 359F, Highland Heights, KY 41099, United States.
| |
Collapse
|
36
|
Langer Horvat L, Španić Popovački E, Babić Leko M, Zubčić K, Horvat L, Mustapić M, Hof PR, Šimić G. Anterograde and Retrograde Propagation of Inoculated Human Tau Fibrils and Tau Oligomers in a Non-Transgenic Rat Tauopathy Model. Biomedicines 2023; 11:1004. [PMID: 37189622 PMCID: PMC10135744 DOI: 10.3390/biomedicines11041004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 05/17/2023] Open
Abstract
The tauopathy of Alzheimer's disease (AD) is first observed in the brainstem and entorhinal cortex, spreading trans-synaptically along specific pathways to other brain regions with recognizable patterns. Tau propagation occurs retrogradely and anterogradely (trans-synaptically) along a given pathway and through exosomes and microglial cells. Some aspects of in vivo tau spreading have been replicated in transgenic mice models expressing a mutated human MAPT (tau) gene and in wild-type mice. In this study, we aimed to characterize the propagation of different forms of tau species in non-transgenic 3-4 months old wild-type rats after a single unilateral injection of human tau oligomers and tau fibrils into the medial entorhinal cortex (mEC). We determined whether different variants of the inoculated human tau protein, tau fibrils, and tau oligomers, would induce similar neurofibrillary changes and propagate in an AD-related pattern, and how tau-related pathological changes would correlate with presumed cognitive impairment. We injected human tau fibrils and tau oligomers stereotaxically into the mEC and examined the distribution of tau-related changes at 3 days and 4, 8, and 11 months post-injection using antibodies AT8 and MC1, which reveal early phosphorylation and aberrant conformation of tau, respectively, HT7, anti-synaptophysin, and the Gallyas silver staining method. Human tau oligomers and tau fibrils exhibited some similarities and some differences in their ability to seed and propagate tau-related changes. Both human tau fibrils and tau oligomers rapidly propagated from the mEC anterogradely into the hippocampus and various parts of the neocortex. However, using a human tau-specific HT7 antibody, 3 days post-injection we found inoculated human tau oligomers in the red nucleus, primary motor, and primary somatosensory cortex, a finding not seen in animals inoculated with human tau fibrils. In animals inoculated with human tau fibrils, 3 days post-injection the HT7 antibody showed fibrils in the pontine reticular nucleus, a finding explained only by uptake of human tau fibrils by incoming presynaptic fibers to the mEC and retrograde transport of inoculated human tau fibrils to the brainstem. Rats inoculated with human tau fibrils showed as early as 4 months after inoculation a spread of phosphorylated tau protein at the AT8 epitopes throughout the brain, dramatically faster propagation of neurofibrillary changes than with human tau oligomers. The overall severity of tau protein changes 4, 8, and 11 months after inoculation of human tau oligomers and tau fibrils correlated well with spatial working memory and cognition impairments, as measured by the T-maze spontaneous alternation, novel object recognition, and object location tests. We concluded that this non-trangenic rat model of tauopathy, especially when using human tau fibrils, demonstrates rapidly developing pathologic alterations in neurons, synapses, and identifiable pathways together with cognitive and behavioral changes, through the anterograde and retrograde spreading of neurofibrillary degeneration. Therefore, it represents a promising model for future experimental studies of primary and secondary tauopathies, especially AD.
