1
|
Kharel A, Ziemann M, Rookes J, Cahill D. Modulation of key sterol-related genes of Nicotiana benthamiana by phosphite treatment during infection with Phytophthora cinnamomi. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP24251. [PMID: 40373186 DOI: 10.1071/fp24251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 04/30/2025] [Indexed: 05/17/2025]
Abstract
Phytophthora cinnamomi is a globally destructive pathogen causing disease in over 5000 plant species. As sterol auxotrophs, Phytophthora species rely on host-derived phytosterols for reproduction, yet the effects of pathogen infection on plant sterol biosynthesis remains unclear. We utilised a soil-free plant growth system to analyze the impacts of P. cinnamomi on Nicotiana benthamiana roots, a new model for studying P. cinnamomi -plant root interactions. Our results show that P. cinnamomi successfully infected all ecotypes tested, but infection was inhibited by the systemic chemical, phosphite. While phosphite is traditionally associated with the activation of plant defence mechanisms, we show that phosphite also modulates plant immune receptors and phytosterol biosynthesis. qPCR analyses revealed a two-fold upregulation of the N. benthamiana elicitin receptor, Responsive to Elicitins (REL ), and its co-receptor, suppressor of BIR1-1 (SOBIR ) during P. cinnamomi infection when compared with infected, phosphite-treated plants. Furthermore, key genes related to plant sterol biosynthesis were upregulated in their expression during pathogen infection but were suppressed in phosphite-treated and infected plants. Notably, the cytochrome P450 family 710 (CYP710A ) gene encoding a C22-sterol desaturase, involved in stigmasterol production, a phytosterol known to be linked to plant susceptibility to pathogens, was downregulated in phosphite-treated plants, independent of infection status. These findings reveal novel insights into the role of phosphite in modulating plant immune responses and sterol metabolism, with potential in managing diseases caused by P. cinnamomi .
Collapse
Affiliation(s)
- Aayushree Kharel
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Geelong, Vic 3216, Australia
| | - Mark Ziemann
- Burnet Institute, Melbourne, Vic 3004, Australia
| | - James Rookes
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Geelong, Vic 3216, Australia
| | - David Cahill
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Geelong, Vic 3216, Australia
| |
Collapse
|
2
|
Schneider GF, Beckman NG. Different tools for different trades: contrasts in specialized metabolite chemodiversity and phylogenetic dispersion in fruit, leaves, and roots of the neotropical shrubs Psychotria and Palicourea (Rubiaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 40120124 DOI: 10.1111/plb.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/14/2025] [Indexed: 03/25/2025]
Abstract
Plants produce an astonishingly diverse array of specialized metabolites. A crucial step in understanding the origin of such chemodiversity is describing how chemodiversity manifests across the spatial and ontogenetic scales relevant to plant-biotic interactions. Focusing on 21 sympatric species of Psychotria and Palicourea sensu lato (Rubiaceae), we describe patterns of specialized metabolite diversity across spatial and ontogenetic scales using a combination of field collections, untargeted metabolomics, and ecoinformatics. We compare α, β, and γ diversity of specialized metabolites in expanding leaves, unripe pulp, immature seed, ripe pulp, mature seed, and fine roots. Within species, fruit tissues from across ontogenetic stages had ≥α diversity than leaves, and ≤β diversity than leaves. Pooled across species, fruit tissues and ontogenetic stages had the highest γ diversity of all organs, and fruit tissues and ontogenetic stages combined had a higher incidence of organ-specific mass spectral features than leaves. Roots had ≤α diversity than leaves and the lowest β and γ diversity of all organs. Phylogenetic correlations of chemical distance varied by plant organ and chemical class. Our results describe patterns of specialized metabolite diversity across organs and species and provide support for organ-specific contributions to plant chemodiversity. This study contributes to the growing understanding within plant evolutionary ecology of the biological scales of specialized metabolite diversification. Future studies combining our data on specialized metabolite diversity with biotic interaction data and experiments can test existing hypotheses on the roles of ecological interactions in the evolution of chemodiversity.
Collapse
Affiliation(s)
- G F Schneider
- Department of Biology, Utah State University, Logan, Utah, USA
| | - N G Beckman
- Department of Biology and Ecology Center, Utah State University, Smithsonian Tropical Research Institute, Panama, Republic of Panama
| |
Collapse
|
3
|
Wang A, Tang H, Sun J, Wang L, Rasmann S, Ruan W, Wei X. Entomopathogenic Nematodes-Killed Insect Cadavers in the Rhizosphere Activate Plant Direct and Indirect Defences Aboveground. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39370758 DOI: 10.1111/pce.15193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Plants can perceive and respond to external stimuli by activating both direct and indirect defences against herbivores. Soil-dwelling entomopathogenic nematodes (EPNs), natural enemies of root-feeding herbivores, carry symbiotic bacteria that grow and reproduce once inside arthropod hosts. We hypothesized that the metabolites produced by EPN-infected insect cadavers could be perceived by plants, thereby activating plant defences systemically. We tested this hypothesis by adding three EPN-infected Galleria mellonella cadavers to maize plants and testing plant responses against a major maize pest (Spodoptera frugiperda) and one of its parasitoids (Trichogramma dendrolimi). We found that S. frugiperda females deposited fewer, and caterpillars fed less on maize plants growing near EPN-infected cadavers than on control plants. Accordingly, EPN-infected cadavers triggered the systemic accumulation of defence hormones (SA), genes (PR1), and enzymes (SOD, POD, and CAT) in maize leaves. Furthermore, four volatile organic compounds produced by plants exposed to EPN-infected cadavers deterred S. frugiperda caterpillars and female adults. However, these compounds were more attractive to T. dendrolimi parasitoids. Our study enhances the understanding of the intricate relationships within the above- and belowground ecosystems and provides crucial insights for advancing sustainable pest management strategies.
Collapse
Affiliation(s)
- Ailing Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Hongbo Tang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Sun
- College of Life Sciences, Nankai University, Tianjin, China
| | - Lei Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Weibin Ruan
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xianqin Wei
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Costan CA, Godsoe W, Bufford JL, Hulme PE. Comparing the Above and Below-Ground Chemical Defences of Three Rumex Species Between Their Native and Introduced Provenances. J Chem Ecol 2023; 49:276-286. [PMID: 37121960 PMCID: PMC10495513 DOI: 10.1007/s10886-023-01427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
Compared to their native range, non-native plants often experience reduced levels of herbivory in the introduced range. This may result in reduced pressure to produce chemical defences that act against herbivores. We measured the most abundant secondary metabolites found in Rumex spp., namely oxalates, phenols and tannins. To test this hypothesis, we compared native (UK) and introduced (NZ) provenances of three different Rumex species (R. obtusifolius, R. crispus and R. conglomeratus, Polygonaceae) to assess whether any significant differences existed in their levels of chemical defences in either leaves and roots. All three species have previously been shown to support a lower diversity of insect herbivores and experience less herbivory in the introduced range. We further examined leaf herbivory on plants from both provenances when grown together in a common garden experiment in New Zealand to test whether any differences in damage might be consistent with variation in the quantity of chemical defences. We found that two Rumex species (R. obtusifolius and R. crispus) showed no evidence for a reduction in chemical defences, while a third (R. conglomeratus) showed only limited evidence. The common garden experiment revealed that the leaves analysed had low levels of herbivory (~ 0.5%) with no differences in damage between provenances for any of the three study species. Roots tended to have a higher concentration of tannins than shoots, but again showed no difference between the provenances. As such, the findings of this study provide no evidence for lower plant investments in chemical defences, suggesting that other factors explain the success of Rumex spp. in New Zealand.
Collapse
Affiliation(s)
- Cristian-Andrei Costan
- Bio-Protection Research Centre, Lincoln, Canterbury 7647 New Zealand
- Foundation for Arable Research, Templeton, Canterbury 7678 New Zealand
| | - William Godsoe
- Bio-Protection Research Centre, Lincoln, Canterbury 7647 New Zealand
| | - Jennifer L. Bufford
- Bio-Protection Research Centre, Lincoln, Canterbury 7647 New Zealand
- Manaaki Whenua – Landcare Research, Lincoln, Canterbury 7647 New Zealand
| | - Philip E. Hulme
- Bio-Protection Research Centre, Lincoln, Canterbury 7647 New Zealand
| |
Collapse
|
5
|
Reinbacher L, Praprotnik E, Razinger J, Bacher S, Grabenweger G. Influence of Wireworm Diet on its Susceptibility to and Control With the Entomopathogenic Fungus Metarhizium brunneum (Hypocreales: Clavicipitaceae) in Laboratory and Field Settings. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:108-118. [PMID: 36575909 PMCID: PMC9912137 DOI: 10.1093/jee/toac198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 06/17/2023]
Abstract
Entomopathogenic fungi (EPF) represent promising control agents against wireworms but success in field experiments is inconsistent. The physiological condition of the targeted insect is crucial for its ability to withstand fungal infection. In particular, nutritional status is among the most important determinants of the insects' immune defense. In this study, we investigated the effects of diet on the development of the wireworm Agriotes obscurus (L.) (Coleoptera: Elateridae) and its subsequent susceptibility to the fungal pathogen Metarhizium brunneum (Petch) (Hypocreales: Clavicipitaceae) in a pot experiment. After being reared on one of five plant diets for eight weeks, wireworms were exposed to an environment inoculated with the EPF and monitored for their susceptibility to fungal infection. We then performed a field experiment in which three plant diets (clover, radish, and a cover crop mix), selected according to the insects' performance in the laboratory experiment, were grown as a cover crop with EPF application. Plant diet influenced growth and development of larvae, but there were no strong differences in susceptibility toward fungal infection in the laboratory experiment. Damage levels in EPF-treated plots in the field varied depending on the cover crop. Damage was highest in plots planted with a mix of cover crop species, whereas damage was lowest in plots with clover or radish alone. This agrees with the laboratory results where insect performance was inferior when fed on clover or radish. Cover crop effects on wireworm damage in the subsequent cash crop may thus vary depending on the cover crop species selected.
Collapse
Affiliation(s)
| | - Eva Praprotnik
- Agricultural Institute of Slovenia, Plant Protection Department, Ljubljana, Slovenia
| | - Jaka Razinger
- Agricultural Institute of Slovenia, Plant Protection Department, Ljubljana, Slovenia
| | - Sven Bacher
- University of Fribourg, Department of Biology, Unit of Ecology and Evolution, Fribourg, Switzerland
| | - Giselher Grabenweger
- Agroscope, Extension Arable Crops, Departement Plants and Plant Products, Zurich, Switzerland
| |
Collapse
|
6
|
Messaili S, Qu Y, Fougère L, Colas C, Desneux N, Lavoir AV, Destandau E, Michel T. Untargeted metabolomic and molecular network approaches to reveal tomato root secondary metabolites. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:672-684. [PMID: 33225475 DOI: 10.1002/pca.3014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION The tomato plant, Solanum lycopersicum L. (Solanaceae), is one of the most widely consumed vegetables in the world and plays an important role in human diet. Tomato cultivars are hosts for diverse types of pests, implying diverse chemical defence strategies. Glycoalkaloids are the main specialised metabolites produced by tomato leaves and fruits to protect against pests. However, the roots have received little attention, leading to limited knowledge about their phytochemical content. OBJECTIVE The main goal of the current study was the development of an untargeted ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS) based metabolomic approach to study phytochemical variations in tomato roots at two different development stages (i.e. 34th and 62nd day after sowing). METHODS UHPLC-HRMS was used to establish the fingerprint of 24 batches of tomato roots. Statistical analyses were performed to highlight the compounds that discriminated between young and mature tomato roots. A dereplication strategy using molecular networking and HRMS/MS data was set up to identify the metabolites regulated during early root development. KEY FINDINGS The main biomarkers were guanidine and adenosine derivatives associated with tryptophan. Secondary metabolites such as glycoalkaloids and steroidal alkaloids were also characterised. Most of the metabolites were up-regulated in young tomato roots (34 days old) while tryptophan was up-regulated in the older roots (62 days old). CONCLUSION The metabolic changes observed in this work contribute to a deeper understanding of early-stage root development and may help our understanding of the complex processes involved in the tomato root defence arsenal.
