1
|
Huang X, Zentella R, Park J, Reser L, Bai DL, Ross MM, Shabanowitz J, Hunt DF, Sun TP. Phosphorylation activates master growth regulator DELLA by promoting histone H2A binding at chromatin in Arabidopsis. Nat Commun 2024; 15:7694. [PMID: 39227587 PMCID: PMC11372120 DOI: 10.1038/s41467-024-52033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
DELLA proteins are conserved master growth regulators that play a central role in controlling plant development in response to internal and environmental cues. DELLAs function as transcription regulators, which are recruited to target promoters by binding to transcription factors (TFs) and histone H2A via their GRAS domain. Recent studies showed that DELLA stability is regulated post-translationally via two mechanisms, phytohormone gibberellin-induced polyubiquitination for its rapid degradation, and Small Ubiquitin-like Modifier (SUMO)-conjugation to increase its accumulation. Moreover, DELLA activity is dynamically modulated by two distinct glycosylations: DELLA-TF interactions are enhanced by O-fucosylation, but inhibited by O-linked N-acetylglucosamine (O-GlcNAc) modification. However, the role of DELLA phosphorylation remains unclear as previous studies showing conflicting results ranging from findings that suggest phosphorylation promotes or reduces DELLA degradation to others indicating it has no effect on its stability. Here, we identify phosphorylation sites in REPRESSOR OF ga1-3 (RGA, an AtDELLA) purified from Arabidopsis by mass spectrometry analysis, and show that phosphorylation of two RGA peptides in the PolyS and PolyS/T regions enhances RGA activity by promoting H2A binding and RGA association with target promoters. Notably, phosphorylation does not affect RGA-TF interactions or RGA stability. Our study has uncovered a molecular mechanism of phosphorylation-induced DELLA activity.
Collapse
Affiliation(s)
- Xu Huang
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Rodolfo Zentella
- Department of Biology, Duke University, Durham, NC, 27708, USA
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, NC, 27607, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jeongmoo Park
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Syngenta, Research Triangle Park, NC, 27709, USA
| | - Larry Reser
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Dina L Bai
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Mark M Ross
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
- Department of Pathology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
2
|
Shahwar D, Khan Z, Park Y. Molecular Marker-Assisted Mapping, Candidate Gene Identification, and Breeding in Melon ( Cucumis melo L.): A Review. Int J Mol Sci 2023; 24:15490. [PMID: 37895169 PMCID: PMC10607903 DOI: 10.3390/ijms242015490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Melon (Cucumis melo L.) is an important crop that is cultivated worldwide for its fleshy fruit. Understanding the genetic basis of a plant's qualitative and quantitative traits is essential for developing consumer-favored varieties. This review presents genetic and molecular advances related to qualitative and quantitative phenotypic traits and biochemical compounds in melons. This information guides trait incorporation and the production of novel varieties with desirable horticultural and economic characteristics and yield performance. This review summarizes the quantitative trait loci, candidate genes, and development of molecular markers related to plant architecture, branching patterns, floral attributes (sex expression and male sterility), fruit attributes (shape, rind and flesh color, yield, biochemical compounds, sugar content, and netting), and seed attributes (seed coat color and size). The findings discussed in this review will enhance demand-driven breeding to produce cultivars that benefit consumers and melon breeders.
Collapse
Affiliation(s)
- Durre Shahwar
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea;
| | - Zeba Khan
- Center for Agricultural Education, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Younghoon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea;
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
3
|
Wang Y, Song S, Hao Y, Chen C, Ou X, He B, Zhang J, Jiang Z, Li C, Zhang S, Su W, Chen R. Role of BraRGL1 in regulation of Brassica rapa bolting and flowering. HORTICULTURE RESEARCH 2023; 10:uhad119. [PMID: 37547730 PMCID: PMC10402658 DOI: 10.1093/hr/uhad119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/25/2023] [Indexed: 08/08/2023]
Abstract
Gibberellin (GA) plays a major role in controlling Brassica rapa stalk development. As an essential negative regulator of GA signal transduction, DELLA proteins may exert significant effects on stalk development. However, the regulatory mechanisms underlying this regulation remain unclear. In this study, we report highly efficient and inheritable mutagenesis using the CRISPR/Cas9 gene editing system in BraPDS (phytoene desaturase) and BraRGL1 (key DELLA protein) genes. We observed a loss-of-function mutation in BraRGL1 due to two amino acids in GRAS domain. The flower bud differentiation and bolting time of BraRGL1 mutants were significantly advanced. The expression of GA-regulatory protein (BraGASA6), flowering related genes (BraSOC1, BraLFY), expansion protein (BraEXPA11) and xyloglucan endotransferase (BraXTH3) genes was also significantly upregulated in these mutants. BraRGL1-overexpressing plants displayed the contrasting phenotypes. BraRGL1 mutants were more sensitive to GA signaling. BraRGL1 interacted with BraSOC1, and the interaction intensity decreased after GA3 treatment. In addition, BraRGL1 inhibited the transcription-activation ability of BraSOC1 for BraXTH3 and BraLFY genes, but the presence of GA3 enhanced the activation ability of BraSOC1, suggesting that the BraRGL1-BraSOC1 module regulates bolting and flowering of B. rapa through GA signal transduction. Thus, we hypothesized that BraRGL1 is degraded, and BraSOC1 is released in the presence of GA3, which promotes the expression of BraXTH3 and BraLFY, thereby inducing stalk development in B. rapa. Further, the BraRGL1-M mutant promoted the flower bud differentiation without affecting the stalk quality. Thus, BraRGL1 can serve as a valuable target for the molecular breeding of early maturing varieties.
Collapse
Affiliation(s)
- Yudan Wang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | | | - Yanwei Hao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Changming Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xi Ou
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Bin He
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jiewen Zhang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zhehao Jiang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chengming Li
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shuaiwei Zhang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Su
- Corresponding authors. E-mails: ; ;
| | | |
Collapse
|
4
|
Huang X, Tian H, Park J, Oh DH, Hu J, Zentella R, Qiao H, Dassanayake M, Sun TP. The master growth regulator DELLA binding to histone H2A is essential for DELLA-mediated global transcription regulation. NATURE PLANTS 2023; 9:1291-1305. [PMID: 37537399 PMCID: PMC10681320 DOI: 10.1038/s41477-023-01477-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
The DELLA genes, also known as 'Green Revolution' genes, encode conserved master growth regulators that control plant development in response to internal and environmental cues. Functioning as nuclear-localized transcription regulators, DELLAs modulate expression of target genes via direct protein-protein interaction of their carboxy-terminal GRAS domain with hundreds of transcription factors (TFs) and epigenetic regulators. However, the molecular mechanism of DELLA-mediated transcription reprogramming remains unclear. Here by characterizing new missense alleles of an Arabidopsis DELLA, repressor of ga1-3 (RGA), and co-immunoprecipitation assays, we show that RGA binds histone H2A via the PFYRE subdomain within its GRAS domain to form a TF-RGA-H2A complex at the target chromatin. Chromatin immunoprecipitation followed by sequencing analysis further shows that this activity is essential for RGA association with its target chromatin globally. Our results indicate that, although DELLAs are recruited to target promoters by binding to TFs via the LHR1 subdomain, DELLA-H2A interaction via the PFYRE subdomain is necessary to stabilize the TF-DELLA-H2A complex at the target chromatin. This study provides insights into the two distinct key modular functions in DELLA for its genome-wide transcription regulation in plants.
Collapse
Affiliation(s)
- Xu Huang
- Department of Biology, Duke University, Durham, NC, USA
| | - Hao Tian
- Department of Biology, Duke University, Durham, NC, USA
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Jeongmoo Park
- Department of Biology, Duke University, Durham, NC, USA
- Syngenta, Research Triangle Park, Raleigh, NC, USA
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Jianhong Hu
- Department of Biology, Duke University, Durham, NC, USA
| | - Rodolfo Zentella
- Department of Biology, Duke University, Durham, NC, USA
- Agricultural Research Service, Plant Science Research Unit, US Department of Agriculture, Raleigh, NC, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| | - Hong Qiao
- Institute for Cellular and Molecular Biology and Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
5
|
Jaiswal V, Kakkar M, Kumari P, Zinta G, Gahlaut V, Kumar S. Multifaceted Roles of GRAS Transcription Factors in Growth and Stress Responses in Plants. iScience 2022; 25:105026. [PMID: 36117995 PMCID: PMC9474926 DOI: 10.1016/j.isci.2022.105026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Vandana Jaiswal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mrinalini Kakkar
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
| | - Priya Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Gaurav Zinta
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Corresponding author
| | - Vijay Gahlaut
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
- Corresponding author
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
6
|
Poza-Viejo L, Payá-Milans M, San Martín-Uriz P, Castro-Labrador L, Lara-Astiaso D, Wilkinson MD, Piñeiro M, Jarillo JA, Crevillén P. Conserved and distinct roles of H3K27me3 demethylases regulating flowering time in Brassica rapa. PLANT, CELL & ENVIRONMENT 2022; 45:1428-1441. [PMID: 35037269 DOI: 10.1111/pce.14258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/08/2021] [Indexed: 05/28/2023]
Abstract
Epigenetic regulation is necessary for optimal organism development and preservation of gene expression profiles in the cell. In plants, the trimethylation of histone H3 lysine 27 (H3K27me3) is a silencing epigenetic mark relevant for developmental transitions like flowering. The floral transition is a key agronomic trait; however, the epigenetic mechanisms of flowering time regulation in crops remain poorly understood. Here we study the Jumonji H3K27me3 demethylases BraA.REF6 and BraA.ELF6 in Brassica rapa. Phenotypic characterization of novel mutant lines and genome-wide H3K27me3 chromatin immunoprecipitation and transcriptomic analyses indicated that BraA.REF6 plays a greater role than BraA.ELF6 in fine-tuning H3K27me3 levels. In addition, we found that braA.elf6 mutants were early flowering due to high H3K27me3 levels at B. rapa homologs of the floral repressor FLC. Unlike mutations in Arabidopsis thaliana, braA.ref6 mutants were late flowering without altering the expression of B. rapa FLC genes. Remarkably, we found that BraA.REF6 regulated a number of gibberellic acid (GA) biosynthetic genes, including a homolog of GA1, and that GA-treatment complemented the late flowering mutant phenotype. This study increases our understanding of the epigenetic regulation of flowering time in B. rapa, highlighting conserved and distinct regulatory mechanisms between model and crop species.
