1
|
Liu T, Qu J, Fang Y, Yang H, Lai W, Pan L, Liu JH. Polyamines: The valuable bio-stimulants and endogenous signaling molecules for plant development and stress response. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:582-595. [PMID: 39601632 DOI: 10.1111/jipb.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 11/29/2024]
Abstract
Polyamines (PAs) are nitrogenous and polycationic compounds containing more than two amine residues. Numerous investigations have demonstrated that cellular PA homeostasis plays a key role in various developmental and physiological processes. The PA balance, which may be affected by many environmental factors, is finely maintained by the pathways of PA biosynthesis and degradation (catabolism). In this review, the advances in PA transport and distribution and their roles in plants were summarized and discussed. In addition, the interplay between PAs and phytohormones, NO, and H2O2 were detailed during plant growth, senescence, fruit repining, as well as response to biotic and abiotic stresses. Moreover, it was elucidated how environmental signals such as light, temperature, and humidity modulate PA accumulation during plant development. Notably, PA has been shown to exert a potential role in shaping the domestication of rice. The present review comprehensively summarizes these latest advances, highlighting the importance of PAs as endogenous signaling molecules in plants, and as well proposes future perspectives on PA research.
Collapse
Affiliation(s)
- Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yinyin Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Haishan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenting Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Luyi Pan
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
2
|
Nidhi, Iqbal N, Khan NA. Polyamines Interaction with Gaseous Signaling Molecules for Resilience Against Drought and Heat Stress in Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:273. [PMID: 39861624 PMCID: PMC11768214 DOI: 10.3390/plants14020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Plants face a range of environmental stresses, such as heat and drought, that significantly reduce their growth, development, and yield. Plants have developed complex signaling networks to regulate physiological processes and improve their ability to withstand stress. The key regulators of plant stress responses include polyamines (PAs) and gaseous signaling molecules (GSM), such as hydrogen sulfide (H2S), nitric oxide (NO), methane (CH4), carbon monoxide (CO), carbon dioxide (CO2), and ethylene (ET). The functions of PAs and GSM in stress perception, signal transduction, and stress-responsive pathways have been explored. However, there is a lack of detailed, updated information on the interaction of PAs and GSM in the adaptation of drought and heat stress. This review explores the interaction between PAs and GSM for the adaptation to drought and heat stress. It explores their synergistic effects in mitigating the negative impacts of drought and heat stress on plant growth, development, and productivity. Moreover, a comprehensive analysis of physiological, biochemical, and molecular approaches demonstrates that their interaction activates key stress-responsive pathways, enhances antioxidant systems, and modulates gene expression. These combined effects contribute to improved drought and heat tolerance in plants. The information presented in the review provides valuable insights into plant stress resilience strategies and suggests potential measures for developing climate-resilient crops to address the increasing environmental challenges.
Collapse
Affiliation(s)
- Nidhi
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India;
| | - Noushina Iqbal
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Nafees A. Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India;
| |
Collapse
|
3
|
Anam S, Hilal B, Fariduddin Q. Polyamines and hydrogen peroxide: Allies in plant resilience against abiotic stress. CHEMOSPHERE 2024; 366:143438. [PMID: 39369751 DOI: 10.1016/j.chemosphere.2024.143438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/07/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
The increasing prevalence and severity of abiotic stresses on plants due to climate change is among the crucial issues of decreased crop productivity worldwide. These stresses affect crop productivity and pose a challenge to food security. Polyamines (Pas) and hydrogen peroxide (H₂O₂) could play a vital role to minimize the impact of several abiotic stresses on the plants. Pas are small molecules that regulate various physiological and developmental processes in plants and confer stress tolerance and protection against dehydration and cellular damage. Pas also interact with plant growth regulators and participate in various signaling routes that can mediate stress response. H₂O₂ on the other hand, acts as a signaling agent and plays a pivotal part in controlling crop growth and productivity. It can trigger oxidative damage at high levels but acts as a stress transducer and regulator at low concentrations. H₂O₂ is involved in stress defense mechanisms and the activation of genes involved in conferring tolerance. Therefore, the main focus of this paper is to explore roles of Pas and H₂O₂ in plant responses to various abiotic stress, highlighting their involvement in stress retaliation and signaling routes. Emphasis has been placed on understanding how Pas and H₂O₂ function and interact with other signaling molecules. Also, interaction of Pas and H₂O₂ with calcium ions, abscisic acid and nitrogen has been discussed, along with activation of MAPK cascade. This additive understanding could contribute to adopt strategies to improve crop productivity and enhance plant resilience to environmental challenges.
Collapse
Affiliation(s)
- Sadiya Anam
- Plant Physiology & Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Bisma Hilal
- Plant Physiology & Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology & Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
4
|
Chen BX, Li YB, Liu HP, Kurtenbach R. Putrescine transformation to other forms of polyamines in filling grain embryos functioned in enhancing the resistance of maize plants to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107654. [PMID: 36989984 DOI: 10.1016/j.plaphy.2023.107654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Polyamines (PAs), one of plant growth regulators, play an important role in the plant resistance to drought stress. However, the precise function of putrescine (Put) transformation to other forms of PAs is not clear in filling maize grain embryos. In this study, two maize (Zea mays L.) cultivars, Yedan No. 13 (drought-resistant) and Xundan No. 22 (drought-sensitive), were used as experimental materials. Maize was planted in big plastic basins during whole growth period, and from the 25th day after fertilization, the plants were treated with drought (-1.0 MPa), PAs and inhibitors for 12 d. The experiments were performed during three consecutive years. The changes in the levels of three main free PAs, Put, spermidine (Spd) and spermine (Spm), covalently conjugated PAs (perchloric acid-soluble), covalently bound PAs (perchloric acid-insoluble), the activities of arginine decarboxylase, S-adenosylmethionine decarboxylase, and transglutaminase were investigated in embryos of filling grains. During drought stress, free Put increased from 109 to 367 nmol g-1 FW and from 107 to 142 nmol g-1 FW in Xundan 22 and in Yedan 13, respectively. Meanwhile, free Spd, free Spm and bound Put increased 2.7, 3.0 and 4.2 times in Yedan 13, respectively, and they merely increased about 1.5 times in Xundan 22. These results suggested that free Spd/Spm and bound Put, which were transformed from free Put, were possibly involved in drought resistance. Exogenous Spd treatment enhanced the drought-induced increase in endogenous free Spd/Spm content in drought-sensitive Xundan 22, coupled with the increase in drought resistance, as judged by the decrease in ear leaf relative plasma membrane permeability and increases in ear leaf relative water content, 1000-grain weight and grain number per ear. The suggestion was further testified with methylglyoxal-bis guanylhydrazone and o-phenanthrolin treatments. Collectively, it could be inferred that transformation of free Put to free Spd/Spm and bound Put in filling grain embryos functioned in enhancing the resistance of maize plants to soil drought.
Collapse
Affiliation(s)
- Ben-Xue Chen
- Design College, Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou Normal University, Zhoukou, Henan, 466001, PR China
| | - Yan-Bing Li
- Design College, Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou Normal University, Zhoukou, Henan, 466001, PR China
| | - Huai-Pan Liu
- Design College, Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou Normal University, Zhoukou, Henan, 466001, PR China.
| | - Ronald Kurtenbach
- College of Biological Science, China Agricultural University, Beijing, 100193, PR China
| |
Collapse
|
5
|
Song J, Sun P, Kong W, Xie Z, Li C, Liu JH. SnRK2.4-mediated phosphorylation of ABF2 regulates ARGININE DECARBOXYLASE expression and putrescine accumulation under drought stress. THE NEW PHYTOLOGIST 2023; 238:216-236. [PMID: 36210523 DOI: 10.1111/nph.18526] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Arginine decarboxylase (ADC)-mediated putrescine (Put) biosynthesis plays an important role in plant abiotic stress response. SNF1-related protein kinases 2s (SnRK2s) and abscisic acid (ABA)-response element (ABRE)-binding factors (ABFs), are core components of the ABA signaling pathway involved in drought stress response. We previously reported that ADC of Poncirus trifoliata (PtrADC) functions in drought tolerance. However, whether and how SnRK2 and ABF regulate PtrADC to modulate putrescine accumulation under drought stress remains largely unclear. Herein, we employed a set of physiological, biochemical, and molecular approaches to reveal that a protein complex composed of PtrSnRK2.4 and PtrABF2 modulates putrescine biosynthesis and drought tolerance by directly regulating PtrADC. PtrABF2 was upregulated by dehydration in an ABA-dependent manner. PtrABF2 activated PtrADC expression by directly and specifically binding to the ABRE core sequence within its promoter and positively regulated drought tolerance via modulating putrescine accumulation. PtrSnRK2.4 interacts with and phosphorylates PtrABF2 at Ser93. PtrSnRK2.4-mediated PtrABF2 phosphorylation is essential for the transcriptional regulation of PtrADC. Besides, PtrSnRK2.4 was shown to play a positive role in drought tolerance by facilitating putrescine synthesis. Taken together, this study sheds new light on the regulatory module SnRK2.4-ABF2-ADC responsible for fine-tuning putrescine accumulation under drought stress, which advances our understanding on transcriptional regulation of putrescine synthesis.
Collapse
Affiliation(s)
- Jie Song
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peipei Sun
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Weina Kong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
Cheng X, Pang F, Tian W, Tang X, Wu L, Hu X, Zhu H. Transcriptome analysis provides insights into the molecular mechanism of GhSAMDC 1 involving in rapid vegetative growth and early flowering in tobacco. Sci Rep 2022; 12:13612. [PMID: 35948667 PMCID: PMC9365820 DOI: 10.1038/s41598-022-18064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
In previous study, ectopic expression of GhSAMDC1 improved vegetative growth and early flowering in tobacco, which had been explained through changes of polyamine content, polyamines and flowering relate genes expression. To further disclose the transcript changes of ectopic expression of GhSAMDC1 in tobacco, the leaves from wild type and two transgenic lines at seedling (30 days old), bolting (60 days old) and flowering (90 days old) stages were performed for transcriptome analysis. Compared to wild type, a total of 938 differentially expressed genes (DEGs) were found to be up- or down-regulated in the two transgenic plants. GO and KEGG analysis revealed that tobacco of wild-type and transgenic lines were controlled by a complex gene network, which regulated multiple metabolic pathways. Phytohormone detection indicate GhSAMDC1 affect endogenous phytohormone content, ABA and JA content are remarkably increased in transgenic plants. Furthermore, transcript factor analysis indicated 18 transcript factor families, including stress response, development and flowering related transcript factor families, especially AP2-EREBP, WRKY, HSF and Tify are the most over-represented in those transcript factor families. In conclusion, transcriptome analysis provides insights into the molecular mechanism of GhSAMDC1 involving rapid vegetative growth and early flowering in tobacco.
Collapse
Affiliation(s)
- Xinqi Cheng
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Fangqin Pang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Wengang Tian
- College of Agronomy, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xinxin Tang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Lan Wu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Xiaoming Hu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Huaguo Zhu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China. .,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China.
| |
Collapse
|
7
|
Ghosh UK, Islam MN, Siddiqui MN, Khan MAR. Understanding the roles of osmolytes for acclimatizing plants to changing environment: a review of potential mechanism. PLANT SIGNALING & BEHAVIOR 2021; 16:1913306. [PMID: 34134596 PMCID: PMC8244753 DOI: 10.1080/15592324.2021.1913306] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 05/30/2023]
Abstract
Abiotic stresses are significant environmental issues that restrict plant growth, productivity, and survival while also posing a threat to global food production and security. Plants produce compatible solutes known as osmolytes to adapt themselves in such changing environment. Osmolytes contribute to homeostasis maintenance, provide the driving gradient for water uptake, maintain cell turgor by osmotic adjustment, and redox metabolism to remove excess level of reactive oxygen species (ROS) and reestablish the cellular redox balance as well as protect cellular machinery from osmotic stress and oxidative damage. Perceiving the mechanisms how plants interpret environmental signals and transmit them to cellular machinery to activate adaptive responses is important for crop improvement programs to get stress-tolerant varieties. A large number of studies conducted in the last few decades have shown that osmolytes accumulate in plants and have strong associations with abiotic stress tolerance. Production of abundant osmolytes is needed for tolerance in many plant species. In addition, transgenic plants overexpressing genes for different osmolytes showed enhanced tolerance to various abiotic stresses. Many important aspects of their mechanisms of action are yet to be largely identified, especially regarding the relevance and relative contribution of specific osmolytes to the stress tolerance of a given species. Therefore, more efforts and resources should be invested in the study of the abiotic stress responses of plants in their natural habitats. The present review focuses on the possible roles and mechanisms of osmolytes and their association toward abiotic stress tolerance in plants. This review would help the readers in learning more about osmolytes and how they behave in changing environments as well as getting an idea of how this knowledge could be applied to develop stress tolerance in plants.
