1
|
Zhang S, Wang Y, Cui Z, Li Q, Kong L, Luo J. Functional characterization of a Flavonol 3-O-rhamnosyltransferase and two UDP-rhamnose synthases from Hypericum monogynum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107643. [PMID: 36989989 DOI: 10.1016/j.plaphy.2023.107643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Rhamnosyltransferase (RT) and rhamnose synthase (Rhs) are the key enzymes that are responsible for the biosynthesis of rhamnosides and UDP-l-rhamnose (UDP-Rha) in plants, respectively. How to discover such enzymes efficiently for use is still a problem to be solved. Here, we identified HmF3RT, HmRhs1, and HmRhs2 from Hypericum monogynum, which is abundant in flavonol rhamnosides, with the help of a full-length and high throughput transcriptome sequencing platform. HmF3RT could regiospecifically transfer the rhamnose moiety of UDP-Rha onto the 3-OH position of flavonols and has weakly catalytic for UDP-xylose (UDP-Xyl) and UDP-glucose (UDP-Glc). HmF3RT showed well quercetin substrate affinity and high catalytic efficiency with Km of 5.14 μM and kcat/Km of 2.21 × 105 S-1 M-1, respectively. Docking, dynamic simulation, and mutagenesis studies revealed that V129, D372, and N373 are critical residues for the activity and sugar donor recognition of HmF3RT, mutant V129A, and V129T greatly enhance the conversion rate of catalytic flavonol glucosides. HmRhs1 and HmRhs2 convert UDP-Glc to UDP-Rha, which could be further used by HmF3RT. The HmF3RT and HmRhs1 co-expressed strain RTS1 could produce quercetin 3-O-rhamnoside (quercitrin), kaempferol 3-O-rhamnoside (afzelin), and myricetin 3-O-rhamnoside (myricitrin) at yields of 85.1, 110.7, and 77.6 mg L-1, respectively. It would provide a valuable reference for establishing a better and more efficient biocatalyst for preparing bioactive flavonol rhamnosides by identifying HmF3RT and HmRhs.
Collapse
Affiliation(s)
- Shuai Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| | - Yingying Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| | - Zhirong Cui
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| | - Qianqian Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China.
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
2
|
The L-Rhamnose Biosynthetic Pathway in Trichomonas vaginalis: Identification and Characterization of UDP-D-Glucose 4,6-dehydratase. Int J Mol Sci 2022; 23:ijms232314587. [PMID: 36498914 PMCID: PMC9741107 DOI: 10.3390/ijms232314587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Trichomonas vaginalis is the causative agent of one of the most widespread sexually transmitted diseases in the world. The adhesion of the parasite to the vaginal epithelial cells is mediated by specific proteins and by a complex glycan structure, the lipoglycan (TvLG), which covers the pathogen surface. L-rhamnose is an important component of TvLG, comprising up to 40% of the monosaccharides. Thus, the inhibition of its production could lead to a severe alteration in the TvLG structure, making the L-rhamnose biosynthetic pathway an attractive pharmacologic target. We report the identification and characterization of the first committed and limiting step of the L-rhamnose biosynthetic pathway, UDP-D-glucose 4,6-dehydratase (UGD, EC 4.2.1.76). The enzyme shows a strong preference for UDP-D-glucose compared to dTDP-D-glucose; we propose that the mechanism underlying the higher affinity for the UDP-bound substrate is mediated by the differential recognition of ribose versus the deoxyribose of the nucleotide moiety. The identification of the enzymes responsible for the following steps of the L-rhamnose pathway (epimerization and reduction) was more elusive. However, sequence analyses suggest that in T. vaginalis L-rhamnose synthesis proceeds through a mechanism different from the typical eukaryotic pathways, displaying intermediate features between the eukaryotic and prokaryotic pathways and involving separate enzymes for the epimerase and reductase activities, as observed in bacteria. Altogether, these results form the basis for a better understanding of the formation of the complex glycan structures on TvLG and the possible use of L-rhamnose biosynthetic enzymes for the development of selective inhibitors.
Collapse
|
3
|
Speciale I, Notaro A, Abergel C, Lanzetta R, Lowary TL, Molinaro A, Tonetti M, Van Etten JL, De Castro C. The Astounding World of Glycans from Giant Viruses. Chem Rev 2022; 122:15717-15766. [PMID: 35820164 PMCID: PMC9614988 DOI: 10.1021/acs.chemrev.2c00118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Viruses are a heterogeneous ensemble of entities, all sharing the need for a suitable host to replicate. They are extremely diverse, varying in morphology, size, nature, and complexity of their genomic content. Typically, viruses use host-encoded glycosyltransferases and glycosidases to add and remove sugar residues from their glycoproteins. Thus, the structure of the glycans on the viral proteins have, to date, typically been considered to mimick those of the host. However, the more recently discovered large and giant viruses differ from this paradigm. At least some of these viruses code for an (almost) autonomous glycosylation pathway. These viral genes include those that encode the production of activated sugars, glycosyltransferases, and other enzymes able to manipulate sugars at various levels. This review focuses on large and giant viruses that produce carbohydrate-processing enzymes. A brief description of those harboring these features at the genomic level will be discussed, followed by the achievements reached with regard to the elucidation of the glycan structures, the activity of the proteins able to manipulate sugars, and the organic synthesis of some of these virus-encoded glycans. During this progression, we will also comment on many of the challenging questions on this subject that remain to be addressed.
Collapse
Affiliation(s)
- Immacolata Speciale
- Department
of Agricultural Sciences, University of
Napoli, Via Università
100, 80055 Portici, Italy
| | - Anna Notaro
- Department
of Agricultural Sciences, University of
Napoli, Via Università
100, 80055 Portici, Italy
- Centre
National de la Recherche Scientifique, Information Génomique
& Structurale, Aix-Marseille University, Unité Mixte de Recherche
7256, IMM, IM2B, 13288 Marseille, Cedex 9, France
| | - Chantal Abergel
- Centre
National de la Recherche Scientifique, Information Génomique
& Structurale, Aix-Marseille University, Unité Mixte de Recherche
7256, IMM, IM2B, 13288 Marseille, Cedex 9, France
| | - Rosa Lanzetta
- Department
of Chemical Sciences, University of Napoli, Via Cintia 4, 80126 Napoli, Italy
| | - Todd L. Lowary
- Institute
of Biological Chemistry, Academia Sinica, Academia Road, Section 2, Nangang 11529, Taipei, Taiwan
| | - Antonio Molinaro
- Department
of Chemical Sciences, University of Napoli, Via Cintia 4, 80126 Napoli, Italy
| | - Michela Tonetti
- Department
of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16132 Genova, Italy
| | - James L. Van Etten
- Nebraska
Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900, United States
- Department
of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, United States
| | - Cristina De Castro
- Department
of Agricultural Sciences, University of
Napoli, Via Università
100, 80055 Portici, Italy
| |
Collapse
|
4
|
Sang L, Chen G, Cao J, Liu J, Yu Y. PhRHMs play important roles in leaf and flower development and anthocyanin synthesis in petunia. PHYSIOLOGIA PLANTARUM 2022; 174:e13773. [PMID: 36066309 DOI: 10.1111/ppl.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Anthocyanins, vital metabolites in plants, are formed by anthocyanidins combined with various monosaccharides, including glucose, rhamnose, and arabinose. Rhamnose contributes greatly to the glycosylation of anthocyanidins. There are two kinds of rhamnose synthase (RS): rhamnose biosynthesis (RHM), and nucleotide-RS/epimerase-reductase (UER1). Nevertheless, no RS isoform was reported to be involved in anthocyanin synthesis. Here, three homologous PhRHM genes, namely PhRHM1, PhRHM2, and PhRHM3, and one PhUER1 gene from petunia were cloned and characterized. Green fluorescent protein fusion protein assays revealed that PhRHMs and PhUER1 are localized in the cytoplasm. We obtained PhRHM1 or/and PhRHM2 or PhUER1 silenced petunia plants and did not attempt to obtain PhRHM3 silenced plants since PhRHM3 mRNA was not detected in petunia organs examined. PhRHM1 and PhRHM2 (PhRHM1-2) silencing induced abnormal plant growth and decreased the contents of l-rhamnose, photosynthetic pigments and total anthocyanins, while PhUER1 silencing did not cause any visible phenotypic changes. Flavonoid metabolome analysis further revealed that PhRHM1-2 silencing reduced the contents of anthocyanins with rhamnose residue. These results revealed that PhRHMs contribute to the biosynthesis of rhamnose and that PhRHMs participate in the anthocyanin rhamnosylation in petunia, while PhUER1 does not.
Collapse
Affiliation(s)
- Lina Sang
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Guoju Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiahao Cao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Juanxu Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yixun Yu
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Tamez-Castrellón AK, van der Beek SL, López-Ramírez LA, Martínez-Duncker I, Lozoya-Pérez NE, van Sorge NM, Mora-Montes HM. Disruption of protein rhamnosylation affects the Sporothrix schenckii-host interaction. Cell Surf 2021; 7:100058. [PMID: 34308006 PMCID: PMC8258688 DOI: 10.1016/j.tcsw.2021.100058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/24/2022] Open
Abstract
Sporotrichosis is a fungal disease caused by the members of the Sporothrix pathogenic clade, and one of the etiological agents is Sporothrix schenckii. The cell wall of this organism has been previously analyzed and thus far is known to contain an inner layer composed of chitin and β -glucans, and an outer layer of glycoproteins, which are decorated with mannose and rhamnose-containing oligosaccharides. The L-rhamnose biosynthesis pathway is common in bacteria but rare in members of the Fungi kingdom. Therefore, in this study, we aimed to disrupt this metabolic route to assess the contribution of rhamnose during the S. schenckii-host interaction. We identified and silenced in S. schenckii a functional ortholog of the bacterial rmlD gene, which encodes for an essential reductase for the synthesis of nucleotide-activated L-rhamnose. RmlD silencing did not affect fungal growth or morphology but decreased cell wall rhamnose content. Compensatory, the β-1,3-glucan levels increased and were more exposed at the cell surface. Moreover, when incubated with human peripheral blood mononuclear cells, the RmlD silenced mutants differentially stimulated cytokine production when compared with the wild-type strain, reducing TNFα and IL-6 levels and increasing IL-1 β and IL-10 production. Upon incubation with human monocyte-derived macrophages, the silenced strains were more efficiently phagocytosed than the wild-type strain. In both cases, our data suggest that rhamnose-based oligosaccharides are ligands that interact with TLR4. Finally, our findings showed that cell wall rhamnose is required for the S. schenckii virulence in the G. mellonella model of infection.
Collapse
Affiliation(s)
- Alma K. Tamez-Castrellón
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto., Mexico
| | - Samantha L. van der Beek
- University Medical Center Utrecht, Medical Microbiology, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Luz A. López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto., Mexico
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca Mor. 62209, Mexico
| | - Nancy E. Lozoya-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto., Mexico
| | - Nina M. van Sorge
- University Medical Center Utrecht, Medical Microbiology, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto., Mexico
| |
Collapse
|
6
|
The gut microbiota composition of Trichoplusia ni is altered by diet and may influence its polyphagous behavior. Sci Rep 2021; 11:5786. [PMID: 33707556 PMCID: PMC7970945 DOI: 10.1038/s41598-021-85057-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Insects are known plant pests, and some of them such as Trichoplusia ni feed on a variety of crops. In this study, Trichoplusia ni was fed distinct diets of leaves of Arabidopsis thaliana or Solanum lycopersicum as well as an artificial diet. After four generations, the microbial composition of the insect gut was evaluated to determine if the diet influenced the structure and function of the microbial communities. The population fed with A. thaliana had higher proportions of Shinella, Terribacillus and Propionibacterium, and these genera are known to have tolerance to glucosinolate activity, which is produced by A. thaliana to deter insects. The population fed with S. lycopersicum expressed increased relative abundances of the Agrobacterium and Rhizobium genera. These microbial members can degrade alkaloids, which are produced by S. lycopersicum. All five of these genera were also present in the respective leaves of either A. thaliana or S. lycopersicum, suggesting that these microbes are acquired by the insects from the diet itself. This study describes a potential mechanism used by generalist insects to become habituated to their available diet based on acquisition of phytochemical degrading gut bacteria.
Collapse
|
7
|
Zhang W, Qin W, Li H, Wu AM. Biosynthesis and Transport of Nucleotide Sugars for Plant Hemicellulose. FRONTIERS IN PLANT SCIENCE 2021; 12:723128. [PMID: 34868108 PMCID: PMC8636097 DOI: 10.3389/fpls.2021.723128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/22/2021] [Indexed: 05/13/2023]
Abstract
Hemicellulose is entangled with cellulose through hydrogen bonds and meanwhile acts as a bridge for the deposition of lignin monomer in the secondary wall. Therefore, hemicellulose plays a vital role in the utilization of cell wall biomass. Many advances in hemicellulose research have recently been made, and a large number of genes and their functions have been identified and verified. However, due to the diversity and complexity of hemicellulose, the biosynthesis and regulatory mechanisms are yet unknown. In this review, we summarized the types of plant hemicellulose, hemicellulose-specific nucleotide sugar substrates, key transporters, and biosynthesis pathways. This review will contribute to a better understanding of substrate-level regulation of hemicellulose synthesis.
