1
|
Locascio A, Montoliu-Silvestre E, Nieves-Cordones M, Petsch S, Fuchs A, Bou C, Navarro-Martínez A, Porcel R, Andrés-Colás N, Rubio F, Mulet JM, Yenush L. ROOT PHOTOTROPISM 2 (RPT2) is a KAT1 potassium channel regulator required for its accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109922. [PMID: 40262397 DOI: 10.1016/j.plaphy.2025.109922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/24/2025]
Abstract
In plants, inward rectifying potassium channels regulate potassium entry into guard cells and are a key factor controlling stomatal opening. KAT1 is a major inward rectifying potassium channel present in Arabidopsis thaliana guard cell membranes. The identification of regulators of channels like KAT1 is a promising approach for the development of strategies to improve plant drought tolerance. Using a high-throughput Split-ubiquitin screening in yeast, we identified RPT2 (ROOT PHOTOTROPISM 2) as a KAT1 interactor. Here, we present the results of the characterization of this interaction in yeast and plants. Importantly, we also observe increased KAT1-mediated currents in oocytes co-expressing RPT2, suggesting a functional link between the two proteins. Moreover, using stably transformed KAT1-YFP lines, we show that RPT2 is necessary for KAT1 protein accumulation in A. thaliana. Our data suggest an unexpected role for RPT2 in KAT1 post-translational regulation that may represent a novel connection between light signaling and potassium channel activity.
Collapse
Affiliation(s)
- Antonella Locascio
- Instituto Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Eva Montoliu-Silvestre
- Instituto Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Manuel Nieves-Cordones
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Campus de Espinardo, Murcia, Spain
| | - Silvia Petsch
- Instituto Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Anika Fuchs
- Instituto Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Claudia Bou
- Instituto Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Alejandro Navarro-Martínez
- Instituto Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Rosa Porcel
- Instituto Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Nuria Andrés-Colás
- Instituto Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Francisco Rubio
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Campus de Espinardo, Murcia, Spain
| | - José Miguel Mulet
- Instituto Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Lynne Yenush
- Instituto Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| |
Collapse
|
2
|
Jiang H, Su J, Ren Z, Wang D, Hills A, Kinoshita T, Blatt MR, Wang Y, Wang Y. Dual function of overexpressing plasma membrane H +-ATPase in balancing carbon-water use. SCIENCE ADVANCES 2024; 10:eadp8017. [PMID: 39514663 PMCID: PMC11546806 DOI: 10.1126/sciadv.adp8017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Stomata respond slowly to changes in light when compared with photosynthesis, undermining plant water-use efficiency (WUE). We know much about stomatal mechanics, yet efforts to accelerate stomatal responsiveness have been limited despite the breadth of potential targets for manipulation. Here, we use mechanistic modeling to establish a hierarchy of putative targets affecting stomatal kinetics. Counterintuitively, modeling predicted that overexpressing plasma membrane H+-ATPases could speed stomata and enhance WUE under fluctuating light, even though overexpressed H+-ATPases is known to promote stomatal opening and reduce WUE in the steady state. Experiments validated the prediction, implicating an unexpected role of the H+-ATPases in improving WUE under fluctuating light. It suggests that H+-ATPases have a dual function, acting as a facilitator of carbon assimilation and water use, depending on the light conditions. These findings highlight the importance of integrating in silico modeling with experiments in future efforts toward enhancing stomatal function.
Collapse
Affiliation(s)
- Hangjin Jiang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Center for Data Science, Zhejiang University, Hangzhou 310058, China
| | - Jinghan Su
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zirong Ren
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Dexian Wang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Yin Wang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yizhou Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang University, Hangzhou 310058, China
- Key Lab of Plant Factory for Generation-adding Breeding of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Zhang J, Kaiser E, Marcelis LFM, Vialet-Chabrand S. Rapid spatial assessment of leaf-absorbed irradiance. THE NEW PHYTOLOGIST 2024; 241:1866-1876. [PMID: 38124293 DOI: 10.1111/nph.19496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Image-based high-throughput phenotyping promises the rapid determination of functional traits in large plant populations. However, interpretation of some traits - such as those related to photosynthesis or transpiration rates - is only meaningful if the irradiance absorbed by the measured leaves is known, which can differ greatly between different parts of the same plant and within canopies. No feasible method currently exists to rapidly measure absorbed irradiance in three-dimensional plants and canopies. We developed a method and protocols to derive absorbed irradiance at any visible part of a canopy with a thermal camera, by fitting a leaf energy balance model to transient changes in leaf temperature. Leaves were exposed to short light pulses (30 s) that were not long enough to trigger stomatal opening but strong enough to induce transient changes in leaf temperature that was proportional to the absorbed irradiance. The method was successfully validated against point measurements of absorbed irradiance in plant species with relatively simple architecture (sweet pepper, cucumber, tomato, and lettuce). Once calibrated, the model was used to produce absorbed irradiance maps from thermograms. Our method opens new avenues for the interpretation of plant responses derived from imaging techniques and can be adapted to existing high-throughput phenotyping platforms.
Collapse
Affiliation(s)
- Jiayu Zhang
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Silvere Vialet-Chabrand
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| |
Collapse
|
4
|
Zumsteg J, Bossard E, Gourguillon L, Villette C, Heintz D. Comparison of nocturnal and diurnal metabolomes of rose flowers and leaves. Metabolomics 2023; 20:4. [PMID: 38066353 DOI: 10.1007/s11306-023-02063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
INTRODUCTION Roses are one of the most essential ornamental flowers and are commonly used in perfumery, cosmetics, and food. They are rich in bioactive compounds, which are of interest for therapeutic effects. OBJECTIVES The objective of this study was to understand the kinds of changes that occur between the nocturnal and diurnal metabolism of rose and to suggest hypotheses. METHODS Reversed-phase ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry or triple quadrupole mass spectrometry (TQ MS/MS) was used for nontargeted metabolomics and hormonal profiling respectively. For metabolite annotation, accurate mass spectra were compared with those in databases. RESULTS The hormonal profile of flowers showed an increase in jasmonate at night, while that of leaves indicated an increase in the salicylic acid pathway. Nontargeted analyses of the flower revealed a switch in the plant's defense mechanisms from glycosylated metabolites during the day to acid metabolites at night. In leaves, a significant decrease in flavonoids was observed at night in favor of acid metabolism to maintain a level of protection. Moreover, it might be possible to place back some of the annotated molecules on the shikimate pathway. CONCLUSION The influence of day and night on the metabolome of rose flowers and leaves has been clearly demonstrated. The hormonal modulations occurring during the night and at day are consistent with the plant circadian cycle. A proposed management of the sesquiterpenoid and triterpenoid biosynthetic pathway may explain these changes in the flower. In leaves, the metabolic differences may reflect night-time regulation in favor of the salicylic acid pathway.
Collapse
Affiliation(s)
- Julie Zumsteg
- Plant Imaging & Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Elodie Bossard
- Advanced Biobased and Bioinspired Ingredients, LVMH Recherche, 185 avenue de Verdun, 45804, Saint-Jean-de-Braye Cedex, France
| | - Lorène Gourguillon
- Advanced Biobased and Bioinspired Ingredients, LVMH Recherche, 185 avenue de Verdun, 45804, Saint-Jean-de-Braye Cedex, France
| | - Claire Villette
- Plant Imaging & Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Dimitri Heintz
- Plant Imaging & Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France.
| |
Collapse
|
5
|
Luo D, Huang G, Zhang Q, Zhou G, Peng S, Li Y. Plasticity of mesophyll cell density and cell wall thickness and composition play a pivotal role in regulating plant growth and photosynthesis under shading in rapeseed. ANNALS OF BOTANY 2023; 132:963-978. [PMID: 37739395 PMCID: PMC10808032 DOI: 10.1093/aob/mcad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND AND AIMS Plasticity of leaf growth and photosynthesis is an important strategy of plants to adapt to shading stress; however, their strategy of leaf development to achieve a simultaneous increase in leaf area and photosynthesis under shading remains unknown. METHODS In the present study, a pot experiment was conducted using three rapeseed genotypes of Huayouza 50 (HYZ50), Zhongshuang 11 (ZS11) and Huayouza 62 (HYZ62), and the responses of plant growth, leaf morphoanatomical traits, cell wall composition and photosynthesis to shading were investigated. KEY RESULTS Shading significantly increased leaf area per plant (LAplant) in all genotypes, but the increase in HYZ62 was greater than that in HYZ50 and ZS11. The greater increment of LAplant in HYZ62 was related to the larger decrease in leaf mass per area (LMA) and leaf density (LD), which were in turn related to less densely packed mesophyll cells and thinner cell walls (Tcw). Moreover, shading significantly increased photosynthesis in HYZ62 but significantly decreased it in HYZ50. The enhanced photosynthesis in HYZ62 was related to increased mesophyll conductance (gm) due primarily to thinner cell walls. CONCLUSIONS The data presented indicate that the different plasticity of mesophyll cell density, cell wall thickness and cell wall composition in response to shading can dramatically affect leaf growth and photosynthesis.