Collapse
Affiliation(s)
- Uttam Kumar Ghosh
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md. Nahidul Islam
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md. Nurealam Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
- Institute of Crop Science and Resource Conservation (Inres)-plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Md. Arifur Rahman Khan
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
8
|
Pál M, Szalai G, Gondor OK, Janda T. Unfinished story of polyamines: Role of conjugation, transport and light-related regulation in the polyamine metabolism in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110923. [PMID: 34034871 DOI: 10.1016/j.plantsci.2021.110923] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 05/27/2023]
Abstract
Polyamines play a fundamental role in the functioning of all cells. Their regulatory role in plant development, their function under stress conditions, and their metabolism have been well documented as regards both synthesis and catabolism in an increasing number of plant species. However, the majority of these studies concentrate on the levels of the most abundant polyamines, sometimes providing data on the enzyme activity or gene expression levels during polyamine synthesis, but generally making no mention of the fact that changes in the polyamine pool are very dynamic, and that other processes are also involved in the regulation of actual polyamine levels. Differences in the distribution of individual polyamines and their conjugation with other compounds were described some time ago, but these have been given little attention. In addition, the role of polyamine transporters in plants is only now being recognised. The present review highlights the importance of conjugated polyamines and also points out that investigations should not only deal with the polyamine metabolism itself, but should also cover other important questions, such as the relationship between light perception and the polyamine metabolism, or the involvement of polyamines in the circadian rhythm.
Collapse
Affiliation(s)
- Magda Pál
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Brunszvik u. 2, Martonvásár, H-2462, Hungary.
| | - Gabriella Szalai
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Brunszvik u. 2, Martonvásár, H-2462, Hungary
| | - Orsolya Kinga Gondor
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Brunszvik u. 2, Martonvásár, H-2462, Hungary
| | - Tibor Janda
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Brunszvik u. 2, Martonvásár, H-2462, Hungary
| |
Collapse
|
9
|
Qu Y, Jiang L, Wuyun T, Mu S, Xie F, Chen Y, Zhang L. Effects of Exogenous Putrescine on Delaying Senescence of Cut Foliage of Nephrolepis cordifolia. FRONTIERS IN PLANT SCIENCE 2020; 11:566824. [PMID: 33013988 PMCID: PMC7511530 DOI: 10.3389/fpls.2020.566824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2020] [Indexed: 06/09/2023]
Abstract
Senescence is the main limitation for cut foliage display in vase. Naturally occurring polyamines such as putrescine (Put) have been considered effective anti-senescence agents. However, effect of Put on cut foliage in vase in a realistic indoor environment has not yet been revealed. In the present study, effects of Put spraying on the postharvest performance of cut foliage of Nephrolepis cordifolia L. were investigated. Cut fronds sprayed with deionized water (Put0) showed visible injuries after 10 days in vase. Meanwhile, chlorophyll (Chl), soluble protein (Sp), and proline (Pro) content were decreased by 60.15, 57.93, and 73.09% respectively, photochemical activity reflected by Chl fluorescence parameters was inhibited, whereas electrolyte leakage (EL), contents of soluble sugar (Ss), malondialdehyde (MDA), and hydrogen peroxide (H2O2) were increased (+194.29, +44.83, +34.06, and +178.01%, respectively). Put spraying extended the vase life of the cut foliage and the 2.0 mM Put had a longer vase life (21 days) than 0.2 mM (15 days). Leaf spraying of 2.0 mM Put for 10 days significantly ameliorated the losses of Chl, Sp, and Pro content (-10.72, -26.29, and -42.64%, respectively), followed by 0.2 mM Put (-27.36, -36.24, and -60.55%, respectively). Put spraying also improved photochemical capability and prevented membrane impairment as well as visible injury in comparison with Put0. In addition, 2.0 mM Put had a better mitigating ability than that of 0.2 mM. Leaf spraying of 2.0 mM Put greatly reduced the decline of the effective quantum yield of photochemical energy conversion in PSII (ΦPSII), the maximal quantum yield of PSII photochemistry measured in the dark-adapted state (Fv/Fm) and electron transport rate (ETR) (-7.89, -12.91, and -10.06%, respectively), and also inhibited the increases of EL, MDA, Ss, and H2O2 (+31.87, +6.43, +16.22, and +49.40%, respectively). Overall, Put played important roles in deterring the degradation of Chl, Ss, and Pro, detoxifying the H2O2, weakening the sugar signaling, mitigating the decline of photochemical activity, and eventually postponing the leaf senescence. The present study gives new insights into effects of Put on leaf senescence and provides a strategy for preserving post-harvest cut foliage.
Collapse
Affiliation(s)
- Ying Qu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Lu Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Tana Wuyun
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, Estonia
| | - Shouyuan Mu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Fuchun Xie
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Yajun Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
10
|
Zhu H, Tian W, Zhu X, Tang X, Wu L, Hu X, Jin S. Ectopic expression of GhSAMDC 1 improved plant vegetative growth and early flowering through conversion of spermidine to spermine in tobacco. Sci Rep 2020; 10:14418. [PMID: 32879344 PMCID: PMC7468128 DOI: 10.1038/s41598-020-71405-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/14/2020] [Indexed: 01/11/2023] Open
Abstract
Polyamines play essential roles in plant development and various stress responses. In this study, one of the cotton S-adenosylmethionine decarboxylase (SAMDC) genes, GhSAMDC1, was constructed in the pGWB17 vector and overexpressed in tobacco. Leaf area and plant height increased 25.9-36.6% and 15.0-27.0%, respectively, compared to the wild type, and flowering time was advanced by 5 days in transgenic tobacco lines. Polyamine and gene expression analyses demonstrated that a decrease in spermidine and an increase in total polyamines and spermine might be regulated by NtSPDS4 and NtSPMS in transgenic plants. Furthermore, exogenous spermidine, spermine and spermidine synthesis inhibitor dicyclohexylamine were used for complementary tests, which resulted in small leaves and dwarf plants, big leaves and early flowering, and big leaves and dwarf plants, respectively. These results indicate that spermidine and spermine are mainly involved in the vegetative growth and early flowering stages, respectively. Expression analysis of flowering-related genes suggested that NtSOC1, NtAP1, NtNFL1 and NtFT4 were upregulated in transgenic plants. In conclusion, ectopic GhSAMDC1 is involved in the conversion of spermidine to spermine, resulting in rapid vegetative growth and early flowering in tobacco, which could be applied to genetically improve plants.
Collapse
Affiliation(s)
- Huaguo Zhu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, 438000, Huanggang, Hubei, China.
| | - Wengang Tian
- College of Agronomy, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xuefeng Zhu
- College of Agronomy, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xinxin Tang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, 438000, Huanggang, Hubei, China
| | - Lan Wu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, 438000, Huanggang, Hubei, China
| | - Xiaoming Hu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, 438000, Huanggang, Hubei, China
| | - Shuangxia Jin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
11
|
Oliveira TDR, Aragão VPM, Moharana KC, Fedosejevs E, do Amaral FP, Sousa KR, Thelen JJ, Venâncio TM, Silveira V, Santa-Catarina C. Light spectra affect the in vitro shoot development of Cedrela fissilis Vell. (Meliaceae) by changing the protein profile and polyamine contents. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140529. [PMID: 32853775 DOI: 10.1016/j.bbapap.2020.140529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022]
Abstract
The light spectrum quality is an important signal for plant growth and development. We evaluated the effects of different light spectra on the in vitro shoot development of Cedrela fissilis and its proteomic and polyamine (PA) profiles. Cotyledonary and apical nodal segments were grown under different light emitting diodes (LED) and fluorescent lamps. Shoots from cotyledonary nodal segments cultured with 6-benzyladenine (BA) that were grown under WmBdR LED showed increased length and higher fresh and dry matter compared to shoots grown under fluorescent lamps. A nonredundant protein databank generated by transcriptome sequencing and the de novo assembly of C. fissilis improved, and almost doubled, the protein identification compared to a Citrus sinensis databank. A total of 616 proteins were identified, with 23 up- and 103 down-accumulated in the shoots under WmBdR LEDs compared to fluorescent lamps. Most differentially accumulated proteins in shoots grown under the WmBdR LED lamp treatment compared to the fluorescent lamp treatment are involved in responding to metabolic processes, stress, biosynthetic and cellular protein modifications, and light stimulus processes. Among the proteins, the up-accumulation of argininosuccinate synthase was associated with an increase in the free putrescine content and, consequently, with higher shoot elongation under WmBdR LED. The down-accumulation of calreticulin, heat shock proteins, plastid-lipid-associated protein, ubiquitin-conjugating enzymes, and ultraviolet-B receptor UVR8 isoform X1 could be related to the longer shoot length noted under LED treatment. This study provides important data related to the effects of the light spectrum quality on in vitro morphogenesis through the modulation of specific proteins and free putrescine biosynthesis in C. fissilis, an endangered wood species from the Brazilian Atlantic Forest of economic and ecological relevance. The nonredundant protein databank of C. fissilis is available via ProteomeXchange under identifier PXD018020.
Collapse
Affiliation(s)
- Tadeu Dos Reis Oliveira
- Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro de Biociências e Biotecnologia (CBB), Laboratório de Biologia Celular e Tecidual (LBCT), Av. Alberto Lamego 2000, 28013-602, Campos Dos Goytacazes, RJ, Brazil
| | - Victor Paulo Mesquita Aragão
- Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro de Biociências e Biotecnologia (CBB), Laboratório de Biologia Celular e Tecidual (LBCT), Av. Alberto Lamego 2000, 28013-602, Campos Dos Goytacazes, RJ, Brazil
| | - Kanhu Charan Moharana
- UENF, CBB, Laboratório de Química e Função de Proteínas e Peptídeos, Campos dos Goytacazes, RJ, Brazil
| | - Eric Fedosejevs
- University of Missouri, Department of Biochemistry, Christopher S. Bond Life Sciences Center, 65211, Columbia, MO, USA
| | - Fernanda Plucani do Amaral
- University of Missouri, Department of Biochemistry, Christopher S. Bond Life Sciences Center, 65211, Columbia, MO, USA
| | - Kariane Rodrigues Sousa
- Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro de Biociências e Biotecnologia (CBB), Laboratório de Biologia Celular e Tecidual (LBCT), Av. Alberto Lamego 2000, 28013-602, Campos Dos Goytacazes, RJ, Brazil
| | - Jay J Thelen
- University of Missouri, Department of Biochemistry, Christopher S. Bond Life Sciences Center, 65211, Columbia, MO, USA
| | - Thiago Motta Venâncio
- UENF, CBB, Laboratório de Química e Função de Proteínas e Peptídeos, Campos dos Goytacazes, RJ, Brazil
| | - Vanildo Silveira
- UENF, CBB, Laboratório de Biotecnologia (LBT), Campos dos Goytacazes, RJ, Brazil; UENF, Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Campos dos Goytacazes, RJ, Brazil
| | - Claudete Santa-Catarina
- Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro de Biociências e Biotecnologia (CBB), Laboratório de Biologia Celular e Tecidual (LBCT), Av. Alberto Lamego 2000, 28013-602, Campos Dos Goytacazes, RJ, Brazil.
| |
Collapse
|
12
|
Seo SY, Kim YJ, Park KY. Increasing Polyamine Contents Enhances the Stress Tolerance via Reinforcement of Antioxidative Properties. FRONTIERS IN PLANT SCIENCE 2019; 10:1331. [PMID: 31736992 PMCID: PMC6834694 DOI: 10.3389/fpls.2019.01331] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/25/2019] [Indexed: 05/08/2023]
Abstract
The diamine putrescine and the polyamines (PAs), spermidine (Spd) and spermine (Spm), are ubiquitously occurring polycations associated with several important cellular functions, especially antisenescence. Numerous studies have reported increased levels of PA in plant cells under conditions of abiotic and biotic stress such as drought, high salt concentrations, and pathogen attack. However, the physiological mechanism of elevated PA levels in response to abiotic and biotic stresses remains undetermined. Transgenic plants having overexpression of SAMDC complementary DNA and increased levels of putrescine (1.4-fold), Spd (2.3-fold), and Spm (1.8-fold) under unstressed conditions were compared to wild-type (WT) plants in the current study. The most abundant PA in transgenic plants was Spd. Under salt stress conditions, enhancement of endogenous PAs due to overexpression of the SAMDC gene and exogenous treatment with Spd considerably reduces the reactive oxygen species (ROS) accumulation in intra- and extracellular compartments. Conversely, as compared to the WT, PA oxidase transcription rapidly increases in the S16-S-4 transgenic strain subsequent to salt stress. Furthermore, transcription levels of ROS detoxifying enzymes are elevated in transgenic plants as compared to the WT. Our findings with OxyBlot analysis indicate that upregulated amounts of endogenous PAs in transgenic tobacco plants show antioxidative effects for protein homeostasis against stress-induced protein oxidation. These results imply that the increased PAs induce transcription of PA oxidases, which oxidize PAs, which in turn trigger signal antioxidative responses resulting to lower the ROS load. Furthermore, total proteins from leaves with exogenously supplemented Spd and Spm upregulate the chaperone activity. These effects of PAs for antioxidative properties and antiaggregation of proteins contribute towards maintaining the physiological cellular functions against abiotic stresses. It is suggested that these functions of PAs are beneficial for protein homeostasis during abiotic stresses. Taken together, these results indicate that PA molecules function as antisenescence regulators through inducing ROS detoxification, antioxidative properties, and molecular chaperone activity under stress conditions, thereby providing broad-spectrum tolerance against a variety of stresses.
