1
|
Emma C, Majernik N, Swanson KK, Ariniello R, Gessner S, Hessami R, Hogan MJ, Knetsch A, Larsen KA, Marinelli A, O'Shea B, Perez S, Rajkovic I, Robles R, Storey D, Yocky G. Experimental Generation of Extreme Electron Beams for Advanced Accelerator Applications. PHYSICAL REVIEW LETTERS 2025; 134:085001. [PMID: 40085855 DOI: 10.1103/physrevlett.134.085001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/31/2025] [Indexed: 03/16/2025]
Abstract
In this Letter, we report on the experimental generation of high energy (10 GeV), ultrashort (femtosecond-duration), ultrahigh current (∼0.1 MA), petawatt peak power electron beams in a particle accelerator. These extreme beams enable the exploration of a new frontier of high-intensity beam-light and beam-matter interactions broadly relevant across fields ranging from laboratory astrophysics to strong field quantum electrodynamics and ultrafast quantum chemistry. We demonstrate our ability to generate and control the properties of these electron beams by means of a laser-electron beam shaping technique. This experimental demonstration opens the door to on-the-fly customization of extreme beam current profiles for desired experiments and is poised to benefit a broad swath of cross-cutting applications of relativistic electron beams.
Collapse
Affiliation(s)
- C Emma
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - N Majernik
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - K K Swanson
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - R Ariniello
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - S Gessner
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - R Hessami
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M J Hogan
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A Knetsch
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - K A Larsen
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A Marinelli
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - B O'Shea
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - S Perez
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - I Rajkovic
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - R Robles
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - D Storey
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - G Yocky
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
2
|
Ma Q, Liu J, Pan Z, Wu X, Lu H, Wang Z, Xia Y, Chen Y, Miller KG, Xu X, Yan X. Generation of attosecond gigawatt soft x-ray pulses through coherent Thomson backscattering. Phys Rev E 2024; 109:065205. [PMID: 39020960 DOI: 10.1103/physreve.109.065205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Collision between relativistic electron sheets and counterpropagating laser pulses is recognized as a promising way to produce intense attosecond x rays through coherent Thomson backscattering (TBS). In a double-layer scheme, the electrons in an ultrathin solid foil are first pushed out by an intense laser driver and then interact with the laser reflected off a second foil to form a high-density relativistic electron sheet with vanishing transverse momentum. However, the repulsion between these concentrated electrons can increase the thickness of the layer, reducing both its density and subsequently the coherent TBS. Here, we present a systematic study on the evolution of the flying electron layer and find that its resulting thickness is determined by the interplay between the intrinsic space-charge expansion and the velocity compression induced by the drive laser. How the laser driver, the target areal density, the reflector, and the collision laser intensity affect the properties of the produced x rays is explored. Multidimensional particle-in-cell simulations indicate that employing this scheme in the nonlinear regime has the potential to stably produce soft x rays with several gigawatt peak power in hundreds of terawatt ultrafast laser facilities. The pulse duration can be tuned to tens of attoseconds. This compact and intense attosecond x-ray source may have broad applications in attosecond science.
Collapse
Affiliation(s)
- Qianyi Ma
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, School of Physics, Peking University, Beijing 100871, China
| | - Jiaxin Liu
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, School of Physics, Peking University, Beijing 100871, China
| | - Zhuo Pan
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, School of Physics, Peking University, Beijing 100871, China
| | - Xuezhi Wu
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, School of Physics, Peking University, Beijing 100871, China
| | - Huangang Lu
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, School of Physics, Peking University, Beijing 100871, China
| | - Zhenan Wang
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, School of Physics, Peking University, Beijing 100871, China
| | - Yuhui Xia
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, School of Physics, Peking University, Beijing 100871, China
| | - Yuekai Chen
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, School of Physics, Peking University, Beijing 100871, China
| | | | - Xinlu Xu
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, School of Physics, Peking University, Beijing 100871, China
- Beijing Laser Acceleration Innovation Center, Huairou, Beijing, 101400, China
| | - Xueqing Yan
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, School of Physics, Peking University, Beijing 100871, China
- Beijing Laser Acceleration Innovation Center, Huairou, Beijing, 101400, China
- CICEO, Shanxi University, Taiyuan, Shanxi 030006, China
- Institute of Guangdong Laser Plasma Technology, Baiyun, Guangzhou, 510540, China
| |
Collapse
|
3
|
Li S, Lu L, Bhattacharyya S, Pearce C, Li K, Nienhuis ET, Doumy G, Schaller RD, Moeller S, Lin MF, Dakovski G, Hoffman DJ, Garratt D, Larsen KA, Koralek JD, Hampton CY, Cesar D, Duris J, Zhang Z, Sudar N, Cryan JP, Marinelli A, Li X, Inhester L, Santra R, Young L. Attosecond-pump attosecond-probe x-ray spectroscopy of liquid water. Science 2024; 383:1118-1122. [PMID: 38359104 DOI: 10.1126/science.adn6059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Attosecond-pump/attosecond-probe experiments have long been sought as the most straightforward method for observing electron dynamics in real time. Although there has been much success with overlapped near-infrared femtosecond and extreme ultraviolet attosecond pulses combined with theory, true attosecond-pump/attosecond-probe experiments have been limited. We used a synchronized attosecond x-ray pulse pair from an x-ray free-electron laser to study the electronic response to valence ionization in liquid water through all x-ray attosecond transient absorption spectroscopy (AX-ATAS). Our analysis showed that the AX-ATAS response is confined to the subfemtosecond timescale, eliminating any hydrogen atom motion and demonstrating experimentally that the 1b1 splitting in the x-ray emission spectrum is related to dynamics and is not evidence of two structural motifs in ambient liquid water.
Collapse
Affiliation(s)
- Shuai Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Lixin Lu
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Swarnendu Bhattacharyya
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Carolyn Pearce
- Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Kai Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
- Department of Physics and James Franck Institute, The University of Chicago, Chicago, IL, USA
| | | | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - R D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
| | - S Moeller
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - M-F Lin
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - G Dakovski
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - D J Hoffman
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - D Garratt
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Kirk A Larsen
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - J D Koralek
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - C Y Hampton
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - D Cesar
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Joseph Duris
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Z Zhang
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Nicholas Sudar
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - James P Cryan
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - A Marinelli
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Ludger Inhester
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
- Department of Physics and James Franck Institute, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Mi X, Zhang M, Li Z. Ultrafast X-ray Diffraction Probe of Coherent Spin-State Dynamics in Molecules. J Phys Chem Lett 2024; 15:681-686. [PMID: 38206838 DOI: 10.1021/acs.jpclett.3c02892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
We propose an approach to probe coherent spin-state dynamics of molecules using circularly polarized hard X-ray pulses. For the dynamically aligned nitric oxide molecules in a coherent superposition spin-orbit coupled electronic state that can be prepared through stimulated Raman scattering, we demonstrate the capability of ultrafast X-ray diffraction to not only reveal the quantum beating of the coherent spin-state wave packet but also image the spatial spin density of the molecule. With a circularly polarized ultrafast X-ray diffraction signal, we show that the electronic density matrix can be retrieved. The spatiotemporal resolving power of ultrafast X-ray diffraction paves the way for tracking transient spatial wave function in molecular dynamics involving the spin degree of freedom.
Collapse
Affiliation(s)
- Xiaoyu Mi
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Ming Zhang
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Zheng Li
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226000, China
| |
Collapse
|
5
|
Liu J, Li Y, Hou Y, Wu J, Yuan J. Transient responses of double core-holes generation in all-attosecond pump-probe spectroscopy. Sci Rep 2024; 14:1950. [PMID: 38253674 PMCID: PMC11226462 DOI: 10.1038/s41598-024-52197-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Double core-holes (DCHs) show remarkable and sensitive effects for understanding electron correlations and coherence. With advanced modulation of x-ray free-electron laser (XFEL) facility, we propose the forthcoming all-attosecond XFEL pump-probe spectroscopy can decipher the hidden photon-initiated dynamics of DCHs. The benchmark case of neon is investigated, and norm-nonconserving Monte-Carlo wavefunction method simulates non-Hermitian dynamics among vast states, which shows superiority in efficiency and reliability. In our scheme, population transfer to DCHs is sequentially irradiated by pump and probe laser. By varying time delay, Stark shifts and quantum path interference of resonant lines sensitively emerge at specific interval of two pulses. These ubiquitous multi-channel effects are also observed in phase-fluctuating pulses, derived from extra phases of impulsive Raman processes by pump laser. Non-perturbation absorption/emission verifies the uniquely interchangeable role of two pules in higher intensity. Our results reveal sensitive and robust responses on pulse parameters, which show potential capacity for XFEL attosecond pulse diagnosis and further attosecond-timescale chemical analysis.
Collapse
Affiliation(s)
- Jianpeng Liu
- College of Science, National University of Defense Technology, Changsha, 410073, China
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, 410073, China
| | - Yongqiang Li
- College of Science, National University of Defense Technology, Changsha, 410073, China
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, 410073, China
| | - Yong Hou
- College of Science, National University of Defense Technology, Changsha, 410073, China
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, 410073, China
| | - Jianhua Wu
- College of Science, National University of Defense Technology, Changsha, 410073, China.