Collapse
Affiliation(s)
- Wenjuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Wenqi Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Ai-min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Ai-min Wu,
| |
Collapse
|
8
|
Jiang N, Dillon FM, Silva A, Gomez-Cano L, Grotewold E. Rhamnose in plants - from biosynthesis to diverse functions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110687. [PMID: 33288005 DOI: 10.1016/j.plantsci.2020.110687] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 05/27/2023]
Abstract
In plants, the deoxy sugar l-rhamnose is widely present as rhamnose-containing polymers in cell walls and as part of the decoration of various specialized metabolites. Here, we review the current knowledge on the distribution of rhamnose, highlighting the differences between what is known in dicotyledoneuos compared to commelinid monocotyledoneous (grasses) plants. We discuss the biosynthesis and transport of UDP-rhamnose, as well as the transfer of rhamnose from UDP-rhamnose to various primary and specialized metabolites. This is carried out by rhamnosyltransferases, enzymes that can use a large variety of substrates. Some unique characteristics of rhamnose synthases, the multifunctional enzymes responsible for the conversion of UDP-glucose into UDP-rhamnose, are considered, particularly from the perspective of their ability to convert glucose present in flavonoids. Finally, we discuss how little is still known with regards to how plants rescue rhamnose from the many compounds to which it is linked, or how rhamnose is catabolized.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Francisco M Dillon
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Alexander Silva
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Lina Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
9
|
Bockhaus NJ, Ferek JD, Thoden JB, Holden HM. The high-resolution structure of a UDP-L-rhamnose synthase from Acanthamoeba polyphaga Mimivirus. Protein Sci 2020; 29:2164-2174. [PMID: 32797646 DOI: 10.1002/pro.3928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022]
Abstract
For the field of virology, perhaps one of the most paradigm-shifting events so far in the 21st century was the identification of the giant double-stranded DNA virus that infects amoebae. Remarkably, this virus, known as Mimivirus, has a genome that encodes for nearly 1,000 proteins, some of which are involved in the biosynthesis of unusual sugars. Indeed, the virus is coated by a layer of glycosylated fibers that contain d-glucose, N-acetyl-d-glucosamine, l-rhamnose, and 4-amino-4,6-dideoxy-d-glucose. Here we describe a combined structural and enzymological investigation of the protein encoded by the open-reading frame L780, which corresponds to an l-rhamnose synthase. The structure of the L780/NADP+ /UDP-l-rhamnose ternary complex was determined to 1.45 Å resolution and refined to an overall R-factor of 19.9%. Each subunit of the dimeric protein adopts a bilobal-shaped appearance with the N-terminal domain harboring the dinucleotide-binding site and the C-terminal domain positioning the UDP-sugar into the active site. The overall molecular architecture of L780 places it into the short-chain dehydrogenase/reductase superfamily. Kinetic analyses indicate that the enzyme can function on either UDP- and dTDP-sugars but displays a higher catalytic efficiency with the UDP-linked substrate. Site-directed mutagenesis experiments suggest that both Cys 108 and Lys 175 play key roles in catalysis. This structure represents the first model of a viral UDP-l-rhamnose synthase and provides new details into these fascinating enzymes.
Collapse
Affiliation(s)
- Nicholas J Bockhaus
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Justin D Ferek
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Pequegnat B, Monteiro MA. Carbohydrate Scaffolds for the Study of the Autism-associated Bacterium, Clostridium bolteae. Curr Med Chem 2019; 26:6341-6348. [PMID: 30799780 PMCID: PMC7040508 DOI: 10.2174/0929867326666190225164527] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/03/2018] [Accepted: 11/08/2018] [Indexed: 12/23/2022]
Abstract
A large number of children in the autism spectrum disorder suffer from gastrointestinal (GI) conditions, such as constipation and diarrhea. Clostridium bolteae is a part of a set of pathogens being regularly detected in the stool samples of hosts affected by GI and autism symptoms. Accompanying studies have pointed out the possibility that such microbes affect behaviour through the production of neurotoxic metabolites in a so-called, gut-brain connection. As an extension of our Clostridium difficile polysaccharide (PS)-based vaccine research, we engaged in the discovery of C. bolteae surface carbohydrates. So far, studies revealed that C. bolteae produces a specific immunogenic PS capsule comprised of disaccharide repeating blocks of mannose (Manp) and rhamnose (Rhap) units: α-D-Manp-(1→[-4)-β-D-Rhap- (1→3)-α-D-Manp-(1→]n. For vaccinology and further immunogenic experiments, a method to produce C. bolteae PS conjugates has been developed, along with the chemical syntheses of the PS non-reducing end linkage, with D-Rha or L-Rha, α-D-Manp-(1→4)-α-D-Rhap- (1→O(CH2)5NH2 and α-D-Manp-(1→4)-α-L-Rhap-(1→O(CH2)5NH2, equipped with an aminopentyl linker at the reducing end for conjugation purposes. The discovery of C. bolteae PS immunogen opens the door to the creation of non-evasive diagnostic tools to evaluate the frequency and role of this microbe in autistic subjects and to a vaccine to reduce colonization levels in the GI tract, thus impeding the concentration of neurotoxins.
Collapse
Affiliation(s)
| | - Mario A Monteiro
- Department of Chemistry, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
11
|
Nováková S, Šubr Z, Kováč A, Fialová I, Beke G, Danchenko M. Cucumber mosaic virus resistance: Comparative proteomics of contrasting Cucumis sativus cultivars after long-term infection. J Proteomics 2019; 214:103626. [PMID: 31881349 DOI: 10.1016/j.jprot.2019.103626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/10/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
Abstract
Plant viruses are a significant threat to a wide range of host species, causing substantial losses in agriculture. Particularly, Cucumber mosaic virus (CMV) evokes severe symptoms, thus dramatically limiting yield. Activation of plant defense reactions is associated with changes in the cellular proteome to ensure virus resistance. Herein, we studied two cultivars of cucumber (Cucumis sativus) resistant host Heliana and susceptible host Vanda. Plant cotyledons were mechanically inoculated with CMV isolate PK1, and systemic leaves were harvested at 33 days post-inoculation. Proteome was profiled by ultrahigh-performance liquid chromatography and comprehensively quantified by ion mobility enhanced mass spectrometry. From 1516 reproducibly quantified proteins using a label-free approach, 133 were differentially abundant among cultivars or treatments by strict statistic and effect size criteria. Pigments and hydrogen peroxide measurements corroborated proteomic findings. Comparison of both cultivars in the uninfected state highlighted more abundant photosynthetic and development-related proteins in resistant cucumber cultivar. Long-term CMV infection caused worse preservation of energy processes and less robust translation in the susceptible cultivar. Contrary, compatible plants had numerous more abundant stress and defense-related proteins. We proposed promising targets for functional validation in transgenic lines: A step toward durable virus resistance in cucurbits and other crops. SIGNIFICANCE: Sustainable production of crops requires an understanding of natural mechanisms of resistance/susceptibility to ubiquitous viral infections. We report original findings of comparative analysis of plant genotypes exposed to CMV. Deep discovery proteomics of resistant and susceptible cucumber cultivars, inoculated with widespread phytovirus, allowed to suggest several novel molecular targets for functional testing in plant protection strategies.
Collapse
Affiliation(s)
- Slavomíra Nováková
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic; Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava; Mala Hora 4C, 03601 Martin, Slovak Republic.
| | - Zdeno Šubr
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences; Dubravska cesta 9, 84510 Bratislava, Slovak Republic.
| | - Ivana Fialová
- Plant Science and Biodiversity Center, Slovak Academy of Sciences; Dubravska cesta 9, 84523 Bratislava, Slovak Republic.
| | - Gábor Beke
- Institute of Molecular Biology, Slovak Academy of Sciences; Dubravska cesta 21, 84551 Bratislava, Slovak Republic.
| | - Maksym Danchenko
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic; Plant Science and Biodiversity Center, Slovak Academy of Sciences; Dubravska cesta 9, 84523 Bratislava, Slovak Republic.
| |
Collapse
|
12
|
Characterization of the First Bacterial and Thermostable GDP-Mannose 3,5-Epimerase. Int J Mol Sci 2019; 20:ijms20143530. [PMID: 31330931 PMCID: PMC6678494 DOI: 10.3390/ijms20143530] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/25/2023] Open
Abstract
GDP-mannose 3,5-epimerase (GM35E) catalyzes the conversion of GDP-mannose towards GDP-l-galactose and GDP-l-gulose. Although this reaction represents one of the few enzymatic routes towards the production of l-sugars and derivatives, it has not yet been exploited for that purpose. One of the reasons is that so far only GM35Es from plants have been characterized, yielding biocatalysts that are relatively unstable and difficult to express heterologously. Through the mining of sequence databases, we succeeded in identifying a promising bacterial homologue. The gene from the thermophilic organism Methylacidiphilum fumariolicum was codon optimized for expression in Escherichia coli, resulting in the production of 40 mg/L of recombinant protein. The enzyme was found to act as a self-sufficient GM35E, performing three chemical reactions in the same active site. Furthermore, the biocatalyst was highly stable at temperatures up to 55 °C, making it well suited for the synthesis of new carbohydrate products with application in the pharma industry.
Collapse
|
13
|
Protein Changes in Response to Lead Stress of Lead-Tolerant and Lead-Sensitive Industrial Hemp Using SWATH Technology. Genes (Basel) 2019; 10:genes10050396. [PMID: 31121980 PMCID: PMC6562531 DOI: 10.3390/genes10050396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 11/17/2022] Open
Abstract
Hemp is a Pb-tolerant and Pb-accumulating plant and the study of its tolerance mechanisms could facilitate the breeding of hemp with enhanced Pb tolerance and accumulation. In the present study, we took advantage of sequential window acquisition of all theoretical mass spectra (SWATH) technology to study the difference in proteomics between the leaves of Pb-tolerant seed-type hemp variety Bamahuoma (BM) and the Pb-sensitive fiber-type hemp variety Yunma 1 (Y1) under Pb stress (3 g/kg soil). A total of 63 and 372 proteins differentially expressed under Pb stress relative to control conditions were identified with liquid chromatography electro spray ionization tandem mass spectrometry in BM and Y1, respectively; with each of these proteins being classified into 14 categories. Hemp adapted to Pb stress by: accelerating adenosine triphosphate (ATP) metabolism; enhancing respiration, light absorption and light energy transfer; promoting assimilation of intercellular nitrogen (N) and carbon (C); eliminating reactive oxygen species; regulating stomatal development and closure; improving exchange of water and CO2 in leaves; promoting intercellular transport; preventing aggregation of unfolded proteins; degrading misfolded proteins; and increasing the transmembrane transport of ATP in chloroplasts. Our results provide an important reference protein and gene information for future molecular studies into the resistance and accumulation of Pb in hemp.
Collapse
|
14
|
Pei J, Chen A, Sun Q, Zhao L, Cao F, Tang F. Construction of a novel UDP-rhamnose regeneration system by a two-enzyme reaction system and application in glycosylation of flavonoid. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Rossouw GC, Šuklje K, Smith JP, Barril C, Deloire A, Holzapfel BP. Vitis vinifera berry metabolic composition during maturation: Implications of defoliation. PHYSIOLOGIA PLANTARUM 2018; 164:120-133. [PMID: 29498442 DOI: 10.1111/ppl.12715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/16/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Leaves are an important contributor toward berry sugar and nitrogen (N) accumulation, and leaf area, therefore, affects fruit composition during grapevine (Vitis vinifera) berry ripening. The aim of this study was to investigate the impact of leaf presence on key berry quality attributes in conjunction with the accumulation of primary berry metabolites. Shortly after the start of véraison (berry ripening), potted grapevines were defoliated (total defoliation and 25% of the control), and the accumulation of berry soluble solids, N and anthocyanins were compared to that of a full leaf area control. An untargeted approach was undertaken to measure the content in primary metabolites by gas chromatography/mass spectrometry. Partial and full defoliation resulted in reduced berry sugar and anthocyanin accumulation, while total berry N content was unaffected. The juice yeast assimilable N (YAN), however, increased upon partial and full defoliation. Remobilized carbohydrate reserves allowed accumulation of the major berry sugars during the absence of leaf photoassimilation. Berry anthocyanin biosynthesis was strongly inhibited by defoliation, which could relate to the carbon (C) source limitation and/or increased bunch exposure. Arginine accumulation, likely resulting from reserve translocation, contributed to increased YAN upon defoliation. Furthermore, assessing the implications on various products of the shikimate pathway suggests the C flux through this pathway to be largely affected by leaf source limitation during fruit maturation. This study provides a novel investigation of impacts of leaf C and N source presence during berry maturation, on the development of key berry quality parameters as underlined by alterations in primary metabolism.