Collapse
Affiliation(s)
- Dongxu Luo
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guanjun Huang
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qiangqiang Zhang
- Rice Ecophysiology and Precise Management Laboratory, College of Agronomy, Anhui Agricultural University, Anhui 230036, China
| | - Guangsheng Zhou
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shaobing Peng
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yong Li
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
6
|
Westgeest AJ, Dauzat M, Simonneau T, Pantin F. Leaf starch metabolism sets the phase of stomatal rhythm. THE PLANT CELL 2023; 35:3444-3469. [PMID: 37260348 PMCID: PMC10473205 DOI: 10.1093/plcell/koad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
In leaves of C3 and C4 plants, stomata open during the day to favor CO2 entry for photosynthesis and close at night to prevent inefficient transpiration of water vapor. The circadian clock paces rhythmic stomatal movements throughout the diel (24-h) cycle. Leaf transitory starch is also thought to regulate the diel stomatal movements, yet the underlying mechanisms across time (key moments) and space (relevant leaf tissues) remain elusive. Here, we developed PhenoLeaks, a pipeline to analyze the diel dynamics of transpiration, and used it to screen a series of Arabidopsis (Arabidopsis thaliana) mutants impaired in starch metabolism. We detected a sinusoidal, endogenous rhythm of transpiration that overarches days and nights. We determined that a number of severe mutations in starch metabolism affect the endogenous rhythm through a phase shift, resulting in delayed stomatal movements throughout the daytime and diminished stomatal preopening during the night. Nevertheless, analysis of tissue-specific mutations revealed that neither guard-cell nor mesophyll-cell starch metabolisms are strictly required for normal diel patterns of transpiration. We propose that leaf starch influences the timing of transpiration rhythm through an interplay between the circadian clock and sugars across tissues, while the energetic effect of starch-derived sugars is usually nonlimiting for endogenous stomatal movements.
Collapse
Affiliation(s)
| | - Myriam Dauzat
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | | | - Florent Pantin
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers F-49000, France
| |
Collapse
|
7
|
Kupper P, Tullus A, Rohula-Okunev G. Night-time water relations and gas exchange in cut shoots of five boreal dwarf shrub species: impact of soil water availability. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1193-1203. [PMID: 37829697 PMCID: PMC10564692 DOI: 10.1007/s12298-023-01350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 10/14/2023]
Abstract
Recent findings suggest that drought may affect plants' daytime and night-time stomatal regulation differently. However, knowledge of night-time stomatal behaviour in dwarf shrubs growing in boreal ecosystems is lacking. We sampled cut shoots from dwarf shrub species to elucidate their capacity to transpire at night and the effect of drought on stomatal regulation. The shoots' water relations and gas exchange were measured under controlled conditions in a growth chamber. The studied species demonstrated considerable differences in their diurnal water use. The night-time water use percentage of daytime water use (NWU) reached up to 90% in Andromeda polifolia and Vaccinium uliginosum. In Rhododendron tomentosum, Vaccinium myrtillus and Chamaedaphne calyculata, the NWU was 62, 27 and 26%, respectively. The shoots of C. calyculata showed a significant increase (P < 0.001) in the transpiration rate (E) during the night. However, in R. tomentosum, a decrease (P < 0.05) in nightly E was observed. The shoot conductance (g) at the end of the night was lower than daytime g in all studied species, but the difference was not significant for V. uliginosum. Across the species, NWU was negatively related (P < 0.001) to the soil volumetric water content (SWC) in the plant habitat. However, daytime E and g were positively related (P < 0.05) to the habitat SWC. Only in V. myrtillus was night-time E higher (P < 0.05) in dry conditions than in wet conditions. Our results demonstrate high variability in diurnal water relations in dwarf shrubs, which can keep stomata open in the dark even when drought limits daytime g and E.
Collapse
Affiliation(s)
- Priit Kupper
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Arvo Tullus
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Gristin Rohula-Okunev
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| |
Collapse
|
8
|
Lima VF, Freire FBS, Cândido-Sobrinho SA, Porto NP, Medeiros DB, Erban A, Kopka J, Schwarzländer M, Fernie AR, Daloso DM. Unveiling the dark side of guard cell metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107862. [PMID: 37413941 DOI: 10.1016/j.plaphy.2023.107862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
Evidence suggests that guard cells have higher rate of phosphoenolpyruvate carboxylase (PEPc)-mediated dark CO2 assimilation than mesophyll cells. However, it is unknown which metabolic pathways are activated following dark CO2 assimilation in guard cells. Furthermore, it remains unclear how the metabolic fluxes throughout the tricarboxylic acid (TCA) cycle and associated pathways are regulated in illuminated guard cells. Here we carried out a13C-HCO3 labelling experiment in tobacco guard cells harvested under continuous dark or during the dark-to-light transition to elucidate principles of metabolic dynamics downstream of CO2 assimilation. Most metabolic changes were similar between dark-exposed and illuminated guard cells. However, illumination altered the metabolic network structure of guard cells and increased the 13C-enrichment in sugars and metabolites associated to the TCA cycle. Sucrose was labelled in the dark, but light exposure increased the 13C-labelling and leads to more drastic reductions in the content of this metabolite. Fumarate was strongly labelled under both dark and light conditions, while illumination increased the 13C-enrichment in pyruvate, succinate and glutamate. Only one 13C was incorporated into malate and citrate in either dark or light conditions. Our results indicate that several metabolic pathways are redirected following PEPc-mediated CO2 assimilation in the dark, including gluconeogenesis and the TCA cycle. We further showed that the PEPc-mediated CO2 assimilation provides carbons for gluconeogenesis, the TCA cycle and glutamate synthesis and that previously stored malate and citrate are used to underpin the specific metabolic requirements of illuminated guard cells.
Collapse
Affiliation(s)
- Valéria F Lima
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Francisco Bruno S Freire
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Silvio A Cândido-Sobrinho
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Nicole P Porto
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, Westfälische-Wilhelms-Universität Münster, D-48143, Münster, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
| |
Collapse
|
9
|
Lu Y, Fricke W. Salt Stress-Regulation of Root Water Uptake in a Whole-Plant and Diurnal Context. Int J Mol Sci 2023; 24:ijms24098070. [PMID: 37175779 PMCID: PMC10179082 DOI: 10.3390/ijms24098070] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
This review focuses on the regulation of root water uptake in plants which are exposed to salt stress. Root water uptake is not considered in isolation but is viewed in the context of other potential tolerance mechanisms of plants-tolerance mechanisms which relate to water relations and gas exchange. Plants spend between one third and half of their lives in the dark, and salt stress does not stop with sunset, nor does it start with sunrise. Surprisingly, how plants deal with salt stress during the dark has received hardly any attention, yet any growth response to salt stress over days, weeks, months and years is the integrative result of how plants perform during numerous, consecutive day/night cycles. As we will show, dealing with salt stress during the night is a prerequisite to coping with salt stress during the day. We hope to highlight with this review not so much what we know, but what we do not know; and this relates often to some rather basic questions.
Collapse
Affiliation(s)
- Yingying Lu
- School of Biology and Environmental Science, University College Dublin (UCD), Belfield, D04 N2E5 Dublin, Ireland
| | - Wieland Fricke
- School of Biology and Environmental Science, University College Dublin (UCD), Belfield, D04 N2E5 Dublin, Ireland
| |
Collapse
|
10
|
Šantrůček J. The why and how of sunken stomata: does the behaviour of encrypted stomata and the leaf cuticle matter? ANNALS OF BOTANY 2022; 130:285-300. [PMID: 35452520 PMCID: PMC9486903 DOI: 10.1093/aob/mcac055] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/21/2022] [Indexed: 06/09/2023]
Abstract
BACKGROUND Stomatal pores in many species are separated from the atmosphere by different anatomical obstacles produced by leaf epidermal cells, especially by sunken stomatal crypts, stomatal antechambers and/or hairs (trichomes). The evolutionary driving forces leading to sunken or 'hidden' stomata whose antechambers are filled with hairs or waxy plugs are not fully understood. The available hypothetical explanations are based mainly on mathematical modelling of water and CO2 diffusion through superficial vs. sunken stomata, and studies of comparative autecology. A better understanding of this phenomenon may result from examining the interactions between the leaf cuticle and stomata and from functional comparisons of sunken vs. superficially positioned stomata, especially when transpiration is low, for example at night or during severe drought. SCOPE I review recent ideas as to why stomata are hidden and test experimentally whether hidden stomata may behave differently from those not covered by epidermal structures and so are coupled more closely to the atmosphere. I also quantify the contribution of stomatal vs. cuticular transpiration at night using four species with sunken stomata and three species with superficial stomata. CONCLUSIONS Partitioning of leaf conductance in darkness (gtw) into stomatal and cuticular contributions revealed that stomatal conductance dominated gtw across all seven investigated species with antechambers with different degrees of prominence. Hidden stomata contributed, on average, less to gtw (approx. 70 %) than superficial stomata (approx. 80 %) and reduced their contribution dramatically with increasing gtw. In contrast, species with superficial stomata kept their proportion in gtw invariant across a broad range of gtw. Mechanisms behind the specific behaviour of hidden stomata and the multipurpose origin of sunken stomata are discussed.
