1
|
Ren P, Ma L, Bao W, Wang J. Genome-Wide Identification and Hormone Response Analysis of the COBL Gene Family in Barley. Genes (Basel) 2024; 15:612. [PMID: 38790240 PMCID: PMC11121046 DOI: 10.3390/genes15050612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Barley (Hordeum vulgare L.), a diverse cereal crop, exhibits remarkable versatility in its applications, ranging from food and fodder to industrial uses. The content of cellulose in barley is significantly influenced by the COBRA genes, which encode the plant glycosylphosphatidylinositol (GPI)-anchored protein (GAP) that plays a pivotal role in the deposition of cellulose within the cell wall. The COBL (COBRA-Like) gene family has been discovered across numerous species, yet the specific members of this family in barley remain undetermined. In this study, we discovered 13 COBL genes within the barley genome using bioinformatics methods, subcellular localization, and protein structure analysis, finding that most of the barley COBL proteins have a signal peptide structure and are localized on the plasma membrane. Simultaneously, we constructed a phylogenetic tree and undertook a comprehensive analysis of the evolutionary relationships. Other characteristics of HvCOBL family members, including intraspecific collinearity, gene structure, conserved motifs, and cis-acting elements, were thoroughly characterized in detail. The assessment of HvCOBL gene expression in barley under various hormone treatments was conducted through qRT-PCR analysis, revealing jasmonic acid (JA) as the predominant hormonal regulator of HvCOBL gene expression. In summary, this study comprehensively identified and analyzed the barley COBL gene family, aiming to provide basic information for exploring the members of the HvCOBL gene family and to propose directions for further research.
Collapse
Affiliation(s)
- Panrong Ren
- School of Agriculture and Bioengineering, Longdong University, Qingyang 745000, China; (L.M.); (W.B.)
| | - Liang Ma
- School of Agriculture and Bioengineering, Longdong University, Qingyang 745000, China; (L.M.); (W.B.)
| | - Wei Bao
- School of Agriculture and Bioengineering, Longdong University, Qingyang 745000, China; (L.M.); (W.B.)
| | - Jie Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China;
| |
Collapse
|
2
|
Huerta AI, Sancho-Andrés G, Montesinos JC, Silva-Navas J, Bassard S, Pau-Roblot C, Kesten C, Schlechter R, Dora S, Ayupov T, Pelloux J, Santiago J, Sánchez-Rodríguez C. The WAK-like protein RFO1 acts as a sensor of the pectin methylation status in Arabidopsis cell walls to modulate root growth and defense. MOLECULAR PLANT 2023; 16:865-881. [PMID: 37002606 PMCID: PMC10168605 DOI: 10.1016/j.molp.2023.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/20/2022] [Accepted: 03/28/2023] [Indexed: 05/04/2023]
Abstract
Most organisms adjust their development according to the environmental conditions. For the majority, this implies the sensing of alterations to cell walls caused by different cues. Despite the relevance of this process, few molecular players involved in cell wall sensing are known and characterized. Here, we show that the wall-associated kinase-like protein RESISTANCE TO FUSARIUM OXYSPORUM 1 (RFO1) is required for plant growth and early defense against Fusarium oxysporum and functions by sensing changes in the pectin methylation levels in the cell wall. The RFO1 dwell time at the plasma membrane is affected by the pectin methylation status at the cell wall, regulating MITOGEN-ACTIVATED PROTEIN KINASE and gene expression. We show that the extracellular domain of RFO1 binds de-methylated pectin in vitro, whose distribution in the cell wall is altered during F. oxysporum infection. Further analyses also indicate that RFO1 is required for the BR-dependent plant growth alteration in response to inhibition of pectin de-methyl-esterase activity at the cell wall. Collectively, our work demonstrates that RFO1 is a sensor of the pectin methylation status that plays a unique dual role in plant growth and defense against vascular pathogens.
Collapse
Affiliation(s)
- Apolonio I Huerta
- ETH Zurich, Institute of Molecular Plant Biology (D-BIOL), Zurich, Switzerland
| | | | | | - Javier Silva-Navas
- University of Lausanne, Department of Plant Molecular Biology, Lausanne, Switzerland
| | - Solène Bassard
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Corinne Pau-Roblot
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Christopher Kesten
- ETH Zurich, Institute of Molecular Plant Biology (D-BIOL), Zurich, Switzerland
| | - Rudolf Schlechter
- ETH Zurich, Institute of Molecular Plant Biology (D-BIOL), Zurich, Switzerland
| | - Susanne Dora
- ETH Zurich, Institute of Molecular Plant Biology (D-BIOL), Zurich, Switzerland
| | - Temurkhan Ayupov
- ETH Zurich, Institute of Molecular Plant Biology (D-BIOL), Zurich, Switzerland
| | - Jérôme Pelloux
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Julia Santiago
- University of Lausanne, Department of Plant Molecular Biology, Lausanne, Switzerland
| | | |
Collapse
|
3
|
Thiebaut F, Urquiaga MCDO, Rosman AC, da Silva ML, Hemerly AS. The Impact of Non-Nodulating Diazotrophic Bacteria in Agriculture: Understanding the Molecular Mechanisms That Benefit Crops. Int J Mol Sci 2022; 23:ijms231911301. [PMID: 36232602 PMCID: PMC9569789 DOI: 10.3390/ijms231911301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Agriculture is facing increasing challenges with regard to achieving sustainable growth in productivity without negatively impacting the environment. The use of bioinoculants is emerging as a sustainable solution for agriculture, especially bioinoculants based on diazotrophic bacteria. Brazil is at the forefront of studies intended to identify beneficial diazotrophic bacteria, as well as in the molecular characterization of this association on both the bacterial and plant sides. Here we highlight the main advances in molecular studies to understand the benefits brought to plants by diazotrophic bacteria. Different molecular pathways in plants are regulated both genetically and epigenetically, providing better plant performance. Among them, we discuss the involvement of genes related to nitrogen metabolism, cell wall formation, antioxidant metabolism, and regulation of phytohormones that can coordinate plant responses to environmental factors. Another important aspect in this regard is how the plant recognizes the microorganism as beneficial. A better understanding of plant–bacteria–environment interactions can assist in the future formulation of more efficient bioinoculants, which could in turn contribute to more sustainable agriculture practices.
Collapse
|
4
|
Yu H, Ruan H, Xia X, Chicowski AS, Whitham SA, Li Z, Wang G, Liu W. Maize FERONIA-like receptor genes are involved in the response of multiple disease resistance in maize. MOLECULAR PLANT PATHOLOGY 2022; 23:1331-1345. [PMID: 35596601 PMCID: PMC9366073 DOI: 10.1111/mpp.13232] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/10/2022] [Accepted: 04/30/2022] [Indexed: 05/04/2023]
Abstract
Receptor-like kinases (RLKs) are key modulators of diverse cellular processes such as development and sensing the extracellular environment. FERONIA, a member of the CrRLK1L subfamily, acts as a pleiotropic regulator of plant immune responses, but little is known about how maize FERONIA-like receptors (FLRs) function in responding to the major foliar diseases of maize such as northern corn leaf blight (NLB), northern corn leaf spot (NLS), anthracnose stalk rot (ASR), and southern corn leaf blight (SLB). Here, we identified three ZmFLR homologous proteins that showed cell membrane localization. Transient expression in Nicotiana benthamiana proved that ZmFLRs were capable of inducing cell death. To investigate the role of ZmFLRs in maize, we used virus-induced gene silencing to knock down expression of ZmFLR1/2 and ZmFLR3 resulting in reduced reactive oxygen species production induced by flg22 and chitin. The resistance of maize to NLB, NLS, ASR, and SLB was also reduced in the ZmFLRs knockdown maize plants. These results indicate that ZmFLRs are positively involved in broad-spectrum disease resistance in maize.
Collapse
Affiliation(s)
- Haiyue Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of AgricultureAgriculture Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Hongchun Ruan
- Institute of Plant ProtectionFujian Academy of Agricultural SciencesFuzhouChina
| | - Xinyao Xia
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | | | - Steven A. Whitham
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIowaUSA
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of AgricultureAgriculture Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
5
|
Carvalho TLG, Rosman AC, Grativol C, de M. Nogueira E, Baldani JI, Hemerly AS. Sugarcane Genotypes with Contrasting Biological Nitrogen Fixation Efficiencies Differentially Modulate Nitrogen Metabolism, Auxin Signaling, and Microorganism Perception Pathways. PLANTS (BASEL, SWITZERLAND) 2022; 11:1971. [PMID: 35956449 PMCID: PMC9370643 DOI: 10.3390/plants11151971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Sugarcane is an economically important crop that is used for the production of fuel ethanol. Diazotrophic bacteria have been isolated from sugarcane tissues, without causing visible plant anatomical changes or disease symptoms. These bacteria can be beneficial to the plant by promoting root growth and an increase in plant yield. Different rates of Biological Nitrogen Fixation (BNF) were observed in different genotypes. The aim of this work was to conduct a comprehensive molecular and physiological analysis of two model genotypes for contrasting BNF efficiency in order to unravel plant genes that are differentially regulated during a natural association with diazotrophic bacteria. A next-generation sequencing of RNA samples from the genotypes SP70-1143 (high-BNF) and Chunee (low-BNF) was performed. A differential transcriptome analysis showed that several pathways were differentially regulated among the two BNF-contrasting genotypes, including nitrogen metabolism, hormone regulation and bacteria recognition. Physiological analyses, such as nitrogenase and GS activity quantification, bacterial colonization, auxin response and root architecture evaluation, supported the transcriptome expression analyses. The differences observed between the genotypes may explain, at least in part, the differences in BNF contributions. Some of the identified genes might be involved in key regulatory processes for a beneficial association and could be further used as tools for obtaining more efficient BNF genotypes.
Collapse
Affiliation(s)
- Thais Louise G. Carvalho
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil; (T.L.G.C.); (A.C.R.); (C.G.); (E.d.M.N.)
| | - Aline C. Rosman
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil; (T.L.G.C.); (A.C.R.); (C.G.); (E.d.M.N.)
| | - Clícia Grativol
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil; (T.L.G.C.); (A.C.R.); (C.G.); (E.d.M.N.)