Collapse
Affiliation(s)
| | | | - Ky Young Park
- Department of Biology, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
13
|
Genetically Modified Heat Shock Protein90s and Polyamine Oxidases in Arabidopsis Reveal Their Interaction under Heat Stress Affecting Polyamine Acetylation, Oxidation and Homeostasis of Reactive Oxygen Species. PLANTS 2019; 8:plants8090323. [PMID: 31484414 PMCID: PMC6783977 DOI: 10.3390/plants8090323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 11/24/2022]
Abstract
One Sentence Summary Heat shock proteins90 (HSP90s) induce acetylation of polyamines (PAs) and interact with polyamine oxidases (PAOs) affecting oxidation of PAs and hydrogen peroxide (H2O2) homeostasis in Arabidopsis thaliana. Abstract The chaperones, heat shock proteins (HSPs), stabilize proteins to minimize proteotoxic stress, especially during heat stress (HS) and polyamine (PA) oxidases (PAOs) participate in the modulation of the cellular homeostasis of PAs and reactive oxygen species (ROS). An interesting interaction of HSP90s and PAOs was revealed in Arabidopsis thaliana by using the pLFY:HSP90RNAi line against the four AtHSP90 genes encoding cytosolic proteins, the T-DNA Athsp90-1 and Athsp90-4 insertional mutants, the Atpao3 mutant and pharmacological inhibitors of HSP90s and PAOs. Silencing of all cytosolic HSP90 genes resulted in several-fold higher levels of soluble spermidine (S-Spd), acetylated Spd (N8-acetyl-Spd) and acetylated spermine (N1-acetyl-Spm) in the transgenic Arabidopsis thaliana leaves. Heat shock induced increase of soluble-PAs (S-PAs) and soluble hydrolyzed-PAs (SH-PAs), especially of SH-Spm, and more importantly of acetylated Spd and Spm. The silencing of HSP90 genes or pharmacological inhibition of the HSP90 proteins by the specific inhibitor radicicol, under HS stimulatory conditions, resulted in a further increase of PA titers, N8-acetyl-Spd and N1-acetyl-Spm, and also stimulated the expression of PAO genes. The increased PA titers and PAO enzymatic activity resulted in a profound increase of PAO-derived hydrogen peroxide (H2O2) levels, which was terminated by the addition of the PAO-specific inhibitor guazatine. Interestingly, the loss-of-function Atpao3 mutant exhibited increased mRNA levels of selected AtHSP90 genes. Taken together, the results herein reveal a novel function of HSP90 and suggest that HSP90s and PAOs cross-talk to orchestrate PA acetylation, oxidation, and PA/H2O2 homeostasis.
Collapse
|
14
|
The Interplay among Polyamines and Nitrogen in Plant Stress Responses. PLANTS 2019; 8:plants8090315. [PMID: 31480342 PMCID: PMC6784213 DOI: 10.3390/plants8090315] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/27/2022]
Abstract
The interplay between polyamines (PAs) and nitrogen (N) is emerging as a key factor in plant response to abiotic and biotic stresses. The PA/N interplay in plants connects N metabolism, carbon (C) fixation, and secondary metabolism pathways. Glutamate, a pivotal N-containing molecule, is responsible for the biosynthesis of proline (Pro), arginine (Arg) and ornithine (Orn) and constitutes a main common pathway for PAs and C/N assimilation/incorporation implicated in various stresses. PAs and their derivatives are important signaling molecules, as they act largely by protecting and preserving the function/structure of cells in response to stresses. Use of different research approaches, such as generation of transgenic plants with modified intracellular N and PA homeostasis, has helped to elucidate a plethora of PA roles, underpinning their function as a major player in plant stress responses. In this context, a range of transgenic plants over-or under-expressing N/PA metabolic genes has been developed in an effort to decipher their implication in stress signaling. The current review describes how N and PAs regulate plant growth and facilitate crop acclimatization to adverse environments in an attempt to further elucidate the N-PAs interplay against abiotic and biotic stresses, as well as the mechanisms controlling N-PA genes/enzymes and metabolites.
Collapse
|
15
|
Exogenous Application of Amino Acids Improves the Growth and Yield of Lettuce by Enhancing Photosynthetic Assimilation and Nutrient Availability. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9050266] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As natural plant growth stimulators, amino acids are widely used to improve the yield and quality of crops. Several studies have illustrated the effects of different amino acids on lettuce plant parts. However, the effects of applying single amino acids on root growth remain elusive. The objective of this study was to evaluate the effect of root application of L-methionine on the growth of lettuce. In this study, two successive experiments on butterhead lettuce were conducted under hydroponic conditions. Three amino acids, L-methionine (20 mg/L), L-glycine (210 mg/L), and L-tryptophan (220 mg/L), were applied separately. L-methionine significantly increased the growth performance by 23.60%, whereas growth using L-tryptophan and L-glycine decreased by 98.78% and 27.45%, respectively. Considering the results of the first experiment, a second experiment was established with different concentrations of L-methionine (2200 mg/L, 220 mg/L, 22 mg/L, 2.2 mg/L, 0.2 mg/L, and 0.02 mg/L). The plants were allowed to grow for four weeks. Leaf width, plant area, leaf area, chlorophyll contents, etc., were evaluated. The results show that plant growth significantly improved by applying L-methionine at the lowest concentrations of 0.2 mg/L and 0.02 mg/L, which can, therefore, improve hydroponic production of lettuce and, accordingly, human nutrition.
Collapse
|
16
|
Wang W, Paschalidis K, Feng JC, Song J, Liu JH. Polyamine Catabolism in Plants: A Universal Process With Diverse Functions. FRONTIERS IN PLANT SCIENCE 2019; 10:561. [PMID: 31134113 PMCID: PMC6513885 DOI: 10.3389/fpls.2019.00561] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/12/2019] [Indexed: 05/18/2023]
Abstract
Polyamine (PA) catabolic processes are performed by copper-containing amine oxidases (CuAOs) and flavin-containing PA oxidases (PAOs). So far, several CuAOs and PAOs have been identified in many plant species. These enzymes exhibit different subcellular localization, substrate specificity, and functional diversity. Since PAs are involved in numerous physiological processes, considerable efforts have been made to explore the functions of plant CuAOs and PAOs during the recent decades. The stress signal transduction pathways usually lead to increase of the intracellular PA levels, which are apoplastically secreted and oxidized by CuAOs and PAOs, with parallel production of hydrogen peroxide (H2O2). Depending on the levels of the generated H2O2, high or low, respectively, either programmed cell death (PCD) occurs or H2O2 is efficiently scavenged by enzymatic/nonenzymatic antioxidant factors that help plants coping with abiotic stress, recruiting different defense mechanisms, as compared to biotic stress. Amine and PA oxidases act further as PA back-converters in peroxisomes, also generating H2O2, possibly by activating Ca2+ permeable channels. Here, the new research data are discussed on the interconnection of PA catabolism with the derived H2O2, together with their signaling roles in developmental processes, such as fruit ripening, senescence, and biotic/abiotic stress reactions, in an effort to elucidate the mechanisms involved in crop adaptation/survival to adverse environmental conditions and to pathogenic infections.
Collapse
Affiliation(s)
- Wei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Konstantinos Paschalidis
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Heraklion, Greece
| | - Jian-Can Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Jie Song
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Nölke G, Volke D, Chudobová I, Houdelet M, Lusso M, Frederick J, Adams A, Kudithipudi C, Warek U, Strickland JA, Xu D, Schinkel H, Schillberg S. Polyamines delay leaf maturation in low-alkaloid tobacco varieties. PLANT DIRECT 2018; 2:e00077. [PMID: 31245740 PMCID: PMC6508808 DOI: 10.1002/pld3.77] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 06/02/2023]
Abstract
The development of low-alkaloid (LA) tobacco varieties is an important target in the tobacco breeding industry. However, LA Burley 21 plants, in which the Nic1 and Nic2 loci controlling nicotine biosynthesis are deleted, are characterized by impaired leaf maturation that leads to poor leaf quality before and after curing. Polyamines are involved in key developmental, physiological, and metabolic processes in plants, and act as anti-senescence and anti-ripening regulators. We investigated the role of polyamines in tobacco leaf maturation by analyzing the free and conjugated polyamine fractions in the leaves and roots of four Burley 21 varieties: NA (normal alkaloid levels, wild-type control), HI (high intermediates, nic2 -), LI (low intermediates, nic1 -), and LA (nic1 - nic2 -). The pool of conjugated polyamines increased with plant age in the roots and leaves of all four varieties, but the levels of free and conjugated putrescine and spermidine were higher in the LI and LA plants than NA controls. The increase in the polyamine content correlated with delayed maturation and senescence, i.e., LA plants with the highest polyamine levels showed the most severe impaired leaf maturation phenotype, characterized by higher chlorophyll content and more mesophyll cells per unit leaf area. Treatment of LA plants with inhibitors of polyamine biosynthesis and/or the growth regulator Ethephon® reduced accumulation of polyamines, achieving a partial amelioration of the LA phenotype. Our data show that the regulation of polyamine homeostasis is strongly disrupted in LA plants, and that free and conjugated polyamines contribute to the observed impairment of leaf maturation.
Collapse
Affiliation(s)
- Greta Nölke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Daniel Volke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Ivana Chudobová
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Marcel Houdelet
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Marcos Lusso
- Altria Client ServicesResearch Development & SciencesRichmondVirginia
| | - Jesse Frederick
- Altria Client ServicesResearch Development & SciencesRichmondVirginia
| | - Andrew Adams
- Altria Client ServicesResearch Development & SciencesRichmondVirginia
| | | | - Ujwala Warek
- Altria Client ServicesResearch Development & SciencesRichmondVirginia
| | | | - Dongmei Xu
- Altria Client ServicesResearch Development & SciencesRichmondVirginia
| | - Helga Schinkel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| |
Collapse
|
18
|
Abdel Kader DZ, Saleh AAH, Elmeleigy SA, Dosoky NS. Chilling-induced oxidative stress and polyamines regulatory role in two wheat varieties. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/s1658-3655(12)60034-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Amal A. H. Saleh
- Botany Dept., Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Sayed A. Elmeleigy
- Botany Dept., Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Noura S. Dosoky
- Botany Dept., Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
19
|
Handa AK, Fatima T, Mattoo AK. Polyamines: Bio-Molecules with Diverse Functions in Plant and Human Health and Disease. Front Chem 2018; 6:10. [PMID: 29468148 PMCID: PMC5807879 DOI: 10.3389/fchem.2018.00010] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Biogenic amines-polyamines (PAs), particularly putrescine, spermidine and spermine are ubiquitous in all living cells. Their indispensable roles in many biochemical and physiological processes are becoming commonly known, including promoters of plant life and differential roles in human health and disease. PAs positively impact cellular functions in plants-exemplified by increasing longevity, reviving physiological memory, enhancing carbon and nitrogen resource allocation/signaling, as well as in plant development and responses to extreme environments. Thus, one or more PAs are commonly found in genomic and metabolomics studies using plants, particulary during different abiotic stresses. In humans, a general decline in PA levels with aging occurs parallel with some human health disorders. Also, high PA dose is detrimental to patients suffering from cancer, aging, innate immunity and cognitive impairment during Alzheimer and Parkinson diseases. A dichotomy exists in that while PAs may increase longevity and reduce some age-associated cardiovascular diseases, in disease conditions involving higher cellular proliferation, their intake has negative consequences. Thus, it is essential that PA levels be rigorously quantified in edible plant sources as well as in dietary meats. Such a database can be a guide for medical experts in order to recommend which foods/meats a patient may consume and which ones to avoid. Accordingly, designing both high and low polyamine diets for human consumption are in vogue, particularly in medical conditions where PA intake may be detrimental, for instance, cancer patients. In this review, literature data has been collated for the levels of the three main PAs, putrescine, spermidine and spermine, in different edible sources-vegetables, fruits, cereals, nuts, meat, sea food, cheese, milk, and eggs. Based on our analysis of vast literature, the effects of PAs in human/animal health fall into two broad, Yang and Yin, categories: beneficial for the physiological processes in healthy cells and detrimental under pathological conditions.