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, 410073, China.
| | - Jianmin Yuan
- Department of Physics, Graduate School of China Academy of Engineering Physics, Beijing, 100193, China.
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, China.
| |
Collapse
|
6
|
Wang G, Dijkstal P, Reiche S, Schnorr K, Prat E. Millijoule Femtosecond X-Ray Pulses from an Efficient Fresh-Slice Multistage Free-Electron Laser. PHYSICAL REVIEW LETTERS 2024; 132:035002. [PMID: 38307082 DOI: 10.1103/physrevlett.132.035002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/18/2023] [Indexed: 02/04/2024]
Abstract
We present the generation of x-ray pulses with average pulse energies up to one millijoule and rms pulse durations down to the femtosecond level. We have produced these intense and short pulses by employing the fresh-slice multistage amplification scheme with a transversely tilted electron beam in a free-electron laser. In this scheme, a short pulse is produced in the first stage and later amplified by fresh parts of the electron bunch in up to a total of four stages of amplification. Our implementation is efficient, since practically the full electron beam contributes to produce the x-ray pulse. Our implementation is also compact, utilizing only 32 m of undulator. The demonstration was done at Athos, the soft x-ray beamline of SwissFEL, which was designed with high flexibility to take full advantage of the multistage amplification scheme. It opens the door for scientific opportunities following ultrafast dynamics using nonlinear x-ray spectroscopy techniques or avoiding electronic damage when capturing structures with a single intense pulse via single-particle imaging.
Collapse
Affiliation(s)
- Guanglei Wang
- Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | | | - Sven Reiche
- Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | | | - Eduard Prat
- Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
7
|
Habib AF, Manahan GG, Scherkl P, Heinemann T, Sutherland A, Altuiri R, Alotaibi BM, Litos M, Cary J, Raubenheimer T, Hemsing E, Hogan MJ, Rosenzweig JB, Williams PH, McNeil BWJ, Hidding B. Attosecond-Angstrom free-electron-laser towards the cold beam limit. Nat Commun 2023; 14:1054. [PMID: 36828817 PMCID: PMC9958197 DOI: 10.1038/s41467-023-36592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
Electron beam quality is paramount for X-ray pulse production in free-electron-lasers (FELs). State-of-the-art linear accelerators (linacs) can deliver multi-GeV electron beams with sufficient quality for hard X-ray-FELs, albeit requiring km-scale setups, whereas plasma-based accelerators can produce multi-GeV electron beams on metre-scale distances, and begin to reach beam qualities sufficient for EUV FELs. Here we show, that electron beams from plasma photocathodes many orders of magnitude brighter than state-of-the-art can be generated in plasma wakefield accelerators (PWFAs), and then extracted, captured, transported and injected into undulators without significant quality loss. These ultrabright, sub-femtosecond electron beams can drive hard X-FELs near the cold beam limit to generate coherent X-ray pulses of attosecond-Angstrom class, reaching saturation after only 10 metres of undulator. This plasma-X-FEL opens pathways for advanced photon science capabilities, such as unperturbed observation of electronic motion inside atoms at their natural time and length scale, and towards higher photon energies.
Collapse
Affiliation(s)
- A. F. Habib
- grid.11984.350000000121138138Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow, UK ,grid.450757.40000 0004 6085 4374The Cockcroft Institute, Daresbury, UK
| | - G. G. Manahan
- grid.11984.350000000121138138Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow, UK ,grid.450757.40000 0004 6085 4374The Cockcroft Institute, Daresbury, UK
| | - P. Scherkl
- grid.11984.350000000121138138Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow, UK ,grid.450757.40000 0004 6085 4374The Cockcroft Institute, Daresbury, UK ,grid.9026.d0000 0001 2287 2617University Medical Center Hamburg-Eppendorf, University of Hamburg, 20246 Hamburg, Germany
| | - T. Heinemann
- grid.11984.350000000121138138Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow, UK ,grid.450757.40000 0004 6085 4374The Cockcroft Institute, Daresbury, UK
| | - A. Sutherland
- grid.11984.350000000121138138Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow, UK ,grid.450757.40000 0004 6085 4374The Cockcroft Institute, Daresbury, UK
| | - R. Altuiri
- grid.11984.350000000121138138Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow, UK ,grid.449346.80000 0004 0501 7602Physics Department, Princess Nourah Bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - B. M. Alotaibi
- grid.11984.350000000121138138Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow, UK ,grid.449346.80000 0004 0501 7602Physics Department, Princess Nourah Bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - M. Litos
- grid.266190.a0000000096214564Department of Physics, Center for Integrated Plasma Studies, University of Colorado, Boulder, CO USA
| | - J. Cary
- grid.266190.a0000000096214564Department of Physics, Center for Integrated Plasma Studies, University of Colorado, Boulder, CO USA ,grid.448325.c0000 0004 0556 1325Tech-X Corporation, Boulder, USA
| | - T. Raubenheimer
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - E. Hemsing
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - M. J. Hogan
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - J. B. Rosenzweig
- grid.19006.3e0000 0000 9632 6718Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA USA
| | - P. H. Williams
- grid.450757.40000 0004 6085 4374The Cockcroft Institute, Daresbury, UK ,grid.482271.a0000 0001 0727 2226ASTeC, STFC Daresbury Laboratory, Warrington, UK
| | - B. W. J. McNeil
- grid.11984.350000000121138138Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow, UK ,grid.450757.40000 0004 6085 4374The Cockcroft Institute, Daresbury, UK
| | - B. Hidding
- grid.11984.350000000121138138Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow, UK ,grid.450757.40000 0004 6085 4374The Cockcroft Institute, Daresbury, UK ,grid.411327.20000 0001 2176 9917Institute for Laser and Plasma Physics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
8
|
Yong H, Keefer D, Mukamel S. Novel Ultrafast Molecular Imaging Based on the Combination of X-ray and Electron Diffraction. J Phys Chem A 2023; 127:835-841. [PMID: 36650121 DOI: 10.1021/acs.jpca.2c08024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent development of X-ray free-electron lasers and megaelectronvolt radio-frequency electron guns have made ultrafast X-ray and electron diffraction measurements possible, thereby capturing chemical dynamics with atomic-spatial and femtosecond-temporal resolutions. We present a unified formulation of standard homodyne-detected and heterodyne-detected signals for both techniques. Noting that X-rays scatter from molecular electrons while electrons scatter from both molecular electrons and nuclei, we show how the two diffraction signals can be combined to reveal novel chemical information that is unavailable by solely using each technique alone. By subtracting the homodyne-detected X-ray and electron diffraction signals, a mixed electronic-nuclear interference in electron diffraction can be identified with a self-heterodyne nature for the direct imaging of attosecond electron dynamics where the scattering off molecular nuclei serves as a local oscillator for the scattering off molecular electrons. By subtracting heterodyne-detected X-ray and electron diffraction, the purely nuclear charge density can be singled out.
Collapse
Affiliation(s)
- Haiwang Yong
- Department of Chemistry, University of California, Irvine, California92697, United States.,Department of Physics and Astronomy, University of California, Irvine, California92697, United States
| | - Daniel Keefer
- Department of Chemistry, University of California, Irvine, California92697, United States.,Department of Physics and Astronomy, University of California, Irvine, California92697, United States
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California92697, United States.,Department of Physics and Astronomy, University of California, Irvine, California92697, United States
| |
Collapse
|
9
|
Seok J, Ha G, Power J, Conde M, Wisniewski E, Liu W, Doran S, Whiteford C, Chung M. Experimental Demonstration of Double Emittance Exchange toward Arbitrary Longitudinal Beam Phase-Space Manipulations. PHYSICAL REVIEW LETTERS 2022; 129:224801. [PMID: 36493460 DOI: 10.1103/physrevlett.129.224801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/15/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Many of the most significant advances in accelerator science have been due to improvements in our ability to manipulate beam phase space. Despite steady progress in beam phase-space manipulation over the last several decades, future accelerator applications continue to outpace the ability to manipulate the phase space. This situation is especially pronounced for longitudinal beam phase-space manipulation, and is now getting increased attention. Herein, we report the first experimental demonstration of the double emittance exchange concept, which allows for the control of the longitudinal phase space using relatively simple transverse manipulation techniques. The double emittance exchange beamline enables extensive longitudinal manipulation, including tunable bunch compression, time-energy correlation control, and nonlinearity correction, in a remarkably flexible manner. The demonstration of this new method opens the door for arbitrary longitudinal beam manipulations capable of responding to the ever increasing demands of future accelerator applications.