- Laboratório de Química e Funções de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes 28015-622, RJ, Brazil
| | - Eduardo de M. Nogueira
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil; (T.L.G.C.); (A.C.R.); (C.G.); (E.d.M.N.)
| | - José Ivo Baldani
- Laboratório de Genética e Bioquímica, Centro Nacional de Pesquisa de Agrobiologia, Embrapa Agrobiologia, Rio de Janeiro 23897-970, RJ, Brazil;
| | - Adriana S. Hemerly
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil; (T.L.G.C.); (A.C.R.); (C.G.); (E.d.M.N.)
| |
Collapse
|
6
|
Transcriptome Analysis of Air Space-Type Variegation Formation in Trifolium pratense. Int J Mol Sci 2022; 23:ijms23147794. [PMID: 35887138 PMCID: PMC9322087 DOI: 10.3390/ijms23147794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Air space-type variegation is the most diverse among the species of known variegated leaf plants and is caused by conspicuous intercellular spaces between the epidermal and palisade cells and among the palisade cells at non-green areas. Trifolium pratense, a species in Fabaceae with V-shaped air space-type variegation, was selected to explore the application potential of variegated leaf plants and accumulate basic data on the molecular regulatory mechanism and evolutionary history of leaf variegation. We performed comparative transcriptome analysis on young and adult leaflets of variegated and green plants and identified 43 candidate genes related to air space-type variegation formation. Most of the genes were related to cell-wall structure modification (CESA, CSL, EXP, FLA, PG, PGIP, PLL, PME, RGP, SKS, and XTH family genes), followed by photosynthesis (LHCB subfamily, RBCS, GOX, and AGT family genes), redox (2OG and GSH family genes), and nitrogen metabolism (NodGS family genes). Other genes were related to photooxidation, protein interaction, and protease degradation systems. The downregulated expression of light-responsive LHCB subfamily genes and the upregulated expression of the genes involved in cell-wall structure modification were important conditions for air space-type variegation formation in T. pratense. The upregulated expression of the ubiquitin-protein ligase enzyme (E3)-related genes in the protease degradation systems were conducive to air space-type variegation formation. Because these family genes are necessary for plant growth and development, the mechanism of the leaf variegation formation in T. pratense might be a widely existing regulation in air space-type variegation in nature.
Collapse
|
7
|
Chandrasekaran U, Zhao X, Luo X, Wei S, Shu K. Endosperm weakening: The gateway to a seed's new life. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 178:31-39. [PMID: 35276594 DOI: 10.1016/j.plaphy.2022.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Seed germination is a crucial stage in a plant's life cycle, during which the embryo, surrounded by several tissues, undergoes a transition from the quiescent to a highly active state. Endosperm weakening, a key step in this transition, plays an important role in radicle protrusion. Endosperm weakening is initiated upon water uptake, followed by multiple key molecular events occurring within and outside endosperm cells. Although available transcriptomes have provided information about pivotal genes involved in this process, a complete understanding of the signaling pathways are yet to be elucidated. Much remains to be learnt about the diverse intercellular signals, such as reactive oxygen species-mediated redox signals, phytohormone crosstalk, environmental cue-dependent oxidative phosphorylation, peroxisomal-mediated pectin degradation, and storage protein mobilization during endosperm cell wall loosening. This review discusses the evidences from recent researches into the mechanism of endosperm weakening. Further, given that the endosperm has great potential for manipulation by crop breeding and biotechnology, we offer several novel insights, which will be helpful in this research field and in its application to the improvement of crop production.
Collapse
Affiliation(s)
| | - Xiaoting Zhao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Shaowei Wei
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China.
| |
Collapse
|
8
|
Stéger A, Palmgren M. Root hair growth from the pH point of view. FRONTIERS IN PLANT SCIENCE 2022; 13:949672. [PMID: 35968128 PMCID: PMC9363702 DOI: 10.3389/fpls.2022.949672] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/07/2022] [Indexed: 05/06/2023]
Abstract
Root hairs are tubular outgrowths of epidermal cells that increase the root surface area and thereby make the root more efficient at absorbing water and nutrients. Their expansion is limited to the root hair apex, where growth is reported to take place in a pulsating manner. These growth pulses coincide with oscillations of the apoplastic and cytosolic pH in a similar way as has been reported for pollen tubes. Likewise, the concentrations of apoplastic reactive oxygen species (ROS) and cytoplasmic Ca2+ oscillate with the same periodicity as growth. Whereas ROS appear to control cell wall extensibility and opening of Ca2+ channels, the role of protons as a growth signal in root hairs is less clear and may differ from that in pollen tubes where plasma membrane H+-ATPases have been shown to sustain growth. In this review, we outline our current understanding of how pH contributes to root hair development.
Collapse
|
9
|
Xue C, Li W, Shen R, Lan P. PERK13 modulates phosphate deficiency-induced root hair elongation in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111060. [PMID: 34620427 DOI: 10.1016/j.plantsci.2021.111060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Phosphate starvation (-Pi)-induced root hair is crucial for enhancing plants' Pi absorption. Proline-rich extensin-like receptor kinase 13 (PERK13) is transcriptionally induced by -Pi and co-expressed with genes associated with root hair growth. However, how PERK13 participates in -Pi-induced root hair growth remains unclear. Here, we found that PERK13 was transcriptionally responsive to Pi, nitrogen, and iron deficiencies. Loss of PERK13 function (perk13) enhanced root hair growth under Pi/nitrogen limitation. Similar phenotype was also observed in transgenic lines overexpressing PERK13 (PERK13ox). Under -Pi, both perk13 and PERK13ox showed prolonged root hair elongation and increased reactive oxygen species (ROS). Deletion analysis showed, in PERK13ox, the extracellular domain was indispensable for PERK13 in -Pi-induced root hair growth. Different transcription profiles were observed under -Pi between perk13 and PERK13ox with the jasmonate zim-domain genes being repressed in perk13 and genes involved in cell wall remodeling being increased in PERK13ox. Taken together, we demonstrated that PERK13 participates in -Pi-induced root hair growth probably via regulating root hair elongation and the generation of ROS. Our study also suggested PERK13 probably being a vital hub coupling the environmental cues and root hair growth, and might play dual roles in -Pi-induced root hair growth via different processes.
Collapse
Affiliation(s)
- Caiwen Xue
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenfeng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Chen Y, Li W, Turner JA, Anderson CT. PECTATE LYASE LIKE12 patterns the guard cell wall to coordinate turgor pressure and wall mechanics for proper stomatal function in Arabidopsis. THE PLANT CELL 2021; 33:3134-3150. [PMID: 34109391 PMCID: PMC8462824 DOI: 10.1093/plcell/koab161] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 05/02/2023]
Abstract
Plant cell deformations are driven by cell pressurization and mechanical constraints imposed by the nanoscale architecture of the cell wall, but how these factors are controlled at the genetic and molecular levels to achieve different types of cell deformation is unclear. Here, we used stomatal guard cells to investigate the influences of wall mechanics and turgor pressure on cell deformation and demonstrate that the expression of the pectin-modifying gene PECTATE LYASE LIKE12 (PLL12) is required for normal stomatal dynamics in Arabidopsis thaliana. Using nanoindentation and finite element modeling to simultaneously measure wall modulus and turgor pressure, we found that both values undergo dynamic changes during induced stomatal opening and closure. PLL12 is required for guard cells to maintain normal wall modulus and turgor pressure during stomatal responses to light and to tune the levels of calcium crosslinked pectin in guard cell walls. Guard cell-specific knockdown of PLL12 caused defects in stomatal responses and reduced leaf growth, which were associated with lower cell proliferation but normal cell expansion. Together, these results force us to revise our view of how wall-modifying genes modulate wall mechanics and cell pressurization to accomplish the dynamic cellular deformations that underlie stomatal function and tissue growth in plants.
Collapse
Affiliation(s)
- Yintong Chen
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802 USA
| | - Wenlong Li
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588 USA
| | - Joseph A. Turner
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588 USA
| | - Charles T. Anderson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802 USA
| |
Collapse
|
11
|
Borassi C, Sede AR, Mecchia MA, Mangano S, Marzol E, Denita-Juarez SP, Salgado Salter JD, Velasquez SM, Muschietti JP, Estevez JM. Proline-rich extensin-like receptor kinases PERK5 and PERK12 are involved in pollen tube growth. FEBS Lett 2021; 595:2593-2607. [PMID: 34427925 DOI: 10.1002/1873-3468.14185] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/17/2021] [Accepted: 08/18/2021] [Indexed: 11/06/2022]
Abstract
Proline-rich extensin-like receptor kinases (PERKs) belong to the hydroxyproline-rich glycoprotein (HRGP) superfamily known to be involved in many plant developmental processes. Here, we characterized two pollen-expressed PERKs from Arabidopsis thaliana, PERK5 and PERK12. Pollen tube growth was impaired in single and double perk5-1 perk12-1 loss of function mutants, with an impact on seed production. When the segregation was analysed, a male gametophytic defect was found, indicating that perk5-1 and perk12-1 mutants carry deficient pollen transmission. Furthermore, perk5-1 perk12-1 displayed an excessive accumulation of pectins and cellulose at the cell wall of the pollen tubes. Our results indicate that PERK5 and PERK12 are necessary for proper pollen tube growth, highlighting their role in cell wall assembly and reactive oxygen species homeostasis.
Collapse
Affiliation(s)
- Cecilia Borassi
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-UBA CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Ana R Sede
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Martín A Mecchia
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Silvina Mangano
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-UBA CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Eliana Marzol
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Silvina P Denita-Juarez
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-UBA CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Juan D Salgado Salter
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-UBA CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | | | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina.,Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-UBA CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.,Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello and ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
12
|
The placenta of Physcomitrium patens: transfer cell wall polymers compared across the three bryophyte groups. DIVERSITY 2021; 13. [PMID: 35273462 PMCID: PMC8905678 DOI: 10.3390/d13080378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Following similar studies of cell wall constituents in the placenta of Phaeoceros and Marchantia, we conducted immunogold labeling TEM studies of Physcomitrium patens to determine the composition of cell wall polymers in transfer cells on both sides of the placenta. 16 monoclonal antibodies were used to localize cell wall epitopes in the basal walls and wall ingrowths in this moss. In general, placental transfer cell walls of P. patens contain fewer pectins and far fewer AGPs than those of the hornwort and liverwort. P. patens also lacks the differential labeling that is pronounced between generations in the other bryophytes. In contrast, transfer cell walls on either side of the placenta of P. patens are relatively similar in composition with slight variation in HG pectins. Compositional similarities between wall ingrowths and primary cell walls in P. patens suggest that wall ingrowths may simply be extensions of the primary cell wall. Considerable variability in occurrence, abundance, and types of polymers among the three bryophytes and between the two generations suggests that similarity in function and morphology of cell walls does not require a common cell wall composition. We propose that the specific developmental and life history traits of these plants may provide even more important clues in understanding the basis for these differences. This study significantly builds on our knowledge of cell wall composition in bryophytes in general and transfer cells across plants.