Collapse
Affiliation(s)
- Lea Langer Horvat
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Ena Španić Popovački
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Klara Zubčić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Luka Horvat
- Department of Molecular Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Maja Mustapić
- Laboratory of Clinical Investigation, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
37
|
Garrick JM, Cole TB, Dao K, Phillips A, Costa LG. Perinatal diesel exhaust exposure causes persistent changes in the brains of aged mice: An assessment of behavioral and biochemical endpoints related to neurodegenerative disease. ENVIRONMENTAL TOXICOLOGY 2023; 38:899-913. [PMID: 36629036 DOI: 10.1002/tox.23733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/23/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Epidemiological studies support an association between air pollution exposure, specifically particulate matter (PM), and neurodegenerative disease. Diesel exhaust (DE) is a principal component of ambient air pollution and a major contributor of PM. Our study aimed to examine whether early-life perinatal DE exposure is sufficient to affect behavioral and biochemical endpoints related to Alzheimer's disease later in life. To achieve this, mice were perinatally exposed (embryonic day 0-postnatal day 21) to DE (250-300 μg/m3 ) or filtered air (FA), and allowed to reach aged status (>18 months). Mice underwent behavioral assessment at 6 and 20 months of age, with tissue collected at 22 months for biochemical endpoints. At 6 months, minimal changes were noted in home-cage behavior of DE treated animals. At 20 months, an alternation deficit was noted with the T-maze, although no difference was seen in the object location task or any home-cage metrics. DE exposure did not alter the expression of Aβ42, phosphorylated tau S199, or total tau. However, IBA-1 protein, a microglial activation marker, was significantly higher in DE exposed animals. Further, lipid peroxidation levels were significantly higher in the DE exposed animals compared to FA controls. Cytokine levels were largely unchanged with DE exposure, suggesting a lack of inflammation despite persistent lipid peroxidation. Taken together, the findings of this study support that perinatal exposure alone is sufficient to cause lasting changes in the brain, although the effects appear to be less striking than those previously reported in younger animals, suggesting some effects do not persist over time. These findings are encouraging from a public health standpoint and support the aggressive reduction of DE emissions to reduce lifetime exposure and potentially reduce disease outcome.
Collapse
Affiliation(s)
- Jacqueline M Garrick
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Toby B Cole
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Center on Human Development and Disabilities, University of Washington, Seattle, Washington, USA
| | - Khoi Dao
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Ashley Phillips
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
38
|
Ma X, Zheng C, Chen Y, Pereira F, Li Z. Working memory and reward increase the accuracy of animal location encoding in the medial prefrontal cortex. Cereb Cortex 2023; 33:2245-2259. [PMID: 35584788 PMCID: PMC9977377 DOI: 10.1093/cercor/bhac205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/14/2022] Open
Abstract
The ability to perceive spatial environments and locate oneself during navigation is crucial for the survival of animals. Mounting evidence suggests a role of the medial prefrontal cortex (mPFC) in spatially related behaviors. However, the properties of mPFC spatial encoding and how it is influenced by animal behavior are poorly defined. Here, we train the mice to perform 3 tasks differing in working memory and reward-seeking: a delayed non-match to place (DNMTP) task, a passive alternation (PA) task, and a free-running task. Single-unit recording in the mPFC shows that although individual mPFC neurons exhibit spatially selective firing, they do not reliably represent the animal location. The population activity of mPFC neurons predicts the animal location. Notably, the population coding of animal locations by the mPFC is modulated by animal behavior in that the coding accuracy is higher in tasks involved in working memory and reward-seeking. This study reveals an approach whereby the mPFC encodes spatial positions and the behavioral variables affecting it.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Section on Synapse Development Plasticity, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Charles Zheng
- Machine Learning Team, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Yenho Chen
- Machine Learning Team, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Francisco Pereira
- Machine Learning Team, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Zheng Li