Collapse
Affiliation(s)
- Avtar K. Handa
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Tahira Fatima
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Autar K. Mattoo
- Sustainable Agricultural Systems Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service (ARS-USDA), Beltsville, MD, United States
| |
Collapse
|
20
|
Tajti J, Janda T, Majláth I, Szalai G, Pál M. Comparative study on the effects of putrescine and spermidine pre-treatment on cadmium stress in wheat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:546-554. [PMID: 29127816 DOI: 10.1016/j.ecoenv.2017.10.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 05/23/2023]
Abstract
In several cases a correlation was found between polyamines and abiotic stress tolerance. However, the individual polyamines may have different effects, which also vary depending on the type of treatment. When applied as seed soaking or added hydroponically 0.5mM putrescine and spermidine, different changes were induced during 50µM cadmium stress in wheat plants. Seed-soaked plants were exposed to cadmium immediately after germination for 5 days, while plants pre-treated with polyamines hydroponically were stressed at age of 14 days for 7 days. Putrescine pre-treatment was beneficial both as seed soaking and applied hydroponically, while spermidine only had a protective effect in the case of seed soaking, enhancing the Cd-induced oxidative stress when were pre-treated hydroponically. The differences observed were related to the polyamine metabolism. The accumulation of endogenous putrescine beyond a certain amount may be in relation with the negative effect of hydroponic spermidine pre-treatment during Cd stress. The increased putrescine content was also correlated with the highest accumulation of Cd, salicylic acid and proline contents in plants treated with a combination of spermidine and Cd. However, the expression level of the gene encoding phytochelatin synthase was only influenced by hydroponically applied spermidine, which decreased it under cadmium stress. Changes in the activities of antioxidant enzymes, diamine and polyamine oxidases were also discussed.
Collapse
Affiliation(s)
- Judit Tajti
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, POB 19, H-2462 Martonvásár, Hungary
| | - Tibor Janda
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, POB 19, H-2462 Martonvásár, Hungary
| | - Imre Majláth
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, POB 19, H-2462 Martonvásár, Hungary
| | - Gabriella Szalai
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, POB 19, H-2462 Martonvásár, Hungary
| | - Magda Pál
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, POB 19, H-2462 Martonvásár, Hungary.
| |
Collapse
|
21
|
Park KY, Roubelakis-Angelakis KA. Real-Time In Vivo Monitoring of Reactive Oxygen Species in Guard Cells. Methods Mol Biol 2018; 1694:417-425. [PMID: 29080184 DOI: 10.1007/978-1-4939-7398-9_34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The intra-/intercellular homeostasis of reactive oxygen species (ROS), and especially of superoxides (O2.-) and hydrogen peroxide (O2.-) participate in signalling cascades which dictate developmental processes and reactions to biotic/abiotic stresses. Polyamine oxidases terminally oxidize/back convert polyamines generating H2O2. Recently, an NADPH-oxidase/Polyamine oxidase feedback loop was identified to control oxidative burst under salinity. Thus, the real-time localization/monitoring of ROS in specific cells, such as the guard cells, can be of great interest. Here we present a detailed description of the real-time in vivo monitoring of ROS in the guard cells using H2O2- and O2.- specific fluorescing probes, which can be used for studying ROS accumulation generated from any source, including the amine oxidases-dependent pathway, during development and stress.
Collapse
Affiliation(s)
- Ky Young Park
- Department of Biology, Sunchon National University, 57922, Chonnam, South Korea
| | | |
Collapse
|
22
|
Majumdar R, Shao L, Turlapati SA, Minocha SC. Polyamines in the life of Arabidopsis: profiling the expression of S-adenosylmethionine decarboxylase (SAMDC) gene family during its life cycle. BMC PLANT BIOLOGY 2017; 17:264. [PMID: 29281982 PMCID: PMC5745906 DOI: 10.1186/s12870-017-1208-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 12/08/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Arabidopsis has 5 paralogs of the S-adenosylmethionine decarboxylase (SAMDC) gene. Neither their specific role in development nor the role of positive/purifying selection in genetic divergence of this gene family is known. While some data are available on organ-specific expression of AtSAMDC1, AtSAMDC2, AtSAMDC3 and AtSAMDC4, not much is known about their promoters including AtSAMDC5, which is believed to be non-functional. RESULTS (1) Phylogenetic analysis of the five AtSAMDC genes shows similar divergence pattern for promoters and coding sequences (CDSs), whereas, genetic divergence of 5'UTRs and 3'UTRs was independent of the promoters and CDSs; (2) while AtSAMDC1 and AtSAMDC4 promoters exhibit high activity (constitutive in the former), promoter activities of AtSAMDC2, AtSAMDC3 and AtSAMDC5 are moderate to low in seedlings (depending upon translational or transcriptional fusions), and are localized mainly in the vascular tissues and reproductive organs in mature plants; (3) based on promoter activity, it appears that AtSAMDC5 is both transcriptionally and translationally active, but based on it's coding sequence it seems to produce a non-functional protein; (4) though 5'-UTR based regulation of AtSAMDC expression through upstream open reading frames (uORFs) in the 5'UTR is well known, no such uORFs are present in AtSAMDC4 and AtSAMDC5; (5) the promoter regions of all five AtSAMDC genes contain common stress-responsive elements and hormone-responsive elements; (6) at the organ level, the activity of AtSAMDC enzyme does not correlate with the expression of specific AtSAMDC genes or with the contents of spermidine and spermine. CONCLUSIONS Differential roles of positive/purifying selection were observed in genetic divergence of the AtSAMDC gene family. All tissues express one or more AtSAMDC gene with significant redundancy, and concurrently, there is cell/tissue-specificity of gene expression, particularly in mature organs. This study provides valuable information about AtSAMDC promoters, which could be useful in future manipulation of crop plants for nutritive purposes, stress tolerance or bioenergy needs. The AtSAMDC1 core promoter might serve the need of a strong constitutive promoter, and its high expression in the gametophytic cells could be exploited, where strong male/female gametophyte-specific expression is desired; e.g. in transgenic modification of crop varieties.
Collapse
Affiliation(s)
- Rajtilak Majumdar
- Department of Biological Sciences, University of New Hampshire, Durham, NH USA
- USDA-ARS, SRRC, 1100 Robert E. Lee Blvd, New Orleans, LA 70124 USA
| | - Lin Shao
- Department of Biological Sciences, University of New Hampshire, Durham, NH USA
| | - Swathi A. Turlapati
- Department of Biological Sciences, University of New Hampshire, Durham, NH USA
| | - Subhash C. Minocha
- Department of Biological Sciences, University of New Hampshire, Durham, NH USA
| |
Collapse
|
23
|
Inheritance patterns in metabolism and growth in diallel crosses of Arabidopsis thaliana from a single growth habitat. Heredity (Edinb) 2017; 120:463-473. [PMID: 29234160 DOI: 10.1038/s41437-017-0030-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/09/2017] [Accepted: 10/30/2017] [Indexed: 12/25/2022] Open
Abstract
Metabolism is a key determinant of plant growth and modulates plant adaptive responses. Increased metabolic variation due to heterozygosity may be beneficial for highly homozygous plants if their progeny is to respond to sudden changes in the habitat. Here, we investigate the extent to which heterozygosity contributes to the variation in metabolism and size of hybrids of Arabidopsis thaliana whose parents are from a single growth habitat. We created full diallel crosses among seven parents, originating from Southern Germany, and analysed the inheritance patterns in primary and secondary metabolism as well as in rosette size in situ. In comparison to primary metabolites, compounds from secondary metabolism were more variable and showed more pronounced non-additive inheritance patterns which could be attributed to epistasis. In addition, we showed that glucosinolates, among other secondary metabolites, were positively correlated with a proxy for plant size. Therefore, our study demonstrates that heterozygosity in local A. thaliana population generates metabolic variation and may impact several tasks directly linked to metabolism.
Collapse
|
24
|
Mellidou I, Karamanoli K, Beris D, Haralampidis K, Constantinidou HIA, Roubelakis-Angelakis KA. Underexpression of apoplastic polyamine oxidase improves thermotolerance in Nicotiana tabacum. JOURNAL OF PLANT PHYSIOLOGY 2017; 218:171-174. [PMID: 28886452 DOI: 10.1016/j.jplph.2017.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/07/2017] [Accepted: 08/18/2017] [Indexed: 05/23/2023]
Abstract
Polyamines (PAs) and hydrogen peroxide (H2O2), the product of PA oxidation by polyamine oxidase (PAO), are potential players affecting plant growth, development and responses to abiotic/biotic stresses. Genetically modified Nicotiana tabacum plants with altered PA/H2O2 homeostasis due to over/underexpression of the ZmPAO gene (S-ZmPAO/AS-ZmPAO, respectively) were assessed under heat stress (HS). Underexpression of ZmPAO correlates with increased thermotolerance of the photosynthetic machinery and improved biomass accumulation, accompanied by enhanced levels of the enzymatic and non-enzymatic antioxidants, whereas ZmPAO overexpressors exhibit significant impairment of thermotolerance. These data provide important clues on PA catabolism/H2O2/thermotolerance, which merit further exploitation.
Collapse
Affiliation(s)
| | | | - Despoina Beris
- Department of Biology, National and Kapodistrian University of Athens, University Campus, Ilisia, 15784 Athens, Greece
| | - Kosmas Haralampidis
- Department of Biology, National and Kapodistrian University of Athens, University Campus, Ilisia, 15784 Athens, Greece
| | | | | |
Collapse
|
25
|
Impact of heavy metal lead stress on polyamine levels in Halomonas BVR 1 isolated from an industry effluent. Sci Rep 2017; 7:13447. [PMID: 29044167 PMCID: PMC5647450 DOI: 10.1038/s41598-017-13893-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022] Open
Abstract
In living systems, environmental stress due to biotic and abiotic factors triggers the production of myriad metabolites as a potential mechanism for combating stress. Among these metabolites are the small polycationic aliphatic amine molecules - polyamines, which are ubiquitous in all living organisms. In this work, we demonstrate a correlation between cellular concentration of three major polyamines (putrescine, spermidine and spermine) with lead exposure on bacteria for a period of 6–24 h. We report that indigenously isolated Halomonas sp. strain BVR 1 exhibits lead induced fluctuations in their cellular polyamine concentration. This response to lead occurs within 6 h post metal treatment. During the same time interval there was a surge in the growth of bacteria along with an enhancement in the putrescine levels. We conclude that in Halomonas sp. strain BVR 1, an early response is seen with respect to modulation of polyamines as a result of lead treatment and hypothesize that endogenous polyamines contribute towards scavenging lead in these bacteria.
Collapse
|
26
|
Liu BY, Lei CY, Liu WQ. Nitrogen Addition Exacerbates the Negative Effects of Low Temperature Stress on Carbon and Nitrogen Metabolism in Moss. FRONTIERS IN PLANT SCIENCE 2017; 8:1328. [PMID: 28824666 PMCID: PMC5539086 DOI: 10.3389/fpls.2017.01328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/14/2017] [Indexed: 06/01/2023]
Abstract
Global environmental changes are leading to an increase in localized abnormally low temperatures and increasing nitrogen (N) deposition is a phenomenon recognized worldwide. Both low temperature stress (LTS) and excess N induce oxidative stress in plants, and excess N also reduces their resistance to LTS. Mosses are primitive plants that are generally more sensitive to alterations in environmental factors than vascular species. To study the combined effects of N deposition and LTS on carbon (C) and N metabolism in moss, two moss species, Pogonatum cirratum subsp. fuscatum, and Hypnum plumaeforme, exposed to various concentrations of nitrate (KNO3) or ammonium (NH4Cl), were treated with or without LTS. C/N metabolism indices were then monitored, both immediately after the stress and after a short recovery period (10 days). LTS decreased the photosystem II (PSII) performance index and inhibited non-cyclic photophosphorylation, ribulose-1,5-bisphosphate carboxylase, and glutamine synthetase activities, indicating damage to PSII and reductions in C/N assimilation in these mosses. LTS did not affect cyclic photophosphorylation, sucrose synthase, sucrose-phosphate synthase, and NADP-isocitrate dehydrogenase activities, suggesting a certain level of energy and C skeleton generation were maintained in the mosses to combat LTS; however, LTS inhibited the activity of glycolate oxidase. As predicted, N supply increased the sensitivity of the mosses to LTS, resulting in greater damage to PSII and a sharper decrease in C/N assimilation. After the recovery period, the performance of PSII and C/N metabolism, which were inhibited by LTS increased significantly, and were generally higher than those of control samples not exposed to LTS, suggesting overcompensation effects; however, N application reduced the extent of compensation effects. Both C and N metabolism exhibited stronger compensation effects in H. plumaeforme than in P. cirratum subsp. fuscatum. The difference was especially pronounced after addition of N, indicating that H. plumaeforme may be more resilient to temperature and N variation, which could explain its wider distribution in the natural environment.
