1
|
Klingl YE, Petrauskas A, Jaślan D, Grimm C. TPCs: FROM PLANT TO HUMAN. Physiol Rev 2025; 105:1695-1732. [PMID: 40197126 DOI: 10.1152/physrev.00044.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/15/2024] [Accepted: 03/08/2025] [Indexed: 04/05/2025] Open
Abstract
In 2005, the Arabidopsis thaliana two-pore channel TPC1 channel was identified as a vacuolar Ca2+-release channel. In 2009, three independent groups published studies on mammalian TPCs as nicotinic acid adenine dinucleotide phosphate (NAADP)-activated endolysosomal Ca2+ release channels, results that were eventually challenged by two other groups, claiming mammalian TPCs to be phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2]-activated Na+ channels. By now this dispute seems to have been largely reconciled. Lipophilic small molecule agonists of TPC2, mimicking either the NAADP or the PI(3,5)P2 mode of channel activation, revealed, together with structural evidence, that TPC2 can change its selectivity for Ca2+ versus Na+ in a ligand-dependent fashion (N- vs. P-type activation). Furthermore, the NAADP-binding proteins Jupiter microtubule-associated homolog 2 protein (JPT2) and Lsm12 were discovered, corroborating the hypothesis that NAADP activation of TPCs only works in the presence of these auxiliary NAADP-binding proteins. Pathophysiologically, loss or gain of function of TPCs has effects on autophagy, exocytosis, endocytosis, and intracellular trafficking, e.g., LDL cholesterol trafficking leading to fatty liver disease or viral and bacterial toxin trafficking, corroborating the roles of TPCs in infectious diseases such as Ebola or COVID-19. Defects in the trafficking of epidermal growth factor receptor and β1-integrin suggested roles in cancer. In neurodegenerative lysosomal storage disease models, P-type activation of TPC2 was found to have beneficial effects on both in vitro and in vivo hallmarks of Niemann-Pick disease type C1, Batten disease, and mucolipidosis type IV. Here, we cover the latest on the structure, function, physiology, and pathophysiology of these channels with a focus initially on plants followed by mammalian TPCs, and we discuss their potential as drug targets, including currently available pharmacology.
Collapse
Affiliation(s)
- Yvonne Eileen Klingl
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
- Immunology, Infection and Pandemic Research, Fraunhofer Institute for Translational Medicine and Pharmacology, Munich, Germany
| | - Arnas Petrauskas
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
- Immunology, Infection and Pandemic Research, Fraunhofer Institute for Translational Medicine and Pharmacology, Munich, Germany
| | - Dawid Jaślan
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
| | - Christian Grimm
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
- Immunology, Infection and Pandemic Research, Fraunhofer Institute for Translational Medicine and Pharmacology, Munich, Germany
- Department of Pharmacology, Faculty of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Sečnik A, Volk H, Kunej U, Radišek S, Štajner N, Jakše J. Genome-wide DNA methylation analysis of CBCVd-infected hop plants ( Humulus lupulus var. "Celeia") provides novel insights into viroid pathogenesis. Microbiol Spectr 2025:e0039424. [PMID: 40237512 DOI: 10.1128/spectrum.00394-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
Viroids are small, naked, infectious single-stranded RNA molecules that exploit host factors to replicate. Some viroids have been linked to severe diseases in agricultural crops, including the recent outbreak of Cocadviroid rimocitri, previously known as Citrus bark cracking viroid (CBCVd), in hop plants (Humulus lupulus). Numerous studies have demonstrated the involvement of viroid-derived RNA in viroid pathogenesis through interactions with RNAi host factors, leading to alterations in gene expression, metabolism, and phenotype. Recent research efforts have also focused on elucidating viroid-induced changes in DNA methylation patterns via the RNA-directed DNA methylation pathway. In this study, we conducted an epigenome analysis of CBCVd-infected hop plants to provide novel evidence supporting the putative role of DNA methylation in CBCVd viroid pathogenesis. Our findings revealed that several genes involved in pathogen interaction pathways, such as MAPK signaling and LRR, exhibit hypomethylation, suggesting that their increased transcription enhances the host's ability to counteract the pathogen. Intriguingly, genes associated with RNA transcription and encoding key proteins, such as POL II, POL IV, and POL V, display hypermethylation, highlighting the significance of DNA methylation as a defense mechanism.IMPORTANCEViroids are emerging as a substantial threat to various crops; however, our understanding of the molecular mechanisms governing their pathogenesis and the host's defense remains incomplete. This knowledge gap leaves crop disease management reliant on unsustainable strategies. Our research seeks to address this issue by examining the complex world of infected hop plants. Specifically, we are investigating the DNA methylation processes, providing insights into the less-explored aspects of the host's response to viroid interaction. Our aim was to unravel the complexities of how viroids influence the molecular landscape within plants and the corresponding host defenses. By understanding these interactions, we hope to provide insights that lead to more sustainable ways to protect crops and keep agriculture resilient against viroid-related threats.
Collapse
Affiliation(s)
- Andrej Sečnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Helena Volk
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Urban Kunej
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sebastjan Radišek
- Plant Protection Department, Slovenian Institute of Hop Research and Brewing, Žalec, Slovenia
| | - Nataša Štajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Laxalt AM, van Hooren M, Munnik T. Plant PI-PLC signaling in stress and development. PLANT PHYSIOLOGY 2025; 197:kiae534. [PMID: 39928581 PMCID: PMC11809592 DOI: 10.1093/plphys/kiae534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/26/2024] [Indexed: 02/12/2025]
Abstract
Phosphoinositide-specific phospholipase C (PI-PLC) signaling is involved in various plant stress and developmental responses. Though several aspects of this lipid signaling pathway are conserved within animals and plants, clear differences have also emerged. While animal PLC signaling is characterized by the hydrolysis of PIP2 and production of IP3 and DAG as second messengers to activate Ca2+ and PKC signaling, plant PI-PLCs seem to predominantly use PIP as substrate and convert IP2 and DAG into inositolpolyphosphates and phosphatidic acid (PA) as plant second messengers. Sequencing of multiple plant genomes confirmed that plant PLC signaling evolved differently from animals, lacking homologs of the IP3 gated-Ca2+ channel, PKC and TRP channels, and with PLC enzymes resembling the PLCζ subfamily, which lacks the conserved PH domain that binds PIP2. With emerging tools in plant molecular biology, data analyses, and advanced imaging, plant PLC signaling is ready to gain momentum.
Collapse
Affiliation(s)
- Ana M Laxalt
- Instituto de Investigaciones Biológicas, IIB-CONICET, Universidad Nacional de Mar del Plata, Argentina
| | - Max van Hooren
- Plant Cell Biologie, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Teun Munnik
- Plant Cell Biologie, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Kong W, Duan P, Wang Y, Zhang T, Huang M, Kang J, Wang L, Wei B, Chang Y. Silencing CaPIP5K4-1 leads to decreased male fertility in Capsicum annuum L. PLANTA 2024; 261:7. [PMID: 39630306 DOI: 10.1007/s00425-024-04584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025]
Abstract
MAIN CONCLUSION Phosphatidylinositol 4-phosphate 5-kinase gene CaPIP5K4-1 is highly expressed in the pepper anthers. Virus-induced gene silencing of CaPIP5K4-1 leads to reduced male fertility in pepper. The phosphatidylinositol 4-phosphate 5-kinase (PIP5K) is a pivotal enzyme in the phosphatidylinositol signaling pathway, and its crucial involvement in both plant development and stress response has been established. Here, we found that the expression of CaPIP5K4-1 in pepper was significantly higher in the fertile flower buds compared to sterile flower buds. Furthermore, its expression was validated in anthers and pollens by qRT-PCR and RNA-ISH assays, respectively. Its GFP fusion protein was mainly located on the plasma membrane. Silencing CaPIP5K4-1 in fertile pepper accessions resulted in wrinkled pollen grain cell walls, decreased pollen germination efficiency, and inhibited pollen tube growth. The transcription levels of multiple genes in the phosphatidylinositol signaling pathway were also assessed. Five phospholipase C (PLC) genes were downregulated in silenced plants. On the contrary, inositol phosphatase SAC and phosphatase and tensin homolog (PTEN) were upregulated. This study reported the role of CaPIP5K4-1 in pepper male fertility and provided insights into the regulatory mechanisms of PI signaling in pepper.
Collapse
Affiliation(s)
- Weifu Kong
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730030, China
| | - Panpan Duan
- Vegetable Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Yuhang Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730030, China
| | - Tao Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730030, China
| | - Mianzhu Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730030, China
| | - Jingtao Kang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730030, China
| | - Lina Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730030, China
| | - Bingqiang Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730030, China.
| | - Yajun Chang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing, 210014, China.
| |
Collapse
|
5
|
Shafer C, Di Lucente J, Mendiola UR, Maezawa I, Jin LW, Neumann EK. Effects of Sex and Western Diet on Spatial Lipidomic Profiles for the Hippocampus, Cortex, and Corpus Callosum in Mice Using MALDI MSI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2554-2563. [PMID: 38456419 PMCID: PMC11544704 DOI: 10.1021/jasms.3c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Diet is inextricably linked to human health and biological functionality. Reduced cognitive function among other health issues has been correlated with a western diet (WD) in mouse models, indicating that increases in neurodegeneration could be fueled in part by a poor diet. In this study, we use matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) to spatially map the lipidomic profiles of male and female mice that were fed a high-fat, high-sucrose WD for a period of 7 weeks. Our findings concluded that the cortex and corpus callosum showed significant lipid variation by WD in female mice, while there was little to no variation in the hippocampus, regardless of sex. On the other hand, lipid profiles were significantly affected by sex in all regions. Overall, 83 lipids were putatively identified in the mouse brain; among them, HexCer(40:1;O3) and PE(34:0) were found to have the largest statistical difference based on diet for female mice in the cortex and corpus callosum, respectively. Additional lipid changes are noted and can serve as a metric for understanding the brain's metabolomic response to changes in diet, particularly as it relates to disease.
Collapse
Affiliation(s)
- Catelynn
C. Shafer
- Department
of Chemistry, University of California,
Davis. Davis, California 95616, United States
| | - Jacopo Di Lucente
- Department
of Pathology and Laboratory Medicine, University
of California Davis, Sacramento, California 95817, United States
| | - Ulises Ruiz Mendiola
- Department
of Pathology and Laboratory Medicine, University
of California Davis, Sacramento, California 95817, United States
| | - Izumi Maezawa
- Department
of Pathology and Laboratory Medicine, University
of California Davis, Sacramento, California 95817, United States
| | - Lee-Way Jin
- Department
of Pathology and Laboratory Medicine, University
of California Davis, Sacramento, California 95817, United States
| | - Elizabeth K. Neumann
- Department
of Chemistry, University of California,
Davis. Davis, California 95616, United States
| |
Collapse
|
6
|
Zhang R, Pei M, Lin S, Chen J, Biregeya J, Song L, Peng C, Jiang P, Lu GD. OsPIPK-FAB, A Negative Regulator in Rice Immunity Unveiled by OsMBL1 Inhibition. RICE (NEW YORK, N.Y.) 2024; 17:68. [PMID: 39495440 PMCID: PMC11534909 DOI: 10.1186/s12284-024-00747-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Phosphatidylinositol signaling system plays a crucial role in plant physiology and development, phosphatidylinositol phosphate kinases (PIPKs) are one of the essential enzymes responsible for catalyzing the synthesis of phosphatidylinositol bisphosphate (PIP2) within this signaling pathway. However, its mechanism of signal transduction remains poorly exploited in plants. OsMBL1, a jacalin-related mannose-binding lectin in rice, plays a crucial role in plant defense mechanisms, acting as a key component of the pattern-triggered immunity (PTI) pathway. Here, a rice phosphatidylinositol-phosphate kinase FAB (OsPIPK-FAB), a member of the rice PIPKs family, as an interacting protein of OsMBL1 through yeast-two-hybrid (Y2H) screening assay. And this interaction was confirmed by using co-immunoprecipitation (Co-IP) and pull-down assay techniques. Furthermore, we demonstrated that the deletion of OsPIPK-FAB gene in plant enhanced resistance against rice blast while overexpression of OsPIPK-FAB increases sensitivity to the fungal infection. Additionally, through determination and measurement of the plant inositol 1,4,5-trisphosphate (IP3) contents and the plant phosphatidylinositol 4-phosphate 5-kinase (PIP5K) activity, we revealed that OsMBL1 inhibits the PIP5K kinase activity of OsPIPK-FAB as well as the plant IP3 contents in rice. Conclusively, these findings indicated that OsPIPK-FAB serves as a novel and critical component that is negatively involved in PTI activation and was inhibited by OsMBL1.
