1
|
Kiss JZ. Statoliths function in gravity perception in plants: yes, no, yes! PLANTA 2025; 261:45. [PMID: 39869172 DOI: 10.1007/s00425-025-04631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025]
Abstract
MAIN CONCLUSION The starch-statolith theory was established science for a century when the existence of gravitropic, starchless mutants questioned its premise. However, detailed kinetic studies support a statolith-based mechanism for graviperception. Gravitropism is the directed growth of plants in response to gravity, and the starch-statolith hypothesis has had a consensus among scientists as the accepted model for gravity perception. However, in the late 1980s, with the isolation of a starchless mutant (lacking phosphoglucomutase, pgm) of Arabidopsis thaliana that was gravitropic, a statolith-based hypothesis for graviperception was questioned. Two groups studied the physiology and gravitropism kinetics of this pgm mutant, and these papers were published side-by-side in Planta. Based on the observation that the starchless mutant was responsive to gravity, Tim Caspar and colleagues (Caspar and Pickard, Planta 177:185-197, 1989) suggested that their results negated the starch-statolith hypothesis. In contrast, John Z. Kiss (Kiss et al., Planta 177:198-206, 1989) and colleagues turned the argument around 180 degrees and concluded that since a full complement of starch is required for full gravitropic sensitivity, in fact, their pgm studies provided strong support for a statolith-based model for gravity perception. Kiss and coworkers also provided evidence that the starchless plastids were relatively dense and proposed that these organelles function as statoliths in the pgm mutant plants. These two publications stimulated novel approaches (e.g., magnetophoresis, optical tweezers, spaceflight experiments, and laser ablation) to the study of gravity perception in plants. The controversy regarding the starch-statolith hypothesis remained for about a decade or so, but the current consensus supports a statolith-based model for graviperception in plants.
Collapse
Affiliation(s)
- John Z Kiss
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL, 32901, USA.
| |
Collapse
|
2
|
Zimmermann MJ, Jathar VD, Baskin TI. Thermomorphogenesis of the Arabidopsis thaliana Root: Flexible Cell Division, Constrained Elongation and the Role of Cryptochrome. PLANT & CELL PHYSIOLOGY 2024; 65:1434-1449. [PMID: 39030707 DOI: 10.1093/pcp/pcae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 07/21/2024]
Abstract
Understanding how plants respond to temperature is relevant for agriculture in a warming world. Responses to temperature in the shoot have been characterized more fully than those in the root. Previous work on thermomorphogenesis in roots established that for Arabidopsis thaliana (Columbia) seedlings grown continuously at a given temperature, the root meristem produces cells at the same rate at 15°C as at 25°C and the root's growth zone is the same length. To uncover the pathway(s) underlying this constancy, we screened 34 A. thaliana genotypes for parameters related to growth and division. No line failed to respond to temperature. Behavior was little affected by mutations in phytochrome or other genes that underly thermomorphogenesis in shoots. However, a mutant in cryptochrome 2 was disrupted substantially in both cell division and elongation, specifically at 15°C. Among the 34 lines, cell production rate varied extensively and was associated only weakly with root growth rate; in contrast, parameters relating to elongation were stable. Our data are consistent with models of root growth that invoke cell non-autonomous regulation for establishing boundaries between meristem, elongation zone and mature zone.
Collapse
Affiliation(s)
- Maura J Zimmermann
- Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Vikram D Jathar
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Tobias I Baskin
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
3
|
de la Fuente C, Grondin A, Sine B, Debieu M, Belin C, Hajjarpoor A, Atkinson JA, Passot S, Salson M, Orjuela J, Tranchant-Dubreuil C, Brossier JR, Steffen M, Morgado C, Dinh HN, Pandey BK, Darmau J, Champion A, Petitot AS, Barrachina C, Pratlong M, Mounier T, Nakombo-Gbassault P, Gantet P, Gangashetty P, Guedon Y, Vadez V, Reichheld JP, Bennett MJ, Kane NA, Guyomarc'h S, Wells DM, Vigouroux Y, Laplaze L. Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet. eLife 2024; 12:RP86169. [PMID: 38294329 PMCID: PMC10945517 DOI: 10.7554/elife.86169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet's early root system features a single fast-growing primary root which we hypothesize is an adaptation to the Sahelian climate. Using crop modeling, we demonstrate that early drought stress is an important constraint in agrosystems in the Sahel where pearl millet was domesticated. Furthermore, we show that increased pearl millet primary root growth is correlated with increased early water stress tolerance in field conditions. Genetics including genome-wide association study and quantitative trait loci (QTL) approaches identify genomic regions controlling this key root trait. Combining gene expression data, re-sequencing and re-annotation of one of these genomic regions identified a glutaredoxin-encoding gene PgGRXC9 as the candidate stress resilience root growth regulator. Functional characterization of its closest Arabidopsis homolog AtROXY19 revealed a novel role for this glutaredoxin (GRX) gene clade in regulating cell elongation. In summary, our study suggests a conserved function for GRX genes in conferring root cell elongation and enhancing resilience of pearl millet to its Sahelian environment.
Collapse
Affiliation(s)
| | - Alexandre Grondin
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
- LMI LAPSEDakarSenegal
- CERAAS, ISRAThiesSenegal
| | | | - Marilyne Debieu
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
| | | | - Amir Hajjarpoor
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
| | - Jonathan A Atkinson
- School of Biosciences, University of NottinghamSutton BoningtonUnited Kingdom
| | - Sixtine Passot
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
| | - Marine Salson
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
| | - Julie Orjuela
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
| | | | | | - Maxime Steffen
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
| | | | - Hang Ngan Dinh
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
| | - Bipin K Pandey
- School of Biosciences, University of NottinghamSutton BoningtonUnited Kingdom
| | - Julie Darmau
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
| | - Antony Champion
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
| | | | | | | | | | | | - Pascal Gantet
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
| | | | - Yann Guedon
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut AgroMontpellierFrance
| | - Vincent Vadez
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
- LMI LAPSEDakarSenegal
- CERAAS, ISRAThiesSenegal
| | | | - Malcolm J Bennett
- School of Biosciences, University of NottinghamSutton BoningtonUnited Kingdom
| | | | | | - Darren M Wells
- School of Biosciences, University of NottinghamSutton BoningtonUnited Kingdom
| | - Yves Vigouroux
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
| | - Laurent Laplaze
- DIADE, Université de Montpellier, IRD, CIRADMontpellierFrance
- LMI LAPSEDakarSenegal
| |
Collapse
|
4
|
Zumel D, Diéguez X, Werner O, Moreno-Ortiz MC, Muñoz J, Ros RM. High endoreduplication after drought-related conditions in haploid but not diploid mosses. ANNALS OF BOTANY 2023; 132:1249-1258. [PMID: 37823772 PMCID: PMC10902894 DOI: 10.1093/aob/mcad159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 10/18/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND AND AIMS Endoreduplication, the duplication of the nuclear genome without mitosis, is a common process in plants, especially in angiosperms and mosses. Accumulating evidence supports the relationship between endoreduplication and plastic responses to stress factors. Here, we investigated the level of endoreduplication in Ceratodon (Bryophyta), which includes the model organism Ceratodon purpureus. METHODS We used flow cytometry to estimate the DNA content of 294 samples from 67 localities and found three well-defined cytotypes, two haploids and one diploid, the haploids corresponding to C. purpureus and Ceratodon amazonum, and the diploid to Ceratodon conicus, recombination occurring between the former two. KEY RESULTS The endoreduplication index (EI) was significantly different for each cytotype, being higher in the two haploids. In addition, the EI of the haploids was higher during the hot and dry periods typical of the Mediterranean summer than during spring, whereas the EI of the diploid cytotype did not differ between seasons. CONCLUSIONS Endopolyploidy may be essential in haploid mosses to buffer periods of drought and to respond rapidly to desiccation events. Our results also suggest that the EI is closely related to the basic ploidy level, but less so to the nuclear DNA content as previously suggested.
Collapse
Affiliation(s)
- D Zumel
- Real Jardín Botánico (CSIC), Plaza de Murillo 2, 28014, Madrid, Spain
| | - X Diéguez
- Real Jardín Botánico (CSIC), Plaza de Murillo 2, 28014, Madrid, Spain
| | - O Werner
- Universidad de Murcia, Facultad de Biología, Departamento de Biología Vegetal, Campus de Espinardo, 30100, Murcia, Spain
| | - M C Moreno-Ortiz
- Centro Nacional de Biotecnología (CSIC), Departamento de Inmunología y Oncología, 28049 Madrid, Spain
| | - J Muñoz
- Real Jardín Botánico (CSIC), Plaza de Murillo 2, 28014, Madrid, Spain
| | - R M Ros
- Universidad de Murcia, Facultad de Biología, Departamento de Biología Vegetal, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
5
|
Gu Y, Zhang J, Liu L, Qanmber G, Liu Z, Xing K, Lu L, Liu L, Ma S, Li F, Yang Z. Cell cycle-dependent kinase inhibitor GhKRP6, a direct target of GhBES1.4, participates in BR regulation of cell expansion in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1729-1745. [PMID: 37326240 DOI: 10.1111/tpj.16353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
The steroidal hormone brassinosteroid (BR) has been shown to positively regulate cell expansion in plants. However, the specific mechanism by which BR controls this process has not been fully understood. In this study, RNA-seq and DAP-seq analysis of GhBES1.4 (a core transcription factor in BR signaling) were used to identify a cotton cell cycle-dependent kinase inhibitor called GhKRP6. The study found that GhKRP6 was significantly induced by the BR hormone and that GhBES1.4 directly promoted the expression of GhKRP6 by binding to the CACGTG motif in its promoter region. GhKRP6-silenced cotton plants had smaller leaves with more cells and reduced cell size. Furthermore, endoreduplication was inhibited, which affected cell expansion and ultimately decreased fiber length and seed size in GhKRP6-silenced plants compared with the control. The KEGG enrichment results of control and VIGS-GhKRP6 plants revealed differential expression of genes related to cell wall biosynthesis, MAPK, and plant hormone transduction pathways - all of which are related to cell expansion. Additionally, some cyclin-dependent kinase (CDK) genes were upregulated in the plants with silenced GhKRP6. Our study also found that GhKRP6 could interact directly with a cell cycle-dependent kinase called GhCDKG. Taken together, these results suggest that BR signaling influences cell expansion by directly modulating the expression of cell cycle-dependent kinase inhibitor GhKRP6 via GhBES1.4.