Collapse
Affiliation(s)
- Laura Poza-Viejo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Pozuelo de Alarcón, Madrid, Spain
| | - Miriam Payá-Milans
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Pozuelo de Alarcón, Madrid, Spain
| | - Patxi San Martín-Uriz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Navarra, Spain
| | - Laura Castro-Labrador
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Navarra, Spain
| | - David Lara-Astiaso
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Navarra, Spain
| | - Mark D Wilkinson
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Pozuelo de Alarcón, Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Pozuelo de Alarcón, Madrid, Spain
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Pozuelo de Alarcón, Madrid, Spain
| | - Pedro Crevillén
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
7
|
Karamat U, Sun X, Li N, Zhao J. Genetic regulators of leaf size in Brassica crops. HORTICULTURE RESEARCH 2021; 8:91. [PMID: 33931619 PMCID: PMC8087820 DOI: 10.1038/s41438-021-00526-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/03/2021] [Accepted: 02/24/2021] [Indexed: 05/06/2023]
Abstract
Leaf size influences plant development and biomass and is also an important agricultural trait in Brassica crops, in which leaves are the main organ produced for consumption. Leaf size is determined by the coordinated regulation of cell proliferation and cell expansion during leaf development, and these processes are strictly controlled by various integrated signals from the intrinsic regulatory network and the growth environment. Understanding the molecular mechanism of leaf size control is a prerequisite for molecular breeding for crop improvement purposes. Although research on leaf size control is just beginning in Brassica, recent studies have identified several genes and QTLs that are important in leaf size regulation. These genes have been proposed to influence leaf growth through different pathways and mechanisms, including phytohormone biosynthesis and signaling, transcription regulation, small RNAs, and others. In this review, we summarize the current findings regarding the genetic regulators of leaf size in Brassica and discuss future prospects for this research.
Collapse
Affiliation(s)
- Umer Karamat
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000, Baoding, China
| | - Xiaoxue Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000, Baoding, China
| | - Na Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000, Baoding, China.
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000, Baoding, China.
| |
Collapse
|
8
|
Numan M, Khan AL, Asaf S, Salehin M, Beyene G, Tadele Z, Ligaba-Osena A. From Traditional Breeding to Genome Editing for Boosting Productivity of the Ancient Grain Tef [ Eragrostis tef (Zucc.) Trotter]. PLANTS (BASEL, SWITZERLAND) 2021; 10:628. [PMID: 33806233 PMCID: PMC8066236 DOI: 10.3390/plants10040628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
Tef (Eragrostis tef (Zucc.) Trotter) is a staple food crop for 70% of the Ethiopian population and is currently cultivated in several countries for grain and forage production. It is one of the most nutritious grains, and is also more resilient to marginal soil and climate conditions than major cereals such as maize, wheat and rice. However, tef is an extremely low-yielding crop, mainly due to lodging, which is when stalks fall on the ground irreversibly, and prolonged drought during the growing season. Climate change is triggering several biotic and abiotic stresses which are expected to cause severe food shortages in the foreseeable future. This has necessitated an alternative and robust approach in order to improve resilience to diverse types of stresses and increase crop yields. Traditional breeding has been extensively implemented to develop crop varieties with traits of interest, although the technique has several limitations. Currently, genome editing technologies are receiving increased interest among plant biologists as a means of improving key agronomic traits. In this review, the potential application of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR-Cas) technology in improving stress resilience in tef is discussed. Several putative abiotic stress-resilient genes of the related monocot plant species have been discussed and proposed as target genes for editing in tef through the CRISPR-Cas system. This is expected to improve stress resilience and boost productivity, thereby ensuring food and nutrition security in the region where it is needed the most.
Collapse
Affiliation(s)
- Muhammad Numan
- Laboratory of Molecular Biology and Biotechnology, Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (M.N.); (M.S.)
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, Biotechnology and OMICs Laboratory, University of Nizwa, Nizwa 616, Oman; (A.L.K.); (S.A.)
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, Biotechnology and OMICs Laboratory, University of Nizwa, Nizwa 616, Oman; (A.L.K.); (S.A.)
| | - Mohammad Salehin
- Laboratory of Molecular Biology and Biotechnology, Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (M.N.); (M.S.)
| | - Getu Beyene
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA;
| | - Zerihun Tadele
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland;
| | - Ayalew Ligaba-Osena
- Laboratory of Molecular Biology and Biotechnology, Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (M.N.); (M.S.)
| |
Collapse
|
9
|
Phokas A, Coates JC. Evolution of DELLA function and signaling in land plants. Evol Dev 2021; 23:137-154. [PMID: 33428269 PMCID: PMC9285615 DOI: 10.1111/ede.12365] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/21/2020] [Accepted: 11/28/2020] [Indexed: 01/08/2023]
Abstract
DELLA proteins are master growth regulators that repress responses to a group of plant growth hormones called gibberellins (GAs). Manipulation of DELLA function and signaling was instrumental in the development of high‐yielding crop varieties that saved millions from starvation during the “Green Revolution.” Despite decades of extensive research, it is still unclear how DELLA function and signaling mechanisms evolved within the land plant lineage. Here, we review current knowledge on DELLA protein function with reference to structure, posttranslational modifications, downstream transcriptional targets, and protein–protein interactions. Furthermore, we discuss older and recent findings regarding the evolution of DELLA signaling within the land plant lineage, with an emphasis on bryophytes, and identify future avenues of research that would enable us to shed more light on the evolution of DELLA signaling. Unraveling how DELLA function and signaling mechanisms have evolved could enable us to engineer better crops in an attempt to contribute to mitigating the effects of global warming and achieving global food security. DELLA genes first appeared in the common ancestor of land plants and underwent two major duplications during land plant evolution. DELLAs repress gibberellin responses in vascular plants but their function in nonvascular plants remains elusive.
Collapse
Affiliation(s)
- Alexandros Phokas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
10
|
Singh H, Kaur K, Singh M, Kaur G, Singh P. Plant Cyclophilins: Multifaceted Proteins With Versatile Roles. FRONTIERS IN PLANT SCIENCE 2020; 11:585212. [PMID: 33193535 PMCID: PMC7641896 DOI: 10.3389/fpls.2020.585212] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/22/2020] [Indexed: 05/03/2023]
Abstract
Cyclophilins constitute a family of ubiquitous proteins that bind cyclosporin A (CsA), an immunosuppressant drug. Several of these proteins possess peptidyl-prolyl cis-trans isomerase (PPIase) activity that catalyzes the cis-trans isomerization of the peptide bond preceding a proline residue, essential for correct folding of the proteins. Compared to prokaryotes and other eukaryotes studied until now, the cyclophilin gene families in plants exhibit considerable expansion. With few exceptions, the role of the majority of these proteins in plants is still a matter of conjecture. However, recent studies suggest that cyclophilins are highly versatile proteins with multiple functionalities, and regulate a plethora of growth and development processes in plants, ranging from hormone signaling to the stress response. The present review discusses the implications of cyclophilins in different facets of cellular processes, particularly in the context of plants, and provides a glimpse into the molecular mechanisms by which these proteins fine-tune the diverse physiological pathways.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, India
| | - Kirandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Mangaljeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Gundeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
- William Harvey Heart Centre, Queen Mary University of London, London, United Kingdom
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
11
|
Zanewich KP, Rood SB. Gibberellins and Heterosis in Crops and Trees: An Integrative Review and Preliminary Study with Brassica. PLANTS 2020; 9:plants9020139. [PMID: 31979041 PMCID: PMC7076659 DOI: 10.3390/plants9020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 11/16/2022]
Abstract
Heterosis, or hybrid vigor, has contributed substantially to genetic improvements in crops and trees and its physiological basis involves multiple processes. Four associations with the phytohormone gibberellin (GA) indicate its involvement in the regulation of heterosis for shoot growth in maize, sorghum, wheat, rice, tomato and poplar. (1) Inbreds somewhat resemble GA-deficient dwarfs and are often highly responsive to exogenous GA3. (2) Levels of endogenous GAs, including the bioeffector GA1, its precursors GA19 and GA20, and/or its metabolite GA8, are higher in some fast-growing hybrids than parental genotypes. (3) Oxidative metabolism of applied [3H]GAs is more rapid in vigorous hybrids than inbreds, and (4) heterotic hybrids have displayed increased expression of GA biosynthetic genes including GA 20-oxidase and GA 3-oxidase. We further investigated Brassicarapa, an oilseed rape, by comparing two inbreds (AO533 and AO539) and their F1 hybrid. Seedling emergence was faster in the hybrid and potence ratios indicated dominance for increased leaf number, area and mass, and stem mass. Overdominance (heterosis) was displayed for root mass, leading to slight heterosis for total plant mass. Stem contents of GA19,20,1 were similar across the Brassica genotypes and increased prior to bolting; elongation was correlated with endogenous GA but heterosis for shoot growth was modest. The collective studies support a physiological role for GAs in the regulation of heterosis for shoot growth in crops and trees, and the Brassica study encourages further investigation of heterosis for root growth.
Collapse
|
12
|
Cheng H, Jin F, Zaman QU, Ding B, Hao M, Wang Y, Huang Y, Wells R, Dong Y, Hu Q. Identification of Bna.IAA7.C05 as allelic gene for dwarf mutant generated from tissue culture in oilseed rape. BMC PLANT BIOLOGY 2019; 19:500. [PMID: 31729952 PMCID: PMC6857212 DOI: 10.1186/s12870-019-2094-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/21/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plant height is one of the most important agronomic traits in many crops due to its influence on lodging resistance and yield performance. Although progress has been made in the use of dwarfing genes in crop improvement, identification of new dwarf germplasm is still of significant interest for breeding varieties with increased yield. RESULTS Here we describe a dominant, dwarf mutant G7 of Brassica napus with down-curved leaves derived from tissue culture. To explore the genetic variation responsible for the dwarf phenotype, the mutant was crossed to a conventional line to develop a segregating F2 population. Bulks were formed from plants with either dwarf or conventional plant height and subjected to high throughput sequencing analysis via mutation mapping (MutMap). The dwarf mutation was mapped to a 0.6 Mb interval of B. napus chromosome C05. Candidate gene analysis revealed that one SNP causing an amino acid change in the domain II of Bna.IAA7.C05 may contribute to the dwarf phenotype. This is consistent with the phenotype of a gain-of-function indole-3-acetic acid (iaa) mutant in Bna.IAA7.C05 reported recently. GO and KEGG analysis of RNA-seq data revealed the down-regulation of auxin related genes, including many other IAA and small up regulated response (SAUR) genes, in the dwarf mutant. CONCLUSION Our studies characterize a new allele of Bna.IAA7.C05 responsible for the dwarf mutant generated from tissue culture. This may provide a valuable genetic resource for breeding for lodging resistance and compact plant stature in B. napus.
Collapse
Affiliation(s)
- Hongtao Cheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| | - Fenwei Jin
- Crop Research Institute, Gansu academy of Agricultural Sciences, Lanzhou, 730070 Gansu China
| | - Qamar U. Zaman
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| | - Bingli Ding
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| | - Mengyu Hao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| | - Yi Wang
- Crop Research Institute, Gansu academy of Agricultural Sciences, Lanzhou, 730070 Gansu China
| | - Yi Huang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| | - Rachel Wells
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Yun Dong
- Crop Research Institute, Gansu academy of Agricultural Sciences, Lanzhou, 730070 Gansu China
| | - Qiong Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| |
Collapse
|
13
|
Wagner G, Laperche A, Lariagon C, Marnet N, Renault D, Guitton Y, Bouchereau A, Delourme R, Manzanares-Dauleux MJ, Gravot A. Resolution of quantitative resistance to clubroot into QTL-specific metabolic modules. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5375-5390. [PMID: 31145785 PMCID: PMC6793449 DOI: 10.1093/jxb/erz265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/21/2019] [Indexed: 05/23/2023]
Abstract
Plant disease resistance is often under quantitative genetic control. Thus, in a given interaction, plant cellular responses to infection are influenced by resistance or susceptibility alleles at different loci. In this study, a genetic linkage analysis was used to address the complexity of the metabolic responses of Brassica napus roots to infection by Plasmodiophora brassicae. Metabolome profiling and pathogen quantification in a segregating progeny allowed a comparative mapping of quantitative trait loci (QTLs) involved in resistance and in metabolic adjustments. Distinct metabolic modules were associated with each resistance QTL, suggesting the involvement of different underlying cellular mechanisms. This approach highlighted the possible role of gluconasturtiin and two unknown metabolites in the resistance conferred by two QTLs on chromosomes C03 and C09, respectively. Only two susceptibility biomarkers (glycine and glutathione) were simultaneously linked to the three main resistance QTLs, suggesting the central role of these compounds in the interaction. By contrast, several genotype-specific metabolic responses to infection were genetically unconnected to resistance or susceptibility. Likewise, variations of root sugar profiles, which might have influenced pathogen nutrition, were not found to be related to resistance QTLs. This work illustrates how genetic metabolomics can help to understand plant stress responses and their possible links with disease.