Collapse
Affiliation(s)
- Jimin Seok
- Intense Beam and Accelerator Laboratory, Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
- Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Gwanghui Ha
- Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - John Power
- Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Manoel Conde
- Argonne National Laboratory, Lemont, Illinois 60439, USA
| | | | - Wanming Liu
- Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Scott Doran
- Argonne National Laboratory, Lemont, Illinois 60439, USA
| | | | - Moses Chung
- Intense Beam and Accelerator Laboratory, Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
10
|
Yong H, Sun S, Gu B, Mukamel S. Attosecond Charge Migration in Molecules Imaged by Combined X-ray and Electron Diffraction. J Am Chem Soc 2022; 144:20710-20716. [DOI: 10.1021/jacs.2c07997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Haiwang Yong
- Department of Chemistry, University of California, Irvine, California92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California92697, United States
| | - Shichao Sun
- Department of Chemistry, University of California, Irvine, California92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California92697, United States
| | - Bing Gu
- Department of Chemistry, University of California, Irvine, California92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California92697, United States
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California92697, United States
| |
Collapse
|
11
|
Yong H, Rouxel JR, Keefer D, Mukamel S. Direct Monitoring of Conical Intersection Passage via Electronic Coherences in Twisted X-Ray Diffraction. PHYSICAL REVIEW LETTERS 2022; 129:103001. [PMID: 36112435 DOI: 10.1103/physrevlett.129.103001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Quantum coherences in electronic motions play a critical role in determining the pathways and outcomes of virtually all photophysical and photochemical molecular processes. However, the direct observation of electronic coherences in the vicinity of conical intersections remains a formidable challenge. We propose a novel time-resolved twisted x-ray diffraction technique that can directly monitor the electronic coherences created as the molecule passes through a conical intersection. We show that the contribution of electronic populations to this signal is canceled out when using twisted x-ray beams that carry a light orbital angular momentum, providing a direct measurement of transient electronic coherences in gas-phase molecules.
Collapse
Affiliation(s)
- Haiwang Yong
- Department of Chemistry, University of California, Irvine, California 92697, USA
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Jérémy R Rouxel
- University Lyon, UJM-Saint-Étienne, CNRS, Graduate School Optics Institute, Laboratoire Hubert Curien UMR 5516, Saint-Étienne 42023, France
| | - Daniel Keefer
- Department of Chemistry, University of California, Irvine, California 92697, USA
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92697, USA
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| |
Collapse
|
12
|
Yong H, Keefer D, Mukamel S. Imaging Purely Nuclear Quantum Dynamics in Molecules by Combined X-ray and Electron Diffraction. J Am Chem Soc 2022; 144:7796-7804. [DOI: 10.1021/jacs.2c01311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Haiwang Yong
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697, United States
| | - Daniel Keefer
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697, United States
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
13
|
Zhang Y, Kroll T, Weninger C, Michine Y, Fuller FD, Zhu D, Alonso-Mori R, Sokaras D, Lutman AA, Halavanau A, Pellegrini C, Benediktovitch A, Yabashi M, Inoue I, Inubushi Y, Osaka T, Yamada J, Babu G, Salpekar D, Sayed FN, Ajayan PM, Kern J, Yano J, Yachandra VK, Yoneda H, Rohringer N, Bergmann U. Generation of intense phase-stable femtosecond hard X-ray pulse pairs. Proc Natl Acad Sci U S A 2022; 119:e2119616119. [PMID: 35290124 PMCID: PMC8944280 DOI: 10.1073/pnas.2119616119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/02/2022] [Indexed: 11/18/2022] Open
Abstract
Coherent nonlinear spectroscopies and imaging in the X-ray domain provide direct insight into the coupled motions of electrons and nuclei with resolution on the electronic length scale and timescale. The experimental realization of such techniques will strongly benefit from access to intense, coherent pairs of femtosecond X-ray pulses. We have observed phase-stable X-ray pulse pairs containing more than 3 × 107 photons at 5.9 keV (2.1 Å) with ∼1 fs duration and 2 to 5 fs separation. The highly directional pulse pairs are manifested by interference fringes in the superfluorescent and seeded stimulated manganese Kα emission induced by an X-ray free-electron laser. The fringes constitute the time-frequency X-ray analog of Young’s double-slit interference, allowing for frequency domain X-ray measurements with attosecond time resolution.
Collapse
Affiliation(s)
- Yu Zhang
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Clemens Weninger
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
- MAX IV Laboratory, Lund University, Lund 224 84, Sweden
| | - Yurina Michine
- Institute for Laser Science, The University of Electro-Communications, Chofu,Tokyo 182-8585, Japan
| | - Franklin D. Fuller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Diling Zhu
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Alberto A. Lutman
- Linac & FEL Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Aliaksei Halavanau
- Accelerator Research Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Claudio Pellegrini
- Accelerator Research Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Andrei Benediktovitch
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
| | - Makina Yabashi
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Ichiro Inoue
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yuichi Inubushi
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Taito Osaka
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Jumpei Yamada
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Ganguli Babu
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005
| | - Devashish Salpekar
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005
| | - Farheen N. Sayed
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005
| | - Pulickel M. Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Hitoki Yoneda
- Institute for Laser Science, The University of Electro-Communications, Chofu,Tokyo 182-8585, Japan
| | - Nina Rohringer
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
- Department of Physics, Universität Hamburg, Hamburg 20355, Germany
| | - Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
- Department of Physics, University of Wisconsin–Madison, Madison, WI 53706
| |
Collapse
|
14
|
Precek M, Kubelik P, Vysin L, Schmidhammer U, Larbre JP, Demarque A, Jeunesse P, Mostafavi M, Juha L. Dose Rate Effects in Fluorescence Chemical Dosimeters Exposed to Picosecond Electron Pulses: An Accurate Measurement of Low Doses at High Dose Rates. Radiat Res 2022; 197:131-148. [PMID: 34614193 DOI: 10.1667/rade-20-00292.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/07/2021] [Indexed: 11/03/2022]
Abstract
The development of ultra-intense electron pulse for applications needs to be accompanied by the implementation of a practical dosimetry system. In this study four different systems were investigated as dosimeters for low doses with a very high-dose-rate source. First, the effects of ultra-short pulses were investigated for the yields of the Fricke dosimeter based on acidic solutions of ferrous sulfate; it was established that the yields were not significantly affected by the high dose rates, so the Fricke dosimeter system was used as a reference. Then, aqueous solutions of three compounds as fluorescence chemical dosimeters were utilized, each operated at a different solution pH: terephthalic acid - basic, trimesic acid - acidic, and coumarin-3-carboxylic acid (C3CA) - neutral. Fluorescence chemical dosimeters offer an attractive alternative to chemical dosimeters based on optical absorption for measuring biologically relevant low doses because of their higher sensitivity. The effects of very intense dose rate (TGy/ s) from pulses of fast electrons generated by a picosecond linear accelerator on the chemical yields of fluorescence chemical dosimeters were investigated at low peak doses (<20 Gy) and compared with yields determined under low-dose-rate irradiation from a 60 Co gamma-ray source (mGy/s). For the terephthalate and the trimesic acid dosimeters changes in the yields were not detected within the estimated (∼10%) precision of the experiments, but, due to the complexity of the mechanism of the hydroxyl radical initiated reactions in solutions of the relevant aromatic compounds, significant reductions of the chemical yield (-60%) were observed when the C3CA dosimeter was irradiated with the ultra-short pulses.
Collapse
Affiliation(s)
- Martin Precek
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní Břežany, Czech Republic
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, 18221 Prague, Czech Republic
| | - Petr Kubelik
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, 18221 Prague, Czech Republic
- Department of Spectroscopy, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Ludek Vysin
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, 18221 Prague, Czech Republic
| | - Uli Schmidhammer
- Institut de Chimie Physique/ELYSE, CNRS UMR 8000, Université Paris-Saclay, 91400 Orsay, France
| | - Jean-Philippe Larbre
- Institut de Chimie Physique/ELYSE, CNRS UMR 8000, Université Paris-Saclay, 91400 Orsay, France
| | - Alexandre Demarque
- Institut de Chimie Physique/ELYSE, CNRS UMR 8000, Université Paris-Saclay, 91400 Orsay, France
| | - Pierre Jeunesse
- Institut de Chimie Physique/ELYSE, CNRS UMR 8000, Université Paris-Saclay, 91400 Orsay, France
| | - Mehran Mostafavi
- Institut de Chimie Physique/ELYSE, CNRS UMR 8000, Université Paris-Saclay, 91400 Orsay, France
| | - Libor Juha
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, 18221 Prague, Czech Republic
- Laser Plasma Department, Institute of Plasma Physics, Czech Academy of Sciences, Za Slovankou 1782/3, 18200 Prague, Czech Republic
| |
Collapse
|
15
|
Nam Y, Keefer D, Nenov A, Conti I, Aleotti F, Segatta F, Lee JY, Garavelli M, Mukamel S. Conical Intersection Passages of Molecules Probed by X-ray Diffraction and Stimulated Raman Spectroscopy. J Phys Chem Lett 2021; 12:12300-12309. [PMID: 34931839 DOI: 10.1021/acs.jpclett.1c03814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Conical intersections (CoIns) play an important role in ultrafast relaxation channels. Their monitoring remains a formidable experimental challenge. We theoretically compare the probing of the S2 → S1 CoIn passage in 4-thiouracil by monitoring its vibronic coherences, using off-resonant X-ray-stimulated Raman spectroscopy (TRUECARS) and time-resolved X-ray diffraction (TRXD). The quantum nuclear wavepacket (WP) dynamics provides an accurate picture of the photoinduced dynamics. Upon photoexcitation, the WP oscillates among the Franck-Condon point, the S2 minimum, and the CoIn with a 70 fs period. A vibronic coherence first emerges at 20 fs and can be observed until the S2 state is fully depopulated. The distribution of the vibronic frequencies involved in the coherence is recorded by the TRUECARS spectrogram. The TRXD signal provides spatial images of electron densities associated with the CoIn. In combination, the two signals provide a complementary picture of the nonadiabatic passage, which helps in the study of the underlying photophysics in thiobases.