Collapse
Affiliation(s)
- Yu Gu
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110161, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jie Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Le Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhao Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Kun Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Li Liu
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832003, China
| | - Shuya Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832003, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| |
Collapse
|
6
|
Vilcherrez-Atoche JA, Iiyama CM, Cardoso JC. Polyploidization in Orchids: From Cellular Changes to Breeding Applications. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040469. [PMID: 35214806 PMCID: PMC8874786 DOI: 10.3390/plants11040469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 06/02/2023]
Abstract
Polyploidy occurs naturally in plants through cell division errors or can artificially be induced by antimitotic agents and has ecological effects on species adaptation, evolution, and development. In agriculture, polyploidy provides economically improved cultivars. Furthermore, the artificial induction of polyploids increases the frequency; thus, it accelerates obtaining polyploid plants used in breeding programs. This is the reason for its use in developing many crops of economic interest, as is the case of orchids in the flower market. Polyploidy in ornamental plants is mainly associated with flowers of larger size, fragrance, and more intense coloring when compared to naturally diploid plants. Currently, orchids represent the largest flower market worldwide; thus, breeding programs aim to obtain flowers with the larger size, durability, intense colors, and resistance to pathogens. Furthermore, orchid hybridization with polyploidy induction has been used to produce improved hybrid cultivars. Thus, the objective of this review was to compile information regarding the natural occurrence, importance, and methods of induction of polyploidy in orchids. The study also summarizes the significance of polyploids and techniques associated with artificially inducing polyploidy in different orchids of commercial relevance.
Collapse
Affiliation(s)
- Joe Abdul Vilcherrez-Atoche
- Master Science Graduate Program of Plant Production and Associated Bioprocesses, Center of Agricultural Sciences, Federal University of São Carlos, Araras 13600-970, SP, Brazil
- Laboratory of Plant Physiology and Tissue Culture, Department of Biotechnology, Plant and Animal Production, Center of Agricultural Sciences, Federal University of São Carlos, Araras 13600-970, SP, Brazil
| | - Carla Midori Iiyama
- Master Science Graduate Program of Plant Production and Associated Bioprocesses, Center of Agricultural Sciences, Federal University of São Carlos, Araras 13600-970, SP, Brazil
- Laboratory of Plant Physiology and Tissue Culture, Department of Biotechnology, Plant and Animal Production, Center of Agricultural Sciences, Federal University of São Carlos, Araras 13600-970, SP, Brazil
| | - Jean Carlos Cardoso
- Laboratory of Plant Physiology and Tissue Culture, Department of Biotechnology, Plant and Animal Production, Center of Agricultural Sciences, Federal University of São Carlos, Araras 13600-970, SP, Brazil
| |
Collapse
|
7
|
Wos G, Macková L, Kubíková K, Kolář F. Ploidy and local environment drive intraspecific variation in endoreduplication in Arabidopsis arenosa. AMERICAN JOURNAL OF BOTANY 2022; 109:259-271. [PMID: 35137947 DOI: 10.1002/ajb2.1818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 06/14/2023]
Abstract
PREMISE Endoreduplication, nonheritable duplication of a nuclear genome, is widespread in plants and plays a role in developmental processes related to cell differentiation. However, neither ecological nor cytological factors influencing intraspecific variation in endoreduplication are fully understood. METHODS We cultivated plants covering the range-wide natural diversity of diploid and tetraploid populations of Arabidopsis arenosa in common conditions to investigate the effect of original ploidy level on endoreduplication. We also raised plants from several foothill and alpine populations from different lineages and of both ploidies to test for the effect of elevation. We determined the endoreduplication level in leaves of young plants by flow cytometry. Using RNA-seq data available for our populations, we analyzed gene expression analysis in individuals that differed in endoreduplication level. RESULTS We found intraspecific variation in endoreduplication that was mainly driven by the original ploidy level of populations, with significantly higher endoreduplication in diploids. An effect of elevation was also found within each ploidy, yet its direction exhibited rather regional-specific patterns. Transcriptomic analysis comparing individuals with high vs. low endopolyploidy revealed a majority of differentially expressed genes related to the stress and hormone response and to modifications especially in the cell wall and in chloroplasts. CONCLUSIONS Our results support the general assumption of higher potential of low-ploidy organisms to undergo endoreduplication and suggest that endoreduplication is further integrated within the stress response pathways for a fine-tune adjustment of the endoreduplication process to their local environment.
Collapse
Affiliation(s)
- Guillaume Wos
- Department of Botany, Charles University, Benátská 2, 12801 Prague, Czech Republic
| | - Lenka Macková
- Department of Botany, Charles University, Benátská 2, 12801 Prague, Czech Republic
| | - Kateřina Kubíková
- Department of Zoology, Charles University, Viničná 7, 12845 Prague, Czech Republic
| | - Filip Kolář
- Department of Botany, Charles University, Benátská 2, 12801 Prague, Czech Republic
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic
| |
Collapse
|
8
|
Gong P, Bontinck M, Demuynck K, De Block J, Gevaert K, Eeckhout D, Persiau G, Aesaert S, Coussens G, Van Lijsebettens M, Pauwels L, De Jaeger G, Inzé D, Nelissen H. SAMBA controls cell division rate during maize development. PLANT PHYSIOLOGY 2022; 188:411-424. [PMID: 34791456 PMCID: PMC8774815 DOI: 10.1093/plphys/kiab514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/02/2021] [Indexed: 05/10/2023]
Abstract
SAMBA has been identified as a plant-specific regulator of the anaphase-promoting complex/cyclosome (APC/C) that controls unidirectional cell cycle progression in Arabidopsis (Arabidopsis thaliana), but so far its role has not been studied in monocots. Here, we show the association of SAMBA with the APC/C is conserved in maize (Zea mays). Two samba genome edited mutants showed growth defects, such as reduced internode length, shortened upper leaves with erect leaf architecture, and reduced leaf size due to an altered cell division rate and cell expansion, which aggravated with plant age. The two mutants differed in the severity and developmental onset of the phenotypes, because samba-1 represented a knockout allele, while translation re-initiation in samba-3 resulted in a truncated protein that was still able to interact with the APC/C and regulate its function, albeit with altered APC/C activity and efficiency. Our data are consistent with a dosage-dependent role for SAMBA to control developmental processes for which a change in growth rate is pivotal.
Collapse
Affiliation(s)
- Pan Gong
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Michiel Bontinck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Kirin Demuynck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jolien De Block
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- VIB Center for Medical Biotechnology, 9000 Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Stijn Aesaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Griet Coussens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Author for communication:
| |
Collapse
|
9
|
Luo C, Shi Y, Xiang Y. SNAREs Regulate Vesicle Trafficking During Root Growth and Development. FRONTIERS IN PLANT SCIENCE 2022; 13:853251. [PMID: 35360325 PMCID: PMC8964185 DOI: 10.3389/fpls.2022.853251] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 05/13/2023]
Abstract
SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins assemble to drive the final membrane fusion step of membrane trafficking. Thus, SNAREs are essential for membrane fusion and vesicular trafficking, which are fundamental mechanisms for maintaining cellular homeostasis. In plants, SNAREs have been demonstrated to be located in different subcellular compartments and involved in a variety of fundamental processes, such as cytokinesis, cytoskeleton organization, symbiosis, and biotic and abiotic stress responses. In addition, SNAREs can also contribute to the normal growth and development of Arabidopsis. Here, we review recent progress in understanding the biological functions and signaling network of SNAREs in vesicle trafficking and the regulation of root growth and development in Arabidopsis.
Collapse
|
10
|
Amaral Dos Reis R, Hendrix S, Mourato MP, Louro Martins L, Vangronsveld J, Cuypers A. Efficient regulation of copper homeostasis underlies accession-specific sensitivities to excess copper and cadmium in roots of Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2021; 261:153434. [PMID: 34020275 DOI: 10.1016/j.jplph.2021.153434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
The commonly used Arabidopsis thaliana natural accessions Columbia (Col-0) and Wassilewskija (Ws) are known to differ in their metal sensitivity, with Col-0 being more sensitive to copper (Cu) and cadmium (Cd) than Ws. As both Cu and Cd are known to affect Cu homeostasis, it was investigated whether this process is part of an accession-specific mechanism underlying their difference in metal sensitivity. As roots are the first contact point during metal exposure, responses were compared between roots of both accessions of hydroponically grown plants exposed to excess Cu or Cd for 24 and 72 h. Root Cu levels increased in both accessions under Cu and Cd exposure. However, under Cu exposure, the downregulation of Cu transporter (COPT) genes in combination with a more pronounced upregulation of metallothionein gene MT2b indicated that Ws plants coped better with the elevated Cu concentrations. The Cd-induced disturbance in Cu homeostasis was more efficiently counteracted in roots of Ws plants than in Col-0 plants. This was indicated by a higher upregulation of the SPL7-mediated pathway, crucial in the regulation of the Cu homeostasis response. In conclusion, maintaining the Cu homeostasis response in roots is key to accession-specific differences in Cu and Cd sensitivity.