- Section on Synapse Development Plasticity, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| |
Collapse
|
39
|
De Felice M, Chen C, Rodríguez-Ruiz M, Szkudlarek HJ, Lam M, Sert S, Whitehead SN, Yeung KKC, Rushlow WJ, Laviolette SR. Adolescent Δ-9-tetrahydrocannabinol exposure induces differential acute and long-term neuronal and molecular disturbances in dorsal vs. ventral hippocampal subregions. Neuropsychopharmacology 2023; 48:540-551. [PMID: 36402837 PMCID: PMC9852235 DOI: 10.1038/s41386-022-01496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
Chronic exposure to Δ-9-tetrahydrocannabinol (THC) during adolescence is associated with long-lasting cognitive impairments and enhanced susceptibility to anxiety and mood disorders. Previous evidence has revealed functional and anatomical dissociations between the posterior vs. anterior portions of the hippocampal formation, which are classified as the dorsal and ventral regions in rodents, respectively. Notably, the dorsal hippocampus is critical for cognitive and contextual processing, whereas the ventral region is critical for affective and emotional processing. While adolescent THC exposure can induce significant morphological disturbances and glutamatergic signaling abnormalities in the hippocampus, it is not currently understood how the dorsal vs. ventral hippocampal regions are affected by THC during neurodevelopment. In the present study, we used an integrative combination of behavioral, molecular, and neural assays in a neurodevelopmental rodent model of adolescent THC exposure. We report that adolescent THC exposure induces long-lasting memory deficits and anxiety like-behaviors concomitant with a wide range of differential molecular and neuronal abnormalities in dorsal vs. ventral hippocampal regions. In addition, using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS), we show for the first time that adolescent THC exposure induces significant and enduring dysregulation of GABA and glutamate levels in dorsal vs. ventral hippocampus. Finally, adolescent THC exposure induced dissociable dysregulations of hippocampal glutamatergic signaling, characterized by differential glutamatergic receptor expression markers, profound alterations in pyramidal neuronal activity and associated oscillatory patterns in dorsal vs. ventral hippocampal subregions.
Collapse
Affiliation(s)
- Marta De Felice
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Chaochao Chen
- Department of Chemistry, Western University, London, ON, N6A3K7, Canada
| | - Mar Rodríguez-Ruiz
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Hanna J Szkudlarek
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Michael Lam
- Department of Chemistry, Western University, London, ON, N6A3K7, Canada
| | - Selvi Sert
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Shawn N Whitehead
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Ken K-C Yeung
- Department of Chemistry, Western University, London, ON, N6A3K7, Canada
- Department of Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - Walter J Rushlow
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada.
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada.
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 3K7, Canada.
- Lawson Health Research Institute, London, ON, N6A 4V2, Canada.
| |
Collapse
|
40
|
Combined space stressors induce independent behavioral deficits predicted by early peripheral blood monocytes. Sci Rep 2023; 13:1749. [PMID: 36720960 PMCID: PMC9889764 DOI: 10.1038/s41598-023-28508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/19/2023] [Indexed: 02/02/2023] Open
Abstract
Interplanetary space travel poses many hazards to the human body. To protect astronaut health and performance on critical missions, there is first a need to understand the effects of deep space hazards, including ionizing radiation, confinement, and altered gravity. Previous studies of rodents exposed to a single such stressor document significant deficits, but our study is the first to investigate possible cumulative and synergistic impacts of simultaneous ionizing radiation, confinement, and altered gravity on behavior and cognition. Our cohort was divided between 6-month-old female and male mice in group, social isolation, or hindlimb unloading housing, exposed to 0 or 50 cGy of 5 ion simplified simulated galactic cosmic radiation (GCRsim). We report interactions and independent effects of GCRsim exposure and housing conditions on behavioral and cognitive performance. Exposure to GCRsim drove changes in immune cell populations in peripheral blood collected early after irradiation, while housing conditions drove changes in blood collected at a later point. Female mice were largely resilient to deficits observed in male mice. Finally, we used principal component analysis to represent total deficits as principal component scores, which were predicted by general linear models using GCR exposure, housing condition, and early blood biomarkers.
