1
|
Chen Z, Huang J, Li J, Menke FLH, Jones JDG, Guo H. Reversible ubiquitination conferred by domain shuffling controls paired NLR immune receptor complex homeostasis in plant immunity. Nat Commun 2025; 16:1984. [PMID: 40011440 DOI: 10.1038/s41467-025-57231-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025] Open
Abstract
Plant intracellular NLR immune receptors can function individually or in pairs to detect pathogen effectors and activate immune responses. NLR homeostasis has to be tightly regulated to ensure proper defense without triggering autoimmunity. However, in contrast to singleton NLRs, the mechanisms controlling the paired NLRs complex homeostasis are less understood. The paired Arabidopsis RRS1/RPS4 immune receptor complex confers disease resistance through effector recognition mediated by the integrated WRKY domain of RRS1. Here, through proximity labeling, we reveal a ubiquitination-deubiquitination cycle that controls the homeostasis of the RRS1/RPS4 complex. E3 ligase RARE directly binds and ubiquitinates RRS1's WRKY domain to promote its proteasomal degradation, thereby destabilizing RPS4 indirectly and compromising the stability and function of the RRS1/RPS4 complex. Conversely, the deubiquitinating enzymes UBP12/UBP13 deubiquitinate RRS1's WRKY domain, counteracting RARE's effects. Interestingly, the abundance of WRKY transcription factors WRKY70 and WRKY41 is also regulated by RARE and UBP12/UBP13. Phylogenetic analysis suggests this regulation likely transferred from WRKY70/WRKY41 to RRS1 upon WRKY domain integration. Our findings improve our understanding of homeostatic regulation of paired NLR complex and uncover a paradigm whereby domain integration can co-opt preexisting post-translational modification to regulate novel protein functions.
Collapse
Affiliation(s)
- Zhiyi Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Jianhua Huang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jianyu Li
- State Key Laboratory of Agricultural and Forestry Biosecurity, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Hailong Guo
- State Key Laboratory of Agricultural and Forestry Biosecurity, Department of Plant Pathology, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Xin X, Ye L, Zhai T, Wang S, Pan Y, Qu K, Gu M, Wang Y, Zhang J, Li X, Yang W, Zhang S. CELL DIVISION CYCLE 5 controls floral transition by regulating flowering gene transcription and splicing in Arabidopsis. PLANT PHYSIOLOGY 2024; 197:kiae616. [PMID: 39560102 DOI: 10.1093/plphys/kiae616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/20/2024]
Abstract
CELL DIVISION CYCLE 5 (CDC5) is a R2R3-type MYB transcription factor, serving as a key component of modifier of snc1, 4-associated complex/NineTeen complex, which is associated with plant immunity, RNA splicing, and miRNA biogenesis. In this study, we demonstrate that mutation of CDC5 accelerates flowering in Arabidopsis (Arabidopsis thaliana). CDC5 activates the expression of FLOWERING LOCUS C (FLC) by binding to and affecting the enrichment of RNA polymerase II on FLC chromatin. Moreover, genetic analysis confirmed that CDC5 regulates flowering in an FLC-dependent manner. Furthermore, we characterized the interaction of CDC5 with the RNA polymerase-associated factor 1 (Paf1) complex and confirmed that CDC5, as part of the spliceosome, mediates genome-wide alternative splicing, as revealed by RNA-seq. CDC5 affected the splicing of flowering-associated genes such as FLC, SEF, and MAFs. Additionally, we also demonstrated that CDC5 contributes to the regulation of histone modification of FLC chromatin, which further promotes FLC expression. In summary, our results establish CDC5 as a key factor regulating flowering. This provides valuable insight for future research into plant flowering.
Collapse
Affiliation(s)
- Xin Xin
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Linhan Ye
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Tingting Zhai
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Shu Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Yunjiao Pan
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Ke Qu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Mengjie Gu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Yanjiao Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Jiedao Zhang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Xiang Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Wei Yang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Shuxin Zhang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| |
Collapse
|
3
|
Li Q, Shao J, Luo M, Chen D, Tang D, Shi H. BRASSINOSTEROID-SIGNALING KINASE1 associates with and is required for cysteine protease RESPONSE TO DEHYDRATION 19-mediated disease resistance in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112033. [PMID: 38354753 DOI: 10.1016/j.plantsci.2024.112033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
The receptor-like cytoplasmic kinase BRASSINOSTEROID-SIGNALING KINASE1 (BSK1) interacts with pattern recognition receptor (PRR) FLAGELLIN SENSING2 (FLS2) and positively regulates plant innate immunity in Arabidopsis thaliana. However, the molecular components involved in BSK1-mediated immune signaling remain largely unknown. To further explore the molecular mechanism underlying BSK1-mediated disease resistance, we screened two cysteine proteases, RESPONSE TO DEHYDRATION 19 (RD19) and RD19-LIKE 2 (RDL2), as BSK1-binding partners. Overexpression of RD19, but not RDL2, displayed an autoimmune phenotype, presenting programmed cell death and enhanced resistance to multiple pathogens. Interestingly, RD19-mediated immune activation depends on BSK1, as knockout of BSK1 in RD19-overexpressing plants rescued their autoimmunity and abolished the increased resistance. Furthermore, we found that BSK1 plays a positive role in maintaining RD19 protein abundance in Arabidopsis. Our results provide new insights into BSK1-mediated immune signaling and reveal a potential mechanism by which BSK1 stabilizes RD19 to promote effective immune output.
Collapse
Affiliation(s)
- Qiuyi Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Shao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingyu Luo
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Desheng Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hua Shi
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
4
|
Jia M, Chen X, Shi X, Fang Y, Gu Y. Nuclear transport receptor KA120 regulates molecular condensation of MAC3 to coordinate plant immune activation. Cell Host Microbe 2023; 31:1685-1699.e7. [PMID: 37714161 DOI: 10.1016/j.chom.2023.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/07/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023]
Abstract
The nucleocytoplasmic exchange is of fundamental importance to eukaryotic life and is mediated by karyopherins, a superfamily of nuclear transport receptors. However, the function and cargo spectrum of plant karyopherins are largely obscure. Here, we report proximity-labeling-based proteomic profiling of in vivo substrates of KA120, a karyopherin-β required for suppressing autoimmune induction in Arabidopsis. We identify multiple components of the MOS4-associated complex (MAC), a conserved splicing regulatory protein complex. Surprisingly, we find that KA120 does not affect the nucleocytoplasmic distribution of MAC proteins but rather prevents their protein condensation in the nucleus. Furthermore, we demonstrate that MAC condensation is robustly induced by pathogen infection, which is sufficient to activate defense gene expression, possibly by sequestrating negative immune regulators via phase transition. Our study reveals a noncanonical chaperoning activity of a plant karyopherin, which modulates the nuclear condensation of an evolutionarily conserved splicing regulatory complex to coordinate plant immune activation.
Collapse
Affiliation(s)
- Min Jia
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xuanyi Chen
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuetao Shi
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yiling Fang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yangnan Gu
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
5
|
Wang L, Xu F, Yu F. Two environmental signal-driven RNA metabolic processes: Alternative splicing and translation. PLANT, CELL & ENVIRONMENT 2023; 46:718-732. [PMID: 36609800 DOI: 10.1111/pce.14537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Plants live in fixed locations and have evolved adaptation mechanisms that integrate multiple responses to various environmental signals. Among the different components of these response pathways, receptors/sensors represent nodes that recognise environmental signals. Additionally, RNA metabolism plays an essential role in the regulation of gene expression and protein synthesis. With the development of RNA biotechnology, recent advances have been made in determining the roles of RNA metabolism in response to different environmental signals-especially the roles of alternative splicing and translation. In this review, we discuss recent progress in research on how the environmental adaptation mechanisms in plants are affected at the posttranscriptional level. These findings improve our understanding of the mechanism through which plants adapt to environmental changes by regulating the posttranscriptional level and are conducive for breeding stress-tolerant plants to cope with dynamic and rapidly changing environments.