Collapse
|
11
|
Chowdhury FI, Arteaga C, Alam MS, Alam I, Resco de Dios V. Drivers of nocturnal stomatal conductance in C 3 and C 4 plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:151952. [PMID: 34843766 DOI: 10.1016/j.scitotenv.2021.151952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Nocturnal water losses were for long considered negligible, but it is now known that incomplete stomatal closure during the night leads to significant water losses at leaf, plant and ecosystem scales. However, only daytime transpiration is currently accounted for in evapotranspiration studies. Important uncertainties on the drivers of nocturnal water fluxes hinder its incorporation within modelling frameworks because some studies indicate that night-time stomatal drivers may differ from day-time responses. Here, we synthesise the studies on nocturnal stomatal conductance (gn) to determine underlying drivers through a systematic literature review and, whenever possible, meta-analytical techniques. Similar to daytime responses, we found negative effects of vapour pressure deficit, predawn water potential, air temperature, and salinity on gn across the plant species. However, the most apparent trend was an increase of gn from the beginning until the end of the night, indicating significant and widespread endogenous regulation by the circadian clock. We further observed how neither elevated CO2 nor nutrient status affected gn significantly across species. We also did not find any significant associations between gn and elevated ozone or increasing plant age. There was a paucity of studies on climatic extremes such heat waves and also few studies connected gn with anatomical features such as leaf specific area or stomatal density. Further studies are also needed to address the effects of plant sex, abscisic acid concentrations and genotypic variations on gn. Our findings solve the long-term conundrum on whether stomatal responses to daytime drivers are the same as those that during the nighttime.
Collapse
Affiliation(s)
- Faqrul Islam Chowdhury
- Institute of Forestry and Environmental Sciences, University of Chittagong, Chattogram 4331, Bangladesh; Erasmus Mundus Master Course in Mediterranean Forestry and Natural Resources Management, University of Lleida, Lleida, Spain.
| | - Carles Arteaga
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
| | - Mohammed Shafiul Alam
- Institute of Forestry and Environmental Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Iftakharul Alam
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Queensland 4878, Australia
| | - Víctor Resco de Dios
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain; School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China; Joint Research Unit CTFC-AGROTECNIO-CERCA Center, Lleida, Spain
| |
Collapse
|
12
|
Light and Water Conditions Co-Regulated Stomata and Leaf Relative Uptake Rate (LRU) during Photosynthesis and COS Assimilation: A Meta-Analysis. SUSTAINABILITY 2022. [DOI: 10.3390/su14052840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
As a trace gas involved in hydration during plant photosynthesis, carbonyl sulfide (COS) and its leaf relative uptake rate (LRU) is used to reduce the uncertainties in simulations of gross primary productivity (GPP). In this study, 101 independent observations were collected from 22 studies. We extracted the LRU, stomatal conductance (gs), canopy COS and carbon dioxide (CO2) fluxes, and relevant environmental conditions (i.e., light, temperature, and humidity), as well as the atmospheric COS and CO2 concentrations (Ca,COS and Ca,CO2). Although no evidence was found showing that gs regulates LRU, they responded in opposite ways to diurnal variations of environmental conditions in both mixed forests (LRU: Hedges’d = −0.901, LnRR = −0.189; gs: Hedges’d = 0.785, LnRR = 0.739) and croplands dominated by C3 plants (Hedges’d = −0.491, LnRR = −0.371; gs: Hedges’d = 1.066, LnRR = 0.322). In this process, the stomata play an important role in COS assimilation (R2 = 0.340, p = 0.020) and further influence the interrelationship of COS and CO2 fluxes (R2 = 0.650, p = 0.000). Slight increases in light intensity (R2 = 1, p = 0.002) and atmospheric drought (R2 = 0.885, p = 0.005) also decreased the LRU. The LRU saturation points of Ca,COS and Ca,CO2 were observed when ΔCa,COS ≈ 13 ppt (R2 = 0.580, p = 0.050) or ΔCa,CO2 ≈ −18 ppm (R2 = 0.970, p = 0.003). This study concluded that during plant photosynthesis and COS assimilation, light and water conditions co-regulated the stomata and LRU.
Collapse
|
13
|
Dubeaux G, Hsu PK, Ceciliato PHO, Swink KJ, Rappel WJ, Schroeder JI. Deep dive into CO2-dependent molecular mechanisms driving stomatal responses in plants. PLANT PHYSIOLOGY 2021; 187:2032-2042. [PMID: 35142859 PMCID: PMC8644143 DOI: 10.1093/plphys/kiab342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/30/2021] [Indexed: 05/04/2023]
Abstract
Recent advances are revealing mechanisms mediating CO2-regulated stomatal movements in Arabidopsis, stomatal architecture and stomatal movements in grasses, and the long-term impact of CO2 on growth.
Collapse
Affiliation(s)
- Guillaume Dubeaux
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Po-Kai Hsu
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Paulo H O Ceciliato
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Kelsey J Swink
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Wouter-Jan Rappel
- Physics Department, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
- Author for communication:
| |
Collapse
|
14
|
Habibi G. Changes in crassulacean acid metabolism expression, chloroplast ultrastructure, photochemical and antioxidant activity in the Aloe vera during acclimation to combined drought and salt stress. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 49:40-53. [PMID: 34780703 DOI: 10.1071/fp21008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
We determined time course changes of photochemical and antioxidant activity during the induction of strong crassulacean acid metabolism (CAM) in Aloe vera L. plants grown under salt and drought stress. We found that the strong CAM was induced during 25-30days of drought alone treatment. After 25-30days, we showed the withdrawal of strong CAM back to constitutive CAM background under the combination of simultaneous drought and salt stress, which coincided with the accumulation of malondialdehyde, and the decrease in the contents of endogenous nitric oxide (NO) and non-enzymatic antioxidants. At the same time, the chloroplast ultrastructure was damaged with a parallel accumulation of reactive oxygen species, and the whole photosynthetic electron transport flux was impaired by combined stress treatment. In conclusion, the changes in CAM expression parameters was attended by a similar pattern of antioxidant and photochemical change in Aloe plants subjected to only drought or combined stress.
Collapse
Affiliation(s)
- Ghader Habibi
- Department of Biology, Payame Noor University (PNU), PO BOX 19395-3697 Tehran, Iran
| |
Collapse
|
15
|
Innes SN, Solhaug KA, Torre S, Dodd IC. Different abscisic acid-deficient mutants show unique morphological and hydraulic responses to high air humidity. PHYSIOLOGIA PLANTARUM 2021; 172:1795-1807. [PMID: 33826767 DOI: 10.1111/ppl.13417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/09/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
High relative humidity (RH) perturbs plant growth, stomatal functioning and abscisic acid (ABA) homeostasis, but the role of ABA in this physiological regulation is equivocal. To determine the role(s) of ABA in plant responses to high RH, wild-type (WT) tomato and barley plants and their respective ABA-deficient mutants flacca and Az34 (which are mutated in the same locus of the ABA biosynthesis pathway) were grown in contrasting RHs (60% and 90%) to measure biomass partitioning, stomatal traits and water relations. Surprisingly, growth RH did not affect foliar ABA levels in either species. While Az34 showed similar stomatal size and density as WT plants, flacca had larger and more abundant stomata. High RH increased stomatal size in tomato, but decreased it in barley, and decreased stomatal density in tomato, but not in barley. Altered stomatal responses in ABA-deficient plants to high RH had little effect on tomato photosynthesis, but Az34 barley showed lower photosynthesis. ABA deficiency decreased relative shoot growth rate (RGRSHOOT ) in both species, yet this was counteracted by high RH increasing leaf water status in tomato, but not in barley. High RH increased RGRSHOOT in flacca, but not in WT tomatoes, while having no effect on RGRSHOOT in barley, but affecting barley net assimilation rate, leaf area ratio (LAR) and specific leaf area in an ABA-dependent manner. ABA-RH interaction affected leaf development in tomato only. Thus, different crop species show variable responses to both high RH and ABA deficiency, making it difficult to generalise on the role of ABA in growth regulation at contrasting RHs.