Collapse
Affiliation(s)
- Rafaela Amaral Dos Reis
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Sophie Hendrix
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | | | - Luísa Louro Martins
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
11
|
Vukašinović N, Wang Y, Vanhoutte I, Fendrych M, Guo B, Kvasnica M, Jiroutová P, Oklestkova J, Strnad M, Russinova E. Local brassinosteroid biosynthesis enables optimal root growth. NATURE PLANTS 2021; 7:619-632. [PMID: 34007032 DOI: 10.1038/s41477-021-00917-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/29/2021] [Indexed: 05/27/2023]
Abstract
Brassinosteroid (BR) hormones are indispensable for root growth and control both cell division and cell elongation through the establishment of an increasing signalling gradient along the longitudinal root axis. Because of their limited mobility, the importance of BR distribution in achieving a signalling maximum is largely overlooked. Expression pattern analysis of all known BR biosynthetic enzymes revealed that not all cells in the Arabidopsis thaliana root possess full biosynthetic machinery, and that completion of biosynthesis relies on cell-to-cell movement of hormone precursors. We demonstrate that BR biosynthesis is largely restricted to the root elongation zone, where it overlaps with BR signalling maxima. Moreover, optimal root growth requires hormone concentrations to be low in the meristem and high in the root elongation zone, attributable to increased biosynthesis. Our finding that spatiotemporal regulation of hormone synthesis results in local hormone accumulation provides a paradigm for hormone-driven organ growth in the absence of long-distance hormone transport in plants.
Collapse
Affiliation(s)
- Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Yaowei Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Isabelle Vanhoutte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Matyáš Fendrych
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Boyu Guo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Miroslav Kvasnica
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Palacký University, Olomouc, Czech Republic
| | - Petra Jiroutová
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Palacký University, Olomouc, Czech Republic
| | - Jana Oklestkova
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Palacký University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Palacký University, Olomouc, Czech Republic
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| |
Collapse
|
12
|
Kuběnová L, Takáč T, Šamaj J, Ovečka M. Single Amino Acid Exchange in ACTIN2 Confers Increased Tolerance to Oxidative Stress in Arabidopsis der1-3 Mutant. Int J Mol Sci 2021; 22:ijms22041879. [PMID: 33668638 PMCID: PMC7918201 DOI: 10.3390/ijms22041879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/26/2022] Open
Abstract
Single-point mutation in the ACTIN2 gene of the der1-3 mutant revealed that ACTIN2 is an essential actin isovariant required for root hair tip growth, and leads to shorter, thinner and more randomly oriented actin filaments in comparison to the wild-type C24 genotype. The actin cytoskeleton has been linked to plant defense against oxidative stress, but it is not clear how altered structural organization and dynamics of actin filaments may help plants to cope with oxidative stress. In this study, we characterized root growth, plant biomass, actin organization and antioxidant activity of the der1-3 mutant under oxidative stress induced by paraquat and H2O2. Under these conditions, plant growth was better in the der1-3 mutant, while the actin cytoskeleton in the der1-3 carrying pro35S::GFP:FABD2 construct showed a lower bundling rate and higher dynamicity. Biochemical analyses documented a lower degree of lipid peroxidation, and an elevated capacity to decompose superoxide and hydrogen peroxide. These results support the view that the der1-3 mutant is more resistant to oxidative stress. We propose that alterations in the actin cytoskeleton, increased sensitivity of ACTIN to reducing agent dithiothreitol (DTT), along with the increased capacity to decompose reactive oxygen species encourage the enhanced tolerance of this mutant against oxidative stress.
Collapse
|
13
|
Hernández-Apaolaza L, Escribano L, Zamarreño ÁM, García-Mina JM, Cano C, Carrasco-Gil S. Root Silicon Addition Induces Fe Deficiency in Cucumber Plants, but Facilitates Their Recovery After Fe Resupply. A Comparison With Si Foliar Sprays. FRONTIERS IN PLANT SCIENCE 2020; 11:580552. [PMID: 33424881 PMCID: PMC7793930 DOI: 10.3389/fpls.2020.580552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/02/2020] [Indexed: 05/27/2023]
Abstract
Silicon has not been cataloged as an essential element for higher plants. However, it has shown beneficial effects on many crops, especially under abiotic and biotic stresses. Silicon fertilization was evaluated for the first time on plants exposed to fluctuations in an Fe regime (Fe sufficiency followed by Fe deficiency and, in turn, by Fe resupply). Root and foliar Si applications were compared using cucumber plants that were hydroponically grown in a growth chamber under different Fe nutritional statuses and Si applied either to the roots or to the shoots. The SPAD index, Fe, and Mn concentration, ROS, total phenolic compounds, MDA concentration, phytohormone balance, and cell cycle were determined. The results obtained showed that the addition of Si to the roots induced an Fe shortage in plants grown under optimal or deficient Fe nutritional conditions, but this was not observed when Si was applied to the leaves. Plant recovery following Fe resupply was more effective in the Si-treated plants than in the untreated plants. A relationship between the ROS concentration, hormonal balance, and cell cycle under different Fe regimes and in the presence or absence of Si was also studied. The contribution of Si to this signaling pathway appears to be related more to the induction of Fe deficiency, than to any direct biochemical or metabolic processes. However, these roles could not be completely ruled out because several hormone differences could only be explained by the addition of Si.
Collapse
Affiliation(s)
| | - Laura Escribano
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ángel Mª Zamarreño
- Department of Environmental Biology, Sciences School, University of Navarra, Pamplona, Spain
| | - José Mª García-Mina
- Department of Environmental Biology, Sciences School, University of Navarra, Pamplona, Spain
| | - Carlos Cano
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sandra Carrasco-Gil
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
14
|
Kamal KY, van Loon JJ, Medina FJ, Herranz R. Differential transcriptional profile through cell cycle progression in Arabidopsis cultures under simulated microgravity. Genomics 2019; 111:1956-1965. [DOI: 10.1016/j.ygeno.2019.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/30/2018] [Accepted: 01/06/2019] [Indexed: 12/15/2022]
|
15
|
A Proposed Methodology to Analyze Plant Growth and Movement from Phenomics Data. REMOTE SENSING 2019. [DOI: 10.3390/rs11232839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Image analysis of developmental processes in plants reveals both growth and organ movement. This study proposes a methodology to study growth and movement. It includes the standard acquisition of internal and external reference points and coordinates, coordinates transformation, curve fitting and the corresponding statistical analysis. Several species with different growth habits were used including Antirrhinum majus, A. linkianum, Petunia x hybrida and Fragaria x ananassa. Complex growth patterns, including gated growth, could be identified using a generalized additive model. Movement, and in some cases, growth, could not be adjusted to curves due to drastic changes in position. The area under the curve was useful in order to identify the initial stage of growth of an organ, and its growth rate. Organs displayed either continuous movements during the day with gated day/night periods of maxima, or sharp changes in position coinciding with day/night shifts. The movement was dependent on light in petunia and independent in F. ananassa. Petunia showed organ movement in both growing and fully-grown organs, while A. majus and F. ananassa showed both leaf and flower movement patterns linked to growth. The results indicate that different mathematical fits may help quantify growth rate, growth duration and gating. While organ movement may complicate image and data analysis, it may be a surrogate method to determine organ growth potential.
Collapse
|
16
|
Natural Root Cellular Variation in Responses to Osmotic Stress in Arabidopsis thaliana Accessions. Genes (Basel) 2019; 10:genes10120983. [PMID: 31795411 PMCID: PMC6969899 DOI: 10.3390/genes10120983] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/06/2023] Open
Abstract
Arabidopsis naturally occurring populations have allowed for the identification of considerable genetic variation remodeled by adaptation to different environments and stress conditions. Water is a key resource that limits plant growth, and its availability is initially sensed by root tissues. The root’s ability to adjust its physiology and morphology under water deficit makes this organ a useful model to understand how plants respond to water stress. Here, we used hyperosmotic shock stress treatments in different Arabidopsis accessions to analyze the root cell morphological responses. We found that osmotic stress conditions reduced root growth and root apical meristem (RAM) size, promoting premature cell differentiation without affecting the stem cell niche morphology. This phenotype was accompanied by a cluster of small epidermal and cortex cells with radial expansion and root hairs at the transition to the elongation zone. We also found this radial expansion with root hairs when plants are grown under hypoosmotic conditions. Finally, root growth was less affected by osmotic stress in the Sg-2 accession followed by Ws, Cvi-0, and Col-0; however, after a strong osmotic stress, Sg-2 and Cvi-0 were the most resilience accessions. The sensitivity differences among these accessions were not explained by stress-related gene expression. This work provides new cellular insights on the Arabidopsis root phenotypic variability and plasticity to osmotic stress.
Collapse
|
17
|
Terry MI, Pérez-Sanz F, Díaz-Galián MV, Pérez de Los Cobos F, Navarro PJ, Egea-Cortines M, Weiss J. The Petunia CHANEL Gene is a ZEITLUPE Ortholog Coordinating Growth and Scent Profiles. Cells 2019; 8:cells8040343. [PMID: 30979023 PMCID: PMC6523265 DOI: 10.3390/cells8040343] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 01/05/2023] Open
Abstract
The floral perianth, comprising sepals and petals, conceals the sexual organs and attracts pollinators. The coordination of growth and scent emission is not fully understood. We have analyzed the effect of knocking down CHANEL (PhCHL), the ZEITLUPE ortholog in petunia (PhCHL) by hairpin RNAs. Plants with low PhCHL mRNA had overall decreased size. Growth evaluation using time lapse image analysis showed that early leaf movement was not affected by RNAi:PhCHL, but flower angle movement was modified, moving earlier during the day in knockdown plants than in wild types. Despite differences in stem length, growth rate was not significantly affected by loss of PhCHL. In contrast, petal growth displayed lower growth rate in RNAi:PhCHL. Decreased levels of PhCHL caused strongly modified scent profiles, including changes in composition and timing of emission resulting in volatile profiles highly divergent from the wild type. Our results show a role of PhCHL in controlling growth and development of vegetative and reproductive organs in petunia. The different effects of PhCHL on organ development indicate an organ-specific interpretation of the down regulation of PhCHL. Through the control of both timing and quantitative volatile emissions, PhCHL appears to be a major coordinator of scent profiles.
