1
|
Gilad G, Sapir O, Hipsch M, Waiger D, Ben‐Ari J, Zeev BB, Zait Y, Lampl N, Rosenwasser S. Nitrogen Assimilation Plays a Role in Balancing the Chloroplastic Glutathione Redox Potential Under High Light Conditions. PLANT, CELL & ENVIRONMENT 2025; 48:3559-3572. [PMID: 39789668 PMCID: PMC11963491 DOI: 10.1111/pce.15368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Nitrate reduction requires reducing equivalents produced by the photosynthetic electron transport chain. Therefore, it has been suggested that nitrate assimilation provides a sink for electrons under high light conditions. We tested this hypothesis by monitoring photosynthetic efficiency and the chloroplastic glutathione redox potential (chl-EGSH) of plant lines with mutated glutamine synthetase 2 (GS2) and ferredoxin-dependent glutamate synthase 1 (GOGAT1). Mutant lines incorporated significantly less isotopically-labelled nitrate into amino acids than wild-type plants, demonstrating impaired nitrogen assimilation. When nitrate assimilation was compromised, photosystem II (PSII) proved more vulnerable to photodamage. The effect of the nitrate assimilation pathway on the chl- EGSH was monitored using the chloroplast-targeted roGFP2 biosensor (chl-roGFP2). Remarkably, while oxidation followed by reduction of chl-roGFP2 was detected in WT plants in response to high light, oxidation values were stable in the mutant lines, suggesting that chl-EGSH relaxation after high light-induced oxidation is achieved by diverting excess electrons to the nitrogen assimilation pathway. Importantly, similar ΦPSII and chl-roGFP2 patterns were observed at elevated CO2, suggesting that mutant phenotypes are not associated with photorespiration activity. Together, these findings indicate that the nitrogen assimilation pathway serves as a sustainable energy dissipation route, ensuring efficient photosynthetic activity and fine-tuning redox metabolism under light-saturated conditions.
Collapse
Affiliation(s)
- Gal Gilad
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Omer Sapir
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Matanel Hipsch
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Daniel Waiger
- Center for Scientific Imaging Core Facility, The Robert H. Smith Faculty of Agriculture, Food & EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Julius Ben‐Ari
- The Laboratory for the Mass Spectrometry and Chromatography Interdepartmental Analytical Unit (TZABAM), The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Bar Ben Zeev
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Yotam Zait
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Nardy Lampl
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Shilo Rosenwasser
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| |
Collapse
|
2
|
Baluku E, van der Pas L, Hilhorst HWM, Farrant JM. Metabolite Profiling of the Resurrection Grass Eragrostis nindensis During Desiccation and Recovery. PLANTS (BASEL, SWITZERLAND) 2025; 14:531. [PMID: 40006790 PMCID: PMC11859761 DOI: 10.3390/plants14040531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/26/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Resurrection plants employ unique metabolic mechanisms to protect themselves against damage caused by desiccation. This study aimed to identify metabolites, using gas chromatography-mass spectrometry, which were differentially abundant in Eragrostis nindensis at different stages of dehydration and rehydration in leaves which are destined to senesce on desiccation termed "senescent tissue" (ST) and those which remain desiccation-tolerant during water deficit and are termed "non-senescent tissue" (NST). Furthermore, the study compared the shoot and root systems during extreme water deficit and recovery therefrom to unravel similarities and differences at the whole plant level in overcoming desiccation. Shoot metabolomics data showed differentially abundant metabolites in NST, including raffinose, sucrose, glutamic acid, aspartic acid, proline, alpha-ketoglutaric acid, and allantoin, which act as major drivers for plant desiccation tolerance and aid the plant post-rehydration. The metabolites which accumulated in the ST-indicated initiation of programmed cell death (PCD) leading to senescence. The roots accumulated fewer metabolites than the shoots, some exclusive to the root tissues with functions such as osmoprotection, reactive oxygen species quenching, and signaling, and thus proposed to minimize damage in leaf tissues during dehydration and desiccation. Collectively, this work gives further insight into the whole plant responses of E. nindensis to extreme dehydration conditions and could serve as a model for future improvements of drought sensitive crops.