Collapse
Affiliation(s)
- Gerhard C Rossouw
- National Wine and Grape Industry Centre, Wagga Wagga, New South Wales, 2678, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, New South Wales, 2678, Australia
| | - Katja Šuklje
- National Wine and Grape Industry Centre, Wagga Wagga, New South Wales, 2678, Australia
| | - Jason P Smith
- National Wine and Grape Industry Centre, Wagga Wagga, New South Wales, 2678, Australia
| | - Celia Barril
- National Wine and Grape Industry Centre, Wagga Wagga, New South Wales, 2678, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, New South Wales, 2678, Australia
| | - Alain Deloire
- National Wine and Grape Industry Centre, Wagga Wagga, New South Wales, 2678, Australia
| | - Bruno P Holzapfel
- National Wine and Grape Industry Centre, Wagga Wagga, New South Wales, 2678, Australia
- New South Wales Department of Primary Industries, Wagga Wagga, New South Wales, 2678, Australia
| |
Collapse
|
16
|
Ibort P, Molina S, Ruiz-Lozano JM, Aroca R. Molecular Insights into the Involvement of a Never Ripe Receptor in the Interaction Between Two Beneficial Soil Bacteria and Tomato Plants Under Well-Watered and Drought Conditions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:633-650. [PMID: 29384430 DOI: 10.1094/mpmi-12-17-0292-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Management of plant growth-promoting bacteria (PGPB) can be implemented to deal with sustainable intensification of agriculture. Ethylene is an essential component for plant growth and development and in response to drought. However, little is known about the effects of bacterial inoculation on ethylene transduction pathway. Thus, the present study sought to establish whether ethylene perception is critical for growth induction by two different PGPB strains under drought conditions and the analysis of bacterial effects on ethylene production and gene expression in tomatoes (Solanum lycopersicum). The ethylene-insensitive never ripe (nr) and its isogenic wild-type (wt) cv. Pearson line were inoculated with either Bacillus megaterium or Enterobacter sp. strain C7 and grown until the attainment of maturity under both well-watered and drought conditions. Ethylene perception is crucial for B. megaterium. However, it is not of prime importance for Enterobacter sp. strain C7 PGPB activity under drought conditions. Both PGPB decreased the expression of ethylene-related genes in wt plants, resulting in stress alleviation, while only B. megaterium induced their expression in nr plants. Furthermore, PGPB inoculation affected transcriptomic profile dependency on strain, genotype, and drought. Ethylene sensitivity determines plant interaction with PGPB strains. Enterobacter sp. strain C7 could modulate amino-acid metabolism, while nr mutation causes a partially functional interaction with B. megaterium, resulting in higher oxidative stress and loss of PGPB activity.
Collapse
Affiliation(s)
- Pablo Ibort
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Sonia Molina
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
17
|
Lopes-Bezerra LM, Mora-Montes HM, Zhang Y, Nino-Vega G, Rodrigues AM, de Camargo ZP, de Hoog S. Sporotrichosis between 1898 and 2017: The evolution of knowledge on a changeable disease and on emerging etiological agents. Med Mycol 2018. [DOI: 10.1093/mmy/myx103] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Leila M Lopes-Bezerra
- Laboratory of Cellular Mycology and Proteomics, Department of Cell Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Hector M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico
| | - Yu Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Gustavo Nino-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico
| | - Anderson Messias Rodrigues
- Cell Biology Division, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Zoilo Pires de Camargo
- Cell Biology Division, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, and Center of Expertise in Mycology of Radboudumc/CWZ, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Shornikov A, Tran H, Macias J, Halavaty AS, Minasov G, Anderson WF, Kuhn ML. Structure of the Bacillus anthracis dTDP-L-rhamnose-biosynthetic enzyme dTDP-4-dehydrorhamnose 3,5-epimerase (RfbC). Acta Crystallogr F Struct Biol Commun 2017; 73:664-671. [PMID: 29199987 PMCID: PMC5713671 DOI: 10.1107/s2053230x17015849] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/31/2017] [Indexed: 11/10/2022] Open
Abstract
The exosporium layer of Bacillus anthracis spores is rich in L-rhamnose, a common bacterial cell-wall component, which often contributes to the virulence of pathogens by increasing their adherence and immune evasion. The biosynthetic pathway used to form the activated L-rhamnose donor dTDP-L-rhamnose consists of four enzymes (RfbA, RfbB, RfbC and RfbD) and is an attractive drug target because there are no homologs in mammals. It was found that co-purifying and screening RfbC (dTDP-6-deoxy-D-xylo-4-hexulose 3,5-epimerase) from B. anthracis in the presence of the other three B. anthracis enzymes of the biosynthetic pathway yielded crystals that were suitable for data collection. RfbC crystallized as a dimer and its structure was determined at 1.63 Å resolution. Two different ligands were bound in the protein structure: pyrophosphate in the active site of one monomer and dTDP in the other monomer. A structural comparison with RfbC homologs showed that the key active-site residues are conserved across kingdoms.
Collapse
Affiliation(s)
| | - Ha Tran
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| | - Jennifer Macias
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| | - Andrei S. Halavaty
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - George Minasov
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Wayne F. Anderson
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Misty L. Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| |
Collapse
|
19
|
Gupta S, Bhar A, Chatterjee M, Ghosh A, Das S. Transcriptomic dissection reveals wide spread differential expression in chickpea during early time points of Fusarium oxysporum f. sp. ciceri Race 1 attack. PLoS One 2017; 12:e0178164. [PMID: 28542579 PMCID: PMC5460890 DOI: 10.1371/journal.pone.0178164] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 05/09/2017] [Indexed: 12/19/2022] Open
Abstract
Plants' reaction to underground microorganisms is complex as sessile nature of plants compels them to prioritize their responses to diverse microorganisms both pathogenic and symbiotic. Roots of important crops are directly exposed to diverse microorganisms, but investigations involving root pathogens are significantly less. Thus, more studies involving root pathogens and their target crops are necessitated to enrich the understanding of underground interactions. Present study reported the molecular complexities in chickpea during Fusarium oxysporum f. sp. ciceri Race 1 (Foc1) infection. Transcriptomic dissections using RNA-seq showed significantly differential expression of molecular transcripts between infected and control plants of both susceptible and resistant genotypes. Radar plot analyses showed maximum expressional undulations after infection in both susceptible and resistant plants. Gene ontology and functional clustering showed large number of transcripts controlling basic metabolism of plants. Network analyses demonstrated defense components like peptidyl cis/trans isomerase, MAP kinase, beta 1,3 glucanase, serine threonine kinase, patatin like protein, lactolylglutathione lyase, coproporphyrinogen III oxidase, sulfotransferases; reactive oxygen species regulating components like respiratory burst oxidase, superoxide dismutases, cytochrome b5 reductase, glutathione reductase, thioredoxin reductase, ATPase; metabolism regulating components, myo inositol phosphate, carboxylate synthase; transport related gamma tonoplast intrinsic protein, and structural component, ubiquitins to serve as important nodals of defense signaling network. These nodal molecules probably served as hub controllers of defense signaling. Functional characterization of these hub molecules would not only help in developing better understanding of chickpea-Foc1 interaction but also place them as promising candidates for resistance management programs against vascular wilt of legumes.
Collapse
Affiliation(s)
- Sumanti Gupta
- Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, India
| | - Anirban Bhar
- Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, India
| | - Moniya Chatterjee
- Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, India
| | - Amartya Ghosh
- Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, India
| | - Sampa Das
- Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, India
| |
Collapse
|
20
|
Klubicová K, Uvácková L, Danchenko M, Nemecek P, Skultéty L, Salaj J, Salaj T. Insights into the early stage of Pinus nigra Arn. somatic embryogenesis using discovery proteomics. J Proteomics 2017; 169:99-111. [PMID: 28526530 DOI: 10.1016/j.jprot.2017.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/12/2017] [Accepted: 05/15/2017] [Indexed: 12/22/2022]
Abstract
The somatic embryogenesis in conifers represents a suitable model of plant regeneration system facilitating studies of fundamental aspects of an early development as well as in vitro micropropagation. The aim of our study was to deeper understand the somatic embryogenesis in the conifer tree Pinus nigra Arn. Comparative proteomic analysis based on 2D-PAGE in 1) proliferating embryogenic tissues (E) initiated from immature zygotic embryos, 2) non-embryogenic calli (NEC) initiated from cotyledons of somatic seedlings of the same genotypes, 3) embryogenic tissues that lost the maturation capacity (E-L) of two cell lines (E362, E366). Investigated pine tissues showed distinct structural features. The 24 protein spots were altered in both cell lines in comparison of embryogenic and non-embryogenic tissues. These proteins are involved in disease and defence mechanism, energy metabolism and biosynthesis of cell wall components. Two of three protein spots detected only in embryogenic form of both cell lines are similar to water deficit inducible protein LP3, the third remains uncharacterised. The loss of the maturation capacity was accompanied by changes in 35 and 38 protein spots in 362 and 366 cell lines, respectively. Only two of them were altered in both cell lines, suggesting non-uniform process of ageing. BIOLOGICAL SIGNIFICANCE Somatic embryogenesis in conifers represents an experimental system for the study of early plant development as well as a biotechnological tool for large-scale micropropagation. The obtained results give a new insight into the process of somatic embryogenesis of a conifer Pinus nigra Arn. by revealing differences at proteomic levels among in vitro cultured tissues characterised by different embryogenic potential. Microscopic investigations have also shown differences in the structural organisation of studied tissues.
Collapse
Affiliation(s)
- Katarína Klubicová
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademická 2, P.O. Box 39A, 950 07 Nitra, Slovakia.
| | - Lubica Uvácková
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademická 2, P.O. Box 39A, 950 07 Nitra, Slovakia; Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, 917 01 Trnava, Slovakia
| | - Maksym Danchenko
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Peter Nemecek
- Department of Chemistry, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, 917 01 Trnava, Slovakia
| | - Ludovít Skultéty
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Ján Salaj
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademická 2, P.O. Box 39A, 950 07 Nitra, Slovakia
| | - Terézia Salaj
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademická 2, P.O. Box 39A, 950 07 Nitra, Slovakia
| |
Collapse
|
21
|
Santhanam P, Boshoven JC, Salas O, Bowler K, Islam MT, Saber MK, van den Berg GCM, Bar‐Peled M, Thomma BPHJ. Rhamnose synthase activity is required for pathogenicity of the vascular wilt fungus Verticillium dahliae. MOLECULAR PLANT PATHOLOGY 2017; 18:347-362. [PMID: 26996832 PMCID: PMC6638212 DOI: 10.1111/mpp.12401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 05/05/2023]
Abstract
The initial interaction of a pathogenic fungus with its host is complex and involves numerous metabolic pathways and regulatory proteins. Considerable attention has been devoted to proteins that play a crucial role in these interactions, with an emphasis on so-called effector molecules that are secreted by the invading microbe to establish the symbiosis. However, the contribution of other types of molecules, such as glycans, is less well appreciated. Here, we present a random genetic screen that enabled us to identify 58 novel candidate genes that are involved in the pathogenic potential of the fungal pathogen Verticillium dahliae, which causes vascular wilt diseases in over 200 dicotyledonous plant species, including economically important crops. One of the candidate genes that was identified concerns a putative biosynthetic gene involved in nucleotide sugar precursor formation, as it encodes a putative nucleotide-rhamnose synthase/epimerase-reductase (NRS/ER). This enzyme has homology to bacterial enzymes involved in the biosynthesis of the nucleotide sugar deoxy-thymidine diphosphate (dTDP)-rhamnose, a precursor of L-rhamnose, which has been shown to be required for virulence in several human pathogenic bacteria. Rhamnose is known to be a minor cell wall glycan in fungi and has therefore not been suspected as a crucial molecule in fungal-host interactions. Nevertheless, our study shows that deletion of the VdNRS/ER gene from the V. dahliae genome results in complete loss of pathogenicity on tomato and Nicotiana benthamiana plants, whereas vegetative growth and sporulation are not affected. We demonstrate that VdNRS/ER is a functional enzyme in the biosynthesis of uridine diphosphate (UDP)-rhamnose, and further analysis has revealed that VdNRS/ER deletion strains are impaired in the colonization of tomato roots. Collectively, our results demonstrate that rhamnose, although only a minor cell wall component, is essential for the pathogenicity of V. dahliae.