Collapse
Affiliation(s)
- Bin-Yang Liu
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, China
- State Key Laboratory of Vegetation and Environment Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Chun-Yi Lei
- Department of Scientific Research and Education, Heishiding Nature ReserveZhaoqing, China
| | - Wei-Qiu Liu
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
27
|
Ahmed S, Ariyaratne M, Patel J, Howard AE, Kalinoski A, Phuntumart V, Morris PF. Altered expression of polyamine transporters reveals a role for spermidine in the timing of flowering and other developmental response pathways. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 258:146-155. [PMID: 28330558 DOI: 10.1016/j.plantsci.2016.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/01/2016] [Accepted: 12/08/2016] [Indexed: 05/25/2023]
Abstract
Changes in the levels of polyamines are correlated with the activation or repression of developmental response pathways, but the role of polyamine transporters in the regulation of polyamine homeostasis and thus indirectly gene expression, has not been previously addressed. Here we show that the A. thaliana and rice transporters AtPUT5 and OsPUT1 were localized to the ER, while the AtPUT2, AtPUT3, and OsPUT3 were localized to the chloroplast by transient expression in N. benthamiana. A. thaliana plants that were transformed with OsPUT1 under the control the PUT5 promoter were delayed in flowering by 16days. In contrast, put5 mutants flowered four days earlier than WT plants. The delay of flowering was associated with significantly higher levels of spermidine and spermidine conjugates in the leaves prior to flowering. A similar delay in flowering was also noted in transgenic lines with constitutive expression of either OsPUT1 or OsPUT3. All three transgenic lines had larger rosette leaves, thicker flowering stems, and produced more siliques than wild type plants. In contrast, put5 plants had smaller leaves, thinner flowering stems, and produced fewer siliques. Constitutive expression of PUTs was also associated with an extreme delay in both plant senescence and maturation rate of siliques. These experiments provide the first genetic evidence of polyamine transport in the timing of flowering, and indicate the importance of polyamine transporters in the regulation of flowering and senescence pathways.
Collapse
Affiliation(s)
- Sheaza Ahmed
- Department of Biological Sciences, Bowling Green State University, Bowling Green Oh, 43403, United States
| | - Menaka Ariyaratne
- Department of Biological Sciences, Bowling Green State University, Bowling Green Oh, 43403, United States
| | - Jigar Patel
- Department of Biological Sciences, Bowling Green State University, Bowling Green Oh, 43403, United States
| | - Alexander E Howard
- Department of Biological Sciences, Bowling Green State University, Bowling Green Oh, 43403, United States
| | - Andrea Kalinoski
- Department of Surgery, University of Toledo, 3000 Arlington Ave. Toledo, OH 43614, United States
| | - Vipaporn Phuntumart
- Department of Biological Sciences, Bowling Green State University, Bowling Green Oh, 43403, United States
| | - Paul F Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green Oh, 43403, United States.
| |
Collapse
|
28
|
Gémes K, Mellidou Ι, Karamanoli K, Beris D, Park KY, Matsi T, Haralampidis K, Constantinidou HI, Roubelakis-Angelakis KA. Deregulation of apoplastic polyamine oxidase affects development and salt response of tobacco plants. JOURNAL OF PLANT PHYSIOLOGY 2017; 211:1-12. [PMID: 28135604 DOI: 10.1016/j.jplph.2016.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 05/02/2023]
Abstract
Polyamine (PA) homeostasis is associated with plant development, growth and responses to biotic/abiotic stresses. Apoplastic PA oxidase (PAO) catalyzes the oxidation of PAs contributing to cellular homeostasis of reactive oxygen species (ROS) and PAs. In tobacco, PAs decrease with plant age, while apoplastic PAO activity increases. Our previous results with young transgenic tobacco plants with enhanced/reduced apoplastic PAO activity (S-ZmPAO/AS-ZmPAO, respectively) established the importance of apoplastic PAO in controlling tolerance to short-term salt stress. However, it remains unclear if the apoplastic PAO pathway is important for salt tolerance at later stages of plant development. In this work, we examined whether apoplastic PAO controls also plant development and tolerance of adult plants during long-term salt stress. The AS-ZmPAO plants contained higher Ca2+ during salt stress, showing also reduced chlorophyll content index (CCI), leaf area and biomass but taller phenotype compared to the wild-type plants during salt. On the contrary, the S-ZmPAO had more leaves with slightly greater size compared to the AS-ZmPAO and higher antioxidant genes/enzyme activities. Accumulation of proline in the roots was evident at prolonged stress and correlated negatively with PAO deregulation as did the transcripts of genes mediating ethylene biosynthesis. In contrast to the strong effect of apoplastic PAO to salt tolerance in young plants described previously, the effect it exerts at later stages of development is rather moderate. However, the different phenotypes observed in plants deregulating PAO reinforce the view that apoplastic PAO exerts multifaceted roles on plant growth and stress responses. Our data suggest that deregulation of the apoplastic PAO can be further examined as a potential approach to breed plants with enhanced/reduced tolerance to abiotic stress with minimal associated trade-offs.
Collapse
Affiliation(s)
- Katalin Gémes
- Department of Biology, University of Crete, Voutes University Campus, 70013 Heraklion, Greece; Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvari krt. 62, Hungary
| | | | | | - Despoina Beris
- Department of Biology, National and Kapodistrian University of Athens, Greece
| | - Ky Young Park
- Department of Biology, Sunchon National University, 57922 Chonnam, South Korea
| | - Theodora Matsi
- School of Agriculture, Aristotle University, 54124 Thessaloniki, Greece
| | - Kosmas Haralampidis
- Department of Biology, National and Kapodistrian University of Athens, Greece
| | | | | |
Collapse
|
29
|
Wu H, Fu B, Sun P, Xiao C, Liu JH. A NAC Transcription Factor Represses Putrescine Biosynthesis and Affects Drought Tolerance. PLANT PHYSIOLOGY 2016; 172:1532-1547. [PMID: 27663409 PMCID: PMC5100760 DOI: 10.1104/pp.16.01096] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/21/2016] [Indexed: 05/03/2023]
Abstract
Arginine decarboxylase (ADC)-mediated putrescine biosynthesis plays an important role in plant stress responses, but the transcriptional regulation of ADC in response to abiotic stress is not well understood. We isolated a NAM, ATAF1/2, and CUC (NAC) domain-containing transcription factor, PtrNAC72, from trifoliate orange (Poncirus trifoliata) by yeast one-hybrid screening. PtrNAC72, localized to the nucleus, binds specifically to the promoter of PtADC and acts as a transcriptional repressor. PtrNAC72 expression was induced by cold, drought, and abscisic acid. ADC messenger RNA abundance and putrescine levels were decreased in transgenic tobacco (Nicotiana nudicaulis) plants overexpressing PtrNAC72 but increased, compared with the wild type, in an Arabidopsis (Arabidopsis thaliana) transfer DNA insertion mutant, nac72 While transgenic tobacco lines overexpressing PtrNAC72 were more sensitive to drought, plants of the Arabidopsis nac72 mutant exhibited enhanced drought tolerance, consistent with the accumulation of reactive oxygen species in the tested genotypes. In addition, exogenous application of putrescine to the overexpression lines restored drought tolerance, while treatment with d-arginine, an ADC inhibitor, compromised the drought tolerance of nac72 Taken together, these results demonstrate that PtrNAC72 is a repressor of putrescine biosynthesis and may negatively regulate the drought stress response, at least in part, via the modulation of putrescine-associated reactive oxygen species homeostasis.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bing Fu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Peipei Sun
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chang Xiao
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
30
|
Gémes K, Kim YJ, Park KY, Moschou PN, Andronis E, Valassaki C, Roussis A, Roubelakis-Angelakis KA. An NADPH-Oxidase/Polyamine Oxidase Feedback Loop Controls Oxidative Burst Under Salinity. PLANT PHYSIOLOGY 2016; 172:1418-1431. [PMID: 27600815 PMCID: PMC5100782 DOI: 10.1104/pp.16.01118] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/30/2016] [Indexed: 05/18/2023]
Abstract
The apoplastic polyamine oxidase (PAO) catalyzes the oxidation of the higher polyamines spermidine and spermine, contributing to hydrogen peroxide (H2O2) accumulation. However, it is yet unclear whether apoplastic PAO is part of a network that coordinates the accumulation of reactive oxygen species (ROS) under salinity or if it acts independently. Here, we unravel that NADPH oxidase and apoplastic PAO cooperate to control the accumulation of H2O2 and superoxides (O2·-) in tobacco (Nicotiana tabacum). To examine to what extent apoplastic PAO constitutes part of a ROS-generating network, we examined ROS accumulation in guard cells of plants overexpressing or down-regulating apoplastic PAO (lines S2.2 and A2, respectively) or down-regulating NADPH oxidase (line AS-NtRbohD/F). The H2O2-specific probe benzene sulfonyl-H2O2 showed that, under salinity, H2O2 increased in S2.2 and decreased in A2 compared with the wild type. Surprisingly, the O2·--specific probe benzene sulfonyl-So showed that O2·- levels correlated positively with that of apoplastic PAO (i.e. showed high and low levels in S2.2 and A2, respectively). By using AS-NtRbohD/F lines and a pharmacological approach, we could show that H2O2 and O2·- accumulation at the onset of salinity stress was dependent on NADPH oxidase, indicating that NADPH oxidase is upstream of apoplastic PAO. Our results suggest that NADPH oxidase and the apoplastic PAO form a feed-forward ROS amplification loop, which impinges on oxidative state and culminates in the execution of programmed cell death. We propose that the PAO/NADPH oxidase loop is a central hub in the plethora of responses controlling salt stress tolerance, with potential functions extending beyond stress tolerance.
Collapse
Affiliation(s)
- Katalin Gémes
- Department of Biology, University of Crete, Voutes University Campus, Heraklion 700 13, Greece (K.G., E.A., K.A.R.-A.)
- Department of Biology, Sunchon National University, 57922 Chonnam, South Korea (Y.J.K., K.Y.P.)
- Department of Plant Biology and Linnean Center of Plant Sciences, Swedish University of Agricultural Sciences, Uppsala BioCentrum, 750 07 Uppsala, Sweden (P.N.M.)
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Ilissia, Athens 118 55, Greece (C.V., A.R.); and
- Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Hungary (K.G.)
| | - Yu Jung Kim
- Department of Biology, University of Crete, Voutes University Campus, Heraklion 700 13, Greece (K.G., E.A., K.A.R.-A.)
- Department of Biology, Sunchon National University, 57922 Chonnam, South Korea (Y.J.K., K.Y.P.)
- Department of Plant Biology and Linnean Center of Plant Sciences, Swedish University of Agricultural Sciences, Uppsala BioCentrum, 750 07 Uppsala, Sweden (P.N.M.)
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Ilissia, Athens 118 55, Greece (C.V., A.R.); and
- Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Hungary (K.G.)
| | - Ky Young Park
- Department of Biology, University of Crete, Voutes University Campus, Heraklion 700 13, Greece (K.G., E.A., K.A.R.-A.);
- Department of Biology, Sunchon National University, 57922 Chonnam, South Korea (Y.J.K., K.Y.P.);
- Department of Plant Biology and Linnean Center of Plant Sciences, Swedish University of Agricultural Sciences, Uppsala BioCentrum, 750 07 Uppsala, Sweden (P.N.M.);
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Ilissia, Athens 118 55, Greece (C.V., A.R.); and
- Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Hungary (K.G.)
| | - Panagiotis N Moschou
- Department of Biology, University of Crete, Voutes University Campus, Heraklion 700 13, Greece (K.G., E.A., K.A.R.-A.);
- Department of Biology, Sunchon National University, 57922 Chonnam, South Korea (Y.J.K., K.Y.P.);
- Department of Plant Biology and Linnean Center of Plant Sciences, Swedish University of Agricultural Sciences, Uppsala BioCentrum, 750 07 Uppsala, Sweden (P.N.M.);
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Ilissia, Athens 118 55, Greece (C.V., A.R.); and
- Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Hungary (K.G.)
| | - Efthimios Andronis
- Department of Biology, University of Crete, Voutes University Campus, Heraklion 700 13, Greece (K.G., E.A., K.A.R.-A.)
- Department of Biology, Sunchon National University, 57922 Chonnam, South Korea (Y.J.K., K.Y.P.)
- Department of Plant Biology and Linnean Center of Plant Sciences, Swedish University of Agricultural Sciences, Uppsala BioCentrum, 750 07 Uppsala, Sweden (P.N.M.)
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Ilissia, Athens 118 55, Greece (C.V., A.R.); and
- Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Hungary (K.G.)
| | - Chryssanthi Valassaki
- Department of Biology, University of Crete, Voutes University Campus, Heraklion 700 13, Greece (K.G., E.A., K.A.R.-A.)
- Department of Biology, Sunchon National University, 57922 Chonnam, South Korea (Y.J.K., K.Y.P.)
- Department of Plant Biology and Linnean Center of Plant Sciences, Swedish University of Agricultural Sciences, Uppsala BioCentrum, 750 07 Uppsala, Sweden (P.N.M.)
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Ilissia, Athens 118 55, Greece (C.V., A.R.); and
- Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Hungary (K.G.)
| | - Andreas Roussis
- Department of Biology, University of Crete, Voutes University Campus, Heraklion 700 13, Greece (K.G., E.A., K.A.R.-A.)
- Department of Biology, Sunchon National University, 57922 Chonnam, South Korea (Y.J.K., K.Y.P.)
- Department of Plant Biology and Linnean Center of Plant Sciences, Swedish University of Agricultural Sciences, Uppsala BioCentrum, 750 07 Uppsala, Sweden (P.N.M.)