Collapse
Affiliation(s)
- Ruina Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengtian Pei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shiyi Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jules Biregeya
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Linlin Song
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Changlin Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pengcheng Jiang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
7
|
Qiao K, Lv J, Hao J, Zhao C, Fan S, Ma Q. Identification of cotton PIP5K genes and role of GhPIP5K9a in primary root development. Gene 2024; 921:148532. [PMID: 38705423 DOI: 10.1016/j.gene.2024.148532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Phosphatidylinositol 4 phosphate 5-kinase (PIP5K) is crucial for the phosphatidylinositol (PI) signaling pathway. It plays a significant role in plant growth and development, as well as stress response. However, its effects on cotton are unknown. This study identified PIP5K genes from four cotton species and conducted bioinformatic analyses, with a particular emphasis on the functions of GhPIP5K9a in primary roots. The results showed that cotton PIP5Ks were classified into four subgroups. Analysis of gene structure and motif composition showed obvious conservation within each subgroup. Synteny analysis suggested that the PIP5K gene family experienced significant expansion due to both whole-genome duplication (WGD) and segmental duplication. Transcriptomic data analysis revealed that the majority of GhPIP5K genes had the either low or undetectable levels of expression. Moreover, GhPIP5K9a is highly expressed in the root and was located in plasmalemma. Suppression of GhPIP5K9a transcripts resulted in longer primary roots, longer primary root cells and increased auxin polar transport-related genes expression, and decreased abscisic acid (ABA) content, indicating that GhPIP5K9a negatively regulates cotton primary root growth. This study lays the foundation for further exploration of the role of the PIP5K genes in cotton.
Collapse
Affiliation(s)
- Kaikai Qiao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Jiaoyan Lv
- Anyang Academy of Agricultural Sciences, Anyang 455000, China
| | - Juxin Hao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China
| | - Chenglong Zhao
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China
| | - Shuli Fan
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Qifeng Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
8
|
Wang H, Fan M, Shen Y, Zhao H, Weng S, Chen Z, Xiao G. GhFAD3-4 Promotes Fiber Cell Elongation and Cell Wall Thickness by Increasing PI and IP 3 Accumulation in Cotton. PLANTS (BASEL, SWITZERLAND) 2024; 13:1510. [PMID: 38891317 PMCID: PMC11174750 DOI: 10.3390/plants13111510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
The omega-3 fatty acid desaturase enzyme gene FAD3 is responsible for converting linoleic acid to linolenic acid in plant fatty acid synthesis. Despite limited knowledge of its role in cotton growth, our study focused on GhFAD3-4, a gene within the FAD3 family, which was found to promote fiber elongation and cell wall thickness in cotton. GhFAD3-4 was predominantly expressed in elongating fibers, and its suppression led to shorter fibers with reduced cell wall thickness and phosphoinositide (PI) and inositol triphosphate (IP3) levels. Transcriptome analysis of GhFAD3-4 knock-out mutants revealed significant impacts on genes involved in the phosphoinositol signaling pathway. Experimental evidence demonstrated that GhFAD3-4 positively regulated the expression of the GhBoGH3B and GhPIS genes, influencing cotton fiber development through the inositol signaling pathway. The application of PI and IP6 externally increased fiber length in GhFAD3-4 knock-out plants, while inhibiting PI led to a reduced fiber length in GhFAD3-4 overexpressing plants. These findings suggest that GhFAD3-4 plays a crucial role in enhancing fiber development by promoting PI and IP3 biosynthesis, offering the potential for breeding cotton varieties with superior fiber quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China; (H.W.); (Z.C.)
| |
Collapse
|
9
|
Robuschi L, Mariani O, Perk EA, Cerrudo I, Villarreal F, Laxalt AM. Arabidopsis thaliana phosphoinositide-specific phospholipase C 2 is required for Botrytis cinerea proliferation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111971. [PMID: 38160760 DOI: 10.1016/j.plantsci.2023.111971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/24/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Phospholipase C (PLC) plays a key role in lipid signaling during plant development and stress responses. PLC activation is one of the earliest responses during pathogen perception. Arabidopsis thaliana contains seven PLC encoding genes (AtPLC1 to AtPLC7) and two pseudogenes (AtPLC8 and AtPLC9), being AtPLC2 the most abundant isoform with constitutive expression in all plant organs. PLC has been linked to plant defense signaling, in particular to the production of reactive oxygen species (ROS). Previously, we demonstrated that AtPLC2 is involved in ROS production via the NADPH oxidase isoforms RBOHD activation during stomata plant immunity. Here we studied the role of AtPLC2 on plant resistance against the necrotrophic fungus Botrytis cinerea, a broad host-range and serious agricultural pathogen. We show that the AtPLC2-silenced (amiR PLC2) or null mutant (plc2-1) plants developed smaller B. cinerea lesions. Moreover, plc2-1 showed less ROS production and an intensified SA-dependent signaling upon infection, indicating that B. cinerea uses AtPLC2-triggered responses for a successful proliferation. Therefore, AtPLC2 is a susceptibility (S) gene that facilitates B. cinerea infection and proliferation.
Collapse
Affiliation(s)
- Luciana Robuschi
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Oriana Mariani
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse, 06120 Halle (Saale), Germany
| | - Enzo A Perk
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Ignacio Cerrudo
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Fernando Villarreal
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina.
| |
Collapse
|
10
|
Ling P, Ju J, Zhang X, Wei W, Luo J, Li Y, Hai H, Shang B, Cheng H, Wang C, Zhang X, Su J. The Silencing of GhPIP5K2 and GhPIP5K22 Weakens Abiotic Stress Tolerance in Upland Cotton ( Gossypium hirsutum). Int J Mol Sci 2024; 25:1511. [PMID: 38338791 PMCID: PMC10855785 DOI: 10.3390/ijms25031511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
Phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks), essential enzymes in the phosphatidylinositol signaling pathway, are crucial for the abiotic stress responses and the overall growth and development of plants. However, the GhPIP5Ks had not been systematically studied, and their function in upland cotton was unknown. This study identified a total of 28 GhPIP5Ks, and determined their chromosomal locations, gene structures, protein motifs and cis-acting elements via bioinformatics analysis. A quantitative real-time PCR (qRT‒PCR) analysis showed that most GhPIP5Ks were upregulated under different stresses. A virus-induced gene silencing (VIGS) assay indicated that the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities were significantly decreased, while malondialdehyde (MDA) content were significantly increased in GhPIP5K2- and GhPIP5K22-silenced upland cotton plants under abiotic stress. Furthermore, the expression of the stress marker genes GhHSFB2A, GhHSFB2B, GhDREB2A, GhDREB2C, GhRD20-1, GhRD29A, GhBIN2, GhCBL3, GhNHX1, GhPP2C, GhCBF1, GhSnRK2.6 and GhCIPK6 was significantly decreased in the silenced plants after exposure to stress. These results revealed that the silencing of GhPIP5K2 and GhPIP5K22 weakened the tolerance to abiotic stresses. These discoveries provide a foundation for further inquiry into the actions of the GhPIP5K gene family in regulating the response and resistance mechanisms of cotton to abiotic stresses.
Collapse
Affiliation(s)
- Pingjie Ling
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Jisheng Ju
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Xueli Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Wei Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Jin Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Ying Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Han Hai
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Bowen Shang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Hongbo Cheng
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Caixiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Xianliang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Junji Su
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| |
Collapse
|
11
|
Kato M, Watari M, Tsuge T, Zhong S, Gu H, Qu LJ, Fujiwara T, Aoyama T. Redundant function of the Arabidopsis phosphatidylinositol 4-phosphate 5-kinase genes PIP5K4-6 is essential for pollen germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:212-225. [PMID: 37828913 DOI: 10.1111/tpj.16490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023]
Abstract
Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) is a key enzyme producing the signaling lipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 ] in eukaryotes. Although PIP5K genes are reported to be involved in pollen tube germination and growth, the essential roles of PIP5K in these processes remain unclear. Here, we performed a comprehensive genetic analysis of the Arabidopsis thaliana PIP5K4, PIP5K5, and PIP5K6 genes and revealed that their redundant function is essential for pollen germination. Pollen with the pip5k4pip5k5pip5k6 triple mutation was sterile, while pollen germination efficiency and pollen tube growth were reduced in the pip5k6 single mutant and further reduced in the pip5k4pip5k6 and pip5k5pip5k6 double mutants. YFP-fusion proteins, PIP5K4-YFP, PIP5K5-YFP, and PIP5K6-YFP, which could rescue the sterility of the triple mutant pollen, preferentially localized to the tricolpate aperture area and the future germination site on the plasma membrane prior to germination. Triple mutant pollen grains under the germination condition, in which spatiotemporal localization of the PtdIns(4,5)P2 fluorescent marker protein 2xmCHERRY-2xPHPLC as seen in the wild type was abolished, exhibited swelling and rupture of the pollen wall, but neither the conspicuous protruding site nor site-specific deposition of cell wall materials for germination. These data indicate that PIP5K4-6 and their product PtdIns(4,5)P2 are essential for pollen germination, possibly through the establishment of the germination polarity in a pollen grain.
Collapse
Affiliation(s)
- Mariko Kato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Machiko Watari
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Sheng Zhong
- Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Hongya Gu
- Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Li-Jia Qu
- Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Takashi Fujiwara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
12
|
Maeng KH, Lee H, Cho HT. FAB1C, a phosphatidylinositol 3-phosphate 5-kinase, interacts with PIN-FORMEDs and modulates their lytic trafficking in Arabidopsis. Proc Natl Acad Sci U S A 2023; 120:e2310126120. [PMID: 37934824 PMCID: PMC10655590 DOI: 10.1073/pnas.2310126120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
PIN-FORMEDs (PINs) are auxin efflux carriers that asymmetrically target the plasma membrane (PM) and are critical for forming local auxin gradients and auxin responses. While the cytoplasmic hydrophilic loop domain of PIN (PIN-HL) is known to include some molecular cues (e.g., phosphorylation) for the modulation of PIN's intracellular trafficking and activity, the complexity of auxin responses suggests that additional regulatory modules may operate in the PIN-HL domain. Here, we have identified and characterized a PIN-HL-interacting protein (PIP) called FORMATION OF APLOID AND BINUCLEATE CELL 1C (FAB1C), a phosphatidylinositol-3-phosphate 5-kinase, which modulates PIN's lytic trafficking. FAB1C directly interacts with PIN-HL and is required for the polarity establishment and vacuolar trafficking of PINs. Unphosphorylated forms of PIN2 interact more readily with FAB1C and are more susceptible to vacuolar lytic trafficking compared to phosphorylated forms. FAB1C also affected lateral root formation by modulating the abundance of periclinally localized PIN1 and auxin maximum in the growing lateral root primordium. These findings suggest that a membrane-lipid modifier can target the cargo-including vesicle by directly interacting with the cargo and modulate its trafficking depending on the cargo's phosphorylation status.