Collapse
Affiliation(s)
| | | | | | - Jill M. Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7700, South Africa; (E.B.); (L.v.d.P.); (H.W.M.H.)
| |
Collapse
|
3
|
Lu A, Luo J, Pi K, Yu Q, Zhang J, Peng L, Zeng S, Long B, Xu D, Meng J, Chen G, Tan Y, Mo Z, Duan L, Liu R. Construction and evaluation of a model for efficient identification of photothermal sensitivity of tobacco cultivars based on agronomic traits. Sci Rep 2024; 14:27918. [PMID: 39537678 PMCID: PMC11561057 DOI: 10.1038/s41598-024-78877-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
The photothermal sensitivity of tobacco refers to the degree to which tobacco responds to changes in light and temperature conditions in its growth environment, which is crucial for determining the planting area of cultivars and improving tobacco yield and quality. In order to accurately and effectively evaluate the photothermal sensitivity of tobacco cultivars, this study selected five cultivars and their hybrid combinations with significant differences planted under different ecological conditions from 2021 to 2022 as materials. The experiment was conducted in two locations with significant differences in temperature and light. We measured the agronomic traits and biomass of the experimental materials, and constructed an effective tobacco photothermal sensitivity evaluation model using principal component analysis, membership function, and regression analysis. The reliability of the model was evaluated by utilizing the photosynthetic characteristics, chlorophyll content, and antioxidant enzyme system activity of the experimental materials. The results showed that tobacco biomass is the most important principal component in agricultural traits, and the comprehensive evaluation model for tobacco photothermal sensitivity is: y = 0.4571y1 + 0.2406y2 + 0.1725y3, where the fitting coefficients R2 of y1, y2, and y3 are 0.945, 0.851, and 0.977, respectively; The photothermal sensitivity of the experimental materials was calculated using this model, and the comprehensive ranking of the 11 experimental materials is: G3 < G5 < G10 < G9 < G11 < G6 < G7 < G2 < G4 < G8 < G1. Conventional identification methods have found that G2, G4, G6, G7, G8, and G11 are sensitive materials, G3, G5, and G10 are insensitive materials, and G1 and G9 are intermediate materials. The consistency rate of the evaluation results of the two methods reached 90.91%. And there is a significant correlation between the agronomic traits selected in the model and the physiological indicators selected by conventional evaluation methods, providing a scientific basis for evaluating the light temperature sensitivity of tobacco cultivars using agronomic traits in this study. The results indicate that the photothermal sensitivity evaluation model established in this study provides an efficient, convenient, and reliable method for evaluating the photothermal sensitivity of tobacco.
Collapse
Affiliation(s)
- Anbin Lu
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory of Tobacco Quality Research, Guiyang, 550025, China
| | - Jiajun Luo
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory of Tobacco Quality Research, Guiyang, 550025, China
| | - Kai Pi
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Qiwei Yu
- Bijie City Tobacco Company of Guizhou Province, Bijie, 551700, China
| | - Jingyao Zhang
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory of Tobacco Quality Research, Guiyang, 550025, China
| | - Lisha Peng
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory of Tobacco Quality Research, Guiyang, 550025, China
| | - Shuaibo Zeng
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory of Tobacco Quality Research, Guiyang, 550025, China
| | - Benshan Long
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory of Tobacco Quality Research, Guiyang, 550025, China
| | - Duoduo Xu
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory of Tobacco Quality Research, Guiyang, 550025, China
| | - Jun Meng
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory of Tobacco Quality Research, Guiyang, 550025, China
| | - Gang Chen
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Yongyan Tan
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory of Tobacco Quality Research, Guiyang, 550025, China
| | - Zejun Mo
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Lili Duan
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Renxiang Liu
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory of Tobacco Quality Research, Guiyang, 550025, China.
| |
Collapse
|
4
|
Cheng Q, Zou X, Wang Y, Yang Z, Qiu X, Wang S, Yang Y, Yang D, Kim HS, Jia X, Li L, Kwak SS, Wang W. Overexpression of dehydroascorbate reductase gene IbDHAR1 improves the tolerance to abiotic stress in sweet potato. Transgenic Res 2024; 33:427-443. [PMID: 39249190 DOI: 10.1007/s11248-024-00408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Dehydroascorbate reductase (DHAR), an indispensable enzyme in the production of ascorbic acid (AsA) in plants, is vital for plant tolerance to various stresses. However, there is limited research on the stress tolerance functions of DHAR genes in sweet potato (Ipomoea batatas [L.] Lam). In this study, the full-length IbDHAR1 gene was cloned from the leaves of sweet potato cultivar Xu 18. The IbDHAR1 protein is speculated to be located in both the cytoplasm and the nucleus. As revealed by qRT-PCR, the relative expression level of IbDHAR1 in the proximal storage roots was much greater than in the other tissues, and could be upregulated by high-temperature, salinity, drought, and abscisic acid (ABA) stress. The results of pot experiments indicated that under high salinity and drought stress conditions, transgenic Arabidopsis and sweet potato plants exhibited decreases in H2O2 and MDA levels. Conversely, the levels of antioxidant enzymes APX, SOD, POD, and ACT, and the content of DHAR increased. Additionally, the ratio of AsA/DHA was greater in transgenic lines than in the wild type. The results showed that overexpression of IbDHAR1 intensified the ascorbic acid-glutathione cycle (AsA-GSH) and promoted the activity of the related antioxidant enzyme systems to improve plant stress tolerance and productivity.