Collapse
Affiliation(s)
- Long Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
| | - Fan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| |
Collapse
|
6
|
Meng X, Wang Q, Hao R, Li X, Li M, Hu R, Du H, Hu Z, Yu B, Li S. RNA-binding protein MAC5A interacts with the 26S proteasome to regulate DNA damage response in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:446-462. [PMID: 36331331 PMCID: PMC9806599 DOI: 10.1093/plphys/kiac510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
DNA damage response (DDR) in eukaryotes is essential for the maintenance of genome integrity in challenging environments. The regulatory mechanisms of DDR have been well-established in yeast and humans. However, increasing evidence supports the idea that plants seem to employ different signaling pathways that remain largely unknown. Here, we report the role of MODIFIER OF SNC1, 4-ASSOCIATED COMPLEX SUBUNIT 5A (MAC5A) in DDR in Arabidopsis (Arabidopsis thaliana). Lack of MAC5A in mac5a mutants causes hypersensitive phenotypes to methyl methanesulfonate (MMS), a DNA damage inducer. Consistent with this observation, MAC5A can regulate alternative splicing of DDR genes to maintain the proper response to genotoxic stress. Interestingly, MAC5A interacts with the 26S proteasome (26SP) and is required for its proteasome activity. MAC core subunits are also involved in MMS-induced DDR. Moreover, we find that MAC5A, the MAC core subunits, and 26SP may act collaboratively to mediate high-boron-induced growth repression through DDR. Collectively, our findings uncover the crucial role of MAC in MMS-induced DDR in orchestrating growth and stress adaptation in plants.
Collapse
Affiliation(s)
- Xiangxiang Meng
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Quanhui Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Ruili Hao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xudong Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mu Li
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666, USA
| | - Ruibo Hu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Bin Yu
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666, USA
| | - Shengjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
7
|
Pérez‐Alonso M, Guerrero‐Galán C, González Ortega‐Villaizán A, Ortiz‐García P, Scholz SS, Ramos P, Sakakibara H, Kiba T, Ludwig‐Müller J, Krapp A, Oelmüller R, Vicente‐Carbajosa J, Pollmann S. The calcium sensor CBL7 is required for Serendipita indica-induced growth stimulation in Arabidopsis thaliana, controlling defense against the endophyte and K + homoeostasis in the symbiosis. PLANT, CELL & ENVIRONMENT 2022; 45:3367-3382. [PMID: 35984078 PMCID: PMC9804297 DOI: 10.1111/pce.14420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Calcium is an important second messenger in plants. The activation of Ca2+ signalling cascades is critical in the activation of adaptive processes in response to environmental stimuli. Root colonization by the growth promoting endophyte Serendipita indica involves the increase of cytosolic Ca2+ levels in Arabidopsis thaliana. Here, we investigated transcriptional changes in Arabidopsis roots during symbiosis with S. indica. RNA-seq profiling disclosed the induction of Calcineurin B-like 7 (CBL7) during early and later phases of the interaction. Consistently, reverse genetic evidence highlighted the functional relevance of CBL7 and tested the involvement of a CBL7-CBL-interacting protein kinase 13 signalling pathway. The loss-of-function of CBL7 abolished the growth promoting effect and affected root colonization. The transcriptomics analysis of cbl7 revealed the involvement of this Ca2+ sensor in activating plant defense responses. Furthermore, we report on the contribution of CBL7 to potassium transport in Arabidopsis. We analysed K+ contents in wild-type and cbl7 plants and observed a significant increase of K+ in roots of cbl7 plants, while shoot tissues demonstrated K+ depletion. Taken together, our work associates CBL7 with an important role in the mutual interaction between Arabidopsis and S. indica and links CBL7 to K+ transport.
Collapse
Affiliation(s)
- Marta‐Marina Pérez‐Alonso
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC)Campus de MontegancedoPozuelo de Alarcón (Madrid)Spain
- Umeå Plant Science CenterUmeå UniversityUmeåSweden
| | - Carmen Guerrero‐Galán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC)Campus de MontegancedoPozuelo de Alarcón (Madrid)Spain
| | - Adrián González Ortega‐Villaizán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC)Campus de MontegancedoPozuelo de Alarcón (Madrid)Spain
| | - Paloma Ortiz‐García
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC)Campus de MontegancedoPozuelo de Alarcón (Madrid)Spain
| | - Sandra S. Scholz
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich‐Schiller‐University JenaJenaGermany
| | - Patricio Ramos
- Centro de Investigación de Estudios Avanzados del MauleUniversidad Católica del MauleTalcaChile
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource ScienceTsurumiYokohamaJapan
- Department of Applied Biosciences, Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
| | - Takatoshi Kiba
- RIKEN Center for Sustainable Resource ScienceTsurumiYokohamaJapan
- Department of Applied Biosciences, Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
| | | | - Anne Krapp
- Université Paris‐Saclay, INRAE, AgroParisTechInstitut Jean‐Pierre BourginVersaillesFrance
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich‐Schiller‐University JenaJenaGermany
| | - Jesús Vicente‐Carbajosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC)Campus de MontegancedoPozuelo de Alarcón (Madrid)Spain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de Madrid (UPM)MadridSpain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC)Campus de MontegancedoPozuelo de Alarcón (Madrid)Spain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de Madrid (UPM)MadridSpain
| |
Collapse
|
8
|
Tu YT, Chen CY, Huang YS, Chang CH, Yen MR, Hsieh JWA, Chen PY, Wu K. HISTONE DEACETYLASE 15 and MOS4-associated complex subunits 3A/3B coregulate intron retention of ABA-responsive genes. PLANT PHYSIOLOGY 2022; 190:882-897. [PMID: 35670741 PMCID: PMC9434327 DOI: 10.1093/plphys/kiac271] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 05/24/2023]
Abstract
Histone deacetylases (HDAs) play an important role in transcriptional regulation of multiple biological processes. In this study, we investigated the function of HDA15 in abscisic acid (ABA) responses. We used immunopurification coupled with mass spectrometry-based proteomics to identify proteins interacting with HDA15 in Arabidopsis (Arabidopsis thaliana). HDA15 interacted with the core subunits of the MOS4-associated complex (MAC), MAC3A and MAC3B, with interaction between HDA15 and MAC3B enhanced by ABA. hda15 and mac3a/mac3b mutants were ABA-insensitive during seed germination and hyposensitive to salinity. RNA sequencing analysis demonstrated that HDA15 and MAC3A/MAC3B co-regulate ABA-responsive intron retention (IR). Furthermore, HDA15 reduced the histone acetylation level of genomic regions near ABA-responsive IR sites and the association of MAC3B with ABA-responsive pre-mRNA was dependent on HDA15. Our results indicate that HDA15 is involved in ABA responses by interacting with MAC3A/MAC3B to mediate splicing of introns.
Collapse
Affiliation(s)
| | | | - Yi-Sui Huang
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Chung-Han Chang
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jo-Wei Allison Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | | | - Keqiang Wu
- Authors for correspondence: (K.W.), (P.-Y.C.)
| |
Collapse
|
9
|
Kufel J, Diachenko N, Golisz A. Alternative splicing as a key player in the fine-tuning of the immunity response in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2022; 23:1226-1238. [PMID: 35567423 PMCID: PMC9276941 DOI: 10.1111/mpp.13228] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/01/2023]
Abstract
Plants, like animals, are constantly exposed to abiotic and biotic stresses, which often inhibit plant growth and development, and cause tissue damage, disease, and even plant death. Efficient and timely response to stress requires appropriate co- and posttranscriptional reprogramming of gene expression. Alternative pre-mRNA splicing provides an important layer of this regulation by controlling the level of factors involved in stress response and generating additional protein isoforms with specific features. Recent high-throughput studies have revealed that several defence genes undergo alternative splicing that is often affected by pathogen infection. Despite extensive work, the exact mechanisms underlying these relationships are still unclear, but the contribution of alternative protein isoforms to the defence response and the role of regulatory factors, including components of the splicing machinery, have been established. Modulation of gene expression in response to stress includes alternative splicing, chromatin remodelling, histone modifications, and nucleosome occupancy. How these processes affect plant immunity is mostly unknown, but these facets open new regulatory possibilities. Here we provide an overview of the current state of knowledge and recent findings regarding the growing importance of alternative splicing in plant response to biotic stress.