Collapse
Affiliation(s)
- Kwang-Ho Maeng
- Department of Biological Sciences, Seoul National University, Seoul08826, South Korea
| | - Hyodong Lee
- Department of Biological Sciences, Seoul National University, Seoul08826, South Korea
| | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, Seoul08826, South Korea
| |
Collapse
|
13
|
Li Z, Gao Y, Yan J, Wang S, Wang S, Liu Y, Wang S, Hua J. Golgi-localized MORN1 promotes lipid droplet abundance and enhances tolerance to multiple stresses in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1890-1903. [PMID: 37097077 DOI: 10.1111/jipb.13498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Lipid droplet (LD) in vegetative tissues has recently been implicated in environmental responses in plants, but its regulation and its function in stress tolerance are not well understood. Here, we identified a Membrane Occupation and Recognition Nexus 1 (MORN1) gene as a contributor to natural variations of stress tolerance through genome-wide association study in Arabidopsis thaliana. Characterization of its loss-of-function mutant and natural variants revealed that the MORN1 gene is a positive regulator of plant growth, disease resistance, cold tolerance, and heat tolerance. The MORN1 protein is associated with the Golgi and is also partly associated with LD. Protein truncations that disrupt these associations abolished the biological function of the MORN1 protein. Furthermore, the MORN1 gene is a positive regulator of LD abundance, and its role in LD number regulation and stress tolerance is highly linked. Therefore, this study identifies MORN1 as a positive regulator of LD abundance and a contributor to natural variations of stress tolerance. It implicates a potential involvement of Golgi in LD biogenesis and strongly suggests a contribution of LD to diverse processes of plant growth and stress responses.
Collapse
Affiliation(s)
- Zhan Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510640, China
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Yue Gao
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Jiapei Yan
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Shuai Wang
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Shu Wang
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Yuanyuan Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510640, China
| | - Shaokui Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510640, China
| | - Jian Hua
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
14
|
Zarreen F, Kumar K, Chakraborty S. Phosphoinositides in plant-pathogen interaction: trends and perspectives. STRESS BIOLOGY 2023; 3:4. [PMID: 37676371 PMCID: PMC10442044 DOI: 10.1007/s44154-023-00082-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/15/2023] [Indexed: 09/08/2023]
Abstract
Phosphoinositides are important regulatory membrane lipids, with a role in plant development and cellular function. Emerging evidence indicates that phosphoinositides play crucial roles in plant defence and are also utilized by pathogens for infection. In this review, we highlight the role of phosphoinositides in plant-pathogen interaction and the implication of this remarkable convergence in the battle against plant diseases.
Collapse
Affiliation(s)
- Fauzia Zarreen
- Molecular Virology Laboratory, School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kamal Kumar
- Molecular Virology Laboratory, School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
15
|
Liang Y, Huang Y, Liu C, Chen K, Li M. Functions and interaction of plant lipid signalling under abiotic stresses. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:361-378. [PMID: 36719102 DOI: 10.1111/plb.13507] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Lipids are the primary form of energy storage and a major component of plasma membranes, which form the interface between the cell and the extracellular environment. Several lipids - including phosphoinositide, phosphatidic acid, sphingolipids, lysophospholipids, oxylipins, and free fatty acids - also serve as substrates for the generation of signalling molecules. Abiotic stresses, such as drought and temperature stress, are known to affect plant growth. In addition, abiotic stresses can activate certain lipid-dependent signalling pathways that control the expression of stress-responsive genes and contribute to plant stress adaptation. Many studies have focused either on the enzymatic production and metabolism of lipids, or on the mechanisms of abiotic stress response. However, there is little information regarding the roles of plant lipids in plant responses to abiotic stress. In this review, we describe the metabolism of plant lipids and discuss their involvement in plant responses to abiotic stress. As such, this review provides crucial background for further research on the interactions between plant lipids and abiotic stress.
Collapse
Affiliation(s)
- Y Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, College of Life Science, Guilin, China
| | - Y Huang
- Guilin University of Electronic Technology, School of Mechanical and Electrical Engineering, Guilin, China
| | - C Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, College of Life Science, Guilin, China
| | - K Chen
- Department of Biotechnology, Huazhong University of Science and Technology, College of Life Science and Technology, Wuhan, China
| | - M Li
- Department of Biotechnology, Huazhong University of Science and Technology, College of Life Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Ubeysinghe S, Wijayaratna D, Kankanamge D, Karunarathne A. Molecular regulation of PLCβ signaling. Methods Enzymol 2023; 682:17-52. [PMID: 36948701 PMCID: PMC11863860 DOI: 10.1016/bs.mie.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Phospholipase C (PLC) enzymes convert the membrane phospholipid phosphatidylinositol-4,5-bisphosphate (PIP2) into inositol-1,4,5-triphosphate (IP3) and diacylglycerol (DAG). IP3 and DAG regulate numerous downstream pathways, eliciting diverse and profound cellular changes and physiological responses. In the six PLC subfamilies in higher eukaryotes, PLCβ is intensively studied due to its prominent role in regulating crucial cellular events underlying many processes including cardiovascular and neuronal signaling, and associated pathological conditions. In addition to GαqGTP, Gβγ generated upon G protein heterotrimer dissociation also regulates PLCβ activity. Here, we not only review how Gβγ directly activates PLCβ, and also extensively modulates Gαq-mediated PLCβ activity, but also provide a structure-function overview of PLC family members. Given that Gαq and PLCβ are oncogenes, and Gβγ shows unique cell-tissue-organ specific expression profiles, Gγ subtype-dependent signaling efficacies, and distinct subcellular activities, this review proposes that Gβγ is a major regulator of Gαq-dependent and independent PLCβ signaling.
Collapse
Affiliation(s)
| | | | - Dinesh Kankanamge
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Ajith Karunarathne
- Department of Chemistry, St. Louis University, St. Louis, MO, United States.
| |
Collapse
|
17
|
Wei P, Yu X, Yang Y, Chen Z, Zhao S, Li X, Zhang W, Liu C, Li X, Liu X. Biased gene expression reveals the contribution of subgenome to altitude adaptation in allopolyploid Isoetes sinensis. Ecol Evol 2022; 12:e9677. [PMID: 36619709 PMCID: PMC9797765 DOI: 10.1002/ece3.9677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
Allopolyploids are believed to inherit the genetic characteristics of its progenitors and exhibit stronger adaptability and vigor. The allotetraploid Isoetes sinensis was formed by the natural hybridization and polyploidization of two diploid progenitors, Isoetes taiwanensis and Isoetes yunguiensis, and was believed to have the potential to adapt to plateau environments. To explore the expression pattern of homoeologous genes and their contributions to altitude adaptation, we transplanted natural allotetraploid I. sinensis (TnTnYnYn) along the altitude gradient for a long-term, and harvested them in summer and winter, respectively. One year after transplanting, it still lived well, even in the extreme environment of the Qinghai-Tibet Plateau. Then, we performed high-throughput RNA sequencing to measure their gene expression level. A total of 7801 homoeologous genes were expressed, among which 5786 were identified as shared expression in different altitudes and seasons. We further found that altitude variations could change the subgenome bias trend of I. sinensis, but season could not. Moreover, the functions of uniquely expressed genes indicated that temperature might be an important restrictive factor during the adaptation process. Through the analysis of DEGs and uniquely expressed genes, we found that Y subgenome provided more contributions to high altitude adaptation than T subgenome. These adaptive traits to high altitude may be inherited from its plateau progenitor I. yunguiensis. Through weighted gene co-expression network analysis, pentatricopeptide repeats gene family and glycerophospholipid metabolism pathway were considered to play important roles in high-altitude adaptation. Totally, this study will enrich our understanding of allopolyploid in environmental adaptation.
Collapse
Affiliation(s)
- Pei Wei
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Xiao‐lei Yu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Yu‐jiao Yang
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Zhu‐yifu Chen
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Shu‐qi Zhao
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Xin‐zhong Li
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of SciencesTibet UniversityLhasaChina
| | - Wen‐cai Zhang
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of SciencesTibet UniversityLhasaChina
| | - Chen‐lai Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Xiao‐yan Li
- Biology Experimental Teaching Center, School of Life ScienceWuhan UniversityWuhanChina
| | - Xing Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of SciencesTibet UniversityLhasaChina
| |
Collapse
|
18
|
Microsatellite analysis and polymorphic marker development based on the full-length transcriptome of Camellia chekiangoleosa. Sci Rep 2022; 12:18906. [PMID: 36344600 PMCID: PMC9640616 DOI: 10.1038/s41598-022-23333-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
Camellia chekiangoleosa is a popular variety of Oil-camellia that has high oil production and ornamental value. Microsatellite (SSR) markers are the preferred tool for the molecular marker-assisted breeding of C. chekiangoleosa. By focusing on the problems of the low development efficiency of polymorphic SSR markers and the lack of available functional markers in Oil-camellia, we identified 97,510 SSR loci based on the full-length transcriptome sequence of C. chekiangoleosa. An analysis of SSR characteristics showed that mononucleotide (51.29%) and dinucleotide (34.36%) SSRs were the main repeat types. The main SSR distribution areas based on proportion covered were ordered as follows: 5'UTR > 3'UTR > CDS. By comparing our data with those in databases such as GO and KEGG, we obtained functional annotations of unigene sequences containing SSR sites. The data showed that the amplification efficiency of the SSR primers was 51.72%, and the development efficiency of polymorphic SSR primers was 26.72%. Experiments verified that dinucleotide and pentanucleotide SSRs located in UTR regions could produce more polymorphic markers. An investigation into the genetic diversity of several C. chekiangoleosa populations also suggested that the developed SSR markers had higher levels of polymorphism. This study will provide a reference and high-quality markers for the large-scale development of functional SSR markers and genetic research in Oil-camellia.
Collapse
|
19
|
Leveraging orthology within maize and Arabidopsis QTL to identify genes affecting natural variation in gravitropism. Proc Natl Acad Sci U S A 2022; 119:e2212199119. [PMID: 36161933 PMCID: PMC9546580 DOI: 10.1073/pnas.2212199119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants typically orient their organs with respect to the Earth's gravity field by a dynamic process called gravitropism. To discover conserved genetic elements affecting seedling root gravitropism, we measured the process in a set of Zea mays (maize) recombinant inbred lines with machine vision and compared the results with those obtained in a similar study of Arabidopsis thaliana. Each of the several quantitative trait loci that we mapped in both species spanned many hundreds of genes, too many to test individually for causality. We reasoned that orthologous genes may be responsible for natural variation in monocot and dicot root gravitropism. If so, pairs of orthologous genes affecting gravitropism may be present within the maize and Arabidopsis QTL intervals. A reciprocal comparison of sequences within the QTL intervals identified seven pairs of such one-to-one orthologs. Analysis of knockout mutants demonstrated a role in gravitropism for four of the seven: CCT2 functions in phosphatidylcholine biosynthesis, ATG5 functions in membrane remodeling during autophagy, UGP2 produces the substrate for cellulose and callose polymer extension, and FAMA is a transcription factor. Automated phenotyping enabled this discovery of four naturally varying components of a conserved process (gravitropism) by making it feasible to conduct the same large-scale experiment in two species.