Collapse
Affiliation(s)
- Parthasarathy Santhanam
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Jordi C. Boshoven
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Omar Salas
- Complex Carbohydrate Research Center, University of GeorgiaAthensGA30602USA
| | - Kyle Bowler
- Complex Carbohydrate Research Center, University of GeorgiaAthensGA30602USA
| | - Md Tohidul Islam
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Mojtaba Keykha Saber
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Grardy C. M. van den Berg
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Maor Bar‐Peled
- Complex Carbohydrate Research Center, University of GeorgiaAthensGA30602USA
| | - Bart P. H. J. Thomma
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| |
Collapse
|
22
|
Yin S, Liu M, Kong JQ. Functional analyses of OcRhS1 and OcUER1 involved in UDP-L-rhamnose biosynthesis in Ornithogalum caudatum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:536-548. [PMID: 27835851 DOI: 10.1016/j.plaphy.2016.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 05/27/2023]
Abstract
UDP-L-rhamnose (UDP-Rha) is an important sugar donor for the synthesis of rhamnose-containing compounds in plants. However, only a few enzymes and their encoding genes involved in UDP-Rha biosynthesis are available in plants. Here, two genes encoding rhamnose synthase (RhS) and bi-functional UDP-4-keto-6-deoxy-D-glucose (UDP-4K6DG) 3, 5-epimerase/UDP-4-keto-L-rhamnose (UDP-4KR) 4-keto-reductase (UER) were isolated from Ornithogalum caudatum based on the RNA-Seq data. The OcRhS1 gene has an ORF (open reading frame) of 2019 bp encoding a tri-functional RhS enzyme. In vitro enzymatic assays revealed OcRhS1 can really convert UDP-D-glucose (UDP-Glc) into UDP-Rha via three consecutive reactions. Biochemical evidences indicated that the recombinant OcRhS1 was active in the pH range of 5-11 and over the temperature range of 0-60 °C. The Km value of OcRhS1 for UDP-Glc was determined to be 1.52 × 10-4 M. OcRhS1 is a multi-domain protein with two sets of cofactor-binding motifs. The cofactors dependent properties of OcRhS1 were thus characterized in this research. Moreover, the N-terminal portion of OcRhS1 (OcRhS1-N) was observed to metabolize UDP-Glc to form intermediate UDP-4K6DG. OcUER1 contains an ORF of 906 bp encoding a polypeptide of 301 aa. OcUER1 shared high similarity with the carboxy-terminal domain of OcRhS1 (OcRhS1-C), suggesting its intrinsic ability of converting UDP-4K6DG into UDP-Rha. It was thus reasonably inferred that UDP-Glc could be bio-transformed into UDP-Rha under the collaborating action of OcRhS1-N and OcUER1. The subsequently biochemical assay verified this notion. Importantly, expression profiles of OcRhS1 and OcUER1 revealed their possible involvement in the biosynthesis of rhamnose-containing polysaccharides in O. caudatum.
Collapse
Affiliation(s)
- Sen Yin
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China
| | - Ming Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China
| | - Jian-Qiang Kong
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China.
| |
Collapse
|
23
|
Casas MI, Falcone-Ferreyra ML, Jiang N, Mejía-Guerra MK, Rodríguez E, Wilson T, Engelmeier J, Casati P, Grotewold E. Identification and Characterization of Maize salmon silks Genes Involved in Insecticidal Maysin Biosynthesis. THE PLANT CELL 2016; 28:1297-309. [PMID: 27221383 PMCID: PMC4944406 DOI: 10.1105/tpc.16.00003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/23/2016] [Indexed: 05/02/2023]
Abstract
The century-old maize (Zea mays) salmon silks mutation has been linked to the absence of maysin. Maysin is a C-glycosyl flavone that, when present in silks, confers natural resistance to the maize earworm (Helicoverpa zea), which is one of the most damaging pests of maize in America. Previous genetic analyses predicted Pericarp Color1 (P1; R2R3-MYB transcription factor) to be epistatic to the sm mutation. Subsequent studies identified two loci as being capable of conferring salmon silks phenotypes, salmon silks1 (sm1) and sm2 Benefitting from available sm1 and sm2 mapping information and from knowledge of the genes regulated by P1, we describe here the molecular identification of the Sm1 and Sm2 gene products. Sm2 encodes a rhamnosyl transferase (UGT91L1) that uses isoorientin and UDP-rhamnose as substrates and converts them to rhamnosylisoorientin. Sm1 encodes a multidomain UDP-rhamnose synthase (RHS1) that converts UDP-glucose into UDP-l-rhamnose. Here, we demonstrate that RHS1 shows unexpected substrate plasticity in converting the glucose moiety in rhamnosylisoorientin to 4-keto-6-deoxy glucose, resulting in maysin. Both Sm1 and Sm2 are direct targets of P1, as demonstrated by chromatin immunoprecipitation experiments. The molecular characterization of Sm1 and Sm2 described here completes the maysin biosynthetic pathway, providing powerful tools for engineering tolerance to maize earworm in maize and other plants.
Collapse
Affiliation(s)
- María Isabel Casas
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio 43210 Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210
| | | | - Nan Jiang
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210
| | - María Katherine Mejía-Guerra
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio 43210 Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210
| | - Eduardo Rodríguez
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Santa Fe S2002LRK, Argentina
| | - Tyler Wilson
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210
| | - Jacob Engelmeier
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Santa Fe S2002LRK, Argentina
| | - Erich Grotewold
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210 Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
24
|
Identification of a dTDP-rhamnose biosynthetic pathway that oscillates with the molting cycle in Caenorhabditis elegans. Biochem J 2016; 473:1507-21. [PMID: 27009306 PMCID: PMC4888466 DOI: 10.1042/bcj20160142] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 03/23/2016] [Indexed: 01/08/2023]
Abstract
The rhamnose biosynthetic pathway, which is highly conserved across nematode species, was characterized in the nematode Caenorhabditis elegans. The pathway is up-regulated before each larval molt, suggesting that rhamnose biosynthesis plays a role in cuticle or surface coat synthesis. L-Rhamnose is a common component of cell-wall polysaccharides, glycoproteins and some natural products in bacteria and plants, but is rare in fungi and animals. In the present study, we identify and characterize a biosynthetic pathway for dTDP-rhamnose in Caenorhabditis elegans that is highly conserved across nematode species. We show that RML-1 activates glucose 1-phosphate (Glc-1-P) in the presence of either dTTP or UTP to yield dTDP-glucose or UDP-glucose, respectively. RML-2 is a dTDP-glucose 4,6-dehydratase, converting dTDP-glucose into dTDP-4-keto-6-deoxyglucose. Using mass spectrometry and NMR spectroscopy, we demonstrate that coincubation of dTDP-4-keto-6-deoxyglucose with RML-3 (3,5-epimerase) and RML-4 (4-keto-reductase) produces dTDP-rhamnose. RML-4 could only be expressed and purified in an active form through co-expression with a co-regulated protein, RML-5, which forms a complex with RML-4. Analysis of the sugar nucleotide pool in C. elegans established the presence of dTDP-rhamnose in vivo. Targeting the expression of the rhamnose biosynthetic genes by RNAi resulted in significant reductions in dTDP-rhamnose, but had no effect on the biosynthesis of a closely related sugar, ascarylose, found in the ascaroside pheromones. Therefore, the rhamnose and ascarylose biosynthetic pathways are distinct. We also show that transcriptional reporters for the rhamnose biosynthetic genes are expressed highly in the embryo, in the hypodermis during molting cycles and in the hypodermal seam cells specifically before the molt to the stress-resistant dauer larval stage. These expression patterns suggest that rhamnose biosynthesis may play an important role in hypodermal development or the production of the cuticle or surface coat during molting.
Collapse
|
25
|
Mo T, Liu X, Liu Y, Wang X, Zhang L, Wang J, Zhang Z, Shi S, Tu P. Expanded investigations of the aglycon promiscuity and catalysis characteristic of flavonol 3-O-rhamnosyltransferase AtUGT78D1 from Arabidopsis thaliana. RSC Adv 2016. [DOI: 10.1039/c6ra16251g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rhamnosides usually possess better bioavailabilities and improved solubilities compared with their aglycons and are a major source of bioactive natural products.
Collapse
Affiliation(s)
- Ting Mo
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
- School of Chinese Materia Medica
| | - Xiao Liu
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
| | - Yuyu Liu
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
- School of Chinese Materia Medica
| | - Xiaohui Wang
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
| | - Le Zhang
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
- School of Chinese Materia Medica
| | - Juan Wang
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
- School of Chinese Materia Medica
| | - Zhongxiu Zhang
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
- School of Chinese Materia Medica
| | - Shepo Shi
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
| |
Collapse
|
26
|
Han X, Qian L, Zhang L, Liu X. Structural and biochemical insights into nucleotide-rhamnose synthase/epimerase-reductase from Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1476-86. [PMID: 26116145 DOI: 10.1016/j.bbapap.2015.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/03/2015] [Accepted: 06/20/2015] [Indexed: 11/26/2022]
Abstract
L-Rhamnose (Rha) is synthesized via a similar enzymatic pathway in bacteria, plants and fungi. In plants, nucleotide-rhamnose synthase/epimerase-reductase (NRS/ER) catalyzes the final step in the conversion of dTDP/UDP-α-D-Glc to dTDP/UDP-β-L-Rha in an NAD(P)H dependent manner. Currently, only biochemical evidence for the function of NRS/ER has been described. In this study, a crystal structure for Arabidopsis thaliana NRS/ER was determined, which is the first report of a eukaryotic rhamnose synthase with both epimerase and reductase activities. NRS/ER functions as a metal ion independent homodimer that forms through hydrophobic interactions via a four-helix bundle. Each monomer exhibits α/β folding that can be divided into two regions, nucleotide cofactor binding domain and sugar substrate binding domain. The affinities of ligands with NRS/ER were measured using isothermal titration calorimetry, which showed that NRS/ER has a preference for dTDP over UDP, while the cofactor binding site has a similar affinity for NADH and NADPH. Structural analysis coupled to site-directed mutagenesis suggested C115 and K183 as the acid/base pair responsible for epimerization, while T113, Y144 and K148 are the conserved residues in reduction. These findings shed light on the molecular mechanism of NRS/ER and were helpful to explore other eukaryotic enzymes involved in L-Rha synthesis.
Collapse
Affiliation(s)
- Xiaodong Han
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; Food and Pharmaceutical Engineering Institute, Shanxi University of Traditional Chinese Medicine, Taiyuan 030024, China.
| | - Lei Qian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China.
| | - Lianwen Zhang
- College of Pharmacy, Collaborative Innovation Center for Biotherapy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China.
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
27
|
Fernández-Calvino L, Osorio S, Hernández ML, Hamada IB, del Toro FJ, Donaire L, Yu A, Bustos R, Fernie AR, Martínez-Rivas JM, Llave C. Virus-induced alterations in primary metabolism modulate susceptibility to Tobacco rattle virus in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:1821-38. [PMID: 25358898 PMCID: PMC4256867 DOI: 10.1104/pp.114.250340] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/30/2014] [Indexed: 05/20/2023]
Abstract
During compatible virus infections, plants respond by reprogramming gene expression and metabolite content. While gene expression studies are profuse, our knowledge of the metabolic changes that occur in the presence of the virus is limited. Here, we combine gene expression and metabolite profiling in Arabidopsis (Arabidopsis thaliana) infected with Tobacco rattle virus (TRV) in order to investigate the influence of primary metabolism on virus infection. Our results revealed that primary metabolism is reconfigured in many ways during TRV infection, as reflected by significant changes in the levels of sugars and amino acids. Multivariate data analysis revealed that these alterations were particularly conspicuous at the time points of maximal accumulation of TRV, although infection time was the dominant source of variance during the process. Furthermore, TRV caused changes in lipid and fatty acid composition in infected leaves. We found that several Arabidopsis mutants deficient in branched-chain amino acid catabolism or fatty acid metabolism possessed altered susceptibility to TRV. Finally, we showed that increments in the putrescine content in TRV-infected plants correlated with enhanced tolerance to freezing stress in TRV-infected plants and that impairment of putrescine biosynthesis promoted virus multiplication. Our results thus provide an interesting overview for a better understanding of the relationship between primary metabolism and virus infection.