Collapse
Affiliation(s)
- Souhila Messaili
- Institut de Chimie Organique et Analytique, Université d'Orléans, CNRS, UMR 7311, BP 6759, Orléans, France
| | - Yanyan Qu
- Université Côte d'Azur, INRAe, CNRS, Institut Sophia Agrobiotech, UMR 1355-7254, 06903 Sophia Antipolis, France
| | - Laëtitia Fougère
- Institut de Chimie Organique et Analytique, Université d'Orléans, CNRS, UMR 7311, BP 6759, Orléans, France
| | - Cyril Colas
- Institut de Chimie Organique et Analytique, Université d'Orléans, CNRS, UMR 7311, BP 6759, Orléans, France
- Centre de Biophysique Moléculaire, CNRS, Université d'Orléans, UPR 4311, Orléans, France
| | - Nicolas Desneux
- Université Côte d'Azur, INRAe, CNRS, Institut Sophia Agrobiotech, UMR 1355-7254, 06903 Sophia Antipolis, France
| | - Anne-Violette Lavoir
- Université Côte d'Azur, INRAe, CNRS, Institut Sophia Agrobiotech, UMR 1355-7254, 06903 Sophia Antipolis, France
| | - Emilie Destandau
- Institut de Chimie Organique et Analytique, Université d'Orléans, CNRS, UMR 7311, BP 6759, Orléans, France
| | - Thomas Michel
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Nice, France
| |
Collapse
|
7
|
Contreras-Cornejo HA, Macías-Rodríguez L, Real-Santillán RO, López-Carmona D, García-Gómez G, Galicia-Gallardo AP, Alfaro-Cuevas R, González-Esquivel CE, Najera-Rincón MB, Adame-Garnica SG, Rebollar-Alviter A, Álvarez-Navarrete M, Larsen J. In a belowground multitrophic interaction, Trichoderma harzianum induces maize root herbivore tolerance against Phyllophaga vetula. PEST MANAGEMENT SCIENCE 2021; 77:3952-3963. [PMID: 33851514 DOI: 10.1002/ps.6415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/24/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Trichoderma spp. are soil fungi that interact with plant roots and associated biota such as other microorganisms and soil fauna. However, information about their interactions with root-feeding insects is limited. Here, interactions between Trichoderma harzianum and the root-feeding insect Phyllophaga vetula, a common insect pest in maize agroecosystems, were examined. RESULTS Applications of T. harzianum and P. vetula to the root system increased and decreased maize growth, respectively. Induced tolerance against herbivore attack was provided by T. harzianum maintaining a robust and functional root system as evidenced by the increased uptake of Cu, Ca, Mg, Na and K. Herbivore tolerance also coincided with changes in the emission of root volatile terpenes known to induce indirect defense responses and attract natural enemies of the herbivore. More importantly, T. harzianum induced de novo emission of several sesquiterpenes such as β-caryophyllene and δ-cadinene. In addition, single and combined applications of T. harzianum and P. vetula altered the sucrose content of the roots. Finally, T. harzianum produced 6-pentyl-2H-pyran-2-one (6-PP) a volatile compound that may act as an antifeedant-signaling compound mitigating root herbivory by P. vetula. CONCLUSION Our results provide novel information about belowground multitrophic plant-microbe-arthropod interactions between T. harzianum and P. vetula in the maize rhizosphere resulting in alterations in maize phenotypic plant responses, inducing root herbivore tolerance.
Collapse
Affiliation(s)
- Hexon Angel Contreras-Cornejo
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Lourdes Macías-Rodríguez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - Raúl Omar Real-Santillán
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Dante López-Carmona
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Griselda García-Gómez
- Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Ana Paola Galicia-Gallardo
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Ruth Alfaro-Cuevas
- Instituto de Investigaciones en Ciencias de la Tierra, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - Carlos E González-Esquivel
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Miguel Bernardo Najera-Rincón
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarías, Campo Experimental Uruapan, Uruapan, Mexico
| | - Sandra Goretti Adame-Garnica
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - Angel Rebollar-Alviter
- Universidad Autónoma Chapingo, Centro Regional Universitario Centro Occidente, Morelia, Mexico
| | | | - John Larsen
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| |
Collapse
|
8
|
Cowan MF, Blomstedt CK, Møller BL, Henry RJ, Gleadow RM. Variation in production of cyanogenic glucosides during early plant development: A comparison of wild and domesticated sorghum. PHYTOCHEMISTRY 2021; 184:112645. [PMID: 33482417 DOI: 10.1016/j.phytochem.2020.112645] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Domestication has narrowed the genetic diversity found in crop wild relatives, potentially reducing plasticity to cope with a changing climate. The tissues of domesticated sorghum (Sorghum bicolor), especially in younger plants, are cyanogenic and potentially toxic. Species of wild sorghum produce lower levels of the cyanogenic glucoside (CNglc) dhurrin than S. bicolor at maturity, but it is not known if this is also the case during germination and early growth. CNglcs play multiple roles in primary and specialised metabolism in domesticated sorghum and other crop plants. In this study, the temporal and spatial distribution of dhurrin in wild and domesticated sorghum at different growth stages was monitored in leaf, sheath and root tissues up to 35 days post germination using S. bicolor and the wild species S. brachypodum and S. macrospermum as the experimental systems. Growth parameters were also measured and allocation of plant total nitrogen (N%) to both dhurrin and nitrate (NO3-) was calculated. Negligible amounts of dhurrin were produced in the leaves of the two wild species compared to S. bicolor. The morphology of the two wild sorghums also differed from S. bicolor, with the greatest differences observed for the more distantly related S. brachypodum. S. bicolor had the highest leaf N% whilst the wild species had significantly higher root N%. Allocation of nitrogen to dhurrin in aboveground tissue was significantly higher in S. bicolor compared to the wild species but did not differ in the roots across the three species. The differences in plant morphology, dhurrin content and re-mobilisation, and nitrate/nitrogen allocation suggest that domestication has affected the functional roles of dhurrin in sorghum.
Collapse
Affiliation(s)
- Max F Cowan
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria, 3800, Australia
| | - Cecilia K Blomstedt
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria, 3800, Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871, Frederiksberg C, Copenhagen, Denmark; VILLUM Research Center Plant Plasticity, University of Copenhagen, 40 Thorvaldsensvej, DK-1871, Frederiksberg C, Copenhagen, Denmark
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Roslyn M Gleadow
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria, 3800, Australia; Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
9
|
Root Secondary Metabolites in Populus tremuloides: Effects of Simulated Climate Warming, Defoliation, and Genotype. J Chem Ecol 2021; 47:313-321. [PMID: 33683546 DOI: 10.1007/s10886-021-01259-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/07/2021] [Accepted: 02/23/2021] [Indexed: 12/31/2022]
Abstract
Climate warming can influence interactions between plants and associated organisms by altering levels of plant secondary metabolites. In contrast to studies of elevated temperature on aboveground phytochemistry, the consequences of warming on root chemistry have received little attention. Herein, we investigated the effects of elevated temperature, defoliation, and genotype on root biomass and phenolic compounds in trembling aspen (Populus tremuloides). We grew saplings of three aspen genotypes under ambient or elevated temperatures (+4-6 °C), and defoliated (by 75%) half of the trees in each treatment. After 4 months, we harvested roots and determined their condensed tannin and salicinoid (phenolic glycoside) concentrations. Defoliation reduced root biomass, with a slightly larger impact under elevated, relative to ambient, temperature. Elevated temperature decreased condensed tannin concentrations by 21-43% across the various treatment combinations. Warming alone did not alter salicinoid concentrations but eliminated a small negative impact of defoliation on those compounds. Graphical vector analysis suggests that effects of warming and defoliation on condensed tannins and salicinoids were predominantly due to reduced biosynthesis of these metabolites in roots, rather than to changes in root biomass. In general, genotypes did not differ in their responses to temperature or temperature by defoliation interactions. Collectively, our results suggest that future climate warming will alter root phytochemistry, and that effects will vary among different classes of secondary metabolites and be influenced by concurrent ecological interactions such as herbivory. Temperature- and herbivory-mediated changes in root chemistry have the potential to influence belowground trophic interactions and soil nutrient dynamics.
Collapse
|
10
|
Popović Z, Krstić-Milošević D, Marković M, Vidaković V, Bojović S. Gentiana asclepiadea L. from Two High Mountainous Habitats: Inter- and Intrapopulation Variability Based on Species' Phytochemistry. PLANTS 2021; 10:plants10010140. [PMID: 33445468 PMCID: PMC7827789 DOI: 10.3390/plants10010140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/01/2021] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
Natural populations of Gentiana asclepiadea L., located at two mountainous sites, were HPLC-analyzed regarding the contents of six representative secondary metabolites. The contents of swertiamarin (SWM), gentiopicrin (GP), sweroside (SWZ), mangiferin (MGF), isoorientin (ISOOR), and isovitexin (ISOV) were determined in six populations (three per study site), and separately for aboveground and belowground plant parts. PCA showed a clear separation of four groups according to the contents of the analyzed secondary metabolites. Out of six analyzed compounds, five were present in all samples and only one (SWZ) was found in Golija populations (belowground parts) but not in Vlasina populations, and its presence can be indicative of the geolocation of populations. Clear separation of groups was mostly affected by the different contents of chemical compounds in plant parts (aboveground versus belowground) and by the differences related to population origin (higher content of SWM and GP in belowground parts of individuals from Vlasina populations and higher content of MGF and ISOOR of individuals from Golija populations). The results of this study contribute to the spatiochemical profiling of G. asclepiadea populations and a better understanding of inter- and intrapopulation variability of pharmacologically important compounds.
Collapse
Affiliation(s)
- Zorica Popović
- Department of Ecology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (M.M.); (V.V.); (S.B.)
- Correspondence:
| | - Dijana Krstić-Milošević
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia;
| | - Milena Marković
- Department of Ecology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (M.M.); (V.V.); (S.B.)
| | - Vera Vidaković
- Department of Ecology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (M.M.); (V.V.); (S.B.)
| | - Srđan Bojović
- Department of Ecology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (M.M.); (V.V.); (S.B.)
| |
Collapse
|
11
|
Dalling JW, Davis AS, Arnold AE, Sarmiento C, Zalamea PC. Extending Plant Defense Theory to Seeds. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-012120-115156] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant defense theory explores how plants invest in defenses against natural enemies but has focused primarily on the traits expressed by juvenile and mature plants. Here we describe the diverse ways in which seeds are chemically and physically defended. We suggest that through associations with other traits, seeds are likely to exhibit defense syndromes that reflect constraints or trade-offs imposed by selection to attract dispersers, enable effective dispersal, ensure appropriate timing of seed germination, and enhance seedling performance. We draw attention to seed and reproductive traits that are analogous to defense traits in mature plants and describe how the effectiveness of defenses is likely to differ at pre- and postdispersal stages. We also highlight recent insights into the mutualistic and antagonistic interactions between seeds and microbial communities, including fungi and endohyphal bacteria, that can influence seed survival in the soil and subsequent seedling vigor.
Collapse
Affiliation(s)
- James W. Dalling
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Panamá, República de Panamá
| | - Adam S. Davis
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - A. Elizabeth Arnold
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Carolina Sarmiento
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Panamá, República de Panamá
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, USA;,
| | - Paul-Camilo Zalamea
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Panamá, República de Panamá
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, USA;,
| |
Collapse
|
12
|
Bakhtiari M, Rasmann S. Variation in Below-to Aboveground Systemic Induction of Glucosinolates Mediates Plant Fitness Consequences under Herbivore Attack. J Chem Ecol 2020; 46:317-329. [PMID: 32060668 DOI: 10.1101/810432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 05/22/2023]
Abstract
Plants defend themselves against herbivore attack by constitutively producing toxic secondary metabolites, as well as by inducing them in response to herbivore feeding. Induction of secondary metabolites can cross plant tissue boundaries, such as from root to shoot. However, whether the potential for plants to systemically induce secondary metabolites from roots to shoots shows genetic variability, and thus, potentially, is under selection conferring fitness benefits to the plants is an open question. To address this question, we induced 26 maternal plant families of the wild species Cardamine hirsuta belowground (BG) using the wound-mimicking phytohormone jasmonic acid (JA). We measured resistance against a generalist (Spodoptera littoralis) and a specialist (Pieris brassicae) herbivore species, as well as the production of glucosinolates (GSLs) in plants. We showed that BG induction increased AG resistance against the generalist but not against the specialist, and found substantial plant family-level variation for resistance and GSL induction. We further found that the systemic induction of several GSLs tempered the negative effects of herbivory on total seed set production. Using a widespread natural system, we thus confirm that BG to AG induction has a strong genetic component, and can be under positive selection by increasing plant fitness. We suggest that natural variation in systemic induction is in part dictated by allocation trade-offs between constitutive and inducible GSL production, as well as natural variation in AG and BG herbivore attack in nature.