Collapse
|
20
|
Advances in Plant Lipid Metabolism Responses to Phosphate Scarcity. PLANTS 2022; 11:plants11172238. [PMID: 36079619 PMCID: PMC9460063 DOI: 10.3390/plants11172238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Low phosphate (Pi) availability in soils severely limits crop growth and production. Plants have evolved to have numerous physiological and molecular adaptive mechanisms to cope with Pi starvation. The release of Pi from membrane phospholipids is considered to improve plant phosphorus (P) utilization efficiency in response to Pi starvation and accompanies membrane lipid remodeling. In this review, we summarize recent discoveries related to this topic and the molecular basis of membrane phospholipid alteration and triacylglycerol metabolism in response to Pi depletion in plants at different subcellular levels. These findings will help to further elucidate the molecular mechanisms underlying plant adaptation to Pi starvation and thus help to develop crop cultivars with high P utilization efficiency.
Collapse
|
21
|
Cheng S, Wang Y. Subcellular trafficking and post-translational modification regulate PIN polarity in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:923293. [PMID: 35968084 PMCID: PMC9363823 DOI: 10.3389/fpls.2022.923293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Auxin regulates plant growth and tropism responses. As a phytohormone, auxin is transported between its synthesis sites and action sites. Most natural auxin moves between cells via a polar transport system that is mediated by PIN-FORMED (PIN) auxin exporters. The asymmetrically localized PINs usually determine the directionality of intercellular auxin flow. Different internal cues and external stimuli modulate PIN polar distribution and activity at multiple levels, including transcription, protein stability, subcellular trafficking, and post-translational modification, and thereby regulate auxin-distribution-dependent development. Thus, the different regulation levels of PIN polarity constitute a complex network. For example, the post-translational modification of PINs can affect the subcellular trafficking of PINs. In this review, we focus on subcellular trafficking and post-translational modification of PINs to summarize recent progress in understanding PIN polarity.
Collapse
Affiliation(s)
- Shuyang Cheng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Çetinbaş-Genç A, Conti V, Cai G. Let's shape again: the concerted molecular action that builds the pollen tube. PLANT REPRODUCTION 2022; 35:77-103. [PMID: 35041045 DOI: 10.1007/s00497-022-00437-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The pollen tube is being subjected to control by a complex network of communication that regulates its shape and the misfunction of a single component causes specific deformations. In flowering plants, the pollen tube is a tubular extension of the pollen grain required for successful sexual reproduction. Indeed, maintaining the unique shape of the pollen tube is essential for the pollen tube to approach the embryo sac. Many processes and molecules (such as GTPase activity, phosphoinositides, Ca2+ gradient, distribution of reactive oxygen species and nitric oxide, nonuniform pH values, organization of the cytoskeleton, balance between exocytosis and endocytosis, and cell wall structure) play key and coordinated roles in maintaining the cylindrical shape of pollen tubes. In addition, the above factors must also interact with each other so that the cell shape is maintained while the pollen tube follows chemical signals in the pistil that guide it to the embryo sac. Any intrinsic changes (such as erroneous signals) or extrinsic changes (such as environmental stresses) can affect the above factors and thus fertilization by altering the tube morphology. In this review, the processes and molecules that enable the development and maintenance of the unique shape of pollen tubes in angiosperms are presented emphasizing their interaction with specific tube shape. Thus, the purpose of the review is to investigate whether specific deformations in pollen tubes can help us to better understand the mechanism underlying pollen tube shape.
Collapse
Affiliation(s)
- Aslıhan Çetinbaş-Genç
- Department of Biology, Marmara University, Göztepe Campus, 34722, Kadıköy, Istanbul, Turkey.
| | - Veronica Conti
- Department of Life Sciences, University of Siena, via Mattioli 4, 53100, Siena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via Mattioli 4, 53100, Siena, Italy
| |
Collapse
|
23
|
Watari M, Kato M, Blanc-Mathieu R, Tsuge T, Ogata H, Aoyama T. Functional Differentiation among the Arabidopsis Phosphatidylinositol 4-Phosphate 5-Kinase Genes PIP5K1, PIP5K2 and PIP5K3. PLANT & CELL PHYSIOLOGY 2022; 63:635-648. [PMID: 35348769 DOI: 10.1093/pcp/pcac025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) is involved in regulating various cellular processes through the signaling function of its product, phosphatidylinositol (4,5)-bisphosphate. Higher plants encode a large number of PIP5Ks forming distinct clades in their molecular phylogenetic tree. Although biological functions of PIP5K genes have been analyzed intensively in Arabidopsis thaliana, it remains unclear how those functions differ across clades of paralogs. We performed comparative functional analysis of the Arabidopsis genes encoding PIP5K1, PIP5K2 and PIP5K3, of which the first two and the last belong to closely related but distinct clades, to clarify their conserved and/or differentiated functions. Genetic analysis with their single and multiple mutants revealed that PIP5K1 and PIP5K3 have non-overlapping functions, with the former in total plant growth and the latter in root hair elongation, whereas PIP5K2 redundantly functions in both phenomena. This pattern of functional redundancy is explainable in terms of the overlapping pattern of their promoter activities. In transformation rescue experiments, PIP5K3 promoter-directed PIP5K1-YFP completely rescued the short-root-hair phenotype of pip5k3. However, PIP5K3-YFP could substitute for PIP5K1-YFP only partially in rescuing the severe dwarfism of pip5k1pip5k2 when directed by the PIP5K1 promoter. Phylogenetic analysis of angiosperm PIP5Ks revealed that PIP5K3 orthologs have a faster rate of diversification in their amino-acid sequences compared with PIP5K1/2 orthologs after they arose through a eudicot-specific duplication event. These findings suggest that PIP5K3 specialized to promote root hair elongation and lost some of the protein-encoded functions retained by PIP5K1 and PIP5K2, whereas PIP5K1 differentiated from PIP5K2 only in its promoter-directed expression pattern.
Collapse
Affiliation(s)
- Machiko Watari
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| | - Mariko Kato
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| | - Romain Blanc-Mathieu
- Laboratoire Physiologie Cellulaire & Vegetale, University of Grenoble Alpes, IRIG, INRA, CNRS, CEA, F-38054, Grenoble 9, France
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| |
Collapse
|
24
|
Zhou J, Liu H, Lin Y, Zhao J. Membrane Occupation and Recognition Nexus (MORN) motif controls protein localization and function. FEBS Lett 2022; 596:1839-1850. [PMID: 35568981 DOI: 10.1002/1873-3468.14378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/23/2022] [Accepted: 05/07/2022] [Indexed: 11/06/2022]
Abstract
Membrane Occupation and Recognition Nexus (MORN) motif was first defined in 2000, when it was identified in the junctophilin protein family. Dozens of studies have been published ever since, mainly focusing on the function of a given MORN motif-containing protein in parasites, plants or animal cells. Proteins with MORN motifs are not only expressed in most animal and plant cell types but also significantly differ in their intracellular localization, suggesting that the MORN motifs may fulfil multiple physiological functions. Recent studies have found that MORN motif-containing proteins junctophilin 1/2 and MORN3 play a role in cardiac hypertrophy, skeletal muscle fiber stability and cancer. Hence, MORN motif-containing proteins may be exploited to develop improved treatments for various pathological conditions, such as cardiovascular diseases. Here, we review current research on MORN motif-containing proteins in different organisms and provide both ideas and approaches for follow-up exploration of their functions and applications.
Collapse
Affiliation(s)
- Jinrun Zhou
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, P. R. China
| | - Honghong Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, P. R. China
| | - Yushuang Lin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, P. R. China
| | - Jing Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
25
|
Kanehara K, Cho Y, Yu CY. A lipid viewpoint on the plant endoplasmic reticulum stress response. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2835-2847. [PMID: 35560195 DOI: 10.1093/jxb/erac063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/15/2022] [Indexed: 06/15/2023]
Abstract
Organisms, including humans, seem to be constantly exposed to various changes, which often have undesirable effects, referred to as stress. To keep up with these changes, eukaryotic cells may have evolved a number of relevant cellular processes, such as the endoplasmic reticulum (ER) stress response. Owing to presumably intimate links between human diseases and the ER function, the ER stress response has been extensively investigated in various organisms for a few decades. Based on these studies, we now have a picture of the molecular mechanisms of the ER stress response, one of which, the unfolded protein response (UPR), is highly conserved among yeasts, mammals, higher plants, and green algae. In this review, we attempt to highlight the plant UPR from the perspective of lipids, especially membrane phospholipids. Phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn) are the most abundant membrane phospholipids in eukaryotic cells. The ratio of PtdCho to PtdEtn and the unsaturation of fatty acyl tails in both phospholipids may be critical factors for the UPR, but the pathways responsible for PtdCho and PtdEtn biosynthesis are distinct in animals and plants. We discuss the plant UPR in comparison with the system in yeasts and animals in the context of membrane phospholipids.
Collapse
Affiliation(s)
- Kazue Kanehara
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yueh Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chao-Yuan Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
26
|
Perlikowski D, Lechowicz K, Skirycz A, Michaelis Ä, Pawłowicz I, Kosmala A. The Role of Triacylglycerol in the Protection of Cells against Lipotoxicity under Drought in Lolium multiflorum/Festucaarundinacea Introgression Forms. PLANT & CELL PHYSIOLOGY 2022; 63:353-368. [PMID: 34994787 DOI: 10.1093/pcp/pcac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Triacylglycerol is a key lipid compound involved in maintaining homeostasis of both membrane lipids and free fatty acids (FFA) in plant cells under adverse environmental conditions. However, its role in the process of lipid remodeling has not been fully recognized, especially in monocots, including grass species. For our study, two closely related introgression forms of Lolium multiflorum (Italian ryegrass) and Festuca arundinacea (tall fescue), distinct in their level of drought tolerance, were selected as plant models to study rearrangements in plant lipidome under water deficit and further re-watering. The low drought tolerant (LDT) form revealed an elevated level of cellular membrane damage accompanied by an increased content of polyunsaturated FFA and triacylglycerol under water deficit, compared with the high drought tolerant (HDT) form. However, the LDT introgression form demonstrated also the ability to regenerate its membranes after stress cessation. The obtained results clearly indicated that accumulation of triacylglycerol under advanced drought in the LDT form could serve as a cellular protective mechanism against overaccumulation of toxic polyunsaturated FFA and other lipid intermediates. Furthermore, accumulation of triacylglycerol under drought conditions could serve also as storage of substrates required for further regeneration of membranes after stress cessation. The rearrangements in triacylglycerol metabolism were supported by the upregulation of several genes, involved in a biosynthesis of triacylglycerol. With respect to this process, diacylglycerol O-acyltransferase DGAT2 seems to play the most important role in the analyzed grasses.
Collapse
Affiliation(s)
- Dawid Perlikowski
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| | - Katarzyna Lechowicz
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| | - Aleksandra Skirycz
- Department of Molecular Physiology, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY 14853, USA
| | - Änna Michaelis
- Department of Molecular Physiology, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Izabela Pawłowicz
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| | - Arkadiusz Kosmala
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| |
Collapse
|
27
|
Aliaga Fandino AC, Hardtke CS. Auxin transport in developing protophloem: A case study in canalization. JOURNAL OF PLANT PHYSIOLOGY 2022; 269:153594. [PMID: 34953411 DOI: 10.1016/j.jplph.2021.153594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/03/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Spatiotemporal cues orchestrate the development of organs and cellular differentiation in multicellular organisms. For instance, in the root apical meristem an auxin gradient patterns the transition from stem cell maintenance to transit amplification and eventual differentiation. Among the proximal tissues generated by this growth apex, the early, so-called protophloem, is the first tissue to differentiate. This observation has been linked to increased auxin activity in the developing protophloem sieve element cell files as compared to the neighboring tissues. Here we review recent progress in the characterization of the unique mechanism by which auxin canalizes its activity in the developing protophloem and fine-tunes its own transport to guide proper timing of protophloem sieve element differentiation.