Collapse
|
13
|
Inhibition of cell expansion enhances cortical microtubule stability in the root apex of Arabidopsis thaliana. ACTA ACUST UNITED AC 2021; 28:13. [PMID: 34082808 PMCID: PMC8173746 DOI: 10.1186/s40709-021-00143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/18/2021] [Indexed: 12/04/2022]
Abstract
Background Cortical microtubules regulate cell expansion by determining cellulose microfibril orientation in the root apex of Arabidopsis thaliana. While the regulation of cell wall properties by cortical microtubules is well studied, the data on the influence of cell wall to cortical microtubule organization and stability remain scarce. Studies on cellulose biosynthesis mutants revealed that cortical microtubules depend on Cellulose Synthase A (CESA) function and/or cell expansion. Furthermore, it has been reported that cortical microtubules in cellulose-deficient mutants are hypersensitive to oryzalin. In this work, the persistence of cortical microtubules against anti-microtubule treatment was thoroughly studied in the roots of several cesa mutants, namely thanatos, mre1, any1, prc1-1 and rsw1, and the Cellulose Synthase Interacting 1 protein (csi1) mutant pom2-4. In addition, various treatments with drugs affecting cell expansion were performed on wild-type roots. Whole mount tubulin immunolabeling was applied in the above roots and observations were performed by confocal microscopy. Results Cortical microtubules in all mutants showed statistically significant increased persistence against anti-microtubule drugs, compared to those of the wild-type. Furthermore, to examine if the enhanced stability of cortical microtubules was due to reduced cellulose biosynthesis or to suppression of cell expansion, treatments of wild-type roots with 2,6-dichlorobenzonitrile (DCB) and Congo red were performed. After these treatments, cortical microtubules appeared more resistant to oryzalin, than in the control. Conclusions According to these findings, it may be concluded that inhibition of cell expansion, irrespective of the cause, results in increased microtubule stability in A. thaliana root. In addition, cell expansion does not only rely on cortical microtubule orientation but also plays a regulatory role in microtubule dynamics, as well. Various hypotheses may explain the increased cortical microtubule stability under decreased cell expansion such as the role of cell wall sensors and the presence of less dynamic cortical microtubules. Supplementary Information The online version contains supplementary material available at 10.1186/s40709-021-00143-8.
Collapse
|
14
|
Hussain S, Hussain S, Ali B, Ren X, Chen X, Li Q, Saqib M, Ahmad N. Recent progress in understanding salinity tolerance in plants: Story of Na +/K + balance and beyond. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:239-256. [PMID: 33524921 DOI: 10.1016/j.plaphy.2021.01.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/18/2021] [Indexed: 05/07/2023]
Abstract
High salt concentrations in the growing medium can severely affect the growth and development of plants. It is imperative to understand the different components of salt-tolerant network in plants in order to produce the salt-tolerant cultivars. High-affinity potassium transporter- and myelocytomatosis proteins have been shown to play a critical role for salinity tolerance through exclusion of sodium (Na+) ions from sensitive shoot tissues in plants. Numerous genes, that limit the uptake of salts from soil and their transport throughout the plant body, adjust the ionic and osmotic balance of cells in roots and shoots. In the present review, we have tried to provide a comprehensive report of major research advances on different mechanisms regulating plant tolerance to salinity stress at proteomics, metabolomics, genomics and transcriptomics levels. Along with the role of ionic homeostasis, a major focus was given on other salinity tolerance mechanisms in plants including osmoregulation and osmo-protection, cell wall remodeling and integrity, and plant antioxidative defense. Major proteins and genes expressed under salt-stressed conditions and their role in enhancing salinity tolerance in plants are discussed as well. Moreover, this manuscript identifies and highlights the key questions on plant salinity tolerance that remain to be discussed in the future.
Collapse
Affiliation(s)
- Sadam Hussain
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China; Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan; Shanghai Center for Plant Stress Biology, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Basharat Ali
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Xiaolong Ren
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoli Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qianqian Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Muhammad Saqib
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Naeem Ahmad
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Trinh DC, Alonso-Serra J, Asaoka M, Colin L, Cortes M, Malivert A, Takatani S, Zhao F, Traas J, Trehin C, Hamant O. How Mechanical Forces Shape Plant Organs. Curr Biol 2021; 31:R143-R159. [PMID: 33561417 DOI: 10.1016/j.cub.2020.12.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plants produce organs of various shapes and sizes. While much has been learned about genetic regulation of organogenesis, the integration of mechanics in the process is also gaining attention. Here, we consider the role of forces as instructive signals in organ morphogenesis. Turgor pressure is the primary cause of mechanical signals in developing organs. Because plant cells are glued to each other, mechanical signals act, in essence, at multiple scales, through cell wall contiguity and water flux. In turn, cells use such signals to resist mechanical stress, for instance, by reinforcing their cell walls. We show that the three elemental shapes behind plant organs - spheres, cylinders and lamina - can be actively maintained by such a mechanical feedback. Combinations of this 3-letter alphabet can generate more complex shapes. Furthermore, mechanical conflicts emerge at the boundary between domains exhibiting different growth rates or directions. These secondary mechanical signals contribute to three other organ shape features - folds, shape reproducibility and growth arrest. The further integration of mechanical signals with the molecular network offers many fruitful prospects for the scientific community, including the role of proprioception in organ shape robustness or the definition of cell and organ identities as a result of an interplay between biochemical and mechanical signals.
Collapse
Affiliation(s)
- Duy-Chi Trinh
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France; Department of Pharmacological, Medical and Agronomical Biotechnology, University of Science and Technology of Hanoi, Cau Giay District, Hanoi, Vietnam
| | - Juan Alonso-Serra
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Mariko Asaoka
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Leia Colin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Matthieu Cortes
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Alice Malivert
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Shogo Takatani
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Feng Zhao
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Jan Traas
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Christophe Trehin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
16
|
Wu X, Bacic A, Johnson KL, Humphries J. The Role of Brachypodium distachyon Wall-Associated Kinases (WAKs) in Cell Expansion and Stress Responses. Cells 2020; 9:E2478. [PMID: 33202612 PMCID: PMC7698158 DOI: 10.3390/cells9112478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
The plant cell wall plays a critical role in signaling responses to environmental and developmental cues, acting as both the sensing interface and regulator of plant cell integrity. Wall-associated kinases (WAKs) are plant receptor-like kinases located at the wall-plasma membrane-cytoplasmic interface and implicated in cell wall integrity sensing. WAKs in Arabidopsis thaliana have been shown to bind pectins in different forms under various conditions, such as oligogalacturonides (OG)s in stress response, and native pectin during cell expansion. The mechanism(s) WAKs use for sensing in grasses, which contain relatively low amounts of pectin, remains unclear. WAK genes from the model monocot plant, Brachypodium distachyon were identified. Expression profiling during early seedling development and in response to sodium salicylate and salt treatment was undertaken to identify WAKs involved in cell expansion and response to external stimuli. The BdWAK2 gene displayed increased expression during cell expansion and stress response, in addition to playing a potential role in the hypersensitive response. In vitro binding assays with various forms of commercial polysaccharides (pectins, xylans, and mixed-linkage glucans) and wall-extracted fractions (pectic/hemicellulosic/cellulosic) from both Arabidopsis and Brachypodium leaf tissues provided new insights into the binding properties of BdWAK2 and other candidate BdWAKs in grasses. The BdWAKs displayed a specificity for the acidic pectins with similar binding characteristics to the AtWAKs.
Collapse
Affiliation(s)
- Xingwen Wu
- School of BioSciences, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Antony Bacic
- La Trobe Institute for Agriculture and Food, La Trobe University, Bundoora 3086, Victoria, Australia; (A.B.); (K.L.J.)
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Kim L. Johnson
- La Trobe Institute for Agriculture and Food, La Trobe University, Bundoora 3086, Victoria, Australia; (A.B.); (K.L.J.)
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - John Humphries
- School of BioSciences, University of Melbourne, Parkville 3010, Victoria, Australia
- La Trobe Institute for Agriculture and Food, La Trobe University, Bundoora 3086, Victoria, Australia; (A.B.); (K.L.J.)
| |
Collapse
|
17
|
Henry JS, Lopez RA, Renzaglia KS. Differential localization of cell wall polymers across generations in the placenta of Marchantia polymorpha. JOURNAL OF PLANT RESEARCH 2020; 133:911-924. [PMID: 33106966 PMCID: PMC8192078 DOI: 10.1007/s10265-020-01232-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
To further knowledge on cell wall composition in early land plants, we localized cell wall constituents in placental cells of the liverwort Marchantia polymorpha L. using monoclonal antibodies (MAbs) in the transmission electron microscope and histochemical staining. The placenta of M. polymorpha is similar to the majority of bryophytes in that both generations contain transfer cells with extensive wall ingrowths. Although the four major cell wall polymers, i.e., cellulose, pectins, hemicelluloses, and arabinogalactan proteins, are present, there are variations in the richness and specificity across generations. An abundance of homogalacturonan pectins in all placental cell walls is consistent with maintaining cell wall permeability and an acidic apoplastic pH necessary for solute transport. Although similar in ultrastructure, transfer cell walls on the sporophyte side in M. polymorpha are enriched with xyloglucans and diverse AGPs not detected on the gametophyte side of the placenta. Gametophyte wall ingrowths are more uniform in polymer composition. Lastly, extensins and callose are not components of transfer cell walls of M. polymorpha, which deviates from studies on transfer cells in other plants. The difference in polymer localizations in transfer cell walls between generations is consistent with directional movement from gametophyte to sporophyte in this liverwort.
Collapse
Affiliation(s)
- Jason S Henry
- Department of Plant Biology, Southern Illinois University Carbondale, MC:6509, Carbondale, IL 62901, USA.
| | - Renee A Lopez
- Department of Plant Biology, Southern Illinois University Carbondale, MC:6509, Carbondale, IL 62901, USA
| | - Karen S Renzaglia
- Department of Plant Biology, Southern Illinois University Carbondale, MC:6509, Carbondale, IL 62901, USA
| |
Collapse
|
18
|
Zhang X, Herger AG, Ren Z, Li X, Cui Z. Resistance effect of flavonols and toxicology analysis of hexabromocyclododecane based on soil-microbe-plant system. CHEMOSPHERE 2020; 257:127248. [PMID: 32526471 DOI: 10.1016/j.chemosphere.2020.127248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/16/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
The toxicity characteristics of HBCD and resistance mechanism of flavonols are investigated based on physiological and metagenomic analysis. Toxicology research of HBCD on Arabidopsis thaliana (Col and fls1-3) not only shows the toxic effect of HBCD on plants, but also indicates that flavonols could improve plant resistance to HBCD, including root length, shoot biomass and chlorophyll content. Analysis of eggNOG and GO enrichment demonstrates that HBCD has toxic effect on both gene expression and protein function, which concentrates on energy production - conversion and amino acid transport - metabolism. Differential expressed genes in flavonols-treated groups indicates that flavonols regulate the metabolism of amino acids, cofactors and vitamins, which is involved in plant defense system against oxidative damage caused by HBCD stress. HBCD is believed to affect the synthesis of proteins via genes expression of ribosome biogenesis process. Flavonols could strengthen the plant resistance and alleviate toxic effect under HBCD stress.
Collapse
Affiliation(s)
- Xu Zhang
- School of Architecture and Urban Planning, Shandong Jianzhu University, Ji'nan, 250101, China.
| | - Aline Galatea Herger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, 8008, Switzerland
| | - Zhen Ren
- School of Architecture and Urban Planning, Shandong Jianzhu University, Ji'nan, 250101, China
| | - Xinxin Li
- College of Agriculture and Life Sciences, Cornell University, New York, 14850, USA
| | - Zhaojie Cui
- Department of Plant and Microbial Biology, University of Zurich, Zurich, 8008, Switzerland
| |
Collapse
|
19
|
Rui Y, Dinneny JR. A wall with integrity: surveillance and maintenance of the plant cell wall under stress. THE NEW PHYTOLOGIST 2020; 225:1428-1439. [PMID: 31486535 DOI: 10.1111/nph.16166] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/16/2019] [Indexed: 05/21/2023]
Abstract
The structural and functional integrity of the cell wall needs to be constantly monitored and fine-tuned to allow for growth while preventing mechanical failure. Many studies have advanced our understanding of the pathways that contribute to cell wall biosynthesis and how these pathways are regulated by external and internal cues. Recent evidence also supports a model in which certain aspects of the wall itself may act as growth-regulating signals. Molecular components of the signaling pathways that sense and maintain cell wall integrity have begun to be revealed, including signals arising in the wall, sensors that detect changes at the cell surface, and downstream signal transduction modules. Abiotic and biotic stress conditions provide new contexts for the study of cell wall integrity, but the nature and consequences of wall disruptions due to various stressors require further investigation. A deeper understanding of cell wall signaling will provide insights into the growth regulatory mechanisms that allow plants to survive in changing environments.
