1
|
Faleva AV, Pikovskoi II, Kosyakov DS. Structural features of dioxane lignin: A comparative study with milled wood and formaldehyde-stabilized lignins. Int J Biol Macromol 2025; 299:140267. [PMID: 39863197 DOI: 10.1016/j.ijbiomac.2025.140267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Dioxane lignin (DL) is isolated from plant material under mild acidolysis conditions and is widely used in many studies as a representative sample of protolignin, an alternative to milled wood lignin (MWL). However, the structural changes caused by hydrolytic degradation reactions during DL extraction are still poorly understood. In this work, an integrated approach based on 2D NMR and high-resolution mass spectrometry was used to establish the features of the lignin structure on the example of pine lignin isolated using dioxane under various conditions: MWL, DL and "formaldehyde stabilized" lignin (LSF). In this context, we sought to gain a deeper understanding of the chemical structure of DL, focusing on the least studied fragments. Cross-peaks related to the degradation products of 1,2-diarylpropane were uniquely identified for the first time by a combination of HSQC-HMBC spectra. In addition, the 1,3-dioxane structure of β-aryl ether, the presence of which in DL has not been previously observed and originates from elements of the native structure and formaldehyde (product of lignin destruction), was unambiguously shown and confirmed by NMR and mass spectrometry analysis. Additionally, signals related to the 1,3-dioxane structure of 1,2-diarylpropane were also detected for the first time in the HSQC spectrum of LSF.
Collapse
Affiliation(s)
- Anna V Faleva
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center "Arktika", Northern (Arctic) Federal University named after M.V. Lomonosov, Northern Dvina Emb., 17, Arkhangelsk 163002, Russian Federation.
| | - Ilya I Pikovskoi
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center "Arktika", Northern (Arctic) Federal University named after M.V. Lomonosov, Northern Dvina Emb., 17, Arkhangelsk 163002, Russian Federation.
| | - Dmitry S Kosyakov
- Core Facility Center "Arktika", Northern (Arctic) Federal University named after M.V. Lomonosov, Northern Dvina Emb., 17, Arkhangelsk 163002, Russian Federation.
| |
Collapse
|
2
|
Wang Z, Wang Z, Zhang Z, Lu Q, Sheng Y, Song X, Huo R, Wang J, Zhai S. Comparative transcriptome reveals lignin biosynthesis being the key molecular pathway regulating oilseed rape growth treated by SiO 2 NPs and biochar. JOURNAL OF PLANT RESEARCH 2025; 138:147-159. [PMID: 39537940 DOI: 10.1007/s10265-024-01590-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Biochar and SiO2 NPs are effective soil conditioners, but the impacts and mechanisms of combined application in oilseed rape are not yet clear. Therefore, an experiment was designed to investigate oilseed rape growth, physiological indexes, and transcriptome sequencing under four treatments: control (CK), Platanus orientalis L. leaf biochar (B), SiO2 NPs (S), and BS. Our results showed that B, S and BS treatments all promoted the root growth, root activity and biomass of oilseed rape, especially the root length and fresh weight in BS, which were increased by 77.48% and 279.07%, respectively. Moreover, the three-dimensional fluorescence spectra of B and BS were similar, and the tyrosine-like substance proportion in B, S and BS increased from 7.8 to 9.4%, 10.2% and 19.5%, respectively. In transcriptome analysis, there were 10,280 differentially expressed genes (DEGs) shared in B and BS, 3431 DEGs shared in S and BS, and 2815 DEGs shared in B, S and BS. We also found that B, S and BS all regulated oilseed rape growth by inducing the lignin biosynthesis and the relevant genes encoding BBE-like, BGL, UDP in the phenylpropanoid biosynthesis pathway. The results provide gene regulation associated with the phenylpropanoid biosynthesis applying the biochar and SiO2 NPs, which can be used to increase biomass.
Collapse
Affiliation(s)
- Ziming Wang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Ziyue Wang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Zhaodi Zhang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Qiong Lu
- School of Geography and Environment, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Yikun Sheng
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Xiangyuan Song
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Ruipeng Huo
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Juyuan Wang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, 252059, China.
| | - Sheng Zhai
- School of Geography and Environment, Liaocheng University, Liaocheng, Shandong, 252059, China.
| |
Collapse
|
3
|
Chen M, Li Y, Liu H, Zhang D, Guo Y, Shi QS, Xie X. Lignin hydrogenolysis: Tuning the reaction by lignin chemistry. Int J Biol Macromol 2024; 279:135169. [PMID: 39218172 DOI: 10.1016/j.ijbiomac.2024.135169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Replacing fossil resource with biomass is one of the promising approaches to reduce our carbon footprint. Lignin is one of the three major components of lignocellulosic biomass, accounting for 10-35 wt% of dried weight of the biomass. Hydrogenolytic depolymerization of lignin is attracting increasing attention because of its capacity of utilizing lignin in its uncondensed form and compatibility with the biomass fractionation processes. Lignin is a natural aromatic polymer composed of a variety of monolignols associated with a series of lignin linkage motifs. Hydrogenolysis cleaves various ether bonds in lignin and releases phenolic monomers which can be further upgraded into valuable products, i.e., drugs, terephthalic acid, phenol. This review provides an overview of the state-of-the-art advances of the reagent (lignin), products (hydrol lignin), mass balance, and mechanism of the lignin hydrogenolysis reaction. The chemical structure of lignin is reviewed associated with the free radical coupling of monolignols and the chemical reactions of lignin upon isolation processes. The reactions of lignin linkages upon hydrogenolysis are discussed. The components of hydrol lignin and the selectivity production of phenolic monomers are reviewed. Future challenges on hydrogenolysis of lignin are proposed. This article provides an overview of lignin hydrogenolysis reaction which shows light on the generation of optimized lignin ready for hydrogenolytic depolymerization.
Collapse
Affiliation(s)
- Mingjie Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China; Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Guangdong Dimei New Materials Technology Co. Ltd., 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Yan Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China; Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Huiming Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Dandan Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Qing-Shan Shi
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China.
| | - Xiaobao Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China.
| |
Collapse
|
4
|
Creteanu A, Lungu CN, Lungu M. Lignin: An Adaptable Biodegradable Polymer Used in Different Formulation Processes. Pharmaceuticals (Basel) 2024; 17:1406. [PMID: 39459044 PMCID: PMC11509946 DOI: 10.3390/ph17101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION LIG is a biopolymer found in vascular plant cell walls that is created by networks of hydroxylated and methoxylated phenylpropane that are randomly crosslinked. Plant cell walls contain LIG, a biopolymer with significant potential for usage in modern industrial and pharmaceutical applications. It is a renewable raw resource. The plant is mechanically protected by this substance, which may increase its durability. Because it has antibacterial and antioxidant qualities, LIG also shields plants from biological and chemical challenges from the outside world. Researchers have done a great deal of work to create new materials and substances based on LIG. Numerous applications, including those involving antibacterial agents, antioxidant additives, UV protection agents, hydrogel-forming molecules, nanoparticles, and solid dosage forms, have been made with this biopolymer. METHODS For this review, a consistent literature screening using the Pubmed database from 2019-2024 has been performed. RESULTS The results showed that there is an increase in interest in lignin as an adaptable biomolecule. The most recent studies are focused on the biosynthesis and antimicrobial properties of lignin-derived molecules. Also, the use of lignin in conjunction with nanostructures is actively explored. CONCLUSIONS Overall, lignin is a versatile molecule with multiple uses in industry and medical science.
Collapse
Affiliation(s)
- Andreea Creteanu
- Department of Pharmaceutical Technology, University of Medicine and Pharmacy Grigore T Popa, 700115 Iași, Romania;
| | - Claudiu N. Lungu
- Department of Functional and Morphological Science, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania;
| | - Mirela Lungu
- Department of Functional and Morphological Science, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania;
| |
Collapse
|
5
|
Zhang C, Liu J, He Y, Wen J, Yuan TQ. Unveiling the Structural Characteristics of Lignin and Lignin-Carbohydrate Complexes in Fibers and Parenchyma Cells of Moso Bamboo during Different Growing Years. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20537-20546. [PMID: 39231308 DOI: 10.1021/acs.jafc.4c04010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Understanding and recognizing the structural characteristics of lignin-carbohydrate complexes (LCCs) and lignin in different growth stages and tissue types of bamboo will facilitate industrial processes and practical applications of bamboo biomass. Herein, the LCC and lignin samples were sequentially isolated from fibers and parenchyma cells of bamboo with different growth ages. The diverse yields of sequential fractions not only reflect the different biomass recalcitrance between bamboo fibers and parenchyma cells but also uncover the structural heterogeneity of these tissues at different growth stages. The molecular structures and structural inhomogeneities of the isolated lignin and LCC samples were comprehensively investigated. The results showed that the structural features of lignin and LCC linkages in parenchyma cells were abundant in β-O-4 linkages but less with carbon-carbon linkages, suggesting that lignin and cross-linked LCC in parenchyma cells are simple in nature and easily to be tamed and tractable in the current biorefinery. Parallelly, the different ball-milled samples were directly characterized by high-resolution (800 M) solution-state 2D-HSQC NMR to analyze the whole lignocellulosic material. Overall, the scheme presented in this study will provide a comprehensive understanding of lignin and LCC linkages in fibers and parenchyma cells of bamboo and enable the utilization of bamboo biomass.
Collapse
Affiliation(s)
- Chen Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jing Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Yanrong He
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jialong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Okabe Y, Ohgitani E, Mazda O, Watanabe T. Anti-SARS-CoV-2 activity of microwave solvolysis lignin from woody biomass. Int J Biol Macromol 2024; 275:133556. [PMID: 38955295 DOI: 10.1016/j.ijbiomac.2024.133556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
The global pandemic caused by the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has had profoundly detrimental effects on our society. To combat this highly pathogenic virus, we turned our attention to an abundant renewable natural aromatic polymer found in wood. Through a chemical modification of Eucalyptus and Japanese cedar wood via acidic microwave solvolysis in equivolume mixture of 2 % (w/w) aqueous H2SO4, ethylene glycol, and toluene at 190 °C. Subsequently, we separated the resulting solvolysis products through extractions with toluene, ethyl acetate, and ethanol. Among these products, the ethyl acetate extract from Eucalyptus wood (eEAE) demonstrated the highest inhibition effects against the novel SARS-CoV-2. We further divided eEAE into four fractions, and a hexane extract from the ethanol-soluble portion, termed eEAE3, exhibited the most substantial inhibitory rate at 93.0 % when tested at a concentration of 0.5 mg/mL. Analyzing eEAE3 using pyrolysis gas chromatography-mass spectrometry revealed that its primary components are derived from lignin. Additionally, 1H-13C edited-heteronuclear single quantum coherence nuclear magnetic resonance analysis showed that the solvolysis process cleaved major lignin interunit linkages. Considering the abundance and renewability of lignin, the lignin-derived anti-SARS-CoV-2 agent presents a promising potential for application in suppressing infections within our everyday environment.