Collapse
Affiliation(s)
- Ana Cecilia Aliaga Fandino
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland.
| |
Collapse
|
28
|
Noack LC, Bayle V, Armengot L, Rozier F, Mamode-Cassim A, Stevens FD, Caillaud MC, Munnik T, Mongrand S, Pleskot R, Jaillais Y. A nanodomain-anchored scaffolding complex is required for the function and localization of phosphatidylinositol 4-kinase alpha in plants. THE PLANT CELL 2022; 34:302-332. [PMID: 34010411 PMCID: PMC8774046 DOI: 10.1093/plcell/koab135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/10/2021] [Indexed: 05/24/2023]
Abstract
Phosphoinositides are low-abundant lipids that participate in the acquisition of membrane identity through their spatiotemporal enrichment in specific compartments. Phosphatidylinositol 4-phosphate (PI4P) accumulates at the plant plasma membrane driving its high electrostatic potential, and thereby facilitating interactions with polybasic regions of proteins. PI4Kα1 has been suggested to produce PI4P at the plasma membrane, but how it is recruited to this compartment is unknown. Here, we pin-point the mechanism that tethers Arabidopsis thaliana phosphatidylinositol 4-kinase alpha1 (PI4Kα1) to the plasma membrane via a nanodomain-anchored scaffolding complex. We established that PI4Kα1 is part of a complex composed of proteins from the NO-POLLEN-GERMINATION, EFR3-OF-PLANTS, and HYCCIN-CONTAINING families. Comprehensive knockout and knockdown strategies revealed that subunits of the PI4Kα1 complex are essential for pollen, embryonic, and post-embryonic development. We further found that the PI4Kα1 complex is immobilized in plasma membrane nanodomains. Using synthetic mis-targeting strategies, we demonstrate that a combination of lipid anchoring and scaffolding localizes PI4Kα1 to the plasma membrane, which is essential for its function. Together, this work opens perspectives on the mechanisms and function of plasma membrane nanopatterning by lipid kinases.
Collapse
Affiliation(s)
- Lise C Noack
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Laia Armengot
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Frédérique Rozier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Adiilah Mamode-Cassim
- Laboratoire de Biogenèse Membranaire, UMR5200, Université de Bordeaux, CNRS, 33140 Villenave d’Ornon, France
- Agroécologie, AgroSup Dijon, CNRS, INRA, University Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Floris D Stevens
- Research Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1090 GE, The Netherlands
| | - Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Teun Munnik
- Research Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1090 GE, The Netherlands
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR5200, Université de Bordeaux, CNRS, 33140 Villenave d’Ornon, France
| | - Roman Pleskot
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 16502 Prague 6, Czech Republic
| | | |
Collapse
|
29
|
Liu H, Sun Z, Hu L, Yue Z. Genome-wide identification of PIP5K in wheat and its relationship with anther male sterility induced by high temperature. BMC PLANT BIOLOGY 2021; 21:598. [PMID: 34915841 PMCID: PMC8675513 DOI: 10.1186/s12870-021-03363-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Phosphatidylinositol 4 phosphate 5-kinase (PIP5K) plays a key enzyme role in the inositol signal transduction system and has essential functions in plants in terms of growth, development, and stress responses. However, systematic studies on the wheat PIP5K gene family and its relation to male sterility have not been reported yet. RESULTS Sixty-four TaPIP5K genes were identified. The TaPIP5K genes contained similar gene structures and conserved motifs on the same branches of the evolutionary tree, and their cis-regulatory elements were related to MeJA-responsiveness. Furthermore, 49 pairs of collinearity genes were identified and mainly subjected to purification selection during evolution. Synteny analyses showed that some PIP5K genes in wheat and the other four species shared a relatively conserved evolutionary process. The expression levels of many conservative TaPIP5K genes in HT-ms anthers were significantly lower than that in Normal anthers. In addition, HT-ms anthers have no dehiscence, and levels of OPDA and JA-ILE are significantly lower at the trinucleus stage. CONCLUSION These results indicate that the PIP5K gene family may be associated with male sterility induced by HT, and the reduction of JA-ILE levels and the abnormal levels of these genes expression may be one reason for the HT-ms anthers having no dehiscence, ultimately leading to the abortion of the anthers.
Collapse
Affiliation(s)
- Hongzhan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan Province, P.R. China.
| | - Zhongke Sun
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan Province, P.R. China.
| | - Lizong Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan Province, P.R. China
| | - Zonghao Yue
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan Province, P.R. China
| |
Collapse
|
30
|
Vaziriyeganeh M, Khan S, Zwiazek JJ. Transcriptome and Metabolome Analyses Reveal Potential Salt Tolerance Mechanisms Contributing to Maintenance of Water Balance by the Halophytic Grass Puccinellia nuttalliana. FRONTIERS IN PLANT SCIENCE 2021; 12:760863. [PMID: 34777443 PMCID: PMC8586710 DOI: 10.3389/fpls.2021.760863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/29/2021] [Indexed: 06/08/2023]
Abstract
Elevated soil salinity exacerbated by human activities and global climate change poses serious threats to plant survival. Although halophytes provide many important clues concerning salt tolerance in plants, some unanswered questions remain to be addressed, including the processes of water and solute transport regulation. We performed high-throughput RNA-sequencing in roots and metabolome characterizations in roots and leaves of Puccinellia nuttalliana halophytic grass subjected to 0 (control) and 150 mM NaCl. In RNAseq, a total of 31 Gb clean bases generated were de novo assembled into 941,894 transcripts. The PIP2;2 and HKT1;5 transcript levels increased in response to the NaCl treatment implying their roles in water and ion homeostasis. Several transcription factors, including WRKY39, DEK3, HY5, and ABF2, were also overexpressed in response to NaCl. The metabolomic analysis revealed that proline and dopamine significantly increased due to the upregulation of the pathway genes under salt stress, likely contributing to salt tolerance mechanisms. Several phosphatidylcholines significantly increased in roots suggesting that the alterations of membrane lipid composition may be an important strategy in P. nuttalliana for maintaining cellular homeostasis and membrane integrity under salt stress. In leaves, the TCA cycle was enriched suggesting enhanced energy metabolism to cope with salt stress. Other features contributing to the ability of P. nuttalliana to survive under high salinity conditions include salt secretion by the salt glands and enhanced cell wall lignification of the root cells. While most of the reported transcriptomic, metabolomics, and structural alterations may have consequences to water balance maintenance by plants under salinity stress, the key processes that need to be further addressed include the role of the changes in the aquaporin gene expression profiles in the earlier reported enhancement of the aquaporin-mediated root water transport.
Collapse
Affiliation(s)
| | | | - Janusz J. Zwiazek
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
31
|
Smith SJ, Goodman H, Kroon JTM, Brown AP, Simon WJ, Chivasa S. Isolation of Arabidopsis extracellular ATP binding proteins by affinity proteomics and identification of PHOSPHOLIPASE C-LIKE 1 as an extracellular protein essential for fumonisin B1 toxicity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1387-1400. [PMID: 33735457 DOI: 10.1111/tpj.15243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 05/21/2023]
Abstract
ATP is secreted to the extracellular matrix, where it activates plasma membrane receptors for controlling plant growth and stress-adaptive processes. DOES NOT RESPOND TO NUCLEOTIDES 1 (DORN1), was the first plant ATP receptor to be identified but key downstream proteins remain sought after. Here, we identified 120 proteins secreted by Arabidopsis cell cultures and screened them for putative stress-responsive proteins using ATP-affinity purification. We report three Arabidopsis proteins isolated by ATP-affinity: PEROXIDASE 52, SUBTILASE-LIKE SERINE PROTEASE 1.7 and PHOSPHOLIPASE C-LIKE 1. In wild-type Arabidopsis, the expression of genes encoding all three proteins responded to fumonisin B1, a cell death-activating mycotoxin. The expression of PEROXIDASE 52 and PHOSPHOLIPASE C-LIKE 1 was altered in fumonisin B1-resistant salicylic acid induction-deficient (sid2) mutants. Exposure to fumonisin B1 suppressed PHOSPHOLIPASE C-LIKE 1 expression in sid2 mutants, suggesting that the inactivation of this gene might provide mycotoxin tolerance. Accordingly, gene knockout mutants of PHOSPHOLIPASE C-LIKE 1 were resistant to fumonisin B1-induced death. The activation of PHOSPHOLIPASE C-LIKE 1 gene expression by exogenous ATP was not blocked in dorn1 loss-of-function mutants, indicating that DORN1 is not required. Furthermore, exogenous ATP rescued both the wild type and the dorn1 mutants from fumonisin-B1 toxicity, suggesting that different ATP receptor(s) are operational in this process. Our results point to the existence of additional plant ATP receptor(s) and provide crucial downstream targets for use in designing screens to identify these receptors. Finally, PHOSPHOLIPASE C-LIKE 1 serves as a convergence point for fumonisin B1 and extracellular ATP signalling, and functions in the Arabidopsis stress response to fumonisin B1.
Collapse
Affiliation(s)
- Sarah J Smith
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Heather Goodman
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Johan T M Kroon
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Adrian P Brown
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - William J Simon
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Stephen Chivasa
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| |
Collapse
|
32
|
Fratini M, Krishnamoorthy P, Stenzel I, Riechmann M, Matzner M, Bacia K, Heilmann M, Heilmann I. Plasma membrane nano-organization specifies phosphoinositide effects on Rho-GTPases and actin dynamics in tobacco pollen tubes. THE PLANT CELL 2021; 33:642-670. [PMID: 33955493 PMCID: PMC8136918 DOI: 10.1093/plcell/koaa035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/23/2020] [Indexed: 05/04/2023]
Abstract
Pollen tube growth requires coordination of cytoskeletal dynamics and apical secretion. The regulatory phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) is enriched in the subapical plasma membrane of pollen tubes of Arabidopsis thaliana and tobacco (Nicotiana tabacum) and can influence both actin dynamics and secretion. How alternative PtdIns(4,5)P2 effects are specified is unclear. In tobacco pollen tubes, spinning disc microscopy (SD) reveals dual distribution of a fluorescent PtdIns(4,5)P2-reporter in dynamic plasma membrane nanodomains vs. apparent diffuse membrane labeling, consistent with spatially distinct coexisting pools of PtdIns(4,5)P2. Several PI4P 5-kinases (PIP5Ks) can generate PtdIns(4,5)P2 in pollen tubes. Despite localizing to one membrane region, the PIP5Ks AtPIP5K2-EYFP and NtPIP5K6-EYFP display distinctive overexpression effects on cell morphologies, respectively related to altered actin dynamics or membrane trafficking. When analyzed by SD, AtPIP5K2-EYFP associated with nanodomains, whereas NtPIP5K6-EYFP localized diffusely. Chimeric AtPIP5K2-EYFP and NtPIP5K6-EYFP variants with reciprocally swapped membrane-associating domains evoked reciprocally shifted effects on cell morphology upon overexpression. Overall, active PI4P 5-kinase variants stabilized actin when targeted to nanodomains, suggesting a role of nanodomain-associated PtdIns(4,5)P2 in actin regulation. This notion is further supported by interaction and proximity of nanodomain-associated AtPIP5K2 with the Rho-GTPase NtRac5, and by its functional interplay with elements of Rho of plants signaling. Plasma membrane nano-organization may thus aid the specification of PtdIns(4,5)P2 functions to coordinate cytoskeletal dynamics and secretion.