Collapse
Affiliation(s)
- Yeonsig Nam
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
- Convergence Research Center for Energy and Environmental Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Daniel Keefer
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Artur Nenov
- Dipartimento di Chimica Industriale "Toso Montanari," Universita' degli Studi di Bologna, I-40136 Bologna, Italy
| | - Irene Conti
- Dipartimento di Chimica Industriale "Toso Montanari," Universita' degli Studi di Bologna, I-40136 Bologna, Italy
| | - Flavia Aleotti
- Dipartimento di Chimica Industriale "Toso Montanari," Universita' degli Studi di Bologna, I-40136 Bologna, Italy
| | - Francesco Segatta
- Dipartimento di Chimica Industriale "Toso Montanari," Universita' degli Studi di Bologna, I-40136 Bologna, Italy
| | - Jin Yong Lee
- Convergence Research Center for Energy and Environmental Sciences, Sungkyunkwan University, Suwon 16419, Korea
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari," Universita' degli Studi di Bologna, I-40136 Bologna, Italy
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
16
|
David C, Seniutinas G, Makita M, Rösner B, Rehanek J, Karvinen P, Löhl F, Abela R, Patthey L, Juranić P. Spectral monitoring at SwissFEL using a high-resolution on-line hard X-ray single-shot spectrometer. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1978-1984. [PMID: 34738953 PMCID: PMC8570208 DOI: 10.1107/s1600577521009619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The performance and parameters of the online photon single-shot spectrometer (PSSS) at the Aramis beamline of the SwissFEL free-electron laser are presented. The device operates between the photon energies 4 and 13 keV and uses diamond transmission gratings and bent Si crystals for spectral measurements on the first diffraction order of the beam. The device has an energy window of 0.7% of the median photon energy of the free-electron laser pulses and a spectral resolution (full width at half-maximum) ΔE/E on the order of 10-5. The device was characterized by comparing its performance with reference data from synchrotron sources, and a parametric study investigated other effects that could affect the reliability of the spectral information.
Collapse
Affiliation(s)
- Christian David
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | | | - Mikako Makita
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Benedikt Rösner
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Jens Rehanek
- Advanced Accelerator Technologies AG, 5234 Villigen, Switzerland
| | - Petri Karvinen
- Institute of Photonics, University of Eastern Finland (UEF), FI-80100 Joensuu, Finland
| | - Florian Löhl
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Rafael Abela
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Luc Patthey
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Pavle Juranić
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| |
Collapse
|
17
|
Inoue I, Inubushi Y, Osaka T, Yamada J, Tamasaku K, Yoneda H, Yabashi M. Shortening X-Ray Pulse Duration via Saturable Absorption. PHYSICAL REVIEW LETTERS 2021; 127:163903. [PMID: 34723578 DOI: 10.1103/physrevlett.127.163903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
To shorten the duration of x-ray pulses, we present a nonlinear optical technique using atoms with core-hole vacancies (core-hole atoms) generated by inner-shell photoionization. The weak Coulomb screening in the core-hole atoms results in decreased absorption at photon energies immediately above the absorption edge. By employing this phenomenon, referred to as saturable absorption, we successfully reduce the duration of x-ray free-electron laser pulses (photon energy: 9.000 keV, duration: 6-7 fs, fluence: 2.0-3.5×10^{5} J/cm^{2}) by ∼35%. This finding that core-hole atoms are applicable to nonlinear x-ray optics is an essential stepping stone for extending nonlinear technologies commonplace at optical wavelengths to the hard x-ray region.
Collapse
Affiliation(s)
- Ichiro Inoue
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Yuichi Inubushi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
| | - Taito Osaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Jumpei Yamada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Kenji Tamasaku
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Hitoki Yoneda
- University of Electro-Communications, Chofugaoka 1-5-1, Chofu, Tokyo 182-8585, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
| |
Collapse
|
18
|
Wieland M, Kabachnik NM, Drescher M, Deng Y, Arbelo Y, Stojanovic N, Steffen B, Roensch-Schulenburg J, Ischebeck R, Malyzhenkov A, Prat E, Juranić P. Deriving x-ray pulse duration from center-of-energy shifts in THz-streaked ionized electron spectra. OPTICS EXPRESS 2021; 29:32739-32754. [PMID: 34809098 DOI: 10.1364/oe.432761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
A fast and robust, yet simple, method has been developed for the immediate characterization of x-ray pulse durations via IR/THz streaking that uses the center of energy (COE) of the photoelectron spectrum for the evaluation. The manuscript presents theory and numerical models demonstrating that the maximum COEs shift as a function of the pulse duration and compares them to existing data for validation. It further establishes that the maximum COE can be derived from two COE measurements set at a phase of π/2 apart. The theory, model, and data agree with each other very well, and they present a way to measure pulse durations ranging from sub-fs to tens of fs on-the-fly with a fairly simple experimental setup.
Collapse
|
19
|
Chapman HN, Bajt S. High-resolution achromatic X-ray optical systems for broad-band imaging and for focusing attosecond pulses. Proc Math Phys Eng Sci 2021; 477:20210334. [PMID: 34276244 PMCID: PMC8277474 DOI: 10.1098/rspa.2021.0334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/15/2021] [Indexed: 11/12/2022] Open
Abstract
Achromatic focusing systems for hard X-rays are examined which consist of a refractive lens paired with a diffractive lens. Compared with previous analyses, we take into account the behaviour of thick refractive lenses, such as compound refractive lenses and waveguide gradient index refractive lenses, in which both the focal length and the position of the principal planes vary with wavelength. Achromatic systems formed by the combination of such a thick refractive lens with a multilayer Laue lens are found that can operate at a focusing resolution of about 3 nm, over a relative bandwidth of about 1%. With the appropriate distance between the refractive and diffractive lenses, apochromatic systems can also be found, which operate over relative bandwidth greater than 10%. These systems can be used to focus short pulses without distorting them in time by more than several attoseconds. Such systems are suitable for high-flux scanning microscopy and for creating high intensities from attosecond X-ray pulses.
Collapse
Affiliation(s)
- H N Chapman
- Center for Free-Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.,Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.,Molecular and Condensed Matter Physics, Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden
| | - S Bajt
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
20
|
|
21
|
Ho PJ, Fouda AEA, Li K, Doumy G, Young L. Ultraintense, ultrashort pulse X-ray scattering in small molecules. Faraday Discuss 2021; 228:139-160. [PMID: 33576361 DOI: 10.1039/d0fd00106f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We examine X-ray scattering from an isolated organic molecule from the linear to nonlinear absorptive regime. In the nonlinear regime, we explore the importance of both the coherent and incoherent channels and observe the onset of nonlinear behavior as a function of pulse duration and energy. In the linear regime, we test the sensitivity of the scattering signal to molecular bonding and electronic correlation via calculations using the independent atom model (IAM), Hartree-Fock (HF) and density functional theory (DFT). Finally, we describe how coherent X-ray scattering can be used to directly visualize femtosecond charge transfer and dissociation within a single molecule undergoing X-ray multiphoton absorption.
Collapse
Affiliation(s)
- Phay J Ho
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
| | - Adam E A Fouda
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
| | - Kai Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA. and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA. and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
22
|
Bergmann U, Kern J, Schoenlein RW, Wernet P, Yachandra VK, Yano J. Using X-ray free-electron lasers for spectroscopy of molecular catalysts and metalloenzymes. NATURE REVIEWS. PHYSICS 2021; 3:264-282. [PMID: 34212130 PMCID: PMC8245202 DOI: 10.1038/s42254-021-00289-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 05/14/2023]
Abstract
The metal centres in metalloenzymes and molecular catalysts are responsible for the rearrangement of atoms and electrons during complex chemical reactions, and they enable selective pathways of charge and spin transfer, bond breaking/making and the formation of new molecules. Mapping the electronic structural changes at the metal sites during the reactions gives a unique mechanistic insight that has been difficult to obtain to date. The development of X-ray free-electron lasers (XFELs) enables powerful new probes of electronic structure dynamics to advance our understanding of metalloenzymes. The ultrashort, intense and tunable XFEL pulses enable X-ray spectroscopic studies of metalloenzymes, molecular catalysts and chemical reactions, under functional conditions and in real time. In this Technical Review, we describe the current state of the art of X-ray spectroscopy studies at XFELs and highlight some new techniques currently under development. With more XFEL facilities starting operation and more in the planning or construction phase, new capabilities are expected, including high repetition rate, better XFEL pulse control and advanced instrumentation. For the first time, it will be possible to make real-time molecular movies of metalloenzymes and catalysts in solution, while chemical reactions are taking place.