Collapse
Affiliation(s)
- Moe Bakhtiari
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| | - Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| |
Collapse
|
13
|
Variation in Below-to Aboveground Systemic Induction of Glucosinolates Mediates Plant Fitness Consequences under Herbivore Attack. J Chem Ecol 2020; 46:317-329. [DOI: 10.1007/s10886-020-01159-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 10/25/2022]
|
14
|
Ritmejeryt E, Boughton BA, Bayly MJ, Miller RE. Divergent responses of above- and below-ground chemical defence to nitrogen and phosphorus supply in waratahs (Telopea speciosissima). FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:1134-1145. [PMID: 31615620 DOI: 10.1071/fp19122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Plant nutrition can affect the allocation of resources to plant chemical defences, yet little is known about how phosphorus (P) supply, and relative nitrogen (N) and P supply, affect chemical defences, especially in species with intrinsically conservative nutrient use adapted to P-impoverished soils. Waratah (Telopea speciosissima (Sm.) R.Br.), like other Proteaceae, is adapted nutrient-poor soils. It was identified as having cyanogenic glycosides (CNglycs) throughout the plant. T. speciosissima seedlings were grown for 15 weeks under two N and P concentrations. CNglycs (N-based defence) and nutrients were quantified in above- and below-ground organs; foliar carbon (C)-based phenolics and tannins were also quantified. CNglyc concentrations in roots were on average 51-fold higher than in above-ground tissues and were affected by both N and P supply, whereas foliar CNglyc concentrations only responded to N supply. Leaves had high concentrations of C-based defences, which increased under low N, and were not correlated with N-based defences. Greater root chemical defence against herbivores and pathogens may be important in a non-mycorrhizal species that relies on basal resprouting following disturbance. The differing responses of secondary chemistry in above- and below-ground organs to P and N demonstrate the importance of broadening the predominantly foliar focus of plant defence studies.
Collapse
Affiliation(s)
- Edita Ritmejeryt
- School of Ecosystem and Forest Sciences, The University of Melbourne, Richmond, Vic. 3121, Australia; and School of BioSciences, The University of Melbourne, Parkville, Vic. 3010, Australia; and Corresponding author.
| | - Berin A Boughton
- School of BioSciences, The University of Melbourne, Parkville, Vic. 3010, Australia; and Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Vic. 3010, Australia
| | - Michael J Bayly
- School of BioSciences, The University of Melbourne, Parkville, Vic. 3010, Australia
| | - Rebecca E Miller
- School of Ecosystem and Forest Sciences, The University of Melbourne, Richmond, Vic. 3121, Australia
| |
Collapse
|
15
|
Hervé MR, Erb M. Distinct defense strategies allow different grassland species to cope with root herbivore attack. Oecologia 2019; 191:127-139. [PMID: 31367912 DOI: 10.1007/s00442-019-04479-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022]
Abstract
Root-feeding insect herbivores are of substantial evolutionary, ecological and economical importance. Plants defend themselves against insect herbivores through a variety of tolerance and resistance strategies. To date, few studies have systematically assessed the prevalence and importance of these strategies for root-herbivore interactions across different plant species. Here, we characterize the defense strategies used by three different grassland species to cope with a generalist root herbivore, the larvae of the European cockchafer Melolontha melolontha. Our results reveal that the different plant species rely on distinct sets of defense strategies. The spotted knapweed (Centaurea stoebe) resists attack by dissuading the larvae through the release of repellent chemicals. White clover (Trifolium repens) does not repel the herbivore, but reduces feeding, most likely through structural defenses and low nutritional quality. Finally, the common dandelion (Taraxacum officinale) allows M. melolontha to feed abundantly but compensates for tissue loss through induced regrowth. Thus, three co-occurring plant species have evolved different solutions to defend themselves against attack by a generalist root herbivore. The different root defense strategies may reflect distinct defense syndromes.
Collapse
Affiliation(s)
- Maxime R Hervé
- University of Rennes, Inra, Agrocampus Ouest, IGEPP, UMR-A 1349, Campus Beaulieu, Avenue du Général Leclerc, 35000, Rennes, France.
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, Switzerland.
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, Switzerland
| |
Collapse
|
16
|
Godschalx AL, Rodríguez-Castañeda G, Rasmann S. Contribution of different predator guilds to tritrophic interactions along ecological clines. CURRENT OPINION IN INSECT SCIENCE 2019; 32:104-109. [PMID: 31113621 DOI: 10.1016/j.cois.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/19/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
The strengths of interactions between plants, herbivores, and predators are predicted to relax with elevation. Despite the fundamental role predators play in tritrophic interactions, high-resolution experimental evidence describing predation across habitat gradients is still scarce in the literature and varies by predator. With this opinion paper, we look at how tritrophic strength of systems including different vertebrate and invertebrate predator guilds changes with elevation. Specifically, we focus on how birds, ants, parasitoids, and nematodes exert top-down pressure as predators and propose ways, in which each group could be better understood through elevational gradient studies. We hope to enrich future perspectives for disentangling the different biotic and abiotic factors underlying predator-mediated trophic interactions in a diversity of habitats.
Collapse
Affiliation(s)
- Adrienne L Godschalx
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | | | - Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
17
|
Creyaufmüller FC, Chassignet I, Delb H, Dounavi A, Gailing O, Leinemann L, Kreuzwieser J, Teply-Szymanski J, Vornam B. Terpene Synthase Genes in Quercus robur - Gene Characterization, Expression and Resulting Terpenes Due to Cockchafer Feeding. FRONTIERS IN PLANT SCIENCE 2018; 9:1753. [PMID: 30559755 PMCID: PMC6287202 DOI: 10.3389/fpls.2018.01753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Root herbivory caused by larvae of the forest cockchafer (Melolontha hippocastani) enhances the impact of drought on trees, particularly in oak forest rejuvenations. In Germany, geographically distant oak stands show differences in infestation strength by the forest cockchafer. While in Southwestern Germany this insect causes severe damage, oak forests in northern Germany are rarely infested. It is known that root-released volatile organic compounds (VOCs) are perceived by soil herbivores, thus guiding the larvae toward the host roots. In this work, we exposed seedlings of two distant oak provenances to forest cockchafer larvae and studied their population genetic properties, their root-based VOC chemotypes, their attraction for larvae and terpene synthase gene expression. Based on nuclear and chloroplast marker analysis, we found both oak populations to be genetically highly variable while showing typical patterns of migration from different refugial regions. However, no clear association between genetic constitution of the different provenances and the abundance of cockchafer populations on site was observed. In contrast to observations in the field, bioassays revealed a preference of the larvae for the northeastern oak provenance. The behavior of larvae was most likely related to root-released volatile terpenes and benzenoids since their composition and quantity differed between oak populations. We assume repellent effects of these compounds because the populations attractive to insects showed low abundance of these compounds. Five different oak terpene synthase (TPS) genes were identified at the genomic level which can be responsible for biosynthesis of the released terpenes. TPS gene expression patterns in response to larval feeding revealed geographic variation rather than genotypic variation. Our results support the assumption that root-released VOC are influencing the perception of roots by herbivores.
Collapse
Affiliation(s)
| | - Isabelle Chassignet
- Department of Forest Protection, Forest Research Institute Baden-Württemberg, Freiburg, Germany
| | - Horst Delb
- Department of Forest Protection, Forest Research Institute Baden-Württemberg, Freiburg, Germany
| | - Aikaterini Dounavi
- Department of Forest Protection, Forest Research Institute Baden-Württemberg, Freiburg, Germany
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Göttingen, Germany
| | - Ludger Leinemann
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Göttingen, Germany
| | - Jürgen Kreuzwieser
- Chair of Tree Physiology, Institute of Forest Science, University of Freiburg, Freiburg, Germany
| | - Julia Teply-Szymanski
- Department of Forest Protection, Forest Research Institute Baden-Württemberg, Freiburg, Germany
| | - Barbara Vornam
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Göttingen, Germany
| |
Collapse
|
18
|
Senior JK, Potts BM, O'Reilly‐Wapstra JM, Bissett A, Wooliver RC, Bailey JK, Glen M, Schweitzer JA. Phylogenetic trait conservatism predicts patterns of plant‐soil feedback. Ecosphere 2018. [DOI: 10.1002/ecs2.2409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- John K. Senior
- School of Natural Sciences University of Tasmania Private Bag 55 Hobart TAS 7001Australia
- Institutionen för vilt fisk och miljö Sveriges lantbruksuniversitet 901 83 Umeå Sweden
| | - Brad M. Potts
- School of Natural Sciences University of Tasmania Private Bag 55 Hobart TAS 7001Australia
| | | | - Andrew Bissett
- Oceans and Atmosphere Commonwealth Scientific and Industrial Research Organisation HobartTAS 7001 Australia
| | - Rachel C. Wooliver
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| | - Joseph K. Bailey
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| | - Morag Glen
- Tasmanian Institute of Agriculture University of Tasmania Private Bag 54 HobartTAS 7001 Australia
| | - Jennifer A. Schweitzer
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| |
Collapse
|
19
|
Koffel T, Daufresne T, Massol F, Klausmeier CA. Plant Strategies along Resource Gradients. Am Nat 2018; 192:360-378. [DOI: 10.1086/698600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Bakhtiari M, Glauser G, Rasmann S. Root JA Induction Modifies Glucosinolate Profiles and Increases Subsequent Aboveground Resistance to Herbivore Attack in Cardamine hirsuta. FRONTIERS IN PLANT SCIENCE 2018; 9:1230. [PMID: 30186300 PMCID: PMC6110943 DOI: 10.3389/fpls.2018.01230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/03/2018] [Indexed: 05/22/2023]
Abstract
Alteration and induction of plant secondary metabolites after herbivore attack have been shown in almost all the studied plant species. Induction can be at the local site of damage, or systemic, such as from roots to shoots. In addition to immediate induction, previous herbivore bouts have been shown to "prime" the plants for a stronger and faster response only after a subsequent attack happens. Whereas several studies revealed a link between root herbivory and increased resistance against aboveground (AG) herbivory, the evidence of root defense priming against subsequent AG herbivory is currently lacking. To address this gap, we induced Cardamine hirsuta roots by applying jasmonic acid (JA), and, after a time lag, we subjected both control and JA-treated plants to AG herbivory by the generalist herbivore Spodoptera littoralis. We addressed the effect of root JA addition on AG herbivore resistance by measuring larval weight gain and tested the effect of root induction on abundance and composition of glucosinolates (GSLs) in shoots, prior, and after subsequent herbivory. We observed a strong positive effect of root induction on the resistance against AG herbivory. The overall abundance and identity of GSLs was globally affected by JA induction and by herbivore feeding, independently, and we found a significant correlation between larval growth and the shoot GSL profiles only after AG herbivory, 11 days after induction in roots. Contrary to expectations of priming, we observed that JA induction in roots altered the GSLs profile in the leaves that was maintained through time. This initial modification was sufficient to maintain a lower caterpillar weight gain, even 11 days post-root induction. Altogether, we show that prior root defense induction increases AG insect resistance by modifying and maintaining variation in GSL profiles during insect feeding.