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Ilissia, Athens 118 55, Greece (C.V., A.R.); and
- Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Hungary (K.G.)
| | - Kalliopi A Roubelakis-Angelakis
- Department of Biology, University of Crete, Voutes University Campus, Heraklion 700 13, Greece (K.G., E.A., K.A.R.-A.);
- Department of Biology, Sunchon National University, 57922 Chonnam, South Korea (Y.J.K., K.Y.P.);
- Department of Plant Biology and Linnean Center of Plant Sciences, Swedish University of Agricultural Sciences, Uppsala BioCentrum, 750 07 Uppsala, Sweden (P.N.M.);
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Ilissia, Athens 118 55, Greece (C.V., A.R.); and
- Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Hungary (K.G.)
| |
Collapse
|
31
|
Grain Filling Characteristics and Their Relations with Endogenous Hormones in Large- and Small-Grain Mutants of Rice. PLoS One 2016; 11:e0165321. [PMID: 27780273 PMCID: PMC5079568 DOI: 10.1371/journal.pone.0165321] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/10/2016] [Indexed: 11/26/2022] Open
Abstract
This study determined if the variation in grain filling parameters between two different spikelet types of rice (Oryza sativa L.) is regulated by the hormonal levels in the grains. Two rice mutants, namely, a large-grain mutant (AZU-M) and a small-grain mutant (ZF802-M), and their respective wild types (AZU-WT and ZF802-WT) were grown in the field. The endosperm cell division rate, filling rate, and hormonal levels: zeatin + zeatin riboside (Z+ZR), indo-3-acetic acid (IAA), polyamines (PAs), and abscisic acid (ABA) were determined. The results showed that there was no significant difference between the filling and endosperm cell division rates. These rates were synchronous between the superior and inferior spikelets for both mutants. However, the abovementioned parameters were significantly different between the two spikelet types for the two wild types. The superior spikelets filled faster and their filling rate was higher compared to the inferior ones. Changes in the concentrations of plant hormones were consistent with the observed endosperm cell division rate and the filling rate for both types of spikelets of mutant and wild type plants. Regression analysis showed a significant positive correlation between cell division and filling rates with the concentrations of the investigated hormones. Exogenous chemical application verified the role of ABA, IAA, and PAs in grain filling. The results indicate that poor filling of inferior spikelets in rice occurs primarily due to the reduced hormone concentrations therein, leading to lower division rate of endosperm cells, fewer endosperm cells, slower filling rate, and smaller grain weight.
Collapse
|
32
|
Tsaniklidis G, Kotsiras A, Tsafouros A, Roussos PA, Aivalakis G, Katinakis P, Delis C. Spatial and temporal distribution of genes involved in polyamine metabolism during tomato fruit development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 100:27-36. [PMID: 26773542 DOI: 10.1016/j.plaphy.2016.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 01/04/2016] [Accepted: 01/04/2016] [Indexed: 05/20/2023]
Abstract
Polyamines are organic compounds involved in various biological roles in plants, including cell growth and organ development. In the present study, the expression profile, the accumulation of free polyamines and the transcript localisation of the genes involved in Put metabolism, such as Ornithine decarboxylase (ODC), Arginine decarboxylase (ADC) and copper containing Amine oxidase (CuAO), were examined during Solanum lycopersicum cv. Chiou fruit development and maturation. Moreover, the expression of genes coding for enzymes involved in higher polyamine metabolism, including Spermidine synthase (SPDS), Spermine synthase (SPMS), S-adenosylmethionine decarboxylase (SAMDC) and Polyamine oxidase (PAO), were studied. Most genes participating in PAs biosynthesis and metabolism exhibited an increased accumulation of transcripts at the early stages of fruit development. In contrast, CuAO and SPMS were mostly expressed later, during the development stages of the fruits where a massive increase in fruit volume occurs, while the SPDS1 gene exhibited a rather constant expression with a peak at the red ripe stage. Although Put, Spd and Spm were all exhibited decreasing levels in developing immature fruits, Put levels maxed late during fruit ripening. In contrast to Put both Spd and Spm levels continue to decrease gradually until full ripening. It is worth noticing that in situ RNA-RNA hybridisation is reported for the first time in tomato fruits. The localisation of ADC2, ODC1 and CuAO gene transcripts at tissues such as the locular parenchyma and the vascular bundles fruits, supports the theory that all genes involved in Put biosynthesis and catabolism are mostly expressed in fast growing tissues. The relatively high expression levels of CuAO at the ImG4 stage of fruit development (fruits with a diameter of 3 cm), mature green and breaker stages could possibly be attributed to the implication of polyamines in physiological processes taking place during fruit ripening.
Collapse
Affiliation(s)
- Georgios Tsaniklidis
- Agricultural University of Athens, Department of Natural Resources Development and Agricultural Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| | - Anastasios Kotsiras
- Technological Educational Institute of Peloponnese, School of Agricultural Technology and Food Technology and Nutrition, Department of Agricultural Technology, 24100 Antikalamos, Kalamata, Greece.
| | - Athanasios Tsafouros
- Agricultural University of Athens, Department of Natural Resources Development and Agricultural Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| | - Peter A Roussos
- Agricultural University of Athens, Department of Natural Resources Development and Agricultural Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| | - Georgios Aivalakis
- Agricultural University of Athens, Department of Natural Resources Development and Agricultural Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| | - Panagiotis Katinakis
- Agricultural University of Athens, Department of Natural Resources Development and Agricultural Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| | - Costas Delis
- Technological Educational Institute of Peloponnese, School of Agricultural Technology and Food Technology and Nutrition, Department of Agricultural Technology, 24100 Antikalamos, Kalamata, Greece.
| |
Collapse
|
33
|
Ghuge SA, Tisi A, Carucci A, Rodrigues-Pousada RA, Franchi S, Tavladoraki P, Angelini R, Cona A. Cell Wall Amine Oxidases: New Players in Root Xylem Differentiation under Stress Conditions. PLANTS 2015; 4:489-504. [PMID: 27135338 PMCID: PMC4844406 DOI: 10.3390/plants4030489] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/12/2015] [Accepted: 07/09/2015] [Indexed: 12/11/2022]
Abstract
Polyamines (PAs) are aliphatic polycations present in all living organisms. A growing body of evidence reveals their involvement as regulators in a variety of physiological and pathological events. They are oxidatively deaminated by amine oxidases (AOs), including copper amine oxidases (CuAOs) and flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAOs). The biologically-active hydrogen peroxide (H2O2) is a shared compound in all of the AO-catalyzed reactions, and it has been reported to play important roles in PA-mediated developmental and stress-induced processes. In particular, the AO-driven H2O2 biosynthesis in the cell wall is well known to be involved in plant wound healing and pathogen attack responses by both triggering peroxidase-mediated wall-stiffening events and signaling modulation of defense gene expression. Extensive investigation by a variety of methodological approaches revealed high levels of expression of cell wall-localized AOs in root xylem tissues and vascular parenchyma of different plant species. Here, the recent progresses in understanding the role of cell wall-localized AOs as mediators of root xylem differentiation during development and/or under stress conditions are reviewed. A number of experimental pieces of evidence supports the involvement of apoplastic H2O2 derived from PA oxidation in xylem tissue maturation under stress-simulated conditions.
Collapse
Affiliation(s)
- Sandip A Ghuge
- Institute of Crystallography, Consiglio Nazionale delle Ricerche (CNR), Monterotondo 00015, Italy.
| | - Alessandra Tisi
- Department of Sciences, Università Roma Tre, Roma 00146, Italy.
| | - Andrea Carucci
- Department of Sciences, Università Roma Tre, Roma 00146, Italy.
| | | | - Stefano Franchi
- Department of Sciences, Università Roma Tre, Roma 00146, Italy.
| | - Paraskevi Tavladoraki
- Department of Sciences, Università Roma Tre, Roma 00146, Italy.
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome 00136, Italy.
| | - Riccardo Angelini
- Department of Sciences, Università Roma Tre, Roma 00146, Italy.
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome 00136, Italy.
| | - Alessandra Cona
- Department of Sciences, Università Roma Tre, Roma 00146, Italy.
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome 00136, Italy.
| |
Collapse
|
34
|
Uchiyama-Kadokura N, Murakami K, Takemoto M, Koyanagi N, Murota K, Naito S, Onouchi H. Polyamine-responsive ribosomal arrest at the stop codon of an upstream open reading frame of the AdoMetDC1 gene triggers nonsense-mediated mRNA decay in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2014; 55:1556-67. [PMID: 24929422 DOI: 10.1093/pcp/pcu086] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
During mRNA translation, nascent peptides with certain specific sequences cause arrest of ribosomes that have synthesized themselves. In some cases, such ribosomal arrest is coupled with mRNA decay. In yeast, mRNA quality control systems have been shown to be involved in mRNA decay associated with ribosomal arrest. However, a link between ribosomal arrest and mRNA quality control systems has not been found in multicellular organisms. In this study, we aimed to explore the relationship between ribosomal arrest and mRNA decay in plants. For this purpose, we used an upstream open reading frame (uORF) of the Arabidopsis thaliana AdoMetDC1 gene, in which the uORF-encoded peptide is involved in polyamine-responsive translational repression of the main coding sequence. Our in vitro analyses revealed that the AdoMetDC1 uORF-encoded peptide caused ribosomal arrest at the uORF stop codon in response to polyamine. Using transgenic calli harboring an AdoMetDC1 uORF-containing reporter gene, we showed that polyamine promoted mRNA decay in a uORF sequence-dependent manner. These results suggest that the polyamine-responsive ribosomal arrest mediated by the uORF-encoded peptide is coupled with mRNA decay. Our results also showed that the polyamine-responsive acceleration of mRNA decay was compromised by defects in factors that are essential for nonsense-mediated mRNA decay (NMD), an mRNA quality control system that degrades mRNAs with premature stop codons, suggesting that NMD is involved in AdoMetDC1 uORF peptide-mediated mRNA decay. Collectively, these findings suggest that AdoMetDC1 uORF peptide-mediated ribosomal arrest at the uORF stop codon induces NMD.
Collapse
Affiliation(s)
- Naoko Uchiyama-Kadokura
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan Present address: Chifure Corporation, Kawagoe, 350-0833 Japan
| | - Karin Murakami
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Mariko Takemoto
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan Present address: SRD Corporation, Chuo-ku, Tokyo, 104-0032 Japan
| | - Naoto Koyanagi
- Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan Present address: Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Katsunori Murota
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan Present address: Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, 062-8517 Japan
| | - Satoshi Naito
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| |
Collapse
|
35
|
Cona A, Tisi A, Ghuge SA, Franchi S, De Lorenzo G, Angelini R. Wound healing response and xylem differentiation in tobacco plants over-expressing a fungal endopolygalacturonase is mediated by copper amine oxidase activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 82:54-65. [PMID: 24907525 DOI: 10.1016/j.plaphy.2014.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/11/2014] [Indexed: 06/03/2023]
Abstract
In this work, we have investigated the involvement of copper amine oxidase (CuAO; EC 1.4.3.21) in wound healing and xylem differentiation of Nicotiana tabacum plants over-expressing a fungal endopolygalacturonase (PG plants), which show constitutively activated defence responses. In petioles and stems of PG plants, we found higher CuAO activity and lower polyamine (PA) levels, particularly putrescine (Put), with respect to wild-type (WT) plants. Upon wounding, a more intense autofluorescence of cell wall phenolics was observed in correspondence of wound surface, extending to epidermis and cortical parenchima only in PG plants. This response was mostly dependent on CuAO activity, as suggested by the reversion of autofluorescence upon supply of 2-bromoethylamine (2-BrEt), a CuAO specific inhibitor. Moreover, in unwounded plants, histochemical analysis revealed a tissue-specific expression of the enzyme in the vascular cambium and neighboring derivative cells of both petioles and stems of PG plants, whereas the corresponding WT tissues appeared unstained or faintly stained. A higher histochemical CuAO activity was also observed in xylem cells of PG plants as compared to WT xylem tissues suggesting a peculiar role of CuAO activity in xylem differentiation in PG plants. Indeed, roots of PG plants exhibited early xylem differentiation, a phenotype consistent with both the higher CuAO and the lower Put levels observed and supported by the 2-BrEt-mediated reversion of early root xylem differentiation and H2O2 accumulation. These results strongly support the relevance of PA-catabolism derived H2O2 in defence responses, such as those signaled by a compromised status of cell wall pectin integrity.