Collapse
Affiliation(s)
- Sheona N Innes
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Knut Asbjørn Solhaug
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Sissel Torre
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
16
|
Zhang Q, Yang Y, Peng S, Li Y. Nighttime transpirational cooling enabled by circadian regulation of stomatal conductance is related to stomatal anatomy and leaf morphology in rice. PLANTA 2021; 254:12. [PMID: 34165635 DOI: 10.1007/s00425-021-03661-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Rice genotypes with larger stomata maintain higher nocturnal stomatal conductance, thus having lower nocturnal leaf temperature via transpirational cooling. Incomplete night stomatal closure has been widely observed, but the mechanisms and functions of nocturnal stomatal conductance (gs,n) are not fully understood. Stomatal anatomy, leaf morphology, gs,n and nocturnal leaf temperature (Tleaf,n) were measured in 30 Oryza genotypes. Nocturnal leaf conductance (gn) showed a significant circadian rhythm; it gradually increased by 58% from 20:30 to 04:30. Contrary to cuticular conductance (gcut), gs,n was highly correlated with gn. Moreover, gs,n accounted for 76% of gn. Tleaf,n was significantly lower than the air temperature, and was negatively correlated with both gs,n and nocturnal transpiration rate (En). gs,n was positively correlated with stomatal size, intervein distance between major veins (IVDmajor), leaf thickness (LT), individual leaf area (LA), and leaf width (LW). It was also found negatively correlated with stomatal density. Reversely, Tleaf,n was negatively correlated with stomatal size, IVDmajor, intervein distance between minor veins, LA and LW. Tleaf,n presented a positive correlation with stomatal density. This study highlights the importance of stomatal anatomy and leaf morphology on regulating gs,n and Tleaf,n. The underlying mechanisms to the determinants of gs,n and the physiological and ecological functions of the Tleaf,n regulation on rice growth and production were carefully discussed.
Collapse
Affiliation(s)
- Qiangqiang Zhang
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuhan Yang
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yong Li
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
17
|
Montillet JL, Rondet D, Brugière S, Henri P, Rumeau D, Reichheld JP, Couté Y, Leonhardt N, Rey P. Plastidial and cytosolic thiol reductases participate in the control of stomatal functioning. PLANT, CELL & ENVIRONMENT 2021; 44:1417-1435. [PMID: 33537988 DOI: 10.1111/pce.14013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Stomatal movements via the control of gas exchanges determine plant growth in relation to environmental stimuli through a complex signalling network involving reactive oxygen species that lead to post-translational modifications of Cys and Met residues, and alter protein activity and/or conformation. Thiol-reductases (TRs), which include thioredoxins, glutaredoxins (GRXs) and peroxiredoxins (PRXs), participate in signalling pathways through the control of Cys redox status in client proteins. Their involvement in stomatal functioning remains poorly characterized. By performing a mass spectrometry-based proteomic analysis, we show that numerous thiol reductases, like PRXs, are highly abundant in guard cells. When investigating various Arabidopsis mutants impaired in the expression of TR genes, no change in stomatal density and index was noticed. In optimal growth conditions, a line deficient in cytosolic NADPH-thioredoxin reductases displayed higher stomatal conductance and lower leaf temperature evaluated by thermal infrared imaging. In contrast, lines deficient in plastidial 2-CysPRXs or type-II GRXs exhibited compared to WT reduced conductance and warmer leaves in optimal conditions, and enhanced stomatal closure in epidermal peels treated with abscisic acid or hydrogen peroxide. Altogether, these data strongly support the contribution of thiol redox switches within the signalling network regulating guard cell movements and stomatal functioning.
Collapse
Affiliation(s)
- Jean-Luc Montillet
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Damien Rondet
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
- Laboratoire Nixe, Sophia-Antipolis, Valbonne, France
| | - Sabine Brugière
- Laboratoire EDyP, University of Grenoble Alpes, CEA, INSERM, IRIG, BGE, Grenoble, France
| | - Patricia Henri
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Dominique Rumeau
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, CNRS, Université Perpignan Via Domitia, Perpignan, France
| | - Yohann Couté
- Laboratoire EDyP, University of Grenoble Alpes, CEA, INSERM, IRIG, BGE, Grenoble, France
| | - Nathalie Leonhardt
- SAVE Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Pascal Rey
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| |
Collapse
|
18
|
Pridgeon AJ, Hetherington AM. ABA signalling and metabolism are not essential for dark-induced stomatal closure but affect response speed. Sci Rep 2021; 11:5751. [PMID: 33707501 PMCID: PMC7952387 DOI: 10.1038/s41598-021-84911-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
Stomata are microscopic pores that open and close, acting to balance CO2 uptake with water loss. Stomata close in response to various signals including the drought hormone abscisic acid (ABA), microbe-associated-molecular-patterns, high CO2 levels, and darkness. The signalling pathways underlying ABA-induced stomatal closure are well known, however, the mechanism for dark-induced stomatal closure is less clear. ABA signalling has been suggested to play a role in dark-induced stomatal closure, but it is unclear how this occurs. Here we investigate the role of ABA in promoting dark-induced stomatal closure. Tracking stomatal movements on the surface of leaf discs we find, although steady state stomatal apertures are affected by mutations in ABA signalling and metabolism genes, all mutants investigated close in response to darkness. However, we observed a delayed response to darkness for certain ABA signalling and metabolism mutants. Investigating this further in the quadruple ABA receptor mutant (pyr1pyl1pyl2pyl4), compared with wild-type, we found reduced stomatal conductance kinetics. Although our results suggest a non-essential role for ABA in dark-induced stomatal closure, we show that ABA modulates the speed of the dark-induced closure response. These results highlight the role of ABA signalling and metabolic pathways as potential targets for enhancing stomatal movement kinetics.
Collapse
Affiliation(s)
- Ashley J Pridgeon
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Alistair M Hetherington
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK.
| |
Collapse
|
19
|
Hõrak H, Fountain L, Dunn JA, Landymore J, Gray JE. Dynamic thermal imaging confirms local but not fast systemic ABA responses. PLANT, CELL & ENVIRONMENT 2021; 44:885-899. [PMID: 33295045 DOI: 10.1111/pce.13973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Abscisic acid (ABA) signals regulating stomatal aperture and water loss are usually studied in detached leaves or isolated epidermal peels and at infrequent timepoints. Measuring stomatal ABA responses in attached leaves across a time course enables the study of stomatal behaviour in the physiological context of the plant. Infrared thermal imaging is often used to characterize steady-state stomatal conductance via comparisons of leaf surface temperature but is rarely used to capture stomatal responses over time or across different leaf surfaces. We used dynamic thermal imaging as a robust, but sensitive, tool to observe stomatal ABA responses in a whole plant context. We detected stomatal responses to low levels of ABA in both monocots and dicots and identified differences between the responses of different leaves. Using whole plant thermal imaging, stomata did not always behave as described previously for detached samples: in Arabidopsis, we found no evidence for fast systemic ABA-induced stomatal closure, and in barley, we observed no requirement for exogenous nitrate during ABA-induced stomatal closure. Thus, we recommend dynamic thermal imaging as a useful approach to complement detached sample assays for the study of local and systemic stomatal responses and molecular mechanisms underlying stomatal responses to ABA in the whole plant context.
Collapse
Affiliation(s)
- Hanna Hõrak
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Luke Fountain
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Jessica A Dunn
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Joanna Landymore
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
20
|
Dayer S, Herrera JC, Dai Z, Burlett R, Lamarque LJ, Delzon S, Bortolami G, Cochard H, Gambetta GA. Nighttime transpiration represents a negligible part of water loss and does not increase the risk of water stress in grapevine. PLANT, CELL & ENVIRONMENT 2021; 44:387-398. [PMID: 33099776 PMCID: PMC7894480 DOI: 10.1111/pce.13923] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 05/27/2023]
Abstract
Nighttime transpiration has been previously reported as a significant source of water loss in many species; however, there is a need to determine if this trait plays a key role in the response to drought. This study aimed to determine the magnitude, regulation and relative contribution to whole plant water-use, of nighttime stomatal conductance (gnight ) and transpiration (Enight ) in grapevine (Vitis vinifera L.). Our results showed that nighttime water loss was relatively low compared to daytime transpiration, and that decreases in soil and plant water potentials were mainly explained by daytime stomatal conductance (gday ) and transpiration (Eday ). Contrary to Eday , Enight did not respond to VPD and possible effects of an innate circadian regulation were observed. Plants with higher gnight also exhibited higher daytime transpiration and carbon assimilation at midday, and total leaf area, suggesting that increased gnight may be linked with daytime behaviors that promote productivity. Modeling simulations indicated that gnight was not a significant factor in reaching critical hydraulic thresholds under scenarios of either extreme drought, or time to 20% of soil relative water content. Overall, this study suggests that gnight is not significant in exacerbating the risk of water stress and hydraulic failure in grapevine.