Collapse
Affiliation(s)
- Marta I Terry
- Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain.
| | - Fernando Pérez-Sanz
- Biomedical Informatic and Bioinformatic Platform, Biomedical Research Institute of Murcia, University Clinical Hospital 'Virgen de la Arrixaca', University of Murcia, 30120 Murcia, Spain.
| | - M Victoria Díaz-Galián
- Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain.
| | - Felipe Pérez de Los Cobos
- Plant Breeding Department, Center of Edafology and Applied Biology of Segura-High Council for Scientific Research (CEBAS-CSIC), Espinardo University Campus, Espinardo, 30100 Murcia, Spain.
| | - Pedro J Navarro
- Escuela Técnica Superior de Ingeniería de Telecomunicación (DSIE), Campus Muralla del Mar, s/n., Universidad Politécnica de Cartagena, 30202 Cartagena, Spain.
| | - Marcos Egea-Cortines
- Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain.
| | - Julia Weiss
- Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain.
| |
Collapse
|
18
|
Qiu F, Baack EJ, Whitney KD, Bock DG, Tetreault HM, Rieseberg LH, Ungerer MC. Phylogenetic trends and environmental correlates of nuclear genome size variation in Helianthus sunflowers. THE NEW PHYTOLOGIST 2019; 221:1609-1618. [PMID: 30368824 DOI: 10.1111/nph.15465] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Flowering plants serve as a powerful model for studying the evolution of nuclear genome size (GS) given the tremendous GS variation that exists both within and across angiosperm lineages. Helianthus sunflowers consist of c. 50 species native to North America that occupy diverse habitats and vary in ploidy level. In the current study, we generated a comprehensive GS database for 49 Helianthus species using flow cytometric approaches. We examined variability across the genus and present a comparative phylogenetic analysis of GS evolution in diploid Helianthus species. Results demonstrated that different clades of diploid Helianthus species showed evolutionary patterns of GS contraction, expansion and relative stasis, with annual diploid species evolving smaller GS with the highest rate of evolution. Phylogenetic comparative analyses of diploids revealed significant negative associations of GS with temperature seasonality and cell production rate, indicating that the evolution of larger GS in Helianthus diploids may be more permissible in habitats with longer growing seasons where selection for more rapid growth may be relaxed. The Helianthus GS database presented here and corresponding analyses of environmental and phenotypic correlates will facilitate ongoing and future research on the ultimate drivers of GS evolution in this well-studied North American plant genus.
Collapse
Affiliation(s)
- Fan Qiu
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Eric J Baack
- Department of Biology, Luther College, Decorah, IA, 52101, USA
| | - Kenneth D Whitney
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Dan G Bock
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark C Ungerer
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
19
|
Youssef C, Bizet F, Bastien R, Legland D, Bogeat-Triboulot MB, Hummel I. Quantitative dissection of variations in root growth rate: a matter of cell proliferation or of cell expansion? JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5157-5168. [PMID: 30053124 PMCID: PMC6184812 DOI: 10.1093/jxb/ery272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/16/2018] [Indexed: 05/24/2023]
Abstract
Plant organ growth results from cell production and cell expansion. Deciphering the contribution of each of these processes to growth rate is an important issue in developmental biology. Here, we investigated the cellular processes governing root elongation rate, considering two sources of variation: genotype and disturbance by chemicals (NaCl, polyethylene glycol, H2O2, abscisic acid). Exploiting the adventitious rooting capacity of the Populus genus, and using time-lapse imaging under infrared-light, particle image velocimetry, histological analysis, and kinematics, we quantified the cellular processes involved in root growth variation, and analysed the covariation patterns between growth parameters. The rate of cell production by the root apical meristem and the number of dividing cells were estimated in vivo without destructive measurement. We found that the rate of cell division contributed more to the variation in cell production rate than the number of dividing cells. Regardless of the source of variation, the length of the elongation zone was the best proxy for growth rate, summarizing rates of cell production and cell elongation into a single parameter. Our results demonstrate that cell production rate is the main driver of growth rate, whereas elemental elongation rate is a key driver of short-term growth adjustments.
Collapse
Affiliation(s)
- Chvan Youssef
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Nancy, France
| | - François Bizet
- UMR PIAF, INRA, Université Clermont Auvergne, Aubière, France
| | - Renaud Bastien
- Department of Collective Behaviour, Max Planck Institute for Ornithology, University of Konstanz, Konstanz, Germany
| | - David Legland
- UMR Biopolymers, Interactions and Assemblies, INRA, Nantes, France
| | | | - Irène Hummel
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Nancy, France
| |
Collapse
|
20
|
Watahiki M, Trewavas A. Systems, variation, individuality and plant hormones. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:3-22. [PMID: 30312622 DOI: 10.1016/j.pbiomolbio.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/06/2018] [Indexed: 02/02/2023]
Abstract
Inter-individual variation in plants and particularly in hormone content, figures strongly in evolution and behaviour. Homo sapiens and Arabidopsis exhibit similar and substantial phenotypic and molecular variation. Whereas there is a very substantial degree of hormone variation in mankind, reports of inter-individual variation in plant hormone content are virtually absent but are likely to be as large if not larger than that in mankind. Reasons for this absence are discussed. Using an example of inter-individual variation in ethylene content in ripening, the article shows how biological time is compressed by hormones. It further resolves an old issue of very wide hormone dose response that result directly from negative regulation in hormone (and light) transduction. Negative regulation is used because of inter-individual variability in hormone synthesis, receptors and ancillary proteins, a consequence of substantial genomic and environmental variation. Somatic mosaics have been reported for several plant tissues and these too contribute to tissue variation and wide variation in hormone response. The article concludes by examining what variation exists in gravitropic responses. There are multiple sensing systems of gravity vectors and multiple routes towards curvature. These are an aspect of the need for reliability in both inter-individual variation and unpredictable environments. Plant hormone inter-individuality is a new area for research and is likely to change appreciation of the mechanisms that underpin individual behaviour.
Collapse
Affiliation(s)
- Masaaki Watahiki
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Anthony Trewavas
- Institute of Plant Molecular Science, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh, EH9 3 JH, Scotland, United Kingdom.
| |
Collapse
|
21
|
Gorelova V, De Lepeleire J, Van Daele J, Pluim D, Meï C, Cuypers A, Leroux O, Rébeillé F, Schellens JHM, Blancquaert D, Stove CP, Van Der Straeten D. Dihydrofolate Reductase/Thymidylate Synthase Fine-Tunes the Folate Status and Controls Redox Homeostasis in Plants. THE PLANT CELL 2017; 29:2831-2853. [PMID: 28939595 PMCID: PMC5728131 DOI: 10.1105/tpc.17.00433] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/10/2017] [Accepted: 09/18/2017] [Indexed: 05/08/2023]
Abstract
Folates (B9 vitamins) are essential cofactors in one-carbon metabolism. Since C1 transfer reactions are involved in synthesis of nucleic acids, proteins, lipids, and other biomolecules, as well as in epigenetic control, folates are vital for all living organisms. This work presents a complete study of a plant DHFR-TS (dihydrofolate reductase-thymidylate synthase) gene family that implements the penultimate step in folate biosynthesis. We demonstrate that one of the DHFR-TS isoforms (DHFR-TS3) operates as an inhibitor of its two homologs, thus regulating DHFR and TS activities and, as a consequence, folate abundance. In addition, a novel function of folate metabolism in plants is proposed, i.e., maintenance of the redox balance by contributing to NADPH production through the reaction catalyzed by methylenetetrahydrofolate dehydrogenase, thus allowing plants to cope with oxidative stress.
Collapse
Affiliation(s)
- Vera Gorelova
- Department of Biology, Laboratory of Functional Plant Biology, Ghent University, 9000 Gent, Belgium
| | - Jolien De Lepeleire
- Department of Biology, Laboratory of Functional Plant Biology, Ghent University, 9000 Gent, Belgium
| | | | - Dick Pluim
- Laboratory of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Coline Meï
- Laboratoire de Physiologie Cellulaire Vegetale, UMR168 CNRS-CEA-INRA-Universite Joseph Fourier Grenoble I, Bioscience and Biotechnologies Institute of Grenoble, CEA-Grenoble, 38054 Grenoble Cedex 9, France
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Olivier Leroux
- Department of Biology, Ghent University, 9000 Gent, Belgium
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Vegetale, UMR168 CNRS-CEA-INRA-Universite Joseph Fourier Grenoble I, Bioscience and Biotechnologies Institute of Grenoble, CEA-Grenoble, 38054 Grenoble Cedex 9, France
| | - Jan H M Schellens
- Laboratory of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Dieter Blancquaert
- Department of Biology, Laboratory of Functional Plant Biology, Ghent University, 9000 Gent, Belgium
| | | | | |
Collapse
|
22
|
Moreno-Ortega B, Fort G, Muller B, Guédon Y. Identifying Developmental Zones in Maize Lateral Root Cell Length Profiles using Multiple Change-Point Models. FRONTIERS IN PLANT SCIENCE 2017; 8:1750. [PMID: 29123533 PMCID: PMC5662930 DOI: 10.3389/fpls.2017.01750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/25/2017] [Indexed: 05/04/2023]
Abstract
The identification of the limits between the cell division, elongation and mature zones in the root apex is still a matter of controversy when methods based on cellular features, molecular markers or kinematics are compared while methods based on cell length profiles have been comparatively underexplored. Segmentation models were developed to identify developmental zones within a root apex on the basis of epidermal cell length profiles. Heteroscedastic piecewise linear models were estimated for maize lateral roots of various lengths of both wild type and two mutants affected in auxin signaling (rtcs and rum-1). The outputs of these individual root analyses combined with morphological features (first root hair position and root diameter) were then globally analyzed using principal component analysis. Three zones corresponding to the division zone, the elongation zone and the mature zone were identified in most lateral roots while division zone and sometimes elongation zone were missing in arrested roots. Our results are consistent with an auxin-dependent coordination between cell flux, cell elongation and cell differentiation. The proposed segmentation models could extend our knowledge of developmental regulations in longitudinally organized plant organs such as roots, monocot leaves or internodes.