Collapse
Affiliation(s)
- Geoffrey Wagner
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes, Le Rheu, France
| | - Anne Laperche
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes, Le Rheu, France
| | | | - Nathalie Marnet
- Plateau de Profilage Métabolique et Métabolomique (P2M2), Centre de Recherche Angers Nantes BIA, INRA, Le Rheu, France
| | - David Renault
- UMR EcoBio, Université de Rennes, CNRS, Rennes, France
| | - Yann Guitton
- LUNAM Université, Oniris, Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes, France
| | - Alain Bouchereau
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes, Le Rheu, France
| | - Régine Delourme
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes, Le Rheu, France
| | | | - Antoine Gravot
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes, Le Rheu, France
| |
Collapse
|
14
|
Zhao B, Wang B, Li Z, Guo T, Zhao J, Guan Z, Liu K. Identification and characterization of a new dwarf locus DS-4 encoding an Aux/IAA7 protein in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1435-1449. [PMID: 30688990 DOI: 10.1007/s00122-019-03290-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/12/2019] [Indexed: 05/20/2023]
Abstract
A dominant dwarfing gene, ds - 4 , encodes an Aux/IAA protein that negatively regulates plant stature through an auxin signaling pathway. Dwarfism is an important agronomic trait affecting yield in many crop species. The molecular mechanisms underlying dwarfism in oilseed rape (Brassica napus) are poorly understood, restricting the progress of breeding dwarf varieties in this species. Here, we identified and characterized a new dwarf locus, DS-4, in B. napus. Next-generation sequencing-assisted genetic mapping and candidate gene analysis found that DS-4 encodes a nucleus-targeted auxin/indole-3-acetic acid (Aux/IAA) protein. A substitution (P87L) was found in the highly conserved degron motif of the Aux/IAA7 protein in the ds-4 mutant. This mutation co-segregated with the phenotype of individuals in the BC1F2 population. The P87L substitution was confirmed as the cause of the extreme dwarf phenotype by ectopic expression of the mutant allele BnaC05.iaa7 (equivalent to ds-4) in Arabidopsis. The P87L substitution blocked the interaction of BnaC05.iaa7 with TRANSPORT INHIBITOR RESPONSE 1 in the presence of auxin. The BnaC05.IAA7 gene is highly expressed in the cotyledons, hypocotyls, stems and leaves, but weakly in the roots and seeds of B. napus. Our findings provide new insights into the molecular mechanisms underlying dominant (gain-of-function) dwarfism in B. napus. Our identification of a distinct gene locus controlling plant height may help to improve lodging resistance in oilseed rape.
Collapse
Affiliation(s)
- Bo Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhaohong Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junwei Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhilin Guan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
15
|
Trevaskis B. Developmental Pathways Are Blueprints for Designing Successful Crops. FRONTIERS IN PLANT SCIENCE 2018; 9:745. [PMID: 29922318 PMCID: PMC5996307 DOI: 10.3389/fpls.2018.00745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/15/2018] [Indexed: 05/29/2023]
Abstract
Genes controlling plant development have been studied in multiple plant systems. This has provided deep insights into conserved genetic pathways controlling core developmental processes including meristem identity, phase transitions, determinacy, stem elongation, and branching. These pathways control plant growth patterns and are fundamentally important to crop biology and agriculture. This review describes the conserved pathways that control plant development, using Arabidopsis as a model. Historical examples of how plant development has been altered through selection to improve crop performance are then presented. These examples, drawn from diverse crops, show how the genetic pathways controlling development have been modified to increase yield or tailor growth patterns to suit local growing environments or specialized crop management practices. Strategies to apply current progress in genomics and developmental biology to future crop improvement are then discussed within the broader context of emerging trends in plant breeding. The ways that knowledge of developmental processes and understanding of gene function can contribute to crop improvement, beyond what can be achieved by selection alone, are emphasized. These include using genome re-sequencing, mutagenesis, and gene editing to identify or generate novel variation in developmental genes. The expanding scope for comparative genomics, the possibility to engineer new developmental traits and new approaches to resolve gene-gene or gene-environment interactions are also discussed. Finally, opportunities to integrate fundamental research and crop breeding are highlighted.
Collapse
Affiliation(s)
- Ben Trevaskis
- CSIRO Agriculture and Food, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
16
|
Lv L, Huo X, Wen L, Gao Z, Khalil-ur-Rehman M. Isolation and Role of PmRGL2 in GA-mediated Floral Bud Dormancy Release in Japanese Apricot ( Prunus mume Siebold et Zucc.). FRONTIERS IN PLANT SCIENCE 2018; 9:27. [PMID: 29434610 PMCID: PMC5790987 DOI: 10.3389/fpls.2018.00027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/08/2018] [Indexed: 05/13/2023]
Abstract
Bud dormancy release is regulated by gibberellins (GAs). DELLA proteins are highly conserved and act as negative regulators in GA signaling pathway. The present study established a relationship between PmRGL2 in Japanese apricot and GA4 levels during dormancy release of floral buds. Overexpression of PmRGL2 in poplar delayed the onset of bud dormancy and resulted in dwarf plants, relative to wild-type trees. PmRGL2 exhibited higher expression during ecodormancy and relatively lower expression during endodormancy. The relative level of GA4 exhibited an increasing trend at the transition from endodormancy to ecodormancy and displayed a similar expression pattern of genes related to GA metabolism, PmGA20ox2, PmGA3ox1, PmGID1b, in both Japanese apricot and transgenic poplar. These results suggests that PmRGL2 acts as an integrator and negative regulator of dormancy via a GA-signaling pathway. Moreover, an interaction between RGL2 and SLY1 in a yeast two hybrid (Y2H) system further suggests that SCF E3 ubiquitin ligases, such as SLY1, may be a critical factor in the regulation of RGL2 through an SCF SLY1 -proteasome pathway. Our study demonstrated that PmRGL2 plays a negative role in bud dormancy release by regulating the GA biosynthetic enzymes, GA20ox and GA3ox1 and the GA receptor, GID1b.
Collapse
|
17
|
Zhao B, Li H, Li J, Wang B, Dai C, Wang J, Liu K. Brassica napus DS-3, encoding a DELLA protein, negatively regulates stem elongation through gibberellin signaling pathway. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:727-741. [PMID: 28093630 DOI: 10.1007/s00122-016-2846-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/22/2016] [Indexed: 05/20/2023]
Abstract
Identification and characterization of a semi-dwarfing gene ds-3 encoding a mutant DELLA protein regulating plant height through gibberellin signaling pathway. Lodging is one of the most important factors causing severe yield loss in oilseed rape. Utilization of semi-dwarf varieties has been proved the most effective way to increase lodging resistance and yield in many crops. To develop semi-dwarf germplasm in oilseed rape, we identified a semi-dwarf mutant ds-3 which showed a reduced response to phytohormones gibberellins (GAs). Genetic analysis indicated the dwarfism was controlled by a single semi-dominant gene, ds-3. The DS-3 gene was mapped to a genomic region on chromosome C07, which is syntenic to the region of a previously identified semi-dwarf gene ds-1 (BnaA06.RGA). In this region, DS-3 (BnaC07.RGA) gene was identified to encode a DELLA protein that functions as a repressor in GA signaling pathway. A substitution of proline to leucine was identified in ds-3 in the conserved VHYNP motif, which is essential for GA-dependent interaction between gibberellin receptor GID1 and DELLA proteins. Segregation analysis in the F2 population derived from the cross between ds-1 and ds-3 demonstrated that BnaA06.RGA displayed a stronger effect on plant height than BnaC07.RGA, indicating that different RGA genes may play different roles in stem elongation. In addition to BnaA06.RGA and BnaC07.RGA, two more RGA genes (BnaA09.RGA and BnaC09.RGA) were identified in the Brassica napus (B. napus) genome. Reverse-transcription polymerase chain reaction (RT-PCR) and yeast two-hybrid (Y2H) assays suggest that both BnaA09.RGA and BnaC09.RGA are transcribed in leaves and stems and can mediate GA signaling in vivo. These genes represent potential targets for screening ideal semi-dwarfing alleles for oilseed rape breeding.
Collapse
Affiliation(s)
- Bo Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haitao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juanjuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
18
|
Wang Y, Chen W, Chu P, Wan S, Yang M, Wang M, Guan R. Mapping a major QTL responsible for dwarf architecture in Brassica napus using a single-nucleotide polymorphism marker approach. BMC PLANT BIOLOGY 2016; 16:178. [PMID: 27538713 PMCID: PMC4991092 DOI: 10.1186/s12870-016-0865-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/05/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Key genes related to plant type traits have played very important roles in the "green revolution" by increasing lodging resistance and elevating the harvest indices of crop cultivars. Although there have been numerous achievements in the development of dwarfism and plant type in Brassica napus breeding, exploring new materials conferring oilseed rape with efficient plant types that provide higher yields is still of significance in breeding, as well as in elucidating the mechanisms underlying plant development. Here, we report a new dwarf architecture with down-curved leaf mutant (Bndwf/dcl1) isolated from an ethyl methanesulphonate (EMS)-mutagenized B. napus line, together with its inheritance and gene mapping, and pleiotropic effects of the mapped locus on plant-type traits. RESULTS We constructed a high-density single-nucleotide polymorphism (SNP) map using a backcross population derived from the Bndwf/dcl1 mutant and the canola cultivar 'zhongshuang11' ('ZS11') and mapped the dwarf architecture with the down-curved leaf dominant locus, BnDWF/DCL1, in a 6.58-cM interval between SNP marker bins M46180 and M49962 on the linkage group (LG) C05 of B. napus. Further mapping with other materials derived from Bndwf/dcl1 narrowed the interval harbouring BnDWF/DCL1 to 175 kb in length and this interval contained 16 annotated genes. Quantitative trait locus (QTL) mappings with the backcross population for plant type traits, including plant height, branching height, main raceme length and average branching interval, indicated that the mapped QTLs for plant type traits were located at the same position as the BnDWF/DCL1 locus. CONCLUSIONS This study suggests that the BnDWF/DCL1 locus is a major pleiotropic locus/QTL in B. napus, which may reduce plant height, alter plant type traits and change leaf shape, and thus may lead to compact plant architecture. Accordingly, this locus may have substantial breeding potential for increasing planting density.