Collapse
Affiliation(s)
- Moe Bakhtiari
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, Neuchâtel, Switzerland
| | - Sergio Rasmann
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
21
|
Dettlaff MA, Marshall V, Erbilgin N, Cahill JF. Root condensed tannins vary over time, but are unrelated to leaf tannins. AOB PLANTS 2018; 10:ply044. [PMID: 30090221 PMCID: PMC6070047 DOI: 10.1093/aobpla/ply044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/21/2018] [Indexed: 05/08/2023]
Abstract
Although the negative effects of root herbivores on plant fitness are expected to be similar to those of above-ground herbivores, the study of below-ground plant defences is limited compared to the rich literature on above-ground defences. Current theory predicts that concentrations of defensive chemicals above- and below-ground should be correlated, as the evolutionary drivers that shape plant defence are similar across the whole plant. We conducted a field study to measure root condensed tannin concentrations in Populus tremuloides, and determine how they related to leaf condensed tannin concentrations, tree position within the stand (edge vs. interior), tree size, and time of year. Overall, root tannin concentrations were substantially lower than leaf tannin concentrations. At individual sampling periods, root and leaf tannin concentrations were uncorrelated with each other, and did not vary with stand position or size. Across the growing season both root and leaf tannin concentrations did show similar trends, with both highest in the early summer, and declining through mid-summer and fall. These results suggest that the mechanisms that influence leaf and root tannin levels in aspen are independent within individual stems, possibly due to different evolutionary pressures experienced by the different tissue types or in response to localized (roots vs. foliage) stressors. However, across individual stems, the similar patterns in chemical defence over time, independent of plant size or stand position indicate that larger scale processes can have consistent effects across individuals within a population, such as the relative investment in defence of tissues in the spring versus the fall. Overall, we conclude that using theories based on above-ground defence to predict below-ground defences may not be possible without further studies examining below-ground defence.
Collapse
Affiliation(s)
- Margarete A Dettlaff
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Valerie Marshall
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - James F Cahill
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Rasmann S, Bennett A, Biere A, Karley A, Guerrieri E. Root symbionts: Powerful drivers of plant above- and belowground indirect defenses. INSECT SCIENCE 2017; 24:947-960. [PMID: 28374534 DOI: 10.1111/1744-7917.12464] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/08/2017] [Accepted: 03/15/2017] [Indexed: 05/04/2023]
Abstract
Soil microbial mutualists of plants, including mycorrhizal fungi, non-mycorrhizal fungi and plant growth promoting rhizobacteria, have been typically characterized for increasing nutrient acquisition and plant growth. More recently, soil microbes have also been shown to increase direct plant defense against above- and belowground herbivores. Plants, however, do not only rely on direct defenses when attacked, but they can also recruit pest antagonists such as predators and parasitoids, both above and belowground, mainly via the release of volatile organic compounds (i.e., indirect defenses). In this review, we illustrate the main features and effects of soil microbial mutualists of plants on plant indirect defenses and discuss possible applications within the framework of sustainable crop protection against root- and shoot-feeding arthropod pests. We indicate the main knowledge gaps and the future challenges to be addressed in the study and application of these multifaceted interactions.
Collapse
Affiliation(s)
- Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Alison Bennett
- Department of Ecological Sciences, James Hutton Institute, Dundee, UK
| | - Arjen Biere
- Netherlands Institute of Ecology, Wageningen, the Netherlands
| | - Alison Karley
- Department of Ecological Sciences, James Hutton Institute, Dundee, UK
| | - Emilio Guerrieri
- Institute for Sustainable Plant Protection, National Research Council of Italy, Portici, Italy
| |
Collapse
|
23
|
A Maize Inbred Exhibits Resistance Against Western Corn Rootwoorm, Diabrotica virgifera virgifera. J Chem Ecol 2017; 43:1109-1123. [PMID: 29151152 DOI: 10.1007/s10886-017-0904-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 01/04/2023]
Abstract
Insect resistance against root herbivores like the western corn rootworm (WCR, Diabrotica virgifera virgifera) is not well understood in non-transgenic maize. We studied the responses of two American maize inbreds, Mp708 and Tx601, to WCR infestation using biomechanical, molecular, biochemical analyses, and laser ablation tomography. Previous studies performed on several inbreds indicated that these two maize genotypes differed in resistance to pests including fall armyworm (Spodoptera frugiperda) and WCR. Our data confirmed that Mp708 shows resistance against WCR, and demonstrates that the resistance mechanism is based in a multi-trait phenotype that includes increased resistance to cutting in nodal roots, stable root growth during insect infestation, constitutive and induced expression of known herbivore-defense genes, including ribosomal inhibitor protein 2 (rip2), terpene synthase 23 (tps23) and maize insect resistance cysteine protease-1 (mir1), as well high constitutive levels of jasmonic acid and production of (E)-β-caryophyllene. In contrast, Tx601 is susceptible to WCR. These findings will facilitate the use of Mp708 as a model to explore the wide variety of mechanisms and traits involved in plant defense responses and resistance to herbivory by insects with several different feeding habits.
Collapse
|
24
|
Gan H, Churchill ACL, Wickings K. Invisible but consequential: root endophytic fungi have variable effects on belowground plant-insect interactions. Ecosphere 2017. [DOI: 10.1002/ecs2.1710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Huijie Gan
- Department of Entomology; NY State Agricultural Experiment Station; Cornell University; Geneva New York 14456 USA
| | - Alice C. L. Churchill
- Plant Pathology and Plant-Microbe Biology Section; School of Integrative Plant Science; Cornell University; Ithaca New York 14853 USA
| | - Kyle Wickings
- Department of Entomology; NY State Agricultural Experiment Station; Cornell University; Geneva New York 14456 USA
| |
Collapse
|
25
|
Kafle D, Hänel A, Lortzing T, Steppuhn A, Wurst S. Sequential above- and belowground herbivory modifies plant responses depending on herbivore identity. BMC Ecol 2017; 17:5. [PMID: 28178961 PMCID: PMC5299658 DOI: 10.1186/s12898-017-0115-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/17/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Herbivore-induced changes in plant traits can cause indirect interactions between spatially and/or temporally separated herbivores that share the same host plant. Feeding modes of the herbivores is one of the major factors that influence the outcome of such interactions. Here, we tested whether the effects of transient aboveground herbivory for seven days by herbivores of different feeding guilds on tomato plants (Solanum lycopersicum) alters their interaction with spatially as well as temporally separated belowground herbivores. RESULTS The transient aboveground herbivory by both chewing caterpillars (Spodoptera exigua) and sucking aphids (Myzus persicae) had significant impacts on plant traits such as plant growth, resource allocation and phytohormone contents. While the changes in plant traits did not affect the overall performance of the root-knot nematodes (Meloidogyne incognita) in terms of total number of galls, we found that the consequences of aboveground herbivory for the plants can be altered by the subsequent nematode herbivory. For example, plants that had hosted aphids showed compensatory growth when they were later challenged by nematodes, which was not apparent in plants that had hosted only aphids. In contrast, plants that had been fed by S. exigua larvae did not show such compensatory growth even when challenged by nematodes. CONCLUSION The results suggest that the earlier aboveground herbivory can modify plant responses to subsequent herbivores, and such modifications may depend upon identity and/or feeding modes of the aboveground herbivores.
Collapse
Affiliation(s)
- Dinesh Kafle
- Functional Biodiversity, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| | - Anne Hänel
- Functional Biodiversity, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| | - Tobias Lortzing
- Molecular Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Anke Steppuhn
- Molecular Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Susanne Wurst
- Functional Biodiversity, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| |
Collapse
|
26
|
Garrido E, Díaz MF, Bernal H, Ñustez CE, Thaler J, Jander G, Poveda K. Costs and Tradeoffs of Resistance and Tolerance to Belowground Herbivory in Potato. PLoS One 2017; 12:e0169083. [PMID: 28095490 PMCID: PMC5240997 DOI: 10.1371/journal.pone.0169083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/12/2016] [Indexed: 12/05/2022] Open
Abstract
The success of sustainable crop production depends on our ability to select or create varieties that can allocate resources to both growth and defence. However, breeding efforts have emphasized increases in yields but have partially neglected defence traits against pests. Estimating the costs of multiple defences against tuber herbivores and the tradeoffs among them, as well as understanding the relationship between yield and multiple defences is still unknown but relevant to both basic and applied ecology. Using twenty commercial potato varieties available in Colombia and the tuber herbivore Tecia solanivora, we tested whether high yielding varieties show a reduction in three types of defence: constitutive and induced resistance, as well as tolerance. Specifically, we determined (1) the costs in terms of yield of all three defences, (2) the possible tradeoffs among them, and (3) if oviposition preference was related to the expression of these defences. We detected no costs in terms of yield of constitutive and induced resistance to tuber damage. We did, however, find evidence of costs of being able to tolerate tuber herbivory. While we found no tradeoffs among any of the estimated defences, there was a positive correlation between aboveground compensatory growth and tolerance in terms of tuber production, suggesting that after damage there are no shifts in the allocation of resources from aboveground to belowground biomass. Finally, we found that females laid more eggs on those varieties with the lowest level of constitutive resistance. In conclusion our findings suggest that in potatoes, breeding for higher yields has not caused any reduction in constitutive or induced resistance to tuber damage. This is not the case for tolerance where those varieties with higher yields are also less likely to tolerate tuber damage. Given the high incidence of tuber pests in Colombia, selecting for higher tolerance could allow for high productivity in the presence of herbivores. Finding mechanisms to decouple the tolerance response from yield should be a new priority in potato breeding in Colombia to guarantee a higher yield in both the presence and absence of herbivores.
Collapse
Affiliation(s)
- Etzel Garrido
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | | | - Hugo Bernal
- Fundación Biodiversa Colombia, Bogotá, Colombia
| | | | - Jennifer Thaler
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States of America
| | - Katja Poveda
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
27
|
Moore BD, Johnson SN. Get Tough, Get Toxic, or Get a Bodyguard: Identifying Candidate Traits Conferring Belowground Resistance to Herbivores in Grasses. FRONTIERS IN PLANT SCIENCE 2017; 7:1925. [PMID: 28105030 PMCID: PMC5214545 DOI: 10.3389/fpls.2016.01925] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/05/2016] [Indexed: 05/11/2023]
Abstract
Grasses (Poaceae) are the fifth-largest plant family by species and their uses for crops, forage, fiber, and fuel make them the most economically important. In grasslands, which broadly-defined cover 40% of the Earth's terrestrial surface outside of Greenland and Antarctica, 40-60% of net primary productivity and 70-98% of invertebrate biomass occurs belowground, providing extensive scope for interactions between roots and rhizosphere invertebrates. Grasses invest 50-70% of fixed carbon into root construction, which suggests roots are high value tissues that should be defended from herbivores, but we know relatively little about such defenses. In this article, we identify candidate grass root defenses, including physical (tough) and chemical (toxic) resistance traits, together with indirect defenses involving recruitment of root herbivores' natural enemies. We draw on relevant literature to establish whether these defenses are present in grasses, and specifically in grass roots, and which herbivores of grasses are affected by these defenses. Physical defenses could include structural macro-molecules such as lignin, cellulose, suberin, and callose in addition to silica and calcium oxalate. Root hairs and rhizosheaths, a structural adaptation unique to grasses, might also play defensive roles. To date, only lignin and silica have been shown to negatively affect root herbivores. In terms of chemical resistance traits, nitrate, oxalic acid, terpenoids, alkaloids, amino acids, cyanogenic glycosides, benzoxazinoids, phenolics, and proteinase inhibitors have the potential to negatively affect grass root herbivores. Several good examples demonstrate the existence of indirect defenses in grass roots, including maize, which can recruit entomopathogenic nematodes (EPNs) via emission of (E)-β-caryophyllene, and similar defenses are likely to be common. In producing this review, we aimed to equip researchers with candidate root defenses for further research.