Collapse
Affiliation(s)
- Silvina Dayer
- EGFV, Bordeaux Sciences Agro, INRAEUniv. Bordeaux, ISVVVillenave d'OrnonFrance
| | - José Carlos Herrera
- Institute of Viticulture and PomologyUniversity of Natural Resources and Life Sciences (BOKU)TullnAustria
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant ResourcesInstitute of Botany, the Chinese Academy of SciencesBeijingChina
| | | | - Laurent J. Lamarque
- INRAe, BIOGECOUniversité BordeauxPessacFrance
- Département des Sciences de l'EnvironnementUniversité du Québec à Trois‐RivièresTrois‐RivièresQuebecCanada
| | | | - Giovanni Bortolami
- SAVE, Bordeaux Sciences Agro, INRAEUniv. Bordeaux, ISVVVillenave d'OrnonFrance
| | - Hervé Cochard
- Université Clermont‐Auvergne, INRAE, PIAFClermont‐FerrandFrance
| | - Gregory A. Gambetta
- EGFV, Bordeaux Sciences Agro, INRAEUniv. Bordeaux, ISVVVillenave d'OrnonFrance
| |
Collapse
|
21
|
Habibi G. Comparison of CAM expression, photochemistry and antioxidant responses in Sedum album and Portulaca oleracea under combined stress. PHYSIOLOGIA PLANTARUM 2020; 170:550-568. [PMID: 32785996 DOI: 10.1111/ppl.13187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/06/2020] [Indexed: 05/14/2023]
Abstract
Previous studies of crassulacean acid metabolism (CAM) pathway during stress have been directed at individual drought and salinity stress, here, we studied the effects of a combination of drought and salt on CAM expression, chlorophyll fluorescence and antioxidant parameters in the C3 -CAM facultative Sedum album and C4 -CAM facultative Portulaca oleracea plants. While salinity alone was not able to induce functional CAM expression in P. oleracea leaves, we showed that salinity induced low level of nocturnal acid accumulation in S. album species. After 20 d of exposure to the combination of simultaneous salt and drought stress, P. oleracea plants exhibited more resistance to photoinhibition as compared to S. album plants. The decrease of maximum quantum yield (Fv /Fm ) in S. album leaves under combined stress was in parallel with the largest suppression of CAM expression of >50%, probably displaying the withdrawal of functional CAM back to C3 pathway. However, under drought treatment alone, S. album plants exhibited higher photosynthetic flexibility, which was associated with the up-regulation of antioxidant enzymes activities and maintenance of glutathione (GSH) pool, and consequently higher photochemical functioning. The levels of nitric oxide (NO) correlated well with CAM expression, which was observed only in S. album, suggesting that NO acts in a different way in C3 and C4 species during CAM induction. Additionally, in both species, over the course of CAM induction, the changes in CAM expression parameters exhibited a similar pattern to that of antioxidant capacity and photochemical functioning parameters.
Collapse
Affiliation(s)
- Ghader Habibi
- Department of Biology, Payame Noor University (PNU), Tehran, Iran
| |
Collapse
|
22
|
Wei H, Liu C, Hu J, Jeong BR. Quality of Supplementary Morning Lighting (SML) During Propagation Period Affects Physiology, Stomatal Characteristics, and Growth of Strawberry Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E638. [PMID: 32429476 PMCID: PMC7285151 DOI: 10.3390/plants9050638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 11/16/2022]
Abstract
Artificial light supplementation is widely used in modern agriculture. Due to their numerous advantages, light emitting diodes (LEDs) are widely used to effectively increase the yield or control the development of crops. In the present study, the effects of supplementary morning lighting (SML) with LEDs on the physiology and stomatal characteristics of strawberry plants were studied, with the aim of awakening the plant guard cells before sunrise and enabling strawberry plants to efficiently photosynthesize immediately after sunrise. Young daughter plants of 'Maehyang' and 'Seolhyang' strawberry cultivars that have just rooted were grown under LEDs with different wavelengths-white (W), red (R), mixed blue and red (BR, 1:1), and blue (B)-to investigate the effects of the SML on the physiology, stomatal characteristics, and growth. The SML was provided for 2 h at an intensity of 100 μmol·m-2·s-1 PPFD before sunrise every morning. A group without supplementary lighting was set as the control. The results showed that the different SML qualities have significantly affected the stomatal characteristics. The B SML promoted the stomatal opening more effectively compared to the other SMLs. The stomatal conductance and quantum yield (Fv/Fm) of leaves treated with the SMLs were higher than those of the control group. The B and BR SMLs most significantly affected the stomatal conductance and quantum yield (Fv/Fm). After 30 days of the SML treatments, it was observed that the B SML effectively improved the plant quality, chlorophyll content, and carbohydrate accumulation in the two strawberry cultivars. In general, a short-term exposure to blue light before sunrise can effectively improve the quality and promote the production of strawberry plants.
Collapse
Affiliation(s)
- Hao Wei
- Department of Horticulture, Division of Applied Life Science (BK21 Plus Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (H.W.); (C.L.); (J.H.)
| | - Chen Liu
- Department of Horticulture, Division of Applied Life Science (BK21 Plus Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (H.W.); (C.L.); (J.H.)
| | - Jiangtao Hu
- Department of Horticulture, Division of Applied Life Science (BK21 Plus Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (H.W.); (C.L.); (J.H.)
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Plus Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (H.W.); (C.L.); (J.H.)
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
23
|
Simon NML, Graham CA, Comben NE, Hetherington AM, Dodd AN. The Circadian Clock Influences the Long-Term Water Use Efficiency of Arabidopsis. PLANT PHYSIOLOGY 2020; 183:317-330. [PMID: 32179629 PMCID: PMC7210627 DOI: 10.1104/pp.20.00030] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/25/2020] [Indexed: 05/04/2023]
Abstract
In plants, water use efficiency (WUE) is a complex trait arising from numerous physiological and developmental characteristics. Here, we investigated the involvement of circadian regulation in long-term WUE in Arabidopsis (Arabidopsis thaliana) under light and dark conditions. Circadian rhythms are generated by the circadian oscillator, which provides a cellular measure of the time of day. In plants, the circadian oscillator contributes to the regulation of many aspects of physiology, including stomatal opening, rate of photosynthesis, carbohydrate metabolism, and developmental processes such as the initiation of flowering. We investigated the impact of the misregulation of numerous genes encoding various components of the circadian oscillator on whole plant, long-term WUE. From this analysis, we identified a role for the circadian oscillator in WUE. It appears that the circadian clock contributes to the control of transpiration and biomass accumulation. We also established that the circadian oscillator within guard cells can contribute to long-term WUE. Our experiments indicate that knowledge of circadian regulation will be important for developing crops with improved WUE.
Collapse
Affiliation(s)
- Noriane M L Simon
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Calum A Graham
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
- John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Nicholas E Comben
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | | | | |
Collapse
|
24
|
Hoshika Y, De Carlo A, Baraldi R, Neri L, Carrari E, Agathokleous E, Zhang L, Fares S, Paoletti E. Ozone-induced impairment of night-time stomatal closure in O 3-sensitive poplar clone is affected by nitrogen but not by phosphorus enrichment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:713-722. [PMID: 31539979 DOI: 10.1016/j.scitotenv.2019.07.288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Nocturnal transpiration may be a key factor influencing water use in plants. Tropospheric ozone (O3) and availability of nutrients such as nitrogen (N) and phosphorus (P) in the soil can affect daytime water use through stomata, but the combined effects of O3, N and P on night-time stomatal conductance (gs) are not known. We investigated the effects of O3 and soil availability of N and P on nocturnal gs and the dynamics of stomatal response after leaf severing in an O3-sensitive poplar clone (Oxford) subjected to combined treatments over a growing season in an O3 free air controlled exposure (FACE) facility. The treatments were two soil N levels (0 and 80 kg N ha-1; N0 and N80), three soil P levels (0, 40 and 80 kg P ha-1; P0, P40 and P80) and three O3 levels (ambient concentration, AA [35.0 ppb as hourly mean]; 1.5 × AA; 2.0 × AA). The analysis of stomatal dynamics after leaf severing suggested that O3 impaired stomatal closure execution. As a result, nocturnal gs was increased by 2.0 × AA O3 in August (+39%) and September (+108%). Night-time gs was correlated with POD0 (phytotoxic O3 dose) and increased exponentially after 40 mmol m-2 POD0. Such increase of nocturnal gs was attributed to the emission of ethylene due to 2.0 × AA O3 exposure, while foliar abscisic acid (ABA) or indole-3-acetic acid (IAA) did not affect gs at night. Interestingly, the O3-induced stomatal opening at night was limited by N treatments in August, but not limited in September. Phosphorus decreased nocturnal gs, although P did not modify the O3-induced stomatal dysfunction. The results suggest that the increased nocturnal gs may be associated with a need to improve N acquisition to cope with O3 stress.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), National Research Council (CNR), Via Madonna del Piano, I-50019 Sesto Fiorentino, Italy.