Collapse
Affiliation(s)
- Yankun Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu China
| | - Wenjing Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu China
| | - Pu Chu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu China
| | - Shubei Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu China
| | - Mao Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu China
| | - Mingming Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu China
| | - Rongzhan Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu China
| |
Collapse
|
19
|
Wang Y, He J, Yang L, Wang Y, Chen W, Wan S, Chu P, Guan R. Fine mapping of a major locus controlling plant height using a high-density single-nucleotide polymorphism map in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1479-91. [PMID: 27147069 DOI: 10.1007/s00122-016-2718-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/19/2016] [Indexed: 05/08/2023]
Abstract
A saturated map was constructed using SNP markers to fine-map a Brassica napus dominant locus for dwarf mutant onto a 152-kb interval of chromosome A09 containing 14 genes. Major dwarf loci in crops may play important roles in crop improvement and developmental genetics. The present study investigated and fine-mapped a Brassica napus dwarf-dominant locus BnDWF1. Plants carrying the BnDWF1 locus in populations derived from 'zhongshuang11' and Bndwf1 have deep-green leaves and dwarf architecture that differ sharply from tall plants with normal green leaves. BnDWF1, as a major locus controlling plant height, showed a very high heritability (0.91-0.95). To map this locus, a high-density single-nucleotide polymorphism map was constructed, and the BnDWF1 locus was mapped at an interval between single-nucleotide polymorphism markers, M19704 and M19695, on linkage group A09 of B. napus, with five co-segregating single-nucleotide polymorphism markers. Furthermore, fine mapping narrowed the interval harboring BnDWF1 to 152 kb in length in B. napus. This interval contains 14 annotated or predicted genes, seven of which are candidates responsible for the dwarf trait. This study provides an effective foundation for the study of plant height regulation and plant type breeding in B. napus.
Collapse
Affiliation(s)
- Yankun Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
| | - Jianbo He
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Li Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
| | - Yu Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
| | - Wenjing Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
| | - Shubei Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
| | - Pu Chu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
| | - Rongzhan Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China.
| |
Collapse
|
20
|
Wang Y, Xiao X, Wang X, Zeng J, Kang H, Fan X, Sha L, Zhang H, Zhou Y. RNA-Seq and iTRAQ Reveal the Dwarfing Mechanism of Dwarf Polish Wheat (Triticum polonicum L.). Int J Biol Sci 2016; 12:653-66. [PMID: 27194943 PMCID: PMC4870709 DOI: 10.7150/ijbs.14577] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/15/2016] [Indexed: 11/05/2022] Open
Abstract
The dwarfing mechanism of Rht-dp in dwarf Polish wheat (DPW) is unknown. Each internode of DPW was significantly shorter than it in high Polish wheat (HPW), and the dwarfism was insensitive to photoperiod, abscisic acid (ABA), gibberellin (GA), cytokinin (CK), auxin and brassinolide (BR). To understand the mechanism, three sets of transcripts, DPW, HPW, and a chimeric set (a combination of DPW and HPW), were constructed using RNA sequencing (RNA-Seq). Based on the chimeric transcripts, 2,446 proteins were identified using isobaric tags for relative and absolute quantification (iTRAQ). A total of 108 unigenes and 12 proteins were considered as dwarfism-related differentially expressed genes (DEGs) and differentially expressed proteins (DEPs), respectively. Among of these DEGs and DEPs, 6 DEGs and 6 DEPs were found to be involved in flavonoid and S-adenosyl-methionine (SAM) metabolisms; 5 DEGs and 3 DEPs were involved in cellulose metabolism, cell wall plasticity and cell expansion; 2 DEGs were auxin transporters; 2 DEPs were histones; 1 DEP was a peroxidase. These DEGs and DEPs reduced lignin and cellulose contents, increased flavonoid content, possibly decreased S-adenosyl-methionine (SAM) and polyamine contents and increased S-adenosyl-L-homocysteine hydrolase (SAHH) content in DPW stems, which could limit auxin transport and reduce extensibility of the cell wall, finally limited cell expansion (the cell size of DPW was significantly smaller than HPW cells) and caused dwarfism in DPW.
Collapse
Affiliation(s)
- Yi Wang
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xue Xiao
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xiaolu Wang
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jian Zeng
- 2. College of Resources, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Houyang Kang
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xing Fan
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Lina Sha
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Haiqin Zhang
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yonghong Zhou
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| |
Collapse
|
21
|
Sun C, Wang B, Yan L, Hu K, Liu S, Zhou Y, Guan C, Zhang Z, Li J, Zhang J, Chen S, Wen J, Ma C, Tu J, Shen J, Fu T, Yi B. Genome-Wide Association Study Provides Insight into the Genetic Control of Plant Height in Rapeseed (Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2016; 7:1102. [PMID: 27512396 PMCID: PMC4961929 DOI: 10.3389/fpls.2016.01102] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/12/2016] [Indexed: 05/18/2023]
Abstract
Plant height is a key morphological trait of rapeseed. In this study, we measured plant height of a rapeseed population across six environments. This population contains 476 inbred lines representing the major Chinese rapeseed genepool and 44 lines from other countries. The 60K Brassica Infinium® SNP array was utilized to genotype the association panel. A genome-wide association study (GWAS) was performed via three methods, including a robust, novel, nonparametric Anderson-Darling (A-D) test. Consequently, 68 loci were identified as significantly associated with plant height (P < 5.22 × 10(-5)), and more than 70% of the loci (48) overlapped the confidence intervals of reported QTLs from nine mapping populations. Moreover, 24 GWAS loci were detected with selective sweep signals, which reflected the signatures of historical semi-dwarf breeding. In the linkage disequilibrium (LD) decay range up-and downstream of 65 loci (r (2) > 0.1), we found plausible candidates orthologous to the documented Arabidopsis genes involved in height regulation. One significant association found by GWAS colocalized with the established height locus BnRGA in rapeseed. Our results provide insights into the genetic basis of plant height in rapeseed and may facilitate marker-based breeding.
Collapse
Affiliation(s)
- Chengming Sun
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
| | - Benqi Wang
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
| | - Lei Yan
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
| | - Sheng Liu
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
| | - Chunyun Guan
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, College of Agronomy, Hunan Agricultural UniversityChangsha, China
| | - Zhenqian Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, College of Agronomy, Hunan Agricultural UniversityChangsha, China
| | - Jiana Li
- Chongqing Rapeseed Engineering Technology Research Center, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Jiefu Zhang
- Key Laboratory of Cotton and Rapeseed, Jiangsu Academy of Agricultural ScienceNanjing, China
| | - Song Chen
- Key Laboratory of Cotton and Rapeseed, Jiangsu Academy of Agricultural ScienceNanjing, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Bin Yi
| |
Collapse
|
22
|
Zhu B, Shao Y, Pan Q, Ge X, Li Z. Genome-wide gene expression perturbation induced by loss of C2 chromosome in allotetraploid Brassica napus L. FRONTIERS IN PLANT SCIENCE 2015; 6:763. [PMID: 26442076 PMCID: PMC4585227 DOI: 10.3389/fpls.2015.00763] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/05/2015] [Indexed: 05/05/2023]
Abstract
Aneuploidy with loss of entire chromosomes from normal complement disrupts the balanced genome and is tolerable only by polyploidy plants. In this study, the monosomic and nullisomic plants losing one or two copies of C2 chromosome from allotetraploid Brassica napus L. (2n = 38, AACC) were produced and compared for their phenotype and transcriptome. The monosomics gave a plant phenotype very similar to the original donor, but the nullisomics had much smaller stature and also shorter growth period. By the comparative analyses on the global transcript profiles with the euploid donor, genome-wide alterations in gene expression were revealed in two aneuploids, and their majority of differentially expressed genes (DEGs) resulted from the trans-acting effects of the zero and one copy of C2 chromosome. The higher number of up-regulated genes than down-regulated genes on other chromosomes suggested that the genome responded to the C2 loss via enhancing the expression of certain genes. Particularly, more DEGs were detected in the monosomics than nullisomics, contrasting with their phenotypes. The gene expression of the other chromosomes was differently affected, and several dysregulated domains in which up- or downregulated genes obviously clustered were identifiable. But the mean gene expression (MGE) for homoeologous chromosome A2 reduced with the C2 loss. Some genes and their expressions on C2 were correlated with the phenotype deviations in the aneuploids. These results provided new insights into the transcriptomic perturbation of the allopolyploid genome elicited by the loss of individual chromosome.
Collapse
Affiliation(s)
- Bin Zhu
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Bin Zhu and Zaiyun Li, College of Plant Science and Technology, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, China ;
| | - Yujiao Shao
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- College of Chemistry and Life Science, Hubei University of EducationWuhan, China
| | - Qi Pan
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xianhong Ge
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Zaiyun Li
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Bin Zhu and Zaiyun Li, College of Plant Science and Technology, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, China ;
| |
Collapse
|
23
|
Song XM, Liu TK, Duan WK, Ma QH, Ren J, Wang Z, Li Y, Hou XL. Genome-wide analysis of the GRAS gene family in Chinese cabbage (Brassica rapa ssp. pekinensis). Genomics 2013; 103:135-46. [PMID: 24365788 DOI: 10.1016/j.ygeno.2013.12.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/08/2013] [Accepted: 12/16/2013] [Indexed: 12/23/2022]
Abstract
The GRAS gene family is one of the most important families of transcriptional regulators. In this study, 48 GRAS genes are identified from Chinese cabbage, and they are classified into eight groups according to the classification of Arabidopsis. The characterization, classification, gene structure and phylogenetic construction of GRAS proteins are performed. Distribution mapping shows that GRAS proteins are nonrandomly localized in 10 chromosomes. Fifty-five orthologous gene pairs are shared by Chinese cabbage and Arabidopsis, and interaction networks of these orthologous genes are constructed. The expansion of GRAS genes in Chinese cabbage results from genome triplication. Among the 17 species examined, 14 higher plants carry the GRAS genes, whereas two lower plants and one fungi species do not. Furthermore, the expression patterns of GRAS genes exhibit differences in three tissues based on RNA-seq data. Taken together, this comprehensive analysis will provide rich resources for studying GRAS protein functions in Chinese cabbage.
Collapse
Affiliation(s)
- Xiao-Ming Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong-Kun Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei-Ke Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing-Hua Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi-Lin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
24
|
Wen W, Deng Q, Jia H, Wei L, Wei J, Wan H, Yang L, Cao W, Ma Z. Sequence variations of the partially dominant DELLA gene Rht-B1c in wheat and their functional impacts. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3299-312. [PMID: 23918966 PMCID: PMC3733159 DOI: 10.1093/jxb/ert183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rht-B1c, allelic to the DELLA protein-encoding gene Rht-B1a, is a natural mutation documented in common wheat (Triticum aestivum). It confers variation to a number of traits related to cell and plant morphology, seed dormancy, and photosynthesis. The present study was conducted to examine the sequence variations of Rht-B1c and their functional impacts. The results showed that Rht-B1c was partially dominant or co-dominant for plant height, and exhibited an increased dwarfing effect. At the sequence level, Rht-B1c differed from Rht-B1a by one 2kb Veju retrotransposon insertion, three coding region single nucleotide polymorphisms (SNPs), one 197bp insertion, and four SNPs in the 1kb upstream sequence. Haplotype investigations, association analyses, transient expression assays, and expression profiling showed that the Veju insertion was primarily responsible for the extreme dwarfing effect. It was found that the Veju insertion changed processing of the Rht-B1c transcripts and resulted in DELLA motif primary structure disruption. Expression assays showed that Rht-B1c caused reduction of total Rht-1 transcript levels, and up-regulation of GATA-like transcription factors and genes positively regulated by these factors, suggesting that one way in which Rht-1 proteins affect plant growth and development is through GATA-like transcription factor regulation.