Collapse
|
41
|
Vogler EC, Mahavongtrakul M, Sarkan K, Bohannan RC, Catuara-Solarz S, Busciglio J. Genetic removal of synaptic Zn 2+ impairs cognition, alters neurotrophic signaling and induces neuronal hyperactivity. Front Neurol 2023; 13:882635. [PMID: 36742045 PMCID: PMC9895830 DOI: 10.3389/fneur.2022.882635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2023] Open
Abstract
Vesicular Zn2+ (zinc) is released at synapses and has been demonstrated to modulate neuronal responses. However, mechanisms through which dysregulation of zinc homeostasis may potentiate neuronal dysfunction and neurodegeneration are not well-understood. We previously reported that accumulation of soluble amyloid beta oligomers (AβO) at synapses correlates with synaptic loss and that AβO localization at synapses is regulated by synaptic activity and enhanced by the release of vesicular Zn2+ in the hippocampus, a brain region that deteriorates early in Alzheimer's disease (AD). Significantly, drugs regulating zinc homeostasis inhibit AβO accumulation and improve cognition in mouse models of AD. We used both sexes of a transgenic mouse model lacking synaptic Zn2+ (ZnT3KO) that develops AD-like cognitive impairment and neurodegeneration to study the effects of disruption of Zn2+ modulation of neurotransmission in cognition, protein expression and activation, and neuronal excitability. Here we report that the genetic removal of synaptic Zn2+ results in progressive impairment of hippocampal-dependent memory, reduces activity-dependent increase in Erk phosphorylation and BDNF mRNA, alters regulation of Erk activation by NMDAR subunits, increases neuronal spiking, and induces biochemical and morphological alterations consistent with increasing epileptiform activity and neurodegeneration as ZnT3KO mice age. Our study shows that disruption of synaptic Zn2+ triggers neurodegenerative processes and is a potential pathway through which AβO trigger altered expression of neurotrophic proteins, along with reduced hippocampal synaptic density and degenerating neurons, neuronal spiking activity, and cognitive impairment and supports efforts to develop therapeutics to preserve synaptic zinc homeostasis in the brain as potential treatments for AD.
Collapse
Affiliation(s)
- Emily C. Vogler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Matthew Mahavongtrakul
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Kristianna Sarkan
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Ryan C. Bohannan
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Silvina Catuara-Solarz
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Jorge Busciglio
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
42
|
Cinalli DA, Cohen SJ, Calubag M, Oz G, Zhou L, Stackman RW. DREADD-inactivation of dorsal CA1 pyramidal neurons in mice impairs retrieval of object and spatial memories. Hippocampus 2023; 33:6-17. [PMID: 36468186 DOI: 10.1002/hipo.23484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/02/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022]
Abstract
The hippocampus, a medial temporal lobe brain region, is critical for the consolidation of information from short-term memory into long-term episodic memory and for spatial memory that enables navigation. Hippocampal damage in humans has been linked to amnesia and memory loss, characteristic of Alzheimer's disease and other dementias. Numerous studies indicate that the rodent hippocampus contributes significantly to long-term memory for spatial and nonspatial information. For example, muscimol-induced depression of CA1 neuronal activity in the dorsal hippocampus impairs the encoding, consolidation, and retrieval of nonspatial object memory in mice. Here, a chemogenetic designer receptor exclusively activated by designer drugs (DREADDs) approach was used to test the selective involvement of CA1 pyramidal neurons in memory retrieval for objects and for spatial location in a cohort of male C57BL/6J mice. Activation of the inhibitory (hM4Di) DREADDs receptor expressed in CA1 neurons significantly impaired the retrieval of object memory in the spontaneous object recognition task and of spatial memory in the Morris water maze. Silencing of CA1 neuronal activity in hM4Di-expressing mice was confirmed by comparing Fos expression in vehicle- and clozapine-N-oxide-treated mice after exploration of a novel environment. Histological analyses revealed that expression of the hM4Di receptor was limited to CA1 neurons of the dorsal hippocampus. These results suggest that a common subset of CA1 neurons (i.e., those expressing hM4Di receptors) in mouse hippocampus contributed to the retrieval of long-term memory for nonspatial and spatial information. Our findings support the view that the contribution of the rodent hippocampus is like that of the primate hippocampus, specifically essential for global memory. Our results further validate mice as a suitable model system to study the neurobiological mechanisms of human episodic memory, but also in developing treatments and understanding the underlying causes of diseases affecting long-term memory, such as Alzheimer's disease.