Collapse
Affiliation(s)
- Lourdes Fernández-Calvino
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain (L.F.-C., I.B.H., F.J.d.T., L.D., C.L.);Max Planck Institute for Molecular Plant Physiology, 14476 Postdam-Golm, Germany (S.O., A.R.F.);Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain (M.L.H., J.M.M.-R.);Unité de Recherche en Génomique Végétale, 91057 Evry cedex, France (A.Y.); andCentro de Biotecnología y Genómica de Plantas, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain (R.B.)
| | - Sonia Osorio
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain (L.F.-C., I.B.H., F.J.d.T., L.D., C.L.);Max Planck Institute for Molecular Plant Physiology, 14476 Postdam-Golm, Germany (S.O., A.R.F.);Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain (M.L.H., J.M.M.-R.);Unité de Recherche en Génomique Végétale, 91057 Evry cedex, France (A.Y.); andCentro de Biotecnología y Genómica de Plantas, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain (R.B.)
| | - M Luisa Hernández
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain (L.F.-C., I.B.H., F.J.d.T., L.D., C.L.);Max Planck Institute for Molecular Plant Physiology, 14476 Postdam-Golm, Germany (S.O., A.R.F.);Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain (M.L.H., J.M.M.-R.);Unité de Recherche en Génomique Végétale, 91057 Evry cedex, France (A.Y.); andCentro de Biotecnología y Genómica de Plantas, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain (R.B.)
| | - Ignacio B Hamada
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain (L.F.-C., I.B.H., F.J.d.T., L.D., C.L.);Max Planck Institute for Molecular Plant Physiology, 14476 Postdam-Golm, Germany (S.O., A.R.F.);Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain (M.L.H., J.M.M.-R.);Unité de Recherche en Génomique Végétale, 91057 Evry cedex, France (A.Y.); andCentro de Biotecnología y Genómica de Plantas, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain (R.B.)
| | - Francisco J del Toro
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain (L.F.-C., I.B.H., F.J.d.T., L.D., C.L.);Max Planck Institute for Molecular Plant Physiology, 14476 Postdam-Golm, Germany (S.O., A.R.F.);Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain (M.L.H., J.M.M.-R.);Unité de Recherche en Génomique Végétale, 91057 Evry cedex, France (A.Y.); andCentro de Biotecnología y Genómica de Plantas, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain (R.B.)
| | - Livia Donaire
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain (L.F.-C., I.B.H., F.J.d.T., L.D., C.L.);Max Planck Institute for Molecular Plant Physiology, 14476 Postdam-Golm, Germany (S.O., A.R.F.);Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain (M.L.H., J.M.M.-R.);Unité de Recherche en Génomique Végétale, 91057 Evry cedex, France (A.Y.); andCentro de Biotecnología y Genómica de Plantas, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain (R.B.)
| | - Agnés Yu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain (L.F.-C., I.B.H., F.J.d.T., L.D., C.L.);Max Planck Institute for Molecular Plant Physiology, 14476 Postdam-Golm, Germany (S.O., A.R.F.);Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain (M.L.H., J.M.M.-R.);Unité de Recherche en Génomique Végétale, 91057 Evry cedex, France (A.Y.); andCentro de Biotecnología y Genómica de Plantas, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain (R.B.)
| | - Regla Bustos
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain (L.F.-C., I.B.H., F.J.d.T., L.D., C.L.);Max Planck Institute for Molecular Plant Physiology, 14476 Postdam-Golm, Germany (S.O., A.R.F.);Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain (M.L.H., J.M.M.-R.);Unité de Recherche en Génomique Végétale, 91057 Evry cedex, France (A.Y.); andCentro de Biotecnología y Genómica de Plantas, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain (R.B.)
| | - Alisdair R Fernie
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain (L.F.-C., I.B.H., F.J.d.T., L.D., C.L.);Max Planck Institute for Molecular Plant Physiology, 14476 Postdam-Golm, Germany (S.O., A.R.F.);Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain (M.L.H., J.M.M.-R.);Unité de Recherche en Génomique Végétale, 91057 Evry cedex, France (A.Y.); andCentro de Biotecnología y Genómica de Plantas, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain (R.B.)
| | - José M Martínez-Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain (L.F.-C., I.B.H., F.J.d.T., L.D., C.L.);Max Planck Institute for Molecular Plant Physiology, 14476 Postdam-Golm, Germany (S.O., A.R.F.);Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain (M.L.H., J.M.M.-R.);Unité de Recherche en Génomique Végétale, 91057 Evry cedex, France (A.Y.); andCentro de Biotecnología y Genómica de Plantas, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain (R.B.)
| | - César Llave
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain (L.F.-C., I.B.H., F.J.d.T., L.D., C.L.);Max Planck Institute for Molecular Plant Physiology, 14476 Postdam-Golm, Germany (S.O., A.R.F.);Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain (M.L.H., J.M.M.-R.);Unité de Recherche en Génomique Végétale, 91057 Evry cedex, France (A.Y.); andCentro de Biotecnología y Genómica de Plantas, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain (R.B.)
| |
Collapse
|
28
|
Teixeira MM, de Almeida LGP, Kubitschek-Barreira P, Alves FL, Kioshima ÉS, Abadio AKR, Fernandes L, Derengowski LS, Ferreira KS, Souza RC, Ruiz JC, de Andrade NC, Paes HC, Nicola AM, Albuquerque P, Gerber AL, Martins VP, Peconick LDF, Neto AV, Chaucanez CB, Silva PA, Cunha OL, de Oliveira FFM, dos Santos TC, Barros ALN, Soares MA, de Oliveira LM, Marini MM, Villalobos-Duno H, Cunha MML, de Hoog S, da Silveira JF, Henrissat B, Niño-Vega GA, Cisalpino PS, Mora-Montes HM, Almeida SR, Stajich JE, Lopes-Bezerra LM, Vasconcelos ATR, Felipe MSS. Comparative genomics of the major fungal agents of human and animal Sporotrichosis: Sporothrix schenckii and Sporothrix brasiliensis. BMC Genomics 2014; 15:943. [PMID: 25351875 PMCID: PMC4226871 DOI: 10.1186/1471-2164-15-943] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/25/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The fungal genus Sporothrix includes at least four human pathogenic species. One of these species, S. brasiliensis, is the causal agent of a major ongoing zoonotic outbreak of sporotrichosis in Brazil. Elsewhere, sapronoses are caused by S. schenckii and S. globosa. The major aims on this comparative genomic study are: 1) to explore the presence of virulence factors in S. schenckii and S. brasiliensis; 2) to compare S. brasiliensis, which is cat-transmitted and infects both humans and cats with S. schenckii, mainly a human pathogen; 3) to compare these two species to other human pathogens (Onygenales) with similar thermo-dimorphic behavior and to other plant-associated Sordariomycetes. RESULTS The genomes of S. schenckii and S. brasiliensis were pyrosequenced to 17x and 20x coverage comprising a total of 32.3 Mb and 33.2 Mb, respectively. Pair-wise genome alignments revealed that the two species are highly syntenic showing 97.5% average sequence identity. Phylogenomic analysis reveals that both species diverged about 3.8-4.9 MYA suggesting a recent event of speciation. Transposable elements comprise respectively 0.34% and 0.62% of the S. schenckii and S. brasiliensis genomes and expansions of Gypsy-like elements was observed reflecting the accumulation of repetitive elements in the S. brasiliensis genome. Mitochondrial genomic comparisons showed the presence of group-I intron encoding homing endonucleases (HE's) exclusively in S. brasiliensis. Analysis of protein family expansions and contractions in the Sporothrix lineage revealed expansion of LysM domain-containing proteins, small GTPases, PKS type1 and leucin-rich proteins. In contrast, a lack of polysaccharide lyase genes that are associated with decay of plants was observed when compared to other Sordariomycetes and dimorphic fungal pathogens, suggesting evolutionary adaptations from a plant pathogenic or saprobic to an animal pathogenic life style. CONCLUSIONS Comparative genomic data suggest a unique ecological shift in the Sporothrix lineage from plant-association to mammalian parasitism, which contributes to the understanding of how environmental interactions may shape fungal virulence. . Moreover, the striking differences found in comparison with other dimorphic fungi revealed that dimorphism in these close relatives of plant-associated Sordariomycetes is a case of convergent evolution, stressing the importance of this morphogenetic change in fungal pathogenesis.
Collapse
Affiliation(s)
- Marcus M Teixeira
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | | | - Paula Kubitschek-Barreira
- />Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | - Fernanda L Alves
- />Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
- />Grupo Informática de Biossistemas, Centro de Pesquisas René Rachou, FIOCRUZ, Minas, Belo Horizonte, MG Brazil
| | - Érika S Kioshima
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
- />Departamento de Análises Clínicas, Universidade Estadual de Maringá, Maringá, PR Brazil
| | - Ana KR Abadio
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Larissa Fernandes
- />Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Ceilândia, Brasília, DF Brazil
| | - Lorena S Derengowski
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Karen S Ferreira
- />Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, São Paulo, SP Brazil
| | - Rangel C Souza
- />Laboratório Nacional de Computação Científica, Petrópolis, RJ Brazil
| | - Jeronimo C Ruiz
- />Grupo Informática de Biossistemas, Centro de Pesquisas René Rachou, FIOCRUZ, Minas, Belo Horizonte, MG Brazil
| | - Nathalia C de Andrade
- />Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | - Hugo C Paes
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - André M Nicola
- />Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF Brazil
- />Programa de pós-graduação em Medicina Tropical, Universidade de Brasília, Brasília, DF Brazil
| | - Patrícia Albuquerque
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
- />Programa de pós-graduação em Medicina Tropical, Universidade de Brasília, Brasília, DF Brazil
| | | | - Vicente P Martins
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Luisa DF Peconick
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Alan Viggiano Neto
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Claudia B Chaucanez
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Patrícia A Silva
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Oberdan L Cunha
- />Laboratório Nacional de Computação Científica, Petrópolis, RJ Brazil
| | | | - Tayná C dos Santos
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Amanda LN Barros
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Marco A Soares
- />Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Luciana M de Oliveira
- />Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
- />Programa de pós-graduação em Bioinformática, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Marjorie M Marini
- />Departamento de Microbiologia Imunobiologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP Brazil
| | - Héctor Villalobos-Duno
- />Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela
| | - Marcel ML Cunha
- />Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | - Sybren de Hoog
- />CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - José F da Silveira
- />Departamento de Microbiologia Imunobiologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP Brazil
| | - Bernard Henrissat
- />Centre National de la Recherche Scientifique, Aix-Marseille, Université, CNRS, Marseille, France
| | - Gustavo A Niño-Vega
- />Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela
| | - Patrícia S Cisalpino
- />Grupo Informática de Biossistemas, Centro de Pesquisas René Rachou, FIOCRUZ, Minas, Belo Horizonte, MG Brazil
| | | | - Sandro R Almeida
- />Departamento de Análises Clínicas e Toxicológicas, Universidade de São Paulo, São Paulo, SP Brazil
| | - Jason E Stajich
- />Department of Plant Pathology & Microbiology, University of California, Riverside, CA USA
| | - Leila M Lopes-Bezerra
- />Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | | | - Maria SS Felipe
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
- />Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF Brazil
| |
Collapse
|
29
|
Haloferax volcanii N-glycosylation: delineating the pathway of dTDP-rhamnose biosynthesis. PLoS One 2014; 9:e97441. [PMID: 24831810 PMCID: PMC4022621 DOI: 10.1371/journal.pone.0097441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/20/2014] [Indexed: 11/19/2022] Open
Abstract
In the halophilic archaea Haloferax volcanii, the surface (S)-layer glycoprotein can be modified by two distinct N-linked glycans. The tetrasaccharide attached to S-layer glycoprotein Asn-498 comprises a sulfated hexose, two hexoses and a rhamnose. While Agl11-14 have been implicated in the appearance of the terminal rhamnose subunit, the precise roles of these proteins have yet to be defined. Accordingly, a series of in vitro assays conducted with purified Agl11-Agl14 showed these proteins to catalyze the stepwise conversion of glucose-1-phosphate to dTDP-rhamnose, the final sugar of the tetrasaccharide glycan. Specifically, Agl11 is a glucose-1-phosphate thymidylyltransferase, Agl12 is a dTDP-glucose-4,6-dehydratase and Agl13 is a dTDP-4-dehydro-6-deoxy-glucose-3,5-epimerase, while Agl14 is a dTDP-4-dehydrorhamnose reductase. Archaea thus synthesize nucleotide-activated rhamnose by a pathway similar to that employed by Bacteria and distinct from that used by Eukarya and viruses. Moreover, a bioinformatics screen identified homologues of agl11-14 clustered in other archaeal genomes, often as part of an extended gene cluster also containing aglB, encoding the archaeal oligosaccharyltransferase. This points to rhamnose as being a component of N-linked glycans in Archaea other than Hfx. volcanii.
Collapse
|
30
|
Pequegnat B, Sagermann M, Valliani M, Toh M, Chow H, Allen-Vercoe E, Monteiro MA. A vaccine and diagnostic target for Clostridium bolteae, an autism-associated bacterium. Vaccine 2013; 31:2787-90. [PMID: 23602537 DOI: 10.1016/j.vaccine.2013.04.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 03/15/2013] [Accepted: 04/05/2013] [Indexed: 12/29/2022]
Abstract
Constipation and diarrhea are common in autistic patients. Treatment with antibiotics against bacteria appears to partially alleviate autistic-related symptoms. Clostridium bolteae is a bacterium that has been shown to be overabundant in the intestinal tract of autistic children suffering from gastric intestinal ailments, and as such is an organism that could potentially aggravate gastrointestinal symptoms. We set out to investigate the cell-wall polysaccharides of C. bolteae in order to evaluate their structure and immunogenicity. Our explorations revealed that C. bolteae produces a conserved specific capsular polysaccharide comprised of rhamnose and mannose units: [→3)-α-D-Manp-(1→4)-β-d-Rhap-(1→], which is immunogenic in rabbits. These findings are the first description of a C. bolteae immunogen and indicate the prospect of using this polysaccharide as a vaccine to reduce or prevent C. bolteae colonization of the intestinal tract in autistic patients, and as a diagnostic marker for the rapid detection of C. bolteae in a clinical setting.
Collapse
Affiliation(s)
- Brittany Pequegnat
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Vasilevski A, Giorgi FM, Bertinetti L, Usadel B. LASSO modeling of the Arabidopsis thaliana seed/seedling transcriptome: a model case for detection of novel mucilage and pectin metabolism genes. MOLECULAR BIOSYSTEMS 2013; 8:2566-74. [PMID: 22735692 DOI: 10.1039/c2mb25096a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Whole genome transcript correlation-based approaches have been shown to be enormously useful for candidate gene detection. Consequently, simple Pearson correlation has been widely applied in several web based tools. That said, several more sophisticated methods based on e.g. mutual information or Bayesian network inference have been developed and have been shown to be theoretically superior but are not yet commonly applied. Here, we propose the application of a recently developed statistical regression technique, the LASSO, to detect novel candidates from high throughput transcriptomic datasets. We apply the LASSO to a tissue specific dataset in the model plant Arabidopsis thaliana to identify novel players in Arabidopsis thaliana seed coat mucilage synthesis. We built LASSO models based on a list of genes known to be involved in a sub-pathway of Arabidopsis mucilage synthesis. After identifying a putative transcription factor, we verified its involvement in mucilage synthesis by obtaining knock-out mutants for this gene. We show that a loss of function of this putative transcription factor leads to a significant decrease in mucilage pectin.