Collapse
Affiliation(s)
- Yue Rui
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| | - José R Dinneny
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| |
Collapse
|
20
|
Zhang S, Jia T, Zhang Z, Zou X, Fan S, Lei K, Jiang X, Niu D, Yuan Y, Shang H. Insight into the relationship between S-lignin and fiber quality based on multiple research methods. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:251-261. [PMID: 31884241 DOI: 10.1016/j.plaphy.2019.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/18/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Cotton (Gossypium hirsutum) is an important cash crop, providing people with high quality natural fiber. Lignin is the main component of cotton fiber, second only to cellulose. As a main substance filled in the cellulose framework during the secondary wall thickening process, lignin plays a key role in the formation of cotton fiber quality. However, the mechanism behind it is still unclear. In this research, we screened candidate genes involved in lignin biosynthesis based on analysis of cotton genome and transcriptome sequence data. The authenticity of the transcriptome data was verified by qRT-PCR assay. Total 62 genes were identified from nine gene families. In the process, we found the key gene GhCAD7 that affects the biosynthesis of S-lignin and the ratio of syringyl/guaiacyl (S/G). In addition, in combination with the metabolites and transcriptome profiles of the line 0-153 with high fiber quality and the line sGK9708 with low fiber quality during cotton fiber development, we speculate that the ratio of syringyl/guaiacyl (S/G) is inseparable from the quality of cotton fiber. Finally, the S-type lignin synthesis branch may play a more important role in the formation of high-quality fiber. This work provides insights into the synthesis of lignin in cotton and lays the foundation for future research into improving fiber quality.
Collapse
Affiliation(s)
- Shuya Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Tingting Jia
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xianyan Zou
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Senmiao Fan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Kang Lei
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiao Jiang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Doudou Niu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
21
|
Chen P, Jung NU, Giarola V, Bartels D. The Dynamic Responses of Cell Walls in Resurrection Plants During Dehydration and Rehydration. FRONTIERS IN PLANT SCIENCE 2020; 10:1698. [PMID: 32038677 PMCID: PMC6985587 DOI: 10.3389/fpls.2019.01698] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/02/2019] [Indexed: 05/17/2023]
Abstract
Plant cell walls define the shape of the cells and provide mechanical support. They function as osmoregulators by controlling the transport of molecules between cells and provide transport pathways within the plant. These diverse functions require a well-defined and flexible organization of cell wall components, i.e., water, polysaccharides, proteins, and other diverse substances. Cell walls of desiccation tolerant resurrection plants withstand extreme mechanical stress during complete dehydration and rehydration. Adaptation to the changing water status of the plant plays a crucial role during this process. This review summarizes the compositional and structural variations, signal transduction and changes of gene expression which occur in cell walls of resurrection plants during dehydration and rehydration.
Collapse
Affiliation(s)
| | | | | | - Dorothea Bartels
- Faculty of Natural Sciences, Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| |
Collapse
|
22
|
Vogler H, Santos-Fernandez G, Mecchia MA, Grossniklaus U. To preserve or to destroy, that is the question: the role of the cell wall integrity pathway in pollen tube growth. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:131-139. [PMID: 31648148 DOI: 10.1016/j.pbi.2019.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 05/12/2023]
Abstract
In plants, cell-shape is defined by the cell wall, a complex network of polymers located outside the plasma membrane. During cell growth, cell wall properties have to be adjusted, assuring cell expansion without compromising cell integrity. Plasma membrane-located receptors sense cell wall properties, transducing extracellular signals into intracellular cascades through the cell wall integrity (CWI) pathway that, in turn, leads to adjustments in the regulation and composition of the cell wall. Using pollen tube growth as a single celled model system, we describe the importance of RAPID ALKALINIZATION FACTOR (RALF) peptides as sensors of cell wall integrity. RALF peptides can mediate the communication between cell wall components and plasma membrane-localized receptor-like kinases (RLKs) of the CrRLK1L family. The subsequent activation of intracellular pathways regulates H+, Ca2+, and ROS levels in the cell and apoplast, thereby modulating cell wall integrity. Interestingly, the RALF-CrRLK1L module and some of the components working up- and downstream of the RLK is conserved in many other developmental and physiological signaling processes.
Collapse
Affiliation(s)
- Hannes Vogler
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Gorka Santos-Fernandez
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Martin A Mecchia
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| |
Collapse
|
23
|
Dehors J, Mareck A, Kiefer-Meyer MC, Menu-Bouaouiche L, Lehner A, Mollet JC. Evolution of Cell Wall Polymers in Tip-Growing Land Plant Gametophytes: Composition, Distribution, Functional Aspects and Their Remodeling. FRONTIERS IN PLANT SCIENCE 2019; 10:441. [PMID: 31057570 PMCID: PMC6482432 DOI: 10.3389/fpls.2019.00441] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 05/22/2023]
Abstract
During evolution of land plants, the first colonizing species presented leafy-dominant gametophytes, found in non-vascular plants (bryophytes). Today, bryophytes include liverworts, mosses, and hornworts. In the first seedless vascular plants (lycophytes), the sporophytic stage of life started to be predominant. In the seed producing plants, gymnosperms and angiosperms , the gametophytic stage is restricted to reproduction. In mosses and ferns, the haploid spores germinate and form a protonema, which develops into a leafy gametophyte producing rhizoids for anchorage, water and nutrient uptakes. The basal gymnosperms (cycads and Ginkgo) reproduce by zooidogamy. Their pollen grains develop a multi-branched pollen tube that penetrates the nucellus and releases flagellated sperm cells that swim to the egg cell. The pollen grain of other gymnosperms (conifers and gnetophytes) as well as angiosperms germinates and produces a pollen tube that directly delivers the sperm cells to the ovule (siphonogamy). These different gametophytes, which are short or long-lived structures, share a common tip-growing mode of cell expansion. Tip-growth requires a massive cell wall deposition to promote cell elongation, but also a tight spatial and temporal control of the cell wall remodeling in order to modulate the mechanical properties of the cell wall. The growth rate of these cells is very variable depending on the structure and the species, ranging from very slow (protonemata, rhizoids, and some gymnosperm pollen tubes), to a slow to fast-growth in other gymnosperms and angiosperms. In addition, the structural diversity of the female counterparts in angiosperms (dry, semi-dry vs wet stigmas, short vs long, solid vs hollow styles) will impact the speed and efficiency of sperm delivery. As the evolution and diversity of the cell wall polysaccharides accompanied the diversification of cell wall structural proteins and remodeling enzymes, this review focuses on our current knowledge on the biochemistry, the distribution and remodeling of the main cell wall polymers (including cellulose, hemicelluloses, pectins, callose, arabinogalactan-proteins and extensins), during the tip-expansion of gametophytes from bryophytes, pteridophytes (lycophytes and monilophytes), gymnosperms and the monocot and eudicot angiosperms.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean-Claude Mollet
- Normandie Univ, UNIROUEN, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Rouen, France
| |
Collapse
|
24
|
Shirley NJ, Aubert MK, Wilkinson LG, Bird DC, Lora J, Yang X, Tucker MR. Translating auxin responses into ovules, seeds and yield: Insight from Arabidopsis and the cereals. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:310-336. [PMID: 30474296 DOI: 10.1111/jipb.12747] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/16/2018] [Indexed: 05/27/2023]
Abstract
Grain production in cereal crops depends on the stable formation of male and female gametes in the flower. In most angiosperms, the female gamete is produced from a germline located deep within the ovary, protected by several layers of maternal tissue, including the ovary wall, ovule integuments and nucellus. In the field, germline formation and floret fertility are major determinants of yield potential, contributing to traits such as seed number, weight and size. As such, stimuli affecting the timing and duration of reproductive phases, as well as the viability, size and number of cells within reproductive organs can significantly impact yield. One key stimulant is the phytohormone auxin, which influences growth and morphogenesis of female tissues during gynoecium development, gametophyte formation, and endosperm cellularization. In this review we consider the role of the auxin signaling pathway during ovule and seed development, first in the context of Arabidopsis and then in the cereals. We summarize the gene families involved and highlight distinct expression patterns that suggest a range of roles in reproductive cell specification and fate. This is discussed in terms of seed production and how targeted modification of different tissues might facilitate improvements.
Collapse
Affiliation(s)
- Neil J Shirley
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Matthew K Aubert
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Laura G Wilkinson
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Dayton C Bird
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Jorge Lora
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Xiujuan Yang
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| |
Collapse
|
25
|
Hitting the Wall-Sensing and Signaling Pathways Involved in Plant Cell Wall Remodeling in Response to Abiotic Stress. PLANTS 2018; 7:plants7040089. [PMID: 30360552 PMCID: PMC6313904 DOI: 10.3390/plants7040089] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 11/24/2022]
Abstract
Plant cells are surrounded by highly dynamic cell walls that play important roles regulating aspects of plant development. Recent advances in visualization and measurement of cell wall properties have enabled accumulation of new data about wall architecture and biomechanics. This has resulted in greater understanding of the dynamics of cell wall deposition and remodeling. The cell wall is the first line of defense against different adverse abiotic and biotic environmental influences. Different abiotic stress conditions such as salinity, drought, and frost trigger production of Reactive Oxygen Species (ROS) which act as important signaling molecules in stress activated cellular responses. Detection of ROS by still-elusive receptors triggers numerous signaling events that result in production of different protective compounds or even cell death, but most notably in stress-induced cell wall remodeling. This is mediated by different plant hormones, of which the most studied are jasmonic acid and brassinosteroids. In this review we highlight key factors involved in sensing, signal transduction, and response(s) to abiotic stress and how these mechanisms are related to cell wall-associated stress acclimatization. ROS, plant hormones, cell wall remodeling enzymes and different wall mechanosensors act coordinately during abiotic stress, resulting in abiotic stress wall acclimatization, enabling plants to survive adverse environmental conditions.