Collapse
Affiliation(s)
- David A Cinalli
- Department of Psychology, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, Florida, USA
| | - Sarah J Cohen
- Jupiter Life Science Initiative, John D. MacArthur Campus, Florida Atlantic University, Jupiter, Florida, USA
| | - Mariah Calubag
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, USA
| | - Goksu Oz
- Department of Psychology, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, Florida, USA.,Florida Atlantic University and Max Planck Florida Institute Joint Integrative Biology - Neuroscience Ph.D. Program, Florida Atlantic University, Jupiter, Florida, USA.,International Max Planck Research School for Synapses and Circuits, Florida Atlantic University and Max Planck Florida Institute for Neuroscience, Jupiter, Florida, USA
| | - Lylybell Zhou
- Alexander W. Dreyfoos High School of the Arts, West Palm Beach, Florida, USA
| | - Robert W Stackman
- Department of Psychology, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, Florida, USA.,Jupiter Life Science Initiative, John D. MacArthur Campus, Florida Atlantic University, Jupiter, Florida, USA.,Florida Atlantic University and Max Planck Florida Institute Joint Integrative Biology - Neuroscience Ph.D. Program, Florida Atlantic University, Jupiter, Florida, USA.,International Max Planck Research School for Synapses and Circuits, Florida Atlantic University and Max Planck Florida Institute for Neuroscience, Jupiter, Florida, USA
| |
Collapse
|
43
|
Chrzanowska A, Modlinska K, Goncikowska K, Pisula W. Rat's response to a novelty and increased complexity of the environment resulting from the introduction of movable vs. stationary objects in the free exploration test. PLoS One 2022; 17:e0279006. [PMID: 36538520 PMCID: PMC9767355 DOI: 10.1371/journal.pone.0279006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Most animals, including rats, show a preference for more complex environments. This is demonstrated particularly well when complexity increases due to the addition of new elements to the environment. The aim of the study was to investigate the reaction to novelty, understood as a change in environmental properties that involve both changes in complexity and controllability. Controllability may allow for dealing with challenges of an environment of low predictability in a way that the animal's own activity reduces the uncertainty of environmental events. In our study, the animals underwent a spontaneous exploration test in low-stress conditions. After a period of habituation to the experimental arena, additional stationary (increased complexity) and/or movable (increased complexity and controllability) tunnels were introduced, and the reaction of the rats to the novel objects was measured. The results of the study confirmed that an increase in the complexity of the environment through the addition of objects triggers a more intensive exploratory activity in rats. However, an increased spatial complexity combined with the movability of the novel objects seems to result in increased caution towards the novelty after an initial inspection of the changed objects. It suggests that the complexity of the novelty may trigger both neophilia and neophobia depending on the level of the predictability of the novel environment and that the movability of newly introduced objects is not independent of other parameters of the environment.
Collapse
Affiliation(s)
- Anna Chrzanowska
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| | | | | | - Wojciech Pisula
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
44
|
Bowman R, Frankfurt M, Luine V. Sex differences in cognition following variations in endocrine status. Learn Mem 2022; 29:234-245. [PMID: 36206395 PMCID: PMC9488023 DOI: 10.1101/lm.053509.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
Spatial memory, mediated primarily by the hippocampus, is responsible for orientation in space and retrieval of information regarding location of objects and places in an animal's environment. Since the hippocampus is dense with steroid hormone receptors and is capable of robust neuroplasticity, it is not surprising that changes in spatial memory performance occur following a variety of endocrine alterations. Here, we review cognitive changes in both spatial and nonspatial memory tasks following manipulations of the hypothalamic-pituitary-adrenal and gonadal axes and after exposure to endocrine disruptors in rodents. Chronic stress impairs male performance on numerous behavioral cognitive tasks and enhances or does not impact female cognitive function. Sex-dependent changes in cognition following stress are influenced by both organizational and activational effects of estrogen and vary depending on the developmental age of the stress exposure, but responses to gonadal hormones in adulthood are more similar than different in the sexes. Also discussed are possible underlying neural mechanisms for these steroid hormone-dependent, cognitive effects. Bisphenol A (BPA), an endocrine disruptor, given at low levels during adolescent development, impairs spatial memory in adolescent male and female rats and object recognition memory in adulthood. BPA's negative effects on memory may be mediated through alterations in dendritic spine density in areas that mediate these cognitive tasks. In summary, this review discusses the evidence that endocrine status of an animal (presence or absence of stress hormones, gonadal hormones, or endocrine disruptors) impacts cognitive function and, at times, in a sex-specific manner.