Collapse
Affiliation(s)
- Aleksandar Vasilevski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | | | | |
Collapse
|
32
|
Slade WO, Ray WK, Williams PM, Winkel BSJ, Helm RF. Effects of exogenous auxin and ethylene on the Arabidopsis root proteome. PHYTOCHEMISTRY 2012; 84:18-23. [PMID: 22989740 DOI: 10.1016/j.phytochem.2012.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/19/2012] [Accepted: 08/13/2012] [Indexed: 06/01/2023]
Abstract
The phytohormones, auxin and ethylene, together control a wide range of physiological and developmental processes in plants. The lack of knowledge regarding how the underlying signaling processes are reflected at the protein level represents a major gap in understanding phytohormone signaling, including that mediated by crosstalk between auxin and ethylene. Herein is a parallel comparison of the effects of these two hormones on the Arabidopsis root proteome. Arabidopsis seedlings were exposed to 1 μm indole-3-acetic acid (IAA, auxin) or 1 μm 1-amino-cyclopropane carboxylic acid (ACC) for 24h. Root protein extracts were fractionated using two-dimensional gel electrophoresis and the proteins that changed the most were analyzed by MALDI TOF/TOF mass spectrometry. Of the 500 total spots that were matched across all gels, 24 were significantly different after IAA exposure, while seven others were different after ACC exposure. Using rigorous criteria, identities of eight proteins regulated by IAA and five regulated by ACC were assigned. Interestingly, although both hormones affected proteins associated with fundamental cellular processes, no overlap was observed among the proteins affected by auxin or ethylene treatment. This report provides a comparison of the effects of these two hormones relative to a control utilizing equivalent treatment regimes and suggests that, while these hormones communicate to control similar physiological and transcriptional processes, they have different effects on the most abundant proteins in Arabidopsis roots.
Collapse
Affiliation(s)
- William O Slade
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0406, USA
| | | | | | | | | |
Collapse
|
33
|
Morohashi K, Casas MI, Ferreyra LF, Mejía-Guerra MK, Pourcel L, Yilmaz A, Feller A, Carvalho B, Emiliani J, Rodriguez E, Pellegrinet S, McMullen M, Casati P, Grotewold E. A genome-wide regulatory framework identifies maize pericarp color1 controlled genes. THE PLANT CELL 2012; 24:2745-64. [PMID: 22822204 PMCID: PMC3426112 DOI: 10.1105/tpc.112.098004] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 06/10/2012] [Accepted: 07/02/2012] [Indexed: 05/18/2023]
Abstract
Pericarp Color1 (P1) encodes an R2R3-MYB transcription factor responsible for the accumulation of insecticidal flavones in maize (Zea mays) silks and red phlobaphene pigments in pericarps and other floral tissues, which makes P1 an important visual marker. Using genome-wide expression analyses (RNA sequencing) in pericarps and silks of plants with contrasting P1 alleles combined with chromatin immunoprecipitation coupled with high-throughput sequencing, we show here that the regulatory functions of P1 are much broader than the activation of genes corresponding to enzymes in a branch of flavonoid biosynthesis. P1 modulates the expression of several thousand genes, and ∼1500 of them were identified as putative direct targets of P1. Among them, we identified F2H1, corresponding to a P450 enzyme that converts naringenin into 2-hydroxynaringenin, a key branch point in the P1-controlled pathway and the first step in the formation of insecticidal C-glycosyl flavones. Unexpectedly, the binding of P1 to gene regulatory regions can result in both gene activation and repression. Our results indicate that P1 is the major regulator for a set of genes involved in flavonoid biosynthesis and a minor modulator of the expression of a much larger gene set that includes genes involved in primary metabolism and production of other specialized compounds.
Collapse
Affiliation(s)
- Kengo Morohashi
- Department of Molecular Genetics, The Ohio State
University, Columbus, Ohio 43210
- Center for Applied Plant Sciences, The Ohio State
University, Columbus, Ohio 43210
| | - María Isabel Casas
- Center for Applied Plant Sciences, The Ohio State
University, Columbus, Ohio 43210
- Molecular, Cellular, and Developmental Biology
Program, The Ohio State University, Columbus, Ohio 43210
| | - Lorena Falcone Ferreyra
- Centro de Estudios Fotosintéticos y
Bioquímicos, Universidad Nacional de Rosario, Santa Fe S2002LRK,
Argentina
| | - María Katherine Mejía-Guerra
- Center for Applied Plant Sciences, The Ohio State
University, Columbus, Ohio 43210
- Molecular, Cellular, and Developmental Biology
Program, The Ohio State University, Columbus, Ohio 43210
| | - Lucille Pourcel
- Department of Botany and Plant Biology, University of
Geneva, Geneva 1211, Switzerland
| | - Alper Yilmaz
- Center for Applied Plant Sciences, The Ohio State
University, Columbus, Ohio 43210
| | - Antje Feller
- Department of Food Quality and Nutrition, Instituto
Agrario San Michele all’Adige, 38010 San Michele all’Adige,
Italy
| | - Bruna Carvalho
- Center for Applied Plant Sciences, The Ohio State
University, Columbus, Ohio 43210
| | - Julia Emiliani
- Centro de Estudios Fotosintéticos y
Bioquímicos, Universidad Nacional de Rosario, Santa Fe S2002LRK,
Argentina
| | - Eduardo Rodriguez
- Instituto de Biología Molecular y Celular de
Rosario, Rosario, Santa Fe S2002LRK, Argentina
| | | | - Michael McMullen
- Plant Genetics Research Unit, U.S. Department of
Agriculture–Agricultural Research Service, University of Missouri,
Columbia, Missouri 65211
- Division of Plant Sciences, University of Missouri,
Columbia, Missouri 65211
| | - Paula Casati
- Centro de Estudios Fotosintéticos y
Bioquímicos, Universidad Nacional de Rosario, Santa Fe S2002LRK,
Argentina
| | - Erich Grotewold
- Department of Molecular Genetics, The Ohio State
University, Columbus, Ohio 43210
- Center for Applied Plant Sciences, The Ohio State
University, Columbus, Ohio 43210
| |
Collapse
|
34
|
Avin-Wittenberg T, Tzin V, Angelovici R, Less H, Galili G. Deciphering energy-associated gene networks operating in the response of Arabidopsis plants to stress and nutritional cues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:954-66. [PMID: 22288575 DOI: 10.1111/j.1365-313x.2012.04926.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants need to continuously adjust their transcriptome in response to various stresses that lead to inhibition of photosynthesis and the deprivation of cellular energy. This adjustment is triggered in part by a coordinated re-programming of the energy-associated transcriptome to slow down photosynthesis and activate other energy-promoting gene networks. Therefore, understanding the stress-related transcriptional networks of genes belonging to energy-associated pathways is of major importance for engineering stress tolerance. In a bioinformatics approach developed by our group, termed 'gene coordination', we previously divided genes encoding for enzymes and transcription factors in Arabidopsis thaliana into three clusters, displaying altered coordinated transcriptional behaviors in response to multiple biotic and abiotic stresses (Plant Cell, 23, 2011, 1264). Enrichment analysis indicated further that genes controlling energy-associated metabolism operate as a compound network in response to stress. In the present paper, we describe in detail the network association of genes belonging to six central energy-associated pathways in each of these three clusters described in our previous paper. Our results expose extensive stress-associated intra- and inter-pathway interactions between genes from these pathways, indicating that genes encoding proteins involved in energy-associated metabolism are expressed in a highly coordinated manner. We also provide examples showing that this approach can be further utilized to elucidate candidate genes for stress tolerance and functions of isozymes.
Collapse
Affiliation(s)
- Tamar Avin-Wittenberg
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
35
|
Bar-Peled M, Urbanowicz BR, O’Neill MA. The Synthesis and Origin of the Pectic Polysaccharide Rhamnogalacturonan II - Insights from Nucleotide Sugar Formation and Diversity. FRONTIERS IN PLANT SCIENCE 2012; 3:92. [PMID: 22639675 PMCID: PMC3355719 DOI: 10.3389/fpls.2012.00092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/23/2012] [Indexed: 05/02/2023]
Abstract
There is compelling evidence showing that the structurally complex pectic polysaccharide rhamnogalacturonan II (RG-II) exists in the primary cell wall as a borate cross-linked dimer and that this dimer is required for the assembly of a functional wall and for normal plant growth and development. The results of several studies have also established that RG-II structure and cross-linking is conserved in vascular plants and that RG-II likely appeared early in the evolution of land plants. Two features that distinguish RG-II from other plant polysaccharides are that RG-II is composed of 13 different glycoses linked to each other by up to 22 different glycosidic linkages and that RG-II is the only polysaccharide known to contain both apiose and aceric acid. Thus, one key event in land plant evolution was the emergence of genes encoding nucleotide sugar biosynthetic enzymes that generate the activated forms of apiose and aceric acid required for RG-II synthesis. Many of the genes involved in the generation of the nucleotide sugars used for RG-II synthesis have been functionally characterized. By contrast, only one glycosyltransferase involved in the assembly of RG-II has been identified. Here we provide an overview of the formation of the activated sugars required for RG-II synthesis and point to the possible cellular and metabolic processes that could be involved in assembling and controlling the formation of a borate cross-linked RG-II molecule. We discuss how nucleotide sugar synthesis is compartmentalized and how this may control the flux of precursors to facilitate and regulate the formation of RG-II.
Collapse
Affiliation(s)
- Maor Bar-Peled
- Department of Plant Biology, Complex Carbohydrate Research, The University of GeorgiaAthens, GA, USA
- *Correspondence: Maor Bar-Peled, Department of Plant Biology, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA. e-mail:
| | | | - Malcolm A. O’Neill
- Complex Carbohydrate Research Center, The University of GeorgiaAthens, GA, USA
| |
Collapse
|
36
|
Martinez V, Ingwers M, Smith J, Glushka J, Yang T, Bar-Peled M. Biosynthesis of UDP-4-keto-6-deoxyglucose and UDP-rhamnose in pathogenic fungi Magnaporthe grisea and Botryotinia fuckeliana. J Biol Chem 2011; 287:879-92. [PMID: 22102281 DOI: 10.1074/jbc.m111.287367] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is increasing evidence that in several fungi, rhamnose-containing glycans are involved in processes that affect host-pathogen interactions, including adhesion, recognition, virulence, and biofilm formation. Nevertheless, little is known about the pathways for the synthesis of these glycans. We show that rhamnose is present in glycans isolated from the rice pathogen Magnaporthe grisea and from the plant pathogen Botryotinia fuckeliana. We also provide evidence that these fungi produce UDP-rhamnose. This is in contrast to bacteria where dTDP-rhamnose is the activated form of this sugar. In bacteria, formation of dTDP-rhamnose requires three enzymes. Here, we demonstrate that in fungi only two genes are required for UDP-Rha synthesis. The first gene encodes a UDP-glucose-4,6-dehydratase that converts UDP-glucose to UDP-4-keto-6-deoxyglucose. The product was shown by time-resolved (1)H NMR spectroscopy to exist in solution predominantly as a hydrated form along with minor amounts of a keto form. The second gene encodes a bifunctional UDP-4-keto-6-deoxyglucose-3,5-epimerase/-4-reductase that converts UDP-4-keto-6-deoxyglucose to UDP-rhamnose. Sugar composition analysis and gene expression studies at different stages of growth indicate that the synthesis of rhamnose-containing glycans is under tissue-specific regulation. Together, our results provide new insight into the formation of rhamnose-containing glycans during the fungal life cycle. The role of these glycans in the interactions between fungal pathogens and their hosts is discussed. Knowledge of the metabolic pathways involved in the formation of rhamnose-containing glycans may facilitate the development of drugs to combat fungal diseases in humans, as to the best of our knowledge mammals do not make these types of glycans.