Collapse
Affiliation(s)
- Wen Wen
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Center, and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Qingyan Deng
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Center, and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Haiyan Jia
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Center, and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Lingzhu Wei
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Center, and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Jingbo Wei
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Center, and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Hongshen Wan
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Center, and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Liming Yang
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Center, and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Wenjin Cao
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Center, and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Zhengqiang Ma
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Center, and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| |
Collapse
|
25
|
Ramos ML, Altieri E, Bulos M, Sala CA. Phenotypic characterization, genetic mapping and candidate gene analysis of a source conferring reduced plant height in sunflower. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:251-263. [PMID: 22972203 DOI: 10.1007/s00122-012-1978-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 08/27/2012] [Indexed: 06/01/2023]
Abstract
Reduced height germplasm has the potential to increase stem strength, standability, and also yields potential of the sunflower crop (Helianthus annuus L. var. macrocarpus Ckll.). In this study, we report on the inheritance, mapping, phenotypic and molecular characterization of a reduced plant height trait in inbred lines derived from the source DDR. This trait is controlled by a semidominant allele, Rht1, which maps on linkage group 12 of the sunflower public consensus map. Phenotypic effects of this allele include shorter height and internode length, insensibility to exogenous gibberellin application, normal skotomorphogenetic response, and reduced seed set under self-pollination conditions. This later effect presumably is related to the reduced pollen viability observed in all DDR-derived lines studied. Rht1 completely cosegregated with a haplotype of the HaDella1 gene sequence. This haplotype consists of a point mutation converting a leucine residue in a proline within the conserved DELLA domain. Taken together, the phenotypic, genetic, and molecular results reported here indicate that Rht1 in sunflower likely encodes an altered DELLA protein. If the DELPA motif of the HaDELLA1 sequence in the Rht1-encoded protein determines by itself the observed reduction in height is a matter that remains to be investigated.
Collapse
Affiliation(s)
- María Laura Ramos
- Biotechnology Department, NIDERA S.A, Ruta 8 km 376, Casilla de Correo 6, 2600 Venado Tuerto, Santa Fe, Argentina
| | | | | | | |
Collapse
|
26
|
Chakhonkaen S, Pitnjam K, Saisuk W, Ukoskit K, Muangprom A. Genetic structure of Thai rice and rice accessions obtained from the International Rice Research Institute. RICE (NEW YORK, N.Y.) 2012; 5:19. [PMID: 27234241 PMCID: PMC5520827 DOI: 10.1186/1939-8433-5-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 05/22/2023]
Abstract
BACKGROUND Although the genetic structure of rice germplasm has been characterized worldwide, few studies investigated germplasm from Thailand, the world's largest exporter of rice. Thailand and the International Rice Research Institute (IRRI) have diverse collections of rice germplasm, which could be used to develop breeding lines with desirable traits. This study aimed to investigate the level of genetic diversity and structures of Thai and selected IRRI germplasm. Understanding the genetic structure and relationships among these germplasm will be useful for parent selection used in rice breeding programs. RESULTS From the 98 InDel markers tested for single copy and polymorphism, 19 markers were used to evaluate 43 Thai and 57 IRRI germplasm, including improved cultivars, breeding lines, landraces, and 5 other Oryza species. The Thai accessions were selected from all rice ecologies such as irrigated, deep water, upland, and rainfed lowland ecosystems. The IRRI accessions were groups of germplasm having agronomic desirable traits, including temperature-sensitive genetic male sterility (TGMS), new plant type, early flowering, and biotic and abiotic stress resistances. Most of the InDel markers were genes with diverse functions. These markers produced the total of 127 alleles for all loci, with a mean of 6.68 alleles per locus, and a mean Polymorphic Information Content (PIC) of 0.440. Genetic diversity of Thai rice were 0.3665, 0.4479 and 0.3972 for improved cultivars, breeding lines, and landraces, respectively, while genetic diversity of IRRI improved and breeding lines were 0.3272 and 0.2970, respectively. Cluster, structure, and differentiation analyses showed six distinct groups: japonica, TGMS, deep-water, IRRI germplasm, Thai landraces and breeding lines, and other Oryza species. CONCLUSIONS Thai and IRRI germplasm were significantly different. Thus, they can be used to broaden the genetic base and trait improvements. Cluster, structure, and differentiation analyses showed concordant results having six distinct groups, in agreement with their development, and ecologies.
Collapse
Affiliation(s)
- Sriprapai Chakhonkaen
- Laboratory of Plant Molecular Genetics, National Center for Genetic Engineering and Biotechnology, Pathum thani, 12120 Thailand
| | - Keasinee Pitnjam
- Laboratory of Plant Molecular Genetics, National Center for Genetic Engineering and Biotechnology, Pathum thani, 12120 Thailand
| | - Wachira Saisuk
- Department of Biotechnology, Faculty of Science and Technology, Thammasart University, Rangsit, Pathum thani, 12120 Thailand
| | - Kittipat Ukoskit
- Department of Biotechnology, Faculty of Science and Technology, Thammasart University, Rangsit, Pathum thani, 12120 Thailand
| | - Amorntip Muangprom
- Laboratory of Plant Molecular Genetics, National Center for Genetic Engineering and Biotechnology, Pathum thani, 12120 Thailand
| |
Collapse
|
27
|
Carrera E, Ruiz-Rivero O, Peres LEP, Atares A, Garcia-Martinez JL. Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development. PLANT PHYSIOLOGY 2012; 160:1581-96. [PMID: 22942390 PMCID: PMC3490602 DOI: 10.1104/pp.112.204552] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 08/31/2012] [Indexed: 05/18/2023]
Abstract
procera (pro) is a tall tomato (Solanum lycopersicum) mutant carrying a point mutation in the GRAS region of the gene encoding SlDELLA, a repressor in the gibberellin (GA) signaling pathway. Consistent with the SlDELLA loss of function, pro plants display a GA-constitutive response phenotype, mimicking wild-type plants treated with GA₃. The ovaries from both nonemasculated and emasculated pro flowers had very strong parthenocarpic capacity, associated with enhanced growth of preanthesis ovaries due to more and larger cells. pro parthenocarpy is facultative because seeded fruits were obtained by manual pollination. Most pro pistils had exserted stigmas, thus preventing self-pollination, similar to wild-type pistils treated with GA₃ or auxins. However, Style2.1, a gene responsible for long styles in noncultivated tomato, may not control the enhanced style elongation of pro pistils, because its expression was not higher in pro styles and did not increase upon GA₃ application. Interestingly, a high percentage of pro flowers had meristic alterations, with one additional petal, sepal, stamen, and carpel at each of the four whorls, respectively, thus unveiling a role of SlDELLA in flower organ development. Microarray analysis showed significant changes in the transcriptome of preanthesis pro ovaries compared with the wild type, indicating that the molecular mechanism underlying the parthenocarpic capacity of pro is complex and that it is mainly associated with changes in the expression of genes involved in GA and auxin pathways. Interestingly, it was found that GA activity modulates the expression of cell division and expansion genes and an auxin signaling gene (tomato AUXIN RESPONSE FACTOR7) during fruit-set.
Collapse
|
28
|
High-throughput discovery of mutations in tef semi-dwarfing genes by next-generation sequencing analysis. Genetics 2012; 192:819-29. [PMID: 22904035 DOI: 10.1534/genetics.112.144436] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Tef (Eragrostis tef) is a major cereal crop in Ethiopia. Lodging is the primary constraint to increasing productivity in this allotetraploid species, accounting for losses of ∼15-45% in yield each year. As a first step toward identifying semi-dwarf varieties that might have improved lodging resistance, an ∼6× fosmid library was constructed and used to identify both homeologues of the dw3 semi-dwarfing gene of Sorghum bicolor. An EMS mutagenized population, consisting of ∼21,210 tef plants, was planted and leaf materials were collected into 23 superpools. Two dwarfing candidate genes, homeologues of dw3 of sorghum and rht1 of wheat, were sequenced directly from each superpool with 454 technology, and 120 candidate mutations were identified. Out of 10 candidates tested, six independent mutations were validated by Sanger sequencing, including two predicted detrimental mutations in both dw3 homeologues with a potential to improve lodging resistance in tef through further breeding. This study demonstrates that high-throughput sequencing can identify potentially valuable mutations in under-studied plant species like tef and has provided mutant lines that can now be combined and tested in breeding programs for improved lodging resistance.
Collapse
|
29
|
Xie Y, Dong F, Hong D, Wan L, Liu P, Yang G. Exploiting comparative mapping among Brassica species to accelerate the physical delimitation of a genic male-sterile locus (BnRf) in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:211-222. [PMID: 22382487 DOI: 10.1007/s00122-012-1826-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/11/2012] [Indexed: 05/31/2023]
Abstract
The recessive genic male sterility (RGMS) line 9012AB has been used as an important pollination control system for rapeseed hybrid production in China. Here, we report our study on physical mapping of one male-sterile locus (BnRf) in 9012AB by exploiting the comparative genomics among Brassica species. The genetic maps around BnRf from previous reports were integrated and enriched with markers from the Brassica A7 chromosome. Subsequent collinearity analysis of these markers contributed to the identification of a novel ancestral karyotype block F that possibly encompasses BnRf. Fourteen insertion/deletion markers were further developed from this conserved block and genotyped in three large backcross populations, leading to the construction of high-resolution local genetic maps where the BnRf locus was restricted to a less than 0.1-cM region. Moreover, it was observed that the target region in Brassica napus shares a high collinearity relationship with a region from the Brassica rapa A7 chromosome. A BnRf-cosegregated marker (AT3G23870) was then used to screen a B. napus bacterial artificial chromosome (BAC) library. From the resulting 16 positive BAC clones, one (JBnB089D05) was identified to most possibly contain the BnRf (c) allele. With the assistance of the genome sequence from the Brassica rapa homolog, the 13.8-kb DNA fragment covering both closest flanking markers from the BAC clone was isolated. Gene annotation based on the comparison of microcollinear regions among Brassica napus, B. rapa and Arabidopsis showed that five potential open reading frames reside in this fragment. These results provide a foundation for the characterization of the BnRf locus and allow a better understanding of the chromosome evolution around BnRf.