Collapse
Affiliation(s)
- Marta Fratini
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Praveen Krishnamoorthy
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Irene Stenzel
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Mara Riechmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Monique Matzner
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Kirsten Bacia
- Department of Biophysical Chemistry, Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Mareike Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
33
|
Phospholipases C and D and Their Role in Biotic and Abiotic Stresses. PLANTS 2021; 10:plants10050921. [PMID: 34064485 PMCID: PMC8148002 DOI: 10.3390/plants10050921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/03/2023]
Abstract
Plants, as sessile organisms, have adapted a fine sensing system to monitor environmental changes, therefore allowing the regulation of their responses. As the interaction between plants and environmental changes begins at the surface, these changes are detected by components in the plasma membrane, where a molecule receptor generates a lipid signaling cascade via enzymes, such as phospholipases (PLs). Phospholipids are the key structural components of plasma membranes and signaling cascades. They exist in a wide range of species and in different proportions, with conversion processes that involve hydrophilic enzymes, such as phospholipase-C (PLC), phospholipase-D (PLD), and phospholipase-A (PLA). Hence, it is suggested that PLC and PLD are highly conserved, compared to their homologous genes, and have formed clusters during their adaptive history. Additionally, they generate responses to different functions in accordance with their protein structure, which should be reflected in specific signal transduction responses to environmental stress conditions, including innate immune responses. This review summarizes the phospholipid systems associated with signaling pathways and the innate immune response.
Collapse
|
34
|
Kuroda R, Kato M, Tsuge T, Aoyama T. Arabidopsis phosphatidylinositol 4-phosphate 5-kinase genes PIP5K7, PIP5K8, and PIP5K9 are redundantly involved in root growth adaptation to osmotic stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:913-927. [PMID: 33606325 DOI: 10.1111/tpj.15207] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) produces phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2 ), a signaling phospholipid critical for various cellular processes in eukaryotes. The Arabidopsis thaliana genome encodes 11 PIP5K genes. Of these, three type B PIP5K genes, PIP5K7, PIP5K8, and PIP5K9, constitute a subgroup highly conserved in land plants, suggesting that they retain a critical function shared by land plants. In this study, we comprehensively investigated the biological functions of the PIP5K7-9 subgroup genes. Reporter gene analyses revealed their preferential expression in meristematic and vascular tissues. Their YFP-fusion proteins localized primarily to the plasma membrane in root meristem epidermal cells. We selected a mutant line that was considered to be null for each gene. Under normal growth conditions, neither single mutants nor multiple mutants of any combination exhibited noticeable phenotypic changes. However, stress conditions with mannitol or NaCl suppressed main root growth and reduced proximal root meristem size to a greater extent in the pip5k7pip5k8pip5k9 triple mutant than in the wild type. In root meristem epidermal cells of the triple mutant, where plasma membrane localization of the PtdIns(4,5)P2 marker P24Y is impaired to a large extent, brefeldin A body formation is retarded compared with the wild type under hyperosmotic stress. These results indicate that PIP5K7, PIP5K8, and PIP5K9 are not required under normal growth conditions, but are redundantly involved in root growth adaptation to hyperosmotic conditions, possibly through the PtdIns(4,5)P2 function promoting plasma membrane recycling in root meristem cells.
Collapse
Affiliation(s)
- Ryo Kuroda
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| | - Mariko Kato
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| |
Collapse
|
35
|
Cascales J, Acevedo RM, Paiva DI, Gottlieb AM. Differential DNA methylation and gene expression during development of reproductive and vegetative organs in Ilex species. JOURNAL OF PLANT RESEARCH 2021; 134:559-575. [PMID: 33759060 DOI: 10.1007/s10265-021-01279-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Differential epigenetic (DNA cytosine methylation) and gene expression patterns were investigated in reproductive and vegetative organs from Ilex paraguariensis and I. dumosa, at distinct developmental stages. We aimed at contributing towards elucidating major molecular changes underlying the sexual differentiation processes which, in these dioecious species, are completely unknown. Simultaneously, as a first step towards the development of an early sexing system, we searched for promising molecular markers. This was assessed through Methylation Sensitive Amplified Polymorphism (MSAP) and Amplified Fragment Length Polymorphism on cDNA (cDNA-AFLP) techniques, applying discriminant multivariate analyses, and bioinformatic characterization of differential fragments. A significant positive correlation was found between epigenetic and indirect 'genetic' information for both species, indicating influence of the genetic background on the epigenetic variation. Higher epigenetic than genetic diversities were estimated. Our outcomes showed up to 1.86 times more representation of mCG subepiloci than mCCG in all organs sampled. Along the maturing stages of floral buds, the frequency of mCG evidenced an incremental trend, whereas mCCG and unmethylated conditions showed opposite tendencies. Reproductive and vegetative samples tended to cluster apart based on epigenetic patterns; at gene expression level, organs exhibited clear-cut distinctive patterns, nonetheless profiles of young leaves and floral primordia resemble. Epigenetic and expression data allowed discrimination of I. dumosa´s samples according to the gender of the donor; more elusive patterns were observed for I. paraguariensis. In total, 102 differentially methylated and expressed fragments were characterized bioinformatically. Forty-three were annotated in various functional categories; four candidate markers were validated through qPCR, finding statistical differences among organs but not among sexes. The methylation condition of epilocus C13m33 appears as indicative of gender in both species. Thirty-three organ-specific and 34 gender-specific methylated markers were discriminated and deserve further research, particularly those expressed in leaves. Our study contributes concrete candidate markers with potential for practical application.
Collapse
Affiliation(s)
- Jimena Cascales
- Laboratorio de Citogenética y Evolución, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA, CONICET-UBA), Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, Ciudad Universitaria, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Raúl Maximiliano Acevedo
- Laboratorio de Biotecnología Aplicada y Genómica Funcional, Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (IBONE, UNNE-CONICET), Universidad Nacional del Nordeste, Sargento Juan Bautista Cabral 2131, Corrientes, W3402BKG, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Daniela Ivana Paiva
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Montecarlo (INTA EEA Montecarlo), Av. El Libertador 2472, Misiones, N3384, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Alexandra Marina Gottlieb
- Laboratorio de Citogenética y Evolución, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA, CONICET-UBA), Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, Ciudad Universitaria, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina.
| |
Collapse
|
36
|
Dubois GA, Jaillais Y. Anionic phospholipid gradients: an uncharacterized frontier of the plant endomembrane network. PLANT PHYSIOLOGY 2021; 185:577-592. [PMID: 33793905 PMCID: PMC8133617 DOI: 10.1093/plphys/kiaa056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/16/2020] [Indexed: 05/19/2023]
Abstract
Anionic phospholipids include phosphatidic acid (PA), phosphatidylserine (PS), phosphatidylinositol (PI), and its phosphorylated derivatives the phosphoinositides (e.g. phosphatidylinositol-4-phosphate [PI4P] and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]). Although anionic phospholipids are low-abundant lipids, they are particularly important for membrane functions. In particular, anionic lipids act as biochemical and biophysical landmarks that contribute to the establishment of membrane identity, signaling activities, and compartment morphodynamics. Each anionic lipid accumulates in different endomembranes according to a unique subcellular pattern, where they locally provide docking platforms for proteins. As such, they are mostly believed to act in the compartments in which they accumulate. However, mounting evidence throughout eukaryotes suggests that anionic lipids are not as compartment-specific as initially thought and that they are instead organized as concentration gradients across different organelles. In this update, we review the evidence for the existence of anionic lipid gradients in plants. We then discuss the possible implication of these gradients in lipid dynamics and homeostasis, and also in coordinating subcellular activities. Finally, we introduce the notion that anionic lipid gradients at the cellular scale may translate into gradients at the tissue level, which could have implications for plant development.
Collapse
Affiliation(s)
- Gwennogan A Dubois
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
- Author for communication:
| |
Collapse
|
37
|
Zhu L, Dou L, Shang H, Li H, Yu J, Xiao G. GhPIPLC2D promotes cotton fiber elongation by enhancing ethylene biosynthesis. iScience 2021; 24:102199. [PMID: 33718844 PMCID: PMC7921840 DOI: 10.1016/j.isci.2021.102199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/13/2021] [Accepted: 02/12/2021] [Indexed: 11/29/2022] Open
Abstract
Inositol-1,4,5-trisphosphate (IP3) is an important second messenger and one of the products of phosphoinositide-specific phospholipase C (PIPLC)-mediated phosphatidylinositol (4,5) bisphosphate (PIP2) hydrolysis. However, the function of IP3 in cotton is unknown. Here, we characterized the function of GhPIPLC2D in cotton fiber elongation. GhPIPLC2D was preferentially expressed in elongating fibers. Suppression of GhPIPLC2D transcripts resulted in shorter fibers and decreased IP3 accumulation and ethylene biosynthesis. Exogenous application of linolenic acid (C18:3) and phosphatidylinositol (PI), the precursor of IP3, improved IP3 and myo-inositol-1,2,3,4,5,6-hexakisphosphate (IP6) accumulation, as well as ethylene biosynthesis. Moreover, fiber length in GhPIPLC2D-silenced plant was reduced after exogenous application of IP6 and ethylene. These results indicate that GhPIPLC2D positively regulates fiber elongation and IP3 promotes fiber elongation by enhancing ethylene biosynthesis. Our study broadens our understanding of the function of IP3 in cotton fiber elongation and highlights the possibility of cultivating better cotton varieties by manipulating GhPIPLC2D in the future. GhPIPLC2D positively regulates cotton fiber elongation GhPIPLC2D cleaves PIP2 into IP3, which could be phosphorylated to IP6 IP6 enhances fiber elongation via improving ethylene biosynthesis
Collapse
Affiliation(s)
- Liping Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lingling Dou
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang 712000, China
| | - Haihong Shang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Jianing Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
38
|
Chen ZF, Ru JN, Sun GZ, Du Y, Chen J, Zhou YB, Chen M, Ma YZ, Xu ZS, Zhang XH. Genomic-Wide Analysis of the PLC Family and Detection of GmPI-PLC7 Responses to Drought and Salt Stresses in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:631470. [PMID: 33763092 PMCID: PMC7982816 DOI: 10.3389/fpls.2021.631470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/10/2021] [Indexed: 05/12/2023]
Abstract
Phospholipase C (PLC) performs significant functions in a variety of biological processes, including plant growth and development. The PLC family of enzymes principally catalyze the hydrolysis of phospholipids in organisms. This exhaustive exploration of soybean GmPLC members using genome databases resulted in the identification of 15 phosphatidylinositol-specific PLC (GmPI-PLC) and 9 phosphatidylcholine-hydrolyzing PLC (GmNPC) genes. Chromosomal location analysis indicated that GmPLC genes mapped to 10 of the 20 soybean chromosomes. Phylogenetic relationship analysis revealed that GmPLC genes distributed into two groups in soybean, the PI-PLC and NPC groups. The expression patterns and tissue expression analysis showed that GmPLCs were differentially expressed in response to abiotic stresses. GmPI-PLC7 was selected to further explore the role of PLC in soybean response to drought and salt stresses by a series of experiments. Compared with the transgenic empty vector (EV) control lines, over-expression of GmPI-PLC7 (OE) conferred higher drought and salt tolerance in soybean, while the GmPI-PLC7-RNAi (RNAi) lines exhibited the opposite phenotypes. Plant tissue staining and physiological parameters observed from drought- and salt-stressed plants showed that stress increased the contents of chlorophyll, oxygen free radical (O2 -), hydrogen peroxide (H2O2) and NADH oxidase (NOX) to amounts higher than those observed in non-stressed plants. This study provides new insights in the functional analysis of GmPLC genes in response to abiotic stresses.