Collapse
Affiliation(s)
- Viviana Martinez
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
37
|
Evolution of plant nucleotide-sugar interconversion enzymes. PLoS One 2011; 6:e27995. [PMID: 22125650 PMCID: PMC3220709 DOI: 10.1371/journal.pone.0027995] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/29/2011] [Indexed: 11/19/2022] Open
Abstract
Nucleotide-diphospho-sugars (NDP-sugars) are the building blocks of diverse polysaccharides and glycoconjugates in all organisms. In plants, 11 families of NDP-sugar interconversion enzymes (NSEs) have been identified, each of which interconverts one NDP-sugar to another. While the functions of these enzyme families have been characterized in various plants, very little is known about their evolution and origin. Our phylogenetic analyses indicate that all the 11 plant NSE families are distantly related and most of them originated from different progenitor genes, which have already diverged in ancient prokaryotes. For instance, all NSE families are found in the lower land plant mosses and most of them are also found in aquatic algae, implicating that they have already evolved to be capable of synthesizing all the 11 different NDP-sugars. Particularly interesting is that the evolution of RHM (UDP-L-rhamnose synthase) manifests the fusion of genes of three enzymatic activities in early eukaryotes in a rather intriguing manner. The plant NRS/ER (nucleotide-rhamnose synthase/epimerase-reductase), on the other hand, evolved much later from the ancient plant RHMs through losing the N-terminal domain. Based on these findings, an evolutionary model is proposed to explain the origin and evolution of different NSE families. For instance, the UGlcAE (UDP-D-glucuronic acid 4-epimerase) family is suggested to have evolved from some chlamydial bacteria. Our data also show considerably higher sequence diversity among NSE-like genes in modern prokaryotes, consistent with the higher sugar diversity found in prokaryotes. All the NSE families are widely found in plants and algae containing carbohydrate-rich cell walls, while sporadically found in animals, fungi and other eukaryotes, which do not have or have cell walls with distinct compositions. Results of this study were shown to be highly useful for identifying unknown genes for further experimental characterization to determine their functions in the synthesis of diverse glycosylated molecules.
Collapse
|
38
|
Bar-Peled M, O'Neill MA. Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:127-55. [PMID: 21370975 DOI: 10.1146/annurev-arplant-042110-103918] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nucleotide sugars are the universal sugar donors for the formation of polysaccharides, glycoproteins, proteoglycans, glycolipids, and glycosylated secondary metabolites. At least 100 genes encode proteins involved in the formation of nucleotide sugars. These nucleotide sugars are formed using the carbohydrate derived from photosynthesis, the sugar generated by hydrolyzing translocated sucrose, the sugars released from storage carbohydrates, the salvage of sugars from glycoproteins and glycolipids, the recycling of sugars released during primary and secondary cell wall restructuring, and the sugar generated during plant-microbe interactions. Here we emphasize the importance of the salvage of sugars released from glycans for the formation of nucleotide sugars. We also outline how recent studies combining biochemical, genetic, molecular and cellular approaches have led to an increased appreciation of the role nucleotide sugars in all aspects of plant growth and development. Nevertheless, our understanding of these pathways at the single cell level is far from complete.
Collapse
Affiliation(s)
- Maor Bar-Peled
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
39
|
Identification of an L-rhamnose synthetic pathway in two nucleocytoplasmic large DNA viruses. J Virol 2010; 84:8829-38. [PMID: 20538863 DOI: 10.1128/jvi.00770-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleocytoplasmic large DNA viruses (NCLDVs) are characterized by large genomes that often encode proteins not commonly found in viruses. Two species in this group are Acanthocystis turfacea chlorella virus 1 (ATCV-1) (family Phycodnaviridae, genus Chlorovirus) and Acanthamoeba polyphaga mimivirus (family Mimiviridae), commonly known as mimivirus. ATCV-1 and other chlorovirus members encode enzymes involved in the synthesis and glycosylation of their structural proteins. In this study, we identified and characterized three enzymes responsible for the synthesis of the sugar L-rhamnose: two UDP-D-glucose 4,6-dehydratases (UGDs) encoded by ATCV-1 and mimivirus and a bifunctional UDP-4-keto-6-deoxy-D-glucose epimerase/reductase (UGER) from mimivirus. Phylogenetic analysis indicated that ATCV-1 probably acquired its UGD gene via a recent horizontal gene transfer (HGT) from a green algal host, while an earlier HGT event involving the complete pathway (UGD and UGER) probably occurred between a protozoan ancestor and mimivirus. While ATCV-1 lacks an epimerase/reductase gene, its Chlorella host may encode this enzyme. Both UGDs and UGER are expressed as late genes, which is consistent with their role in posttranslational modification of capsid proteins. The data in this study provide additional support for the hypothesis that chloroviruses, and maybe mimivirus, encode most, if not all, of the glycosylation machinery involved in the synthesis of specific glycan structures essential for virus replication and infection.
Collapse
|
40
|
Ebert B, Zöller D, Erban A, Fehrle I, Hartmann J, Niehl A, Kopka J, Fisahn J. Metabolic profiling of Arabidopsis thaliana epidermal cells. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1321-35. [PMID: 20150518 PMCID: PMC2837255 DOI: 10.1093/jxb/erq002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/31/2009] [Accepted: 12/24/2009] [Indexed: 05/17/2023]
Abstract
Metabolic phenotyping at cellular resolution may be considered one of the challenges in current plant physiology. A method is described which enables the cell type-specific metabolic analysis of epidermal cell types in Arabidopsis thaliana pavement, basal, and trichome cells. To achieve the required high spatial resolution, single cell sampling using microcapillaries was combined with routine gas chromatography-time of flight-mass spectrometry (GC-TOF-MS) based metabolite profiling. The identification and relative quantification of 117 mostly primary metabolites has been demonstrated. The majority, namely 90 compounds, were accessible without analytical background correction. Analyses were performed using cell type-specific pools of 200 microsampled individual cells. Moreover, among these identified metabolites, 38 exhibited differential pool sizes in trichomes, basal or pavement cells. The application of an independent component analysis confirmed the cell type-specific metabolic phenotypes. Significant pool size changes between individual cells were detectable within several classes of metabolites, namely amino acids, fatty acids and alcohols, alkanes, lipids, N-compounds, organic acids and polyhydroxy acids, polyols, sugars, sugar conjugates and phenylpropanoids. It is demonstrated here that the combination of microsampling and GC-MS based metabolite profiling provides a method to investigate the cellular metabolism of fully differentiated plant cell types in vivo.
Collapse
Affiliation(s)
- Berit Ebert
- Max-Planck-Institute of Molecular Plant Physiology, Campus Golm, Am Mühlenberg 1, D-14476 Potsdam OT Golm, Germany
| | - Daniela Zöller
- Max-Planck-Institute of Molecular Plant Physiology, Campus Golm, Am Mühlenberg 1, D-14476 Potsdam OT Golm, Germany
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, Campus Golm, Am Mühlenberg 1, D-14476 Potsdam OT Golm, Germany
| | - Ines Fehrle
- Max-Planck-Institute of Molecular Plant Physiology, Campus Golm, Am Mühlenberg 1, D-14476 Potsdam OT Golm, Germany
| | - Jürgen Hartmann
- Max-Planck-Institute of Colloids and Interfaces, Campus Golm, Am Mühlenberg 1, D-14476 Potsdam OT Golm, Germany
| | - Annette Niehl
- CNRS UPR 2357 Institut de Biologie Moléculaire des Plantes, 12 rue du Général Zimmer, F-67084, Strasbourg Cedex, France
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Campus Golm, Am Mühlenberg 1, D-14476 Potsdam OT Golm, Germany
| | - Joachim Fisahn
- Max-Planck-Institute of Molecular Plant Physiology, Campus Golm, Am Mühlenberg 1, D-14476 Potsdam OT Golm, Germany
| |
Collapse
|
41
|
Wang J, Ji Q, Jiang L, Shen S, Fan Y, Zhang C. Overexpression of a cytosol-localized rhamnose biosynthesis protein encoded by Arabidopsis RHM1 gene increases rhamnose content in cell wall. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:86-93. [PMID: 19056285 DOI: 10.1016/j.plaphy.2008.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Revised: 10/19/2008] [Accepted: 10/28/2008] [Indexed: 05/15/2023]
Abstract
l-Rhamnose (Rha) is an important constituent of pectic polysaccharides, a major component of the cell walls of Arabidopsis, which is synthesized by three enzymes encoded by AtRHM1, AtRHM2/AtMUM4, and AtRHM3. Despite the finding that RHM1 is involved in root hair formation in Arabidopsis, experimental evidence is still lacking for the in vivo enzymatic activity and subcellular compartmentation of AtRHM1 protein. AtRHM1 displays high similarity to the other members of RHM family in Arabidopsis and in other plant species such as rice and grape. Expression studies with AtRHM1 promoter-GUS fusion gene showed that AtRHM1 was expressed almost ubiquitously, with stronger expression in roots and cotyledons of young seedlings and inflorescences. GFP::AtRHM1 fusion protein was found to be localized in the cytosol of cotyledon cells and of petiole cells of cotyledon, indicating that AtRHM1 is a cytosol-localized protein. The overexpression of AtRHM1 gene in Arabidopsis resulted in an increase of rhamnose content as much as 40% in the leaf cell wall compared to the wild type as well as an alteration in the contents of galactose and glucose. Fourier-transform infrared analyses revealed that surplus rhamnose upon AtRHM1 overexpression contributes to the construction of rhamnogalacturonan.
Collapse
Affiliation(s)
- Jinfeng Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | |
Collapse
|
42
|
Arsovski AA, Villota MM, Rowland O, Subramaniam R, Western TL. MUM ENHANCERS are important for seed coat mucilage production and mucilage secretory cell differentiation in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2601-12. [PMID: 19401413 PMCID: PMC2692007 DOI: 10.1093/jxb/erp102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 02/20/2009] [Accepted: 03/11/2009] [Indexed: 05/17/2023]
Abstract
Pollination triggers not only embryo development but also the differentiation of the ovule integuments to form a specialized seed coat. The mucilage secretory cells of the Arabidopsis thaliana seed coat undergo a complex differentiation process in which cell growth is followed by the synthesis and secretion of pectinaceous mucilage. A number of genes have been identified affecting mucilage secretory cell differentiation, including MUCILAGE-MODIFIED4 (MUM4). mum4 mutants produce a reduced amount of mucilage and cloning of MUM4 revealed that it encodes a UDP-L-rhamnose synthase that is developmentally up-regulated to provide rhamnose for mucilage pectin synthesis. To identify additional genes acting in mucilage synthesis and secretion, a screen for enhancers of the mum4 phenotype was performed. Eight mum enhancers (men) have been identified, two of which result from defects in known mucilage secretory cell genes (MUM2 and MYB61). Our results show that, in a mum4 background, mutations in MEN1, MEN4, and MEN5 lead to further reductions in mucilage compared to mum4 single mutants, suggesting that they are involved in mucilage synthesis or secretion. Conversely, mutations in MEN2 and MEN6 appear to affect mucilage release rather than quantity. With the exception of men4, whose single mutant exhibits reduced mucilage, none of these genes have a single mutant phenotype, suggesting that they would not have been identified outside the compromised mum4 background.
Collapse
Affiliation(s)
| | - Maria M. Villota
- Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Ottawa, ON, Canada K1A 0C6
| | - Owen Rowland
- Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Rajagopal Subramaniam
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Ottawa, ON, Canada K1A 0C6
| | - Tamara L. Western
- Department of Biology, McGill University, Montreal, QC, Canada H3A 1B1
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
43
|
Marmagne A, Ferro M, Meinnel T, Bruley C, Kuhn L, Garin J, Barbier-Brygoo H, Ephritikhine G. A High Content in Lipid-modified Peripheral Proteins and Integral Receptor Kinases Features in the Arabidopsis Plasma Membrane Proteome. Mol Cell Proteomics 2007; 6:1980-96. [PMID: 17644812 DOI: 10.1074/mcp.m700099-mcp200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteomics of plasma membrane has brought to date only scarce and partial information on the actual protein repertoire. In this work, the plant plasma membrane proteome of Arabidopsis thaliana was investigated. A highly purified plasma membrane fraction was washed by NaCl and Na2CO3 salts, and the insoluble fractions were further analyzed by nano-LC-MS/MS. With 446 proteins identified, we hereby describe the largest plasma membrane proteome diversity reported so far. Half of the proteins were predicted to display transmembrane domains and/or to be anchored to the membrane, validating a posteriori the pertinence of the approach. A fine analysis highlighted two main specific and novel features. First, the main functional category is represented by a majority of as yet unreported signaling proteins, including 11% receptor-like kinases. Second, 16% of the identified proteins are predicted to be lipid-modified, specifically involving double lipid linkage through N-terminal myristoylation, S-palmitoylation, C-terminal prenylation, or glycosylphosphatidylinositol anchors. Thus, our approach led for the first time to the identification of a large number of peripheral proteins as part of the plasma membrane and allowed the functionality of the plasma membrane in the cell context to be reconsidered.