Collapse
Affiliation(s)
- Joanna Kufel
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| | - Nataliia Diachenko
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| | - Anna Golisz
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| |
Collapse
|
10
|
RNA-Binding Protein MAC5A Is Required for Gibberellin-Regulated Stamen Development. Int J Mol Sci 2022; 23:ijms23042009. [PMID: 35216125 PMCID: PMC8874600 DOI: 10.3390/ijms23042009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Abstract
The development of floral organs is coordinated by an elaborate network of homeotic genes, and gibberellin (GA) signaling is involved in floral organ development; however, the underlying molecular mechanisms remain elusive. In the present study, we found that MOS4-ASSOCIATED COMPLEX 5A (MAC5A), which is a protein containing an RNA-binding motif, was involved in the development of sepals, petals, and stamens; either the loss or gain of MAC5A function resulted in stamen malformation and a reduced seed set. The exogenous application of GA considerably exacerbated the defects in mac5a null mutants, including fewer stamens and male sterility. MAC5A was predominantly expressed in pollen grains and stamens, and overexpression of MAC5A affected the expression of homeotic genes such as APETALA1 (AP1), AP2, and AGAMOUS (AG). MAC5A may interact with RABBIT EARS (RBE), a repressor of AG expression in Arabidopsis flowers. The petal defect in rbe null mutants was at least partly rescued in mac5a rbe double mutants. These findings suggest that MAC5A is a novel factor that is required for the normal development of stamens and depends on the GA signaling pathway.
Collapse
|
11
|
Golisz A, Krzyszton M, Stepien M, Dolata J, Piotrowska J, Szweykowska-Kulinska Z, Jarmolowski A, Kufel J. Arabidopsi s Spliceosome Factor SmD3 Modulates Immunity to Pseudomonas syringae Infection. FRONTIERS IN PLANT SCIENCE 2021; 12:765003. [PMID: 34925413 PMCID: PMC8678131 DOI: 10.3389/fpls.2021.765003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/11/2021] [Indexed: 06/02/2023]
Abstract
SmD3 is a core component of the small nuclear ribonucleoprotein (snRNP) that is essential for pre-mRNA splicing. The role of Arabidopsis SmD3 in plant immunity was assessed by testing sensitivity of smd3a and smd3b mutants to Pseudomonas syringae pv. tomato (Pst) DC3000 infection and its pathogenesis effectors flagellin (flg22), EF-Tu (elf18) and coronatine (COR). Both smd3 mutants exhibited enhanced susceptibility to Pst accompanied by marked changes in the expression of key pathogenesis markers. mRNA levels of major biotic stress response factors were also altered upon treatment with Pseudomonas effectors. Our genome-wide transcriptome analysis of the smd3b-1 mutant infected with Pst, verified by northern and RT-qPCR, showed that lack of SmD3-b protein deregulates defense against Pst infection at the transcriptional and posttranscriptional levels including defects in splicing and an altered pattern of alternative splicing. Importantly, we show that SmD3-b dysfunction impairs mainly stomatal immunity as a result of defects in stomatal development. We propose that it is the malfunction of the stomata that is the primary cause of an altered mutant response to the pathogen. Other changes in the smd3b-1 mutant involved enhanced elf18- and flg22-induced callose deposition, reduction of flg22-triggered production of early ROS and boost of secondary ROS caused by Pst infection. Together, our data indicate that SmD3 contributes to the plant immune response possibly via regulation of mRNA splicing of key pathogenesis factors.
Collapse
Affiliation(s)
- Anna Golisz
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Michal Krzyszton
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Monika Stepien
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Jakub Dolata
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Justyna Piotrowska
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Joanna Kufel
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
12
|
Sharma M, Fuertes D, Perez-Gil J, Lois LM. SUMOylation in Phytopathogen Interactions: Balancing Invasion and Resistance. Front Cell Dev Biol 2021; 9:703795. [PMID: 34485289 PMCID: PMC8415633 DOI: 10.3389/fcell.2021.703795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 12/03/2022] Open
Abstract
Plants are constantly confronted by a multitude of biotic stresses involving a myriad of pathogens. In crops, pathogen infections result in significant agronomical losses worldwide posing a threat to food security. In order to enter plant tissues and establish a successful infection, phytopathogens have to surpass several physical, and chemical defense barriers. In recent years, post-translational modification (PTM) mechanisms have emerged as key players in plant defense against pathogens. PTMs allow a highly dynamic and rapid response in front of external challenges, increasing the complexity and precision of cellular responses. In this review, we focus on the role of SUMO conjugation (SUMOylation) in plant immunity against fungi, bacteria, and viruses. In plants, SUMO regulates multiple biological processes, ranging from development to responses arising from environmental challenges. During pathogen attack, SUMO not only modulates the activity of plant defense components, but also serves as a target of pathogen effectors, highlighting its broad role in plant immunity. Here, we summarize known pathogenic strategies targeting plant SUMOylation and, the plant SUMO conjugates involved in host-pathogen interactions. We also provide a catalog of candidate SUMO conjugates according to their role in defense responses. Finally, we discuss the complex role of SUMO in plant defense, focusing on key biological and experimental aspects that contribute to some controversial conclusions, and the opportunities for improving agricultural productivity by engineering SUMOylation in crop species.
Collapse
Affiliation(s)
- Manisha Sharma
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain.,Biosciences, College of Life and Environment Sciences, University of Exeter, Exeter, United Kingdom
| | - Diana Fuertes
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Jordi Perez-Gil
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - L Maria Lois
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain.,Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
13
|
Montes N, Cobos A, Gil-Valle M, Caro E, Pagán I. Arabidopsis thaliana Genes Associated with Cucumber mosaic virus Virulence and Their Link to Virus Seed Transmission. Microorganisms 2021; 9:692. [PMID: 33801693 PMCID: PMC8067046 DOI: 10.3390/microorganisms9040692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
Virulence, the effect of pathogen infection on progeny production, is a major determinant of host and pathogen fitness as it affects host fecundity and pathogen transmission. In plant-virus interactions, ample evidence indicates that virulence is genetically controlled by both partners. However, the host genetic determinants are poorly understood. Through a genome-wide association study (GWAS) of 154 Arabidopsis thaliana genotypes infected by Cucumber mosaic virus (CMV), we identified eight host genes associated with virulence, most of them involved in response to biotic stresses and in cell wall biogenesis in plant reproductive structures. Given that virulence is a main determinant of the efficiency of plant virus seed transmission, we explored the link between this trait and the genetic regulation of virulence. Our results suggest that the same functions that control virulence are also important for CMV transmission through seeds. In sum, this work provides evidence of a novel role for some previously known plant defense genes and for the cell wall metabolism in plant virus interactions.
Collapse
Affiliation(s)
- Nuria Montes
- Unidad de Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU Universities, Boadilla del Monte, 28003 Madrid, Spain;
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), 28006 Madrid, Spain
| | - Alberto Cobos
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Departamento de Biotecnología-Biología Vegetal, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28045 Madrid, Spain; (A.C.); (M.G.-V.); (E.C.)
| | - Miriam Gil-Valle
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Departamento de Biotecnología-Biología Vegetal, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28045 Madrid, Spain; (A.C.); (M.G.-V.); (E.C.)
| | - Elena Caro
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Departamento de Biotecnología-Biología Vegetal, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28045 Madrid, Spain; (A.C.); (M.G.-V.); (E.C.)