Collapse
Affiliation(s)
- Yumi Okabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasyo, Uji, Kyoto 611-0011, Japan
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasyo, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
7
|
Doménech-Pascual A, Carrasco-Barea L, Gich F, Boadella J, Freixinos Campillo Z, Gómez Cerezo R, Butturini A, Romaní AM. Differential response of bacteria and fungi to drought on the decomposition of Sarcocornia fruticosa woody stems in a saline stream. Environ Microbiol 2024; 26:e16661. [PMID: 38849711 DOI: 10.1111/1462-2920.16661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/10/2024] [Indexed: 06/09/2024]
Abstract
Inland saline ecosystems suffer multiple stresses (e.g., high radiation, salinity, water scarcity) that may compromise essential ecosystem functions such as organic matter decomposition. Here, we investigated the effects of drought on microbial colonization and decomposition of Sarcocornia fruticosa woody stems across different habitats in a saline watershed: on the dry floodplain, submerged in the stream channel and at the shoreline (first submerged, then emerged). Unexpectedly, weight loss was not enhanced in the submerged stems, while decomposition process differed between habitats. On the floodplain, it was dominated by fungi and high cellulolytic activity; in submerged conditions, a diverse community of bacteria and high ligninolytic activity dominated; and, on the shoreline, enzyme activities were like submerged conditions, but with a fungal community similar to the dry conditions. Results indicate distinct degradation paths being driven by different stress factors: strong water scarcity and photodegradation in dry conditions, and high salinity and reduced oxygen in wet conditions. This suggests that fungi are more resistant to drought, and bacteria to salinity. Overall, in saline watersheds, variations in multiple stress factors exert distinct environmental filters on bacteria and fungi and their role in the decomposition of plant material, affecting carbon cycling and microbial interactions.
Collapse
Affiliation(s)
| | - Lorena Carrasco-Barea
- Plant Physiology Unit, Department of Environmental Sciences, University of Girona, Girona, Spain
| | - Frederic Gich
- Molecular Microbial Ecology Group (gEMM-IEA), Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - Judit Boadella
- GRECO, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | | | - Rosa Gómez Cerezo
- Department of Ecology and Hydrology, University of Murcia, Murcia, Spain
| | - Andrea Butturini
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Anna M Romaní
- GRECO, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| |
Collapse
|
8
|
Shen W, Zhang C, Wang G, Li Y, Zhang X, Cui Y, Hu Z, Shen S, Xu X, Cao Y, Li X, Wen J, Lin J. Variation pattern in the macromolecular (cellulose, hemicelluloses, lignin) composition of cell walls in Pinus tabulaeformis tree trunks at different ages as revealed using multiple techniques. Int J Biol Macromol 2024; 268:131619. [PMID: 38692998 DOI: 10.1016/j.ijbiomac.2024.131619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/27/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
The plant cell wall is a complex, heterogeneous structure primarily composed of cellulose, hemicelluloses, and lignin. Exploring the variations in these three macromolecules over time is crucial for understanding wood formation to enhance chemical processing and utilization. Here, we comprehensively analyzed the chemical composition of cell walls in the trunks of Pinus tabulaeformis using multiple techniques. In situ analysis showed that macromolecules accumulated gradually in the cell wall as the plant aged, and the distribution pattern of lignin was opposite that of polysaccharides, and both showed heterogenous distribution patterns. In addition, gel permeation chromatography (GPC) results revealed that the molecular weights of hemicelluloses decreased while that of lignin increased with age. Two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance (2D-HSQC NMR) analysis indicated that hemicelluloses mainly comprised galactoglucomannan and arabinoglucuronoxylan, and the lignin types were mainly comprised guaiacyl (G) and p-hydroxyphenyl (H) units with three main linkage types: β-O-4, β-β, and β-5. Furthermore, the C-O bond (β-O-4) signals of lignin decreased while the C-C bonds (β-β and β-5) signals increased over time. Taken together, these findings shed light on wood formation in P. tabulaeformis and lay the foundation for enhancing the processing and use of wood and timber products.
Collapse
Affiliation(s)
- Weiwei Shen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chen Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Guangchao Wang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yujian Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xi Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yaning Cui
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zijian Hu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shiya Shen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiuping Xu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuan Cao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaojuan Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jialong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Jinxing Lin
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
9
|
Wang WY, Guo BX, Wang R, Liu HM, Qin Z. Revealing the structural changes of lignin in Chinese quince (Chaenomeles sinensis) fruit as it matures. Int J Biol Macromol 2024; 264:130718. [PMID: 38460651 DOI: 10.1016/j.ijbiomac.2024.130718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Chinese quince fruits (Chaenomeles sinensis) contain substantial amounts of lignin; however, the exact structure of lignin remains to be investigated. In this study, milled wood lignins (Milled wood lignin (MWL)-1, MWL-2, MWL-3, MWL-4, MWL-5, and MWL-6) were extracted from fruits harvested once a month from May to October 2019 to investigate their structural evolution during fruit growth. The samples were characterized via High-performance anion exchange chromatography (HPAEC), Fourier transform-infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), thermogravimetric (TGA), pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and NMR (2D-heteronuclear single quantum coherence (HSQC) and 31P). The MWL samples in all fruit growth stages were GS-type lignin and lignin core undergoing minimal alterations during fruit development. The predominant linkage in the lignin structure was β-O-4', followed by β-β' and β-5'. Galactose and glucose were the main monosaccharides associated with MWL. In MWL-6, the lignin exhibited the highest homogeneity and thermal stability. As the fruit matured, a gradual increase in the β-O-4' proportion and the ratio of S/G was observed. The results provide comprehensive characterization of the cell wall lignin of quince fruit as it matures. This study could inspire innovative applications of quince fruit lignin and provide the optimal harvest time for lignin utilization.
Collapse
Affiliation(s)
- Wen-Yue Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Bing-Xin Guo
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Rui Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Hua-Min Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Zhao Qin
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
10
|
Kim S, Kim JC, Kim YY, Yang JE, Lee HM, Hwang IM, Park HW, Kim HM. Utilization of coffee waste as a sustainable feedstock for high-yield lactic acid production through microbial fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169521. [PMID: 38141985 DOI: 10.1016/j.scitotenv.2023.169521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Lactic acid is an important industrial precursor; however, high substrate costs are a major challenge in microbial fermentation-based lactic acid production. Coffee waste is a sustainable feedstock alternative for lactic acid production via microbial fermentation. Herein, the feasibility of coffee waste as a feedstock was explored by employing appropriate pretreatment methods and optimizing enzyme combinations. Coffee waste pretreatment with hydrogen peroxide and acetic acid along with a combination of Viscozyme L, Celluclast 1.5 L, and Pectinex Ultra SP-L achieved the 78.9 % sugar conversion rate at a substrate concentration of 4 % (w/v). Lactiplantibacillus plantarum WiKim0126-induced fermentation with a 4 % solid loading yielded a lactic acid concentration of 22.8 g/L (99.6 % of the theoretical maximum yield) and productivity of 0.95 g/L/h within 24 h. These findings highlight the viability of coffee waste as an eco-friendly resource for sustainable lactic acid production.
Collapse
Affiliation(s)
- Seulbi Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea; Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong-Cheol Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Yeong Yeol Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea; Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jung Eun Yang
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hee Min Lee
- Kimchi Industry Promotion Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - In Min Hwang
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hae Woong Park
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Ho Myeong Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea.
| |
Collapse
|
11
|
Kumagawa E, Katsumata M, Nishimura H, Watanabe T, Ishii S, Ohta Y. The etherase system of Novosphingobium sp. MBES04 functions as a sensor of lignin fragments through phenylpropanone production to induce specific transcriptional responses. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13210. [PMID: 37950419 PMCID: PMC10866074 DOI: 10.1111/1758-2229.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The MBES04 strain of Novosphingobium accumulates phenylpropanone monomers as end-products of the etherase system, which specifically and reductively cleaves the β-O-4 ether bond (a major bond in lignin molecules). However, it does not utilise phenylpropanone monomers as an energy source. Here, we studied the response to the lignin-related perturbation to clarify the physiological significance of its etherase system. Transcriptome analysis revealed two gene clusters, each consisting of four tandemly linked genes, specifically induced by a lignin preparation extracted from hardwood (Eucalyptus globulus) and a β-O-4-type lignin model biaryl compound, but not by vanillin. The most strongly induced gene was a 2,4'-dihydroxyacetophenone dioxygenase-like protein, which leads to energy production through oxidative degradation. The other cluster was related to multidrug resistance. The former cluster was transcriptionally regulated by a common promoter, where a phenylpropanone monomer acted as one of the effectors responsible for gene induction. These results indicate that the physiological significance of the etherase system of the strain lies in its function as a sensor for lignin fragments. This may be a survival strategy to detect nutrients and gain tolerance to recalcitrant toxic compounds, while the strain preferentially utilises easily degradable aromatic compounds with lower energy demands for catabolism.
Collapse
Affiliation(s)
- Eri Kumagawa
- Gunma University Center for Food Science and Wellness, Gunma UniversityMaebashiGunmaJapan
| | - Madoka Katsumata
- Gunma University Center for Food Science and Wellness, Gunma UniversityMaebashiGunmaJapan
| | - Hiroshi Nishimura
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiKyotoJapan
| | - Takashi Watanabe
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiKyotoJapan
| | - Shun'ichi Ishii
- Institute for Extra‐cutting‐edge Science and Technology Avant‐garde Research (X‐star)Japan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaKanagawaJapan
| | - Yukari Ohta
- Gunma University Center for Food Science and Wellness, Gunma UniversityMaebashiGunmaJapan
| |
Collapse
|
12
|
Reyes-Rivera J, Terrazas T. Lignin Analysis by HPLC and FTIR: Spectra Deconvolution and S/G Ratio Determination. Methods Mol Biol 2024; 2722:149-169. [PMID: 37897607 DOI: 10.1007/978-1-0716-3477-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Fourier transform infrared spectroscopy (FTIR) is a simple nondestructive technique that allows the user to obtain quick and accurate information about the structure of the constituents of wood. Spectra deconvolution is a computational technique, complementary to FTIR analysis, which improves the resolution of overlapped or unobserved bands in the raw spectra. High performance liquid chromatography (HPLC) is an analytical technique useful to determine the ratio of the lignin monomers obtained by the alkaline nitrobenzene oxidation method. Furthermore, lignin content has been commonly determined by wet chemical methods; Klason lignin determination is a quick and accessible method. Here, we detail the procedures for chemical analysis of the wood lignin using these techniques. Additionally, the deconvolution process of FTIR spectra for the determination of the S/G ratio, in lignin isolated by this or other methods, is explained in detail.
Collapse
Affiliation(s)
| | - Teresa Terrazas
- Departamento de Botánica, Instituto de Biología, UNAM, Circuito Exterior S/N, Ciudad Universitaria, Mexico City, Mexico.
| |
Collapse
|
13
|
Daus M, Chakthong S, Dumjun K, Paosen S, Voravuthikunchai SP, Poldorn P, Jungsuttiwong S, Chomlamay N, Yangok K, Watanapokasin R. New acylphloroglucinols from a crude acetone extract of Eucalyptus camaldulensis Dehnh. leaf. Nat Prod Res 2024; 38:270-277. [PMID: 36054811 DOI: 10.1080/14786419.2022.2118742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Acylphloroglucinols are well-known Eucalyptus secondary metabolites which exhibit a variety of structures and bioactivities. The investigation of a crude acetone extract of Eucalyptus camaldulensis leaves led to the isolation of two new acylphloroglucinols, eucalypcamals O and P (1 and 2) together with seven phloroglucinols (3-9), and a benzene derivative (10). Their chemical structures were elucidated by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy and mass spectroscopy. The absolute configurations of compounds 1 and 2 were established by comparison of experimental and calculated electronic circular dichroism (ECD) data. In the putative biosynthetic pathway, eucalypcamals O and P should be derived from hetero-Diels-Alder reaction between grandinol and trans-isoeugenol.