Collapse
Affiliation(s)
- Zhi-Feng Chen
- College of Life Sciences, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jing-Na Ru
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Guo-Zhong Sun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yan Du
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Xiao-Hong Zhang
- College of Life Sciences, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| |
Collapse
|
39
|
Li H, von Wangenheim D, Zhang X, Tan S, Darwish‐Miranda N, Naramoto S, Wabnik K, De Rycke R, Kaufmann WA, Gütl D, Tejos R, Grones P, Ke M, Chen X, Dettmer J, Friml J. Cellular requirements for PIN polar cargo clustering in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 229:351-369. [PMID: 32810889 PMCID: PMC7984064 DOI: 10.1111/nph.16887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/07/2020] [Indexed: 05/12/2023]
Abstract
Cell and tissue polarization is fundamental for plant growth and morphogenesis. The polar, cellular localization of Arabidopsis PIN-FORMED (PIN) proteins is crucial for their function in directional auxin transport. The clustering of PIN polar cargoes within the plasma membrane has been proposed to be important for the maintenance of their polar distribution. However, the more detailed features of PIN clusters and the cellular requirements of cargo clustering remain unclear. Here, we characterized PIN clusters in detail by means of multiple advanced microscopy and quantification methods, such as 3D quantitative imaging or freeze-fracture replica labeling. The size and aggregation types of PIN clusters were determined by electron microscopy at the nanometer level at different polar domains and at different developmental stages, revealing a strong preference for clustering at the polar domains. Pharmacological and genetic studies revealed that PIN clusters depend on phosphoinositol pathways, cytoskeletal structures and specific cell-wall components as well as connections between the cell wall and the plasma membrane. This study identifies the role of different cellular processes and structures in polar cargo clustering and provides initial mechanistic insight into the maintenance of polarity in plants and other systems.
Collapse
Affiliation(s)
- Hongjiang Li
- Institute of Science and Technology Austria (IST Austria)Klosterneuburg3400Austria
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
| | - Daniel von Wangenheim
- Institute of Science and Technology Austria (IST Austria)Klosterneuburg3400Austria
- Centre for Plant Integrative BiologySchool of BiosciencesUniversity of NottinghamLoughboroughLE12 5RDUK
| | - Xixi Zhang
- Institute of Science and Technology Austria (IST Austria)Klosterneuburg3400Austria
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life Sciences (BOKU)Vienna1190Austria
| | - Shutang Tan
- Institute of Science and Technology Austria (IST Austria)Klosterneuburg3400Austria
| | | | - Satoshi Naramoto
- Graduate School of Life SciencesTohoku UniversitySendai980‐8577Japan
| | - Krzysztof Wabnik
- Institute of Science and Technology Austria (IST Austria)Klosterneuburg3400Austria
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
| | - Riet De Rycke
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- VIB Center for Plant Systems BiologyGhent9052Belgium
- Expertise Centre for Transmission Electron Microscopy and VIB BioImaging CoreGhent UniversityGhent9052Belgium
| | - Walter A. Kaufmann
- Institute of Science and Technology Austria (IST Austria)Klosterneuburg3400Austria
| | - Daniel Gütl
- Institute of Science and Technology Austria (IST Austria)Klosterneuburg3400Austria
| | - Ricardo Tejos
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Departamento de BiologíaFacultad de CienciasCentro de Biología Molecular VegetalUniversidad de ChileSantiago7800003Chile
| | - Peter Grones
- Institute of Science and Technology Austria (IST Austria)Klosterneuburg3400Austria
| | - Meiyu Ke
- Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Xu Chen
- Institute of Science and Technology Austria (IST Austria)Klosterneuburg3400Austria
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Jan Dettmer
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria)Klosterneuburg3400Austria
| |
Collapse
|
40
|
Adigun OA, Nadeem M, Pham TH, Jewell LE, Cheema M, Thomas R. Recent advances in bio-chemical, molecular and physiological aspects of membrane lipid derivatives in plant pathology. PLANT, CELL & ENVIRONMENT 2021; 44:1-16. [PMID: 33034375 DOI: 10.1111/pce.13904] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Plant pathogens pose a significant threat to the food industry and food security accounting for 10-40% crop losses annually on a global scale. Economic losses from plant diseases are estimated at $300B for major food crops and are associated with reduced food availability and accessibility and also high food costs. Although strategies exist to reduce the impact of diseases in plants, many of these introduce harmful chemicals to our food chain. Therefore, it is important to understand and utilize plants' immune systems to control plant pathogens to enable more sustainable agriculture. Lipids are core components of cell membranes and as such are part of the first line of defense against pathogen attack. Recent developments in omics technologies have advanced our understanding of how plant membrane lipid biosynthesis, remodelling and/or signalling modulate plant responses to infection. Currently, there is limited information available in the scientific literature concerning lipid signalling targets and their biochemical and physiological consequences in response to plant pathogens. This review focusses on the functions of membrane lipid derivatives and their involvement in plant responses to pathogens as biotic stressors. We describe major plant defense systems including systemic-acquired resistance, basal resistance, hypersensitivity and the gene-for-gene concept in this context.
Collapse
Affiliation(s)
- Oludoyin Adeseun Adigun
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Muhammad Nadeem
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Thu Huong Pham
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Linda Elizabeth Jewell
- St. John's Research and Development Centre, Agriculture and Agri-Food Canada, 204 Brookfield Rd, St. John's, Newfoundland and Labrador, A1E 6J5, Canada
| | - Mumtaz Cheema
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Raymond Thomas
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| |
Collapse
|
41
|
Sadhukhan A, Agrahari RK, Wu L, Watanabe T, Nakano Y, Panda SK, Koyama H, Kobayashi Y. Expression genome-wide association study identifies that phosphatidylinositol-derived signalling regulates ALUMINIUM SENSITIVE3 expression under aluminium stress in the shoots of Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110711. [PMID: 33288018 DOI: 10.1016/j.plantsci.2020.110711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 06/12/2023]
Abstract
To identify unknown regulatory mechanisms leading to aluminium (Al)-induction of the Al tolerance gene ALS3, we conducted an expression genome-wide association study (eGWAS) for ALS3 in the shoots of 95 Arabidopsis thaliana accessions in the presence of Al. The eGWAS was conducted using a mixed linear model with 145,940 genome-wide single nucleotide polymorphisms (SNPs) and the association results were validated using reverse genetics. We found that many SNPs from the eGWAS were associated with genes related to phosphatidylinositol metabolism as well as stress signal transduction, including Ca2+signals, inter-connected in a co-expression network. Of these, PLC9, CDPK32, ANAC071, DIR1, and a hypothetical protein (AT4G10470) possessed amino acid sequence/ gene expression level polymorphisms that were significantly associated with ALS3 expression level variation. Furthermore, T-DNA insertion mutants of PLC9, CDPK32, and ANAC071 suppressed shoot ALS3 expression in the presence of Al. This study clarified the regulatory mechanisms of ALS3 expression in the shoot and provided genetic evidence of the involvement of phosphatidylinositol-derived signal transduction under Al stress.
Collapse
Affiliation(s)
- Ayan Sadhukhan
- Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu, Gifu 501-1193, Japan
| | - Raj Kishan Agrahari
- Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu, Gifu 501-1193, Japan
| | - Liujie Wu
- Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu, Gifu 501-1193, Japan
| | - Toshihiro Watanabe
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kitaku, Sapporo, 060-8589, Japan
| | - Yuki Nakano
- Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu, Gifu 501-1193, Japan
| | - Sanjib Kumar Panda
- Department of Biochemistry, Central University of Rajasthan, Rajasthan 305817, India
| | - Hiroyuki Koyama
- Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu, Gifu 501-1193, Japan
| | - Yuriko Kobayashi
- Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu, Gifu 501-1193, Japan.
| |
Collapse
|
42
|
Meng LS, Wei ZQ, Cao XY, Tong C, Lv MJ, Yu F, Loake GJ. Cytosolic Invertase-Mediated Root Growth Is Feedback Regulated by a Glucose-Dependent Signaling Loop. PLANT PHYSIOLOGY 2020; 184:895-908. [PMID: 32820066 PMCID: PMC7536704 DOI: 10.1104/pp.20.00778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/11/2020] [Indexed: 05/25/2023]
Abstract
The disaccharide Suc cannot be utilized directly; rather, it is irreversibly hydrolyzed by invertase to the hexoses Glc and Fru to shape plant growth. In this context, Glc controls the stability of the transcription factor Ethylene-Insensitive3 (EIN3) via the function of Hexokinase1 (HXK1), a Glc sensor. Thus, invertase, especially the major neutral cytosolic invertase (CINV), constitutes a key point of control for plant growth. However, the cognate regulatory mechanisms that modulate CINV activity remain unclear. Here, we demonstrate that in Arabidopsis (Arabidopsis thaliana), EIN3 binds directly to both the promoters of Production of Anthocyanin Pigment1 (PAP1) and Phosphatidylinositol Monophosphate 5-Kinase 9 (PIP5K9), repressing and enhancing, respectively, their expression. Subsequently, PAP1 binds directly to and promotes transcription of the Cytosolic Invertase1 (CINV1) promoter, while PIP5K9 interacts with and negatively regulates CINV1. The accumulated CINV1 subsequently hydrolyzes Suc, releasing the sequestered signaling cue, Glc, which has been shown to negatively regulate the stability of EIN3 via HXK1. We conclude that a CINV1-Glc-HXK1-EIN3-PAP1/PIP5K9-CINV1 loop contributes to the modulation of CINV1 activity regulating root growth by Glc signaling.
Collapse
Affiliation(s)
- Lai-Sheng Meng
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, People's Republic of China
| | - Zhi-Qin Wei
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, People's Republic of China
| | - Xiao-Ying Cao
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, People's Republic of China
| | - Chen Tong
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, People's Republic of China
| | - Meng-Jiao Lv
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, People's Republic of China
| | - Fei Yu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, People's Republic of China
| | - Gary J Loake
- Jiangsu Normal University-Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, People's Republic of China
- Institute of Molecular Plant Sciences, School of Biological Sciences, Edinburgh University, Edinburgh EH9 3JR, United Kingdom
| |
Collapse
|
43
|
Zarza X, Van Wijk R, Shabala L, Hunkeler A, Lefebvre M, Rodriguez‐Villalón A, Shabala S, Tiburcio AF, Heilmann I, Munnik T. Lipid kinases PIP5K7 and PIP5K9 are required for polyamine-triggered K + efflux in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:416-432. [PMID: 32666545 PMCID: PMC7693229 DOI: 10.1111/tpj.14932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 05/03/2023]
Abstract
Polyamines, such as putrescine, spermidine and spermine (Spm), are low-molecular-weight polycationic molecules present in all living organisms. Despite their implication in plant cellular processes, little is known about their molecular mode of action. Here, we demonstrate that polyamines trigger a rapid increase in the regulatory membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2 ), and that this increase is required for polyamine effects on K+ efflux in Arabidopsis roots. Using in vivo 32 Pi -labelling of Arabidopsis seedlings, low physiological (μm) concentrations of Spm were found to promote a rapid PIP2 increase in roots that was time- and dose-dependent. Confocal imaging of a genetically encoded PIP2 biosensor revealed that this increase was triggered at the plasma membrane. Differential 32 Pi -labelling suggested that the increase in PIP2 was generated through activation of phosphatidylinositol 4-phosphate 5-kinase (PIP5K) activity rather than inhibition of a phospholipase C or PIP2 5-phosphatase activity. Systematic analysis of transfer DNA insertion mutants identified PIP5K7 and PIP5K9 as the main candidates involved in the Spm-induced PIP2 response. Using non-invasive microelectrode ion flux estimation, we discovered that the Spm-triggered K+ efflux response was strongly reduced in pip5k7 pip5k9 seedlings. Together, our results provide biochemical and genetic evidence for a physiological role of PIP2 in polyamine-mediated signalling controlling K+ flux in plants.