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Departamento de Biotecnología-Biología Vegetal, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28045 Madrid, Spain; (A.C.); (M.G.-V.); (E.C.)
| |
Collapse
|
14
|
MAC5, an RNA-binding protein, protects pri-miRNAs from SERRATE-dependent exoribonuclease activities. Proc Natl Acad Sci U S A 2020; 117:23982-23990. [PMID: 32887800 DOI: 10.1073/pnas.2008283117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
MAC5 is a component of the conserved MOS4-associated complex. It plays critical roles in development and immunity. Here we report that MAC5 is required for microRNA (miRNA) biogenesis. MAC5 interacts with Serrate (SE), which is a core component of the microprocessor that processes primary miRNA transcripts (pri-miRNAs) into miRNAs and binds the stem-loop region of pri-miRNAs. MAC5 is essential for both the efficient processing and the stability of pri-miRNAs. Interestingly, the reduction of pri-miRNA levels in mac5 is partially caused by XRN2/XRN3, the nuclear-localized 5'-to-3' exoribonucleases, and depends on SE. These results reveal that MAC5 plays a dual role in promoting pri-miRNA processing and stability through its interaction with SE and/or pri-miRNAs. This study also uncovers that pri-miRNAs need to be protected from nuclear RNA decay machinery, which is connected to the microprocessor.
Collapse
|
15
|
Kapos P, Devendrakumar KT, Li X. Plant NLRs: From discovery to application. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:3-18. [PMID: 30709490 DOI: 10.1016/j.plantsci.2018.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 05/09/2023]
Abstract
Plants require a complex immune system to defend themselves against a wide range of pathogens which threaten their growth and development. The nucleotide-binding leucine-rich repeat proteins (NLRs) are immune sensors that recognize effectors delivered by pathogens. The first NLR was cloned more than twenty years ago. Since this initial discovery, NLRs have been described as key components of plant immunity responsible for pathogen recognition and triggering defense responses. They have now been described in most of the well-studied mulitcellular plant species, with most having large NLR repertoires. As research has progressed so has the understanding of how NLRs interact with their recognition substrates and how they in turn activate downstream signalling. It has also become apparent that NLR regulation occurs at the transcriptional, post-transcriptional, translational, and post-translational levels. Even before the first NLR was cloned, breeders were utilising such genes to increase crop performance. Increased understanding of the mechanistic details of the plant immune system enable the generation of plants resistant against devastating pathogens. This review aims to give an updated summary of the NLR field.
Collapse
Affiliation(s)
- Paul Kapos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
16
|
Galla G, Basso A, Grisan S, Bellucci M, Pupilli F, Barcaccia G. Ovule Gene Expression Analysis in Sexual and Aposporous Apomictic Hypericum perforatum L. (Hypericaceae) Accessions. FRONTIERS IN PLANT SCIENCE 2019; 10:654. [PMID: 31178879 PMCID: PMC6543059 DOI: 10.3389/fpls.2019.00654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 05/01/2019] [Indexed: 05/09/2023]
Abstract
Hypericum perforatum L. (2n = 4x = 32) is an attractive model system for the study of aposporous apomixis. The earliest phenotypic features of aposporous apomixis in this species are the mitotic formation of unreduced embryo sacs from a somatic cell of the ovule nucellus and the avoidance of meiosis. In this research we addressed gene expression variation in sexual and apomictic plants, by focusing on the ovule nucellus, which is the cellular domain primarily involved into the differentiation of meiocyte precursors and aposporous embryo sacs, at a pre-meiotic developmental stage. Gene expression analyses performed by RNAseq identified 396 differentially expressed genes and 1834 transcripts displaying phenotype-specific expression. Furthermore, the sequencing and assembly of the genome from a diploid sexual accession allowed the annotation of a 50 kb sequence portion located upstream the HAPPY locus and to address the extent to which single transcripts were assembled in multiple variants and their co-expression levels. About one third of identified DEGs and phenotype-specific transcripts were associated to transcript variants with alternative expression patterns. Additionally, considering DEGs and phenotype-specific transcript, the co-expression level was estimated in about two transcripts per locus. Our gene expression study shows massive differences in the expression of several genes encoding for transposable elements. Transcriptional differences in the ovule nucellus and pistil terminal developmental stages were also found for subset of genes encoding for potentially interacting proteins involved in pre-mRNA splicing. Furthermore, the sexual and aposporous ovule transcriptomes were characterized by differential expression in genes operating in RNA silencing, RNA-mediated DNA methylation (RdDM) and histone and chromatin modifications. These findings are consistent with a role of these processes in regulating cell fate determination in the ovule, as indicated by forward genetic studies in sexual model species. The association between aposporous apomixis, pre-mRNA splicing and DNA methylation mediated by sRNAs, which is supported by expression data and by the enrichment in GO terms related to these processes, is consistent with the massive differential expression of multiple transposon-related sequences observed in ovules collected from both sexual and aposporous apomictic accessions. Overall, our data suggest that phenotypic expression of aposporous apomixis is concomitant with the modulation of key genes involved in the two interconnected processes: RNA splicing and RNA-directed DNA methylation.
Collapse
Affiliation(s)
- Giulio Galla
- Laboratory of Genetics and Genomics, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Padua, Italy
- *Correspondence: Giulio Galla,
| | - Andrea Basso
- Laboratory of Genetics and Genomics, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Padua, Italy
| | - Simone Grisan
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council, Perugia, Italy
| | - Michele Bellucci
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council, Perugia, Italy
| | - Fulvio Pupilli
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council, Perugia, Italy
| | - Gianni Barcaccia
- Laboratory of Genetics and Genomics, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Padua, Italy
| |
Collapse
|
17
|
Pi B, He X, Ruan Y, Jang JC, Huang Y. Genome-wide analysis and stress-responsive expression of CCCH zinc finger family genes in Brassica rapa. BMC PLANT BIOLOGY 2018; 18:373. [PMID: 30587139 PMCID: PMC6307296 DOI: 10.1186/s12870-018-1608-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/17/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Ubiquitous CCCH nucleic acid-binding motif is found in a wide-variety of organisms. CCCH genes are involved in plant developmental processes and biotic and abiotic stress responses. Brassica rapa is a vital economic crop and classical model plant of polyploidy evolution, but the functions of CCCH genes in B. rapa are unclear. RESULTS In this study, 103 CCCH genes in B. rapa were identified. A comparative analysis of the chromosomal position, gene structure, domain organization and duplication event between B. rapa and Arabidopsis thaliana were performed. Results showed that CCCH genes could be divided into 18 subfamilies, and segmental duplication might mainly contribute to this family expansion. C-X7/8-C-X5-C3-H was the most commonly found motif, but some novel CCCH motifs were also found, along with some loses of typical CCCH motifs widespread in other plant species. The multifarious gene structures and domain organizations implicated functional diversity of CCCH genes in B. rapa. Evidence also suggested functional redundancy in at least one subfamily due to high conservation between members. Finally, the expression profiles of subfamily-IX genes indicated that they are likely involved in various stress responses. CONCLUSION This study provides the first genome-wide characterization of the CCCH genes in B. rapa. The results suggest that B. rapa CCCH genes are likely functionally divergent, but mostly involved in plant development and stress response. These results are expected to facilitate future functional characterization of this potential RNA-binding protein family in Brassica crops.
Collapse
Affiliation(s)
- Boyi Pi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, 410128 China
- Key Laboratory of Plant Genetics and Molecular Biology of Education Department in Hunan Province, Changsha, 410128 China
| | - Xinghui He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, 410128 China
- Key Laboratory of Plant Genetics and Molecular Biology of Education Department in Hunan Province, Changsha, 410128 China
| | - Ying Ruan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, 410128 China
- Key Laboratory of Plant Genetics and Molecular Biology of Education Department in Hunan Province, Changsha, 410128 China
| | - Jyan-Chyun Jang
- Department of Horticulture and Crop Science, Molecular Genetics, and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210 USA
| | - Yong Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha, 410128 China
- Key Laboratory of Plant Genetics and Molecular Biology of Education Department in Hunan Province, Changsha, 410128 China
| |
Collapse
|
18
|
Lai Y, Eulgem T. Transcript-level expression control of plant NLR genes. MOLECULAR PLANT PATHOLOGY 2018; 19:1267-1281. [PMID: 28834153 PMCID: PMC6638128 DOI: 10.1111/mpp.12607] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 05/20/2023]
Abstract
Plant NLR genes encode sensitive immune receptors that can mediate the specific recognition of pathogen avirulence effectors and activate a strong defence response, termed effector-triggered immunity. The expression of NLRs requires strict regulation, as their ability to trigger immunity is dependent on their dose, and overexpression of NLRs results in autoimmunity and massive fitness costs. An elaborate interplay of different mechanisms controlling NLR transcript levels allows plants to maximize their defence capacity, whilst limiting negative impact on their fitness. Global suppression of NLR transcripts may be a prerequisite for the fast evolution of new NLR variants and the expansion of this gene family. Here, we summarize recent progress made towards a comprehensive understanding of NLR transcript-level expression control. Multiple mechanistic steps, including transcription as well as co-/post-transcriptional processing and transcript turn-over, contribute to balanced base levels of NLR transcripts and allow for dynamic adjustments to defence situations.