| | - Anna De Carlo
- Istituto di Bioeconomia (IBE), National Research Council (CNR), via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Rita Baraldi
- Istituto di Bioeconomia (IBE), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Luisa Neri
- Istituto di Bioeconomia (IBE), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Elisa Carrari
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), National Research Council (CNR), Via Madonna del Piano, I-50019 Sesto Fiorentino, Italy
| | - Evgenios Agathokleous
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Nanjing, Jiangsu 210044, China
| | - Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road 600, 150030 Harbin, China
| | - Silvano Fares
- Research Centre for Forestry and Wood, Council for Agricultural Research and Economics, Roma, Italy
| | - Elena Paoletti
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), National Research Council (CNR), Via Madonna del Piano, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
25
|
Costa JM, Marques da Silva J, Pinheiro C, Barón M, Mylona P, Centritto M, Haworth M, Loreto F, Uzilday B, Turkan I, Oliveira MM. Opportunities and Limitations of Crop Phenotyping in Southern European Countries. FRONTIERS IN PLANT SCIENCE 2019; 10:1125. [PMID: 31608085 PMCID: PMC6774291 DOI: 10.3389/fpls.2019.01125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 08/15/2019] [Indexed: 05/31/2023]
Abstract
The Mediterranean climate is characterized by hot dry summers and frequent droughts. Mediterranean crops are frequently subjected to high evapotranspiration demands, soil water deficits, high temperatures, and photo-oxidative stress. These conditions will become more severe due to global warming which poses major challenges to the sustainability of the agricultural sector in Mediterranean countries. Selection of crop varieties adapted to future climatic conditions and more tolerant to extreme climatic events is urgently required. Plant phenotyping is a crucial approach to address these challenges. High-throughput plant phenotyping (HTPP) helps to monitor the performance of improved genotypes and is one of the most effective strategies to improve the sustainability of agricultural production. In spite of the remarkable progress in basic knowledge and technology of plant phenotyping, there are still several practical, financial, and political constraints to implement HTPP approaches in field and controlled conditions across the Mediterranean. The European panorama of phenotyping is heterogeneous and integration of phenotyping data across different scales and translation of "phytotron research" to the field, and from model species to crops, remain major challenges. Moreover, solutions specifically tailored to Mediterranean agriculture (e.g., crops and environmental stresses) are in high demand, as the region is vulnerable to climate change and to desertification processes. The specific phenotyping requirements of Mediterranean crops have not yet been fully identified. The high cost of HTPP infrastructures is a major limiting factor, though the limited availability of skilled personnel may also impair its implementation in Mediterranean countries. We propose that the lack of suitable phenotyping infrastructures is hindering the development of new Mediterranean agricultural varieties and will negatively affect future competitiveness of the agricultural sector. We provide an overview of the heterogeneous panorama of phenotyping within Mediterranean countries, describing the state of the art of agricultural production, breeding initiatives, and phenotyping capabilities in five countries: Italy, Greece, Portugal, Spain, and Turkey. We characterize some of the main impediments for development of plant phenotyping in those countries and identify strategies to overcome barriers and maximize the benefits of phenotyping and modeling approaches to Mediterranean agriculture and related sustainability.
Collapse
Affiliation(s)
| | - Jorge Marques da Silva
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, Universidade de Lisboa, Lisbon, Portugal
| | - Carla Pinheiro
- FCT NOVA, Universidade Nova de Lisboa, Monte da Caparica, Portugal
- ITQB NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Matilde Barón
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Photini Mylona
- HAO-DEMETER, Institute of Plant Breeding and Genetic Resources, Thermi, Greece
| | - Mauro Centritto
- Institute for Sustainable Plant Protection, Italian National Research Council (IPSP-CNR), Sesto Fiorentino, Italy
| | | | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, CNR, Rome, Italy
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, I˙zmir, Turkey
| | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, I˙zmir, Turkey
| | | |
Collapse
|
26
|
Resco de Dios V, Chowdhury FI, Granda E, Yao Y, Tissue DT. Assessing the potential functions of nocturnal stomatal conductance in C 3 and C 4 plants. THE NEW PHYTOLOGIST 2019; 223:1696-1706. [PMID: 31055839 DOI: 10.1111/nph.15881] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/24/2019] [Indexed: 05/16/2023]
Abstract
Nocturnal stomatal conductance contributes to water loss at night without carbon gain in C3 or C4 plants because photosynthesis does not occur in the dark. The functional relevance of nocturnal conductance thus remains an unresolved conundrum. Here, we review and re-analyse previously published datasets on nocturnal conductance (gn ) globally (176 species) to synthesize our current understanding on its potential biological function and to identify remaining research gaps. We found that gn was positively correlated with relative growth rate, which is compatible with the postulate that circadian-driven nocturnal conductance enhances predawn stomatal conductance, thereby priming stomata for photosynthesis in early daylight. The variation in gn across plant species and functional types was not consistent with the hypotheses that the main function of gn is to: remove excess CO2, which might limit growth; enhance oxygen delivery to the functional sapwood; enhance nutrient supply; or that gn is due to stomatal leakiness. We suggest further study regarding the potential of gn to be an important functional and ecological trait influencing competitive outcomes and we outline a research programme to achieve that objective.
Collapse
Affiliation(s)
- Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- Department of Crop and Forest Sciences & Agrotecnio Center, Universitat de Lleida, Lleida, 25198, Spain
| | - Faqrul I Chowdhury
- Master Course Mediterranean Forestry and Natural Resources Management, Universitat de Lleida, Lleida, 25198, Spain
| | - Elena Granda
- Department of Crop and Forest Sciences & Agrotecnio Center, Universitat de Lleida, Lleida, 25198, Spain
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Richmond, NSW, 2753, Australia
| |
Collapse
|
27
|
Yu K, Goldsmith GR, Wang Y, Anderegg WRL. Phylogenetic and biogeographic controls of plant nighttime stomatal conductance. THE NEW PHYTOLOGIST 2019; 222:1778-1788. [PMID: 30779147 DOI: 10.1111/nph.15755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
The widely documented phenomenon of nighttime stomatal conductance gsn could lead to substantial water loss with no carbon gain, and thus it remains unclear whether nighttime stomatal conductance confers a functional advantage. Given that studies of gsn have focused on controlled environments or small numbers of species in natural environments, a broad phylogenetic and biogeographic context could provide insights into potential adaptive benefits of gsn . We measured gsn on a diverse suite of species (n = 73) across various functional groups and climates-of-origin in a common garden to study the phylogenetic and biogeographic/climatic controls on gsn and further assessed the degree to which gsn co-varied with leaf functional traits and daytime gas-exchange rates. Closely related species were more similar in gsn than expected by chance. Herbaceous species had higher gsn than woody species. Species that typically grow in climates with lower mean annual precipitation - where the fitness cost of water loss should be the highest - generally had higher gsn . Our results reveal the highest gsn rates in species from environments where neighboring plants compete most strongly for water, suggesting a possible role for the competitive advantage of gsn .
Collapse
Affiliation(s)
- Kailiang Yu
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Gregory R Goldsmith
- Schmid College of Science and Technology, Chapman University, Orange, CA, 92866, USA
| | - Yujie Wang
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - William R L Anderegg
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
28
|
Vialet-Chabrand S, Lawson T. Dynamic leaf energy balance: deriving stomatal conductance from thermal imaging in a dynamic environment. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2839-2855. [PMID: 30793211 PMCID: PMC6506762 DOI: 10.1093/jxb/erz068] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/11/2019] [Indexed: 05/20/2023]
Abstract
In spite of the significant progress made in recent years, the use of thermography to derive biologically relevant traits remains a challenge under fluctuating conditions. The aim of this study was to rethink the current method to process thermograms and derive temporal responses of stomatal conductance (gsw) using dynamic energy balance equations. Time-series thermograms provided the basis for a spatial and temporal characterization of gsw responses in wheat (Triticum aestivum). A leaf replica with a known conductance was used to validate the approach and to test the ability of our model to be used with any material and under any environmental conditions. The results highlighted the importance of the co-ordinated stomatal responses that run parallel to the leaf blade despite their patchy distribution. The diversity and asymmetry of the temporal response of gsw observed after a step increase and step decrease in light intensity can be interpreted as a strategy to maximize photosynthesis per unit of water loss and avoid heat stress in response to light flecks in a natural environment. This study removes a major bottleneck for plant phenotyping platforms and will pave the way to further developments in our understanding of stomatal behaviour.
Collapse
Affiliation(s)
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester, UK
| |
Collapse
|
29
|
Fricke W. Night-Time Transpiration - Favouring Growth? TRENDS IN PLANT SCIENCE 2019; 24:311-317. [PMID: 30770287 DOI: 10.1016/j.tplants.2019.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 05/16/2023]
Abstract
Plants grow and transpire water during the day and night. Recent work highlights the idea that night-time transpirational water loss is a consequence of allowing respiratory CO2 to escape at sufficiently high rates through stomata. Respiration fuels night-time leaf expansion and requires carbohydrates produced during the day. As carbohydrate availability and growth are under the control of the plants' internal clock, so is night-time transpiration. The cost of night-time transpiration is that water is lost without carbon being gained, the benefit is a higher efficiency of taken up water for use in leaf expansion. This could provide a stress acclimation process.