Collapse
|
26
|
Moussu S, Augustin S, Roman AO, Broyart C, Santiago J. Crystal structures of two tandem malectin-like receptor kinases involved in plant reproduction. Acta Crystallogr D Struct Biol 2018; 74:671-680. [PMID: 29968676 PMCID: PMC6038381 DOI: 10.1107/s205979831800774x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/23/2018] [Indexed: 01/15/2023] Open
Abstract
Complex cell-to-cell communication between the male pollen tube and the female reproductive organs is required for plant fertilization. A family of Catharanthus roseus receptor kinase 1-like (CrRLK1L) membrane receptors has been genetically implicated in this process. Here, crystal structures of the CrRLK1Ls ANXUR1 and ANXUR2 are reported at 1.48 and 1.1 Å resolution, respectively. The structures reveal a novel arrangement of two malectin-like domains connected by a short β-hairpin linker and stabilized by calcium ions. The canonical carbohydrate-interaction surfaces of related animal and bacterial carbohydrate-binding modules are not conserved in plant CrRLK1Ls. In line with this, the binding of chemically diverse oligosaccharides to ANXUR1 and HERCULES1 could not be detected. Instead, CrRLK1Ls have evolved a protein-protein interface between their malectin domains which forms a deep cleft lined by highly conserved aromatic and polar residues. Analysis of the glycosylation patterns of different CrRLK1Ls and their oligomeric states suggests that this cleft could resemble a binding site for a ligand required for receptor activation of CrRLK1Ls.
Collapse
Affiliation(s)
- Steven Moussu
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Sebastian Augustin
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Andra-Octavia Roman
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Caroline Broyart
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Franck CM, Westermann J, Boisson-Dernier A. Plant Malectin-Like Receptor Kinases: From Cell Wall Integrity to Immunity and Beyond. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:301-328. [PMID: 29539271 DOI: 10.1146/annurev-arplant-042817-040557] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant cells are surrounded by cell walls protecting them from a myriad of environmental challenges. For successful habitat adaptation, extracellular cues are perceived at the cell wall and relayed to downstream signaling constituents to mediate dynamic cell wall remodeling and adapted intracellular responses. Plant malectin-like receptor kinases, also known as Catharanthus roseus receptor-like kinase 1-like proteins (CrRLK1Ls), take part in these perception and relay processes. CrRLK1Ls are involved in many different plant functions. Their ligands, interactors, and downstream signaling partners are being unraveled, and studies about CrRLK1Ls' roles in plant species other than the plant model Arabidopsis thaliana are beginning to flourish. This review focuses on recent CrRLK1L-related advances in cell growth, reproduction, hormone signaling, abiotic stress responses, and, particularly, immunity. We also give an overview of the comparative genomics and evolution of CrRLK1Ls, and present a brief outlook for future research.
Collapse
|
28
|
Reem NT, Chen HY, Hur M, Zhao X, Wurtele ES, Li X, Li L, Zabotina O. Comprehensive transcriptome analyses correlated with untargeted metabolome reveal differentially expressed pathways in response to cell wall alterations. PLANT MOLECULAR BIOLOGY 2018; 96:509-529. [PMID: 29502299 DOI: 10.1007/s11103-018-0714-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/25/2018] [Indexed: 06/08/2023]
Abstract
This research provides new insights into plant response to cell wall perturbations through correlation of transcriptome and metabolome datasets obtained from transgenic plants expressing cell wall-modifying enzymes. Plants respond to changes in their cell walls in order to protect themselves from pathogens and other stresses. Cell wall modifications in Arabidopsis thaliana have profound effects on gene expression and defense response, but the cell signaling mechanisms underlying these responses are not well understood. Three transgenic Arabidopsis lines, two with reduced cell wall acetylation (AnAXE and AnRAE) and one with reduced feruloylation (AnFAE), were used in this study to investigate the plant responses to cell wall modifications. RNA-Seq in combination with untargeted metabolome was employed to assess differential gene expression and metabolite abundance. RNA-Seq results were correlated with metabolite abundances to determine the pathways involved in response to cell wall modifications introduced in each line. The resulting pathway enrichments revealed the deacetylation events in AnAXE and AnRAE plants induced similar responses, notably, upregulation of aromatic amino acid biosynthesis and changes in regulation of primary metabolic pathways that supply substrates to specialized metabolism, particularly those related to defense responses. In contrast, genes and metabolites of lipid biosynthetic pathways and peroxidases involved in lignin polymerization were downregulated in AnFAE plants. These results elucidate how primary metabolism responds to extracellular stimuli. Combining the transcriptomics and metabolomics datasets increased the power of pathway prediction, and demonstrated the complexity of pathways involved in cell wall-mediated signaling.
Collapse
Affiliation(s)
- Nathan T Reem
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, USA
| | - Han-Yi Chen
- Plants for Human Health Institute, North Carolina State University, Kannapolis, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, USA
| | - Manhoi Hur
- Department of Genetics, Developmental and Cell Biology, Iowa State University, Ames, USA
| | - Xuefeng Zhao
- Laurence H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames, USA
- Information Technology, College of Liberal Arts and Sciences, Iowa State University, Ames, USA
| | - Eve Syrkin Wurtele
- Department of Genetics, Developmental and Cell Biology, Iowa State University, Ames, USA
| | - Xu Li
- Plants for Human Health Institute, North Carolina State University, Kannapolis, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, USA
| | - Ling Li
- Department of Genetics, Developmental and Cell Biology, Iowa State University, Ames, USA
- Department of Biological Sciences, Mississippi State University, Starkville, USA
| | - Olga Zabotina
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, USA.
| |
Collapse
|
29
|
Fabrice TN, Vogler H, Draeger C, Munglani G, Gupta S, Herger AG, Knox P, Grossniklaus U, Ringli C. LRX Proteins Play a Crucial Role in Pollen Grain and Pollen Tube Cell Wall Development. PLANT PHYSIOLOGY 2018; 176:1981-1992. [PMID: 29247121 PMCID: PMC5841697 DOI: 10.1104/pp.17.01374] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/14/2017] [Indexed: 05/20/2023]
Abstract
Leu-rich repeat extensins (LRXs) are chimeric proteins containing an N-terminal Leu-rich repeat (LRR) and a C-terminal extensin domain. LRXs are involved in cell wall formation in vegetative tissues and required for plant growth. However, the nature of their role in these cellular processes remains to be elucidated. Here, we used a combination of molecular techniques, light microscopy, and transmission electron microscopy to characterize mutants of pollen-expressed LRXs in Arabidopsis (Arabidopsisthaliana). Mutations in multiple pollen-expressed lrx genes cause severe defects in pollen germination and pollen tube growth, resulting in a reduced seed set. Physiological experiments demonstrate that manipulating Ca2+ availability partially suppresses the pollen tube growth defects, suggesting that LRX proteins influence Ca2+-related processes. Furthermore, we show that LRX protein localizes to the cell wall, and its LRR-domain (which likely mediates protein-protein interactions) is associated with the plasma membrane. Mechanical analyses by cellular force microscopy and finite element method-based modeling revealed significant changes in the material properties of the cell wall and the fine-tuning of cellular biophysical parameters in the mutants compared to the wild type. The results indicate that LRX proteins might play a role in cell wall-plasma membrane communication, influencing cell wall formation and cellular mechanics.
Collapse
Affiliation(s)
- Tohnyui Ndinyanka Fabrice
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Hannes Vogler
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Christian Draeger
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Gautam Munglani
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
- Computational Physics for Engineering Materials Group, Institute for Building Materials, ETH Zürich, 8093 Zurich, Switzerland
| | - Shibu Gupta
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Aline G Herger
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Ueli Grossniklaus
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Christoph Ringli
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| |
Collapse
|
30
|
Qu S, Zhang X, Song Y, Lin J, Shan X. THESEUS1 positively modulates plant defense responses against Botrytis cinerea through GUANINE EXCHANGE FACTOR4 signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:797-804. [PMID: 28646554 DOI: 10.1111/jipb.12565] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/21/2017] [Indexed: 05/22/2023]
Abstract
The plant cell wall is an important interface for sensing pathogen attack and activating signaling pathways that promote plant immune responses. THESEUS1 (THE1) acts as a sensor of cell wall integrity that controls cell elongation during plant growth. However, no specific role for THE1 in plant defense responses has been reported. Here, we found that THE1 interacts with GUANINE EXCHANGE FACTOR4 (GEF4) and that both proteins play regulatory roles in plant resistance to the necrotrophic fungus Botrytis cinerea. Genetic analysis showed that THE1 and GEF4 function in the same genetic pathway to mediate plant defense responses. In addition, using transcriptome analysis, we identified various genes (such as defense-related, secondary metabolite-related, and transcription factor genes) that are likely downstream targets in the THE1-GEF4 signaling pathway. Our results suggest that THE1 functions as an upstream regulator of GEF4 signaling to positively regulate defense responses against B. cinerea in Arabidopsis.
Collapse
Affiliation(s)
- Shaofeng Qu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xi Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yutong Song
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyi Shan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
31
|
Galletti R, Verger S, Hamant O, Ingram GC. Developing a 'thick skin': a paradoxical role for mechanical tension in maintaining epidermal integrity? Development 2017; 143:3249-58. [PMID: 27624830 DOI: 10.1242/dev.132837] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plant aerial epidermal tissues, like animal epithelia, act as load-bearing layers and hence play pivotal roles in development. The presence of tension in the epidermis has morphogenetic implications for organ shapes but it also constantly threatens the integrity of this tissue. Here, we explore the multi-scale relationship between tension and cell adhesion in the plant epidermis, and we examine how tensile stress perception may act as a regulatory input to preserve epidermal tissue integrity and thus normal morphogenesis. From this, we identify parallels between plant epidermal and animal epithelial tissues and highlight a list of unexplored questions for future research.