Collapse
Affiliation(s)
- Anne Marmagne
- Institut des Sciences du Végétal, CNRS-UPR 2355, Bât 22, avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Turnock DC, Ferguson MAJ. Sugar nucleotide pools of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. EUKARYOTIC CELL 2007; 6:1450-63. [PMID: 17557881 PMCID: PMC1951125 DOI: 10.1128/ec.00175-07] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The cell surface glycoconjugates of trypanosomatid parasites are intimately involved in parasite survival, infectivity, and virulence in their insect vectors and mammalian hosts. Although there is a considerable body of work describing their structure, biosynthesis, and function, little is known about the sugar nucleotide pools that fuel their biosynthesis. In order to identify and quantify parasite sugar nucleotides, we developed an analytical method based on liquid chromatography-electrospray ionization-tandem mass spectrometry using multiple reaction monitoring. This method was applied to the bloodstream and procyclic forms of Trypanosoma brucei, the epimastigote form of T. cruzi, and the promastigote form of Leishmania major. Five sugar nucleotides, GDP-alpha-d-mannose, UDP-alpha-d-N-acetylglucosamine, UDP-alpha-d-glucose, UDP-alpha-galactopyranose, and GDP-beta-l-fucose, were common to all three species; one, UDP-alpha-d-galactofuranose, was common to T. cruzi and L. major; three, UDP-beta-l-rhamnopyranose, UDP-alpha-d-xylose, and UDP-alpha-d-glucuronic acid, were found only in T. cruzi; and one, GDP-alpha-d-arabinopyranose, was found only in L. major. The estimated demands for each monosaccharide suggest that sugar nucleotide pools are turned over at very different rates, from seconds to hours. The sugar nucleotide survey, together with a review of the literature, was used to define the routes to these important metabolites and to annotate relevant genes in the trypanosomatid genomes.
Collapse
Affiliation(s)
- Daniel C Turnock
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, Scotland, United Kingdom
| | | |
Collapse
|
45
|
Faurobert M, Mihr C, Bertin N, Pawlowski T, Negroni L, Sommerer N, Causse M. Major proteome variations associated with cherry tomato pericarp development and ripening. PLANT PHYSIOLOGY 2007; 143:1327-46. [PMID: 17208958 PMCID: PMC1820912 DOI: 10.1104/pp.106.092817] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Tomato (Solanum lycopersicum) is a model plant for studying fleshy fruit development. Several genetic and molecular approaches have been developed to increase our knowledge about the physiological basis of fruit growth, but very few data are yet available at the proteomic level. The main stages of fruit development were first determined through the dynamics of fruit diameter and pericarp cell number. Then, total proteins were extracted from pericarp tissue at six relevant developmental stages and separated by two-dimensional gel electrophoresis. Protein patterns were markedly different between stages. Proteins showing major variations were monitored. We identified 90 of 1,791 well-resolved spots either by matrix-assisted laser-desorption ionization time-of-flight peptide mass fingerprinting or liquid chromatography-mass spectrometry sequencing and expressed sequence tag database searching. Clustered correlation analysis results pointed out groups of proteins with similar expression profiles during fruit development. In young fruit, spots linked to amino acid metabolism or protein synthesis were mainly expressed during the cell division stage and down-regulated later. Some spots linked to cell division processes could be identified. During the cell expansion phase, spots linked to photosynthesis and proteins linked to cell wall formation transiently increased. In contrast, the major part of the spots related to C compounds and carbohydrate metabolism or oxidative processes were up-regulated during fruit development, showing an increase in spot intensity during development and maximal abundance in mature fruit. This was also the case for spots linked to stress responses and fruit senescence. We discuss protein variations, taking into account their potential role during fruit growth and comparing our results with already known variations at mRNA and metabolite-profiling levels.
Collapse
Affiliation(s)
- Mireille Faurobert
- Institut National de la Recherche Agronomique, Unité de Génétique et Amélioration des Fruits et Légumes, INRA, UR 1052, Domaine Saint-Maurice, 84143 Montfavet cedex, France.
| | | | | | | | | | | | | |
Collapse
|
46
|
Peña MJ, Zhong R, Zhou GK, Richardson EA, O'Neill MA, Darvill AG, York WS, Ye ZH. Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. THE PLANT CELL 2007; 19:549-63. [PMID: 17322407 PMCID: PMC1867335 DOI: 10.1105/tpc.106.049320] [Citation(s) in RCA: 323] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Mutations of Arabidopsis thaliana IRREGULAR XYLEM8 (IRX8) and IRX9 were previously shown to cause a collapsed xylem phenotype and decreases in xylose and cellulose in cell walls. In this study, we characterized IRX8 and IRX9 and performed chemical and structural analyses of glucuronoxylan (GX) from irx8 and irx9 plants. IRX8 and IRX9 are expressed specifically in cells undergoing secondary wall thickening, and their encoded proteins are targeted to the Golgi, where GX is synthesized. 1H-NMR spectroscopy showed that the reducing end of Arabidopsis GX contains the glycosyl sequence 4-beta-D-Xylp-(1-->4)-beta-D-Xylp-(1-->3)-alpha-L-Rhap-(1-->2)-alpha-D-GalpA-(1-->4)-D-Xylp, which was previously identified in birch (Betula verrucosa) and spruce (Picea abies) GX. This indicates that the reducing end structure of GXs is evolutionarily conserved in woody and herbaceous plants. This sequence is more abundant in irx9 GX than in the wild type, whereas irx8 and fragile fiber8 (fra8) plants are nearly devoid of it. The number of GX chains increased and the GX chain length decreased in irx9 plants. Conversely, the number of GX chains decreased and the chain length heterodispersity increased in irx8 and fra8 plants. Our results suggest that IRX9 is required for normal GX elongation and indicate roles for IRX8 and FRA8 in the synthesis of the glycosyl sequence at the GX reducing end.
Collapse
Affiliation(s)
- Maria J Peña
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Oka T, Nemoto T, Jigami Y. Functional analysis of Arabidopsis thaliana RHM2/MUM4, a multidomain protein involved in UDP-D-glucose to UDP-L-rhamnose conversion. J Biol Chem 2006; 282:5389-403. [PMID: 17190829 DOI: 10.1074/jbc.m610196200] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-L-rhamnose is required for the biosynthesis of cell wall rhamnogalacturonan-I, rhamnogalacturonan-II, and natural compounds in plants. It has been suggested that the RHM2/MUM4 gene is involved in conversion of UDP-D-glucose to UDP-L-rhamnose on the basis of its effect on rhamnogalacturonan-I-directed development in Arabidopsis thaliana. RHM2/MUM4-related genes, RHM1 and RHM3, can be found in the A. thaliana genome. Here we present direct evidence that all three RHM proteins have UDP-D-glucose 4,6-dehydratase, UDP-4-keto-6-deoxy-D-glucose 3,5-epimerase, and UDP-4-keto-L-rhamnose 4-keto-reductase activities in the cytoplasm when expressed in the yeast Saccharomyces cerevisiae. Functional domain analysis revealed that the N-terminal region of RHM2 (RHM2-N; amino acids 1-370) has the first activity and the C-terminal region of RHM2 (RHM2-C; amino acids 371-667) has the two following activities. This suggests that RHM2 converts UDP-d-glucose to UDP-L-rhamnose via an UDP-4-keto-6-deoxy-D-glucose intermediate. Site-directed mutagenesis of RHM2 revealed that mucilage defects in MUM4-1 and MUM4-2 mutant seeds of A. thaliana are caused by abolishment of RHM2 enzymatic activity in the mutant strains and furthermore, that the GXXGXX(G/A) and YXXXK motifs are important for enzymatic activity. Moreover, a kinetic analysis of purified His(6)-tagged RHM2-N protein revealed 5.9-fold higher affinity of RHM2 for UDP-D-glucose than for dTDP-D-glucose, the preferred substrate for dTDP-D-glucose 4,6-dehydratase from bacteria. RHM2-N activity is strongly inhibited by UDP-L-rhamnose, UDP-D-xylose, and UDP but not by other sugar nucleotides, suggesting that RHM2 maintains cytoplasmic levels of UDP-D-glucose and UDP-L-rhamnose via feedback inhibition by UDP-L-rhamnose and UDP-D-xylose.
Collapse
Affiliation(s)
- Takuji Oka
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | | | | |
Collapse
|
48
|
Western TL. Changing spaces: the Arabidopsis mucilage secretory cells as a novel system to dissect cell wall production in differentiating cellsThis review is one of a selection of papers published in the Special Issue on Plant Cell Biology. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As the outer boundary of plant cells, the cell wall is integral to all aspects of plant growth, development, and interactions with the environment. Dicot primary cell walls are composed of a network of cellulose, hemicellulose and proteins embedded in a matrix of acidic pectins. Pectins are synthesized in the Golgi apparatus by the sequential addition of nucleotide sugars by glycosyltransferases, following which they are secreted to the apoplast. During their differentiation, the mucilage secretory cells (MSCs) of the Arabidopsis seed coat undergo sequential biosynthesis and secretion of a primarily pectinaceous mucilage followed by secondary cell wall production. Several genes affecting MSC differentiation have been identified with roles ranging from the production of nucleotide sugar substrates for pectin synthesis to putative cell wall modification enzymes to transcription factors required to control MSC differentiation. These preliminary studies of the MSCs demonstrate that they will play a valuable role in gene discovery related to cell wall production and modification. Furthermore, they have the potential to become an important system in which to study the interaction and regulation of pectin biosynthetic factors in differentiating cells. These results will contribute to answering the important question of how cell wall production and modification occur throughout a growing plant living in a complex environment.
Collapse
Affiliation(s)
- Tamara L. Western
- Biology Department, McGill University, 1205, ave. Docteur Penfield, Montréal, QC H3A 1B1, Canada (e-mail: )
| |
Collapse
|
49
|
Sterling JD, Atmodjo MA, Inwood SE, Kumar Kolli VS, Quigley HF, Hahn MG, Mohnen D. Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase. Proc Natl Acad Sci U S A 2006; 103:5236-41. [PMID: 16540543 PMCID: PMC1458824 DOI: 10.1073/pnas.0600120103] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Indexed: 11/18/2022] Open
Abstract
Galacturonosyltransferases (GalATs) are required for the synthesis of pectin, a family of complex polysaccharides present in the cell walls of all land plants. We report the identification of a pectin GalAT (GAUT1) using peptide sequences obtained from Arabidopsis thaliana proteins partially purified for homogalacturonan (HG) alpha-1,4-GalAT activity. Transient expression of GAUT1 cDNA in the human embryonic kidney cell line HEK293 yielded uridine diphosphogalacturonic acid:GalAT activity. Polyclonal antibodies generated against GAUT1 immunoabsorbed HG alpha-1,4-GalAT activity from Arabidopsis solubilized membrane proteins. blast analysis of the Arabidopsis genome identified a family of 25 genes with high sequence similarity to GAUT1 and homologous genes in other dicots, in rice, and in Physcomitrella. Sequence alignment and phylogenetic Bayesian analysis of the Arabidopsis GAUT1-related gene family separates them into four related clades of GAUT and GAUT-like genes that are distinct from the other Arabidopsis members of glycosyltransferase family 8. The identification of GAUT1 as a HG GalAT and of the GAUT1-related gene family provides the genetic and biochemical tools required to study the function of these genes in pectin synthesis.
Collapse
Affiliation(s)
| | - Melani A. Atmodjo
- *Complex Carbohydrate Research Center and Departments of
- Biochemistry and Molecular Biology and
| | | | | | | | - Michael G. Hahn
- *Complex Carbohydrate Research Center and Departments of
- Plant Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602-4712
| | - Debra Mohnen
- *Complex Carbohydrate Research Center and Departments of
- Biochemistry and Molecular Biology and
| |
Collapse
|
50
|
Major LL, Wolucka BA, Naismith JH. Structure and function of GDP-mannose-3',5'-epimerase: an enzyme which performs three chemical reactions at the same active site. J Am Chem Soc 2005; 127:18309-20. [PMID: 16366586 PMCID: PMC3315049 DOI: 10.1021/ja056490i] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
GDP-mannose-3',5'-epimerase (GME) from Arabidopsis thaliana catalyzes the epimerization of both the 3' and 5' positions of GDP-alpha-D-mannose to yield GDP-beta-L-galactose. Production of the C5' epimer of GDP-alpha-D-mannose, GDP-beta-L-gulose, has also been reported. The reaction occurs as part of vitamin C biosynthesis in plants. We have determined structures of complexes of GME with GDP-alpha-D-mannose, GDP-beta-L-galactose, and a mixture of GDP-beta-L-gulose with GDP-beta-L-4-keto-gulose to resolutions varying from 2.0 to 1.4 A. The enzyme has the classical extended short-chain dehydratase/reductase (SDR) fold. We have confirmed that GME establishes an equilibrium between two products, GDP-beta-L-galactose and GDP-beta-L-gulose. The reaction proceeds by C4' oxidation of GDP-alpha-D-mannose followed by epimerization of the C5' position to give GDP-beta-L-4-keto-gulose. This intermediate is either reduced to give GDP-beta-L-gulose or the C3' position is epimerized to give GDP-beta-L-4-keto-galactose, then C4' is reduced to GDP-beta-L-galactose. The combination of oxidation, epimerization, and reduction in a single active site is unusual. Structural analysis coupled to site-directed mutagenesis suggests C145 and K217 as the acid/base pair responsible for both epimerizations. On the basis of the structure of the GDP-beta-L-gulose/GDP-beta-L-4-keto-gulose co-complex, we predict that a ring flip occurs during the first epimerization and that a boat intermediate is likely for the second epimerization. Comparison of GME with other SDR enzymes known to abstract a protein alpha to the keto function of a carbohydrate identifies key common features.
Collapse
Affiliation(s)
- Louise L Major
- Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife, Scotland KY16 9ST, United Kingdom
| | | | | |
Collapse
|