Collapse
Affiliation(s)
- Mareena Daus
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Suda Chakthong
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Krittima Dumjun
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Science for Industry Program, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Supakit Paosen
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Supayang P Voravuthikunchai
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Science for Industry Program, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Preeyaporn Poldorn
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Siriporn Jungsuttiwong
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Natharika Chomlamay
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Kanyaluck Yangok
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Ramida Watanapokasin
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
14
|
Li W, Lin YCJ, Chen YL, Zhou C, Li S, De Ridder N, Oliveira DM, Zhang L, Zhang B, Wang JP, Xu C, Fu X, Luo K, Wu AM, Demura T, Lu MZ, Zhou Y, Li L, Umezawa T, Boerjan W, Chiang VL. Woody plant cell walls: Fundamentals and utilization. MOLECULAR PLANT 2024; 17:112-140. [PMID: 38102833 DOI: 10.1016/j.molp.2023.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Cell walls in plants, particularly forest trees, are the major carbon sink of the terrestrial ecosystem. Chemical and biosynthetic features of plant cell walls were revealed early on, focusing mostly on herbaceous model species. Recent developments in genomics, transcriptomics, epigenomics, transgenesis, and associated analytical techniques are enabling novel insights into formation of woody cell walls. Here, we review multilevel regulation of cell wall biosynthesis in forest tree species. We highlight current approaches to engineering cell walls as potential feedstock for materials and energy and survey reported field tests of such engineered transgenic trees. We outline opportunities and challenges in future research to better understand cell type biogenesis for more efficient wood cell wall modification and utilization for biomaterials or for enhanced carbon capture and storage.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | | | - Ying-Lan Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Nette De Ridder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Dyoni M Oliveira
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jack P Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaokang Fu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Taku Demura
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laigeng Li
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Toshiaki Umezawa
- Laboratory of Metabolic Science of Forest Plants and Microorganisms, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
15
|
Chen M, Ralph J, Luterbacher JS, Shi QS, Xie X. Selecting Suitable Near-Native Lignins for Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20751-20761. [PMID: 38065961 DOI: 10.1021/acs.jafc.3c04973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
There are several methods to isolate near-native lignins, including milled-wood lignin, enzymatic lignin, cellulolytic enzyme lignin, and enzymatic mild-acidolysis lignin. Which one is the most representative of the native lignin? Herein, near-native lignins were isolated from different plant groups and structurally analyzed to determine how well these lignins represented their native lignin counterparts. Analytical methods were applied to understand the molecular weight, monomer composition, and distribution of interunit linkages in the structure of the lignins. The results indicated that either enzymatic lignin or cellulolytic enzyme lignin may be used to represent native lignin in softwoods and hardwoods. None of the lignins, however, appeared to represent native lignins in grasses (monocot plants) because of substantial syringyl/guaiacyl differences. Complicating the understanding of grass lignin structure, large amounts of hydroxycinnamates acylate their polysaccharides and, when released, are often conflated with actual lignin monomers.
Collapse
Affiliation(s)
- Mingjie Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - John Ralph
- Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jeremy S Luterbacher
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Qing-Shan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Xiaobao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| |
Collapse
|
16
|
Suo C, Li W, Luo S, Ma C, Liu S. Multisite photocatalytic depolymerization of lignin model compound utilizing full-spectrum light over magnetic microspheres. iScience 2023; 26:108167. [PMID: 37920663 PMCID: PMC10618704 DOI: 10.1016/j.isci.2023.108167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
Photocatalytic depolymerization is a high value-added approach for utilization of lignin. In this study, magnetic microspheres of FeCoRu@SiO2-TiO2 were synthesized by a co-precipitation method. Doping with CoOx and RuOx was used to improve the response to visible light, and doping with TiO2 was used to improve the response to ultraviolet light (λ < 380 nm). The lignin model compound depolymerization rate was >90%. The electron paramagnetic resonance results showed that the reaction occurred in two steps (aerobic phase and oxygen-free phase). Most of the O2- was produced in the first step by cleavage of C-O bonds. The second step was inhibited in an oxygen-free atmosphere. This research provides a valid method for enhancing the photocatalytic properties using full-spectrum light and exploring the lignin photocatalytic depolymerization mechanism. Further research is required to develop the catalyst properties and performance to produce radicals.
Collapse
Affiliation(s)
- Chengcheng Suo
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Wei Li
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Sha Luo
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Chunhui Ma
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
17
|
Wang Z, Deuss PJ. The isolation of lignin with native-like structure. Biotechnol Adv 2023; 68:108230. [PMID: 37558187 DOI: 10.1016/j.biotechadv.2023.108230] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Searching for renewable alternatives for fossil carbon resources to produce chemicals, fuels and materials is essential for the development of a sustainable society. Lignin, a major component of lignocellulosic biomass, is an abundant renewable source of aromatics and is currently underutilized as it is often burned as an undesired side stream in the production of paper and bioethanol. This lignin harbors great potential as source of high value aromatic chemicals and materials. Biorefinery schemes focused on lignin are currently under development with aim of acquiring added value from lignin. However, the performance of these novel lignin-focused biorefineries is closely linked with the quality of extracted lignin in terms of the level of degradation and modification. Thus, the reactivity including the degradation pathways of the native lignin contained in the plant material needs to be understood in detail to potentially achieve higher value from lignin. Undegraded native-like lignin with an as close as possible structure to native lignin contained in the lignocellulosic plant material serves as a promising model lignin to support detailed studies on the structure and reactivity of native lignin, yielding key understanding for the development of lignin-focused biorefineries. The aim of this review is to highlight the different methods to attain "native-like" lignins that can be valuable for such studies. This is done by giving a basic introduction on what is known about the native lignin structure and the techniques and methods used to analyze it followed by an overview of the fractionation and isolation methods to isolate native-like lignin. Finally, a perspective on the isolation and use of native-like lignin is provided, showing the great potential that this type of lignin brings for understanding the effect of different biomass treatments on the native lignin structure.
Collapse
Affiliation(s)
- Zhiwen Wang
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands.
| | - Peter J Deuss
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands.
| |
Collapse
|
18
|
Balk M, Sofia P, Neffe AT, Tirelli N. Lignin, the Lignification Process, and Advanced, Lignin-Based Materials. Int J Mol Sci 2023; 24:11668. [PMID: 37511430 PMCID: PMC10380785 DOI: 10.3390/ijms241411668] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
At a time when environmental considerations are increasingly pushing for the application of circular economy concepts in materials science, lignin stands out as an under-used but promising and environmentally benign building block. This review focuses (A) on understanding what we mean with lignin, i.e., where it can be found and how it is produced in plants, devoting particular attention to the identity of lignols (including ferulates that are instrumental for integrating lignin with cell wall polysaccharides) and to the details of their coupling reactions and (B) on providing an overview how lignin can actually be employed as a component of materials in healthcare and energy applications, finally paying specific attention to the use of lignin in the development of organic shape-memory materials.
Collapse
Affiliation(s)
- Maria Balk
- Institute of Functional Materials for Sustainability, Helmholtz-Zentrum Hereon, Kantstrasse 55, 14513 Teltow, Germany
| | - Pietro Sofia
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- The Open University Affiliated Research Centre at the Istituto Italiano di Tecnologia (ARC@IIT), Via Morego 30, 16163 Genova, Italy
| | - Axel T Neffe
- Institute of Functional Materials for Sustainability, Helmholtz-Zentrum Hereon, Kantstrasse 55, 14513 Teltow, Germany
| | - Nicola Tirelli
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
19
|
Rencoret J, Marques G, Rosado MJ, Benito J, Barro F, Gutiérrez A, Del Río JC. Variations in the composition and structure of the lignins of oat (Avena sativa L.) straws according to variety and planting season. Int J Biol Macromol 2023; 242:124811. [PMID: 37187416 DOI: 10.1016/j.ijbiomac.2023.124811] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
The differences in the composition and structure of the lignins from straws of different oat (Avena sativa L.) varieties, planted in two seasons (winter and spring), were studied in detail by different analytical techniques such as pyrolysis coupled to gas chromatography-mass spectrometry (Py-GC/MS), two-dimensional nuclear magnetic resonance (2D-NMR), derivatization followed by reductive cleavage (DFRC), and gel permeation chromatography (GPC). Overall, the analyses revealed that oat straw lignins were enriched in guaiacyl (G; 50-56 %) and syringyl (S; 39-44 %) units, with relatively lower amounts of p-hydroxyphenyl (H; 4-6 %) units. The lignins also incorporated significant quantities of p-coumarates (9-14 % of total lignin units), which are acylating the γ-OH of the lignin side chains, and predominantly over the S units. Furthermore, oat straw lignins also incorporated considerable amounts of the flavone tricin (5-12 % of total lignin units). Interestingly, this study revealed that the lignin content and composition of the oat straws varies with genotype and planting season. Since p-coumarates and tricin are high-value aromatic compounds especially attractive from a biorefinery point of view, the information disclosed here is highly relevant to plant breeding programs aimed at developing functional foods and lignin modifications for improved biorefinery applications.
Collapse
Affiliation(s)
- Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain.
| | - Gisela Marques
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Mario J Rosado
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Javier Benito
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Francisco Barro
- Instituto de Agricultura Sostenible (IAS), CSIC, Córdoba, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - José C Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| |
Collapse
|
20
|
Rosado MJ, Rencoret J, Gutiérrez A, Del Río JC. Structural Characterization of the Milled-Wood Lignin Isolated from Sweet Orange Tree ( Citrus sinensis) Pruning Residue. Polymers (Basel) 2023; 15:polym15081840. [PMID: 37111987 PMCID: PMC10143716 DOI: 10.3390/polym15081840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/30/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The pruning of sweet orange trees (Citrus sinensis) generates large amounts of lignocellulosic residue. Orange tree pruning (OTP) residue presents a significant lignin content (21.2%). However, there are no previous studies describing the structure of the native lignin in OTPs. In the present work, the "milled-wood lignin" (MWL) was extracted from OTPs and examined in detail via gel permeation chromatography (GPC), pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), and two-dimensional nuclear magnetic resonance (2D-NMR). The results indicated that the OTP-MWL was mainly composed of guaiacyl (G) units, followed by syringyl (S) units and minor amounts of p-hydroxyphenyl (H) units (H:G:S composition of 1:62:37). The predominance of G-units had a strong influence on the abundance of the different linkages; therefore, although the most abundant linkages were β-O-4' alkyl-aryl ethers (70% of total lignin linkages), the lignin also contained significant amounts of phenylcoumarans (15%) and resinols (9%), as well as other condensed linkages such as dibenzodioxocins (3%) and spirodienones (3%). The significant content of condensed linkages will make this lignocellulosic residue more recalcitrant to delignification than other hardwoods with lower content of these linkages.