Collapse
Affiliation(s)
- Qirui Cheng
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Xuan Zou
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Yuan Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Zhe Yang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiangpo Qiu
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Sijie Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Yanxin Yang
- College of Basic Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Dongjing Yang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221131, Jiangsu, China
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea
| | - Xiaoyun Jia
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Lingzhi Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea.
| | - Wenbin Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
5
|
Bao L, Liu J, Mao T, Zhao L, Wang D, Zhai Y. Nanobiotechnology-mediated regulation of reactive oxygen species homeostasis under heat and drought stress in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1418515. [PMID: 39258292 PMCID: PMC11385006 DOI: 10.3389/fpls.2024.1418515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024]
Abstract
Global warming causes heat and drought stress in plants, which affects crop production. In addition to osmotic stress and protein inactivation, reactive oxygen species (ROS) overaccumulation under heat and drought stress is a secondary stress that further impairs plant performance. Chloroplasts, mitochondria, peroxisomes, and apoplasts are the main ROS generation sites in heat- and drought-stressed plants. In this review, we summarize ROS generation and scavenging in heat- and drought-stressed plants and highlight the potential applications of plant nanobiotechnology for enhancing plant tolerance to these stresses.
Collapse
Affiliation(s)
- Linfeng Bao
- College of Agriculture, Tarim University, Alar, China
| | - Jiahao Liu
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| | - Tingyong Mao
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| | - Linbo Zhao
- College of Agriculture, Tarim University, Alar, China
| | - Desheng Wang
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| | - Yunlong Zhai
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| |
Collapse
|
6
|
Denjalli I, Knieper M, Uthoff J, Vogelsang L, Kumar V, Seidel T, Dietz KJ. The centrality of redox regulation and sensing of reactive oxygen species in abiotic and biotic stress acclimatization. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4494-4511. [PMID: 38329465 DOI: 10.1093/jxb/erae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
During land plant evolution, the number of genes encoding for components of the thiol redox regulatory network and the generator systems of reactive oxygen species (ROS) expanded, tentatively indicating that they have a role in tailored environmental acclimatization. This hypothesis has been validated both experimentally and theoretically during the last few decades. Recent developments of dynamic redox-sensitive GFP (roGFP)-based in vivo sensors for H2O2 and the redox potential of the glutathione pool have paved the way for dissecting the kinetics changes that occur in these crucial parameters in response to environmental stressors. The versatile cellular redox sensory and response regulatory system monitors alterations in redox metabolism and controls the activity of redox target proteins, and thereby affects most, if not all, cellular processes ranging from transcription to translation and metabolism. This review uses examples to describe the role of the redox- and ROS-dependent regulatory network in realising the appropriate responses to diverse environmental stresses. The selected case studies concern different environmental challenges, namely excess excitation energy, the heavy metal cadmium and the metalloid arsenic, nitrogen or phosphate shortages as examples for nutrient deficiency, wounding, and nematode infestation. Each challenge affects the redox-regulatory and ROS network, but our present state of knowledge also points toward pressing questions that remain open in relation to the translation of redox regulation to environmental acclimatization.