Collapse
Affiliation(s)
- Xavier Zarza
- Research Cluster Green Life SciencesSection Plant Cell BiologySwammerdam Institute for Life SciencesUniversity of AmsterdamPO Box 94215Amsterdam1090 GEThe Netherlands
| | - Ringo Van Wijk
- Research Cluster Green Life SciencesSection Plant Cell BiologySwammerdam Institute for Life SciencesUniversity of AmsterdamPO Box 94215Amsterdam1090 GEThe Netherlands
| | - Lana Shabala
- Tasmanian Institute of AgricultureUniversity of TasmaniaHobartAustralia
| | - Anna Hunkeler
- Department of BiologyInstitute of Agricultural ScienceSwiss Federal Institute of Technology in ZurichZurichSwitzerland
| | - Matthew Lefebvre
- Research Cluster Green Life SciencesSection Plant Cell BiologySwammerdam Institute for Life SciencesUniversity of AmsterdamPO Box 94215Amsterdam1090 GEThe Netherlands
| | - Antia Rodriguez‐Villalón
- Department of BiologyInstitute of Agricultural ScienceSwiss Federal Institute of Technology in ZurichZurichSwitzerland
| | - Sergey Shabala
- Tasmanian Institute of AgricultureUniversity of TasmaniaHobartAustralia
- International Research Centre for Environmental Membrane BiologyFoshan UniversityFoshanChina
| | - Antonio F. Tiburcio
- Dept. of Natural Products, Plant Biology and Soil ScienceUniversity of BarcelonaBarcelonaSpain
| | - Ingo Heilmann
- Dept of Cellular BiochemistryInstitute of Biochemistry and BiotechnologyMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Teun Munnik
- Research Cluster Green Life SciencesSection Plant Cell BiologySwammerdam Institute for Life SciencesUniversity of AmsterdamPO Box 94215Amsterdam1090 GEThe Netherlands
| |
Collapse
|
44
|
Zhao CY, Xue HW. PI4Kγ2 Interacts with E3 Ligase MIEL1 to Regulate Auxin Metabolism and Root Development. PLANT PHYSIOLOGY 2020; 184:933-944. [PMID: 32788299 PMCID: PMC7536656 DOI: 10.1104/pp.20.00799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 05/07/2023]
Abstract
Root development is important for normal plant growth and nutrient absorption. Studies have revealed the involvement of various factors in this complex process, improving our understanding of the relevant regulatory mechanisms. Here, we functionally characterize the role of Arabidopsis (Arabidopsis thaliana) phosphatidylinositol 4-kinase γ2 (PI4Kγ2) in root elongation regulation, which functions to modulate stability of the RING-type E3 ligase MYB30-INTERACTING E3 LIGASE1 (MIEL1) and auxin metabolism. Mutant plants deficient in PI4Kγ2 (pi4kγ2) exhibited a shortened root length and elongation zone due to reduced auxin level. PI4Kγ2 was shown to interact with MIEL1, regulating its degradation and furthering the stability of transcription factor MYB30 (which suppresses auxin metabolism by directly binding to promoter regions of GH3 2 and GH3 6). Interestingly, pi4kγ2 plants presented altered hypersensitive response, indicating that PI4Kγ2 regulates synergetic growth and defense of plants through modulating auxin metabolism. These results reveal the importance of protein interaction in regulating ubiquitin-mediated protein degradation in eukaryotic cells, and illustrate a mechanism coordinating plant growth and biotic stress response.
Collapse
Affiliation(s)
- Chun-Yan Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong-Wei Xue
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
45
|
Genome-wide systematic characterization and expression analysis of the phosphatidylinositol 4-phosphate 5-kinases in plants. Gene 2020; 756:144915. [PMID: 32580009 DOI: 10.1016/j.gene.2020.144915] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/07/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022]
Abstract
Phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) are key enzymes in the process of phosphatidylinositol signaling pathway and have essential functions in growth, development, and biotic and abiotic stresses responses in plants. However, the evolutionary history and patterns of PIP5K genes in plants have not been examined systematically. Here, we use whole-genome sequences from eight plant species of land plants and algae to define the evolutionary relationships between these proteins in plants. 85 PIP5K genes were identified and divided into two subfamilies based on phylogenetic analyses. PIP5K members in subfamily II underwent several duplication events in land plants, resulting in multiple gene copies in angiosperms, while PIP5K members in subfamily I displayed low-copy numbers and lost in eudicots. Furthermore, PIP5K genes within the same subfamily had similar motifs and intron/exon features. Nine duplicated soybean gene pairs, four duplicated Arabidopsis gene pairs and two rice duplicated gene pairs were identified and many of them localized in synteny genomic regions. These duplicate events were formed by Whole-genome duplication (WGD)/segmental duplications. In addition, the ratios of non-synonymous to synonymous substitutions (Ka/Ks) showed that the PIP5K family had undergone purifying selection in higher plants. Expression analysis showed that PIP5K genes had complex and variable expression patterns in different developmental stages. The specificity of these genes is utilized to provide evidence for selective expression in the evolutionary process.
Collapse
|
46
|
Scholz P, Anstatt J, Krawczyk HE, Ischebeck T. Signalling Pinpointed to the Tip: The Complex Regulatory Network That Allows Pollen Tube Growth. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1098. [PMID: 32859043 PMCID: PMC7569787 DOI: 10.3390/plants9091098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Plants display a complex life cycle, alternating between haploid and diploid generations. During fertilisation, the haploid sperm cells are delivered to the female gametophyte by pollen tubes, specialised structures elongating by tip growth, which is based on an equilibrium between cell wall-reinforcing processes and turgor-driven expansion. One important factor of this equilibrium is the rate of pectin secretion mediated and regulated by factors including the exocyst complex and small G proteins. Critically important are also non-proteinaceous molecules comprising protons, calcium ions, reactive oxygen species (ROS), and signalling lipids. Among the latter, phosphatidylinositol 4,5-bisphosphate and the kinases involved in its formation have been assigned important functions. The negatively charged headgroup of this lipid serves as an interaction point at the apical plasma membrane for partners such as the exocyst complex, thereby polarising the cell and its secretion processes. Another important signalling lipid is phosphatidic acid (PA), that can either be formed by the combination of phospholipases C and diacylglycerol kinases or by phospholipases D. It further fine-tunes pollen tube growth, for example by regulating ROS formation. How the individual signalling cues are intertwined or how external guidance cues are integrated to facilitate directional growth remain open questions.
Collapse
Affiliation(s)
- Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| | | | | | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| |
Collapse
|
47
|
Sagar S, Biswas DK, Singh A. Genomic and expression analysis indicate the involvement of phospholipase C family in abiotic stress signaling in chickpea (Cicer arietinum). Gene 2020; 753:144797. [DOI: 10.1016/j.gene.2020.144797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 12/01/2022]
|
48
|
Qin L, Zhou Z, Li Q, Zhai C, Liu L, Quilichini TD, Gao P, Kessler SA, Jaillais Y, Datla R, Peng G, Xiang D, Wei Y. Specific Recruitment of Phosphoinositide Species to the Plant-Pathogen Interfacial Membrane Underlies Arabidopsis Susceptibility to Fungal Infection. THE PLANT CELL 2020; 32:1665-1688. [PMID: 32156686 PMCID: PMC7203932 DOI: 10.1105/tpc.19.00970] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/07/2020] [Accepted: 03/09/2020] [Indexed: 05/04/2023]
Abstract
Different phosphoinositides enriched at the membranes of specific subcellular compartments within plant cells contribute to organelle identity, ensuring appropriate cellular trafficking and function. During the infection of plant cells, biotrophic pathogens such as powdery mildews enter plant cells and differentiate into haustoria. Each haustorium is enveloped by an extrahaustorial membrane (EHM) derived from the host plasma membrane. Little is known about the EHM biogenesis and identity. Here, we demonstrate that among the two plasma membrane phosphoinositides in Arabidopsis (Arabidopsis thaliana), PI(4,5)P2 is dynamically up-regulated at powdery mildew infection sites and recruited to the EHM, whereas PI4P is absent in the EHM. Lateral transport of PI(4,5)P2 into the EHM occurs through a brefeldin A-insensitive but actin-dependent trafficking pathway. Furthermore, the lower levels of PI(4,5)P2 in pip5k1 pip5k2 mutants inhibit fungal pathogen development and cause disease resistance, independent of cell death-associated defenses and involving impaired host susceptibility. Our results reveal that plant biotrophic and hemibiotrophic pathogens modulate the subcellular distribution of host phosphoinositides and recruit PI(4,5)P2 as a susceptibility factor for plant disease.
Collapse
Affiliation(s)
- Li Qin
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Zhuqing Zhou
- Laboratory of Cell Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qiang Li
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Chun Zhai
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan S7N 0X2, Canada
| | - Lijiang Liu
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, China
| | | | - Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Sharon A Kessler
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, Lyon 69342, France
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Gary Peng
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan S7N 0X2, Canada
| | - Daoquan Xiang
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| |
Collapse
|
49
|
Carella P. Good Fats, Bad Fats: Phosphoinositide Species Differentially Localize to Plant-Pathogen Interfaces and Influence Disease Progression. THE PLANT CELL 2020; 32:1355-1356. [PMID: 32169956 PMCID: PMC7203940 DOI: 10.1105/tpc.20.00193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Affiliation(s)
- Philip Carella
- Sainsbury LaboratoryUniversity of CambridgeCambridge, United Kingdom
| |
Collapse
|
50
|
Fang F, Ye S, Tang J, Bennett MJ, Liang W. DWT1/DWL2 act together with OsPIP5K1 to regulate plant uniform growth in rice. THE NEW PHYTOLOGIST 2020; 225:1234-1246. [PMID: 31550392 DOI: 10.1111/nph.16216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/14/2019] [Indexed: 05/27/2023]
Abstract
Uniform growth of the main shoot and tillers significantly influences rice plant architecture and grain yield. The WUSCHEL-related homeobox transcription factor DWT1 is a key regulator of this important agronomic trait, disruption of which causes enhanced main shoot dominance and tiller dwarfism by an unknown mechanism. Here, we have used yeast-two-hybrid screening to identify OsPIP5K1, a member of the rice phosphatidylinositol-4-phosphate 5-kinase family, as a protein that interacts with DWT1. Cytological analyses confirmed that DWT1 induces accumulation of OsPIP5K1 and its product PI(4,5)P2 , a phosphoinositide secondary messenger, in nuclear bodies. Mutation of OsPIP5K1 compounds the dwarf dwt1 phenotype but abolishes the main shoot dominance. Conversely, overexpression of OsPIP5K1 partially rescues dwt1 developmental defects. Furthermore, we showed that DWL2, the homologue of DWT1, is also able to interact with OsPIP5K1 and shares partial functional redundancy with DWT1 in controlling rice uniformity. Overall, our data suggest that nuclear localised OsPIP5K1 acts with DWT1 and/or DWL2 to coordinate the uniform growth of rice shoots, likely to be through nuclear phosphoinositide signals, and provides insights into the regulation of rice uniformity via a largely unexplored plant nuclear signalling pathway.
Collapse
Affiliation(s)
- Fang Fang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Shiwei Ye
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Jingyao Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| |
Collapse
|