Collapse
Affiliation(s)
- Yan Lai
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome BiologyUniversity of California at RiversideRiversideCA 92521USA
- College of Life SciencesFujian Agricultural and Forestry UniversityFuzhouFujian 350002China
| | - Thomas Eulgem
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome BiologyUniversity of California at RiversideRiversideCA 92521USA
| |
Collapse
|
19
|
Li S, Liu K, Zhou B, Li M, Zhang S, Zeng L, Zhang C, Yu B. MAC3A and MAC3B, Two Core Subunits of the MOS4-Associated Complex, Positively Influence miRNA Biogenesis. THE PLANT CELL 2018; 30:481-494. [PMID: 29437988 PMCID: PMC5868694 DOI: 10.1105/tpc.17.00953] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/16/2018] [Accepted: 01/31/2018] [Indexed: 05/18/2023]
Abstract
MAC3A and MAC3B are conserved U-box-containing proteins in eukaryotes. They are subunits of the MOS4-associated complex (MAC) that plays essential roles in plant immunity and development in Arabidopsis thaliana However, their functional mechanisms remain elusive. Here, we show that Arabidopsis MAC3A and MAC3B act redundantly in microRNA (miRNA) biogenesis. Lack of both MAC3A and MAC3B in the mac3b mac3b double mutant reduces the accumulation of miRNAs, causing elevated transcript levels of miRNA targets. mac3a mac3b also decreases the levels of primary miRNA transcripts (pri-miRNAs). However, MAC3A and MAC3B do not affect the promoter activity of genes encoding miRNAs (MIR genes), suggesting that they may not affect MIR transcription. This result, together with the fact that MAC3A associates with pri-miRNAs in vivo, indicates that MAC3A and MAC3B may stabilize pri-miRNAs. Furthermore, we find that MAC3A and MAC3B interact with the DCL1 complex that catalyzes miRNA maturation, promote DCL1 activity, and are required for the localization of HYL1, a component of the DCL1 complex. Besides MAC3A and MAC3B, two other MAC subunits, CDC5 and PRL1, also function in miRNA biogenesis. Based on these results, we propose that MAC functions as a complex to control miRNA levels through modulating pri-miRNA transcription, processing, and stability.
Collapse
Affiliation(s)
- Shengjun Li
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118
| | - Kan Liu
- Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118
| | - Bangjun Zhou
- Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722
| | - Mu Li
- Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118
| | - Shuxin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Lirong Zeng
- Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722
| | - Chi Zhang
- Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118
| | - Bin Yu
- Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118
| |
Collapse
|
20
|
Jia T, Zhang B, You C, Zhang Y, Zeng L, Li S, Johnson KCM, Yu B, Li X, Chen X. The Arabidopsis MOS4-Associated Complex Promotes MicroRNA Biogenesis and Precursor Messenger RNA Splicing. THE PLANT CELL 2017; 29:2626-2643. [PMID: 28947490 PMCID: PMC5774577 DOI: 10.1105/tpc.17.00370] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/07/2017] [Accepted: 09/25/2017] [Indexed: 05/18/2023]
Abstract
In Arabidopsis thaliana, the MOS4-ASSOCIATED COMPLEX (MAC) is required for defense and development. The evolutionarily conserved, putative RNA helicase MAC7 is a component of the Arabidopsis MAC, and the human MAC7 homolog, Aquarius, is implicated in pre-mRNA splicing. Here, we show that mac7-1, a partial loss-of-function mutant in MAC7, and two other MAC subunit mutants, mac3a mac3b and prl1 prl2 (pleiotropic regulatory locus), exhibit reduced microRNA (miRNA) levels, indicating that MAC promotes miRNA biogenesis. The mac7-1 mutant shows reduced primary miRNA (pri-miRNA) levels without affecting miRNA gene (MIR) promoter activity or the half-life of pri-miRNA transcripts. As a nuclear protein, MAC7 is not concentrated in dicing bodies, but it affects the localization of HYPONASTIC LEAVES1 (HYL1), a key protein in pri-miRNA processing, to dicing bodies. Immunoprecipitation of HYL1 retrieved 11 known MAC subunits, including MAC7, indicating association between HYL1 and MAC. We propose that MAC7 links MIR transcription to pri-miRNA processing. RNA-seq analysis showed that downregulated genes in MAC subunit mutants are mostly involved in plant defense and stimulus responses, confirming a role of MAC in biotic and abiotic stress responses. We also discovered global intron retention defects in mutants in three subunits of MAC, thus linking MAC function to splicing in Arabidopsis.
Collapse
Affiliation(s)
- Tianran Jia
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Bailong Zhang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Chenjiang You
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yong Zhang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Liping Zeng
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Shengjun Li
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Kaeli C M Johnson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Bin Yu
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Howard Hughes Medical Institute, University of California, Riverside, California 92521
| |
Collapse
|
21
|
Wu Z, Huang S, Zhang X, Wu D, Xia S, Li X. Regulation of plant immune receptor accumulation through translational repression by a glycine-tyrosine-phenylalanine (GYF) domain protein. eLife 2017; 6:e23684. [PMID: 28362261 PMCID: PMC5403212 DOI: 10.7554/elife.23684] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 03/14/2017] [Indexed: 01/12/2023] Open
Abstract
Plant immunity is tightly regulated to ensure proper defense against surrounding microbial pathogens without triggering autoimmunity, which negatively impacts plant growth and development. Immune receptor levels are intricately controlled by RNA processing and post-translational modification events, such as ubiquitination. It remains unknown whether, and if yes, how, plant immune receptor homeostasis is regulated at the translational level. From a mutant, snc1-enhancing (muse) forward genetic screen, we identified MUSE11/EXA1, which negatively regulates nucleotide-binding leucine-rich repeat (NLR) receptor mediated defence. EXA1 contains an evolutionarily conserved glycine-tyrosine-phenylalanine (GYF) domain that binds proline-rich sequences. Genetic and biochemical analysis revealed that loss of EXA1 leads to heightened NLR accumulation and enhanced resistance against virulent pathogens. EXA1 also associates with eIF4E initiation factors and the ribosome complex, likely contributing to the proper translation of target proteins. In summary, our study reveals a previously unknown mechanism of regulating NLR homeostasis through translational repression by a GYF protein.
Collapse
Affiliation(s)
- Zhongshou Wu
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Shuai Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Xiaobo Zhang
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Hunan Provincial Key Laboratory of Phytohormones, Hunan Agricultural University, Changsha, China
| | - Di Wu
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones, Hunan Agricultural University, Changsha, China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
| |
Collapse
|
22
|
Alternative Splicing in Plant Genes: A Means of Regulating the Environmental Fitness of Plants. Int J Mol Sci 2017; 18:ijms18020432. [PMID: 28230724 PMCID: PMC5343966 DOI: 10.3390/ijms18020432] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/04/2017] [Accepted: 02/10/2017] [Indexed: 01/01/2023] Open
Abstract
Gene expression can be regulated through transcriptional and post-transcriptional mechanisms. Transcription in eukaryotes produces pre-mRNA molecules, which are processed and spliced post-transcriptionally to create translatable mRNAs. More than one mRNA may be produced from a single pre-mRNA by alternative splicing (AS); thus, AS serves to diversify an organism’s transcriptome and proteome. Previous studies of gene expression in plants have focused on the role of transcriptional regulation in response to environmental changes. However, recent data suggest that post-transcriptional regulation, especially AS, is necessary for plants to adapt to a changing environment. In this review, we summarize recent advances in our understanding of AS during plant development in response to environmental changes. We suggest that alternative gene splicing is a novel means of regulating the environmental fitness of plants.