Collapse
Affiliation(s)
- Ibadete Denjalli
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Madita Knieper
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Jana Uthoff
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Vijay Kumar
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Thorsten Seidel
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
7
|
Zhu L, Liao Y, Zhang T, Zeng Z, Wang J, Duan L, Chen X, Lin K, Liang X, Han Z, Huang Y, Wu W, Hu H, Xu ZF, Ni J. Reactive oxygen species act as the key signaling molecules mediating light-induced anthocyanin biosynthesis in Eucalyptus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108715. [PMID: 38761541 DOI: 10.1016/j.plaphy.2024.108715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
Light plays a pivotal role in regulating anthocyanin biosynthesis in plants, and the early light-responsive signals that initiate anthocyanin biosynthesis remain to be elucidated. In this study, we showed that the anthocyanin biosynthesis in Eucalyptus is hypersensitive to increased light intensity. The combined transcriptomic and metabolomic analyses were conducted on Eucalyptus leaves after moderate (ML; 100 μmol m-2 s-1) and high (HL; 300 μmol m-2 s-1) light intensity treatments. The results identified 1940, 1096, 1173, and 2756 differentially expressed genes at 6, 12, 24, and 36 h after HL treatment, respectively. The metabolomic results revealed the primary anthocyanin types, and other differentially accumulated flavonoids and phenylpropane intermediates that were produced in response to HL, which well aligned with the transcriptome results. Moreover, biochemical analysis showed that HL inhibited peroxidase activity and increased the ROS level in Eucalyptus leaves. ROS depletion through co-application of the antioxidants rutin, uric acid, and melatonin significantly reduced, and even abolished, anthocyanin biosynthesis induced by HL treatment. Additionally, exogenous application of hydrogen peroxide efficiently induced anthocyanin biosynthesis within 24 h, even under ML conditions, suggesting that ROS played a major role in activating anthocyanin biosynthesis. A HL-responsive MYB transcription factor EgrMYB113 was identified to play an important role in regulating anthocyanin biosynthesis by targeting multiple anthocyanin biosynthesis genes. Additionally, the results demonstrated that gibberellic acid and sugar signaling contributed to HL-induced anthocyanin biosynthesis. Conclusively, these results suggested that HL triggers multiple signaling pathways to induce anthocyanin biosynthesis, with ROS acting as indispensable mediators in Eucalyptus.
Collapse
Affiliation(s)
- Linhui Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Yuwu Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Tingting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Zhiyu Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Jianzhong Wang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Dongmen Forest Farm, Chongzuo, 532108, China
| | - Lanjuan Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Xin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Kai Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Xiuqing Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Zewei Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Yunkai Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Wenfei Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Hao Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Zeng-Fu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
| | - Jun Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
8
|
Hernández ML, Jiménez-López J, Cejudo FJ, Pérez-Ruiz JM. 2-Cys peroxiredoxins contribute to thylakoid lipid unsaturation by affecting ω-3 fatty acid desaturase 8. PLANT PHYSIOLOGY 2024; 195:1521-1535. [PMID: 38386701 PMCID: PMC11142380 DOI: 10.1093/plphys/kiae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/24/2024]
Abstract
Fatty acid unsaturation levels affect chloroplast function and plant acclimation to environmental cues. However, the regulatory mechanism(s) controlling fatty acid unsaturation in thylakoid lipids is poorly understood. Here, we have investigated the connection between chloroplast redox homeostasis and lipid metabolism by focusing on 2-Cys peroxiredoxins (Prxs), which play a central role in balancing the redox state within the organelle. The chloroplast redox network relies on NADPH-dependent thioredoxin reductase C (NTRC), which controls the redox balance of 2-Cys Prxs to maintain the reductive activity of redox-regulated enzymes. Our results show that Arabidopsis (Arabidopsis thaliana) mutants deficient in 2-Cys Prxs contain decreased levels of trienoic fatty acids, mainly in chloroplast lipids, indicating that these enzymes contribute to thylakoid membrane lipids unsaturation. This function of 2-Cys Prxs is independent of NTRC, the main reductant of these enzymes, hence 2-Cys Prxs operates beyond the classic chloroplast regulatory redox system. Moreover, the effect of 2-Cys Prxs on lipid metabolism is primarily exerted through the prokaryotic pathway of glycerolipid biosynthesis and fatty acid desaturase 8 (FAD8). While 2-Cys Prxs and FAD8 interact in leaf membranes as components of a large protein complex, the levels of FAD8 were markedly decreased when FAD8 is overexpressed in 2-Cys Prxs-deficient mutant backgrounds. These findings reveal a function for 2-Cys Prxs, possibly acting as a scaffold protein, affecting the unsaturation degree of chloroplast membranes.