Collapse
Affiliation(s)
- Yanzhou Xie
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Wuhan Branch, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Wang SS, Liu ZZ, Sun C, Shi QH, Yao YX, You CX, Hao YJ. Functional characterization of the apple MhGAI1 gene through ectopic expression and grafting experiments in tomatoes. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:303-10. [PMID: 22153898 DOI: 10.1016/j.jplph.2011.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 09/19/2011] [Accepted: 09/21/2011] [Indexed: 05/07/2023]
Abstract
DELLA proteins are essential components of GA signal transduction. MhGAI1 was isolated from the tea crabapple (Malus hupehensis Redh. var. pingyiensis), and it was found to encode a DELLA protein. Mhgai1 is a GA-insensitive allele that was artificially generated via a bridge-PCR approach. Ectopic expression of Mhgai1 reduced plant stature, decreased spontaneous fruit-set-ratio and enhanced drought-tolerance in transgenic tomatoes. In addition, we examined the long-distance movement of Mhgai1 mRNAs by grafting experiments and SqRT-PCR analysis. It was found that the wild-type scions accumulated Mhgai1 transcripts trafficked from the transgenic rootstocks and therefore exhibited dwarf phenotypes. Furthermore, transgenic tomato plants produced more soluble solids, sugars and organic acids compared to wild-type tomatoes, suggesting an involvement of GA signaling in the regulation of fruit quality. Despite noticeable accumulation in the leaves and stems of WT scions, Mhgai1 transcripts were undetectable in flowers and fruit. Therefore, fruit quality was less influenced by the grafting of WT scions onto transgenic rootstocks than they were by the ectopic expression of Mhgai1 in transgenic rootstocks. Taken together, MhGAI1, which functions as a repressor in the GA signaling pathway, and its GA-insensitive allele, Mhgai1, could turn out to be useful targets for the genetic improvement of dwarfing rootstocks in apples.
Collapse
Affiliation(s)
- Shuang-Shuang Wang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, Sparks CA, Al-Kaff N, Korolev A, Boulton MI, Phillips AL, Hedden P, Nicholson P, Thomas SG. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. PLANT PHYSIOLOGY 2011; 157:1820-31. [PMID: 22013218 PMCID: PMC3327217 DOI: 10.1104/pp.111.183657] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 10/19/2011] [Indexed: 05/18/2023]
Abstract
The introduction of the Reduced height (Rht)-B1b and Rht-D1b semidwarfing genes led to impressive increases in wheat (Triticum aestivum) yields during the Green Revolution. The reduction in stem elongation in varieties containing these alleles is caused by a limited response to the phytohormone gibberellin (GA), resulting in improved resistance to stem lodging and yield benefits through an increase in grain number. Rht-B1 and Rht-D1 encode DELLA proteins, which act to repress GA-responsive growth, and their mutant alleles Rht-B1b and Rht-D1b are thought to confer dwarfism by producing more active forms of these growth repressors. While no semidwarfing alleles of Rht-A1 have been identified, we show that this gene is expressed at comparable levels to the other homeologs and represents a potential target for producing novel dwarfing alleles. In this study, we have characterized additional dwarfing mutations in Rht-B1 and Rht-D1. We show that the severe dwarfism conferred by Rht-B1c is caused by an intragenic insertion, which results in an in-frame 90-bp insertion in the transcript and a predicted 30-amino acid insertion within the highly conserved amino-terminal DELLA domain. In contrast, the extreme dwarfism of Rht-D1c is due to overexpression of the semidwarfing Rht-D1b allele, caused by an increase in gene copy number. We show also that the semidwarfing alleles Rht-B1d and Rht-B1e introduce premature stop codons within the amino-terminal coding region. Yeast two-hybrid assays indicate that these newly characterized mutations in Rht-B1 and Rht-D1 confer "GA-insensitive" dwarfism by producing DELLA proteins that do not bind the GA receptor GA INSENSITIVE DWARF1, potentially compromising their targeted degradation.
Collapse
|
32
|
Characterization of grape Gibberellin Insensitive1 mutant alleles in transgenic Arabidopsis. Transgenic Res 2011; 21:725-41. [DOI: 10.1007/s11248-011-9565-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/27/2011] [Indexed: 10/15/2022]
|
33
|
Abstract
The phytohormone gibberellin and the DELLA proteins act together to control key aspects of plant development. Gibberellin induces degradation of DELLA proteins by recruitment of an F-box protein using a molecular switch: a gibberellin-bound nuclear receptor interacts with the N-terminal domain of DELLA proteins, and this event primes the DELLA C-terminal domain for interaction with the F-box protein. However, the mechanism of signalling between the N- and C-terminal domains of DELLA proteins is unresolved. In the present study, we used in vivo and in vitro approaches to characterize di- and tri-partite interactions of the DELLA protein RGL1 (REPRESSOR OF GA1-3-LIKE 1) of Arabidopsis thaliana with the gibberellin receptor GID1A (GIBBERELLIC ACID-INSENSITIVE DWARF-1A) and the F-box protein SLY1 (SLEEPY1). Deuterium-exchange MS unequivocally showed that the entire N-terminal domain of RGL1 is disordered prior to interaction with the GID1A; furthermore, association/dissociation kinetics, determined by surface plasmon resonance, predicts a two-state conformational change of the RGL1 N-terminal domain upon interaction with GID1A. Additionally, competition assays with monoclonal antibodies revealed that contacts mediated by the short helix Asp-Glu-Leu-Leu of the hallmark DELLA motif are not essential for the GID1A–RGL1 N-terminal domain interaction. Finally, yeast two- and three-hybrid experiments determined that unabated communication between N- and C-terminal domains of RGL1 is required for recruitment of the F-box protein SLY1.
Collapse
|
34
|
Lozano-Juste J, León J. Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:1410-23. [PMID: 21562334 PMCID: PMC3135954 DOI: 10.1104/pp.111.177741] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/06/2011] [Indexed: 05/19/2023]
Abstract
The transition from etiolated to green seedlings involves a shift from hypocotyl growth-promoting conditions to growth restraint. These changes occur through a complex light-driven process involving multiple and tightly coordinated hormonal signaling pathways. Nitric oxide (NO) has been lately characterized as a regulator of plant development interacting with hormone signaling. Here, we show that Arabidopsis (Arabidopsis thaliana) NO-deficient mutant hypocotyls are longer than those from wild-type seedlings under red light but not under blue or far-red light. Accordingly, exogenous treatment with the NO donor sodium nitroprusside and mutant plants with increased endogenous NO levels resulted in reduced hypocotyl length. In addition to increased hypocotyl elongation, NO deficiency led to increased anthocyanin levels and reduced PHYB content under red light, all processes governed by phytochrome-interacting factors (PIFs). NO-deficient plants accordingly showed an enhanced expression of PIF3, PIF1, and PIF4. Moreover, exogenous NO increased the levels of the gibberellin (GA)-regulated DELLA proteins and shortened hypocotyls, likely through the negative regulation of the GA Insensitive Dwarf1 (GID1)-Sleepy1 (SLY1) module. Consequently, NO-deficient seedlings displayed up-regulation of SLY1, defective DELLA accumulation, and altered GA sensitivity, thus resulting in defective deetiolation under red light. Accumulation of NO in wild-type seedlings undergoing red light-triggered deetiolation and elevated levels of NO in the GA-deficient ga1-3 mutant in darkness suggest a mutual NO-GA antagonism in controlling photomorphogenesis. PHYB-dependent NO production promotes photomorphogenesis by a GID1-GA-SLY1-mediated mechanism based on the coordinated repression of growth-promoting PIF genes and the increase in the content of DELLA proteins.
Collapse
|
35
|
Sun TP. The Molecular Mechanism and Evolution of the GA–GID1–DELLA Signaling Module in Plants. Curr Biol 2011; 21:R338-45. [DOI: 10.1016/j.cub.2011.02.036] [Citation(s) in RCA: 375] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Zeng X, Zhu L, Chen Y, Qi L, Pu Y, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T. Identification, fine mapping and characterisation of a dwarf mutant (bnaC.dwf) in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:421-8. [PMID: 20878141 DOI: 10.1007/s00122-010-1457-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/09/2010] [Indexed: 05/04/2023]
Abstract
In the present study, we have obtained one dwarf mutant (bnaC.dwf) from the Brassica napus inbred line T6 through chemical mutagen ethyl methanesulfonate (EMS). We have determined the phenotypic effects and genetic characteristics of dwarf mutant (bnaC.dwf). The dwarf mutant was insensitive to exogenous GA(3) for plant height, suggesting that it is significantly playing a crucial role in the gibberellins response pathway. Genetic analysis revealed that one recessive gene is responsible for controlling the phenotypic expression of dwarf mutant. Amplified Fragment Length Polymorphism (AFLP) technique was applied for selecting markers linked to the BnaC.DWF gene which assisted in screening of dwarf and normal individuals in the BC(4) population. We have screened 1,024 primer combinations and then identified nine AFLP markers linked to the BnaC.DWF gene. Identification and linkage of the markers were carried out by analysing 2,000 individuals from a larger population of the BC(4). Two markers EA10MC09 and EA12MC02 were located on the flanking region of the BnaC.DWF gene at a distance of 0.2 and 0.05 cM, respectively. Four AFLP markers EA09MG05, EA02MC07, EA01MC01 and EC04MC07 were successfully converted into Sequence Characterised Amplified Region markers namely SCA9G5, SCA2C7, SCA1C1 and SCC4C7. We further integrated BnaC.DWF linked Simple Sequence Repeat markers into two populations (Piquemal et al. Theor Appl Genet 111:1514-1523, 2005; Cheng et al. Theor Appl Genet 118:1121-1131, 2009). BnaC.DWF was mapped to the linkage region N18. The molecular markers developed from these investigations will greatly accelerate the selection process for developing dwarf varieties in B. napus by Marker Assisted Selection and genetic engineering.
Collapse
Affiliation(s)
- Xinhua Zeng
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lawit SJ, Wych HM, Xu D, Kundu S, Tomes DT. Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. PLANT & CELL PHYSIOLOGY 2010; 51:1854-68. [PMID: 20937610 DOI: 10.1093/pcp/pcq153] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
DELLA proteins are nuclear-localized negative regulators of gibberellin signaling found ubiquitously throughout higher plants. Dominant dwarfing mutations of DELLA proteins have been primarily responsible for the dramatic increases in harvest index of the 'green revolution'. Maize contains two genetic loci encoding DELLA proteins, dwarf plant8 (d8) and dwarf plant 9 (d9). The d8 gene and three of its dominant dwarfing alleles have been previously characterized at the molecular level. Almost 20 years after the initial description of the mutant, this investigation represents the first molecular characterization of d9 and its gibberellin-insensitive mutant, D9-1. We have molecularly, subcellularly and phenotypically characterized the gene products of five maize DELLA alleles in transgenic Arabidopsis. In dissecting the molecular differences in D9-1, a critical residue for normal DELLA function has been uncovered, corresponding to E600 of the D9 protein. The gibberellin-insensitive D9-1 was found to produce dwarfing and, notably, earlier flowering in Arabidopsis. Conversely, overexpression of the D9-1 allele delayed flowering in transgenic maize, while overexpression of the d9 allele led to earlier flowering. These results corroborate findings that DELLA proteins are at the crux of many plant developmental pathways and suggest differing mechanisms of flowering time control by DELLAs in maize and Arabidopsis.