Collapse
Affiliation(s)
- Ben D Moore
- Hawkesbury Institute for the Environment, Western Sydney University Richmond, NSW, Australia
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University Richmond, NSW, Australia
| |
Collapse
|
28
|
Kyndt T, Nahar K, Haeck A, Verbeek R, Demeestere K, Gheysen G. Interplay between Carotenoids, Abscisic Acid and Jasmonate Guides the Compatible Rice- Meloidogyne graminicola Interaction. FRONTIERS IN PLANT SCIENCE 2017; 8:951. [PMID: 28642770 PMCID: PMC5462958 DOI: 10.3389/fpls.2017.00951] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/22/2017] [Indexed: 05/22/2023]
Abstract
In this study, we have characterized the role of carotenoids and chlorophyll in the compatible interaction between the sedentary root knot nematode (RKN) Meloidogyne graminicola and the monocot model plant rice (Oryza sativa). Previous transcriptome data showed a differential expression of carotenoid and chlorophyll biosynthesis genes in nematode-induced giant cells and gall tissue. Metabolite measurement showed that galls indeed accumulate chlorophyll a, b and carotenoids, as well as the hormone abscisic acid (ABA). When ABA was externally applied on rice plants, or when ABA-biosynthesis was inhibited, a significant increase in gall formation and nematode development was found, showing the complex role of ABA in this interaction. ABA application suppressed jasmonic acid (JA) levels in the plants, while ABA-biosynthesis inhibition lead to increased JA levels confirming an antagonism between ABA and JA in rice roots. In addition, combined applications of ABA and JA showed that the ABA-effect can overcome JA-induced defense. Based on these observations, we hypothesized that the accumulation of chlorophyll and carotenoid precursors would be beneficial to nematode infection. Indeed, when chemically blocking the carotenoid biosynthesis pathway at different steps, which leads to differential accumulation of carotenoids and chlorophyll in the plants, a positive and clear link between accumulation of carotenoids and chlorophyll and rice susceptibility to RKN was detected.
Collapse
Affiliation(s)
- Tina Kyndt
- Department of Molecular Biotechnology, Ghent UniversityGhent, Belgium
- *Correspondence: Tina Kyndt,
| | - Kamrun Nahar
- Department of Molecular Biotechnology, Ghent UniversityGhent, Belgium
| | - Ashley Haeck
- Department of Sustainable Organic Chemistry and Technology, Research Group EnVOC, Ghent UniversityGhent, Belgium
| | - Ruben Verbeek
- Department of Molecular Biotechnology, Ghent UniversityGhent, Belgium
| | - Kristof Demeestere
- Department of Sustainable Organic Chemistry and Technology, Research Group EnVOC, Ghent UniversityGhent, Belgium
| | - Godelieve Gheysen
- Department of Molecular Biotechnology, Ghent UniversityGhent, Belgium
| |
Collapse
|
29
|
Huber M, Bont Z, Fricke J, Brillatz T, Aziz Z, Gershenzon J, Erb M. A below-ground herbivore shapes root defensive chemistry in natural plant populations. Proc Biol Sci 2016; 283:20160285. [PMID: 27009228 DOI: 10.1098/rspb.2016.0285] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/22/2016] [Indexed: 01/03/2023] Open
Abstract
Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root latex secondary metabolites across 21 central European T. officinale field populations. By cultivating offspring of these populations, we show that both heritable variation and phenotypic plasticity contribute to the observed differences. Furthermore, we demonstrate that the production of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) is costly in the absence, but beneficial in the presence of M. melolontha, resulting in divergent selection of TA-G. Our results highlight the role of soil-dwelling insects for the evolution of plant defences in nature.
Collapse
Affiliation(s)
- Meret Huber
- Root Herbivore Interactions Group, Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Zoe Bont
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Julia Fricke
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Théo Brillatz
- Root Herbivore Interactions Group, Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Zohra Aziz
- Root Herbivore Interactions Group, Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Matthias Erb
- Root Herbivore Interactions Group, Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
30
|
Mundim FM, Alborn HT, Vieira-Neto EHM, Bruna EM. A whole-plant perspective reveals unexpected impacts of above- and belowground herbivores on plant growth and defense. Ecology 2016; 98:70-78. [DOI: 10.1002/ecy.1619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Fabiane M. Mundim
- Department of Wildlife Ecology and Conservation; University of Florida; Gainesville Florida 32611-0430 USA
| | - Hans T. Alborn
- Center for Medical, Agricultural and Veterinary Entomology; Agricultural Research Service; U.S. Department of Agriculture; Gainesville Florida 32608 USA
| | - Ernane H. M. Vieira-Neto
- Department of Wildlife Ecology and Conservation; University of Florida; Gainesville Florida 32611-0430 USA
| | - Emilio M. Bruna
- Department of Wildlife Ecology and Conservation; University of Florida; Gainesville Florida 32611-0430 USA
- Center for Latin American Studies; University of Florida Gainesville; Gainesville Florida 32611-5530 USA
| |
Collapse
|
31
|
Vryzas Z. The Plant as Metaorganism and Research on Next-Generation Systemic Pesticides - Prospects and Challenges. Front Microbiol 2016; 7:1968. [PMID: 28018306 PMCID: PMC5161002 DOI: 10.3389/fmicb.2016.01968] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/24/2016] [Indexed: 12/14/2022] Open
Abstract
Systemic pesticides (SPs) are usually recommended for soil treatments and as seed coating agents and are taken up from the soil by involving various plant-mediated processes, physiological, and morphological attributes of the root systems. Microscopic insights and next-generation sequencing combined with bioinformatics allow us now to identify new functions and interactions of plant-associated bacteria and perceive plants as meta-organisms. Host symbiotic, rhizo-epiphytic, endophytic microorganisms and their functions on plants have not been studied yet in accordance with uptake, tanslocation and action of pesticides. Root tips exudates mediated by rhizobacteria could modify the uptake of specific pesticides while bacterial ligands and enzymes can affect metabolism and fate of pesticide within plant. Over expression of specific proteins in cell membrane can also modify pesticide influx in roots. Moreover, proteins and other membrane compartments are usually involved in pesticide modes of action and resistance development. In this article it is discussed what is known of the physiological attributes including apoplastic, symplastic, and trans-membrane transport of SPs in accordance with the intercommunication dictated by plant-microbe, cell to cell and intracellular signaling. Prospects and challenges for uptake, translocation, storage, exudation, metabolism, and action of SPs are given through the prism of new insights of plant microbiome. Interactions of soil applied pesticides with physiological processes, plant root exudates and plant microbiome are summarized to scrutinize challenges for the next-generation pesticides.
Collapse
Affiliation(s)
- Zisis Vryzas
- Laboratory of Agricultural Pharmacology and Ecotoxicology, Department of Agricultural Development, Democritus University of ThraceOrestias, Greece
| |
Collapse
|
32
|
Nardin T, Piasentier E, Barnaba C, Larcher R. Targeted and untargeted profiling of alkaloids in herbal extracts using online solid-phase extraction and high-resolution mass spectrometry (Q-Orbitrap). JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:729-741. [PMID: 27502171 DOI: 10.1002/jms.3838] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
The biological activity of alkaloids (ALKs) and the different content of these natural products in herbs and plants have made them an attractive field for chemical studies. A screening method automatically combining online solid-phase purification and concentration of samples with analysis using ultra-high performance liquid chromatography coupled with a hybrid quadrupole orbitrap mass spectrometer was developed and is reported in this paper. The proposed quantification method was validated for 35 ALKs with reference to pure analytical standards. A further 48 ALKs were identified on the basis of their accurate mass and characterised for chromatographic retention time and fragmentation profile, following their confirmation in extracts of herbs already well documented in the literature. More than 250 other untargeted ALKs were also tentatively identified using literature information, such as exact mass and isotopic pattern. The mass spectrometer operated in positive ion mode and mass spectra were acquired, with full MS-data-dependent MS/MS analysis (full MS-dd MS/MS) at a resolution of 140 000. The method was linear up to an ALK concentration of 1000/3000 µg l(-1) , with R(2) always >0.99 and limits of detection ranging between 0.04 and 10 µg l(-1) . Accuracy, expressed as the recovery relative error, had a median value of 7.4%, and precision (relative standard deviation %) was generally lower than 10% throughout the quantitation range. The proposed method was then used to investigate the targeted and untargeted ALK profile of a selection of 18 alpine herbal plants, establishing that pyrrolizidine, pyrrolidine and piperidine ALKs were the most well represented. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tiziana Nardin
- Centro Trasferimento Tecnologico, Fondazione E. Mach, Via Edmund Mach 1, 38010, San Michele all'Adige, TN, Italy
| | - Edi Piasentier
- Dipartimento di scienze agrarie ed ambientali (DISA), Università di Udine, Via Sondrio 2A, 33100, Udine, Italy
| | - Chiara Barnaba
- Centro Trasferimento Tecnologico, Fondazione E. Mach, Via Edmund Mach 1, 38010, San Michele all'Adige, TN, Italy
| | - Roberto Larcher
- Centro Trasferimento Tecnologico, Fondazione E. Mach, Via Edmund Mach 1, 38010, San Michele all'Adige, TN, Italy
| |
Collapse
|
33
|
Phylogeny Explains Variation in The Root Chemistry of Eucalyptus Species. J Chem Ecol 2016; 42:1086-1097. [DOI: 10.1007/s10886-016-0750-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 12/29/2022]
|
34
|
Biere A, Goverse A. Plant-Mediated Systemic Interactions Between Pathogens, Parasitic Nematodes, and Herbivores Above- and Belowground. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:499-527. [PMID: 27359367 DOI: 10.1146/annurev-phyto-080615-100245] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Plants are important mediators of interactions between aboveground (AG) and belowground (BG) pathogens, arthropod herbivores, and nematodes (phytophages). We highlight recent progress in our understanding of within- and cross-compartment plant responses to these groups of phytophages in terms of altered resource dynamics and defense signaling and activation. We review studies documenting the outcome of cross-compartment interactions between these phytophage groups and show patterns of cross-compartment facilitation as well as cross-compartment induced resistance. Studies involving soilborne pathogens and foliar nematodes are scant. We further highlight the important role of defense signaling loops between shoots and roots to activate a full resistance complement. Moreover, manipulation of such loops by phytophages affects systemic interactions with other plant feeders. Finally, cross-compartment-induced changes in root defenses and root exudates extend systemic defense loops into the rhizosphere, enhancing or reducing recruitment of microbes that induce systemic resistance but also affecting interactions with root-feeding phytophages.
Collapse
Affiliation(s)
- Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, 6708 PB Wageningen, The Netherlands;
| | - Aska Goverse
- Lab of Nematology, Department of Plant Sciences, Wageningen University, 6700 PB Wageningen, The Netherlands
| |
Collapse
|
35
|
Johnson SN, Erb M, Hartley SE. Roots under attack: contrasting plant responses to below- and aboveground insect herbivory. THE NEW PHYTOLOGIST 2016; 210:413-8. [PMID: 26781566 DOI: 10.1111/nph.13807] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/02/2015] [Indexed: 05/23/2023]
Abstract
The distinctive ecology of root herbivores, the complexity and diversity of root-microbe interactions, and the physical nature of the soil matrix mean that plant responses to root herbivory extrapolate poorly from our understanding of responses to aboveground herbivores. For example, root attack induces different changes in phytohormones to those in damaged leaves, including a lower but more potent burst of jasmonates in several plant species. Root secondary metabolite responses also differ markedly, although patterns between roots and shoots are harder to discern. Root defences must therefore be investigated in their own ecophysiological and evolutionary context, specifically one which incorporates root microbial symbionts and antagonists, if we are to better understand the battle between plants and their hidden herbivores.