Collapse
Affiliation(s)
- Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Physics, University of Wisconsin–Madison, Madison, WI, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert W. Schoenlein
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
23
|
Duris JP, MacArthur JP, Glownia JM, Li S, Vetter S, Miahnahri A, Coffee R, Hering P, Fry A, Welch ME, Lutman A, Decker FJ, Bohler D, Mock JA, Xu C, Gumerlock K, May JE, Cedillos A, Kraft E, Carrasco MA, Smith BE, Chieffo LR, Xu JZ, Cryan JP, Huang Z, Zholents A, Marinelli A. Controllable X-Ray Pulse Trains from Enhanced Self-Amplified Spontaneous Emission. PHYSICAL REVIEW LETTERS 2021; 126:104802. [PMID: 33784160 DOI: 10.1103/physrevlett.126.104802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/01/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
We report the demonstration of optical compression of an electron beam and the production of controllable trains of femtosecond, soft x-ray pulses with the Linac Coherent Light Source (LCLS) free-electron laser (FEL). This is achieved by enhanced self-amplified spontaneous emission with a 2 μm laser and a dechirper device. Optical compression was achieved by modulating the energy of an electron beam with the laser and then compressing with a chicane, resulting in high current spikes on the beam which we observe to lase. A dechirper was then used to selectively control the lasing region of the electron beam. Field autocorrelation measurements indicate a train of pulses, and we find that the number of pulses within the train can be controlled (from 1 to 5 pulses) by varying the dechirper position and undulator taper. These results are a step toward attosecond spectroscopy with x-ray FELs as well as future FEL schemes relying on optical compression of an electron beam.
Collapse
Affiliation(s)
- Joseph P Duris
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - James P MacArthur
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - James M Glownia
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Siqi Li
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Sharon Vetter
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Alan Miahnahri
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ryan Coffee
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Philippe Hering
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Alan Fry
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Marc E Welch
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Alberto Lutman
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Dorian Bohler
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jeremy A Mock
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Chengcheng Xu
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Karl Gumerlock
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Justin E May
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Antonio Cedillos
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Eugene Kraft
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Manuel A Carrasco
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Brian E Smith
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Joseph Z Xu
- Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - James P Cryan
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Zhirong Huang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | | |
Collapse
|
24
|
Hemsing E, Halavanau A, Zhang Z. Enhanced Self-Seeding with Ultrashort Electron Beams. PHYSICAL REVIEW LETTERS 2020; 125:044801. [PMID: 32794789 DOI: 10.1103/physrevlett.125.044801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/15/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
We describe a new method to produce intensity stable, highly coherent, narrow-band x-ray pulses in self-seeded free electron (FEL) lasers. The approach uses an ultrashort electron beam to generate a single spike FEL pulse with a wide coherent bandwidth. The self-seeding monochromator then notches out a narrow spectral region of this pulse to be amplified by a long portion of electron beam to full saturation. In contrast to typical self-seeding where monochromatization of noisy self-amplified spontaneous emission pulses leads to either large intensity fluctuations or multiple frequencies, we show that this method produces a stable, coherent FEL output pulse with statistical properties similar to a fully coherent optical laser.
Collapse
Affiliation(s)
- Erik Hemsing
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Zhen Zhang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
25
|
Abstract
Oscillators are at the heart of optical lasers, providing stable, transform-limited pulses. Until now, laser oscillators have been available only in the infrared to visible and near-ultraviolet (UV) spectral region. In this paper, we present a study of an oscillator operating in the 5- to 12-keV photon-energy range. We show that, using the [Formula: see text] line of transition metal compounds as the gain medium, an X-ray free-electron laser as a periodic pump, and a Bragg crystal optical cavity, it is possible to build X-ray oscillators producing intense, fully coherent, transform-limited pulses. As an example, we consider the case of a copper nitrate gain medium generating ∼ 5 × [Formula: see text] photons per pulse with 37-fs pulse length and 48-meV spectral resolution at 8-keV photon energy. Our theoretical study and simulation of this system show that, because of the very large gain per pass, the oscillator saturates and reaches full coherence in four to six optical-cavity transits. We discuss the feasibility and design of the X-ray optical cavity and other parts of the oscillator needed for its realization, opening the way to extend X-ray-based research beyond current capabilities.
Collapse
|
26
|
Fidler AP, Warrick ER, Marroux HJB, Bloch E, Neumark DM, Leone SR. Self-heterodyned detection of dressed state coherences in helium by noncollinear extreme ultraviolet wave mixing with attosecond pulses. JPHYS PHOTONICS 2020. [DOI: 10.1088/2515-7647/ab869c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Noncollinear wave-mixing spectroscopies with attosecond extreme ultraviolet (XUV) pulses provide unprecedented insight into electronic dynamics. In infrared and visible regimes, heterodyne detection techniques utilize a reference field to amplify wave-mixing signals while simultaneously allowing for phase-sensitive measurements. Here, we implement a self-heterodyned detection scheme in noncollinear wave-mixing measurements with a short attosecond XUV pulse train and two few-cycle near infrared (NIR) pulses. The initial spatiotemporally overlapped XUV and NIR pulses generate a coherence of both odd (1snp) and even (1sns and 1snd) parity states within gaseous helium. A variably delayed noncollinear NIR pulse generates angularly-dependent four-wave mixing signals that report on the evolution of this coherence. The diffuse angular structure of the XUV harmonics underlying these emission signals is used as a reference field for heterodyne detection, leading to cycle oscillations in the transient wave-mixing spectra. With this detection scheme, wave-mixing signals emitting from at least eight distinct light-induced, or dressed, states can be observed, in contrast to only one light induced state identified in a similar homodyne wave-mixing measurement. In conjunction with the self-heterodyned detection scheme, the noncollinear geometry permits the conclusive identification and angular separation of distinct wave-mixing pathways, reducing the complexity of transient spectra. These results demonstrate that the application of heterodyne detection schemes can provide signal amplification and phase-sensitivity, while maintaining the versatility and selectivity of noncollinear attosecond XUV wave-mixing spectroscopies. These techniques will be important tools in the study of ultrafast dynamics within complex chemical systems in the XUV regime.
Collapse
|
27
|
Lyu C, Cavaletto SM, Keitel CH, Harman Z. Narrow-band hard-x-ray lasing with highly charged ions. Sci Rep 2020; 10:9439. [PMID: 32523007 PMCID: PMC7287111 DOI: 10.1038/s41598-020-65477-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/01/2020] [Indexed: 11/22/2022] Open
Abstract
A scheme is put forward to generate fully coherent x-ray lasers based on population inversion in highly charged ions, created by fast inner-shell photoionization using broadband x-ray free-electron-laser (XFEL) pulses in a laser-produced plasma. Numerical simulations based on the Maxwell–Bloch theory show that one can obtain high-intensity, femtosecond x-ray pulses of relative bandwidths Δω/ω = 10−5–10−7, by orders of magnitude narrower than in x-ray free-electron-laser pulses for discrete wavelengths down to the sub-ångström regime. Such x-ray lasers can be applicable in the study of x-ray quantum optics and metrology, investigating nonlinear interactions between x-rays and matter, or in high-precision spectroscopy studies in laboratory astrophysics.
Collapse
Affiliation(s)
- Chunhai Lyu
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117, Heidelberg, Germany
| | - Stefano M Cavaletto
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117, Heidelberg, Germany.
| | - Christoph H Keitel
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117, Heidelberg, Germany
| | - Zoltán Harman
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117, Heidelberg, Germany
| |
Collapse
|
28
|
List NH, Dempwolff AL, Dreuw A, Norman P, Martínez TJ. Probing competing relaxation pathways in malonaldehyde with transient X-ray absorption spectroscopy. Chem Sci 2020; 11:4180-4193. [PMID: 34122881 PMCID: PMC8152795 DOI: 10.1039/d0sc00840k] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Excited-state intramolecular hydrogen transfer (ESIHT) is a fundamental reaction relevant to chemistry and biology. Malonaldehyde is the simplest example of ESIHT, yet only little is known experimentally about its excited-state dynamics. Several competing relaxation pathways have been proposed, including internal conversion mediated by ESIHT and C[double bond, length as m-dash]C torsional motion as well as intersystem crossing. We perform an in silico transient X-ray absorption spectroscopy (TRXAS) experiment at the oxygen K-edge to investigate its potential to monitor the proposed ultrafast decay pathways in malonaldehyde upon photoexcitation to its bright S2(ππ*) state. We employ both restricted active space perturbation theory and algebraic-diagrammatic construction for the polarization propagator along interpolated reaction coordinates as well as representative trajectories from ab initio multiple spawning simulations to compute the TRXAS signals from the lowest valence states. Our study suggests that oxygen K-edge TRXAS can distinctly fingerprint the passage through the H-transfer intersection and the concomitant population transfer to the S1(nπ*) state. Potential intersystem crossing to T1(ππ*) is detectable from reappearance of the double pre-edge signature and reversed intensities. Moreover, the torsional deactivation pathway induces transient charge redistribution from the enol side towards the central C-atom and manifests itself as substantial shifts of the pre-edge features. Given the continuous advances in X-ray light sources, our study proposes an experimental route to disentangle ultrafast excited-state decay channels in this prototypical ESIHT system and provides a pathway-specific mapping of the TRXAS signal to facilitate the interpretation of future experiments.