Collapse
Affiliation(s)
- Shai J Lawit
- Pioneer Hi-Bred International, Inc., a DuPont Business, PO Box 1004, Johnston, IA 50131-1004, USA.
| | | | | | | | | |
Collapse
|
38
|
Hirano K, Asano K, Tsuji H, Kawamura M, Mori H, Kitano H, Ueguchi-Tanaka M, Matsuoka M. Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. THE PLANT CELL 2010; 22:2680-96. [PMID: 20716699 PMCID: PMC2947161 DOI: 10.1105/tpc.110.075549] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/09/2010] [Accepted: 07/28/2010] [Indexed: 05/18/2023]
Abstract
The DELLA protein SLENDER RICE1 (SLR1) is a repressor of gibberellin (GA) signaling in rice (Oryza sativa), and most of the GA-associated responses are induced upon SLR1 degradation. It is assumed that interaction between GIBBERELLIN INSENSITIVE DWARF1 (GID1) and the N-terminal DELLA/TVHYNP motif of SLR1 triggers F-box protein GID2-mediated SLR1 degradation. We identified a semidominant dwarf mutant, Slr1-d4, which contains a mutation in the region encoding the C-terminal GRAS domain of SLR1 (SLR1(G576V)). The GA-dependent degradation of SLR1(G576V) was reduced in Slr1-d4, and compared with SLR1, SLR1(G576V) showed reduced interaction with GID1 and almost none with GID2 when tested in yeast cells. Surface plasmon resonance of GID1-SLR1 and GID1-SLR1(G576V) interactions revealed that the GRAS domain of SLR1 functions to stabilize the GID1-SLR1 interaction by reducing its dissociation rate and that the G576V substitution in SLR1 diminishes this stability. These results suggest that the stable interaction of GID1-SLR1 through the GRAS domain is essential for the recognition of SLR1 by GID2. We propose that when the DELLA/TVHYNP motif of SLR1 binds with GID1, it enables the GRAS domain of SLR1 to interact with GID1 and that the stable GID1-SLR1 complex is efficiently recognized by GID2.
Collapse
Affiliation(s)
- Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Kenji Asano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroyuki Tsuji
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Mayuko Kawamura
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Hitoshi Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hidemi Kitano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | | | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
- Address correspondence to
| |
Collapse
|
39
|
Liu C, Wang J, Huang T, Wang F, Yuan F, Cheng X, Zhang Y, Shi S, Wu J, Liu K. A missense mutation in the VHYNP motif of a DELLA protein causes a semi-dwarf mutant phenotype in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:249-58. [PMID: 20221582 DOI: 10.1007/s00122-010-1306-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 02/21/2010] [Indexed: 05/20/2023]
Abstract
Although dwarf genes have been widely used to improve lodging resistance and enhance harvest index in cereal crops, lodging is still a serious problem in rapeseed (Brassica napus) production. A semi-dwarf B. napus mutant, ds-1, was identified through EMS mutagenesis of a microspore-cultured DH line. The mutant had a significant reduction in height due to a lower first branch position and shorter internodes when compared with wild-type cultivars. This dwarfism was inherited as a single semi-dominant gene, ds-1. DS-1 locus was mapped to chromosome A6, and co-segregated with a microsatellite marker BnEMS1125 derived from the gene BnRGA. BnRGA encodes a DELLA protein that functions as a GA signaling repressor. The expression of a mutant BnRGA allele from ds-1, Bnrga-ds, caused dwarf phenotypes in Arabidopsis. Comparative sequencing of RGA open-reading frames (ORFs) of ds-1 and wild-type cultivars revealed a single proline (P)-to-leucine (L) substitution that may lead to a gain-of-function mutation in GA signaling. The expression of the Arabidopsis homolog, Atrga-ds, bearing this site-directed mutation also rendered dwarf phenotypes in Arabidopsis, which demonstrated that the P-to-L mutation in the VHYNP motif of Bnrga-ds is responsible for the dwarfism. A yeast two-hybrid assay confirmed that this mutation inhibited the interaction between Bnrga-ds/Atrga-ds and the GA receptor, AtGID1A, in the presence of GA(3), suggesting that the conserved proline residue in the VHYNP motif of DELLA protein directly participates in DELLA-GID1 interaction. Identification and characterization of the dwarf gene ds-1 will facilitate its utilization in improving lodging resistance in Brassica breeding.
Collapse
Affiliation(s)
- Chao Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
A GA-insensitive dwarf mutant of Brassica napus L. correlated with mutation in pyrimidine box in the promoter of GID1. Mol Biol Rep 2010; 38:191-7. [PMID: 20358292 DOI: 10.1007/s11033-010-0094-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 03/15/2010] [Indexed: 01/22/2023]
Abstract
A dwarf mutant from Brassica napus, namely NDF-1, which was derived from a high doubled haploid (DH) line '3529'(Brassica napus L.) of which seeds were jointly treated with chemical inducers and fast neutron bombardment, was revealed that dwarfism is under the control of a major gene(designated as ndf1) with a mainly additive effect and non-significant dominance effect. The germination and hypocotyls elongation response of dwarf mutants after exogenous GA and uniconazol application showed NDF-1 was a gibberellin insensitive dwarf. We cloned the Brassica napus GID1 gene, named BnGID1, and found it was the ortholog of AtGID1a. The sequence blasting of the BnGID1 genes from NDF-1 and wild type showed there was no mutant in the gene. But the quantitative RT-PCR analysis of GID1 EST pointed out the mutation was caused by the low-level expression of BnGID1 gene. After sequenced the BnGID1 gene's upstream, we found three bases mutated in the pyrimidine box (P-box) of the BnGID1 promoter, which is linkage with the dwarf mutant.
Collapse
|
41
|
Xu Z, Xie Y, Hong D, Liu P, Yang G. Fine mapping of the epistatic suppressor gene (esp) of a recessive genic male sterility in rapeseed (Brassica napus L.). Genome 2010; 52:755-60. [PMID: 19935923 DOI: 10.1139/g09-049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
9012AB, a recessive genic male sterility (RGMS) line derived from spontaneous mutation in Brassica napus, has been playing an important role in rapeseed hybrid production in China. The male sterility of 9012AB is controlled by two recessive genes (ms3 and ms4) interacting with one recessive epistatic suppressor gene (esp). The objective of this study was to develop PCR-based markers tightly linked to the esp gene and construct a high-resolution map surrounding the esp gene. From the survey of 512 AFLP primer combinations, 3 tightly linked AFLP markers were obtained and successfully converted to codominant or dominant SCAR markers. Furthermore, a codominant SSR marker (Ra2G08) associated with the esp gene was identified through genetic map integration. For fine mapping of the esp gene, these PCR-based markers were analyzed in a large BC1 population of 2545 plants. The esp gene was then genetically restricted to a region of 1.03 cM, 0.35 cM from SSR marker Ra2G08 and 0.68 cM from SCAR marker WSC6. The SCAR marker WSC5 co-segregated with the target gene. These results lay a solid foundation for map-based cloning of esp and will facilitate the selection of RGMS lines and their temporary maintainers.
Collapse
Affiliation(s)
- Zhenghua Xu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement (Wuhan Branch), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
42
|
Pitnjam K, Chakhonkaen S, Toojinda T, Muangprom A. Identification of a deletion in tms2 and development of gene-based markers for selection. PLANTA 2008; 228:813-22. [PMID: 18642025 DOI: 10.1007/s00425-008-0784-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 07/03/2008] [Indexed: 05/05/2023]
Abstract
Rice is one of the most important food crops. The temperature-sensitive genic male sterility (TGMS) system provides a great potential for improving food production by hybrids. The use of TGMS system is simple, inexpensive, effective, and eliminates the limitations of the conventional three-line system. A rice gene, tms2, generated by irradiation of a japonica variety has been reported to control TGMS in several rice lines. Previous studies reported genetic markers linked to this gene, and the gene was transferred to an aromatic Thai cultivar. Using information obtained from published databases, we located positions of the reported genetic markers flanking the gene in rice genomic sequences, and developed gene-based markers located inside the flanking markers for polymorphism detection. We found that inbred indica tms2 mutant plants contain about 1 Mb of japonica DNA, in which at least 70 kb was deleted. Using RT-PCR for expression analysis, four genes out of seven genes annotated as expressed proteins located inside the deletion showed expression in panicles. These genes could be responsible for TGMS phenotypes of tms2. In addition, we developed gene-based markers flanking and inside the deletion for selecting the tms2 gene in breeding populations. By genotyping 102 diverse rice lines including 38 Thai rice lines, 5 species of wild rice, and 59 exotic rice lines including TGMS lines and cultivars with desirable traits, a gene-based marker located inside the deletion and one flanking marker were shown to be highly specific for the tms2 mutant.
Collapse
Affiliation(s)
- Keasinee Pitnjam
- Laboratory of Plant Molecular Genetics, Central Research Unit, National Center for Genetic Engineering and Biotechnology, Phathum Thanee, Thailand
| | | | | | | |
Collapse
|
43
|
Maureira-Butler IJ, Pfeil BE, Muangprom A, Osborn TC, Doyle JJ. The Reticulate History of Medicago (Fabaceae). Syst Biol 2008; 57:466-82. [DOI: 10.1080/10635150802172168] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Iván J. Maureira-Butler
- Department of Plant Biology, Cornell University Ithaca, NY 14853, USA; E-mail: (J.J.D.)
- Agro aquaculture Nutritional Genomic Center (CGNA) Plant Biotechnology Unit INIA-Carillanca P.O. Box 58-D, Temuco, Chile
| | - Bernard E. Pfeil
- Department of Plant Biology, Cornell University Ithaca, NY 14853, USA; E-mail: (J.J.D.)
- CSIRO Plant Industry GPO Box 1600, Canberra, ACT 2601, Australia I.J.M.-B. and B.E.P. contributed equally to this work
| | - Amorntip Muangprom
- National Center for Genetic Engineering and Biotechnology Klong Luang, Pathumthani 12120, Thailand
| | - Thomas C. Osborn
- Seminis Vegetable seeds (A Division of Monsanto) State Highway 16, Woodland, CA 95695, USA
| | - Jeff J. Doyle
- Department of Plant Biology, Cornell University Ithaca, NY 14853, USA; E-mail: (J.J.D.)
| |
Collapse
|
44
|
Schwechheimer C. Understanding gibberellic acid signaling--are we there yet? CURRENT OPINION IN PLANT BIOLOGY 2008; 11:9-15. [PMID: 18077204 DOI: 10.1016/j.pbi.2007.10.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 10/24/2007] [Accepted: 10/25/2007] [Indexed: 05/06/2023]
Abstract
The phytohormone gibberellic acid (GA) controls important aspects of plant growth such as seed germination, elongation growth, and flowering. The key components of the GA signaling pathway have been identified over the past 10 years. The current view is that GA binds to a soluble GID1 receptor, which interacts with the DELLA repressor proteins in a GA-dependent manner and thereby induces DELLA protein degradation via the E3 ubiquitin ligase SCF(GID2/SLY1). GA-dependent growth responses can generally be correlated with and be explained by changes in DELLA repressor abundance, where the DELLA repressor exerts a growth restraint that is relieved upon its degradation. However, it is obvious that other mechanisms must exist that control the activity of this pathway. This review discusses recent advances in the understanding of GA signaling, of its homeostasis, and of its cross-talk with other signaling pathways.