Collapse
Affiliation(s)
- Rachel Bowman
- Department of Psychology, Sacred Heart University, Fairfield, Connecticut 06825, USA
| | - Maya Frankfurt
- Department of Psychology, Sacred Heart University, Fairfield, Connecticut 06825, USA
- Hofstra Northwell School of Nursing and Physician Assistant Studies, Hofstra University, Hempstead, New York 11549, USA
| | - Victoria Luine
- Department of Psychology, Hunter College of City University of New York, New York, New York 10065, USA
| |
Collapse
|
45
|
Diaz-Orueta U, Rogers BM, Blanco-Campal A, Burke T. The challenge of neuropsychological assessment of visual/visuo-spatial memory: A critical, historical review, and lessons for the present and future. Front Psychol 2022; 13:962025. [PMID: 36081731 PMCID: PMC9447442 DOI: 10.3389/fpsyg.2022.962025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022] Open
Abstract
A proliferation of tests exists for the assessment of auditory-verbal memory processes. However, from a clinical practice perspective, the situation is less clear when it comes to the ready availability of reliable and valid tests for the evaluation of visual/visuo-spatial memory processes. While, at face value, there appear to be a wide range of available tests of visual/visuo-spatial memory, utilizing different types of materials and assessment strategies, a number of criticisms have been, and arguably should be, leveled at the majority of these tests. The criticisms that have been directed toward what are typically considered to be visual/visuo-spatial memory tests, such as (1) the potential for verbal mediation, (2) over-abstraction of stimuli, (3) the requirement of a drawing response, and (4) the lack of sensitivity to unilateral brain lesions, mean that, in reality, the number of readily available valid tests of visual/visuo-spatial memory is, at best, limited. This article offers a critical, historical review on the existing measures and resources for the neuropsychological assessment of visual/visuo-spatial memory, and it showcases some examples of newer tests that have aimed to overcome the challenges of assessing these important aspects of memory. The article also identifies new trends and examples of how technological advances such as virtual reality may add value to overcome previous obstacles to assessment, thereby offering professionals more reliable, accurate means to evaluate visual/visuo-spatial memory in clinical practice.
Collapse
Affiliation(s)
- Unai Diaz-Orueta
- Department of Psychology, Maynooth University, Maynooth, Ireland
| | - Bronagh M. Rogers
- Department of Psychology, Faculty of Arts, Humanities and Social Sciences, University of Limerick, Limerick, Ireland
| | - Alberto Blanco-Campal
- Department of Psychiatry for the Older Person and Memory Clinic Services, Health Service Executive, Ardee and Navan, Ireland
| | - Teresa Burke
- Faculty of Science and Health, School of Psychology, Dublin City University, Dublin, Ireland
| |
Collapse
|
46
|
Branković S, Bugarčić M, Bugarčić FŽ, Ostojić A, Petronijević J, Rosić G, Radojević I, Selaković D, Simić Z, Joksimović N. Economic, ecological, and health aspects of β-diketonate application in the process of water purification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58703-58715. [PMID: 35366727 DOI: 10.1007/s11356-022-19986-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Water pollution is a constant challenge for humanity. Sustainable economic development and environmental protection through a green economy structure provide the opportunity to project a model of scientific, social, and economic flows. Considering new chemical use in water treatment, we tested two β-diketonates that we previously synthesized in the reaction between methyl ketone and diethyl oxalate under basic conditions. For water treatment, we used the appropriate salts of the mentioned compounds due to better solubility in water. In cooperation with the partner organizations PUC (public utility companies) Kragujevac, LTD (Private Limited Company), "Rudnik," and FIAT (Fabbrica Italiana Automobili Torino), we conducted research on their wastewater treatment. The results appeared to be more convincing in practice than the conventional methods. As a result of the study, no negative effects exerted on living organisms were found. Therefore, we are on the right track for potential application in the treatment of drinking water. Appropriate β-diketonates were tested on twelve microorganisms (isolates from the wastewater and standard strains of bacteria and yeast). One of the two tested compounds showed promising antimicrobial activity. Further investigations showed that the tested compounds significantly reduce the concentration of heavy metals, which was confirmed by statistical calculations. Also, the main advantage of this method is a small volume of waste requiring disposal, no need for driving off excess moisture, used recyclability of the coagulants, reducing hazardous waste, and therefore reducing the costs for water treatment.