Collapse
Affiliation(s)
- Beatriz Moreno-Ortega
- LEPSE, INRA, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR AGAP, Montpellier, France
- Inria, Virtual Plants, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Guillaume Fort
- LEPSE, INRA, Montpellier SupAgro, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Bertrand Muller
- LEPSE, INRA, Montpellier SupAgro, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Yann Guédon
- CIRAD, UMR AGAP, Montpellier, France
- Inria, Virtual Plants, Montpellier, France
- Université de Montpellier, Montpellier, France
| |
Collapse
|
23
|
Cattaneo P, Hardtke CS. BIG BROTHER Uncouples Cell Proliferation from Elongation in the Arabidopsis Primary Root. PLANT & CELL PHYSIOLOGY 2017; 58:1519-1527. [PMID: 28922745 PMCID: PMC5914324 DOI: 10.1093/pcp/pcx091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/25/2017] [Indexed: 05/10/2023]
Abstract
Plant organ size is sensitive to environmental conditions, but is also limited by hardwired genetic constraints. In Arabidopsis, a few organ size regulators have been identified. Among them, the BIG BROTHER (BB) gene has a prominent role in the determination of flower organ and leaf size. BB loss-of-function mutations result in a prolonged proliferation phase during leaf(-like) organ formation, and consequently larger leaves, petals and sepals. Whether BB has a similar role in root growth is unknown. Here we describe a novel bb allele which carries a P235L point mutation in the BB RING finger domain. This allele behaves similarly to described bb loss-of-function alleles and displays increased root meristem size due to a higher number of dividing, meristematic cells. In contrast, mature cell length is unaffected. The increased meristematic activity does not, however, translate into overall enhanced root elongation, possibly because bb mutation also results in an increased number of cell files in the vascular cylinder. These extra formative divisions might offset any growth acceleration by extra meristematic divisions. Thus, although BB dampens root cell proliferation, the consequences on macroscopic root growth are minor. However, bb mutation accelerates overall root growth when introduced into sensitized backgrounds. For example, it partially rescues the short root phenotypes of the brevis radix and octopus mutants, but does not complement their phloem differentiation or transport defects. In summary, we provide evidence that BB acts conceptually similarly in leaf(-like) organs and the primary root, and uncouples cell proliferation from elongation in the root meristem.
Collapse
Affiliation(s)
- Pietro Cattaneo
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Christian S. Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
- Corresponding author: E-mail, ; Fax, +41-21-692-4150
| |
Collapse
|
24
|
Heyman J, Polyn S, Eekhout T, De Veylder L. Tissue-Specific Control of the Endocycle by the Anaphase Promoting Complex/Cyclosome Inhibitors UVI4 and DEL1. PLANT PHYSIOLOGY 2017; 175:303-313. [PMID: 28698355 PMCID: PMC5580769 DOI: 10.1104/pp.17.00785] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/07/2017] [Indexed: 05/03/2023]
Abstract
The endocycle represents a modified mitotic cell cycle that in plants is often coupled to cell enlargement and differentiation. Endocycle onset is controlled by activity of the Anaphase Promoting Complex/Cyclosome (APC/C), a multisubunit E3 ubiquitin ligase targeting cell-cycle factors for destruction. CELL CYCLE SWITCH52 (CCS52) proteins represent rate-limiting activator subunits of the APC/C. In Arabidopsis (Arabidopsis thaliana), mutations in either CCS52A1 or CCS52A2 activators result in a delayed endocycle onset, whereas their overexpression triggers increased DNA ploidy levels. Here, the relative contribution of the APC/CCCS52A1 and APC/CCCS52A2 complexes to different developmental processes was studied through analysis of their negative regulators, being the ULTRAVIOLET-B-INSENSITIVE4 protein and the DP-E2F-Like1 transcriptional repressor, respectively. Our data illustrate cooperative activity of the APC/CCCS52A1 and APC/CCCS52A2 complexes during root and trichome development, but functional interdependency during leaf development. Furthermore, we found APC/CCCS52A1 activity to control CCS52A2 expression. We conclude that interdependency of CCS52A-controlled APC/C activity is controlled in a tissue-specific manner.
Collapse
Affiliation(s)
- Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium and Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Stefanie Polyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium and Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium and Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium and Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
25
|
von Wangenheim D, Hauschild R, Fendrych M, Barone V, Benková E, Friml J. Live tracking of moving samples in confocal microscopy for vertically grown roots. eLife 2017. [PMID: 28628006 PMCID: PMC5498147 DOI: 10.7554/elife.26792] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Roots navigate through soil integrating environmental signals to orient their growth. The Arabidopsis root is a widely used model for developmental, physiological and cell biological studies. Live imaging greatly aids these efforts, but the horizontal sample position and continuous root tip displacement present significant difficulties. Here, we develop a confocal microscope setup for vertical sample mounting and integrated directional illumination. We present TipTracker - a custom software for automatic tracking of diverse moving objects usable on various microscope setups. Combined, this enables observation of root tips growing along the natural gravity vector over prolonged periods of time, as well as the ability to induce rapid gravity or light stimulation. We also track migrating cells in the developing zebrafish embryo, demonstrating the utility of this system in the acquisition of high-resolution data sets of dynamic samples. We provide detailed descriptions of the tools enabling the easy implementation on other microscopes.
Collapse
Affiliation(s)
| | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Matyáš Fendrych
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Vanessa Barone
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Eva Benková
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
26
|
Baute J, Polyn S, De Block J, Blomme J, Van Lijsebettens M, Inz� D. F-Box Protein FBX92 Affects Leaf Size in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2017; 58:962-975. [PMID: 28340173 PMCID: PMC5429023 DOI: 10.1093/pcp/pcx035] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/03/2017] [Indexed: 05/18/2023]
Abstract
F-box proteins are part of one of the largest families of regulatory proteins that play important roles in protein degradation. In plants, F-box proteins are functionally very diverse, and only a small subset has been characterized in detail. Here, we identified a novel F-box protein FBX92 as a repressor of leaf growth in Arabidopsis. Overexpression of AtFBX92 resulted in plants with smaller leaves than the wild type, whereas plants with reduced levels of AtFBX92 showed, in contrast, increased leaf growth by stimulating cell proliferation. Detailed cellular analysis suggested that AtFBX92 specifically affects the rate of cell division during early leaf development. This is supported by the increased expression levels of several cell cycle genes in plants with reduced AtFBX92 levels. Surprisingly, overexpression of the maize homologous gene ZmFBX92 in maize had no effect on plant growth, whereas ectopic expression in Arabidopsis increased leaf growth. Expression of a truncated form of AtFBX92 showed that the contrasting effects of ZmFBX92 and AtFBX92 gain of function in Arabidopsis are due to the absence of the F-box-associated domain in the ZmFBX92 gene. Our work reveals an additional player in the complex network that determines leaf size and lays the foundation for identifying putative substrates.
Collapse
Affiliation(s)
- Joke Baute
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, B-9052 Ghent, Belgium
| | - Stefanie Polyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, B-9052 Ghent, Belgium
| | - Jolien De Block
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, B-9052 Ghent, Belgium
| | - Jonas Blomme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, B-9052 Ghent, Belgium
| | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, B-9052 Ghent, Belgium
| | - Dirk Inz�
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, B-9052 Ghent, Belgium
- Corresponding author: E-mail, ; Fax, +32-9-3313809
| |
Collapse
|
27
|
Yang X, Dong G, Palaniappan K, Mi G, Baskin TI. Temperature-compensated cell production rate and elongation zone length in the root of Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2017; 40:264-276. [PMID: 27813107 DOI: 10.1111/pce.12855] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 05/13/2023]
Abstract
To understand how root growth responds to temperature, we used kinematic analysis to quantify division and expansion parameters in the root of Arabidopsis thaliana. Plants were grown at temperatures from 15 to 30 °C, given continuously from germination. Over these temperatures, root length varies more than threefold in the wild type but by only twofold in a double mutant for phytochrome-interacting factor 4 and 5. For kinematics, the spatial profile of velocity was obtained with new software, Stripflow. We find that 30 °C truncates the elongation zone and curtails cell production, responses that probably reflect the elicitation of a common pathway for handling severe stresses. Curiously, rates of cell division at all temperatures are closely correlated with rates of radial expansion. Between 15 to 25 °C, root growth rate, maximal elemental elongation rate, and final cell length scale positively with temperature whereas the length of the meristem scales negatively. Non-linear temperature scaling characterizes meristem cell number, time to transit through either meristem or elongation zone, and average cell division rate. Surprisingly, the length of the elongation zone and the total rate of cell production are temperature invariant, constancies that have implications for our understanding of how the underlying cellular processes are integrated.
Collapse
Affiliation(s)
- Xiaoli Yang
- Biology Department, University of Massachusetts, Amherst, 01003, MA, USA
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Gang Dong
- Biology Department, University of Massachusetts, Amherst, 01003, MA, USA
| | - K Palaniappan
- Computer Science Department, University of Missouri, Columbia, 65211, MO, USA
| | - Guohua Mi
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Tobias I Baskin
- Biology Department, University of Massachusetts, Amherst, 01003, MA, USA
| |
Collapse
|
28
|
Vyplelová P, Ovečka M, Šamaj J. Alfalfa Root Growth Rate Correlates with Progression of Microtubules during Mitosis and Cytokinesis as Revealed by Environmental Light-Sheet Microscopy. FRONTIERS IN PLANT SCIENCE 2017; 8:1870. [PMID: 29163595 PMCID: PMC5670501 DOI: 10.3389/fpls.2017.01870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/13/2017] [Indexed: 05/04/2023]
Abstract
Cell division and expansion are two fundamental biological processes supporting indeterminate root growth and development of plants. Quantitative evaluations of cell divisions related to root growth analyses have been performed in several model crop and non-crop plant species, but not in important legume plant Medicago sativa. Light-sheet fluorescence microscopy (LSFM) is an advanced imaging technique widely used in animal developmental biology, providing efficient fast optical sectioning under physiological conditions with considerably reduced phototoxicity and photobleaching. Long-term 4D imaging of living plants offers advantages for developmental cell biology not available in other microscopy approaches. Recently, LSFM was implemented in plant developmental biology studies, however, it is largely restricted to the model plant Arabidopsis thaliana. Cellular and subcellular events in crop species and robust plant samples have not been studied by this method yet. Therefore we performed LSFM long-term live imaging of growing root tips of transgenic alfalfa plants expressing the fluorescent molecular marker for the microtubule-binding domain (GFP-MBD), in order to study dynamic patterns of microtubule arrays during mitotic cell division. Quantitative evaluations of cell division progress in the two root tissues (epidermis and cortex) clearly indicate that root growth rate is correlated with duration of cell division in alfalfa roots. Our results favor non-invasive environmental LSFM as one of the most suitable methods for qualitative and quantitative cellular and developmental imaging of living transgenic legume crops.