Collapse
|
23
|
Huang S, Balgi A, Pan Y, Li M, Zhang X, Du L, Zhou M, Roberge M, Li X. Identification of Methylosome Components as Negative Regulators of Plant Immunity Using Chemical Genetics. MOLECULAR PLANT 2016; 9:1620-1633. [PMID: 27756575 DOI: 10.1016/j.molp.2016.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/01/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
Nucleotide-binding leucine-rich repeat (NLR) proteins serve as immune receptors in both plants and animals. To identify components required for NLR-mediated immunity, we designed and carried out a chemical genetics screen to search for small molecules that can alter immune responses in Arabidopsis thaliana. From 13 600 compounds, we identified Ro 8-4304 that was able to specifically suppress the severe autoimmune phenotypes of chs3-2D (chilling sensitive 3, 2D), including the arrested growth morphology and heightened PR (Pathogenesis Related) gene expression. Further, six Ro 8-4304 insensitive mutants were uncovered from the Ro 8-4304-insensitive mutant (rim) screen using a mutagenized chs3-2D population. Positional cloning revealed that rim1 encodes an allele of AtICln (I, currents; Cl, chloride; n, nucleotide). Genetic and biochemical analysis demonstrated that AtICln is in the same protein complex with the methylosome components small nuclear ribonucleoprotein D3b (SmD3b) and protein arginine methyltransferase 5 (PRMT5), which are required for the biogenesis of small nuclear ribonucleoproteins (snRNPs) involved in mRNA splicing. Double mutant analysis revealed that SmD3b is also involved in the sensitivity to Ro 8-4304, and the prmt5-1 chs3-2D double mutant is lethal. Loss of AtICln, SmD3b, or PRMT5 function results in enhanced disease resistance against the virulent oomycete pathogen Hyaloperonospora arabidopsidis Noco2, suggesting that mRNA splicing plays a previously unknown negative role in plant immunity. The successful implementation of a high-throughput chemical genetic screen and the identification of a small-molecule compound affecting plant immunity indicate that chemical genetics is a powerful tool to study whole-organism plant defense pathways.
Collapse
Affiliation(s)
- Shuai Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Aruna Balgi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yaping Pan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng Li
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xiaoran Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lilin Du
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ming Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
24
|
Marik A, Naiya H, Das M, Mukherjee G, Basu S, Saha C, Chowdhury R, Bhattacharyya K, Seal A. Split-ubiquitin yeast two-hybrid interaction reveals a novel interaction between a natural resistance associated macrophage protein and a membrane bound thioredoxin in Brassica juncea. PLANT MOLECULAR BIOLOGY 2016; 92:519-537. [PMID: 27534419 DOI: 10.1007/s11103-016-0528-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/10/2016] [Indexed: 06/06/2023]
Abstract
Natural resistance associated macrophage proteins (NRAMPs) are evolutionarily conserved metal transporters involved in the transport of essential and nonessential metals in plants. Fifty protein interactors of a Brassica juncea NRAMP protein was identified by a Split-Ubiquitin Yeast-Two-Hybrid screen. The interactors were predicted to function as components of stress response, signaling, development, RNA binding and processing. BjNRAMP4.1 interactors were particularly enriched in proteins taking part in photosynthetic or light regulated processes, or proteins predicted to be localized in plastid/chloroplast. Further, many interactors also had a suggested role in cellular redox regulation. Among these, the interaction of a photosynthesis-related thioredoxin, homologous to Arabidopsis HCF164 (High-chlorophyll fluorescence164) was studied in detail. Homology modeling of BjNRAMP4.1 suggested that it could be redox regulated by BjHCF164. In yeast, the interaction between the two proteins was found to increase in response to metal deficiency; Mn excess and exogenous thiol. Excess Mn also increased the interaction in planta and led to greater accumulation of the complex at the root apoplast. Network analysis of Arabidopsis homologs of BjNRAMP4.1 interactors showed enrichment of many protein components, central to chloroplastic/cellular ROS signaling. BjNRAMP4.1 interacted with BjHCF164 at the root membrane and also in the chloroplast in accordance with its proposed function related to photosynthesis, indicating that this interaction occurred at different sub-cellular locations depending on the tissue. This may serve as a link between metal homeostasis and chloroplastic/cellular ROS through protein-protein interaction.
Collapse
Affiliation(s)
- Ananya Marik
- Department of Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Haraprasad Naiya
- Department of Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Madhumanti Das
- Department of Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Gairik Mukherjee
- Department of Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Soumalee Basu
- Department of Microbiology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Chinmay Saha
- Department of Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Rajdeep Chowdhury
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Kankan Bhattacharyya
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Anindita Seal
- Department of Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
25
|
Abstract
Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance.
Collapse
|
26
|
Abstract
Intracellular immune receptors with nucleotide-binding, leucine-rich domains (NLRs) are found in both plants and animals. Compared to animals, NLR-encoding gene families are expanded, more prevalent and have enriched diversity in higher plants. Strong host defense triggered by the recognition of specific pathogen effectors constitutes a major part of the plant immune response that has long been exploited to breed crops for enhanced resistance. Although the first plant NLR genes were cloned about 20 years ago, their signaling mechanisms remain obscure. Here we review recent progress in plant NLR studies, focusing on their pathogen recognition, homeostasis control and potential signaling activation mechanisms.
Collapse
|
27
|
Xu F, Kapos P, Cheng YT, Li M, Zhang Y, Li X. NLR-associating transcription factor bHLH84 and its paralogs function redundantly in plant immunity. PLoS Pathog 2014; 10:e1004312. [PMID: 25144198 PMCID: PMC4140859 DOI: 10.1371/journal.ppat.1004312] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/03/2014] [Indexed: 12/22/2022] Open
Abstract
In plants and animals, nucleotide-binding and leucine-rich repeat domain containing (NLR) immune receptors are utilized to detect the presence or activities of pathogen-derived molecules. However, the mechanisms by which NLR proteins induce defense responses remain unclear. Here, we report the characterization of one basic Helix-loop-Helix (bHLH) type transcription factor (TF), bHLH84, identified from a reverse genetic screen. It functions as a transcriptional activator that enhances the autoimmunity of NLR mutant snc1 (suppressor of npr1-1, constitutive 1) and confers enhanced immunity in wild-type backgrounds when overexpressed. Simultaneously knocking out three closely related bHLH paralogs attenuates RPS4-mediated immunity and partially suppresses the autoimmune phenotypes of snc1, while overexpression of the other two close paralogs also renders strong autoimmunity, suggesting functional redundancy in the gene family. Intriguingly, the autoimmunity conferred by bHLH84 overexpression can be largely suppressed by the loss-of-function snc1-r1 mutation, suggesting that SNC1 is required for its proper function. In planta co-immunoprecipitation revealed interactions between not only bHLH84 and SNC1, but also bHLH84 and RPS4, indicating that bHLH84 associates with these NLRs. Together with previous finding that SNC1 associates with repressor TPR1 to repress negative regulators, we hypothesize that nuclear NLR proteins may interact with both transcriptional repressors and activators during immune responses, enabling potentially faster and more robust transcriptional reprogramming upon pathogen recognition. In plants and animals, NLR immune receptors are utilized to detect pathogen-derived molecules and activate immunity. However, the mechanisms of plant NLR activation remain unclear. Here, we report on bHLH84, which functions as a transcriptional activator. Simultaneously knocking out three closely related bHLH paralogs partially suppresses the autoimmunity of snc1 and compromises RPS4-mediated defense, while overexpression of these close paralogs renders strong autoimmunity, suggesting functional redundancy in the gene family. In planta co-immunoprecipitation revealed interactions between not only bHLH84 and SNC1, but also bHLH84 and RPS4. Therefore bHLH84 family transcription factors associate with these NLRs to activate defense responses, enabling potentially faster and more robust transcriptional reprogramming upon pathogen recognition.