Collapse
Affiliation(s)
- Mario J Rosado
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Avda. Reina Mercedes, 10, 41012 Seville, Spain
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Avda. Reina Mercedes, 10, 41012 Seville, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Avda. Reina Mercedes, 10, 41012 Seville, Spain
| | - José C Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Avda. Reina Mercedes, 10, 41012 Seville, Spain
| |
Collapse
|
21
|
Chang C, Gupta P. Exploring the Oxidative Effects of the Microbial Electro-Fenton Process on the Depolymerization of Lignin Extracted from Rice Straw in a Bio-Electrochemical System Coupled with Wastewater Treatment. Biomacromolecules 2023; 24:1220-1232. [PMID: 36800267 DOI: 10.1021/acs.biomac.2c01281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Lignin is a potential renewable feedstock to produce value-added compounds, but the overwhelming bulk of it is either burned for energy or discarded as waste. This paper addressed two critical issues: waste-to-value generation and management by demonstrating the in situ depolymerization of lignin extracted from waste rice straw utilizing the microbial electro-Fenton process in a microbial peroxide-producing cell (MPPC), a type of bio-electrochemical cell, for value addition while synchronously treating wastewater. The MPPC electrochemical voltage yields of 0.171 ± 0.05-0.497 ± 0.2 V produced 9 ± 0.43-34 ± 0.11 mM of H2O2, which was utilized to depolymerize lignin at various concentrations. Interestingly, a direct correlation was observed between lignin depolymerization and H2O2 concentration, while Fourier-transform infrared spectroscopy data revealed a constant disruption of the lignin structure accurately in the wavenumber region of 1000-1750 cm-1 irrespective of the H2O2 concentration. Carboxylic acid derivatives, benzopyran, hexanoic acid, and other valuable compounds were detected in the LC QTOF MS data from the depolymerized lignin mixture. Remarkably, SEM analysis demonstrated morphological changes in depolymerized lignin induced by the oxidative effects of hydroxyl radicals. Biochemical oxygen demand and chemical oxygen demand removal was 60 ± 3-85 ± 1% in anodic wastewater treatment. This research provides a sustainable and efficient technique for lignin valorization and wastewater treatment.
Collapse
Affiliation(s)
- Changsomba Chang
- Department of Biotechnology, National Institute of Technology Raipur, Raipur 492010, Chhattisgarh, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology Raipur, Raipur 492010, Chhattisgarh, India
| |
Collapse
|
22
|
Gang R, Komakech R, Chung Y, Okello D, Kim WJ, Moon BC, Yim NH, Kang Y. In vitro propagation of Codonopsis pilosula (Franch.) Nannf. using apical shoot segments and phytochemical assessments of the maternal and regenerated plants. BMC PLANT BIOLOGY 2023; 23:33. [PMID: 36642714 PMCID: PMC9841653 DOI: 10.1186/s12870-022-03950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Codonopsis pilosula (Franch.) Nannf. is a medicinal plant traditionally used in China, Korea, and Japan to treat many diseases including poor gastrointestinal function, low immunity, gastric ulcers, and chronic gastritis. The increasing therapeutic and preventive use of C. pilosula has subsequently led to depletion of the natural populations of this species thus necessitating propagation of this important medicinal plant. Here, we developed an efficient and effective in vitro propagation protocol for C. pilosula using apical shoot segments. We tested various plant tissue culture media for the growth of C. pilosula and evaluated the effects of plant growth regulators on the shoot proliferation and rooting of regenerated C. pilosula plants. Furthermore, the tissues (roots and shoots) of maternal and in vitro-regenerated C. pilosula plants were subjected to Fourier-transform near-infrared (FT-NIR) spectrometry, Gas chromatography-mass spectrometry (GC-MS), and their total flavonoids, phenolics, and antioxidant capacity were determined and compared. RESULTS Full-strength Murashige and Skoog (MS) medium augmented with vitamins and benzylaminopurine (1.5 mg·L-1) regenerated the highest shoot number (12 ± 0.46) per explant. MS medium augmented with indole-3-acetic acid (1.0 mg·L-1) produced the highest root number (9 ± 0.89) and maximum root length (20.88 ± 1.48 mm) from regenerated C. pilosula shoots. The survival rate of in vitro-regenerated C. pilosula plants was 94.00% after acclimatization. The maternal and in vitro-regenerated C. pilosula plant tissues showed similar FT-NIR spectra, total phenolics, total flavonoids, phytochemical composition, and antioxidant activity. Randomly amplified polymorphic DNA (RAPD) test confirmed the genetic fidelity of regenerated C. pilosula plants. CONCLUSIONS The proposed in vitro propagation protocol may be useful for the rapid mass multiplication and production of high quality C. pilosula as well as for germplasm preservation to ensure sustainable supply amidst the ever-increasing demand.
Collapse
Affiliation(s)
- Roggers Gang
- Korean Convergence Medical Science Major, University of Science and Technology (UST), Daejeon, 34113, South Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea
- National Agricultural Research Organization (NARO), National Semi-Arid Resources Research Institute (NaSARRI), Soroti, Uganda
| | - Richard Komakech
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea
- Natural Chemotherapeutics Research Institute (NCRI), Ministry of Health, Kampala, Uganda
| | - Yuseong Chung
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea
| | - Denis Okello
- Korean Convergence Medical Science Major, University of Science and Technology (UST), Daejeon, 34113, South Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea
- Department of Biological Sciences, Kabale University, P.O Box 317, Kabale, Uganda
| | - Wook Jin Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea
| | - Nam-Hui Yim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-Ro, Dong-Gu, Daegu, 41062, South Korea
| | - Youngmin Kang
- Korean Convergence Medical Science Major, University of Science and Technology (UST), Daejeon, 34113, South Korea.
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea.
| |
Collapse
|
23
|
Traoré M, Kaal J, Martínez Cortizas A. Variation of wood color and chemical composition in the stem cross-section of oak (Quercus spp.) trees, with special attention to the sapwood-heartwood transition zone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121893. [PMID: 36137500 DOI: 10.1016/j.saa.2022.121893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/27/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The transformation of sapwood (SW) into heartwood (HW) during ageing of wood tissues is the result of physiological and biochemical changes initiated in the transition zone (TZ). These changes contribute to the evolution of active (living) wood cells in SW into less/non-active (dead) wood cells in HW. Previous studies established that the biosynthesis of extractive contents is the most prominent process that occurs in the TZ. To improve our understanding of the extent and characteristics of the TZ in oak wood, the present study reports the results of color parameters (using CIELab color space) and molecular structure and composition of polysaccharide and lignin compounds (using FTIR-ATR and Py-GC-MS). For that purpose, six wood cores from individual living oak (Quercus spp.) trees were collected from two forests with similar environmental conditions, located in the Basque Country (Northern Spain). The color data indicated significant differences between SW, TZ and HW by showing that SW samples were characterized by higher hue (h°) and lower redness (a*) values than the HW, and intermediate values for the TZ. They also suggested that the variations of wood color from SW to HW occur gradually, along a wide TZ counting 4-10 measurement points in a row, depending on the tree. Furthermore, FTIR and Py-GC-MS data gave evidence of the variation trends of polysaccharide and lignin contents in the radial direction, through various FTIR ratios (1735/1325, 1590/1735, 1590/1230, and 1230/1325 cm-1) and one pyrolysis ratio (acetic acid/total polysaccharide: Ps01/Tot_Ps). The observed variations in this present study suggest that the cross-sectional transition patterns can be related to the continuous lignification process of xylem parenchyma cells, as well as the storage of polysaccharide compounds. These results contribute to our fundamental knowledge on the TZ, which may be valuable in research and industrial applications where a clear delimitation of sapwood and/or heartwood is required.
Collapse
Affiliation(s)
- Mohamed Traoré
- Department of Geology and Mines, Ecole Nationale d'Ingénieurs Abderhamane Baba Touré (ENI-ABT), 410 Avenue Van Vollenhoven, Bamako, Mali.
| | - Joeri Kaal
- Pyrolyscience, Santiago de Compostela, Spain; CRETUS, EcoPast (GI-1553), Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782, Spain.
| | - Antonio Martínez Cortizas
- CRETUS, EcoPast (GI-1553), Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782, Spain; Bolin Centre for Climate Research, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
24
|
Chen B, Guo Y, Zhang X, Wang L, Cao L, Zhang T, Zhang Z, Zhou W, Xie L, Wang J, Sun S, Yang C, Zhang Q. Climate-responsive DNA methylation is involved in the biosynthesis of lignin in birch. FRONTIERS IN PLANT SCIENCE 2022; 13:1090967. [PMID: 36531363 PMCID: PMC9757698 DOI: 10.3389/fpls.2022.1090967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Lignin is one of the most important secondary metabolites and essential to the formation of cell walls. Changes in lignin biosynthesis have been reported to be associated with environmental variations and can influence plant fitness and their adaptation to abiotic stresses. However, the molecular mechanisms underlying this association remain unclear. In this study, we evaluated the relations between the lignin biosynthesis and environmental factors and explored the role of epigenetic modification (DNA methylation) in contributing to these relations if any in natural birch. Significantly negative correlations were observed between the lignin content and temperature ranges. Analyzing the transcriptomes of birches in two habitats with different temperature ranges showed that the expressions of genes and transcription factors (TFs) involving lignin biosynthesis were significantly reduced at higher temperature ranges. Whole-genome bisulfite sequencing revealed that promoter DNA methylation of two NAC-domain TFs, BpNST1/2 and BpSND1, may be involved in the inhibition of these gene expressions, and thereby reduced the content of lignin. Based on these results we proposed a DNA methylation-mediated lignin biosynthesis model which responds to environmental factors. Overall, this study suggests the possibility of environmental signals to induce epigenetic variations that result in changes in lignin content, which can aid to develop resilient plants to combat ongoing climate changes or to manipulate secondary metabolite biosynthesis for agricultural, medicinal, or industrial values.
Collapse
Affiliation(s)
- Bowei Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yile Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Lishan Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Lesheng Cao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Tianxu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zihui Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Wei Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Linan Xie
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jiang Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Shanwen Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
25
|
Organic solvent reverse osmosis (OSRO) for the recovery of hemicellulosic derivatives after wood-pulping with a deep eutectic solvent. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
26
|
Su S, Xiao LP, Chen X, Wang S, Chen XH, Guo Y, Zhai SR. Lignin-First Depolymerization of Lignocellulose into Monophenols over Carbon Nanotube-Supported Ruthenium: Impact of Lignin Sources. CHEMSUSCHEM 2022; 15:e202200365. [PMID: 35438245 DOI: 10.1002/cssc.202200365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Lignin-first depolymerization of lignocellulosic biomass into aromatics is of great significance to sustainable biorefinery. However, it remains a challenge, owing to the variance between lignin sources and structures. In this study, ruthenium supported on carbon nanotubes (Ru/CNT) exhibits efficient catalytic activity toward lignin hydrogenolysis to exclusively afford monophenols in high yields. Catalytic tests indicate that the yields of aromatic monomers are related to lignin sources and decrease in the order: hardwoods > herbaceous plants > softwoods. Experimental results demonstrate that the scission of C-O bonds and the high selectivity to monomeric aromatic compounds over the Ru/CNT catalyst are enhanced by avoiding side condensation. Furthermore, the fabricated Ru/CNT shows good reusability and recyclability, applicability, and biomass feedstock compatibility, rendering it a promising candidate for lignin valorization. These findings pave the way for rational design of highly active and stable catalysts to potentially address challenges in lignin chemistry.