Collapse
Affiliation(s)
- Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Susan E Hartley
- Department of Biology, York Environment and Sustainability Institute, University of York, York, YO10 5DD, UK
| |
Collapse
|
36
|
Kubisch P, Hertel D, Leuschner C. Fine Root Productivity and Turnover of Ectomycorrhizal and Arbuscular Mycorrhizal Tree Species in a Temperate Broad-Leaved Mixed Forest. FRONTIERS IN PLANT SCIENCE 2016; 7:1233. [PMID: 27617016 PMCID: PMC5000521 DOI: 10.3389/fpls.2016.01233] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/03/2016] [Indexed: 05/11/2023]
Abstract
Advancing our understanding of tree fine root dynamics is of high importance for tree physiology and forest biogeochemistry. In temperate broad-leaved forests, ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) tree species often are coexisting. It is not known whether EM and AM trees differ systematically in fine root dynamics and belowground resource foraging strategies. We measured fine root productivity (FRP) and fine root turnover (and its inverse, root longevity) of three EM and three AM broad-leaved tree species in a natural cool-temperate mixed forest using ingrowth cores and combined the productivity data with data on root biomass per root orders. FRP and root turnover were related to root morphological traits and aboveground productivity. FRP differed up to twofold among the six coexisting species with larger species differences in lower horizons than in the topsoil. Root turnover varied up to fivefold among the species with lowest values in Acer pseudoplatanus and highest in its congener Acer platanoides. Variation in root turnover was larger within the two groups than between EM and AM species. We conclude that the main determinant of FRP and turnover in this mixed forest is species identity, while the influence of mycorrhiza type seems to be less important.
Collapse
|
37
|
Huber M, Epping J, Schulze Gronover C, Fricke J, Aziz Z, Brillatz T, Swyers M, Köllner TG, Vogel H, Hammerbacher A, Triebwasser-Freese D, Robert CAM, Verhoeven K, Preite V, Gershenzon J, Erb M. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack. PLoS Biol 2016; 14:e1002332. [PMID: 26731567 PMCID: PMC4701418 DOI: 10.1371/journal.pbio.1002332] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022] Open
Abstract
Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha), and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.
Collapse
Affiliation(s)
- Meret Huber
- Root Herbivore Interactions Group, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Janina Epping
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Münster, Germany
| | | | - Julia Fricke
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Zohra Aziz
- Root Herbivore Interactions Group, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Théo Brillatz
- Root Herbivore Interactions Group, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Swyers
- Root Herbivore Interactions Group, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Tobias G. Köllner
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Almuth Hammerbacher
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Daniella Triebwasser-Freese
- Root Herbivore Interactions Group, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Christelle A. M. Robert
- Root Herbivore Interactions Group, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Koen Verhoeven
- Netherlands Institute of Ecology, Wageningen, Netherlands
| | | | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Matthias Erb
- Root Herbivore Interactions Group, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
38
|
Erb M, Robert CAM, Marti G, Lu J, Doyen GR, Villard N, Barrière Y, French BW, Wolfender JL, Turlings TCJ, Gershenzon J. A Physiological and Behavioral Mechanism for Leaf Herbivore-Induced Systemic Root Resistance. PLANT PHYSIOLOGY 2015; 169:2884-94. [PMID: 26430225 PMCID: PMC4677881 DOI: 10.1104/pp.15.00759] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/28/2015] [Indexed: 05/22/2023]
Abstract
Indirect plant-mediated interactions between herbivores are important drivers of community composition in terrestrial ecosystems. Among the most striking examples are the strong indirect interactions between spatially separated leaf- and root-feeding insects sharing a host plant. Although leaf feeders generally reduce the performance of root herbivores, little is known about the underlying systemic changes in root physiology and the associated behavioral responses of the root feeders. We investigated the consequences of maize (Zea mays) leaf infestation by Spodoptera littoralis caterpillars for the root-feeding larvae of the beetle Diabrotica virgifera virgifera, a major pest of maize. D. virgifera strongly avoided leaf-infested plants by recognizing systemic changes in soluble root components. The avoidance response occurred within 12 h and was induced by real and mimicked herbivory, but not wounding alone. Roots of leaf-infested plants showed altered patterns in soluble free and soluble conjugated phenolic acids. Biochemical inhibition and genetic manipulation of phenolic acid biosynthesis led to a complete disappearance of the avoidance response of D. virgifera. Furthermore, bioactivity-guided fractionation revealed a direct link between the avoidance response of D. virgifera and changes in soluble conjugated phenolic acids in the roots of leaf-attacked plants. Our study provides a physiological mechanism for a behavioral pattern that explains the negative effect of leaf attack on a root-feeding insect. Furthermore, it opens up the possibility to control D. virgifera in the field by genetically mimicking leaf herbivore-induced changes in root phenylpropanoid patterns.
Collapse
Affiliation(s)
- Matthias Erb
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland (M.E., C.A.M.R.);Root-Herbivore Interactions Group, Department of Biochemistry (M.E., C.A.M.R., J.L.), and Department of Biochemistry (J.G.), Max Planck Institute for Chemical Ecology, DE-07745 Jena, Germany;Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, CH-2009 Neuchatel, Switzerland (M.E., C.A.M.R., G.R.D., N.V., T.C.J.T.);Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland (G.M., J.-L.W.);Unité de Génétique et d'Amélioration des Plantes Fourragères, INRA, 86600 Lusignan, France (Y.B.); andUnited States Department of Agriculture, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, South Dakota 57006 (B.W.F.)
| | - Christelle A M Robert
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland (M.E., C.A.M.R.);Root-Herbivore Interactions Group, Department of Biochemistry (M.E., C.A.M.R., J.L.), and Department of Biochemistry (J.G.), Max Planck Institute for Chemical Ecology, DE-07745 Jena, Germany;Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, CH-2009 Neuchatel, Switzerland (M.E., C.A.M.R., G.R.D., N.V., T.C.J.T.);Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland (G.M., J.-L.W.);Unité de Génétique et d'Amélioration des Plantes Fourragères, INRA, 86600 Lusignan, France (Y.B.); andUnited States Department of Agriculture, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, South Dakota 57006 (B.W.F.)
| | - Guillaume Marti
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland (M.E., C.A.M.R.);Root-Herbivore Interactions Group, Department of Biochemistry (M.E., C.A.M.R., J.L.), and Department of Biochemistry (J.G.), Max Planck Institute for Chemical Ecology, DE-07745 Jena, Germany;Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, CH-2009 Neuchatel, Switzerland (M.E., C.A.M.R., G.R.D., N.V., T.C.J.T.);Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland (G.M., J.-L.W.);Unité de Génétique et d'Amélioration des Plantes Fourragères, INRA, 86600 Lusignan, France (Y.B.); andUnited States Department of Agriculture, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, South Dakota 57006 (B.W.F.)
| | - Jing Lu
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland (M.E., C.A.M.R.);Root-Herbivore Interactions Group, Department of Biochemistry (M.E., C.A.M.R., J.L.), and Department of Biochemistry (J.G.), Max Planck Institute for Chemical Ecology, DE-07745 Jena, Germany;Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, CH-2009 Neuchatel, Switzerland (M.E., C.A.M.R., G.R.D., N.V., T.C.J.T.);Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland (G.M., J.-L.W.);Unité de Génétique et d'Amélioration des Plantes Fourragères, INRA, 86600 Lusignan, France (Y.B.); andUnited States Department of Agriculture, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, South Dakota 57006 (B.W.F.)
| | - Gwladys R Doyen
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland (M.E., C.A.M.R.);Root-Herbivore Interactions Group, Department of Biochemistry (M.E., C.A.M.R., J.L.), and Department of Biochemistry (J.G.), Max Planck Institute for Chemical Ecology, DE-07745 Jena, Germany;Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, CH-2009 Neuchatel, Switzerland (M.E., C.A.M.R., G.R.D., N.V., T.C.J.T.);Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland (G.M., J.-L.W.);Unité de Génétique et d'Amélioration des Plantes Fourragères, INRA, 86600 Lusignan, France (Y.B.); andUnited States Department of Agriculture, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, South Dakota 57006 (B.W.F.)
| | - Neil Villard
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland (M.E., C.A.M.R.);Root-Herbivore Interactions Group, Department of Biochemistry (M.E., C.A.M.R., J.L.), and Department of Biochemistry (J.G.), Max Planck Institute for Chemical Ecology, DE-07745 Jena, Germany;Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, CH-2009 Neuchatel, Switzerland (M.E., C.A.M.R., G.R.D., N.V., T.C.J.T.);Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland (G.M., J.-L.W.);Unité de Génétique et d'Amélioration des Plantes Fourragères, INRA, 86600 Lusignan, France (Y.B.); andUnited States Department of Agriculture, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, South Dakota 57006 (B.W.F.)
| | - Yves Barrière
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland (M.E., C.A.M.R.);Root-Herbivore Interactions Group, Department of Biochemistry (M.E., C.A.M.R., J.L.), and Department of Biochemistry (J.G.), Max Planck Institute for Chemical Ecology, DE-07745 Jena, Germany;Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, CH-2009 Neuchatel, Switzerland (M.E., C.A.M.R., G.R.D., N.V., T.C.J.T.);Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland (G.M., J.-L.W.);Unité de Génétique et d'Amélioration des Plantes Fourragères, INRA, 86600 Lusignan, France (Y.B.); andUnited States Department of Agriculture, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, South Dakota 57006 (B.W.F.)
| | - B Wade French
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland (M.E., C.A.M.R.);Root-Herbivore Interactions Group, Department of Biochemistry (M.E., C.A.M.R., J.L.), and Department of Biochemistry (J.G.), Max Planck Institute for Chemical Ecology, DE-07745 Jena, Germany;Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, CH-2009 Neuchatel, Switzerland (M.E., C.A.M.R., G.R.D., N.V., T.C.J.T.);Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland (G.M., J.-L.W.);Unité de Génétique et d'Amélioration des Plantes Fourragères, INRA, 86600 Lusignan, France (Y.B.); andUnited States Department of Agriculture, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, South Dakota 57006 (B.W.F.)
| | - Jean-Luc Wolfender
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland (M.E., C.A.M.R.);Root-Herbivore Interactions Group, Department of Biochemistry (M.E., C.A.M.R., J.L.), and Department of Biochemistry (J.G.), Max Planck Institute for Chemical Ecology, DE-07745 Jena, Germany;Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, CH-2009 Neuchatel, Switzerland (M.E., C.A.M.R., G.R.D., N.V., T.C.J.T.);Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland (G.M., J.-L.W.);Unité de Génétique et d'Amélioration des Plantes Fourragères, INRA, 86600 Lusignan, France (Y.B.); andUnited States Department of Agriculture, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, South Dakota 57006 (B.W.F.)
| | - Ted C J Turlings
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland (M.E., C.A.M.R.);Root-Herbivore Interactions Group, Department of Biochemistry (M.E., C.A.M.R., J.L.), and Department of Biochemistry (J.G.), Max Planck Institute for Chemical Ecology, DE-07745 Jena, Germany;Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, CH-2009 Neuchatel, Switzerland (M.E., C.A.M.R., G.R.D., N.V., T.C.J.T.);Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland (G.M., J.-L.W.);Unité de Génétique et d'Amélioration des Plantes Fourragères, INRA, 86600 Lusignan, France (Y.B.); andUnited States Department of Agriculture, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, South Dakota 57006 (B.W.F.)
| | - Jonathan Gershenzon
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland (M.E., C.A.M.R.);Root-Herbivore Interactions Group, Department of Biochemistry (M.E., C.A.M.R., J.L.), and Department of Biochemistry (J.G.), Max Planck Institute for Chemical Ecology, DE-07745 Jena, Germany;Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, CH-2009 Neuchatel, Switzerland (M.E., C.A.M.R., G.R.D., N.V., T.C.J.T.);Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland (G.M., J.-L.W.);Unité de Génétique et d'Amélioration des Plantes Fourragères, INRA, 86600 Lusignan, France (Y.B.); andUnited States Department of Agriculture, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, South Dakota 57006 (B.W.F.)
| |
Collapse
|
39
|
Lu J, Robert CAM, Riemann M, Cosme M, Mène-Saffrané L, Massana J, Stout MJ, Lou Y, Gershenzon J, Erb M. Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance. PLANT PHYSIOLOGY 2015; 167:1100-16. [PMID: 25627217 PMCID: PMC4348761 DOI: 10.1104/pp.114.252700] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/24/2015] [Indexed: 05/18/2023]
Abstract
Induced defenses play a key role in plant resistance against leaf feeders. However, very little is known about the signals that are involved in defending plants against root feeders and how they are influenced by abiotic factors. We investigated these aspects for the interaction between rice (Oryza sativa) and two root-feeding insects: the generalist cucumber beetle (Diabrotica balteata) and the more specialized rice water weevil (Lissorhoptrus oryzophilus). Rice plants responded to root attack by increasing the production of jasmonic acid (JA) and abscisic acid, whereas in contrast to in herbivore-attacked leaves, salicylic acid and ethylene levels remained unchanged. The JA response was decoupled from flooding and remained constant over different soil moisture levels. Exogenous application of methyl JA to the roots markedly decreased the performance of both root herbivores, whereas abscisic acid and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid did not have any effect. JA-deficient antisense 13-lipoxygenase (asLOX) and mutant allene oxide cyclase hebiba plants lost more root biomass under attack from both root herbivores. Surprisingly, herbivore weight gain was decreased markedly in asLOX but not hebiba mutant plants, despite the higher root biomass removal. This effect was correlated with a herbivore-induced reduction of sucrose pools in asLOX roots. Taken together, our experiments show that jasmonates are induced signals that protect rice roots from herbivores under varying abiotic conditions and that boosting jasmonate responses can strongly enhance rice resistance against root pests. Furthermore, we show that a rice 13-lipoxygenase regulates root primary metabolites and specifically improves root herbivore growth.