Collapse
Affiliation(s)
- Claus Schwechheimer
- Department of Developmental Genetics, Center for Plant Molecular Biology, Tübingen University, Auf der Morgenstelle 5, 72076 Tübingen, Germany.
| |
Collapse
|
45
|
Lei S, Yao X, Yi B, Chen W, Ma C, Tu J, Fu T. Towards map-based cloning: fine mapping of a recessive genic male-sterile gene (BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:643-51. [PMID: 17605126 DOI: 10.1007/s00122-007-0594-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 06/07/2007] [Indexed: 05/16/2023]
Abstract
S45AB, a recessive genic male sterile (RGMS) line, originated as a spontaneous mutant in Brassica napus cv. Oro. The genotypes of sterile (S45A) and fertile plants (S45B) are Bnms1ms1ms2ms2 and BnMs1ms1ms2ms2, respectively. In our previous studies, Yi et al. (Theor Appl Genet 113:643-650, 2006) mapped the BnMs1 locus to a region of 0.4 cM, candidates of which have been identified and genetic transformation is in progress. We describe the fine mapping of BnMs2 exploiting amplified fragment length polymorphism (AFLP) and amplified consensus genetic marker (ACGM) methodologies, and the identification of a collinear region probably containing BnMs2 orthologue in Arabidopsis thaliana. A near isogenic line (NIL) population S4516AB which segregated for BnMs2 locus was generated by crossing, allelism testing and repeated full-sib mating. From the survey of 1,024 AFLP primer combinations, 12 tightly linked AFLP markers were obtained and five of them were successfully converted into co-dominant or dominant sequence characterized amplified region (SCAR) markers. A population of 2,650 sterile plants was screened using these markers and a high-resolution map surrounding BnMs2 was constructed. The closest AFLP markers flanking BnMs2 were 0.038 and 0.075 cM away, respectively. Subsequently, an ACGM marker was developed to delimit the BnMs2 locus at an interval of 0.075 cM. We extended marker sequences to perform BlastN searches against the Arabidopsis genome and identified a collinear region containing 68 Arabidopsis genes, in which the orthologue of BnMs2 might be included. We further integrated BnMs2 linked AFLP or SCAR markers to two doubled-haploid (DH) populations derived from the crosses Tapidor x Ningyou7 (Qiu et al., Theor Appl Genet 114:67-80, 2006) and Quantum x No.2127-17 (available in our laboratory), and BnMs2 was mapped on N16. Molecular markers developed from these investigations will facilitate the marker-assisted selection (MAS) of RGMS lines, and the fine map and syntenic region identified will greatly hasten the process of positional cloning of BnMs2 gene.
Collapse
Affiliation(s)
- Shaolin Lei
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Hussain A, Cao D, Peng J. Identification of conserved tyrosine residues important for gibberellin sensitivity of Arabidopsis RGL2 protein. PLANTA 2007; 226:475-83. [PMID: 17333251 DOI: 10.1007/s00425-007-0497-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 02/06/2007] [Indexed: 05/14/2023]
Abstract
DELLA proteins are regulators in the signaling pathway of gibberellin (GA), a plant growth regulator of diverse functions. GA typically induces the degradation of DELLA proteins to overcome their repressive roles in growth and development. We have previously evaluated the likely roles of Ser-Thr phosphorylation of DELLA proteins in GA signaling (Hussain et al., Plant J 44:88-99, 2005). Here we report that four DELLA proteins of Arabidopsis, namely GAI, RGL1, RGL2 and RGL3, expressed in tobacco BY2 cells, are degradable by GA. Both, proteasome inhibitor and protein tyrosine (Tyr) kinase inhibitors, strongly inhibit GA-induced DELLA degradation whereas phospho-Tyr phosphatase inhibitors have no effect, suggesting that Tyr phosphorylation is critical in GA-induced DELLA degradation. Mutation of eight conserved Tyr residues of RGL2 into alanine shows four mutant proteins (Y52A, Y89A, Y223A and Y435A) are resistant to GA-induced degradation. Substitution of these four critical Tyr residues into negatively charged glutamate (Y --> E) also resulted in stabilization of these mutants against GA treatment. However, further mutation of these four Tyrs into conservative phenylalanine (Y --> F) rendered the mutant proteins sensitive to GA like the wild-type RGL2. Since Y --> E mutations sometimes mimic phosphor-Tyr whereas Y --> F mutations render the protein unphosphorylatable at these Tyr sites, we conclude that these four conserved Tyrs, despite being critical for GA-sensitivity, are unlikely to be sites of Tyr phosphorylation but instead play important roles in maintaining the structure integrity of RGL2 for GA-sensitivity.
Collapse
Affiliation(s)
- Alamgir Hussain
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673
| | | | | |
Collapse
|
47
|
Griffiths J, Murase K, Rieu I, Zentella R, Zhang ZL, Powers SJ, Gong F, Phillips AL, Hedden P, Sun TP, Thomas SG. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. THE PLANT CELL 2006; 18:3399-414. [PMID: 17194763 PMCID: PMC1785415 DOI: 10.1105/tpc.106.047415] [Citation(s) in RCA: 542] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We investigated the physiological function of three Arabidopsis thaliana homologs of the gibberellin (GA) receptor GIBBERELLIN-INSENSITIVE DWARF1 (GID1) by determining the developmental consequences of GID1 inactivation in insertion mutants. Although single mutants developed normally, gid1a gid1c and gid1a gid1b displayed reduced stem height and lower male fertility, respectively, indicating some functional specificity. The triple mutant displayed a dwarf phenotype more severe than that of the extreme GA-deficient mutant ga1-3. Flower formation occurred in long days but was delayed, with severe defects in floral organ development. The triple mutant did not respond to applied GA. All three GID1 homologs were expressed in most tissues throughout development but differed in expression level. GA treatment reduced transcript abundance for all three GID1 genes, suggesting feedback regulation. The DELLA protein REPRESSOR OF ga1-3 (RGA) accumulated in the triple mutant, whose phenotype could be partially rescued by loss of RGA function. Yeast two-hybrid and in vitro pull-down assays confirmed that GA enhances the interaction between GID1 and DELLA proteins. In addition, the N-terminal sequence containing the DELLA domain is necessary for GID1 binding. Furthermore, yeast three-hybrid assays showed that the GA-GID1 complex promotes the interaction between RGA and the F-box protein SLY1, a component of the SCF(SLY1) E3 ubiquitin ligase that targets the DELLA protein for degradation.
Collapse
Affiliation(s)
- Jayne Griffiths
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Al-Ahmad H, Dwyer J, Moloney M, Gressel J. Mitigation of establishment of Brassica napus transgenes in volunteers using a tandem construct containing a selectively unfit gene. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:7-21. [PMID: 17177781 DOI: 10.1111/j.1467-7652.2005.00152.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Transgenic oilseed rape (Brassica napus) plants may remain as 'volunteer' weeds in following crops, complicating cultivation and contaminating crop yield. Volunteers can become feral as well as act as a genetic bridge for the transfer of transgenes to weedy relatives. Transgenic mitigation using genes that are positive or neutral to the crop, but deleterious to weeds, should prevent volunteer establishment, as previously intimated using a tobacco (Nicotiana tabacum) model. A transgenically mitigated (TM), dwarf, herbicide-resistant construct using a gibberellic acid-insensitive (Deltagai) gene in the B. napus crop was effective in offsetting the risks of transgene establishment in volunteer populations of B. napus. This may be useful in the absence of herbicide, e.g. when wheat is rotated with oilseed rape. The TM dwarf B. napus plants grown alone had a much higher yield than the non-transgenics, but were exceedingly unfit in competition with non-transgenic tall cohorts. The reproductive fitness of TM B. napus was 0% at 2.5-cm and 4% at 5-cm spacing between glasshouse-grown plants relative to non-transgenic B. napus. Under screen-house conditions, the reproductive fitness of TM B. napus relative to non-transgenic B. napus was less than 12%, and the harvest index of the TM plants was less than 40% of that of the non-transgenic competitors. The data clearly indicate that the Deltagai gene greatly enhances the yield in a weed-free transgenic crop, but the dwarf plants can be eliminated when competing with non-transgenic cohorts (and presumably other species) when the selective herbicide is not used.
Collapse
Affiliation(s)
- Hani Al-Ahmad
- Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
49
|
Kitazawa D, Hatakeda Y, Kamada M, Fujii N, Miyazawa Y, Hoshino A, Iida S, Fukaki H, Morita MT, Tasaka M, Suge H, Takahashi H. Shoot circumnutation and winding movements require gravisensing cells. Proc Natl Acad Sci U S A 2005; 102:18742-7. [PMID: 16339910 PMCID: PMC1310508 DOI: 10.1073/pnas.0504617102] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 10/25/2005] [Indexed: 11/18/2022] Open
Abstract
Circumnutation and winding in plants are universal growth movements that allow plants to survive despite their sessile nature. However, the detailed molecular mechanisms controlling these phenomena remain unclear. We previously found that a gravitropic mutant of Japanese morning glory (Pharbitis nil or Ipomoea nil), Shidare-asagao (weeping), is defective not only in circumnutation but also in the winding response. This phenotype is similar to that of the Arabidopsis SCARECROW (SCR) mutant. We therefore investigated whether morning glory SCR (PnSCR) is involved in the weeping phenotype. We found that one amino acid was inserted into the highly conserved VHIID motif in weeping-type PnSCR; this mutation caused abnormal endodermal differentiation. We introduced either the mutant or WT PnSCR into Arabidopsis scr mutants for complementation tests. PnSCR of the WT, but not of weeping, rescued the shoot gravitropism and circumnutation of scr. These results show that both the abnormal gravitropism and the circumnutation defect in weeping are attributable to a loss of PnSCR function. Thus, our data show that gravisensing endodermal cells are indispensable for shoot circumnutation and the winding response and that PnSCR is responsible for the abnormal phenotypes of weeping.
Collapse
Affiliation(s)
- Daisuke Kitazawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mayerhofer R, Wilde K, Mayerhofer M, Lydiate D, Bansal VK, Good AG, Parkin IAP. Complexities of chromosome landing in a highly duplicated genome: toward map-based cloning of a gene controlling blackleg resistance in Brassica napus. Genetics 2005; 171:1977-88. [PMID: 16143600 PMCID: PMC1456120 DOI: 10.1534/genetics.105.049098] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The LmR1 locus, which controls seedling resistance to the blackleg fungus Leptosphaeria maculans in the Brassica napus cultivar Shiralee, was positioned on linkage group N7. Fine genetic mapping in a population of 2500 backcross lines identified three molecular markers that cosegregated with LmR1. Additional linkage mapping in a second population colocalized a seedling resistance gene, ClmR1, from the cultivar Cresor to the same genetic interval on N7 as LmR1. Both genes were located in a region that showed extensive inter- and intragenomic duplications as well as intrachromosomal tandem duplications. The tandem duplications seem to have occurred in the Brassica lineage before the divergence of B. rapa and B. oleracea but after the separation of Brassica and Arabidopsis from a common ancestor. Microsynteny was found between the region on N7 carrying the resistance gene and the end of Arabidopsis chromosome 1, interrupted by a single inversion close to the resistance locus. The collinear region in Arabidopsis was assayed for the presence of possible candidate genes for blackleg resistance. These data provided novel insights into the genomic structure and evolution of plant resistance loci and an evaluation of the candidate gene approach using comparative mapping with a model organism.
Collapse
Affiliation(s)
- Reinhold Mayerhofer
- Department of Biological Sciences, University of Alberta, G-404 Biological Sciences Building, Edmonton, Alberta T6G 2E9, Canada.
| | | | | | | | | | | | | |
Collapse
|