Collapse
Affiliation(s)
- Shihao Su
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Ling-Ping Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Xue Chen
- Department of Life Science and Engineering, Jining University, Jining, 273155, P. R. China
| | - Shuizhong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Xiao-Hong Chen
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Shang-Ru Zhai
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| |
Collapse
|
27
|
Kim KH, Jin X, Ji A, Aui A, Mba-Wright M, Yoo CJ, Choi JW, Ha JM, Kim CS, Yoo CG, Choi JW. Catalytic conversion of waste corrugated cardboard into lactic acid using lanthanide triflates. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 144:41-48. [PMID: 35306464 DOI: 10.1016/j.wasman.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
The efficient strategy for waste conversion and resource recovery is of great interest in the sustainable bioeconomy context. This work reports on the catalytic upcycling of waste corrugated cardboard (WCC) into lactic acid using lanthanide triflates catalysts. WCC, a primary contributor to municipal solid wastes, has been viewed as a feedstock for producing a wide range of renewable products. Hydrothermal conversion of WCC was carried out in the presence of several lanthanide triflates. The reaction with erbium(III) triflate (Er(OTf)3) and ytterbium(III) triflate (Yb(OTf)3) resulted in high lactic acid yields, 65.5 and 64.3 mol%, respectively. In addition, various monomeric phenols were readily obtained as a co-product stream, opening up opportunities in waste management and resource recovery. Finally, technoeconomic analysis was conducted based on the experimental results, which suggests a significant economic benefit of chemocatalytic upcycling of WCC into lactic acid.
Collapse
Affiliation(s)
- Kwang Ho Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Xuanjun Jin
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Anqi Ji
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Alvina Aui
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50010, USA
| | - Mark Mba-Wright
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50010, USA
| | - Chun-Jae Yoo
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jae-Wook Choi
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jeong-Myeong Ha
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Chang Soo Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA; The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
| | - Joon Weon Choi
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| |
Collapse
|
28
|
Aguilera-Segura SM, Dragún D, Gaumard R, Di Renzo F, Ondík IM, Mineva T. Thermal fluctuation and conformational effects on NMR parameters in β-O-4 lignin dimers from QM/MM and machine-learning approaches. Phys Chem Chem Phys 2022; 24:8820-8831. [PMID: 35352736 DOI: 10.1039/d2cp00361a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Advanced solid-state and liquid-state nuclear magnetic resonance (NMR) approaches have enabled high throughput information about functional groups and types of bonding in a variety of lignin fragments from degradation processes and laboratory synthesis. The use of quantum chemical (QM) methods may provide detailed insight into the relationships between NMR parameters and specific lignin conformations and their dynamics, whereas a rapid prediction of NMR properties could be achieved by combining QM with machine-learning (ML) approaches. In this study, we present the effect of conformations of β-O-4 linked lignin guaiacyl dimers on 13C and 1H chemical shifts while considering the thermal fluctuations of the guaiacyl dimers in water, ethanol and acetonitrile, as well as their binary 75 wt% aqueous solutions. Molecular dynamics and QM/MM simulations were used to describe the dynamics of guaiacyl dimers. The isotropic shielding of the majority of the carbon nuclei was found to be less sensitive toward a specific conformation than that of the hydrogen nuclei. The largest 1H downfield shifts of 4-6 ppm were established in the hydroxy groups and the rings in the presence of organic solvent components. The Gradient Boosting Regressor model has been trained on 60% of the chemical environments in the dynamics trajectories with the NMR isotropic shielding (σiso), computed with density-functional theory, for lignin atoms. The high efficiency of this machine-learning model in predicting the remaining 40% σiso(13C) and σiso(1H) values was established.
Collapse
Affiliation(s)
| | - Dominik Dragún
- FIIT STU in Bratislava, Ilkovičova 2, 842 16 Bratislava, Slovakia
| | - Robin Gaumard
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Irina Malkin Ondík
- FIIT STU in Bratislava, Ilkovičova 2, 842 16 Bratislava, Slovakia.,MicroStep-MIS spol. s.r.o. Čavojského 1, 84104 Bratislava, Slovakia
| | - Tzonka Mineva
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
29
|
Jiang X, Tian Z, Ji X, Ma H, Yang G, He M, Dai L, Xu T, Si C. Alkylation modification for lignin color reduction and molecular weight adjustment. Int J Biol Macromol 2022; 201:400-410. [PMID: 34995668 DOI: 10.1016/j.ijbiomac.2021.12.162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 01/04/2023]
Abstract
The application of industrial kraft lignin is limited by its low molecular weight, dark color, and low solubility. In this work, an efficient crosslinking reaction with N,N-Dimethylformamide (DMF) and 1,6-dibromohexane was proposed for adjusting the molecular weight and color of lignin. The chemical structure of alkylation lignin was systematically investigated by gel permeation chromatography (GPC), ultraviolet spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and 2D heteronuclear single quantum correlation nuclear magnetic resonance (HSQC NMR) spectra. After the alkylation modification, the molecular weights of the lignin were increased to 1643%. The resinol (β-β), β-aryl ether (β-O-4), and phenylcoumaran (β-5) linkages were still the main types of the linkages. The formation of β-β linkage would be inhibited at high temperatures. The color reduction of lignin can be attributed to the low content of chromophores and low packing density. This alkylation lignin will be a new and general approach for developing molecular weight-controlled and light-colored lignins, which can find more applications in cosmetics, packing, and other fields.
Collapse
Affiliation(s)
- Xiao Jiang
- State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan 250353, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhongjian Tian
- State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan 250353, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xingxiang Ji
- State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan 250353, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Hao Ma
- State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan 250353, China
| | - Guihua Yang
- State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan 250353, China
| | - Ming He
- State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan 250353, China
| | - Lin Dai
- State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan 250353, China; Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ting Xu
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chuanling Si
- State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan 250353, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
30
|
Carbohydrate-aromatic interface and molecular architecture of lignocellulose. Nat Commun 2022; 13:538. [PMID: 35087039 PMCID: PMC8795156 DOI: 10.1038/s41467-022-28165-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Plant cell walls constitute the majority of lignocellulosic biomass and serve as a renewable resource of biomaterials and biofuel. Extensive interactions between polysaccharides and the aromatic polymer lignin make lignocellulose recalcitrant to enzymatic hydrolysis, but this polymer network remains poorly understood. Here we interrogate the nanoscale assembly of lignocellulosic components in plant stems using solid-state nuclear magnetic resonance and dynamic nuclear polarization approaches. We show that the extent of glycan-aromatic association increases sequentially across grasses, hardwoods, and softwoods. Lignin principally packs with the xylan in a non-flat conformation via non-covalent interactions and partially binds the junction of flat-ribbon xylan and cellulose surface as a secondary site. All molecules are homogeneously mixed in softwoods; this unique feature enables water retention even around the hydrophobic aromatics. These findings unveil the principles of polymer interactions underlying the heterogeneous architecture of lignocellulose, which may guide the rational design of more digestible plants and more efficient biomass-conversion pathways. The plant biomass is a composite formed by a variety of polysaccharides and an aromatic polymer named lignin. Here, the authors use solid-state NMR spectroscopy to unveil the carbohydrate-aromatic interface that leads to the variable architecture of lignocellulose biomaterials.
Collapse
|
31
|
Kimura C, Oh SW, Fujita T, Watanabe T. Adsorptive Inhibition of Enveloped Viruses and Nonenveloped Cardioviruses by Antiviral Lignin Produced from Sugarcane Bagasse via Microwave Glycerolysis. Biomacromolecules 2022; 23:789-797. [PMID: 35034439 DOI: 10.1021/acs.biomac.1c01209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antiviral lignin was produced by acidic microwave glycerolysis of sugarcane bagasse. The lignin exhibited antiviral activity against nonenveloped (encephalomyocarditis virus (EMCV) and Theiler's murine encephalomyelitis virus (TMEV)) and enveloped (vesicular stomatitis virus (VSV), Sindbis virus (SINV), and Newcastle disease virus (NDV)) viruses. A series of lignins with different antiviral activities were prepared by reacting bagasse at 140, 160, 180, and 200 °C to analyze the antiviral mechanism. No difference in ζ-potential was observed among the lignin preparations; however, the lignin prepared at 200 °C (FR200) showed the strongest anti-EMCV activity, smallest hydrodynamic diameter, highest hydrophilicity, and highest affinity for EMCV. FR200 inhibited viral propagation through contact with the virion at the attachment stage to host cells, and the EMCV RNA was intact after treatment. Therefore, the lignin inhibits viral entry to host cells through interactions with the capsid surface. The nonvolatile antiviral substance is potentially useful for preventing the spread of viruses in human living and livestock breeding environments.
Collapse
Affiliation(s)
- Chihiro Kimura
- Laboratory of Biomass Conversion, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Seong-Wook Oh
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin, Kawahara-Cho, Sakyo-Ku, Kyoto 606-8507, Japan
| | - Takashi Fujita
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin, Kawahara-Cho, Sakyo-Ku, Kyoto 606-8507, Japan
| | - Takashi Watanabe
- Laboratory of Biomass Conversion, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
32
|
Figueiredo P, Lahtinen MH, Agustin MB, de Carvalho DM, Hirvonen S, Penttilä PA, Mikkonen KS. Green Fabrication Approaches of Lignin Nanoparticles from Different Technical Lignins: A Comparison Study. CHEMSUSCHEM 2021; 14:4718-4730. [PMID: 34398512 PMCID: PMC8596756 DOI: 10.1002/cssc.202101356] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The production of lignin nanoparticles (LNPs) has emerged as a way to overcome the highly variable and complex molecular structure of lignin. It can offer morphological control of the lignin polymer, allowing the formation of stable LNP dispersions in aqueous media, while increasing the potential of lignin for high-value applications. However, the polydispersity and morphology of LNPs varies depending on the lignin grade and preparation method, and a systematic comparison using different technical lignins is lacking. In this study, it was attempted to find a green fabrication method with a distinct solvent fractionation of lignin to prepare LNPs using three different technical lignins as starting polymers: BLN birch lignin (hardwood, BB), alkali Protobind 1000 (grass, PB), and kraft LignoBoost (softwood, LB). For that, three anti-solvent precipitation approaches to prepare LNPs were systematically compared: 70 % aqueous ethanol, acetone/water (3 : 1) and NaOH as the lignin solvent, and water/aqueous HCl as the anti-solvent. Among all these methods, the acetone/water (3 : 1) approach allowed production of homogeneous and monodisperse LNPs with a negative surface charge and also spherical and smooth surfaces. Overall, the results revealed that the acetone/water (3 : 1) method was the most effective approach tested to obtain homogenous, small, and spherical LNPs from the three technical lignins. These LNPs exhibited an improved stability at different ionic strengths and a wider pH range compared to the other preparation methods, which can greatly increase their application in many fields, such as pharmaceutical and food sciences.