Collapse
Affiliation(s)
- Fang Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul Kapos
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yu Ti Cheng
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Meng Li
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- National Institute of Biological Sciences, Beijing, People's Republic of China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
28
|
Alternative splicing in plant immunity. Int J Mol Sci 2014; 15:10424-45. [PMID: 24918296 PMCID: PMC4100160 DOI: 10.3390/ijms150610424] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 12/01/2022] Open
Abstract
Alternative splicing (AS) occurs widely in plants and can provide the main source of transcriptome and proteome diversity in an organism. AS functions in a range of physiological processes, including plant disease resistance, but its biological roles and functional mechanisms remain poorly understood. Many plant disease resistance (R) genes undergo AS, and several R genes require alternatively spliced transcripts to produce R proteins that can specifically recognize pathogen invasion. In the finely-tuned process of R protein activation, the truncated isoforms generated by AS may participate in plant disease resistance either by suppressing the negative regulation of initiation of immunity, or by directly engaging in effector-triggered signaling. Although emerging research has shown the functional significance of AS in plant biotic stress responses, many aspects of this topic remain to be understood. Several interesting issues surrounding the AS of R genes, especially regarding its functional roles and regulation, will require innovative techniques and additional research to unravel.
Collapse
|
29
|
Komatsu S, Han C, Nanjo Y, Altaf-Un-Nahar M, Wang K, He D, Yang P. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding. J Proteome Res 2013; 12:4769-84. [PMID: 23808807 DOI: 10.1021/pr4001898] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Flooding is a serious problem for soybean cultivation because it markedly reduces growth. To investigate the role of phytohormones in soybean under flooding stress, gel-free proteomic technique was used. When 2-day-old soybeans were flooded, the content of abscisic acid (ABA) did not decrease in the root, though its content decreased in untreated plant. When ABA was added during flooding treatment, survival ratio was improved compared with that of soybeans flooded without ABA. When 2-day-old soybeans were flooded with ABA, the abundance of proteins related to cell organization, vesicle transport and glycolysis decreased compared with those in root of soybeans flooded without ABA. Furthermore, the nuclear proteins were analyzed to identify the transcriptional regulation. The abundance of 34 nuclear proteins such as histone deacetylase and U2 small nuclear ribonucleoprotein increased by ABA supplementation under flooding; however, 35 nuclear proteins such as importin alpha, chromatin remodeling factor, zinc finger protein, transducin, and cell division 5 protein decreased. Of them, the mRNA expression levels of cell division cycle 5 protein, C2H2 zinc finger protein SERRATE, CCCH type zinc finger family protein, and transducin were significantly down-regulated under the ABA treatment. These results suggest that ABA might be involved in the enhancement of flooding tolerance of soybean through the control of energy conservation via glycolytic system and the regulation on zinc finger proteins, cell division cycle 5 protein and transducin.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Staiger D, Brown JWS. Alternative splicing at the intersection of biological timing, development, and stress responses. THE PLANT CELL 2013. [PMID: 24179132 DOI: 10.1105/tcp.113.117523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
High-throughput sequencing for transcript profiling in plants has revealed that alternative splicing (AS) affects a much higher proportion of the transcriptome than was previously assumed. AS is involved in most plant processes and is particularly prevalent in plants exposed to environmental stress. The identification of mutations in predicted splicing factors and spliceosomal proteins that affect cell fate, the circadian clock, plant defense, and tolerance/sensitivity to abiotic stress all point to a fundamental role of splicing/AS in plant growth, development, and responses to external cues. Splicing factors affect the AS of multiple downstream target genes, thereby transferring signals to alter gene expression via splicing factor/AS networks. The last two to three years have seen an ever-increasing number of examples of functional AS. At a time when the identification of AS in individual genes and at a global level is exploding, this review aims to bring together such examples to illustrate the extent and importance of AS, which are not always obvious from individual publications. It also aims to ensure that plant scientists are aware that AS is likely to occur in the genes that they study and that dynamic changes in AS and its consequences need to be considered routinely.
Collapse
Affiliation(s)
- Dorothee Staiger
- Molecular Cell Physiology, Bielefeld University, D33615 Bielefeld, Germany
| | | |
Collapse
|
31
|
Staiger D, Brown JW. Alternative splicing at the intersection of biological timing, development, and stress responses. THE PLANT CELL 2013; 25:3640-56. [PMID: 24179132 PMCID: PMC3877812 DOI: 10.1105/tpc.113.113803] [Citation(s) in RCA: 458] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 05/15/2013] [Accepted: 10/08/2013] [Indexed: 05/18/2023]
Abstract
High-throughput sequencing for transcript profiling in plants has revealed that alternative splicing (AS) affects a much higher proportion of the transcriptome than was previously assumed. AS is involved in most plant processes and is particularly prevalent in plants exposed to environmental stress. The identification of mutations in predicted splicing factors and spliceosomal proteins that affect cell fate, the circadian clock, plant defense, and tolerance/sensitivity to abiotic stress all point to a fundamental role of splicing/AS in plant growth, development, and responses to external cues. Splicing factors affect the AS of multiple downstream target genes, thereby transferring signals to alter gene expression via splicing factor/AS networks. The last two to three years have seen an ever-increasing number of examples of functional AS. At a time when the identification of AS in individual genes and at a global level is exploding, this review aims to bring together such examples to illustrate the extent and importance of AS, which are not always obvious from individual publications. It also aims to ensure that plant scientists are aware that AS is likely to occur in the genes that they study and that dynamic changes in AS and its consequences need to be considered routinely.
Collapse
Affiliation(s)
- Dorothee Staiger
- Molecular Cell Physiology, Bielefeld University, D33615 Bielefeld, Germany
- Institute for Genome Research and Systems Biology, CeBiTec, D33615 Bielefeld, Germany
| | - John W.S. Brown
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie DD2 5DA, Scotland, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie DD2 5DA, Scotland, United Kingdom
- Address correspondence to
| |
Collapse
|
32
|
Parry G. Assessing the function of the plant nuclear pore complex and the search for specificity. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:833-45. [PMID: 23077202 DOI: 10.1093/jxb/ers289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant cells encounter a wide variety of molecules that influence their gene expression and development. A key component of most signal transduction pathways involves the regulated movement of molecules into and out of the nucleus. The plant nuclear pore complex (NPC) is a critical controlling element in this nucleocytoplasmic movement of protein and RNA. The NPC is comprised of approximately 30 nucleoporin proteins arranged in radial symmetry around the central pore. Over recent years our understanding of how the NPC impacts different signalling pathways has increased following the identification of a range of nucleoporin mutant plants. These mutants allow us to gain insight into how the response to hormonal, abiotic, and biotic stresses are effected by changes in nuclear transport. Importantly we have little information regarding the specific molecules whose nuclear transport is altered in these processes and the identification of these proteins is a significant challenge. Here is presented an overview as to how the members of the plant NPC affect signalling pathways, highlighting the progress and difficulties within this research area.
Collapse
Affiliation(s)
- Geraint Parry
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK.
| |
Collapse
|
33
|
Staiger D, Korneli C, Lummer M, Navarro L. Emerging role for RNA-based regulation in plant immunity. THE NEW PHYTOLOGIST 2013; 197:394-404. [PMID: 23163405 DOI: 10.1111/nph.12022] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 10/02/2012] [Indexed: 05/20/2023]
Abstract
Infection by phytopathogenic bacteria triggers massive changes in plant gene expression, which are thought to be mostly a result of transcriptional reprogramming. However, evidence is accumulating that plants additionally use post-transcriptional regulation of immune-responsive mRNAs as a strategic weapon to shape the defense-related transcriptome. Cellular RNA-binding proteins regulate RNA stability, splicing or mRNA export of immune-response transcripts. In particular, mutants defective in alternative splicing of resistance genes exhibit compromised disease resistance. Furthermore, detection of bacterial pathogens induces the differential expression of small non-coding RNAs including microRNAs that impact the host defense transcriptome. Phytopathogenic bacteria in turn have evolved effector proteins to inhibit biogenesis and/or activity of cellular microRNAs. Whereas RNA silencing has long been known as an antiviral defense response, recent findings also reveal a major role of this process in antibacterial defense. Here we review the function of RNA-binding proteins and small RNA-directed post-transcriptional regulation in antibacterial defense. We mainly focus on studies that used the model system Arabidopsis thaliana and also discuss selected examples from other plants.