Collapse
Affiliation(s)
- Jing Lu
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (J.L., C.A.M.R., J.G., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (C.A.M.R., M.E.);Karlsruhe Institute of Technology, Botanical Institute-Molecular Cell Biology, 76131 Karlsruhe, Germany (M.R.);Functional Biodiversity, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany (M.C.);Department of Plant Biology, University of Fribourg, 1700 Fribourg, Switzerland (L.M.-S., J.M.);Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803 (M.J.S.); andInstitute of Insect Science, Zijingang Campus, Zhejiang University, Hangzhou 310058, China (Y.L.)
| | - Christelle Aurélie Maud Robert
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (J.L., C.A.M.R., J.G., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (C.A.M.R., M.E.);Karlsruhe Institute of Technology, Botanical Institute-Molecular Cell Biology, 76131 Karlsruhe, Germany (M.R.);Functional Biodiversity, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany (M.C.);Department of Plant Biology, University of Fribourg, 1700 Fribourg, Switzerland (L.M.-S., J.M.);Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803 (M.J.S.); andInstitute of Insect Science, Zijingang Campus, Zhejiang University, Hangzhou 310058, China (Y.L.)
| | - Michael Riemann
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (J.L., C.A.M.R., J.G., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (C.A.M.R., M.E.);Karlsruhe Institute of Technology, Botanical Institute-Molecular Cell Biology, 76131 Karlsruhe, Germany (M.R.);Functional Biodiversity, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany (M.C.);Department of Plant Biology, University of Fribourg, 1700 Fribourg, Switzerland (L.M.-S., J.M.);Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803 (M.J.S.); andInstitute of Insect Science, Zijingang Campus, Zhejiang University, Hangzhou 310058, China (Y.L.)
| | - Marco Cosme
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (J.L., C.A.M.R., J.G., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (C.A.M.R., M.E.);Karlsruhe Institute of Technology, Botanical Institute-Molecular Cell Biology, 76131 Karlsruhe, Germany (M.R.);Functional Biodiversity, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany (M.C.);Department of Plant Biology, University of Fribourg, 1700 Fribourg, Switzerland (L.M.-S., J.M.);Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803 (M.J.S.); andInstitute of Insect Science, Zijingang Campus, Zhejiang University, Hangzhou 310058, China (Y.L.)
| | - Laurent Mène-Saffrané
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (J.L., C.A.M.R., J.G., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (C.A.M.R., M.E.);Karlsruhe Institute of Technology, Botanical Institute-Molecular Cell Biology, 76131 Karlsruhe, Germany (M.R.);Functional Biodiversity, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany (M.C.);Department of Plant Biology, University of Fribourg, 1700 Fribourg, Switzerland (L.M.-S., J.M.);Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803 (M.J.S.); andInstitute of Insect Science, Zijingang Campus, Zhejiang University, Hangzhou 310058, China (Y.L.)
| | - Josep Massana
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (J.L., C.A.M.R., J.G., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (C.A.M.R., M.E.);Karlsruhe Institute of Technology, Botanical Institute-Molecular Cell Biology, 76131 Karlsruhe, Germany (M.R.);Functional Biodiversity, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany (M.C.);Department of Plant Biology, University of Fribourg, 1700 Fribourg, Switzerland (L.M.-S., J.M.);Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803 (M.J.S.); andInstitute of Insect Science, Zijingang Campus, Zhejiang University, Hangzhou 310058, China (Y.L.)
| | - Michael Joseph Stout
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (J.L., C.A.M.R., J.G., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (C.A.M.R., M.E.);Karlsruhe Institute of Technology, Botanical Institute-Molecular Cell Biology, 76131 Karlsruhe, Germany (M.R.);Functional Biodiversity, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany (M.C.);Department of Plant Biology, University of Fribourg, 1700 Fribourg, Switzerland (L.M.-S., J.M.);Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803 (M.J.S.); andInstitute of Insect Science, Zijingang Campus, Zhejiang University, Hangzhou 310058, China (Y.L.)
| | - Yonggen Lou
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (J.L., C.A.M.R., J.G., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (C.A.M.R., M.E.);Karlsruhe Institute of Technology, Botanical Institute-Molecular Cell Biology, 76131 Karlsruhe, Germany (M.R.);Functional Biodiversity, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany (M.C.);Department of Plant Biology, University of Fribourg, 1700 Fribourg, Switzerland (L.M.-S., J.M.);Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803 (M.J.S.); andInstitute of Insect Science, Zijingang Campus, Zhejiang University, Hangzhou 310058, China (Y.L.)
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (J.L., C.A.M.R., J.G., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (C.A.M.R., M.E.);Karlsruhe Institute of Technology, Botanical Institute-Molecular Cell Biology, 76131 Karlsruhe, Germany (M.R.);Functional Biodiversity, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany (M.C.);Department of Plant Biology, University of Fribourg, 1700 Fribourg, Switzerland (L.M.-S., J.M.);Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803 (M.J.S.); andInstitute of Insect Science, Zijingang Campus, Zhejiang University, Hangzhou 310058, China (Y.L.)
| | - Matthias Erb
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (J.L., C.A.M.R., J.G., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (C.A.M.R., M.E.);Karlsruhe Institute of Technology, Botanical Institute-Molecular Cell Biology, 76131 Karlsruhe, Germany (M.R.);Functional Biodiversity, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany (M.C.);Department of Plant Biology, University of Fribourg, 1700 Fribourg, Switzerland (L.M.-S., J.M.);Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803 (M.J.S.); andInstitute of Insect Science, Zijingang Campus, Zhejiang University, Hangzhou 310058, China (Y.L.)
| |
Collapse
|
40
|
De Coninck B, Timmermans P, Vos C, Cammue BPA, Kazan K. What lies beneath: belowground defense strategies in plants. TRENDS IN PLANT SCIENCE 2015; 20:91-101. [PMID: 25307784 DOI: 10.1016/j.tplants.2014.09.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 05/17/2023]
Abstract
Diseases caused by soil-borne pathogens result worldwide in significant yield losses in economically important crops. In contrast to foliar diseases, relatively little is known about the nature of root defenses against these pathogens. This review summarizes the current knowledge on root infection strategies, root-specific preformed barriers, pathogen recognition, and defense signaling. Studies reviewed here suggest that many commonalities as well as differences exist in defense strategies employed by roots and foliar tissues during pathogen attack. Importantly, in addition to pathogens, plant roots interact with a plethora of non-pathogenic and symbiotic microorganisms. Therefore, a good understanding of how plant roots interact with the microbiome would be particularly important to engineer resistance to root pathogens without negatively altering root-beneficial microbe interactions.
Collapse
Affiliation(s)
- Barbara De Coninck
- Centre of Microbial and Plant Genetics, Katholieke Universiteit (KU) Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Gent, Belgium
| | - Pieter Timmermans
- Centre of Microbial and Plant Genetics, Katholieke Universiteit (KU) Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Christine Vos
- Centre of Microbial and Plant Genetics, Katholieke Universiteit (KU) Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Gent, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit (KU) Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Gent, Belgium.
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, Queensland, 4067, Australia; Queensland Alliance for Agriculture & Food Innovation (QAAFI), The University of Queensland, St Lucia, Brisbane, Queensland 4067, Australia
| |
Collapse
|
41
|
Roos J, Bejai S, Mozūraitis R, Dixelius C. Susceptibility to Verticillium longisporum is linked to monoterpene production by TPS23/27 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:572-85. [PMID: 25640950 DOI: 10.1111/tpj.12752] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/18/2014] [Accepted: 12/18/2014] [Indexed: 05/18/2023]
Abstract
The fungus Verticillium longisporum is a soil-borne plant pathogen of increasing economic importance, and information on plant responses to it is limited. To identify the genes and components involved in the early stages of infection, transcripts in roots of V. longisporum-challenged Arabidopsis Col-0 and the susceptible NON-RACE SPECIFIC DISEASE RESISTANCE 1 (ndr1-1) mutant were compared using ATH1 gene chips. The analysis revealed altered transcript levels of several terpene biosynthesis genes, including the monoterpene synthase TPS23/27. When transgenic 35S:TPS23/27 and TPS23/27-amiRNA plants were monitored the over-expresser line showed enhanced fungal colonization whereas the silenced genotype was indistinguishable from Col-0. Transcript analysis of terpene biosynthesis genes suggested that only the TPS23/27 pathway is affected in the two transgenic genotypes. To confirm changes in monoterpene production, emitted volatiles were determined using solid-phase microextraction and gas chromatography-mass spectrometry. Levels of all identified TPS23/27 monoterpene products were significantly altered in the transgenic plants. A stimulatory effect on conidial germination and hyphal growth of V. longisporum was also seen in co-cultivation with 35S:TPS23/27 plants and upon exposure to 1,8-cineole, the main product of TPS23/27. Methyl jasmonate treatments of myc2-1 and myc2-2 mutants and analysis of TPS23/27:uidA in the myc2-2 background suggested a dependence on jasmonic acid mediated by the transcription factor MYC2. Taken together, our results show that TPS23/27-produced monoterpenes stimulate germination and subsequent invasion of V. longisporum in Arabidopsis roots.
Collapse
Affiliation(s)
- Jonas Roos
- Department of Plant Biology, Linnean Centre for Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, PO Box 7080, SE-75007, Uppsala, Sweden
| | | | | | | |
Collapse
|
42
|
Turcotte MM, Davies TJ, Thomsen CJM, Johnson MTJ. Macroecological and macroevolutionary patterns of leaf herbivory across vascular plants. Proc Biol Sci 2015; 281:rspb.2014.0555. [PMID: 24870043 DOI: 10.1098/rspb.2014.0555] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The consumption of plants by animals underlies important evolutionary and ecological processes in nature. Arthropod herbivory evolved approximately 415 Ma and the ensuing coevolution between plants and herbivores is credited with generating much of the macroscopic diversity on the Earth. In contemporary ecosystems, herbivory provides the major conduit of energy from primary producers to consumers. Here, we show that when averaged across all major lineages of vascular plants, herbivores consume 5.3% of the leaf tissue produced annually by plants, whereas previous estimates are up to 3.8× higher. This result suggests that for many plant species, leaf herbivory may play a smaller role in energy and nutrient flow than currently thought. Comparative analyses of a diverse global sample of 1058 species across 2085 populations reveal that models of stabilizing selection best describe rates of leaf consumption, and that rates vary substantially within and among major plant lineages. A key determinant of this variation is plant growth form, where woody plant species experience 64% higher leaf herbivory than non-woody plants. Higher leaf herbivory in woody species supports a key prediction of the plant apparency theory. Our study provides insight into how a long history of coevolution has shaped the ecological and evolutionary relationships between plants and herbivores.