Collapse
Affiliation(s)
- Alessandra Cona
- Dipartimento di Scienze, Università degli Studi "Roma Tre", V.le G. Marconi 446, 00146 Roma, Italy
| | - Alessandra Tisi
- Dipartimento di Scienze, Università degli Studi "Roma Tre", V.le G. Marconi 446, 00146 Roma, Italy
| | - Sandip Annasaheb Ghuge
- Dipartimento di Scienze, Università degli Studi "Roma Tre", V.le G. Marconi 446, 00146 Roma, Italy
| | - Stefano Franchi
- Dipartimento di Scienze, Università degli Studi "Roma Tre", V.le G. Marconi 446, 00146 Roma, Italy
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Sapienza Università di Roma, 00185 Roma, Italy
| | - Riccardo Angelini
- Dipartimento di Scienze, Università degli Studi "Roma Tre", V.le G. Marconi 446, 00146 Roma, Italy.
| |
Collapse
|
36
|
Pathak MR, Teixeira da Silva JA, Wani SH. Polyamines in response to abiotic stress tolerance through transgenic approaches. GM CROPS & FOOD 2014; 5:87-96. [PMID: 24710064 DOI: 10.4161/gmcr.28774] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The distribution, growth, development and productivity of crop plants are greatly affected by various abiotic stresses. Worldwide, sustainable crop productivity is facing major challenges caused by abiotic stresses by reducing the potential yield in crop plants by as much as 70%. Plants can generally adapt to one or more environmental stresses to some extent. Physiological and molecular studies at transcriptional, translational, and transgenic plant levels have shown the pronounced involvement of naturally occurring plant polyamines (PAs), in controlling, conferring, and modulating abiotic stress tolerance in plants. PAs are small, low molecular weight, non-protein polycations at physiological pH, that are present in all living organisms, and that have strong binding capacity to negatively charged DNA, RNA, and different protein molecules. They play an important role in plant growth and development by controlling the cell cycle, acting as cell signaling molecules in modulating plant tolerance to a variety of abiotic stresses. The commonly known PAs, putrescine, spermidine, and spermine tend to accumulate together accompanied by an increase in the activities of their biosynthetic enzymes under a range of environmental stresses. PAs help plants to combat stresses either directly or by mediating a signal transduction pathway, as shown by molecular cloning and expression studies of PA biosynthesis-related genes, knowledge of the functions of PAs, as demonstrated by developmental studies, and through the analysis of transgenic plants carrying PA genes. This review highlights how PAs in higher plants act during environmental stress and how transgenic strategies have improved our understanding of the molecular mechanisms at play.
Collapse
Affiliation(s)
- Malabika Roy Pathak
- Desert and Arid Zone Sciences Program; College of Graduate Studies; Arabian Gulf University; Manama, Kingdom of Bahrain
| | | | - Shabir H Wani
- Division of Genetics and Plant Breeding; SKUAST-K; Shalimar, Srinagar, Kashmir, India
| |
Collapse
|
37
|
Jiménez-Bremont JF, Marina M, Guerrero-González MDLL, Rossi FR, Sánchez-Rangel D, Rodríguez-Kessler M, Ruiz OA, Gárriz A. Physiological and molecular implications of plant polyamine metabolism during biotic interactions. FRONTIERS IN PLANT SCIENCE 2014; 5:95. [PMID: 24672533 PMCID: PMC3957736 DOI: 10.3389/fpls.2014.00095] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/25/2014] [Indexed: 05/19/2023]
Abstract
During ontogeny, plants interact with a wide variety of microorganisms. The association with mutualistic microbes results in benefits for the plant. By contrast, pathogens may cause a remarkable impairment of plant growth and development. Both types of plant-microbe interactions provoke notable changes in the polyamine (PA) metabolism of the host and/or the microbe, being each interaction a complex and dynamic process. It has been well documented that the levels of free and conjugated PAs undergo profound changes in plant tissues during the interaction with microorganisms. In general, this is correlated with a precise and coordinated regulation of PA biosynthetic and catabolic enzymes. Interestingly, some evidence suggests that the relative importance of these metabolic pathways may depend on the nature of the microorganism, a concept that stems from the fact that these amines mediate the activation of plant defense mechanisms. This effect is mediated mostly through PA oxidation, even though part of the response is activated by non-oxidized PAs. In the last years, a great deal of effort has been devoted to profile plant gene expression following microorganism recognition. In addition, the phenotypes of transgenic and mutant plants in PA metabolism genes have been assessed. In this review, we integrate the current knowledge on this field and analyze the possible roles of these amines during the interaction of plants with microbes.
Collapse
Affiliation(s)
- Juan F. Jiménez-Bremont
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis PotosíMéxico
| | - María Marina
- UB3, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| | | | - Franco R. Rossi
- UB3, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| | - Diana Sánchez-Rangel
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis PotosíMéxico
| | | | - Oscar A. Ruiz
- UB1, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| | - Andrés Gárriz
- UB3, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| |
Collapse
|
38
|
Moschou PN, Roubelakis-Angelakis KA. Polyamines and programmed cell death. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1285-96. [PMID: 24218329 DOI: 10.1093/jxb/ert373] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polyamines (PAs) have been considered as important molecules for survival. However, evidence reinforces that PAs are also implicated, directly or indirectly, in pathways regulating programmed cell death (PCD). Direct correlation of PAs with cell death refers to their association with particular biological processes, and their physical contact with molecules or structures involved in cell death. Indirectly, PAs regulate PCD through their metabolic derivatives, such as catabolic and interconversion products. Cytotoxic products of PA metabolism are involved in PCD cascades, whereas it remains largely elusive how PAs directly control pathways leading to PCD. In this review, we present and compare advances in PA-dependent PCD in animals and plants.
Collapse
Affiliation(s)
- Panagiotis N Moschou
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | | |
Collapse
|
39
|
Tromas N, Zwart MP, Lafforgue G, Elena SF. Within-host spatiotemporal dynamics of plant virus infection at the cellular level. PLoS Genet 2014; 10:e1004186. [PMID: 24586207 PMCID: PMC3937225 DOI: 10.1371/journal.pgen.1004186] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/06/2014] [Indexed: 11/27/2022] Open
Abstract
A multicellular organism is not a monolayer of cells in a flask; it is a complex, spatially structured environment, offering both challenges and opportunities for viruses to thrive. Whereas virus infection dynamics at the host and within-cell levels have been documented, the intermediate between-cell level remains poorly understood. Here, we used flow cytometry to measure the infection status of thousands of individual cells in virus-infected plants. This approach allowed us to determine accurately the number of cells infected by two virus variants in the same host, over space and time as the virus colonizes the host. We found a low overall frequency of cellular infection (<0.3), and few cells were coinfected by both virus variants (<0.1). We then estimated the cellular contagion rate (R), the number of secondary infections per infected cell per day. R ranged from 2.43 to values not significantly different from zero, and generally decreased over time. Estimates of the cellular multiplicity of infection (MOI), the number of virions infecting a cell, were low (<1.5). Variance of virus-genotype frequencies increased strongly from leaf to cell levels, in agreement with a low MOI. Finally, there were leaf-dependent differences in the ease with which a leaf could be colonized, and the number of virions effectively colonizing a leaf. The modeling of infection patterns suggests that the aggregation of virus-infected cells plays a key role in limiting spread; matching the observation that cell-to-cell movement of plant viruses can result in patches of infection. Our results show that virus expansion at the between-cell level is restricted, probably due to the host environment and virus infection itself.
Collapse
Affiliation(s)
- Nicolas Tromas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - Mark P. Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - Guillaume Lafforgue
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
40
|
Andronis EA, Moschou PN, Toumi I, Roubelakis-Angelakis KA. Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2014; 5:132. [PMID: 24765099 PMCID: PMC3982065 DOI: 10.3389/fpls.2014.00132] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/20/2014] [Indexed: 05/18/2023]
Abstract
Homeostasis of reactive oxygen species (ROS) in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA) are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd) and spermine to putrescine and Spd, respectively, is catalyzed by two peroxisomal PA oxidases (AtPAO). However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI). Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions ([Formula: see text] ), but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX). On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and [Formula: see text] . These results suggest that the ratio of [Formula: see text] /H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of [Formula: see text] by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed.
Collapse
Affiliation(s)
- Efthimios A. Andronis
- Laboratory of Plant Physiology and Biotechnology, Department of Biology, University of CreteHeraklion, Greece
| | - Panagiotis N. Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsala, Sweden
| | - Imene Toumi
- Laboratory of Plant Physiology and Biotechnology, Department of Biology, University of CreteHeraklion, Greece
| | - Kalliopi A. Roubelakis-Angelakis
- Laboratory of Plant Physiology and Biotechnology, Department of Biology, University of CreteHeraklion, Greece
- *Correspondence: Kalliopi A. Roubelakis-Angelakis, Laboratory of Plant Physiology and Biotechnology, Department of Biology, University of Crete, Voutes University Campus, Heraklion, Crete 70013, Greece e-mail:
| |
Collapse
|
41
|
Ioannidis NE, Kotzabasis K. Polyamines in chemiosmosis in vivo: A cunning mechanism for the regulation of ATP synthesis during growth and stress. FRONTIERS IN PLANT SCIENCE 2014; 5:71. [PMID: 24592272 PMCID: PMC3938100 DOI: 10.3389/fpls.2014.00071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/10/2014] [Indexed: 05/07/2023]
Abstract
Polyamines (PAs) are low molecular weight amines that occur in every living organism. The three main PAs (putrescine, spermidine, and spermine) are involved in several important biochemical processes covered in recent reviews. As rule of thumb, increase of the cellular titer of PAs in plants is related to cell growth and cell tolerance to abiotic and biotic stress. In the present contribution, we describe recent findings from plant bioenergetics that bring to light a previously unrecognized dynamic behavior of the PA pool. Traditionally, PAs are described by many authors as organic polycations, when in fact they are bases that can be found in a charged or uncharged form. Although uncharged forms represent less than 0.1% of the total pool, we propose that their physiological role could be crucial in chemiosmosis. This process describes the formation of a PA gradient across membranes within seconds and is difficult to be tested in vivo in plants due to the relatively small molecular weight of PAs and the speed of the process. We tested the hypothesis that PAs act as permeable buffers in intact leaves by using recent advances in vivo probing. We found that an increase of PAs increases the electric component (Δψ) and decreases the ΔpH component of the proton motive force. These findings reveal an important modulation of the energy production process and photoprotection of the chloroplast by PAs. We explain in detail the theory behind PA pumping and ion trapping in acidic compartments (such as the lumen in chloroplasts) and how this regulatory process could improve either the photochemical efficiency of the photosynthetic apparatus and increase the synthesis of ATP or fine tune antenna regulation and make the plant more tolerant to stress.
Collapse
Affiliation(s)
- Nikolaos E. Ioannidis
- *Correspondence: Nikolaos E. Ioannidis and Kiriakos Kotzabasis, Department of Biology, University of Crete, Voutes University Campus, 70013 Heraklion, Crete, Greece e-mail: ;
| | - Kiriakos Kotzabasis
- *Correspondence: Nikolaos E. Ioannidis and Kiriakos Kotzabasis, Department of Biology, University of Crete, Voutes University Campus, 70013 Heraklion, Crete, Greece e-mail: ;
| |
Collapse
|
42
|
Cacho M, Torres Domínguez A, Elena-Rosselló JA. Role of polyamines in regulating silymarin production in Silybum marianum (L.) Gaertn (Asteraceae) cell cultures under conditions of calcium deficiency. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1344-8. [PMID: 23810612 DOI: 10.1016/j.jplph.2013.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 06/02/2023]
Abstract
As part of our efforts to identify the possible role of polyamines (PAs) in silymarin (Sm) production, the effects of calcium deprivation on cell growth and on endogenous PAs levels and Sm production by milk thistle (Silybum marianum (L.) Gaertn) grown in cell cultures were examined. Young cultured cells of the H2 line of S. marianum were transferred to a medium without calcium and with ethylene glycol-bis-(β-aminoethyl) ether-N,N,N',N'-tetraacetic acid present to chelate any free calcium in order to analyze the effects of this medium on the levels of PAs and Sm produced by the cells. During the 17 days of exposure to this calcium-free medium most of the cell populations were in the G0/G1 phase (from day 7 to day 14 of culture) while PA levels underwent a progressive decline up to day 17, after which they were no longer detectable. We observed that putrescine (Put) accumulation was always lower than that observed under normal conditions. The lack of calcium in the MS medium advances the onset of the stationary phase, whose beginning is marked by an increase in the Put/spermidine (Spd) index, raising the production of Sm; the suspensions were productive for a longer time and hence produced more of the substance. Our results indicate that under stress conditions the production of Sm in young-cell suspensions of S. marianum is not associated with high levels of PAs in the medium--contrary to what one would expect--allowing us to conclude that growth inhibition appears to be the factor responsible for the maximum Sm accumulation while PAs are not directly involved in the Sm synthesis pathway by milk thistle grown in culture.