Collapse
Affiliation(s)
- Roberta Galletti
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| | - Stéphane Verger
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| | - Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| |
Collapse
|
32
|
Wang X, Hou S, Wu Q, Lin M, Acharya BR, Wu D, Zhang W. IDL6-HAE/HSL2 impacts pectin degradation and resistance to Pseudomonas syringae pv tomato DC3000 in Arabidopsis leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:250-263. [PMID: 27618493 DOI: 10.1111/tpj.13380] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 05/03/2023]
Abstract
Plant cell walls undergo dynamic structural and chemical changes during plant development and growth. Floral organ abscission and lateral root emergence are both accompanied by cell-wall remodeling, which involves the INFLORESCENCE DEFICIENT IN ABSCISSION (IDA)-derived peptide and its receptors, HAESA (HAE) and HAESA-LIKE2 (HSL2). Plant cell walls also act as barriers against pathogenic invaders. Thus, the cell-wall remodeling during plant development could have an influence on plant resistance to phytopathogens. Here, we identified IDA-like 6 (IDL6), a gene that is prominently expressed in Arabidopsis leaves. IDL6 expression in Arabidopsis leaves is significantly upregulated when the plant is suffering from attacks of the bacterial Pseudomonas syringae pv. tomato (Pst) DC3000. IDL6 overexpression and knockdown lines respectively decrease and increase the Arabidopsis resistance to Pst DC3000, indicating that the gene promotes the Arabidopsis susceptibility to Pst DC3000. Moreover, IDL6 promotes the expression of a polygalacturonase (PG) gene, ADPG2, and increases PG activity in Arabidopsis leaves, which in turn reduces leaf pectin content and leaf robustness. ADPG2 overexpression restrains Arabidopsis resistance to Pst DC3000, whereas ADPG2 loss-of-function mutants increase the resistance to the bacterium. Pst DC3000 infection elevates the ADPG2 expression partially through HAE and HSL2. Taken together, our results suggest that IDL6-HAE/HSL2 facilitates the ingress of Pst DC3000 by promoting pectin degradation in Arabidopsis leaves, and Pst DC3000 might enhance its infection by manipulating the IDL6-HAE/HSL2-ADPG2 signaling pathway.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shanda Nanlu, Jinan, Shandong, 250100, China
| | - Shuguo Hou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, Shandong, 250101, China
| | - Qiqi Wu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shanda Nanlu, Jinan, Shandong, 250100, China
| | - Minyan Lin
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shanda Nanlu, Jinan, Shandong, 250100, China
| | - Biswa R Acharya
- Donald Danforth Plant Science Center, 975 N. Warson Road, St Louis, MO, 63132, USA
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, Shandong, 250101, China
| | - Wei Zhang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shanda Nanlu, Jinan, Shandong, 250100, China
| |
Collapse
|
33
|
Ghahremani M, Stigter KA, Plaxton W. Extraction and Characterization of Extracellular Proteins and Their Post-Translational Modifications from Arabidopsis thaliana Suspension Cell Cultures and Seedlings: A Critical Review. Proteomes 2016; 4:E25. [PMID: 28248235 PMCID: PMC5217358 DOI: 10.3390/proteomes4030025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 01/10/2023] Open
Abstract
Proteins secreted by plant cells into the extracellular space, consisting of the cell wall, apoplastic fluid, and rhizosphere, play crucial roles during development, nutrient acquisition, and stress acclimation. However, isolating the full range of secreted proteins has proven difficult, and new strategies are constantly evolving to increase the number of proteins that can be detected and identified. In addition, the dynamic nature of the extracellular proteome presents the further challenge of identifying and characterizing the post-translational modifications (PTMs) of secreted proteins, particularly glycosylation and phosphorylation. Such PTMs are common and important regulatory modifications of proteins, playing a key role in many biological processes. This review explores the most recent methods in isolating and characterizing the plant extracellular proteome with a focus on the model plant Arabidopsis thaliana, highlighting the current challenges yet to be overcome. Moreover, the crucial role of protein PTMs in cell wall signalling, development, and plant responses to biotic and abiotic stress is discussed.
Collapse
Affiliation(s)
- Mina Ghahremani
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Kyla A Stigter
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - William Plaxton
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
34
|
Li C, Wu HM, Cheung AY. FERONIA and Her Pals: Functions and Mechanisms. PLANT PHYSIOLOGY 2016; 171:2379-92. [PMID: 27342308 PMCID: PMC4972288 DOI: 10.1104/pp.16.00667] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/21/2016] [Indexed: 05/18/2023]
Abstract
Current research into the FERONIA family of receptor kinases highlights both questions and opportunities for understanding signaling strategies in plant growth and survival.
Collapse
Affiliation(s)
- Chao Li
- Department of Biochemistry and Molecular Biology (C.L., H.-M.W., A.Y.C.);Molecular and Cell Biology Program (H.-M.W., A.Y.C.); and Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003 (A.Y.C.)
| | - H-M Wu
- Department of Biochemistry and Molecular Biology (C.L., H.-M.W., A.Y.C.);Molecular and Cell Biology Program (H.-M.W., A.Y.C.); and Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003 (A.Y.C.)
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology (C.L., H.-M.W., A.Y.C.);Molecular and Cell Biology Program (H.-M.W., A.Y.C.); and Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003 (A.Y.C.)
| |
Collapse
|
35
|
Protein Dynamics in the Plant Extracellular Space. Proteomes 2016; 4:proteomes4030022. [PMID: 28248232 PMCID: PMC5217353 DOI: 10.3390/proteomes4030022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 12/15/2022] Open
Abstract
The extracellular space (ECS or apoplast) is the plant cell compartment external to the plasma membrane, which includes the cell walls, the intercellular space and the apoplastic fluid (APF). The present review is focused on APF proteomics papers and intends to draw information on the metabolic processes occurring in the ECS under abiotic and biotic stresses, as well as under non-challenged conditions. The large majority of the proteins detected are involved in "cell wall organization and biogenesis", "response to stimulus" and "protein metabolism". It becomes apparent that some proteins are always detected, irrespective of the experimental conditions, although with different relative contribution. This fact suggests that non-challenged plants have intrinsic constitutive metabolic processes of stress/defense in the ECS. In addition to the multiple functions ascribed to the ECS proteins, should be considered the interactions established between themselves and with the plasma membrane and its components. These interactions are crucial in connecting exterior and interior of the cell, and even simple protein actions in the ECS can have profound effects on plant performance. The proteins of the ECS are permanently contributing to the high dynamic nature of this plant compartment, which seems fundamental to plant development and adaptation to the environmental conditions.
Collapse
|
36
|
Carvalho TLG, Ballesteros HGF, Thiebaut F, Ferreira PCG, Hemerly AS. Nice to meet you: genetic, epigenetic and metabolic controls of plant perception of beneficial associative and endophytic diazotrophic bacteria in non-leguminous plants. PLANT MOLECULAR BIOLOGY 2016; 90:561-74. [PMID: 26821805 DOI: 10.1007/s11103-016-0435-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 01/07/2016] [Indexed: 05/02/2023]
Abstract
A wide range of rhizosphere diazotrophic bacteria are able to establish beneficial associations with plants, being able to associate to root surfaces or even endophytically colonize plant tissues. In common, both associative and endophytic types of colonization can result in beneficial outcomes to the plant leading to plant growth promotion, as well as increase in tolerance against biotic and abiotic stresses. An intriguing question in such associations is how plant cell surface perceives signals from other living organisms, thus sorting pathogens from beneficial ones, to transduce this information and activate proper responses that will finally culminate in plant adaptations to optimize their growth rates. This review focuses on the recent advances in the understanding of genetic and epigenetic controls of plant-bacteria signaling and recognition during beneficial associations with associative and endophytic diazotrophic bacteria. Finally, we propose that "soil-rhizosphere-rhizoplane-endophytes-plant" could be considered as a single coordinated unit with dynamic components that integrate the plant with the environment to generate adaptive responses in plants to improve growth. The homeostasis of the whole system should recruit different levels of regulation, and recognition between the parties in a given environment might be one of the crucial factors coordinating these adaptive plant responses.
Collapse
Affiliation(s)
- T L G Carvalho
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. L-29ss, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-599, Brazil
| | - H G F Ballesteros
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. L-29ss, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-599, Brazil
| | - F Thiebaut
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. L-29ss, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-599, Brazil
| | - P C G Ferreira
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. L-29ss, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-599, Brazil
| | - A S Hemerly
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. L-29ss, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-599, Brazil.
| |
Collapse
|
37
|
Reem NT, Pogorelko G, Lionetti V, Chambers L, Held MA, Bellincampi D, Zabotina OA. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens. FRONTIERS IN PLANT SCIENCE 2016; 7:630. [PMID: 27242834 PMCID: PMC4862258 DOI: 10.3389/fpls.2016.00630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/25/2016] [Indexed: 05/18/2023]
Abstract
The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity (CWI) and function remains unclear. Modifications of cell wall composition can induce plant responses known as CWI control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, decreased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant CWI, which contributes to plant resistance to necrotrophic pathogens.
Collapse
Affiliation(s)
- Nathan T. Reem
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
| | - Gennady Pogorelko
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
| | - Vincenzo Lionetti
- Dipartmento di Biologia e Biotechnologie
“Charles Darwin,” Sapienza Universita di Roma, RomeItaly
| | - Lauran Chambers
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
| | - Michael A. Held
- Department of Chemistry and Biochemistry, Ohio
University, Athens, OHUSA
| | - Daniela Bellincampi
- Dipartmento di Biologia e Biotechnologie
“Charles Darwin,” Sapienza Universita di Roma, RomeItaly
| | - Olga A. Zabotina
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
- *Correspondence: Olga A. Zabotina,
| |
Collapse
|
38
|
Borassi C, Sede AR, Mecchia MA, Salgado Salter JD, Marzol E, Muschietti JP, Estevez JM. An update on cell surface proteins containing extensin-motifs. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:477-87. [PMID: 26475923 DOI: 10.1093/jxb/erv455] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In recent years it has become clear that there are several molecular links that interconnect the plant cell surface continuum, which is highly important in many biological processes such as plant growth, development, and interaction with the environment. The plant cell surface continuum can be defined as the space that contains and interlinks the cell wall, plasma membrane and cytoskeleton compartments. In this review, we provide an updated view of cell surface proteins that include modular domains with an extensin (EXT)-motif followed by a cytoplasmic kinase-like domain, known as PERKs (for proline-rich extensin-like receptor kinases); with an EXT-motif and an actin binding domain, known as formins; and with extracellular hybrid-EXTs. We focus our attention on the EXT-motifs with the short sequence Ser-Pro(3-5), which is found in several different protein contexts within the same extracellular space, highlighting a putative conserved structural and functional role. A closer understanding of the dynamic regulation of plant cell surface continuum and its relationship with the downstream signalling cascade is a crucial forthcoming challenge.
Collapse
Affiliation(s)
- Cecilia Borassi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Ana R Sede
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Martin A Mecchia
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Juan D Salgado Salter
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Eliana Marzol
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina. Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA Buenos Aires, Argentina.
| | - Jose M Estevez
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina.
| |
Collapse
|
39
|
Xiao C, Zhang T, Zheng Y, Cosgrove DJ, Anderson CT. Xyloglucan Deficiency Disrupts Microtubule Stability and Cellulose Biosynthesis in Arabidopsis, Altering Cell Growth and Morphogenesis. PLANT PHYSIOLOGY 2016; 170:234-49. [PMID: 26527657 PMCID: PMC4704587 DOI: 10.1104/pp.15.01395] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/29/2015] [Indexed: 05/18/2023]
Abstract
Xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis (Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolated xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis.
Collapse
Affiliation(s)
- Chaowen Xiao
- Center for Lignocellulose Structure and Formation (C.X., T.Z., Y.Z., D.J.C., C.T.A.) and Department of Biology (C.X., T.Z., D.J.C., C.T.A.), The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Tian Zhang
- Center for Lignocellulose Structure and Formation (C.X., T.Z., Y.Z., D.J.C., C.T.A.) and Department of Biology (C.X., T.Z., D.J.C., C.T.A.), The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yunzhen Zheng
- Center for Lignocellulose Structure and Formation (C.X., T.Z., Y.Z., D.J.C., C.T.A.) and Department of Biology (C.X., T.Z., D.J.C., C.T.A.), The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Daniel J Cosgrove
- Center for Lignocellulose Structure and Formation (C.X., T.Z., Y.Z., D.J.C., C.T.A.) and Department of Biology (C.X., T.Z., D.J.C., C.T.A.), The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Charles T Anderson
- Center for Lignocellulose Structure and Formation (C.X., T.Z., Y.Z., D.J.C., C.T.A.) and Department of Biology (C.X., T.Z., D.J.C., C.T.A.), The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
40
|
Houston K, Tucker MR, Chowdhury J, Shirley N, Little A. The Plant Cell Wall: A Complex and Dynamic Structure As Revealed by the Responses of Genes under Stress Conditions. FRONTIERS IN PLANT SCIENCE 2016; 7:984. [PMID: 27559336 PMCID: PMC4978735 DOI: 10.3389/fpls.2016.00984] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/21/2016] [Indexed: 05/19/2023]
Abstract
The plant cell wall has a diversity of functions. It provides a structural framework to support plant growth and acts as the first line of defense when the plant encounters pathogens. The cell wall must also retain some flexibility, such that when subjected to developmental, biotic, or abiotic stimuli it can be rapidly remodeled in response. Genes encoding enzymes capable of synthesizing or hydrolyzing components of the plant cell wall show differential expression when subjected to different stresses, suggesting they may facilitate stress tolerance through changes in cell wall composition. In this review we summarize recent genetic and transcriptomic data from the literature supporting a role for specific cell wall-related genes in stress responses, in both dicot and monocot systems. These studies highlight that the molecular signatures of cell wall modification are often complex and dynamic, with multiple genes appearing to respond to a given stimulus. Despite this, comparisons between publically available datasets indicate that in many instances cell wall-related genes respond similarly to different pathogens and abiotic stresses, even across the monocot-dicot boundary. We propose that the emerging picture of cell wall remodeling during stress is one that utilizes a common toolkit of cell wall-related genes, multiple modifications to cell wall structure, and a defined set of stress-responsive transcription factors that regulate them.