Collapse
Affiliation(s)
- Patrícia Figueiredo
- Department of Food and NutritionFaculty of Agriculture and ForestryUniversity of HelsinkiP.O. Box 6600014HelsinkiFinland
| | - Maarit H. Lahtinen
- Department of Food and NutritionFaculty of Agriculture and ForestryUniversity of HelsinkiP.O. Box 6600014HelsinkiFinland
| | - Melissa B. Agustin
- Department of Food and NutritionFaculty of Agriculture and ForestryUniversity of HelsinkiP.O. Box 6600014HelsinkiFinland
| | - Danila Morais de Carvalho
- Department of Food and NutritionFaculty of Agriculture and ForestryUniversity of HelsinkiP.O. Box 6600014HelsinkiFinland
| | - Sami‐Pekka Hirvonen
- Department of ChemistryFaculty of ScienceUniversity of HelsinkiP.O. Box 5500014HelsinkiFinland
| | - Paavo A. Penttilä
- Department of Bioproducts and BiosystemsAalto UniversityP.O. Box 1630000076AaltoFinland
| | - Kirsi S. Mikkonen
- Department of Food and NutritionFaculty of Agriculture and ForestryUniversity of HelsinkiP.O. Box 6600014HelsinkiFinland
- Helsinki Institute of Sustainability Science (HELSUS)University of HelsinkiP.O. Box 6500014HelsinkiFinland
| |
Collapse
|
33
|
Tong NN, Peng LP, Liu ZA, Li Y, Zhou XY, Wang XR, Shu QY. Comparative transcriptomic analysis of genes involved in stem lignin biosynthesis in woody and herbaceous Paeonia species. PHYSIOLOGIA PLANTARUM 2021; 173:961-977. [PMID: 34237150 DOI: 10.1111/ppl.13495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/12/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Paeonia is recognized globally due to its ornamental value. However, the mechanisms behind the formation of distinct levels of lignification in Paeonia stems remain largely unknown. In this study, we selected three representative Paeonia species, namely P. ostii (shrub), P. lactiflora (herb), and P. × 'Hexie' (semi-shrub), to evaluate and contrast their respective anatomical structure, phytochemical composition and transcriptomic profile. Our results showed that the degree of lignin deposition on the cell wall, along with the total amount of lignin and its monomers (especially G-lignin) were higher in P. ostii stems compared to the other two species at almost all development stages except 80 days after flowering. Furthermore, we estimated a total number of unigenes of 60,238 in P. ostii, 43,563 in P. × 'Hexie', and 40,212 in P. lactiflora from stem transcriptome. We then built a co-expression network of 25 transcription factors and 21 enzyme genes involved in lignin biosynthesis and identified nine key candidate genes. The expression patterns of these genes were positively correlated with the transcription levels of PAL, C4H, 4CL2, CCR, and COMT, as well as lignin content. Moreover, the highest relative expression levels of CCR, 4CL2, and C4H were found in P. ostii. This study provides an explanation for the observed differences in lignification between woody and herbaceous Paeonia stems, and constitutes a novel reference for molecular studies of stem-specific lignification process and lignin biosynthesis that can impact the ornamental industry.
Collapse
Affiliation(s)
- Ning-Ning Tong
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li-Ping Peng
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zheng-An Liu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yang Li
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yang Zhou
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xi-Ruo Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yan Shu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Indira TI, Burhan KH, Manurung R, Widiana A. Enhancement of Essential Oil Yield from Melaleuca Leucadendra L. Leaves by Lignocellulose Degradation Pre-Treatment Using Filamentous Fungi. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Azad T, Torres HF, Auad ML, Elder T, Adamczyk AJ. Isolating key reaction energetics and thermodynamic properties during hardwood model lignin pyrolysis. Phys Chem Chem Phys 2021; 23:20919-20935. [PMID: 34541592 DOI: 10.1039/d1cp02917g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computational studies on the pyrolysis of lignin using electronic structure methods have been largely limited to dimeric or trimeric models. In the current work we have modeled a lignin oligomer consisting of 10 syringyl units linked through 9 β-O-4' bonds. A lignin model of this size is potentially more representative of the polymer in angiosperms; therefore, we used this representative model to examine the behavior of hardwood lignin during the initial steps of pyrolysis. Using this oligomer, the present work aims to determine if and how the reaction enthalpies of bond cleavage vary with positions within the chain. To accomplish this, we utilized a composite method using molecular mechanics based conformational sampling and quantum mechanically based density functional theory (DFT) calculations. Our key results show marked differences in bond dissociation enthalpies (BDE) with the position. In addition, we calculated standard thermodynamic properties, including enthalpy of formation, heat capacity, entropy, and Gibbs free energy for a wide range of temperatures from 25 K to 1000 K. The prediction of these thermodynamic properties and the reaction enthalpies will benefit further computational studies and cross-validation with pyrolysis experiments. Overall, the results demonstrate the utility of a better understanding of lignin pyrolysis for its effective valorization.
Collapse
Affiliation(s)
- Tanzina Azad
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA.
| | - Hazl F Torres
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA.
| | - Maria L Auad
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA. .,Center for Polymer and Advanced Composites, Auburn, AL, USA
| | - Thomas Elder
- United States Department of Agriculture (USDA) Forest Service, Southern Research Station, Auburn, AL, USA
| | - Andrew J Adamczyk
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA.
| |
Collapse
|
36
|
Assessment of the Role of PAL in Lignin Accumulation in Wheat ( Tríticum aestívum L.) at the Early Stage of Ontogenesis. Int J Mol Sci 2021; 22:ijms22189848. [PMID: 34576012 PMCID: PMC8470810 DOI: 10.3390/ijms22189848] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 01/24/2023] Open
Abstract
The current study evaluates the role of phenylalanine ammonia-lyase (PAL) and the associated metabolic complex in the accumulation of lignin in common wheat plants (Tríticum aestívum L.) at the early stages of ontogenesis. The data analysis was performed using plant samples that had reached Phases 4 and 5 on the Feekes scale—these phases are characterized by a transition to the formation of axial (stem) structures in cereal plants. We have shown that the substrate stimulation of PAL with key substrates, such as L-phenylalanine and L-tyrosine, leads to a significant increase in lignin by an average of 20% in experimental plants compared to control plants. In addition, the presence of these compounds in the nutrient medium led to an increase in the number of gene transcripts associated with lignin synthesis (PAL6, C4H1, 4CL1, C3H1). Inhibition was the main tool of the study. Potential competitive inhibitors of PAL were used: the optical isomer of L-phenylalanine—D-phenylalanine—and the hydroxylamine equivalent of phenylalanine—O-Benzylhydroxylamine. As a result, plants incubated on a medium supplemented with O-Benzylhydroxylamine were characterized by reduced PAL activity (almost one third). The lignin content of the cell wall in plants treated with O-Benzylhydroxylamine was almost halved. In contrast, D-phenylalanine did not lead to significant changes in the lignin-associated metabolic complex, and its effect was similar to that of specific substrates.
Collapse
|
37
|
Okello D, Yang S, Komakech R, Rahmat E, Chung Y, Gang R, Kim YG, Omujal F, Kang Y. An in vitro Propagation of Aspilia africana (Pers.) C. D. Adams, and Evaluation of Its Anatomy and Physiology of Acclimatized Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:704896. [PMID: 34394159 PMCID: PMC8358661 DOI: 10.3389/fpls.2021.704896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Aspilia africana (Pers.) C. D. Adams is an important medicinal plant, that has been used as traditional medicine in many African countries for the treatment of various health problems, including inflammatory conditions, osteoporosis, tuberculosis, cough, measles, diabetes, diarrhea, malaria, and wounds. We developed an efficient and reproducible protocol for in vitro regeneration of A. africana from nodes. We assessed the effects of plant tissue culture media on A. africana growth, cytokinins for in vitro shoot regeneration and proliferation, and auxins for the rooting of regenerated shoots. Furthermore, chlorophyll content, photosynthetic rates, anatomy (leaves, stems, and roots), and Fourier transform near-infrared (FT-NIR) spectra (leaves, stems, and roots) of the in vitro regenerated and maternal A. africana plants were compared. Murashige and Skoog media, containing vitamins fortified with benzylaminopurine (BA, 1.0 mg/l), regenerated the highest number of shoots (13.0 ± 0.424) from A. africana nodal segments. 1-naphthaleneacetic acid (NAA, 0.1 mg/l) produced up to 13.10 ± 0.873 roots, 136.35 ± 4.316 mm length, and was the most efficient for rooting. During acclimatization, the in vitro regenerated A. africana plants had a survival rate of 95.7%, displaying normal morphology and growth features. In vitro regenerated and mother A. africana plants had similar chlorophyll contents, photosynthetic rates, stem and root anatomies, and FT-NIR spectra of the leaf, stem, and roots. The established regeneration protocol could be used for large-scale multiplication of the plant within a short time, thus substantially contributing to its rapid propagation and germplasm preservation, in addition to providing a basis for the domestication of this useful, high-value medicinal plant.
Collapse
Affiliation(s)
- Denis Okello
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju-si, South Korea
- Korean Convergence Medicine Major, University of Science and Technology (UST), Daejeon, South Korea
| | - Sungyu Yang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju-si, South Korea
| | - Richard Komakech
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju-si, South Korea
- Natural Chemotherapeutics Research Institute (NCRI), Ministry of Health, Kampala, Uganda
| | - Endang Rahmat
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju-si, South Korea
| | - Yuseong Chung
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju-si, South Korea
| | - Roggers Gang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju-si, South Korea
- Korean Convergence Medicine Major, University of Science and Technology (UST), Daejeon, South Korea
- National Semi-Arid Resources Research Institute (NaSARRI), Soroti, Uganda
| | - Yong-Goo Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju-si, South Korea
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, South Korea
| | - Francis Omujal
- Natural Chemotherapeutics Research Institute (NCRI), Ministry of Health, Kampala, Uganda
| | - Youngmin Kang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju-si, South Korea
- Korean Convergence Medicine Major, University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
38
|
A Review on the Lignin Biopolymer and Its Integration in the Elaboration of Sustainable Materials. SUSTAINABILITY 2021. [DOI: 10.3390/su13052697] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lignin is one of the wood and plant cell wall components that is available in large quantities in nature. Its polyphenolic chemical structure has been of interest for valorization and industrial application studies. Lignin can be obtained from wood by various delignification chemical processes, which give it a structure and specific properties that will depend on the plant species. Due to the versatility and chemical diversity of lignin, the chemical industry has focused on its use as a viable alternative of renewable raw material for the synthesis of new and sustainable biomaterials. However, its structure is complex and difficult to characterize, presenting some obstacles to be integrated into mixtures for the development of polymers, fibers, and other materials. The objective of this review is to present a background of the structure, biosynthesis, and the main mechanisms of lignin recovery from chemical processes (sulfite and kraft) and sulfur-free processes (organosolv) and describe the different forms of integration of this biopolymer in the synthesis of sustainable materials. Among these applications are phenolic adhesive resins, formaldehyde-free resins, epoxy resins, polyurethane foams, carbon fibers, hydrogels, and 3D printed composites.