Collapse
|
29
|
Sprangers K, Avramova V, Beemster GTS. Kinematic Analysis of Cell Division and Expansion: Quantifying the Cellular Basis of Growth and Sampling Developmental Zones in Zea mays Leaves. J Vis Exp 2016:54887. [PMID: 28060300 PMCID: PMC5226352 DOI: 10.3791/54887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Growth analyses are often used in plant science to investigate contrasting genotypes and the effect of environmental conditions. The cellular aspect of these analyses is of crucial importance, because growth is driven by cell division and cell elongation. Kinematic analysis represents a methodology to quantify these two processes. Moreover, this technique is easy to use in non-specialized laboratories. Here, we present a protocol for performing a kinematic analysis in monocotyledonous maize (Zea mays) leaves. Two aspects are presented: (1) the quantification of cell division and expansion parameters, and (2) the determination of the location of the developmental zones. This could serve as a basis for sampling design and/or could be useful for data interpretation of biochemical and molecular measurements with high spatial resolution in the leaf growth zone. The growth zone of maize leaves is harvested during steady-state growth. Individual leaves are used for meristem length determination using a DAPI stain and cell-length profiles using DIC microscopy. The protocol is suited for emerged monocotyledonous leaves harvested during steady-state growth, with growth zones spanning at least several centimeters. To improve the understanding of plant growth regulation, data on growth and molecular studies must be combined. Therefore, an important advantage of kinematic analysis is the possibility to correlate changes at the molecular level to well-defined stages of cellular development. Furthermore, it allows for a more focused sampling of specified developmental stages, which is useful in case of limited budget or time.
Collapse
|
30
|
Koevoets IT, Venema JH, Elzenga JTM, Testerink C. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:1335. [PMID: 27630659 PMCID: PMC5005332 DOI: 10.3389/fpls.2016.01335] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/18/2016] [Indexed: 05/18/2023]
Abstract
To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant's response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops.
Collapse
Affiliation(s)
- Iko T. Koevoets
- Swammerdam Institute for Life Sciences, Plant Cell Biology, University of AmsterdamAmsterdam, Netherlands
| | - Jan Henk Venema
- Genomics Research in Ecology and Evolution in Nature – Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningen, Netherlands
| | - J. Theo. M. Elzenga
- Genomics Research in Ecology and Evolution in Nature – Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningen, Netherlands
| | - Christa Testerink
- Swammerdam Institute for Life Sciences, Plant Cell Biology, University of AmsterdamAmsterdam, Netherlands
| |
Collapse
|
31
|
Abstract
One of the central goals in biology is to understand how and how much of the phenotype of an organism is encoded in its genome. Although many genes that are crucial for organismal processes have been identified, much less is known about the genetic bases underlying quantitative phenotypic differences in natural populations. We discuss the fundamental gap between the large body of knowledge generated over the past decades by experimental genetics in the laboratory and what is needed to understand the genotype-to-phenotype problem on a broader scale. We argue that systems genetics, a combination of systems biology and the study of natural variation using quantitative genetics, will help to address this problem. We present major advances in these two mostly disconnected areas that have increased our understanding of the developmental processes of flowering time control and root growth. We conclude by illustrating and discussing the efforts that have been made toward systems genetics specifically in plants.
Collapse
Affiliation(s)
- Takehiko Ogura
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
32
|
Yang JS, Hu W, Zhao W, Meng Y, Chen B, Wang Y, Zhou Z. Soil Potassium Deficiency Reduces Cotton Fiber Strength by Accelerating and Shortening Fiber Development. Sci Rep 2016; 6:28856. [PMID: 27350236 PMCID: PMC4924092 DOI: 10.1038/srep28856] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/10/2016] [Indexed: 11/24/2022] Open
Abstract
Low potassium (K)-induced premature senescence in cotton has been observed worldwide, but how it affects cotton fiber properties remain unclear. We hypothesized that K deficiency affects cotton fiber properties by causing disordered fiber development, which may in turn be caused by the induction of a carbohydrate acquisition difficulty. To investigate this issue, we employed a low-K-sensitive cotton cultivar Siza 3 and a low-K-tolerant cultivar Simian 3 and planted them in three regions of different K supply. Data concerning lint yield, Pn and main fiber properties were collected from three years of testing. Soil K deficiency significantly accelerated fiber cellulose accumulation and dehydration processes, which, together with previous findings, suggests that the low-K induced carbohydrate acquisition difficulty could cause disordered fiber development by stimulating the expression of functional proteins such as CDKA (cyclin-dependent kinase). As a result, fiber strength and lint weight were reduced by up to 7.8% and 2.1%, respectively. Additional quantitative analysis revealed that the degree of accelerated fiber development negatively correlated with fiber strength. According to the results of this study, it is feasible to address the effects of soil K deficiency on fiber properties using existing cultivation strategies to prevent premature senescence of cotton plants.
Collapse
Affiliation(s)
- Jia-Shuo Yang
- Key Laboratory of Crop Physiology & Ecology, Department of Agronomy, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Wei Hu
- Key Laboratory of Crop Physiology & Ecology, Department of Agronomy, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Wenqing Zhao
- Key Laboratory of Crop Physiology & Ecology, Department of Agronomy, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yali Meng
- Key Laboratory of Crop Physiology & Ecology, Department of Agronomy, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Binglin Chen
- Key Laboratory of Crop Physiology & Ecology, Department of Agronomy, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Youhua Wang
- Key Laboratory of Crop Physiology & Ecology, Department of Agronomy, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Zhiguo Zhou
- Key Laboratory of Crop Physiology & Ecology, Department of Agronomy, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| |
Collapse
|
33
|
Aceves-García P, Álvarez-Buylla ER, Garay-Arroyo A, García-Ponce B, Muñoz R, Sánchez MDLP. Root Architecture Diversity and Meristem Dynamics in Different Populations of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:858. [PMID: 27379140 PMCID: PMC4910468 DOI: 10.3389/fpls.2016.00858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/31/2016] [Indexed: 05/26/2023]
Abstract
Arabidopsis thaliana has been an excellent model system for molecular genetic approaches to development and physiology. More recently, the potential of studying various accessions collected from diverse habitats has been started to exploit. Col-0 has been the best-studied accession but we now know that several traits show significant divergences among them. In this work, we focused in the root that has become a key system for development. We studied root architecture and growth dynamics of 12 Arabidopsis accessions. Our data reveal a wide variability in root architecture and root length among accessions. We also found variability in the root apical meristem (RAM), explained mainly by cell size at the RAM transition domain and possibly by peculiar forms of organization at the stem cell niche in some accessions. Contrary to Col-0 reports, in some accessions the RAM size not always explains the variations in the root length; indicating that elongated cell size could be more relevant in the determination of root length than the RAM size itself. This study contributes to investigations dealing with understanding the molecular and cellular basis of phenotypic variation, the role of plasticity on adaptation, and the developmental mechanisms that may restrict phenotypic variation in response to contrasting environmental conditions.
Collapse
Affiliation(s)
- Pamela Aceves-García
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, MéxicoMexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, MéxicoMexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, MéxicoMexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, MéxicoMexico
| | - Rodrigo Muñoz
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, MéxicoMexico
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, MéxicoMexico
| |
Collapse
|
34
|
Avramova V, Nagel KA, AbdElgawad H, Bustos D, DuPlessis M, Fiorani F, Beemster GTS. Screening for drought tolerance of maize hybrids by multi-scale analysis of root and shoot traits at the seedling stage. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2453-66. [PMID: 26889006 DOI: 10.1093/jxb/erw055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We studied the drought response of eight commercial hybrid maize lines with contrasting drought sensitivity together with the reference inbred line B73 using a non-invasive platform for root and shoot phenotyping and a kinematics approach to quantify cell level responses in the leaf. Drought treatments strongly reduced leaf growth parameters including projected leaf area, elongation rate, final length and width of the fourth and fifth leaf. Physiological measurements including water use efficiency, chlorophyll fluorescence and photosynthesis were also significantly affected. By performing a kinematic analysis, we show that leaf growth reduction in response to drought is mainly due to a decrease in cell division rate, whereas a marked reduction in cell expansion rate is compensated by increased duration of cell expansion. Detailed analysis of root growth in rhizotrons under drought conditions revealed a strong reduction in total root length as well as rooting depth and width. This was reflected by corresponding decreases in fresh and dry weight of the root system. We show that phenotypic differences between lines differing in geographic origin (African vs. European) and in drought tolerance under field conditions can already be identified at the seedling stage by measurements of total root length and shoot dry weight of the plants. Moreover, we propose a list of candidate traits that could potentially serve as traits for future screening strategies.
Collapse
Affiliation(s)
- Viktoriya Avramova
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Kerstin A Nagel
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Hamada AbdElgawad
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Dolores Bustos
- Instituto de Investgatión de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), X5020ICA Cordoba, Argentina
| | - Magdeleen DuPlessis
- Department of Plant Production and Soil Science, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Fabio Fiorani
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Gerrit T S Beemster
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| |
Collapse
|
35
|
Juraniec M, Heyman J, Schubert V, Salis P, De Veylder L, Verbruggen N. Arabidopsis COPPER MODIFIED RESISTANCE1/PATRONUS1 is essential for growth adaptation to stress and required for mitotic onset control. THE NEW PHYTOLOGIST 2016; 209:177-91. [PMID: 26261921 DOI: 10.1111/nph.13589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/01/2015] [Indexed: 05/23/2023]
Abstract
The mitotic checkpoint (MC) guards faithful sister chromatid segregation by monitoring the attachment of spindle microtubules to the kinetochores. When chromosome attachment errors are detected, MC delays the metaphase-to-anaphase transition through the inhibition of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. In contrast to yeast and mammals, our knowledge on the proteins involved in MC in plants is scarce. Transient synchronization of root tips as well as promoter-reporter gene fusions were performed to analyze temporal and spatial expression of COPPER MODIFIED RESISTANCE1/PATRONUS1 (CMR1/PANS1) in developing Arabidopsis thaliana seedlings. Functional analysis of the gene was carried out, including CYCB1;2 stability in CMR1/PANS1 knockout and overexpressor background as well as metaphase-anaphase chromosome status. CMR1/PANS1 is transcriptionally active during M phase. Its deficiency provokes premature cell cycle exit and in consequence a rapid consumption of the number of meristematic cells in particular under stress conditions that are known to affect spindle microtubules. Root growth impairment is correlated with a failure to delay the onset of anaphase, resulting in anaphase bridges and chromosome missegregation. CMR1/PANS1 overexpression stabilizes the mitotic CYCB1;2 protein. Likely, CMR1/PANS1 coordinates mitotic cell cycle progression by acting as an APC/C inhibitor and plays a key role in growth adaptation to stress.