Collapse
Affiliation(s)
- Kelly Houston
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
- *Correspondence: Kelly Houston
| | - Matthew R. Tucker
- Australian Research Council Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, Waite Research Institute, The University of AdelaideGlen Osmond, SA, Australia
| | - Jamil Chowdhury
- Australian Research Council Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, Waite Research Institute, The University of AdelaideGlen Osmond, SA, Australia
| | - Neil Shirley
- Australian Research Council Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, Waite Research Institute, The University of AdelaideGlen Osmond, SA, Australia
| | - Alan Little
- Australian Research Council Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, Waite Research Institute, The University of AdelaideGlen Osmond, SA, Australia
| |
Collapse
|
41
|
Zuk M, Działo M, Richter D, Dymińska L, Matuła J, Kotecki A, Hanuza J, Szopa J. Chalcone Synthase (CHS) Gene Suppression in Flax Leads to Changes in Wall Synthesis and Sensing Genes, Cell Wall Chemistry and Stem Morphology Parameters. FRONTIERS IN PLANT SCIENCE 2016; 7:894. [PMID: 27446124 PMCID: PMC4919909 DOI: 10.3389/fpls.2016.00894] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/07/2016] [Indexed: 05/18/2023]
Abstract
The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure.
Collapse
Affiliation(s)
- Magdalena Zuk
- Department of Genetic Biochemistry of Plants, Faculty of Biotechnology, Wroclaw University, WroclawPoland
- Linum Foundation, WroclawPoland
- *Correspondence: Magdalena Zuk,
| | - Magdalena Działo
- Department of Genetic Biochemistry of Plants, Faculty of Biotechnology, Wroclaw University, WroclawPoland
| | - Dorota Richter
- Department of Botany and Plant Ecology, Wroclaw University of Environmental and Life Sciences, WroclawPoland
| | - Lucyna Dymińska
- Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Faculty of Economics and Engineering, University of Economics, WroclawPoland
| | - Jan Matuła
- Institute of Biology, Wroclaw University of Environmental and Life Sciences, WroclawPoland
| | - Andrzej Kotecki
- Department of Crop Production, Wroclaw University of Environmental and Life Sciences, WroclawPoland
| | - Jerzy Hanuza
- Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Faculty of Economics and Engineering, University of Economics, WroclawPoland
| | - Jan Szopa
- Department of Genetic Biochemistry of Plants, Faculty of Biotechnology, Wroclaw University, WroclawPoland
- Linum Foundation, WroclawPoland
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, WroclawPoland
| |
Collapse
|
42
|
Pielot R, Kohl S, Manz B, Rutten T, Weier D, Tarkowská D, Rolčík J, Strnad M, Volke F, Weber H, Weschke W. Hormone-mediated growth dynamics of the barley pericarp as revealed by magnetic resonance imaging and transcript profiling. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6927-43. [PMID: 26276866 PMCID: PMC4623697 DOI: 10.1093/jxb/erv397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The shape of the maternal pericarp affects cereal grain mass and yield. Pericarp growth was analysed by magnetic resonance imaging (MRI), revealing topological maps of mobile water in developing pericarp of barley (Hordeum vulgare) and displaying tissue regions actively elongating in specific temporal-spatial patterns. Correlation analysis of MRI signals and growth rates reveals that growth in length is mediated by dorsal and also lateral rather than ventral regions. Growth in thickness is related to ventral regions. Switching from dorsal to ventral growth is associated with differential expression of axial regulators of the HD-ZipIII and Kanadi/Ettin types, and NPH3 photoreceptors, suggesting light-mediated auxin re-distribution. Auxin increases with the highest levels in the basal pericarp at 6 days after fertilization (DAF), together with transcriptionally up-regulated auxin transport and signalling. Gibberellin biosynthesis is transcriptionally up-regulated only later, and levels of bioactive gibberellins increase from 7 to 13 DAF, with higher levels in ventral than dorsal regions. Differential gene expression related to cell expansion indicates genes related to apoplast acidification, wall relaxation, sugar cleavage, water transport, and cell wall biosynthesis. Candidate genes potentially involved in pericarp extension are distinguished by their temporal expression, representing potential isoforms responsible for dorsal-mediated early growth in length or ventral-mediated late growth in thickness.
Collapse
Affiliation(s)
- Rainer Pielot
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Stefan Kohl
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Bertram Manz
- Fraunhofer Institut für Biomedizinische Technik (IBMT) Simulation, Visualization & Magnetic Resonance, Ensheimer Str. 48, D-66386 St. Ingbert, Germany
| | - Twan Rutten
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Diana Weier
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, CZ-78371, Olomouc, Czech Republic
| | - Jakub Rolčík
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, CZ-78371, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, CZ-78371, Olomouc, Czech Republic
| | - Frank Volke
- Fraunhofer Institut für Biomedizinische Technik (IBMT) Simulation, Visualization & Magnetic Resonance, Ensheimer Str. 48, D-66386 St. Ingbert, Germany
| | - Hans Weber
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Winfriede Weschke
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| |
Collapse
|
43
|
Luo CJ, Wightman R, Meyerowitz E, Smoukov SK. A 3-dimensional fibre scaffold as an investigative tool for studying the morphogenesis of isolated plant pells. BMC PLANT BIOLOGY 2015; 15:211. [PMID: 26310239 PMCID: PMC4550058 DOI: 10.1186/s12870-015-0581-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/24/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Cell culture methods allow the detailed observations of individual plant cells and their internal processes. Whereas cultured cells are more amenable to microscopy, they have had limited use when studying the complex interactions between cell populations and responses to external signals associated with tissue and whole plant development. Such interactions result in the diverse range of cell shapes observed in planta compared to the simple polygonal or ovoid shapes in vitro. Microfluidic devices can isolate the dynamics of single plant cells but have restricted use for providing a tissue-like and fibrous extracellular environment for cells to interact. A gap exists, therefore, in the understanding of spatiotemporal interactions of single plant cells interacting with their three-dimensional (3D) environment. A model system is needed to bridge this gap. For this purpose we have borrowed a tool, a 3D nano- and microfibre tissue scaffold, recently used in biomedical engineering of animal and human tissue physiology and pathophysiology in vitro. RESULTS We have developed a method of 3D cell culture for plants, which mimics the plant tissue environment, using biocompatible scaffolds similar to those used in mammalian tissue engineering. The scaffolds provide both developmental cues and structural stability to isolated callus-derived cells grown in liquid culture. The protocol is rapid, compared to the growth and preparation of whole plants for microscopy, and provides detailed subcellular information on cells interacting with their local environment. We observe cell shapes never observed for individual cultured cells. Rather than exhibiting only spheroid or ellipsoidal shapes, the cells adapt their shape to fit the local space and are capable of growing past each other, taking on growth and morphological characteristics with greater complexity than observed even in whole plants. Confocal imaging of transgenic Arabidopsis thaliana lines containing fluorescent microtubule and actin reporters enables further study of the effects of interactions and complex morphologies upon cytoskeletal organisation both in 3D and in time (4D). CONCLUSIONS The 3D culture within the fibre scaffolds permits cells to grow freely within a matrix containing both large and small spaces, a technique that is expected to add to current lithographic technologies, where growth is carefully controlled and constricted. The cells, once seeded in the scaffolds, can adopt a variety of morphologies, demonstrating that they do not need to be part of a tightly packed tissue to form complex shapes. This points to a role of the immediate nano- and micro-topography in plant cell morphogenesis. This work defines a new suite of techniques for exploring cell-environment interactions.
Collapse
Affiliation(s)
- C J Luo
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
| | - Raymond Wightman
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK.
| | - Elliot Meyerowitz
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK.
- Division of Biology and Biological Engineering, and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Stoyan K Smoukov
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
| |
Collapse
|
44
|
Curto M, Krajinski F, Schlereth A, Rubiales D. Transcriptional profiling of Medicago truncatula during Erysiphe pisi infection. FRONTIERS IN PLANT SCIENCE 2015; 6:517. [PMID: 26217367 PMCID: PMC4496563 DOI: 10.3389/fpls.2015.00517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/26/2015] [Indexed: 05/21/2023]
Abstract
Resistance to powdery mildew has been studied in a number of plant species, yet the molecular mechanisms remain largely unknown. Transcription factors (TFs) play a critical role in the plant defense response by regulating the transcriptional machinery which coordinates the expression of a large group of genes involved in plant defense. Using high-throughput quantitative real-time PCR (qPCR) technology more than 1000 Medicago truncatula TFs were screened in a pair of susceptible and resistant genotypes of M. truncatula after 4 h of Erysiphe pisi infection. Seventy nine TF genes, belonging to 33 families showed a significant transcriptional change in response to E. pisi infection. Forty eight TF genes were differentially expressed in the resistant genotypes compared to the susceptible one in response to E. pisi infection, including pathogenesis-related transcriptional factors, AP2/EREBP (APETALA2/ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS), WRKY (highly conserved WRKYGQK amino-acid sequence), MYB (Myeloblastoma), homeodomain (HD) and zinc finger C2C2 (CYS2-CYS2), C2H2, (CYS2-HIS2), LIM (Lin-11, Isl-1, Mec-3) gene families, which are involved in known defense responses. Our results suggest that these TF genes are among the E. pisi responsive genes in resistant M. truncatula that may constitute a regulatory network which controls the transcriptional changes in defense genes involved in resistance to E. pisi.