Collapse
Affiliation(s)
- Nanna H List
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA .,SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Adrian L Dempwolff
- Interdisciplinary Center for Scientific Computing, Heidelberg University Im Neuenheimer Feld 205 D-69120 Heidelberg Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Heidelberg University Im Neuenheimer Feld 205 D-69120 Heidelberg Germany
| | - Patrick Norman
- School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology Sweden
| | - Todd J Martínez
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA .,SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| |
Collapse
|
29
|
Maroju PK, Grazioli C, Di Fraia M, Moioli M, Ertel D, Ahmadi H, Plekan O, Finetti P, Allaria E, Giannessi L, De Ninno G, Spezzani C, Penco G, Spampinati S, Demidovich A, Danailov MB, Borghes R, Kourousias G, Sanches Dos Reis CE, Billé F, Lutman AA, Squibb RJ, Feifel R, Carpeggiani P, Reduzzi M, Mazza T, Meyer M, Bengtsson S, Ibrakovic N, Simpson ER, Mauritsson J, Csizmadia T, Dumergue M, Kühn S, Nandiga Gopalakrishna H, You D, Ueda K, Labeye M, Bækhøj JE, Schafer KJ, Gryzlova EV, Grum-Grzhimailo AN, Prince KC, Callegari C, Sansone G. Attosecond pulse shaping using a seeded free-electron laser. Nature 2020; 578:386-391. [DOI: 10.1038/s41586-020-2005-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/05/2019] [Indexed: 11/09/2022]
|
30
|
Jiang WC, Chen SG, Peng LY, Burgdörfer J. Two-Electron Interference in Strong-Field Ionization of He by a Short Intense Extreme Ultraviolet Laser Pulse. PHYSICAL REVIEW LETTERS 2020; 124:043203. [PMID: 32058759 DOI: 10.1103/physrevlett.124.043203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Indexed: 06/10/2023]
Abstract
Double ionization of helium by a single intense (above 10^{18} W/cm^{2}) linearly polarized extreme ultraviolet laser pulse is studied by numerically solving the full-dimensional time-dependent Schrödinger equation. For the laser intensities well beyond the perturbative limit, novel gridlike interference fringes are found in the correlated energy spectrum of the two photoelectrons. The interference can be traced to the multitude of two-electron wave packets emitted at different ionization times. A semianalytical model for the dressed two-photon double ionization is shown to qualitatively account for the interference patterns in the joint energy spectrum. Similar signatures of interferences between transient induced time-delayed ionization bursts are expected for other atomic and molecular multielectron systems.
Collapse
Affiliation(s)
- Wei-Chao Jiang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria, EU
| | - Si-Ge Chen
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Liang-You Peng
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Joachim Burgdörfer
- Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria, EU
| |
Collapse
|
31
|
Effect of high slice energy spread of an electron beam on the generation of isolated, terawatt, attosecond X-ray free-electron laser pulse. Sci Rep 2020; 10:1312. [PMID: 31992720 PMCID: PMC6987125 DOI: 10.1038/s41598-020-57905-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/06/2020] [Indexed: 11/30/2022] Open
Abstract
Attosecond (asec) X-ray free-electron laser (XFEL) has attracted considerable interest over the past years. Nowadays typical XFEL application experiments demand 1010–1011 photons per pulse, which corresponds to a peak power of terawatts (TW) in case of asec hard X-ray pulse. To the realization of such TW asec-XFEL pulse, however, the unavoidable increase of slice energy spread (SES) due to laser heater, which is commonly used to mitigate the micro-bunching instability (MBI), would be a major obstacle. To deal with this problem, the effect of such a SES is investigated in this work. The results reveal that (1) SES of a current spike is linearly proportional to the peak current of a current spike in an electron beam, (2) surprisingly, this linearity is independent of the wavelength of an energy modulation driving laser which is used to make a current spike and (3) the gain length of current spike in the undulator is sensitive to the initial SES, so there is an optimal peak current of the current spike for successful FEL lasing process. Utilizing these characteristics, a series of simulations with parameters for Pohang Accelerator Laboratory X-ray Free Electron Laser was carried out to demonstrate that an isolated, TW asec-XFEL pulse can be generated even when the SES is increased due to the usage of laser heater to prevent the MBI in the XFEL. We show that an isolated X-ray pulse with >1 TW and a pulse duration of 73 as (~3 × 1010 photons/pulse at 12.4 keV or 0.1 nm) can be generated by using ten current spikes with optimal peak current. It becomes clear for the first time that the disadvantage from the increased SES can be indeed overcome.
Collapse
|
32
|
MacArthur JP, Duris J, Zhang Z, Lutman A, Zholents A, Xu X, Huang Z, Marinelli A. Phase-Stable Self-Modulation of an Electron Beam in a Magnetic Wiggler. PHYSICAL REVIEW LETTERS 2019; 123:214801. [PMID: 31809147 DOI: 10.1103/physrevlett.123.214801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Electron beams with a sinusoidal energy modulation have the potential to emit subfemtosecond x-ray pulses in a free-electron laser. An energy modulation can be generated by overlapping a powerful infrared laser with an electron beam in a magnetic wiggler. We report on a new infrared source for this modulation, coherent radiation from the electron beam itself. In this self-modulation process, the current spike on the tail of the electron beam radiates coherently at the resonant wavelength of the wiggler, producing a six-period carrier-envelope-phase (CEP)-stable infrared field with gigawatt power. This field creates a few MeV, phase-stable modulation in the electron-beam core. The modulated electron beam is immediately useful for generating subfemtosecond x-ray pulses at any machine repetition rate, and the CEP-stable infrared field may find application as an experimental pump or timing diagnostic.
Collapse
Affiliation(s)
- James P MacArthur
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Stanford University, Stanford, California 94305, USA
| | - Joseph Duris
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Zhen Zhang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Alberto Lutman
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Xinlu Xu
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Zhirong Huang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Stanford University, Stanford, California 94305, USA
| | - Agostino Marinelli
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Stanford University, Stanford, California 94305, USA
| |
Collapse
|
33
|
Inoue I, Tamasaku K, Osaka T, Inubushi Y, Yabashi M. Determination of X-ray pulse duration via intensity correlation measurements of X-ray fluorescence. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:2050-2054. [PMID: 31721750 DOI: 10.1107/s1600577519011202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
A simple method using X-ray fluorescence is proposed to diagnose the duration of an X-ray free-electron laser (XFEL) pulse. This work shows that the degree of intensity correlation of the X-ray fluorescence generated by irradiating an XFEL pulse on metal foil reflects the magnitude relation between the XFEL duration and the coherence time of the fluorescence. Through intensity correlation measurements of copper Kα fluorescence, the duration of 12 keV XFEL pulses from SACLA was evaluated to be ∼10 fs.