Collapse
Affiliation(s)
- Martin M Turcotte
- Department of Biology, University of Toronto-Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - T Jonathan Davies
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| | - Christina J M Thomsen
- Department of Biology, University of Toronto-Mississauga, Mississauga, Ontario, Canada L5L 1C6 Department of Biology, University of Ottawa, Ontario, Canada K1N 6N5
| | - Marc T J Johnson
- Department of Biology, University of Toronto-Mississauga, Mississauga, Ontario, Canada L5L 1C6
| |
Collapse
|
43
|
Kafle D, Krähmer A, Naumann A, Wurst S. Genetic Variation of the Host Plant Species Matters for Interactions with Above- and Belowground Herbivores. INSECTS 2014; 5:651-67. [PMID: 26462832 PMCID: PMC4592585 DOI: 10.3390/insects5030651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/22/2014] [Accepted: 08/08/2014] [Indexed: 11/20/2022]
Abstract
Plants are challenged by both above- and belowground herbivores which may indirectly interact with each other via herbivore-induced changes in plant traits; however, little is known about how genetic variation of the host plant shapes such interactions. We used two genotypes (M4 and E9) of Solanum dulcamara (Solanaceae) with or without previous experience of aboveground herbivory by Spodoptera exigua (Noctuidae) to quantify its effects on subsequent root herbivory by Agriotes spp. (Elateridae). In the genotype M4, due to the aboveground herbivory, shoot and root biomass was significantly decreased, roots had a lower C/N ratio and contained significantly higher levels of proteins, while the genotype E9 was not affected. However, aboveground herbivory had no effects on weight gain or mortality of the belowground herbivores. Root herbivory by Agriotes increased the nitrogen concentration in the roots of M4 plants leading to a higher weight gain of conspecific larvae. Also, in feeding bioassays, Agriotes larvae tended to prefer roots of M4 over E9, irrespective of the aboveground herbivore treatment. Fourier-Transform Infrared Spectroscopy (FT-IR) documented differences in metabolic profiles of the two plant genotypes and of the roots of M4 plants after aboveground herbivory. Together, these results demonstrate that previous aboveground herbivory can have genotype-specific effects on quantitative and qualitative root traits. This may have consequences for belowground interactions, although generalist root herbivores might not be affected when the root biomass offered is still sufficient for growth and survival.
Collapse
Affiliation(s)
- Dinesh Kafle
- Collaborative Research Center (CRC) 973, Institute of Biology, Functional Biodiversity, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin 14195, Germany.
| | - Andrea Krähmer
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Str. 19, Berlin 14195, Germany.
| | - Annette Naumann
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Str. 19, Berlin 14195, Germany.
| | - Susanne Wurst
- Collaborative Research Center (CRC) 973, Institute of Biology, Functional Biodiversity, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin 14195, Germany.
| |
Collapse
|
44
|
Churchland C, Grayston SJ. Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Front Microbiol 2014; 5:261. [PMID: 24917855 PMCID: PMC4042908 DOI: 10.3389/fmicb.2014.00261] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 05/13/2014] [Indexed: 01/22/2023] Open
Abstract
Mycorrhizal associations are ubiquitous and form a substantial component of the microbial biomass in forest ecosystems and fluxes of C to these belowground organisms account for a substantial portion of carbon assimilated by forest vegetation. Climate change has been predicted to alter belowground plant-allocated C which may cause compositional shifts in soil microbial communities, and it has been hypothesized that this community change will influence C mitigation in forest ecosystems. Some 10,000 species of ectomycorrhizal fungi are currently recognized, some of which are host specific and will only associate with a single tree species, for example, Suillus grevillei with larch. Mycorrhizae are a strong sink for plant C, differences in mycorrhizal anatomy, particularly the presence and extent of emanating hyphae, can affect the amount of plant C allocated to these assemblages. Mycorrhizal morphology affects not only spatial distribution of C in forests, but also differences in the longevity of these diverse structures may have important consequences for C sequestration in soil. Mycorrhizal growth form has been used to group fungi into distinctive functional groups that vary qualitatively and spatially in their foraging and nutrient acquiring potential. Through new genomic techniques we are beginning to understand the mechanisms involved in the specificity and selection of ectomycorrhizal associations though much less is known about arbuscular mycorrhizal associations. In this review we examine evidence for tree species- mycorrhizal specificity, and the mechanisms involved (e.g., signal compounds). We also explore what is known about the effects of these associations and interactions with other soil organisms on the quality and quantity of C flow into the mycorrhizosphere (the area under the influence of mycorrhizal root tips), including spatial and seasonal variations. The enormity of the mycorrhizosphere biome in forests and its potential to sequester substantial C belowground highlights the vital importance of increasing our knowledge of the dynamics of the different mycorrhizal functional groups in diverse forests.
Collapse
Affiliation(s)
| | - Sue J. Grayston
- Belowground Ecosystem Group, Department of Forest and Conservation Sciences, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
45
|
Miller RE, Gleadow RM, Cavagnaro TR. Age versus stage: does ontogeny modify the effect of phosphorus and arbuscular mycorrhizas on above- and below-ground defence in forage sorghum? PLANT, CELL & ENVIRONMENT 2014; 37:929-942. [PMID: 24118061 DOI: 10.1111/pce.12209] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Arbuscular mycorrhizas (AM) can increase plant acquisition of P and N. No published studies have investigated the impact of P and AM on the allocation of N to the plant defence, cyanogenic glucosides. We investigated the effects of soil P and AM on cyanogenic glucoside (dhurrin) concentration in roots and shoots of two forage sorghum lines differing in cyanogenic potential (HCNp). Two harvest times allowed plants grown at high and low P to be compared at the same age and the same size, to take account of known ontogenetic changes in shoot HCNp. P responses were dependent on ontogeny and tissue type. At the same age, P-limited plants were smaller and had higher shoot HCNp but lower root HCNp. Ontogenetically controlled comparisons showed a P effect of lesser magnitude, and that there was also an increase in the allocation of N to dhurrin in shoots of P-limited plants. Colonization by AM had little effect on shoot HCNp, but increased root HCNp and the allocation of N to dhurrin in roots. Divergent responses of roots and shoots to P, AM and with ontogeny demonstrate the importance of broadening the predominantly foliar focus of plant defence studies/theory, and of ontogenetically controlled comparisons.
Collapse
Affiliation(s)
- Rebecca E Miller
- Melbourne School of Land and Environment, University of Melbourne Burnley Campus, Richmond, Victoria, 3121, Australia
| | | | | |
Collapse
|
46
|
Stevens MT, Gusse AC, Lindroth RL. Root Chemistry in Populus tremuloides: Effects of Soil Nutrients, Defoliation, and Genotype. J Chem Ecol 2014; 40:31-8. [DOI: 10.1007/s10886-013-0371-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/25/2013] [Accepted: 12/01/2013] [Indexed: 11/24/2022]
|
47
|
Torres-González D, García-Guzmán G. Análisis del papel de los caracteres foliares de Cnidoscolus (Euphorbiaceae) en la defensa contra herbívoros y patógenos. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2014. [DOI: 10.1016/s1405-888x(14)72087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
48
|
Kleine S, Müller C. Differences in shoot and root terpenoid profiles and plant responses to fertilisation in Tanacetum vulgare. PHYTOCHEMISTRY 2013; 96:123-31. [PMID: 24128753 DOI: 10.1016/j.phytochem.2013.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/23/2013] [Accepted: 09/17/2013] [Indexed: 05/15/2023]
Abstract
Intraspecific chemical diversity is a common phenomenon especially found in shoots of essential oil-accumulating plant species. Abiotic factors can influence the concentration of essential oils, but the effects are inconsistent and little is known in how far these may vary within an individual and within species between chemotypes. Tanacetum vulgare L. occurs in various chemotypes that differ in the composition of mono- and sesquiterpenoids in their shoot tissues. We investigated how far shoot chemotype grouping is mirrored in root terpenoid profiles. Furthermore, we studied whether different fertilisation amounts influence the plant growth and morphological traits as well as the constitutive terpenoid concentration of leaves and roots of three chemotypes, trans-carvyl acetate, β-thujone, and camphor, to different degrees. Shoot terpenoids were dominated by monoterpenoids, while the roots contained mainly sesquiterpenoids. The clear grouping in three chemotypes based on leaf chemistry was weakly mirrored in the root terpenoid composition. Furthermore, the leaf C/N ratio and the stem height differed between chemotypes. All plants responded to increased nutrient availability with increased total biomass and specific leaf area but decreased C/N and root/shoot ratios. Leaf terpenoid concentrations decreased with increasing fertiliser supply, independent of chemotype. In contrast to the leaves, the terpenoid concentrations of the roots were unaffected by fertilisation. Our results demonstrate that aboveground and belowground organs within a species can be under different selection pressures.
Collapse
Affiliation(s)
- Sandra Kleine
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | | |
Collapse
|
49
|
McKenzie SW, Hentley WT, Hails RS, Jones TH, Vanbergen AJ, Johnson SN. Global climate change and above- belowground insect herbivore interactions. FRONTIERS IN PLANT SCIENCE 2013; 4:412. [PMID: 24155750 PMCID: PMC3804764 DOI: 10.3389/fpls.2013.00412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/29/2013] [Indexed: 05/08/2023]
Abstract
Predicted changes to the Earth's climate are likely to affect above-belowground interactions. Our understanding is limited, however, by past focus on two-species aboveground interactions mostly ignoring belowground influences. Despite their importance to ecosystem processes, there remains a dearth of empirical evidence showing how climate change will affect above-belowground interactions. The responses of above- and belowground organisms to climate change are likely to differ given the fundamentally different niches they inhabit. Yet there are few studies that address the biological and ecological reactions of belowground herbivores to environmental conditions in current and future climates. Even fewer studies investigate the consequences of climate change for above-belowground interactions between herbivores and other organisms; those that do provide no evidence of a directed response. This paper highlights the importance of considering the belowground fauna when making predictions on the effects of climate change on plant-mediated interspecific interactions.
Collapse
Affiliation(s)
- Scott W. McKenzie
- Centre for Ecology and HydrologyWallingford, Oxfordshire, UK
- The James Hutton InstituteDundee, UK
- Centre for Ecology and HydrologyPenicuik, Midlothian, UK
- Cardiff School of Biosciences, Cardiff UniversityCardiff, UK
| | - William T. Hentley
- Centre for Ecology and HydrologyWallingford, Oxfordshire, UK
- The James Hutton InstituteDundee, UK
- Centre for Ecology and HydrologyPenicuik, Midlothian, UK
- Cardiff School of Biosciences, Cardiff UniversityCardiff, UK
| | | | - T. Hefin Jones
- Cardiff School of Biosciences, Cardiff UniversityCardiff, UK
| | | | - Scott N. Johnson
- Hawkesbury Institute for the Environment, University of Western SydneySydney, NSW, Australia
| |
Collapse
|
50
|
Tytgat TOG, Verhoeven KJF, Jansen JJ, Raaijmakers CE, Bakx-Schotman T, McIntyre LM, van der Putten WH, Biere A, van Dam NM. Plants know where it hurts: root and shoot jasmonic acid induction elicit differential responses in Brassica oleracea. PLoS One 2013; 8:e65502. [PMID: 23776489 PMCID: PMC3679124 DOI: 10.1371/journal.pone.0065502] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/25/2013] [Indexed: 12/21/2022] Open
Abstract
Plants respond to herbivore attack by rapidly inducing defenses that are mainly regulated by jasmonic acid (JA). Due to the systemic nature of induced defenses, attack by root herbivores can also result in a shoot response and vice versa, causing interactions between above- and belowground herbivores. However, little is known about the molecular mechanisms underlying these interactions. We investigated whether plants respond differently when roots or shoots are induced. We mimicked herbivore attack by applying JA to the roots or shoots of Brassica oleracea and analyzed molecular and chemical responses in both organs. In shoots, an immediate and massive change in primary and secondary metabolism was observed. In roots, the JA-induced response was less extensive and qualitatively different from that in the shoots. Strikingly, in both roots and shoots we also observed differential responses in primary metabolism, development as well as defense specific traits depending on whether the JA induction had been below- or aboveground. We conclude that the JA response is not only tissue-specific but also dependent on the organ that was induced. Already very early in the JA signaling pathway the differential response was observed. This indicates that both organs have a different JA signaling cascade, and that the signal eliciting systemic responses contains information about the site of induction, thus providing plants with a mechanism to tailor their responses specifically to the organ that is damaged.
Collapse
Affiliation(s)
- Tom O G Tytgat
- Department of Ecogenomics, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|