Collapse
Affiliation(s)
- Margarita Cacho
- Department of Plant Physiology, Faculty of Biology, University of Salamanca, Plaza de los Doctores de la Reina s/n, E-37007 Salamanca, Spain.
| | | | | |
Collapse
|
43
|
Sichhart Y, Dräger B. Immunolocalisation of spermidine synthase in Solanum tuberosum. PHYTOCHEMISTRY 2013; 91:117-21. [PMID: 22445073 DOI: 10.1016/j.phytochem.2012.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/06/2012] [Accepted: 02/14/2012] [Indexed: 05/13/2023]
Abstract
Spermidine synthase (SPDS) catalyses the formation of spermidine, which is an essential polyamine and widespread in living organisms. Spermidine is formed from putrescine by transfer of an aminopropyl group from decarboxylated S-adenosylmethionine. Spermidine is also a precursor to further polyamines, such as spermine and thermospermine, most of which contribute to tolerance against drought and salinity in plants. Thermospermine is indispensible for vascular tissue growth. Plant spermidine synthases have been cloned from several angiosperms; organ-specific gene expression levels are known for Arabidopsis only. In this study, immunolocalisation of SPDS in potato (Solanum tuberosum) organs is presented. Polyclonal antibodies for SPDS from potato produced in rabbits were purified by affinity chromatography. Cross-reaction with potato putrescine N-methyltransferase was eliminated. Accumulation of SPDS protein in the phloem region of vascular tissues throughout the potato plant is demonstrated.
Collapse
Affiliation(s)
- Yvonne Sichhart
- Institut of Pharmacy, Faculty of Science I, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany.
| | | |
Collapse
|
44
|
Castellarin SD, Gambetta GA, Wada H, Shackel KA, Matthews MA. Fruit ripening in Vitis vinifera: spatiotemporal relationships among turgor, sugar accumulation, and anthocyanin biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4345-54. [PMID: 21586429 PMCID: PMC3153685 DOI: 10.1093/jxb/err150] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/06/2011] [Accepted: 04/13/2011] [Indexed: 05/12/2023]
Abstract
This study reports the first observations indicating the spatiotemporal relationships among genetic and physiological aspects of ripening in the berry of Vitis vinifera. At the onset of ripening in the red flesh variety Alicante Bouschet, colour development began in the flesh at the stylar end of the fruit and progressed toward the pedicel end flesh and into the skin. Tissue solute potential and cell turgor also decreased first in the flesh. The decrease in flesh solute potential was due to accumulation of sugars, glucose and fructose, an accumulation that is integral to ripening. Expression of the anthocyanin biosynthesis-related genes VvMybA and VvUFGT was linearly related to the decrease in solute potential. Expression of VvMybA, and to a lesser extent VvUFGT, was correspondingly low in green tissue, higher in the red, stylar end flesh of berries beginning to ripen, and greatest in red berries. In contrast, expression of the abscisic acid biosynthesis-related genes VvNCED1 and VvNCED2 was not correlated with the other spatiotemporal aspects of the onset of ripening. These results, together with earlier work showing that sugar accumulation and acid loss also begin in the stylar flesh in other varieties, indicate that ripening in the grape berry originates in the stylar end flesh.
Collapse
Affiliation(s)
- Simone D Castellarin
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Via delle Scienze 208, 33100 Udine, Italy.
| | | | | | | | | |
Collapse
|
45
|
Pommerrenig B, Feussner K, Zierer W, Rabinovych V, Klebl F, Feussner I, Sauer N. Phloem-specific expression of Yang cycle genes and identification of novel Yang cycle enzymes in Plantago and Arabidopsis. THE PLANT CELL 2011; 23:1904-19. [PMID: 21540433 PMCID: PMC3123959 DOI: 10.1105/tpc.110.079657] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 03/14/2011] [Accepted: 04/15/2011] [Indexed: 05/19/2023]
Abstract
The 5-methylthioadenosine (MTA) or Yang cycle is a set of reactions that recycle MTA to Met. In plants, MTA is a byproduct of polyamine, ethylene, and nicotianamine biosynthesis. Vascular transcriptome analyses revealed phloem-specific expression of the Yang cycle gene 5-METHYLTHIORIBOSE KINASE1 (MTK1) in Plantago major and Arabidopsis thaliana. As Arabidopsis has only a single MTK gene, we hypothesized that the expression of other Yang cycle genes might also be vascular specific. Reporter gene studies and quantitative analyses of mRNA levels for all Yang cycle genes confirmed this hypothesis for Arabidopsis and Plantago. This includes the Yang cycle genes 5-METHYLTHIORIBOSE-1-PHOSPHATE ISOMERASE1 and DEHYDRATASE-ENOLASE-PHOSPHATASE-COMPLEX1. We show that these two enzymes are sufficient for the conversion of methylthioribose-1-phosphate to 1,2-dihydroxy-3-keto-5-methylthiopentene. In bacteria, fungi, and animals, the same conversion is catalyzed in three to four separate enzymatic steps. Furthermore, comparative analyses of vascular and nonvascular metabolites identified Met, S-adenosyl Met, and MTA preferentially or almost exclusively in the vascular tissue. Our data represent a comprehensive characterization of the Yang cycle in higher plants and demonstrate that the Yang cycle works primarily in the vasculature. Finally, expression analyses of polyamine biosynthetic genes suggest that the Yang cycle in leaves recycles MTA derived primarily from polyamine biosynthesis.
Collapse
Affiliation(s)
- Benjamin Pommerrenig
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
- Erlangen Center of Plant Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Kirstin Feussner
- Abteilung Biochemie der Pflanze, Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, 37077 Gottingen, Germany
| | - Wolfgang Zierer
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Valentyna Rabinovych
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Franz Klebl
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Ivo Feussner
- Abteilung Biochemie der Pflanze, Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, 37077 Gottingen, Germany
| | - Norbert Sauer
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
- Erlangen Center of Plant Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| |
Collapse
|
46
|
Wang J, Sun PP, Chen CL, Wang Y, Fu XZ, Liu JH. An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2899-914. [PMID: 21282323 DOI: 10.1093/jxb/erq463] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Arginine decarboxylase (ADC) is an important enzyme responsible for polyamine synthesis under stress conditions. In this study, the gene encoding ADC in Poncirus trifoliata (PtADC) was isolated and it existed as a single-copy member. Transcript levels of PtADC were up-regulated by low temperature and dehydration. Overexpression of PtADC in an Arabidopsis thaliana ADC mutant adc1-1 promoted putrescine synthesis in the transgenic line and the stomatal density was reverted to that in the wild type. The transgenic line showed enhanced resistance to high osmoticum, dehydration, long-term drought, and cold stress compared with the wild type and the mutant. The accumulation of reactive oxygen species (ROS) in the transgenic line was appreciably decreased under the stresses, but ROS scavenging capacity was compromised when the transgenic plants were treated with the ADC inhibitor D-arginine prior to stress treatment. In addition, the transgenic line had longer roots than the wild type and the mutant under both normal and stressful conditions, consistent with larger cell number and length of the root meristematic zone. Taken together, these results demonstrated that PtADC is involved in tolerance to multiple stresses, and its function may be due, at least partly, to efficient ROS elimination and to its influence on root growth conducive to drought tolerance.
Collapse
Affiliation(s)
- Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Horticultural Plant Biology of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
47
|
Neily MH, Matsukura C, Maucourt M, Bernillon S, Deborde C, Moing A, Yin YG, Saito T, Mori K, Asamizu E, Rolin D, Moriguchi T, Ezura H. Enhanced polyamine accumulation alters carotenoid metabolism at the transcriptional level in tomato fruit over-expressing spermidine synthase. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:242-52. [PMID: 20708298 DOI: 10.1016/j.jplph.2010.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 07/14/2010] [Accepted: 07/14/2010] [Indexed: 05/08/2023]
Abstract
Polyamines are involved in crucial plant physiological events, but their roles in fruit development remain unclear. We generated transgenic tomato plants that show a 1.5- to 2-fold increase in polyamine content by over-expressing the spermidine synthase gene, which encodes a key enzyme for polyamine biosynthesis. Pericarp-columella and placental tissue from transgenic tomato fruits were subjected to (1)H-nuclear magnetic resonance (NMR) for untargeted metabolic profiling and high-performance liquid chromatography-diode array detection for carotenoid profiling to determine the effects of high levels of polyamine accumulation on tomato fruit metabolism. A principal component analysis of the quantitative (1)H NMR data from immature green to red ripe fruit showed a clear discrimination between developmental stages, especially during ripening. Quantification of 37 metabolites in pericarp-columella and 41 metabolites in placenta tissues revealed distinct metabolic profiles between the wild type and transgenic lines, particularly at the late ripening stages. Notably, the transgenic tomato fruits also showed an increase in carotenoid accumulation, especially in lycopene (1.3- to 2.2-fold), and increased ethylene production (1.2- to 1.6-fold) compared to wild-type fruits. Genes responsible for lycopene biosynthesis, including phytoene synthase, phytoene desaturase, and deoxy-d-xylulose 5-phosphate synthase, were significantly up-regulated in ripe transgenic fruits, whereas genes involved in lycopene degradation, including lycopene-epsilon cyclase and lycopene beta cyclase, were down-regulated in the transgenic fruits compared to the wild type. These results suggest that a high level of accumulation of polyamines in the tomato regulates the steady-state level of transcription of genes responsible for the lycopene metabolic pathway, which results in a higher accumulation of lycopene in the fruit.
Collapse
Affiliation(s)
- Mohamed Hichem Neily
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hussain SS, Ali M, Ahmad M, Siddique KHM. Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 2011; 29:300-11. [PMID: 21241790 DOI: 10.1016/j.biotechadv.2011.01.003] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/07/2011] [Accepted: 01/07/2011] [Indexed: 12/26/2022]
Abstract
Polyamines (PAs) are ubiquitous biogenic amines that have been implicated in diverse cellular functions in widely distributed organisms. In plants, mutant and transgenic plants with altered activity pointed to their involvement with different abiotic and biotic stresses. Furthermore, microarray, transcriptomic and proteomic approaches have elucidated key functions of different PAs in signaling networks in plants subjected to abiotic and biotic stresses, however the exact molecular mechanism remains enigmatic. Here, we argue that PAs should not be taken only as a protective molecule but rather like a double-faced molecule that likely serves as a major area for further research efforts. This review summarizes recent advances in plant polyamine research ranging from transgenic and mutant characterization to potential mechanisms of action during environmental stresses and diseases.
Collapse
Affiliation(s)
- Syed Sarfraz Hussain
- Australian Centre for Plant Functional Genomics (ACPFG), University of Adelaide, PMB1, Glen Osmond, SA5064, Australia.
| | | | | | | |
Collapse
|
49
|
Konstantinos PA, Imene T, Panagiotis MN, Roubelakis-Angelakis KA. ABA-dependent amine oxidases-derived H2O2 affects stomata conductance. PLANT SIGNALING & BEHAVIOR 2010; 5:1153-6. [PMID: 21490422 PMCID: PMC3115092 DOI: 10.4161/psb.5.9.12679] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 06/16/2010] [Indexed: 05/20/2023]
Abstract
Recently we showed that ABA is at least partly responsible for the induction of the polyamine exodus pathway in Vitis vinifera plants. Both sensitive and tolerant plants employ this pathway to orchestrate stress responses, differing between stress adaptation and programmed cell death. Herein we show that ABA is an upstream signal for the induction of the polyamine catabolic pathway in Vitis vinifera. Thus, amine oxidases are producing H2O2 which signals stomata closure. Moreover, the previously proposed model for the polyamine catabolic pathway is updated and discussed.
Collapse
|
50
|
Gomez-Jimenez MC, Paredes MA, Gallardo M, Fernandez-Garcia N, Olmos E, Sanchez-Calle IM. Tissue-specific expression of olive S-adenosyl methionine decarboxylase and spermidine synthase genes and polyamine metabolism during flower opening and early fruit development. PLANTA 2010; 232:629-47. [PMID: 20532909 DOI: 10.1007/s00425-010-1198-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 05/20/2010] [Indexed: 05/20/2023]
Abstract
Polyamines (PAs) are required for cell growth and cell division in eukaryotic and prokaryotic organisms. The present study is aimed at understanding the developmental regulation of PA biosynthesis and catabolism during flower opening and early fruit development in relation to fruit size and shape. Two full-length cDNA clones coding for S-adenosyl methionine decarboxylase (SAMDC) and spermidine synthase (SPDS) homologs, key steps in the PA biosynthesis pathway, in the stone-fruit of olive (Olea europaea L.) were identified and the spatial and temporal organization of these genes were described. In olive flowers, OeSAMDC gene transcripts were highly expressed in ovary wall, placenta and ovules, while OeSPDS transcript was confined to the ovules of ovary at anthesis stage. A correlation was detected between the SAMDC enzyme activity/accumulation transcript and spermidine (Spd) and spermine (Spm) levels during flower opening, implying that the synthesis of decarboxylated SAM might be a rate-limiting step in Spd and Spm biosynthesis. OeSAMDC and OeSPDS transcripts were co-expressed in fruit mesocarp and exocarp at all developmental stages analyzed as well as in nucellus, integuments and inner epidermis tissues of fertilized ovules. In contrast, the OeSAMDC and OeSPDS genes had different expression patterns during early fruit development. The results provide novel data about localization of PA biosynthesis gene transcripts, indicating that transcript levels of PA biosynthesis genes are all highly regulated in a developmental and tissue-specific manner. The differences between the two olive cultivars in the fruit size in relation to the differences in the accumulation patterns of PAs are discussed.
Collapse
|