Collapse
Affiliation(s)
- Ichiro Inoue
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Kenji Tamasaku
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Taito Osaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Yuichi Inubushi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
34
|
Inhester L, Greenman L, Rudenko A, Rolles D, Santra R. Detecting coherent core-hole wave-packet dynamics in N2 by time- and angle-resolved inner-shell photoelectron spectroscopy. J Chem Phys 2019. [DOI: 10.1063/1.5109867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ludger Inhester
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Loren Greenman
- Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Artem Rudenko
- Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Daniel Rolles
- Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Robin Santra
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| |
Collapse
|
35
|
Schoenlein R, Elsaesser T, Holldack K, Huang Z, Kapteyn H, Murnane M, Woerner M. Recent advances in ultrafast X-ray sources. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180384. [PMID: 30929633 DOI: 10.1098/rsta.2018.0384] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Over more than a century, X-rays have transformed our understanding of the fundamental structure of matter and have been an indispensable tool for chemistry, physics, biology, materials science and related fields. Recent advances in ultrafast X-ray sources operating in the femtosecond to attosecond regimes have opened an important new frontier in X-ray science. These advances now enable: (i) sensitive probing of structural dynamics in matter on the fundamental timescales of atomic motion, (ii) element-specific probing of electronic structure and charge dynamics on fundamental timescales of electronic motion, and (iii) powerful new approaches for unravelling the coupling between electronic and atomic structural dynamics that underpin the properties and function of matter. Most notable is the recent realization of X-ray free-electron lasers (XFELs) with numerous new XFEL facilities in operation or under development worldwide. Advances in XFELs are complemented by advances in synchrotron-based and table-top laser-plasma X-ray sources now operating in the femtosecond regime, and laser-based high-order harmonic XUV sources operating in the attosecond regime. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
Collapse
Affiliation(s)
- Robert Schoenlein
- 1 SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, CA 94025 , USA
| | - Thomas Elsaesser
- 2 Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , 12489 Berlin , Germany
| | - Karsten Holldack
- 3 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Albert-Einstein-Strasse 15, 12489 Berlin , Germany
| | - Zhirong Huang
- 1 SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, CA 94025 , USA
| | - Henry Kapteyn
- 4 Department of Physics and JILA, University of Colorado , Boulder, CO 80309-0440 , USA
| | - Margaret Murnane
- 4 Department of Physics and JILA, University of Colorado , Boulder, CO 80309-0440 , USA
| | - Michael Woerner
- 2 Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , 12489 Berlin , Germany
| |
Collapse
|
36
|
Coffee RN, Cryan JP, Duris J, Helml W, Li S, Marinelli A. Development of ultrafast capabilities for X-ray free-electron lasers at the linac coherent light source. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180386. [PMID: 30929632 PMCID: PMC6452055 DOI: 10.1098/rsta.2018.0386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/18/2019] [Indexed: 05/07/2023]
Abstract
The ability to produce ultrashort, high-brightness X-ray pulses is revolutionizing the field of ultrafast X-ray spectroscopy. Free-electron laser (FEL) facilities are driving this revolution, but unique aspects of the FEL process make the required characterization and use of the pulses challenging. In this paper, we describe a number of developments in the generation of ultrashort X-ray FEL pulses, and the concomitant progress in the experimental capabilities necessary for their characterization and use at the Linac Coherent Light Source. This includes the development of sub-femtosecond hard and soft X-ray pulses, along with ultrafast characterization techniques for these pulses. We also describe improved techniques for optical cross-correlation as needed to address the persistent challenge of external optical laser synchronization with these ultrashort X-ray pulses. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
Collapse
Affiliation(s)
- Ryan N. Coffee
- SLAC National Accelerator Laboratory, Linac Coherent Light Source, Menlo Park, CA 94025, USA
- SLAC National Accelerator Laboratory, Stanford Pulse Institute, Menlo Park, CA 94025, USA
| | - James P. Cryan
- SLAC National Accelerator Laboratory, Linac Coherent Light Source, Menlo Park, CA 94025, USA
- SLAC National Accelerator Laboratory, Stanford Pulse Institute, Menlo Park, CA 94025, USA
| | - Joseph Duris
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Wolfram Helml
- Zentrum für Synchrotronstrahlung, Technische Universität Dortmund, Maria-Goeppert-Mayer-Straße 2, 44227 Dortmund, Germany
- Physik-Department E11, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Siqi Li
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
37
|
Johnson AS, Avni T, Larsen EW, Austin DR, Marangos JP. Attosecond soft X-ray high harmonic generation. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20170468. [PMID: 30929634 PMCID: PMC6452054 DOI: 10.1098/rsta.2017.0468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
High harmonic generation (HHG) of an intense laser pulse is a highly nonlinear optical phenomenon that provides the only proven source of tabletop attosecond pulses, and it is the key technology in attosecond science. Recent developments in high-intensity infrared lasers have extended HHG beyond its traditional domain of the XUV spectral range (10-150 eV) into the soft X-ray regime (150 eV to 3 keV), allowing the compactness, stability and sub-femtosecond duration of HHG to be combined with the atomic site specificity and electronic/structural sensitivity of X-ray spectroscopy. HHG in the soft X-ray spectral region has significant differences from HHG in the XUV, which necessitate new approaches to generating and characterizing attosecond pulses. Here, we examine the challenges and opportunities of soft X-ray HHG, and we use simulations to examine the optimal generating conditions for the development of high-flux, attosecond-duration pulses in the soft X-ray spectral range. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
Collapse
Affiliation(s)
- Allan S. Johnson
- ICFO - The Institute of Photonic Sciences, Castelldefels (Barcelona) 08860, Spain
- e-mail:
| | - Timur Avni
- Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Esben W. Larsen
- Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Dane R. Austin
- Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Jon P. Marangos
- Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| |
Collapse
|
38
|
Marangos JP. The measurement of ultrafast electronic and structural dynamics with X-rays. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20170481. [PMID: 30929630 PMCID: PMC6452056 DOI: 10.1098/rsta.2017.0481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/04/2019] [Indexed: 05/17/2023]
Abstract
In this theme issue, leading researchers discuss recent work on the measurement of ultrafast electronic and structural dynamics in matter using a new generation of short duration X-ray photon sources. These photon sources, based upon high harmonic generation from lasers and X-ray free-electron lasers, look set to have a high impact on ultrafast science. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
Collapse
|
39
|
Feng C, Wang X, Lan T, Zhang M, Li X, Zhang J, Zhang W, Feng L, Liu X, Deng H, Liu B, Wang D, Zhao Z. Slippage boosted spectral cleaning in a seeded free-electron laser. Sci Rep 2019; 9:6960. [PMID: 31061391 PMCID: PMC6502941 DOI: 10.1038/s41598-019-43061-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/15/2019] [Indexed: 11/09/2022] Open
Abstract
The realization of fully coherent light sources at extreme ultraviolet to x-ray region has been a long-standing challenge for laser technologies. While modern single pass free-electron lasers (FELs) hold the ability to produce very intense x-ray radiation on few-femtosecond timescale, the output radiation pulses usually have noisy spectra and limited temporal coherence since the amplification starts from electron noise. A promising way for producing stable transform-limited pulses is based on the harmonic up-conversion techniques with a conventional laser as the seed. However, it is found that the insignificant phase error in the seed laser may be eventually multiplied by the harmonic number, leading to a degradation of the output temporal coherence at x-ray wavelength. Here, we report for the first time on the demonstration of a slippage boosted spectral cleaning technique to mitigate the impact of seed laser induced phase errors and to significantly improve the temporal coherence of a seeded FEL with large phase errors in the seed laser. Experimental results indicate the possibility of generating fully coherent x-ray radiation pulses with this technique.
Collapse
Affiliation(s)
- Chao Feng
- Shanghai Advanced Research Institute, CAS, 239 Zhangheng Road, Shanghai, 201204, China.
| | - Xingtao Wang
- Shanghai Advanced Research Institute, CAS, 239 Zhangheng Road, Shanghai, 201204, China
| | - Taihe Lan
- Shanghai Advanced Research Institute, CAS, 239 Zhangheng Road, Shanghai, 201204, China
| | - Meng Zhang
- Shanghai Advanced Research Institute, CAS, 239 Zhangheng Road, Shanghai, 201204, China
| | - Xuan Li
- Shanghai Advanced Research Institute, CAS, 239 Zhangheng Road, Shanghai, 201204, China
| | - Junqiang Zhang
- Shanghai Advanced Research Institute, CAS, 239 Zhangheng Road, Shanghai, 201204, China
| | - Wenyan Zhang
- Shanghai Advanced Research Institute, CAS, 239 Zhangheng Road, Shanghai, 201204, China
| | - Lie Feng
- Shanghai Advanced Research Institute, CAS, 239 Zhangheng Road, Shanghai, 201204, China
| | - Xiaoqing Liu
- Shanghai Advanced Research Institute, CAS, 239 Zhangheng Road, Shanghai, 201204, China
| | - Haixiao Deng
- Shanghai Advanced Research Institute, CAS, 239 Zhangheng Road, Shanghai, 201204, China
| | - Bo Liu
- Shanghai Advanced Research Institute, CAS, 239 Zhangheng Road, Shanghai, 201204, China
| | - Dong Wang
- Shanghai Advanced Research Institute, CAS, 239 Zhangheng Road, Shanghai, 201204, China
| | - Zhentang Zhao
- Shanghai Advanced Research Institute, CAS, 239 Zhangheng Road, Shanghai, 201204, China.
| |
Collapse
|
40
|
Haber J, Gollwitzer J, Francoual S, Tolkiehn M, Strempfer J, Röhlsberger R. Spectral Control of an X-Ray L-Edge Transition via a Thin-Film Cavity. PHYSICAL REVIEW LETTERS 2019; 122:123608. [PMID: 30978038 DOI: 10.1103/physrevlett.122.123608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/13/2019] [Indexed: 06/09/2023]
Abstract
By embedding a thin layer of tantalum in an x-ray cavity, we observe a change in the spectral characteristics of an inner-shell transition of the metal. The interaction between the cavity mode vacuum and the L_{III}-edge transition is enhanced, permitting the observation of the collective Lamb shift, superradiance, and a Fano-like cavity-resonance interference effect. This experiment demonstrates the feasibility of cavity quantum electrodynamics with electronic resonances in the x-ray range with applications to manipulating and probing the electronic structure of condensed matter with high-resolution x-ray spectroscopy in an x-ray cavity setting.