Collapse
Affiliation(s)
- Michal Juraniec
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| | - Jefri Heyman
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466, Stadt Seeland, Germany
| | - Pietrino Salis
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| | - Lieven De Veylder
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| |
Collapse
|
36
|
Sliwinska E, Mathur J, Bewley JD. On the relationship between endoreduplication and collet hair initiation and tip growth, as determined using six Arabidopsis thaliana root-hair mutants. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3285-3295. [PMID: 25873686 DOI: 10.1093/jxb/erv136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A positive correlation between nuclear DNA content and cell size, as postulated by the karyoplasmic theory, has been confirmed in many plant tissues. However, there is also evidence suggesting that there are exceptions. While in previous reports the cell size:ploidy relationship was studied in intact tissues containing cells of different sizes, here simultaneously developing single cells of collet hairs were used to study endoreduplication in Arabidopsis thaliana mutants that produce hairs of variable size and morphology. Endoreduplication in the root and collet zones of six different root-hair mutants was analysed before and after collet hair development using flow cytometry and confocal microscopy. Additionally, the changes in nuclear size (ploidy), shape, and movement in developing collet hairs of a hybrid between Arabidopsis transgenic line NLS-GFP-GUS and the rhd3 (root hair defective3) mutant were followed using time-lapse confocal microscopy. In this hybrid endoreduplication in the collet hairs was disturbed. However, based on the analyses of all mutants, no correlation was found between hair length and the ploidy of the cells in the collet and root regions. The results indicate that the karyoplasmic ratio is maintained at the beginning of collet-hair development, but tip growth proceeds in a DNA-amount-independent manner. The final size of a collet hair appears to be dependent more on genetic modifiers governing general cell physiology than on its DNA content.
Collapse
Affiliation(s)
- Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Department of Plant Genetics, Physiology and Biotechnology, UTP University of Science and Technology, Kaliskiego Ave. 7, 85-789 Bydgoszcz, Poland Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jaideep Mathur
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - J Derek Bewley
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
37
|
Karidas P, Challa KR, Nath U. The tarani mutation alters surface curvature in Arabidopsis leaves by perturbing the patterns of surface expansion and cell division. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2107-22. [PMID: 25711708 PMCID: PMC4378639 DOI: 10.1093/jxb/erv015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The leaf surface usually stays flat, maintained by coordinated growth. Growth perturbation can introduce overall surface curvature, which can be negative, giving a saddle-shaped leaf, or positive, giving a cup-like leaf. Little is known about the molecular mechanisms that underlie leaf flatness, primarily because only a few mutants with altered surface curvature have been isolated and studied. Characterization of mutants of the CINCINNATA-like TCP genes in Antirrhinum and Arabidopsis have revealed that their products help maintain flatness by balancing the pattern of cell proliferation and surface expansion between the margin and the central zone during leaf morphogenesis. On the other hand, deletion of two homologous PEAPOD genes causes cup-shaped leaves in Arabidopsis due to excess division of dispersed meristemoid cells. Here, we report the isolation and characterization of an Arabidopsis mutant, tarani (tni), with enlarged, cup-shaped leaves. Morphometric analyses showed that the positive curvature of the tni leaf is linked to excess growth at the centre compared to the margin. By monitoring the dynamic pattern of CYCLIN D3;2 expression, we show that the shape of the primary arrest front is strongly convex in growing tni leaves, leading to excess mitotic expansion synchronized with excess cell proliferation at the centre. Reduction of cell proliferation and of endogenous gibberellic acid levels rescued the tni phenotype. Genetic interactions demonstrated that TNI maintains leaf flatness independent of TCPs and PEAPODs.
Collapse
Affiliation(s)
- Premananda Karidas
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - Krishna Reddy Challa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
38
|
Zhu J, Zhang KX, Wang WS, Gong W, Liu WC, Chen HG, Xu HH, Lu YT. Low temperature inhibits root growth by reducing auxin accumulation via ARR1/12. PLANT & CELL PHYSIOLOGY 2015; 56:727-36. [PMID: 25552473 DOI: 10.1093/pcp/pcu217] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/28/2014] [Indexed: 05/18/2023]
Abstract
Plants exhibit reduced root growth when exposed to low temperature; however, how low temperature modulates root growth remains to be understood. Our study demonstrated that low temperature reduces both meristem size and cell number, repressing the division potential of meristematic cells by reducing auxin accumulation, possibly through the repressed expression of PIN1/3/7 and auxin biosynthesis-related genes, although the experiments with exogenous auxin application also suggest the involvement of other factor(s). In addition, we verified that ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) and ARR12 are involved in low temperature-mediated inhibition of root growth by showing that the roots of arr1-3 arr12-1 seedlings were less sensitive than wild-type roots to low temperature, in terms of changes in root length and meristem cell number. Furthermore, low temperature reduced the levels of PIN1/3 transcripts and the auxin level to a lesser extent in arr1-3 arr12-1 roots than in wild-type roots, suggesting that cytokinin signaling is involved in the low-temperature-mediated reduction of auxin accumulation. Taken together, our data suggest that low temperature inhibits root growth by reducing auxin accumulation via ARR1/12.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kun-Xiao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Shu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wen Gong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Cheng Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hong-Guo Chen
- College of Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, Hubei Province, China
| | - Heng-Hao Xu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
39
|
Scholes DR, Paige KN. Plasticity in ploidy: a generalized response to stress. TRENDS IN PLANT SCIENCE 2015; 20:165-175. [PMID: 25534217 DOI: 10.1016/j.tplants.2014.11.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/30/2014] [Accepted: 11/21/2014] [Indexed: 05/29/2023]
Abstract
Endoreduplication, the replication of the genome without mitosis, leads to an increase in the cellular ploidy of an organism over its lifetime, a condition termed 'endopolyploidy'. Endopolyploidy is thought to play significant roles in physiology and development through cellular, metabolic, and genetic effects. While the occurrence of endopolyploidy has been observed widely across taxa, studies have only recently begun to characterize and manipulate endopolyploidy with a focus on its ecological and evolutionary importance. No compilation of these examples implicating endoreduplication as a generalized response to stress has thus far been made, despite the growing evidence supporting this notion. We review here the recent literature of stress-induced endopolyploidy and suggest that plants employ endoreduplication as an adaptive, plastic response to mitigate the effects of stress.
Collapse
Affiliation(s)
- Daniel R Scholes
- School of Integrative Biology, University of Illinois at Urbana-Champaign, 515 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL 61801, USA.
| | - Ken N Paige
- School of Integrative Biology, University of Illinois at Urbana-Champaign, 515 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
40
|
Bizet F, Hummel I, Bogeat-Triboulot MB. Length and activity of the root apical meristem revealed in vivo by infrared imaging. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1387-95. [PMID: 25540436 PMCID: PMC4339598 DOI: 10.1093/jxb/eru488] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Understanding how cell division and cell elongation influence organ growth and development is a long-standing issue in plant biology. In plant roots, most of the cell divisions occur in a short and specialized region, the root apical meristem (RAM). Although RAM activity has been suggested to be of high importance to understand how roots grow and how the cell cycle is regulated, few experimental and numeric data are currently available. The characterization of the RAM is difficult and essentially based upon cell length measurements through destructive and time-consuming microscopy approaches. Here, a new non-invasive method is described that couples infrared light imaging and kinematic analyses and that allows in vivo measurements of the RAM length. This study provides a detailed description of the RAM activity, especially in terms of cell flux and cell division rate. We focused on roots of hydroponic grown poplars and confirmed our method on maize roots. How the RAM affects root growth rate is studied by taking advantage of the high inter-individual variability of poplar root growth. An osmotic stress was applied and did not significantly affect the RAM length, highlighting its homeostasis in short to middle-term responses. The methodology described here simplifies a lot experimental procedures, allows an increase in the number of individuals that can be taken into account in experiments, and means new experiments can be formulated that allow temporal monitoring of the RAM length.
Collapse
Affiliation(s)
- François Bizet
- INRA, UMR Ecologie et Ecophysiologie Forestière, F-25420 Champenoux, France Université de Lorraine, UMR Ecologie et Ecophysiologie Forestière, BP 239, F-54506 Vandoeuvre, France
| | - Irène Hummel
- INRA, UMR Ecologie et Ecophysiologie Forestière, F-25420 Champenoux, France Université de Lorraine, UMR Ecologie et Ecophysiologie Forestière, BP 239, F-54506 Vandoeuvre, France
| | - Marie-Béatrice Bogeat-Triboulot
- INRA, UMR Ecologie et Ecophysiologie Forestière, F-25420 Champenoux, France Université de Lorraine, UMR Ecologie et Ecophysiologie Forestière, BP 239, F-54506 Vandoeuvre, France
| |
Collapse
|
41
|
Satbhai SB, Ristova D, Busch W. Underground tuning: quantitative regulation of root growth. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1099-112. [PMID: 25628329 DOI: 10.1093/jxb/eru529] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants display a high degree of phenotypic plasticity that allows them to tune their form and function to changing environments. The plant root system has evolved mechanisms to anchor the plant and to efficiently explore soils to forage for soil resources. Key to this is an enormous capacity for plasticity of multiple traits that shape the distribution of roots in the soil. Such root system architecture-related traits are determined by root growth rates, root growth direction, and root branching. In this review, we describe how the root system is constituted, and which mechanisms, pathways, and genes mainly regulate plasticity of the root system in response to environmental variation.