Collapse
|
39
|
Rosado MJ, Rencoret J, Marques G, Gutiérrez A, del Río JC. Structural Characteristics of the Guaiacyl-Rich Lignins From Rice ( Oryza sativa L.) Husks and Straw. FRONTIERS IN PLANT SCIENCE 2021; 12:640475. [PMID: 33679856 PMCID: PMC7932998 DOI: 10.3389/fpls.2021.640475] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/26/2021] [Indexed: 05/28/2023]
Abstract
Rice (Oryza sativa L.) is a major cereal crop used for human nutrition worldwide. Harvesting and processing of rice generates huge amounts of lignocellulosic by-products such as rice husks and straw, which present important lignin contents that can be used to produce chemicals and materials. In this work, the structural characteristics of the lignins from rice husks and straw have been studied in detail. For this, whole cell walls of rice husks and straw and their isolated lignin preparations were thoroughly analyzed by an array of analytical techniques, including pyrolysis coupled to gas chromatography-mass spectrometry (Py-GC/MS), nuclear magnetic resonance (NMR), and derivatization followed by reductive cleavage (DFRC). The analyses revealed that both lignins, particularly the lignin from rice husks, were highly enriched in guaiacyl (G) units, and depleted in p-hydroxyphenyl (H) and syringyl (S) units, with H:G:S compositions of 7:81:12 (for rice husks) and 5:71:24 (for rice straw). These compositions were reflected in the relative abundances of the different interunit linkages. Hence, the lignin from rice husks were depleted in β-O-4' alkyl-aryl ether units (representing 65% of all inter-unit linkages), but presented important amounts of β-5' (phenylcoumarans, 23%) and other condensed units. On the other hand, the lignin from rice straw presented higher levels of β-O-4' alkyl-aryl ethers (78%) but lower levels of phenylcoumarans (β-5', 12%) and other condensed linkages, consistent with a lignin with a slightly higher S/G ratio. In addition, both lignins were partially acylated at the γ-OH of the side-chain (ca. 10-12% acylation degree) with p-coumarates, which overwhelmingly occurred over S-units. Finally, important amounts of the flavone tricin were also found incorporated into these lignins, being particularly abundant in the lignin of rice straw.
Collapse
Affiliation(s)
| | | | | | | | - José C. del Río
- Department of Plant Biotechnology, Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| |
Collapse
|
40
|
Bonifacino S, Resquín F, Lopretti M, Buxedas L, Vázquez S, González M, Sapolinski A, Hirigoyen A, Doldán J, Rachid C, Carrasco-Letelier L. Bioethanol production using high density Eucalyptus crops in Uruguay. Heliyon 2021; 7:e06031. [PMID: 33532649 PMCID: PMC7829204 DOI: 10.1016/j.heliyon.2021.e06031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/16/2020] [Accepted: 01/14/2021] [Indexed: 11/30/2022] Open
Abstract
Experimental scale crops for Eucalyptus grandis, Eucalyptus benthamii, Eucalyptus dunnii and Eucalyptus tereticornis, at 2,220, 4,440 and 6,660 trees ha−1 were established in two soil units, at Paysandú and Tacuarembó, Uruguay. Wood samples were taken from twenty-two-months-old trees, and were used to produce bioethanol by pre-hydrolysis simultaneous saccharyfication and fermentation process (PSSF). Cellulose and lignin content was analyzed. Species and planting density affected biomass production at both sites; the highest value was obtained with E. dunnii at 6,660 trees ha−1 at Paysandú. Cellulose content of wood varied between species at both sites, but only between planting densities at Tacuarembó. The site effect showed that the highest amount of cellulose (14.7 Mg ha−1) was produced at Paysandú. E. benthamii and E. tereticornis wood showed higher lignin contents, conversely, the PSSF yields showed no differences, which led to a bioethanol average of 97 L Mg−1. Bioethanol productivity was associated to the biomass productivity. It was possible to obtain 2,650 L ha−1 of bioethanol using wood from E. benthamii, E. dunnii and E. grandis at 4,440 and 6,660 trees ha−1 at Paysandú, and with E. benthamii at 4,440 and 6,660 trees ha−1, and E. dunnii at 6,660 trees ha−1 at Tacuarembó.
Collapse
Affiliation(s)
- Silvana Bonifacino
- Laboratorio de Técnicas nucleares aplicadas en Bioquímica y Biotecnología, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, CP 11400, Montevideo, Uruguay
| | - Fernando Resquín
- Programa Nacional de Investigación Forestal, Instituto Nacional de Investigaciones Agropecuarias (INIA), Ruta 5 Brigadier Gral. Fructuoso Rivera km 386, CP 45000, Tacuarembó, Uruguay
| | - Mary Lopretti
- Laboratorio de Técnicas nucleares aplicadas en Bioquímica y Biotecnología, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, CP 11400, Montevideo, Uruguay.,I&D Biotecnología, Laboratorio Tecnológico de Uruguay (LATU), Av. Italia 6201, CP 11500, Montevideo, Uruguay
| | - Luciana Buxedas
- Laboratorio de Técnicas nucleares aplicadas en Bioquímica y Biotecnología, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, CP 11400, Montevideo, Uruguay
| | - Sylvia Vázquez
- Laboratorio de Técnicas nucleares aplicadas en Bioquímica y Biotecnología, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, CP 11400, Montevideo, Uruguay
| | - Mariana González
- I&D Biotecnología, Laboratorio Tecnológico de Uruguay (LATU), Av. Italia 6201, CP 11500, Montevideo, Uruguay
| | - Alejandra Sapolinski
- I&D Biotecnología, Laboratorio Tecnológico de Uruguay (LATU), Av. Italia 6201, CP 11500, Montevideo, Uruguay
| | - Andrés Hirigoyen
- Programa Nacional de Investigación Forestal, Instituto Nacional de Investigaciones Agropecuarias (INIA), Ruta 5 Brigadier Gral. Fructuoso Rivera km 386, CP 45000, Tacuarembó, Uruguay
| | - Javier Doldán
- Departamento de Forestales, Laboratorio Tecnológico de Uruguay (LATU), Av. Italia 6201, CP 11500, Montevideo, Uruguay
| | - Cecilia Rachid
- Programa Nacional de Investigación Forestal, Instituto Nacional de Investigaciones Agropecuarias (INIA), Ruta 5 Brigadier Gral. Fructuoso Rivera km 386, CP 45000, Tacuarembó, Uruguay
| | - Leonidas Carrasco-Letelier
- Programa Nacional de Investigación en Producción y Sustentabilidad Ambiental, Instituto Nacional de Investigaciones Agropecuarias (INIA), Ruta 50 km 11, CP 70000, Colonia, Uruguay
| |
Collapse
|
41
|
Ion SG, Brudiu T, Hanganu A, Munteanu F, Enache M, Maria GM, Tudorache M, Parvulescu V. Biocatalytic Strategy for Grafting Natural Lignin with Aniline. Molecules 2020; 25:molecules25214921. [PMID: 33114355 PMCID: PMC7662662 DOI: 10.3390/molecules25214921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/01/2022] Open
Abstract
This paper presents an enzyme biocatalytic method for grafting lignin (grafting bioprocess) with aniline, leading to an amino-derivatized polymeric product with modified properties (e.g., conductivity, acidity/basicity, thermostability and amino-functionalization). Peroxidase enzyme was used as a biocatalyst and H2O2 was used as an oxidation reagent, while the oxidative insertion of aniline into the lignin structure followed a radical mechanism specific for the peroxidase enzyme. The grafting bioprocess was tested in different configurations by varying the source of peroxidase, enzyme concentration and type of lignin. Its performance was evaluated in terms of aniline conversion calculated based on UV-vis analysis. The insertion of amine groups was checked by 1H-NMR technique, where NH protons were detected in the range of 5.01–4.99 ppm. The FTIR spectra, collected before and after the grafting bioprocess, gave evidence for the lignin modification. Finally, the abundance of grafted amine groups was correlated with the decrease of the free –OH groups (from 0.030 to 0.009 –OH groups/L for initial and grafted lignin, respectively). Additionally, the grafted lignin was characterized using conductivity measurements, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), temperature-programmed desorption (TPD-NH3/CO2) and scanning electron microscopy (SEM) analyses. The investigated properties of the developed lignopolymer demonstrated its disposability for specific industrial applications of derivatized lignin.
Collapse
Affiliation(s)
- Sabina Gabriela Ion
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, Soseaua Panduri 90, sector 5, 050663 Bucharest, Romania; (S.G.I.); (T.B.); (V.P.)
| | - Teodor Brudiu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, Soseaua Panduri 90, sector 5, 050663 Bucharest, Romania; (S.G.I.); (T.B.); (V.P.)
| | - Anamaria Hanganu
- Institute of Organic Chemistry C. D. Nenitescu of Romanian Academy, 202B Spl. Independentei, 060023 Bucharest, Romania;
| | - Florentina Munteanu
- Department of Technical and Natural Sciences, Aurel Vlaicu University of Arad, Bd. Revolutiei 77, 310130 Arad, Romania;
| | - Madalin Enache
- Institute of Biology Bucharest of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania; (M.E.); (G.-M.M.)
| | - Gabriel-Mihai Maria
- Institute of Biology Bucharest of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania; (M.E.); (G.-M.M.)
| | - Madalina Tudorache
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, Soseaua Panduri 90, sector 5, 050663 Bucharest, Romania; (S.G.I.); (T.B.); (V.P.)
- Correspondence:
| | - Vasile Parvulescu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, Soseaua Panduri 90, sector 5, 050663 Bucharest, Romania; (S.G.I.); (T.B.); (V.P.)
| |
Collapse
|
42
|
Li S, Shi L, Wang C, Yue F, Lu F. Naphthalene Structures Derived from Lignins During Phenolation. CHEMSUSCHEM 2020; 13:5549-5555. [PMID: 32812399 DOI: 10.1002/cssc.202001693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Phenolation is a commonly used method to improve the reactivity of lignin for various applications. In this study, resinol lignin models (syringaresinol and pinoresinol) and eucalyptus alkali lignin were treated under acid-catalyzed phenolation conditions to investigate the products derived from resinol (β-β) structures of lignins. The phenolation products were characterized by means of GC-MS and NMR spectroscopy following separation using flash chromatography and thin-layer chromatography. A series of new naphthalene products were identified from phenolation of syringaresinol, and the corresponding guaiacyl analogs were also identified by GC-MS. The C1-Cα bond of these resinol compounds was cleaved to release syringol or guaiacol during phenolation. In addition, diphenylmethane products formed from phenol or phenol and syringol/guaiacol were found in the phenolation products. Comparatively, more naphthalene products were obtained by phenolation from syringaresinol than those obtained from pinoresinol. HSQC NMR characterization of the phenolated alkali lignin revealed that naphthalene structures formed in the phenolated lignin.
Collapse
Affiliation(s)
- Suxiang Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Lanlan Shi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chen Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Fengxia Yue
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Fachuang Lu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|
43
|
Nayan N, Sonnenberg AS, Hendriks WH, Cone JW. Prospects and feasibility of fungal pretreatment of agricultural biomass for ruminant feeding. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Qu C, Ogita S, Kishimoto T. Characterization of Immature Bamboo ( Phyllostachys nigra) Component Changes with Its Growth via Heteronuclear Single-Quantum Coherence Nuclear Magnetic Resonance Spectroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9896-9905. [PMID: 32809820 DOI: 10.1021/acs.jafc.0c02258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A 6.2 m high immature bamboo (Phyllostachys nigra) was divided into seven fractions. The bamboo cell walls and lignin samples from young to old were characterized by 1H-13C correlation heteronuclear single-quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy both qualitatively and semiquantitatively. Mature bamboo and bamboo shoot samples were used as comparison references. HSQC-NMR analysis proved that cellulose and arabinoxylan have already deposited in bamboo shoot, and cellulose amount increased during growth. Lignin side chain linkage formation started from β-ether (β-O-4), then phenylcoumaran (β-5), and finally resinol (β-β). Ferulic acid and p-coumaric acid (pCA) were formed at the earlier stages in the immature bamboo, and the pCA proportion decreased throughout the lignification process. We propose that the bamboo lignification process is distinct from both woody and other herbaceous plants, where syringyl units deposited at the early stage and polymerized with the β-O-4 linkage. Then guaiacyl units formed gradually, and finally, p-hydroxyphenyl units formed.