Collapse
Affiliation(s)
- María Luisa Hernández
- Departamento de Bioquímica Vegetal y Biología Molecular, Instituto de Bioquímica Vegetal y Fotosíntesis , Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Julia Jiménez-López
- Departamento de Bioquímica Vegetal y Biología Molecular, Instituto de Bioquímica Vegetal y Fotosíntesis , Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Francisco Javier Cejudo
- Departamento de Bioquímica Vegetal y Biología Molecular, Instituto de Bioquímica Vegetal y Fotosíntesis , Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Juan Manuel Pérez-Ruiz
- Departamento de Bioquímica Vegetal y Biología Molecular, Instituto de Bioquímica Vegetal y Fotosíntesis , Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| |
Collapse
|
9
|
Yoshimura K, Ishikawa T. Physiological function and regulation of ascorbate peroxidase isoforms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2700-2715. [PMID: 38367016 DOI: 10.1093/jxb/erae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
Ascorbate peroxidase (APX) reduces H2O2 to H2O by utilizing ascorbate as a specific electron donor and constitutes the ascorbate-glutathione cycle in organelles of plants including chloroplasts, cytosol, mitochondria, and peroxisomes. It has been almost 40 years since APX was discovered as an important plant-specific H2O2-scavenging enzyme, during which time many research groups have conducted molecular physiological analyses. It is now clear that APX isoforms function not only just as antioxidant enzymes but also as important factors in intracellular redox regulation through the metabolism of reactive oxygen species. The function of APX isoforms is regulated at multiple steps, from the transcriptional level to post-translational modifications of enzymes, thereby allowing them to respond flexibly to ever-changing environmental factors and physiological phenomena such as cell growth and signal transduction. In this review, we summarize the physiological functions and regulation mechanisms of expression of each APX isoform.
Collapse
Affiliation(s)
- Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Takahiro Ishikawa
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| |
Collapse
|
10
|
Foyer CH, Kunert K. The ascorbate-glutathione cycle coming of age. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2682-2699. [PMID: 38243395 PMCID: PMC11066808 DOI: 10.1093/jxb/erae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Concepts regarding the operation of the ascorbate-glutathione cycle and the associated water/water cycle in the processing of metabolically generated hydrogen peroxide and other forms of reactive oxygen species (ROS) are well established in the literature. However, our knowledge of the functions of these cycles and their component enzymes continues to grow and evolve. Recent insights include participation in the intrinsic environmental and developmental signalling pathways that regulate plant growth, development, and defence. In addition to ROS processing, the enzymes of the two cycles not only support the functions of ascorbate and glutathione, they also have 'moonlighting' functions. They are subject to post-translational modifications and have an extensive interactome, particularly with other signalling proteins. In this assessment of current knowledge, we highlight the central position of the ascorbate-glutathione cycle in the network of cellular redox systems that underpin the energy-sensitive communication within the different cellular compartments and integrate plant signalling pathways.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Karl Kunert
- Department of Plant and Soil Sciences, FABI, University of Pretoria, Pretoria, 2001, South Africa
| |
Collapse
|
11
|
Demircan N, Sonmez MC, Akyol TY, Ozgur R, Turkan I, Dietz KJ, Uzilday B. Alternative electron sinks in chloroplasts and mitochondria of halophytes as a safety valve for controlling ROS production during salinity. PHYSIOLOGIA PLANTARUM 2024; 176:e14397. [PMID: 38894507 DOI: 10.1111/ppl.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 06/21/2024]
Abstract
Electron flow through the electron transport chain (ETC) is essential for oxidative phosphorylation in mitochondria and photosynthesis in chloroplasts. Electron fluxes depend on environmental parameters, e.g., ionic and osmotic conditions and endogenous factors, and this may cause severe imbalances. Plants have evolved alternative sinks to balance the reductive load on the electron transport chains in order to avoid overreduction, generation of reactive oxygen species (ROS), and to cope with environmental stresses. These sinks act primarily as valves for electron drainage and secondarily as regulators of tolerance-related metabolism, utilizing the excess reductive energy. High salinity is an environmental stressor that stimulates the generation of ROS and oxidative stress, which affects growth and development by disrupting the redox homeostasis of plants. While glycophytic plants are sensitive to high salinity, halophytic plants tolerate, grow, and reproduce at high salinity. Various studies have examined the ETC systems of glycophytic plants, however, information about the state and regulation of ETCs in halophytes under non-saline and saline conditions is scarce. This review focuses on alternative electron sinks in chloroplasts and mitochondria of halophytic plants. In cases where information on halophytes is lacking, we examined the available knowledge on the relationship between alternative sinks and gradual salinity resilience of glycophytes. To this end, transcriptional responses of involved components of photosynthetic and respiratory ETCs were compared between the glycophyte Arabidopsis thaliana and the halophyte Schrenkiella parvula, and the time-courses of these transcripts were examined in A. thaliana. The observed regulatory patterns are discussed in the context of reactive molecular species formation in halophytes and glycophytes.