Collapse
Affiliation(s)
- Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland; https://people.ucd.ie/wieland.fricke.
| |
Collapse
|
30
|
Qiu C, Ethier G, Pepin S, Dubé P, Desjardins Y, Gosselin A. Persistent negative temperature response of mesophyll conductance in red raspberry (Rubus idaeus L.) leaves under both high and low vapour pressure deficits: a role for abscisic acid? PLANT, CELL & ENVIRONMENT 2017. [PMID: 28620951 DOI: 10.1111/pce.12997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The temperature dependence of mesophyll conductance (gm ) was measured in well-watered red raspberry (Rubus idaeus L.) plants acclimated to leaf-to-air vapour pressure deficit (VPDL) daytime differentials of contrasting amplitude, keeping a fixed diurnal leaf temperature (Tleaf ) rise from 20 to 35 °C. Contrary to the great majority of gm temperature responses published to date, we found a pronounced reduction of gm with increasing Tleaf irrespective of leaf chamber O2 level and diurnal VPDL regime. Leaf hydraulic conductance was greatly enhanced during the warmer afternoon periods under both low (0.75 to 1.5 kPa) and high (0.75 to 3.5 kPa) diurnal VPDL regimes, unlike stomatal conductance (gs ), which decreased in the afternoon. Consequently, the leaf water status remained largely isohydric throughout the day, and therefore cannot be evoked to explain the diurnal decrease of gm . However, the concerted diurnal reductions of gm and gs were well correlated with increases in leaf abscisic acid (ABA) content, thus suggesting that ABA can induce a significant depression of gm under favourable leaf water status. Our results challenge the view that the temperature dependence of gm can be explained solely from dynamic leaf anatomical adjustments and/or from the known thermodynamic properties of aqueous solutions and lipid membranes..
Collapse
Affiliation(s)
- Changpeng Qiu
- Department of Plant Sciences, Laval University, Quebec, Canada
| | - Gilbert Ethier
- Department of Plant Sciences, Laval University, Quebec, Canada
| | - Steeve Pepin
- Department of Soils and Agri-Food Engineering, Laval University, Quebec, Canada
| | - Pascal Dubé
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec, Canada
| | - Yves Desjardins
- Department of Plant Sciences, Laval University, Quebec, Canada
| | - André Gosselin
- Department of Plant Sciences, Laval University, Quebec, Canada
| |
Collapse
|
31
|
Gimeno TE, Ogée J, Royles J, Gibon Y, West JB, Burlett R, Jones SP, Sauze J, Wohl S, Benard C, Genty B, Wingate L. Bryophyte gas-exchange dynamics along varying hydration status reveal a significant carbonyl sulphide (COS) sink in the dark and COS source in the light. THE NEW PHYTOLOGIST 2017; 215:965-976. [PMID: 28467665 PMCID: PMC5518222 DOI: 10.1111/nph.14584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/21/2017] [Indexed: 05/20/2023]
Abstract
Carbonyl sulphide (COS) is a potential tracer of gross primary productivity (GPP), assuming a unidirectional COS flux into the vegetation that scales with GPP. However, carbonic anhydrase (CA), the enzyme that hydrolyses COS, is expected to be light independent, and thus plants without stomata should continue to take up COS in the dark. We measured net CO2 (AC ) and COS (AS ) uptake rates from two astomatous bryophytes at different relative water contents (RWCs), COS concentrations, temperatures and light intensities. We found large AS in the dark, indicating that CA activity continues without photosynthesis. More surprisingly, we found a nonzero COS compensation point in light and dark conditions, indicating a temperature-driven COS source with a Q10 (fractional change for a 10°C temperature increase) of 3.7. This resulted in greater AS in the dark than in the light at similar RWC. The processes underlying such COS emissions remain unknown. Our results suggest that ecosystems dominated by bryophytes might be strong atmospheric sinks of COS at night and weaker sinks or even sources of COS during daytime. Biotic COS production in bryophytes could result from symbiotic fungal and bacterial partners that could also be found on vascular plants.
Collapse
Affiliation(s)
| | - Jérôme Ogée
- ISPABordeaux Science AgroINRAVillenave d'Ornon33140France
| | - Jessica Royles
- Department Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
| | - Yves Gibon
- UMR BFP 1332Plateforme Métabolome du Centre de Génomique Fonctionnelle BordeauxPHENOME INRAUniversity of BordeauxVillenave d'Ornon33140France
| | - Jason B. West
- Department of Ecosystem Science & ManagementTexas A&M UniversityCollege StationTX77845USA
| | - Régis Burlett
- UMR BIOGECOINRAUniversity of BordeauxTalence33450France
| | - Sam P. Jones
- ISPABordeaux Science AgroINRAVillenave d'Ornon33140France
| | - Joana Sauze
- ISPABordeaux Science AgroINRAVillenave d'Ornon33140France
| | - Steven Wohl
- ISPABordeaux Science AgroINRAVillenave d'Ornon33140France
| | - Camille Benard
- UMR BFP 1332Plateforme Métabolome du Centre de Génomique Fonctionnelle BordeauxPHENOME INRAUniversity of BordeauxVillenave d'Ornon33140France
| | - Bernard Genty
- CNRS/CEA/Aix‐Marseille UniversityUMR 7265 BVMESaint‐Paul‐lez‐DuranceFrance
| | - Lisa Wingate
- ISPABordeaux Science AgroINRAVillenave d'Ornon33140France
| |
Collapse
|
32
|
Isner JC, Xu Z, Costa JM, Monnet F, Batstone T, Ou X, Deeks MJ, Genty B, Jiang K, Hetherington AM. Actin filament reorganisation controlled by the SCAR/WAVE complex mediates stomatal response to darkness. THE NEW PHYTOLOGIST 2017; 215:1059-1067. [PMID: 28636198 PMCID: PMC5519931 DOI: 10.1111/nph.14655] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/25/2017] [Indexed: 05/20/2023]
Abstract
Stomata respond to darkness by closing to prevent excessive water loss during the night. Although the reorganisation of actin filaments during stomatal closure is documented, the underlying mechanisms responsible for dark-induced cytoskeletal arrangement remain largely unknown. We used genetic, physiological and cell biological approaches to show that reorganisation of the actin cytoskeleton is required for dark-induced stomatal closure. The opal5 mutant does not close in response to darkness but exhibits wild-type (WT) behaviour when exposed to abscisic acid (ABA) or CaCl2 . The mutation was mapped to At5g18410, encoding the PIR/SRA1/KLK subunit of the ArabidopsisSCAR/WAVE complex. Stomata of an independent allele of the PIR gene (Atpir-1) showed reduced sensitivity to darkness and F1 progenies of the cross between opal5 and Atpir-1 displayed distorted leaf trichomes, suggesting that the two mutants are allelic. Darkness induced changes in the extent of actin filament bundling in WT. These were abolished in opal5. Disruption of filamentous actin using latrunculin B or cytochalasin D restored wild-type stomatal sensitivity to darkness in opal5. Our findings suggest that the stomatal response to darkness is mediated by reorganisation of guard cell actin filaments, a process that is finely tuned by the conserved SCAR/WAVE-Arp2/3 actin regulatory module.
Collapse
Affiliation(s)
- Jean-Charles Isner
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Zaoxu Xu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Joaquim Miguel Costa
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique UMR 7265, Université Aix-Marseille, Biologie Végétale et Microbiologie Environnementales, Saint-Paul-lez-Durance, 13108, France
| | - Fabien Monnet
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique UMR 7265, Université Aix-Marseille, Biologie Végétale et Microbiologie Environnementales, Saint-Paul-lez-Durance, 13108, France
| | - Thomas Batstone
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Xiaobin Ou
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Michael J Deeks
- Department of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Bernard Genty
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique UMR 7265, Université Aix-Marseille, Biologie Végétale et Microbiologie Environnementales, Saint-Paul-lez-Durance, 13108, France
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Alistair M Hetherington
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
33
|
Males J, Griffiths H. Stomatal Biology of CAM Plants. PLANT PHYSIOLOGY 2017; 174:550-560. [PMID: 28242656 PMCID: PMC5462028 DOI: 10.1104/pp.17.00114] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/24/2017] [Indexed: 05/19/2023]
Abstract
Recent advances in the stomatal biology of CAM plants are reviewed, and key opportunities for future progress are identified.
Collapse
Affiliation(s)
- Jamie Males
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
34
|
Bräutigam A, Schlüter U, Eisenhut M, Gowik U. On the Evolutionary Origin of CAM Photosynthesis. PLANT PHYSIOLOGY 2017; 174:473-477. [PMID: 28416703 PMCID: PMC5462059 DOI: 10.1104/pp.17.00195] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/12/2017] [Indexed: 05/21/2023]
Abstract
Generation of carbon skeletons for amino acid synthesis in some C3 plants resembles fluxes needed for CAM-type photosynthesis.