Collapse
Affiliation(s)
- Chen Qu
- International Advanced Energy Science Research and Education Center, Graduate School of Energy Science, Kyoto University, Yoshida-Honmachi Kyoto 606-8501, Japan
| | - Shinjiro Ogita
- Plant Cell Manipulation Laboratory, Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, 5562 Nanatsukacho, Shobara, Hiroshima 727-0023, Japan
| | - Takao Kishimoto
- Bioorganic Chemistry Laboratory, Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu 939-0398, Japan
| |
Collapse
|
45
|
Kline LM, Voothuluru P, Lenaghan SC, Burris JN, Soliman M, Tetard L, Stewart CN, Rials TG, Labbé N. A Robust Method to Quantify Cell Wall Bound Phenolics in Plant Suspension Culture Cells Using Pyrolysis-Gas Chromatography/Mass Spectrometry. FRONTIERS IN PLANT SCIENCE 2020; 11:574016. [PMID: 33013999 PMCID: PMC7509179 DOI: 10.3389/fpls.2020.574016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
The wide-scale production of renewable fuels from lignocellulosic feedstocks continues to be hampered by the natural recalcitrance of biomass. Therefore, there is a need to develop robust and reliable methods to characterize and quantify components that contribute to this recalcitrance. In this study, we utilized a method that incorporates pyrolysis with successive gas chromatography and mass spectrometry (Py-GC/MS) to assess lignification in cell suspension cultures. This method was compared with other standard techniques such as acid-catalyzed hydrolysis, acetyl bromide lignin determination, and nitrobenzene oxidation for quantification of cell wall bound phenolic compounds. We found that Py-GC/MS can be conducted with about 250 µg of tissue sample and provides biologically relevant data, which constitutes a substantial advantage when compared to the 50-300 mg of tissue needed for the other methods. We show that when combined with multivariate statistical analyses, Py-GC/MS can distinguish cell wall components of switchgrass (Panicum virgatum) suspension cultures before and after inducing lignification. The deposition of lignin precursors on uninduced cell walls included predominantly guaiacyl-based units, 71% ferulic acid, and 5.3% p-coumaric acid. Formation of the primary and partial secondary cell wall was supported by the respective ~15× and ~1.7× increases in syringyl-based and guaiacyl-based precursors, respectively, in the induced cells. Ferulic acid was decreased by half after induction. These results provide the proof-of-concept for quick and reliable cell wall compositional analyses using Py-GC/MS and could be targeted for either translational genomics or for fundamental studies focused on understanding the molecular and physiological mechanisms regulating plant cell wall production and biomass recalcitrance.
Collapse
Affiliation(s)
- Lindsey M. Kline
- Center for Renewable Carbon, University of Tennessee, Knoxville, TN, United States
| | - Priya Voothuluru
- Center for Renewable Carbon, University of Tennessee, Knoxville, TN, United States
| | - Scott C. Lenaghan
- Center for Renewable Carbon, University of Tennessee, Knoxville, TN, United States
- Department of Food Science, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Jason N. Burris
- Department of Food Science, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - Mikhael Soliman
- Nanoscience Technology Center, Department of Physics, University of Central Florida, Orlando, FL, United States
| | - Laurene Tetard
- Nanoscience Technology Center, Department of Physics, University of Central Florida, Orlando, FL, United States
| | - C. Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - Timothy G. Rials
- Center for Renewable Carbon, University of Tennessee, Knoxville, TN, United States
| | - Nicole Labbé
- Center for Renewable Carbon, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
46
|
Saab R, Polychronopoulou K, Zheng L, Kumar S, Schiffer A. Synthesis and performance evaluation of hydrocracking catalysts: A review. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.06.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Miyagawa Y, Tobimatsu Y, Lam PY, Mizukami T, Sakurai S, Kamitakahara H, Takano T. Possible mechanisms for the generation of phenyl glycoside-type lignin-carbohydrate linkages in lignification with monolignol glucosides. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:156-170. [PMID: 32623768 DOI: 10.1111/tpj.14913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
The existence and formation of covalent lignin-carbohydrate (LC) linkages in plant cell walls has long been a matter of debate in terms of their roles in cell wall development and biomass use. Of the various putative LC linkages proposed to date, evidence of the native existence and formation mechanism of phenyl glycoside (PG)-type LC linkages in planta is particularly scarce. The present study aimed to explore previously overlooked mechanisms for the formation of PG-type LC linkages through the incorporation of monolignol glucosides, which are possible lignin precursors, into lignin polymers during lignification. Peroxidase-catalyzed lignin polymerization of coniferyl alcohol in the presence of coniferin and syringin in vitro resulted in the generation of PG-type LC linkages in synthetic lignin polymers, possibly via nucleophilic addition onto quinone methide (QM) intermediates formed during polymerization. Biomimetic lignin polymerization of coniferin via the β-glucosidase/peroxidase system also resulted in the generation of PG-type as well as alkyl glycoside-type LC linkages. This occurred via non-enzymatic QM-involving reactions and also via enzymatic transglycosylations involving β-glucosidase, which was demonstrated by in-depth structural analysis of the synthetic lignins by two-dimensional NMR. We collected heteronuclear single-quantum coherence (HSQC) NMR for native cell wall fractions prepared from pine (Pinus taeda), eucalyptus (Eucalyptus camaldulensis), acacia (Acacia mangium), poplar (Populus × eurarnericana) and bamboo (Phyllostachys edulis) wood samples, which exhibited correlations, albeit at low levels, that were well matched with those of the PG-type LC linkages in synthetic lignins incorporating monolignol glucosides. Overall, our results provide a molecular basis for feasible mechanisms for the generation of PG-type LC linkages from monolignol glucosides and further substantiates their existence in planta.
Collapse
Affiliation(s)
- Yasuyuki Miyagawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
| | - Yuki Tobimatsu
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Pui Ying Lam
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Takahito Mizukami
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
| | - Sayaka Sakurai
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
| | - Hiroshi Kamitakahara
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
| | - Toshiyuki Takano
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
| |
Collapse
|
48
|
Matsushita Y, Yagami S, Kato A, Mitsuda H, Aoki D, Fukushima K. Combinations of the Aromatic Rings in β-1 Structure Formation of Lignin Based on Quantitative Analysis by Thioacidolysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9245-9251. [PMID: 32806114 DOI: 10.1021/acs.jafc.0c03206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The amount of β-1 structures in lignin is small; however, they are assumed to significantly affect the reactivity of lignin because they form dienone structures. A method employing thioacidolysis and subsequent desulfurization yields products that can be analyzed via gas chromatography-mass spectrometry (GC-MS) to quantify these β-1 structures. However, the retention times and response factors of the reaction products have not been accurately determined thus far. Here, 12 standard compounds combined with p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units were synthesized, and their retention times and response factors were determined through GC-MS, using selective ions. Based on these data, we also investigated the β-1 structures of lignocellulosic lignin samples. Our results clarified that the successful formation of the β-1 structure was dependent on the type of aromatic rings present; there were very few β-1 structures containing H units; and the amount of G-G type was higher and that of the heterotype, i.e., G-S type, was lower than the stochastic value.
Collapse
Affiliation(s)
- Yasuyuki Matsushita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Sachie Yagami
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Ayano Kato
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hayato Mitsuda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Dan Aoki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kazuhiko Fukushima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
49
|
Ruwoldt J, Planque J, Øye G. Lignosulfonate Salt Tolerance and the Effect on Emulsion Stability. ACS OMEGA 2020; 5:15007-15015. [PMID: 32637774 PMCID: PMC7330892 DOI: 10.1021/acsomega.0c00616] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/03/2020] [Indexed: 05/18/2023]
Abstract
In this article, we adapted and compared methods to assess lignosulfonates for technical applications. Salt-induced agglomeration and precipitation were studied via mechanical separation and subsequent UV spectrometry. The effect of lignosulfonates on emulsion stability was investigated in two steps: measuring the amount of oil separated after centrifugation and subjecting the remaining emulsion to shear in a rheometer. To complement the results, interfacial tension (IFT) was measured by the spinning drop technique, and the droplet size distribution was determined via a laser scattering technique. The observed trends in lignosulfonate salt tolerance and emulsion stabilization efficiency were opposite; that is, samples with low salt tolerance generally exhibited better emulsion stabilization and vice versa. This tendency was further matched by the hydrophobic characteristic of the lignosulfonates. The droplet size distributions of lignosulfonate-stabilized emulsions were similar. The effect of lignosulfonates on IFT depended on the oil phase and sample concentration. As a general trend, the IFT was lower for lignosulfonates with low average molecular weights. It was concluded that the adapted techniques allowed for detailed assessment of lignosulfonates with respect to salt tolerance and emulsion stabilization. In addition, it was found that the suitability for these applications can to some extent be predicted by the analytical data.
Collapse
Affiliation(s)
- Jost Ruwoldt
- Ugelstad Laboratory,
Department of Chemical Engineering, Norwegian
University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Juliette Planque
- École Nationale Supérieure
de Chimie de Mulhouse (ENSCMu), University
of Upper Alsace (UHA), 68200 Mulhouse, France
| | - Gisle Øye
- Ugelstad Laboratory,
Department of Chemical Engineering, Norwegian
University of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
50
|
Xiao MZ, Chen WJ, Cao XF, Chen YY, Zhao BC, Jiang ZH, Yuan TQ, Sun RC. Unmasking the heterogeneity of carbohydrates in heartwood, sapwood, and bark of Eucalyptus. Carbohydr Polym 2020; 238:116212. [PMID: 32299557 DOI: 10.1016/j.carbpol.2020.116212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 01/23/2023]
Abstract
In this study, the cellulose and hemicelluloses in heartwood, sapwood, and bark of E. urophylla × E. grandis were comprehensively investigated. The ultrastructural topochemistry of carbohydrates in cell walls was examined in situ by confocal Raman microscopy. Cellulose and alkali-extractable hemicelluloses samples were isolated from different tissues and comparatively characterized by compositional carbohydrate analyses, determination of molecular weights, FT-IR spectroscopy, and XRD and NMR techniques. It was found that among all of the samples, heartwood cellulose had the highest molecular weight as well as the lowest degree of crystallinity. Meanwhile the hemicelluloses in heartwood had higher xylose content, lower degree of branching, slightly lower molecular weights but narrower polydispersity than those in sapwood. The eucalyptus hemicelluloses mainly consisted of (1→4)-β-D-xylan backbone with glucuronic acid side chains. Furthermore, the hemicelluloses isolated from sapwood had a higher degree of substitution with terminal galactose than those isolated from heartwood and bark.
Collapse
Affiliation(s)
- Ming-Zhao Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Wei-Jing Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Xue-Fei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Yue-Ying Chen
- Hunan Forestech New Materials Co. Ltd, Hunan, 412500, China
| | - Bao-Chen Zhao
- Power Dekor (JiangSu) Wood Research Co., Ltd., Danyang, 212300, China
| | - Zhi-Hua Jiang
- Power Dekor (JiangSu) Wood Research Co., Ltd., Danyang, 212300, China
| | - Tong-Qi Yuan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China.
| | - Run-Cang Sun
- Center for Lignocellulose Chemistry and Materials, Dalian Polytechnic University, Dalian, 116034, China
| |
Collapse
|