Collapse
Affiliation(s)
- Dorothee Staiger
- Molecular Cell Physiology, Bielefeld University, D-33615, Bielefeld, Germany
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | - Christin Korneli
- Molecular Cell Physiology, Bielefeld University, D-33615, Bielefeld, Germany
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | - Martina Lummer
- Molecular Cell Physiology, Bielefeld University, D-33615, Bielefeld, Germany
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | - Lionel Navarro
- Institut de Biologie de L'Ecole Normale Supérieure (IBENS), 46 Rue d'Ulm, 75230, Paris Cedex 05, France
| |
Collapse
|
34
|
Lee HJ, Kim JS, Yoo SJ, Kang EY, Han SH, Yang KY, Kim YC, McSpadden Gardener B, Kang H. Different roles of glycine-rich RNA-binding protein7 in plant defense against Pectobacterium carotovorum, Botrytis cinerea, and tobacco mosaic viruses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 60:46-52. [PMID: 22902796 DOI: 10.1016/j.plaphy.2012.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/24/2012] [Indexed: 05/04/2023]
Abstract
Glycine-rich RNA-binding protein7 (AtGRP7) has previously been demonstrated to confer plant defense against Pseudomonas syringae DC3000. Here, we show that AtGRP7 can play different roles in plant defense against diverse pathogens. AtGRP7 enhances resistance against a necrotrophic bacterium Pectobacterium carotovorum SCC1 or a biotrophic virus tobacco mosaic virus. By contrast, AtGRP7 plays a negative role in defense against a necrotrophic fungus Botrytis cinerea. These results provide evidence that AtGRP7 is a potent regulator in plant defense response to diverse pathogens, and suggest that the regulation of RNA metabolism by RNA-binding proteins is important for plant innate immunity.
Collapse
Affiliation(s)
- Hwa Jung Lee
- Department of Plant Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Weihmann T, Palma K, Nitta Y, Li X. Pleiotropic regulatory locus 2 exhibits unequal genetic redundancy with its homolog PRL1. PLANT & CELL PHYSIOLOGY 2012; 53:1617-1626. [PMID: 22813545 DOI: 10.1093/pcp/pcs103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In plants, signaling leading to resistance against biotrophic pathogens is complex. Perception of pathogenic microbes by resistance (R) proteins is relayed though successive activities of downstream components, in a network that is not well understood. PLEIOTROPIC REGULATORY LOCUS 1 (PRL1) and >20 other proteins are members of the MOS4-associated complex (MAC), a regulatory node in defense signaling. Of all characterized MAC members, mutations in PRL1 cause the most severe susceptibility towards both virulent and avirulent microbial pathogens. Genetic suppressors of prl1 represent new signaling elements and may aid in further unraveling of defense mechanisms. Our identification and characterization of a dominant suppressor of prl1 revealed a regulatory, gain-of-function mutation in PLEIOTROPIC REGULATORY LOCUS 2 (PRL2), a close homolog of PRL1. Loss-of-function mutants of PRL2 do not exhibit altered phenotypes; however, prl1 prl2 double mutants exhibit enhanced morphological defects consistent with unequal genetic redundancy between the homologs. Up-regulated gene expression mediated by the dominant prl2-1D allele completely suppresses disease susceptibility in the prl1 mutant background and also restores wild-type appearance, further supporting functional equivalence between the two PRL proteins.
Collapse
Affiliation(s)
- Tabea Weihmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | | | | |
Collapse
|
36
|
Koncz C, deJong F, Villacorta N, Szakonyi D, Koncz Z. The spliceosome-activating complex: molecular mechanisms underlying the function of a pleiotropic regulator. FRONTIERS IN PLANT SCIENCE 2012; 3:9. [PMID: 22639636 PMCID: PMC3355604 DOI: 10.3389/fpls.2012.00009] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/09/2012] [Indexed: 05/18/2023]
Abstract
Correct interpretation of the coding capacity of RNA polymerase II transcribed eukaryotic genes is determined by the recognition and removal of intronic sequences of pre-mRNAs by the spliceosome. Our current knowledge on dynamic assembly and subunit interactions of the spliceosome mostly derived from the characterization of yeast, Drosophila, and human spliceosomal complexes formed on model pre-mRNA templates in cell extracts. In addition to sequential structural rearrangements catalyzed by ATP-dependent DExH/D-box RNA helicases, catalytic activation of the spliceosome is critically dependent on its association with the NineTeen Complex (NTC) named after its core E3 ubiquitin ligase subunit PRP19. NTC, isolated recently from Arabidopsis, occurs in a complex with the essential RNA helicase and GTPase subunits of the U5 small nuclear RNA particle that are required for both transesterification reactions of splicing. A compilation of mass spectrometry data available on the composition of NTC and spliceosome complexes purified from different organisms indicates that about half of their conserved homologs are encoded by duplicated genes in Arabidopsis. Thus, while mutations of single genes encoding essential spliceosome and NTC components lead to cell death in other organisms, differential regulation of some of their functionally redundant Arabidopsis homologs permits the isolation of partial loss of function mutations. Non-lethal pleiotropic defects of these mutations provide a unique means for studying the roles of NTC in co-transcriptional assembly of the spliceosome and its crosstalk with DNA repair and cell death signaling pathways.
Collapse
Affiliation(s)
- Csaba Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
- Institute of Plant Biology, Biological Research Center of Hungarian Academy of SciencesSzeged, Hungary
- *Correspondence: Csaba Koncz, Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-59829 Cologne, Germany. e-mail:
| | - Femke deJong
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Nicolas Villacorta
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Dóra Szakonyi
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Zsuzsa Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| |
Collapse
|
37
|
Abstract
AbstractRecent work in plant immunity has shown that MOS4, a known intermediate in R protein mediated resistance, is a core member of the nuclear MOS4-associated complex (MAC). This complex is highly conserved in eukaryotes, as orthologous complexes known as the CDC5L-SNEVPrp19-Pso4 complex and the Nineteen complex (NTC) were previously identified in human and yeast, respectively. The involvement of these complexes in pre-mRNA splicing and spliceosome assembly suggests that the MAC probably has a similar function in plants. Double mutants of any two MAC components are lethal, whereas single mutants of the MAC core components mos4, Atcdc5, mac3, and prl1 are all viable and display pleiotropic defects. This suggests that while the MAC is required for some essential biological function such as splicing, individual MAC components are not crucial for complex functionality and likely have regulatory roles in other biological processes such as plant immunity and flowering time control. Future studies on MAC components in Arabidopsis will provide further insight into the regulatory mechanisms of the MAC on specific biological processes.
Collapse
|
38
|
Woloshen V, Huang S, Li X. RNA-Binding Proteins in Plant Immunity. J Pathog 2011; 2011:278697. [PMID: 22567326 PMCID: PMC3335643 DOI: 10.4061/2011/278697] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/17/2011] [Accepted: 06/03/2011] [Indexed: 11/24/2022] Open
Abstract
Plant defence responses against pathogen infection are crucial to plant survival. The high degree of regulation of plant immunity occurs both transcriptionally and posttranscriptionally. Once transcribed, target gene RNA must be processed prior to translation. This includes polyadenylation, 5′capping, editing, splicing, and mRNA export. RNA-binding proteins (RBPs) have been implicated at each level of RNA processing. Previous research has primarily focused on structural RNA-binding proteins of yeast and mammals; however, more recent work has characterized a number of plant RBPs and revealed their roles in plant immune responses. This paper provides an update on the known functions of RBPs in plant immune response regulation. Future in-depth analysis of RBPs and other related players will unveil the sophisticated regulatory mechanisms of RNA processing during plant immune responses.
Collapse
Affiliation(s)
- Virginia Woloshen
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada V6T 1Z4
| | | | | |
Collapse
|