Collapse
Affiliation(s)
- Johann Haber
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Jakob Gollwitzer
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Sonia Francoual
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Martin Tolkiehn
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Jörg Strempfer
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Ralf Röhlsberger
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
41
|
Fidler AP, Camp SJ, Warrick ER, Bloch E, Marroux HJB, Neumark DM, Schafer KJ, Gaarde MB, Leone SR. Nonlinear XUV signal generation probed by transient grating spectroscopy with attosecond pulses. Nat Commun 2019; 10:1384. [PMID: 30918260 PMCID: PMC6437156 DOI: 10.1038/s41467-019-09317-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/05/2019] [Indexed: 11/17/2022] Open
Abstract
Nonlinear spectroscopies are utilized extensively for selective measurements of chemical dynamics in the optical, infrared, and radio-frequency regimes. The development of these techniques for extreme ultraviolet (XUV) light sources facilitates measurements of electronic dynamics on attosecond timescales. Here, we elucidate the temporal dynamics of nonlinear signal generation by utilizing a transient grating scheme with a subfemtosecond XUV pulse train and two few-cycle near-infrared pulses in atomic helium. Simultaneous detection of multiple diffraction orders reveals delays of ≥1.5 fs in higher-order XUV signal generation, which are reproduced theoretically by solving the coupled Maxwell–Schrödinger equations and with a phase grating model. The delays result in measurable order-dependent differences in the energies of transient light induced states. As nonlinear methods are extended into the attosecond regime, the observed higher-order signal generation delays will significantly impact and aid temporal and spectral measurements of dynamic processes. Ultrafast dynamics following light-matter interaction are governed by nonlinear processes. Here the authors show that initial nonlinear signal time-evolution is a consequence of phase grating accumulation using transient grating measurements with attosecond and near-infrared pulses.
Collapse
Affiliation(s)
- Ashley P Fidler
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Seth J Camp
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Erika R Warrick
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Etienne Bloch
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hugo J B Marroux
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Daniel M Neumark
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kenneth J Schafer
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Mette B Gaarde
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Stephen R Leone
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA. .,Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
42
|
Toward the Generation of an Isolated TW-Attosecond X-ray Pulse in XFEL. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The isolated terawatt (TW) attosecond (as) hard X-ray pulse will expand the scope of ultrafast science, including the examination of phenomena that have not been studied before, such as the dynamics of electron clouds in atoms, single-molecule imaging, and examining the dynamics of hollow atoms. Therefore, several schemes for the generation of an isolated TW-as X-ray pulse in X-ray free electron laser (XFEL) facilities have been proposed with the manipulation of electron properties such as emittance or current. In a multi-spike scheme, a series of current spikes were employed to amplify the X-ray pulse. A single-spike scheme in which a TW-as X-ray pulse can be generated by a single current spike was investigated for ideal parameters for the XFEL machine. This paper reviews the proposed schemes and assesses the feasibility of each scheme.
Collapse
|
43
|
Tamasaku K, Shigemasa E, Inubushi Y, Inoue I, Osaka T, Katayama T, Yabashi M, Koide A, Yokoyama T, Ishikawa T. Nonlinear Spectroscopy with X-Ray Two-Photon Absorption in Metallic Copper. PHYSICAL REVIEW LETTERS 2018; 121:083901. [PMID: 30192600 DOI: 10.1103/physrevlett.121.083901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Indexed: 06/08/2023]
Abstract
X-ray two-photon absorption (TPA) spectrum of metallic copper is measured using a free-electron laser (XFEL). The spectrum differs from that measured by the conventional one-photon absorption (OPA), and characterized by a peak below the Fermi level, which is assigned to the transition to the 3d state. The impact of the XFEL pulse on the OPA spectrum is discussed by analyzing the pulse-energy dependence, which indicates that the intrinsic TPA spectrum is measured.
Collapse
Affiliation(s)
- Kenji Tamasaku
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Eiji Shigemasa
- Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki-shi, Nagoya 444-8585, Japan
| | - Yuichi Inubushi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Ichiro Inoue
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Taito Osaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Akihiro Koide
- Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki-shi, Nagoya 444-8585, Japan
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - Toshihiko Yokoyama
- Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki-shi, Nagoya 444-8585, Japan
| | - Tetsuya Ishikawa
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
44
|
Jiang WC, Burgdörfer J. Dynamic interference as signature of atomic stabilization. OPTICS EXPRESS 2018; 26:19921-19931. [PMID: 30119311 DOI: 10.1364/oe.26.019921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
We study the ionization of atoms by very intense linearly polarized pulse with moderately high frequency by numerically solving the time-dependent Schrödinger equation (TDSE). In this regime, the photon energy exceeds the ionization potential allowing for one-photon ionization which is, however, strongly influenced by strong nonlinear photon-atom interactions. We find that the onset of atomic stabilization can be monitored by the appearance of a dynamic interference pattern in the photoelectron spectrum.
Collapse
|
45
|
Lutman AA, Guetg MW, Maxwell TJ, MacArthur JP, Ding Y, Emma C, Krzywinski J, Marinelli A, Huang Z. High-Power Femtosecond Soft X Rays from Fresh-Slice Multistage Free-Electron Lasers. PHYSICAL REVIEW LETTERS 2018; 120:264801. [PMID: 30004769 DOI: 10.1103/physrevlett.120.264801] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Indexed: 06/08/2023]
Abstract
We demonstrate a novel multistage amplification scheme for self-amplified spontaneous-emission free electron lasers for the production of few femtosecond pulses with very high power in the soft x-ray regime. The scheme uses the fresh-slice technique to produce an x-ray pulse on the bunch tail, subsequently amplified in downstream undulator sections by fresh electrons. With three-stages amplification, x-ray pulses with an energy of hundreds of microjoules are produced in few femtoseconds. For single-spike spectra x-ray pulses the pulse power is increased more than an order of magnitude compared to other techniques in the same wavelength range.
Collapse
Affiliation(s)
- Alberto A Lutman
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, Calfornia 94025, USA
| | - Marc W Guetg
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, Calfornia 94025, USA
| | - Timothy J Maxwell
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, Calfornia 94025, USA
| | - James P MacArthur
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, Calfornia 94025, USA
| | - Yuantao Ding
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, Calfornia 94025, USA
| | - Claudio Emma
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, Calfornia 94025, USA
| | - Jacek Krzywinski
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, Calfornia 94025, USA
| | - Agostino Marinelli
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, Calfornia 94025, USA
| | - Zhirong Huang
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, Calfornia 94025, USA
| |
Collapse
|
46
|
Guetg MW, Lutman AA, Ding Y, Maxwell TJ, Huang Z. Dispersion-Based Fresh-Slice Scheme for Free-Electron Lasers. PHYSICAL REVIEW LETTERS 2018; 120:264802. [PMID: 30004747 DOI: 10.1103/physrevlett.120.264802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Indexed: 05/23/2023]
Abstract
The fresh-slice technique improved the performance of several self-amplified spontaneous emission free-electron laser schemes by granting selective control on the temporal lasing slice without spoiling the other electron bunch slices. So far, the implementation has required a special insertion device to create the beam yaw, called a dechirper. We demonstrate a novel scheme to enable fresh-slice operation based on electron energy chirp and orbit dispersion that can be implemented at any free-electron laser facility without additional hardware.
Collapse
Affiliation(s)
- Marc W Guetg
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Alberto A Lutman
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Yuantao Ding
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Timothy J Maxwell
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Zhirong Huang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
47
|
|
48
|
Kraus PM, Zürch M, Cushing SK, Neumark DM, Leone SR. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0008-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Isolated terawatt attosecond hard X-ray pulse generated from single current spike. Sci Rep 2018; 8:7463. [PMID: 29748612 PMCID: PMC5945633 DOI: 10.1038/s41598-018-25778-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/24/2018] [Indexed: 11/08/2022] Open
Abstract
Isolated terawatt (TW) attosecond (as) hard X-ray pulse is greatly desired for four-dimensional investigations of natural phenomena with picometer spatial and attosecond temporal resolutions. Since the demand for such sources is continuously increasing, the possibility of generating such pulse by a single current spike without the use of optical or electron delay units in an undulator line is addressed. The conditions of a current spike (width and height) and a modulation laser pulse (wavelength and power) is also discussed. We demonstrate that an isolated TW-level as a hard X-ray can be produced by a properly chosen single current spike in an electron bunch with simulation results. By using realistic specifications of an electron bunch of the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL), we show that an isolated, >1.0 TW and ~36 as X-ray pulse at 12.4 keV can be generated in an optimized-tapered undulator line. This result opens a new vista for current XFEL operation: the attosecond XFEL.
Collapse
|
50
|
Johnson AS, Austin DR, Wood DA, Brahms C, Gregory A, Holzner KB, Jarosch S, Larsen EW, Parker S, Strüber CS, Ye P, Tisch JWG, Marangos JP. High-flux soft x-ray harmonic generation from ionization-shaped few-cycle laser pulses. SCIENCE ADVANCES 2018; 4:eaar3761. [PMID: 29756033 PMCID: PMC5947981 DOI: 10.1126/sciadv.aar3761] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/27/2018] [Indexed: 05/05/2023]
Abstract
Laser-driven high-harmonic generation provides the only demonstrated route to generating stable, tabletop attosecond x-ray pulses but has low flux compared to other x-ray technologies. We show that high-harmonic generation can produce higher photon energies and flux by using higher laser intensities than are typical, strongly ionizing the medium and creating plasma that reshapes the driving laser field. We obtain high harmonics capable of supporting attosecond pulses up to photon energies of 600 eV and a photon flux inside the water window (284 to 540 eV) 10 times higher than previous attosecond sources. We demonstrate that operating in this regime is key for attosecond pulse generation in the x-ray range and will become increasingly important as harmonic generation moves to fields that drive even longer wavelengths.
Collapse
|