Collapse
Affiliation(s)
- Andrea Bräutigam
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Network Analysis and Modeling, D-06466 Seeland, OT Gatersleben; Germany (A.B.); and
- Institute of Plant Biochemistry (U.S., M.E.) and Institute of Developmental and Molecular Plant Biology (U.G.), Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Urte Schlüter
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Network Analysis and Modeling, D-06466 Seeland, OT Gatersleben; Germany (A.B.); and
- Institute of Plant Biochemistry (U.S., M.E.) and Institute of Developmental and Molecular Plant Biology (U.G.), Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Marion Eisenhut
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Network Analysis and Modeling, D-06466 Seeland, OT Gatersleben; Germany (A.B.); and
- Institute of Plant Biochemistry (U.S., M.E.) and Institute of Developmental and Molecular Plant Biology (U.G.), Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Udo Gowik
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Network Analysis and Modeling, D-06466 Seeland, OT Gatersleben; Germany (A.B.); and
- Institute of Plant Biochemistry (U.S., M.E.) and Institute of Developmental and Molecular Plant Biology (U.G.), Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
35
|
Arve LE, Kruse OMO, Tanino KK, Olsen JE, Futsæther C, Torre S. Daily changes in VPD during leaf development in high air humidity increase the stomatal responsiveness to darkness and dry air. JOURNAL OF PLANT PHYSIOLOGY 2017; 211:63-69. [PMID: 28161560 DOI: 10.1016/j.jplph.2016.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 05/18/2023]
Abstract
Previous studies have shown that plants developed under high relative air humidity (RH>85%) develop malfunctioning stomata and therefor have increased transpiration and reduced desiccation tolerance when transferred to lower RH conditions and darkness. In this study, plants developed at high RH were exposed to daily VPD fluctuations created by changes in temperature and/or RH to evaluate the potential improvements in stomatal functioning. Daily periods with an 11°C temperature increase and consequently a VPD increase (vpd: 0.36-2.37KPa) reduced the stomatal apertures and improved the stomatal functionality and desiccation tolerance of the rosette plant Arabidopsis thaliana. A similar experiment was performed with only a 4°C temperature increase and/or a RH decrease on tomato. The results showed that a daily change in VPD (vpd: 0.36-1.43KPa) also resulted in improved stomatal responsiveness and decreased water usage during growth. In tomato, the most effective treatment to increase the stomatal responsiveness to darkness as a signal for closure was daily changes in RH without a temperature increase.
Collapse
Affiliation(s)
- Louise E Arve
- Norwegian University of Life Sciences, Department of Plant Sciences, P.O. Box 5003, 1432 Aas, Norway.
| | - Ole Mathis Opstad Kruse
- Norwegian University of Life Sciences, Department of Mathematical Sciences and Technology, P.O. Box 5003, 1432 Aas, Norway.
| | - Karen K Tanino
- University of Saskatchewan, Department of Plant Sciences, Saskatoon, SK S7N 5A8, Canada.
| | - Jorunn E Olsen
- Norwegian University of Life Sciences, Department of Plant Sciences, P.O. Box 5003, 1432 Aas, Norway.
| | - Cecilia Futsæther
- Norwegian University of Life Sciences, Department of Mathematical Sciences and Technology, P.O. Box 5003, 1432 Aas, Norway.
| | - Sissel Torre
- Norwegian University of Life Sciences, Department of Plant Sciences, P.O. Box 5003, 1432 Aas, Norway.
| |
Collapse
|
36
|
Chaves MM, Costa JM, Zarrouk O, Pinheiro C, Lopes CM, Pereira JS. Controlling stomatal aperture in semi-arid regions-The dilemma of saving water or being cool? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 251:54-64. [PMID: 27593463 DOI: 10.1016/j.plantsci.2016.06.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/14/2016] [Accepted: 06/22/2016] [Indexed: 05/24/2023]
Abstract
Stomatal regulation of leaf gas exchange with the atmosphere is a key process in plant adaptation to the environment, particularly in semi-arid regions with high atmospheric evaporative demand. Development of stomata, integrating internal signaling and environmental cues sets the limit for maximum diffusive capacity of stomata, through size and density and is under a complex genetic control, thus providing multiple levels of regulation. Operational stomatal conductance to water vapor and CO2 results from feed-back and/or feed-forward mechanisms and is the end-result of a plethora of signals originated in leaves and/or in roots at each moment. CO2 assimilation versus water vapor loss, proposed to be the subject of optimal regulation, is species dependent and defines the water use efficiency (WUE). WUE has been a topic of intense research involving areas from genetics to physiology. In crop plants, especially in semi-arid regions, the question that arises is how the compromise of reducing transpiration to save water will impact on plant performance through leaf temperature. Indeed, plant transpiration by providing evaporative cooling, is a major component of the leaf energy balance. In this paper we discuss the dilemma of 'saving water or being cool' bringing about recent findings from molecular genetics, to development and physiology of stomata. The question of 'how relevant is screening for high/low WUE in crops for semi-arid regions, where drought and heat co-occur' is discussed.
Collapse
Affiliation(s)
- M M Chaves
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - J M Costa
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal; LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - O Zarrouk
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - C Pinheiro
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal; Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - C M Lopes
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - J S Pereira
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| |
Collapse
|
37
|
Coupel-Ledru A, Lebon E, Christophe A, Gallo A, Gago P, Pantin F, Doligez A, Simonneau T. Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine. Proc Natl Acad Sci U S A 2016; 113:8963-8. [PMID: 27457942 PMCID: PMC4987834 DOI: 10.1073/pnas.1600826113] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Increasing water scarcity challenges crop sustainability in many regions. As a consequence, the enhancement of transpiration efficiency (TE)-that is, the biomass produced per unit of water transpired-has become crucial in breeding programs. This could be achieved by reducing plant transpiration through a better closure of the stomatal pores at the leaf surface. However, this strategy generally also lowers growth, as stomatal opening is necessary for the capture of atmospheric CO2 that feeds daytime photosynthesis. Here, we considered the reduction in transpiration rate at night (En) as a possible strategy to limit water use without altering growth. For this purpose, we carried out a genetic analysis for En and TE in grapevine, a major crop in drought-prone areas. Using recently developed phenotyping facilities, potted plants of a cross between Syrah and Grenache cultivars were screened for 2 y under well-watered and moderate soil water deficit scenarios. High genetic variability was found for En under both scenarios and was primarily associated with residual diffusion through the stomata. Five quantitative trait loci (QTLs) were detected that underlay genetic variability in En Interestingly, four of them colocalized with QTLs for TE. Moreover, genotypes with favorable alleles on these common QTLs exhibited reduced En without altered growth. These results demonstrate the interest of breeding grapevine for lower water loss at night and pave the way to breeding other crops with this underexploited trait for higher TE.
Collapse
Affiliation(s)
- Aude Coupel-Ledru
- UMR Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, 34060 Montpellier, France;
| | - Eric Lebon
- UMR Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, 34060 Montpellier, France
| | - Angélique Christophe
- UMR Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, 34060 Montpellier, France
| | - Agustina Gallo
- UMR Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, 34060 Montpellier, France
| | - Pilar Gago
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (MBG-CSIC), 36143 Pontevedra, Spain
| | - Florent Pantin
- UMR Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, 34060 Montpellier, France
| | - Agnès Doligez
- UMR Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP), Institut National de la Recherche Agronomique (INRA), F-34060 Montpellier, France
| | - Thierry Simonneau
- UMR Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, 34060 Montpellier, France;
| |
Collapse
|
38
|
Moualeu-Ngangue DP, Chen TW, Stützel H. A Modeling Approach to Quantify the Effects of Stomatal Behavior and Mesophyll Conductance on Leaf Water Use Efficiency. FRONTIERS IN PLANT SCIENCE 2016; 7:875. [PMID: 27379150 PMCID: PMC4911363 DOI: 10.3389/fpls.2016.00875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/03/2016] [Indexed: 05/23/2023]
Abstract
Water use efficiency (WUE) is considered as a determinant of yield under stress and a component of crop drought resistance. Stomatal behavior regulates both transpiration rate and net assimilation and has been suggested to be crucial for improving crop WUE. In this work, a dynamic model was used to examine the impact of dynamic properties of stomata on WUE. The model includes sub-models of stomatal conductance dynamics, solute accumulation in the mesophyll, mesophyll water content, and water flow to the mesophyll. Using the instantaneous value of stomatal conductance, photosynthesis, and transpiration rate were simulated using a biochemical model and Penman-Monteith equation, respectively. The model was parameterized for a cucumber leaf and model outputs were evaluated using climatic data. Our simulations revealed that WUE was higher on a cloudy than a sunny day. Fast stomatal reaction to light decreased WUE during the period of increasing light (e.g., in the morning) by up to 10.2% and increased WUE during the period of decreasing light (afternoon) by up to 6.25%. Sensitivity of daily WUE to stomatal parameters and mesophyll conductance to CO2 was tested for sunny and cloudy days. Increasing mesophyll conductance to CO2 was more likely to increase WUE for all climatic conditions (up to 5.5% on the sunny day) than modifications of stomatal reaction speed to light and maximum stomatal conductance.
Collapse
Affiliation(s)
- Dany P. Moualeu-Ngangue
- Vegetable Systems Modelling Section, Institute of Horticultural Production Systems, Leibniz Universität HannoverHannover, Germany
| | - Tsu-Wei Chen
- Vegetable Systems Modelling Section, Institute of Horticultural Production Systems, Leibniz Universität HannoverHannover, Germany
- UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Institut National de la Recherche AgronomiqueMontpellier, France
| | - Hartmut Stützel
- Vegetable Systems Modelling Section, Institute of Horticultural Production Systems, Leibniz Universität HannoverHannover, Germany
| |
Collapse
|