Collapse
Affiliation(s)
- Snežana Branković
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Marijana Bugarčić
- Faculty of Economics, University of Kragujevac, Liceja Kneževine Srbije 3, 34000, Kragujevac, Serbia
| | - Filip Ž Bugarčić
- Faculty of Economics, University of Kragujevac, Liceja Kneževine Srbije 3, 34000, Kragujevac, Serbia
| | - Aleksandar Ostojić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Jelena Petronijević
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Gvozden Rosić
- Department of Physiology, Faculty of Medical Science, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Ivana Radojević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Dragica Selaković
- Department of Physiology, Faculty of Medical Science, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Zoran Simić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Nenad Joksimović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia.
| |
Collapse
|
47
|
Modlinska K, Chrzanowska A, Goncikowska K, Pisula W. Influence of excessive sucrose consumption on exploratory behaviour in rats - possible implications for the brain reward system. Behav Brain Res 2022; 436:114085. [DOI: 10.1016/j.bbr.2022.114085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/01/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022]
|
48
|
Osorio-Gómez D, Guzmán-Ramos K, Bermúdez-Rattoni F. Dopamine activity on the perceptual salience for recognition memory. Front Behav Neurosci 2022; 16:963739. [PMID: 36275849 PMCID: PMC9583835 DOI: 10.3389/fnbeh.2022.963739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
To survive, animals must recognize relevant stimuli and distinguish them from inconspicuous information. Usually, the properties of the stimuli, such as intensity, duration, frequency, and novelty, among others, determine the salience of the stimulus. However, previously learned experiences also facilitate the perception and processing of information to establish their salience. Here, we propose “perceptual salience” to define how memory mediates the integration of inconspicuous stimuli into a relevant memory trace without apparently altering the recognition of the physical attributes or valence, enabling the detection of stimuli changes in future encounters. The sense of familiarity is essential for successful recognition memory; in general, familiarization allows the transition of labeling a stimulus from the novel (salient) to the familiar (non-salient). The novel object recognition (NOR) and object location recognition (OLRM) memory paradigms represent experimental models of recognition memory that allow us to study the neurobiological mechanisms involved in episodic memory. The catecholaminergic system has been of vital interest due to its role in several aspects of recognition memory. This review will discuss the evidence that indicates changes in dopaminergic activity during exposure to novel objects or places, promoting the consolidation and persistence of memory. We will discuss the relationship between dopaminergic activity and perceptual salience of stimuli enabling learning and consolidation processes necessary for the novel-familiar transition. Finally, we will describe the effect of dopaminergic deregulation observed in some pathologies and its impact on recognition memory.