Collapse
Affiliation(s)
- Miguel Curto
- Department of Plant Breeding, Institute for Sustainable Agriculture, Spanish National Research CouncilCórdoba, Spain
| | - Franziska Krajinski
- Department of Plant-Microbe Interactions, Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Armin Schlereth
- Department of Plant-Microbe Interactions, Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Diego Rubiales
- Department of Plant Breeding, Institute for Sustainable Agriculture, Spanish National Research CouncilCórdoba, Spain
| |
Collapse
|
45
|
Draeger C, Ndinyanka Fabrice T, Gineau E, Mouille G, Kuhn BM, Moller I, Abdou MT, Frey B, Pauly M, Bacic A, Ringli C. Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth. BMC PLANT BIOLOGY 2015; 15:155. [PMID: 26099801 PMCID: PMC4477543 DOI: 10.1186/s12870-015-0548-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/11/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Leucine-rich repeat extensins (LRXs) are extracellular proteins consisting of an N-terminal leucine-rich repeat (LRR) domain and a C-terminal extensin domain containing the typical features of this class of structural hydroxyproline-rich glycoproteins (HRGPs). The LRR domain is likely to bind an interaction partner, whereas the extensin domain has an anchoring function to insolubilize the protein in the cell wall. Based on the analysis of the root hair-expressed LRX1 and LRX2 of Arabidopsis thaliana, LRX proteins are important for cell wall development. The importance of LRX proteins in non-root hair cells and on the structural changes induced by mutations in LRX genes remains elusive. RESULTS The LRX gene family of Arabidopsis consists of eleven members, of which LRX3, LRX4, and LRX5 are expressed in aerial organs, such as leaves and stem. The importance of these LRX genes for plant development and particularly cell wall formation was investigated. Synergistic effects of mutations with gradually more severe growth retardation phenotypes in double and triple mutants suggest a similar function of the three genes. Analysis of cell wall composition revealed a number of changes to cell wall polysaccharides in the mutants. CONCLUSIONS LRX3, LRX4, and LRX5, and most likely LRX proteins in general, are important for cell wall development. Due to the complexity of changes in cell wall structures in the lrx mutants, the exact function of LRX proteins remains to be determined. The increasingly strong growth-defect phenotypes in double and triple mutants suggests that the LRX proteins have similar functions and that they are important for proper plant development.
Collapse
Affiliation(s)
- Christian Draeger
- Institute of Plant Biology, University of Zürich, Zollikerstr. 107, Zürich, 8008, Switzerland.
- Current address: Thermo Fisher Scientific, Neuhofstrasse 11, 4153, Reinach, Switzerland.
| | | | - Emilie Gineau
- INRA, Institut Jean-Pierre Bourgin, UMR1318 Saclay Plant Sciences, Versailles, 78026, France.
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR1318 Saclay Plant Sciences, Versailles, 78026, France.
| | - Grégory Mouille
- INRA, Institut Jean-Pierre Bourgin, UMR1318 Saclay Plant Sciences, Versailles, 78026, France.
| | - Benjamin M Kuhn
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, 94720, USA.
| | - Isabel Moller
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, the University of Melbourne, Parkville, Victoria, 3010, Australia.
- Current address: The New Zealand Institute for Plant & Food Research Limited, Auckland, 1142, New Zealand.
| | - Marie-Therese Abdou
- Institute of Plant Biology, University of Zürich, Zollikerstr. 107, Zürich, 8008, Switzerland.
| | - Beat Frey
- Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland.
| | - Markus Pauly
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, 94720, USA.
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, the University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Christoph Ringli
- Institute of Plant Biology, University of Zürich, Zollikerstr. 107, Zürich, 8008, Switzerland.
| |
Collapse
|
46
|
Bidzinski P, Noir S, Shahi S, Reinstädler A, Gratkowska DM, Panstruga R. Physiological characterization and genetic modifiers of aberrant root thigmomorphogenesis in mutants of Arabidopsis thaliana MILDEW LOCUS O genes. PLANT, CELL & ENVIRONMENT 2014; 37:2738-53. [PMID: 24738718 DOI: 10.1111/pce.12353] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 03/18/2014] [Indexed: 05/05/2023]
Abstract
Root architecture and growth patterns are plant features that are still poorly understood. When grown under in vitro conditions, seedlings with mutations in Arabidopsis thaliana genes MLO4 or MLO11 exhibit aberrant root growth patterns upon contact with hard surfaces, exemplified as tight root spirals. We used a set of physiological assays and genetic tools to characterize this thigmomorphogenic defect in detail. We observed that the mlo4/mlo11-associated root curling phenotype is not recapitulated in a set of mutants with altered root growth patterns or architecture. We further found that mlo4/mlo11-conditioned root curling is not dependent upon light and endogenous flavonoids, but is pH-sensitive and affected by exogenous calcium levels. Based upon the latter two characteristics, mlo4-associated root coiling appears to be mechanistically different from the natural strong root curvature of the Arabidopsis ecotype Landsberg erecta. Gravistimulation reversibly overrides the aberrant thigmomorphogenesis of mlo4 seedlings. Mutants with dominant negative defects in α-tubulin modulate the extent and directionality of mlo4/mlo11-conditioned root coils, whereas mutants defective in polar auxin transport (axr4, aux1) or gravitropism (pgm1) completely suppress the mlo4 root curling phenotype. Our data implicate a joint contribution of calcium signalling, pH regulation, microtubular function, polar auxin transport and gravitropism in root thigmomorphogenesis.
Collapse
Affiliation(s)
- Przemyslaw Bidzinski
- Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, 50829, Cologne, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Shih HW, Miller ND, Dai C, Spalding EP, Monshausen GB. The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr Biol 2014; 24:1887-92. [PMID: 25127214 DOI: 10.1016/j.cub.2014.06.064] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/20/2014] [Accepted: 06/25/2014] [Indexed: 12/21/2022]
Abstract
Among the myriad cues that constantly inform plant growth and development, mechanical forces are unique in that they are an intrinsic result of cellular turgor pressure and also imposed by the environment. Although the key role of mechanical forces in shaping plant architecture from the cellular level to the level of organ formation is well established, the components of the early mechanical signal transduction machinery remain to be defined at the molecular level. Here, we show that an Arabidopsis mutant lacking the receptor-like kinase FERONIA (FER) shows severely altered Ca(2+) signaling and growth responses to different forms of mechanical perturbation. Ca(2+) signals are either abolished or exhibit qualitatively different signatures in feronia (fer) mutants exposed to local touch or bending stimulation. Furthermore, mechanically induced upregulation of known touch-responsive genes is significantly decreased in fer mutants. In addition to these defects in mechanical signaling, fer mutants also exhibit growth phenotypes consistent with impaired mechanical development, including biased root skewing, an inability to penetrate hard agar layers, and abnormal growth responses to impenetrable obstacles. Finally, high-resolution kinematic analysis of root growth revealed that fer mutants show pronounced spatiotemporal fluctuations in root cell expansion profiles with a timescale of minutes. Based on these results, we propose that FER is a key regulator of mechanical Ca(2+) signaling and that FER-dependent mechanical signaling functions to regulate growth in response to external or intrinsic mechanical forces.
Collapse
Affiliation(s)
- Han-Wei Shih
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Nathan D Miller
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cheng Dai
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Edgar P Spalding
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gabriele B Monshausen
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
48
|
Swaroopa Rani T, Podile AR. Extracellular matrix-associated proteome changes during non-host resistance in citrus-Xanthomonas interactions. PHYSIOLOGIA PLANTARUM 2014; 150:565-79. [PMID: 24117905 DOI: 10.1111/ppl.12109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 05/03/2023]
Abstract
Non-host resistance (NHR) is a most durable broad-spectrum resistance employed by the plants to restrict majority of pathogens. Plant extracellular matrix (ECM) is a critical defense barrier. Understanding ECM responses during interaction with non-host pathogen will provide insights into molecular events of NHR. In this study, the ECM-associated proteome was compared during interaction of citrus with pathogen Xanthomonas axonopodis pv. citri (Xac) and non-host pathogen Xanthomonas oryzae pv. oryzae (Xoo) at 8, 16, 24 and 48 h post inoculation. Comprehensive analysis of ECM-associated proteins was performed by extracting wall-bound and soluble ECM components using both destructive and non-destructive procedures. A total of 53 proteins was differentially expressed in citrus-Xanthomonas host and non-host interaction, out of which 44 were identified by mass spectrometry. The differentially expressed proteins were related to (1) defense-response (5 pathogenesis-related proteins, 3 miraculin-like proteins (MIR, MIR1 and MIR2) and 2 proteases); (2) enzymes of reactive oxygen species (ROS) metabolism [Cu/Zn superoxide dismutase (SOD), Fe-SOD, ascorbate peroxidase and 2-cysteine-peroxiredoxin]; (3) signaling (lectin, curculin-like lectin and concanavalin A-like lectin kinase); and (4) cell-wall modification (α-xylosidase, glucan 1, 3 β-glucosidase, xyloglucan endotransglucosylase/hydrolase). The decrease in ascorbate peroxidase and cysteine-peroxiredoxin could be involved in maintenance of ROS levels. Increase in defense, cell-wall remodeling and signaling proteins in citrus-Xoo interaction suggests an active involvement of ECM in execution of NHR. Partially compromised NHR in citrus against Xoo, upon Brefeldin A pre-treatment supported the role of non-classical secretory proteins in this phenomenon.
Collapse
Affiliation(s)
- Tirupaati Swaroopa Rani
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Andhra Pradesh, India
| | | |
Collapse
|
49
|
Miedes E, Vanholme R, Boerjan W, Molina A. The role of the secondary cell wall in plant resistance to pathogens. FRONTIERS IN PLANT SCIENCE 2014; 5:358. [PMID: 25161657 PMCID: PMC4122179 DOI: 10.3389/fpls.2014.00358] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/04/2014] [Indexed: 05/18/2023]
Abstract
Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defense mechanisms, and as a source of signaling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass) for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodeling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process.
Collapse
Affiliation(s)
- Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica MadridMadrid, Spain
- Departamento Biotecnología, Escuela Técnica Superior Ingenieros Agrónomos, Universidad Politécnica MadridMadrid, Spain
| | - Ruben Vanholme
- Department of Plant Systems Biology, VIB (Flanders Institute for Biotechnology)Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB (Flanders Institute for Biotechnology)Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica MadridMadrid, Spain
- Departamento Biotecnología, Escuela Técnica Superior Ingenieros Agrónomos, Universidad Politécnica MadridMadrid, Spain
- *Correspondence: Antonio Molina, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica Madrid, Campus Montegancedo, M40 (Km. 38), Pozuelo de Alarcón, Madrid 28223, Spain e-mail:
| |
Collapse
|
50
|
Hamant O. Widespread mechanosensing controls the structure behind the architecture in plants. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:654-60. [PMID: 23830994 DOI: 10.1016/j.pbi.2013.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 05/22/2023]
Abstract
Mechanical forces play an instructing role for many aspects of animal cell biology, such as division, polarity and fate. Although the associated mechanoperception pathways still remain largely elusive in plants, physical cues have long been thought to guide development in parallel to biochemical factors. With the development of new imaging techniques, micromechanics tools and modeling approaches, the role of mechanical signals in plant development is now re-examined and fully integrated with modern cell biology. Using recent examples from the literature, I propose to use a multiscale perspective, from the whole plant down to the cell wall, to fully appreciate the diversity of developmental processes that depend on mechanical signals. Incidentally, this also illustrates how conceptually rich this field is.
Collapse
Affiliation(s)
- Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, UCB, Lyon 1, France; Laboratoire Joliot Curie, CNRS, ENS Lyon, Université de Lyon, 46 Allée d'Italie, Lyon Cedex 07 69364, France.
| |
Collapse
|