Collapse
Affiliation(s)
- Santosh B Satbhai
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocentre (VBC), Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Daniela Ristova
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocentre (VBC), Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocentre (VBC), Dr Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
42
|
Åsberg SE, Bones AM, Øverby A. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:364. [PMID: 26042144 PMCID: PMC4436579 DOI: 10.3389/fpls.2015.00364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/07/2015] [Indexed: 05/08/2023]
Abstract
Isothiocyanates (ITCs) are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC) has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants.
Collapse
Affiliation(s)
| | - Atle M. Bones
- *Correspondence: Atle M. Bones and Anders Øverby, Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, N-7491 Trondheim, Norway ;
| | - Anders Øverby
- *Correspondence: Atle M. Bones and Anders Øverby, Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, N-7491 Trondheim, Norway ;
| |
Collapse
|
43
|
Sotelo-Silveira M, Chauvin AL, Marsch-Martínez N, Winkler R, de Folter S. Metabolic fingerprinting of Arabidopsis thaliana accessions. FRONTIERS IN PLANT SCIENCE 2015; 6:365. [PMID: 26074932 PMCID: PMC4444734 DOI: 10.3389/fpls.2015.00365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/08/2015] [Indexed: 05/02/2023]
Abstract
In the post-genomic era much effort has been put on the discovery of gene function using functional genomics. Despite the advances achieved by these technologies in the understanding of gene function at the genomic and proteomic level, there is still a big genotype-phenotype gap. Metabolic profiling has been used to analyze organisms that have already been characterized genetically. However, there is a small number of studies comparing the metabolic profile of different tissues of distinct accessions. Here, we report the detection of over 14,000 and 17,000 features in inflorescences and leaves, respectively, in two widely used Arabidopsis thaliana accessions. A predictive Random Forest Model was developed, which was able to reliably classify tissue type and accession of samples based on LC-MS profile. Thereby we demonstrate that the morphological differences among A. thaliana accessions are reflected also as distinct metabolic phenotypes within leaves and inflorescences.
Collapse
Affiliation(s)
- Mariana Sotelo-Silveira
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN)Irapuato, México
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la RepúblicaMontevideo, Uruguay
| | - Anne-Laure Chauvin
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN)Irapuato, México
| | | | - Robert Winkler
- Department of Biotechnology and Biochemistry, CINVESTAV Unidad IrapuatoIrapuato, Mexico
- *Correspondence: Robert Winkler, Department of Biotechnology and Biochemistry, CINVESTAV Unidad Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36821 Irapuato, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN)Irapuato, México
- Stefan de Folter, Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, CP 36821 Irapuato, Guanajuato, Mexico
| |
Collapse
|
44
|
Tank JG, Thaker VS. Systemic control of cell division and endoreduplication by NAA and BAP by modulating CDKs in root tip cells of Allium cepa. BIOMED RESEARCH INTERNATIONAL 2014; 2014:453707. [PMID: 24955358 PMCID: PMC4052472 DOI: 10.1155/2014/453707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/01/2014] [Accepted: 04/16/2014] [Indexed: 11/18/2022]
Abstract
Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP) treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed.
Collapse
Affiliation(s)
- Jigna G. Tank
- Department of Biosciences, Centre for Advanced Studies in Plant Biotechnology and Genetic Engineering, Saurashtra University, Rajkot Gujarat 360 005, India
| | - Vrinda S. Thaker
- Department of Biosciences, Centre for Advanced Studies in Plant Biotechnology and Genetic Engineering, Saurashtra University, Rajkot Gujarat 360 005, India
| |
Collapse
|
45
|
Braidwood L, Breuer C, Sugimoto K. My body is a cage: mechanisms and modulation of plant cell growth. THE NEW PHYTOLOGIST 2014; 201:388-402. [PMID: 24033322 DOI: 10.1111/nph.12473] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 08/01/2013] [Indexed: 05/19/2023]
Abstract
388 I. 388 II. 389 III. 389 IV. 390 V. 391 VI. 393 VII. 394 VIII. 398 399 References 399 SUMMARY: The wall surrounding plant cells provides protection from abiotic and biotic stresses, and support through the action of turgor pressure. However, the presence of this strong elastic wall also prevents cell movement and resists cell growth. This growth can be likened to extending a house from the inside, using extremely high pressures to push out the walls. Plants must increase cell volume in order to explore their environment, acquire nutrients and reproduce. Cell wall material must stretch and flow in a controlled manner and, concomitantly, new cell wall material must be deposited at the correct rate and site to prevent wall and cell rupture. In this review, we examine biomechanics, cell wall structure and growth regulatory networks to provide a 'big picture' of plant cell growth.
Collapse
Affiliation(s)
- Luke Braidwood
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Christian Breuer
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
46
|
YAMASAKI S, MURAKAMI Y. Continuous UV-B Irradiation Induces Endoreduplication and Trichome Formation in Cotyledons, and Reduces Epidermal Cell Division and Expansion in the First Leaves of Pumpkin Seedlings (Cucurbita maxima Duch.^|^times;C. moschata Duch.). ACTA ACUST UNITED AC 2014. [DOI: 10.2525/ecb.52.203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
47
|
YAMASAKI S, SHIGETO H, ASHIHARA Y, NOGUCHI N. Continuous Long-term UV-B Irradiation Reduces Division and Expansion of Epidermal Cells in True Leaves, but Accelerates Developmental Stages Such as True Leaf Unfolding and Male Flower Bud Production in Cucumber (Cucumis sativus L.) Seedlings. ACTA ACUST UNITED AC 2014. [DOI: 10.2525/ecb.52.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Jégu T, Latrasse D, Delarue M, Mazubert C, Bourge M, Hudik E, Blanchet S, Soler MN, Charon C, De Veylder L, Raynaud C, Bergounioux C, Benhamed M. Multiple functions of Kip-related protein5 connect endoreduplication and cell elongation. PLANT PHYSIOLOGY 2013; 161:1694-705. [PMID: 23426196 PMCID: PMC3613449 DOI: 10.1104/pp.112.212357] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/01/2013] [Indexed: 05/18/2023]
Abstract
Despite considerable progress in our knowledge regarding the cell cycle inhibitor of the Kip-related protein (KRP) family in plants, less is known about the coordination of endoreduplication and cell differentiation. In animals, the role of cyclin-dependent kinase (CDK) inhibitors as multifunctional factors coordinating cell cycle regulation and cell differentiation is well documented and involves not only the inhibition of CDK/cyclin complexes but also other mechanisms, among them the regulation of transcription. Interestingly, several plant KRPs have a punctuated distribution in the nucleus, suggesting that they are associated with heterochromatin. Here, one of these chromatin-bound KRPs, KRP5, has been studied in Arabidopsis (Arabidopsis thaliana). KRP5 is expressed in endoreduplicating cells, and loss of KRP5 function decreases endoreduplication, indicating that KRP5 is a positive regulator of endoreduplication. This regulation relies on several mechanisms: in addition to its role in cyclin/CDK kinase inhibition previously described, chromatin immunoprecipitation sequencing data combined with transcript quantification provide evidence that KRP5 regulates the transcription of genes involved in cell wall organization. Furthermore, KRP5 overexpression increases chromocenter decondensation and endoreduplication in the Arabidopsis trithorax-related protein5 (atxr5) atxr6 double mutant, which is deficient for the deposition of heterochromatin marks. Hence, KRP5 could bind chromatin to coordinately control endoreduplication and chromatin structure and allow the expression of genes required for cell elongation.
Collapse
|
49
|
Chitwood DH, Sinha NR. A census of cells in time: quantitative genetics meets developmental biology. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:92-9. [PMID: 23218243 DOI: 10.1016/j.pbi.2012.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 05/09/2023]
Abstract
Quantitative genetics has become a popular method for determining the genetic basis of natural variation. Combined with genomic methods, it provides a tool for discerning the genetic basis of gene expression. So-called genetical genomics approaches yield a wealth of genomic information, but by necessity, because of cost and time, fail to resolve the differences between organs, tissues, and/or cell types. Similarly, quantitative approaches in development that might potentially address these issues are seldom applied to quantitative genetics. We discuss recent advances in cell type-specific isolation methods, the quantitative analysis of phenotype, and developmental modeling that are compatible with quantitative genetics and, with time, promise to bridge the gap between these two powerful disciplines yielding unprecedented biological insight.
Collapse
Affiliation(s)
- Daniel H Chitwood
- Department of Plant Biology, University of California at Davis, Davis, CA 95616, United States
| | | |
Collapse
|
50
|
Iwamoto A, Kondo E, Fujihashi H, Sugiyama M. Kinematic study of root elongation in Arabidopsis thaliana with a novel image-analysis program. JOURNAL OF PLANT RESEARCH 2013; 126:187-192. [PMID: 23076437 DOI: 10.1007/s10265-012-0523-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 09/09/2012] [Indexed: 06/01/2023]
Abstract
The measurement of the spatial profile of root elongation needs to determine matching points between time-lapse images and calculate their displacement. These data have been obtained by laborious manual methods in the past. Some computer-based programs have been developed to improve the measurement, but they require many time-series digital images or sprinkling graphite particles on the root prior to image capture. Here, we have developed GrowthTracer, a new image-analysis program for the kinematic study of root elongation. GrowthTracer employs a multiresolution image matching method with a nonlinear filter called the critical point filter (CPF), which extracts critical points from images at each resolution and can determine precise matching points by analysis of only two intact images, without pre-marking by graphite particles. This program calculates the displacement of each matching point and determines the displacement velocity profile along the medial axis of the root. In addition, a manual input of distinct matching points increases the matching accuracy. We show a successful application of this novel program for the kinematic analysis of root growth in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Akitoshi Iwamoto
- Department of Biology, Tokyo Gakugei University, 4-1-1 Nukui Kita-machi, Koganei-shi, Tokyo 184-8501, Japan.
| | | | | | | |
Collapse
|