Collapse
Affiliation(s)
- Daniel Osorio-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico, Mexico
| | - Kioko Guzmán-Ramos
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico, Mexico
- *Correspondence: Federico Bermúdez-Rattoni
| |
Collapse
|
49
|
Rei D, Saha S, Haddad M, Haider Rubio A, Perlaza BL, Berard M, Ungeheuer MN, Sokol H, Lledo PM. Age-associated gut microbiota impairs hippocampus-dependent memory in a vagus-dependent manner. JCI Insight 2022; 7:147700. [PMID: 35737457 PMCID: PMC9462480 DOI: 10.1172/jci.insight.147700] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
Aging is known to be associated with hippocampus-dependent memory decline, but the underlying causes of this age-related memory impairment remain highly debated. Here, we show that fecal microbiota transplantation (FMT) from aged, but not young, animal donors into young mice is sufficient to trigger profound hippocampal alterations, including astrogliosis, decreased adult neurogenesis, decreased novelty-induced neuronal activation, and impairment in hippocampus-dependent memory. Furthermore, similar alterations were reported when mice were subjected to an FMT from aged human donors. To decipher the mechanisms involved in mediating these microbiota-induced effects on brain function, we mapped the vagus nerve–related (VN-related) neuronal activity patterns and report that aged FMT animals showed a reduction in neuronal activity in the ascending-VN output brain structure, whether under basal condition or after VN stimulation. Targeted pharmacogenetic manipulation of VN-ascending neurons demonstrated that the decrease in vagal activity is detrimental to hippocampal functions. In contrast, increasing vagal ascending activity alleviated the adverse effects of aged mouse FMT on hippocampal functions and had a promnesic effect in aged mice. Thus, pharmacogenetic VN stimulation is a potential therapeutic strategy to lessen microbiota-dependent age-associated impairments in hippocampal functions.
Collapse
Affiliation(s)
- Damien Rei
- Neurosciences, Institut Pasteur de Paris, Paris, France
| | - Soham Saha
- Neurosciences, Institut Pasteur de Paris, Paris, France
| | | | | | | | - Marion Berard
- Animalerie Centrale, Institut Pasteur de Paris, Paris, France
| | | | - Harry Sokol
- Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | | |
Collapse
|
50
|
Liu H, Wolters A, Temel Y, Alosaimi F, Jahanshahi A, Hescham S. Deep brain stimulation of the nucleus basalis of Meynert in an experimental rat model of dementia: Stimulation parameters and mechanisms. Neurobiol Dis 2022; 171:105797. [PMID: 35738477 DOI: 10.1016/j.nbd.2022.105797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND/OBJECTIVE Deep brain stimulation (DBS) of the nucleus basalis of Meynert (NBM) has gained interest as a potential therapy for treatment-resistant dementia. However, optimal stimulation parameters and mechanisms of action are yet to be elucidated. METHODS First, we assessed NBM DBS at different stimulation parameters in a scopolamine-induced rat model of dementia. Rats were tested in the object location task with the following conditions: (i) low and high frequency (20 Hz or 120 Hz), (ii) monophasic or biphasic pulse shape (iii) continuous or intermittent DBS (20s on, 40s off) and 100 μA amplitude. Thereafter, rats were stimulated with the most effective parameter followed by 5-bromo-2'-deoxyuridine (BrdU) administration and perfused 4 weeks later. We then evaluated the effects of NBM DBS on hippocampal neurogenesis, synaptic plasticity, and on cholinergic fibres in the perirhinal and cingulate cortex using immunohistochemistry. We also performed in-vivo microdialysis to assess circuit-wide effects of NBM DBS on hippocampal acetylcholine levels during on and off stimulation. RESULTS Biphasic, low frequency and intermittent NBM DBS reversed the memory impairing effects of scopolamine when compared to sham rats. We found that acute stimulation promoted proliferation in the dentate gyrus, increased synaptic plasticity in the CA1 and CA3 subregion of the hippocampus, and increased length of cholinergic fibres in the cingulate gyrus. There was no difference regarding hippocampal acetylcholine levels between the groups. CONCLUSION These findings suggest that the potential mechanism of action of the induced memory enhancement through NBM DBS might be due to selective neuroplastic and neurochemical changes.
Collapse
Affiliation(s)
- Huajie Liu
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, the Netherlands
| | - Anouk Wolters
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, the Netherlands
| | - Faisal Alosaimi
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, the Netherlands
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, the Netherlands
| | - Sarah Hescham
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|