Collapse
Affiliation(s)
- Nil Demircan
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | | | - Turgut Yigit Akyol
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | - Ismail Turkan
- Department of Soil and Plant Nutrition, Faculty of Agricultural Sciences and Technologies, Yasar University, İzmir, Türkiye
| | - Karl-Josef Dietz
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| |
Collapse
|
12
|
Bogomolov A, Zolotareva K, Filonov S, Chadaeva I, Rasskazov D, Sharypova E, Podkolodnyy N, Ponomarenko P, Savinkova L, Tverdokhleb N, Khandaev B, Kondratyuk E, Podkolodnaya O, Zemlyanskaya E, Kolchanov NA, Ponomarenko M. AtSNP_TATAdb: Candidate Molecular Markers of Plant Advantages Related to Single Nucleotide Polymorphisms within Proximal Promoters of Arabidopsis thaliana L. Int J Mol Sci 2024; 25:607. [PMID: 38203780 PMCID: PMC10779315 DOI: 10.3390/ijms25010607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
The mainstream of the post-genome target-assisted breeding in crop plant species includes biofortification such as high-throughput phenotyping along with genome-based selection. Therefore, in this work, we used the Web-service Plant_SNP_TATA_Z-tester, which we have previously developed, to run a uniform in silico analysis of the transcriptional alterations of 54,013 protein-coding transcripts from 32,833 Arabidopsis thaliana L. genes caused by 871,707 SNPs located in the proximal promoter region. The analysis identified 54,993 SNPs as significantly decreasing or increasing gene expression through changes in TATA-binding protein affinity to the promoters. The existence of these SNPs in highly conserved proximal promoters may be explained as intraspecific diversity kept by the stabilizing natural selection. To support this, we hand-annotated papers on some of the Arabidopsis genes possessing these SNPs or on their orthologs in other plant species and demonstrated the effects of changes in these gene expressions on plant vital traits. We integrated in silico estimates of the TBP-promoter affinity in the AtSNP_TATAdb knowledge base and showed their significant correlations with independent in vivo experimental data. These correlations appeared to be robust to variations in statistical criteria, genomic environment of TATA box regions, plants species and growing conditions.
Collapse
Affiliation(s)
- Anton Bogomolov
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Karina Zolotareva
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Sergey Filonov
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Natural Science Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Ekaterina Sharypova
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Institute of Computational Mathematics and Mathematical Geophysics, Novosibirsk 630090, Russia
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Natalya Tverdokhleb
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Bato Khandaev
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Natural Science Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Ekaterina Kondratyuk
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, Krasnoobsk 630501, Novosibirsk Region, Russia
| | - Olga Podkolodnaya
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Elena Zemlyanskaya
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Natural Science Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Natural Science Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| |
Collapse
|
13
|
Zhou C, Li Z, Liu W, Bian Z, Lu W, Zhou B, Wang S, Li Q, Yang Q. High-Proportion Blue Light Irradiation at the End-of-Production Stage Promotes the Biosynthesis and Recycling of Ascorbate in Lettuce. Int J Mol Sci 2023; 24:16524. [PMID: 38003716 PMCID: PMC10671776 DOI: 10.3390/ijms242216524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Ascorbate (AsA), an essential antioxidant for both plants and the human body, plays a vital role in maintaining proper functionality. Light plays an important role in metabolism of AsA in horticultural plants. Our previous research has revealed that subjecting lettuce to high light irradiation (HLI) (500 μmol·m-2·s-1) at the end-of-production (EOP) stage effectively enhances AsA levels, while the optimal light quality for AsA accumulation is still unknown. In this study, four combinations of red (R) and blue (B) light spectra with the ratio of 1:1 (1R1B), 2:1 (2R1B), 3:1 (3R1B), and 4:1 (4R1B) were applied to investigate the biosynthesis and recycling of AsA in lettuce. The results demonstrated that the AsA/total-AsA content in lettuce leaves was notably augmented upon exposure to 1R1B and 2R1B. Interestingly, AsA levels across all treatments increased rapidly at the early stage (2-8 h) of irradiation, while they increased slowly at the late stage (8-16 h). The activity of L-galactono-1,4-lactone dehydrogenase was augmented under 1R1B treatment, which is pivotal to AsA production. Additionally, the activities of enzymes key to AsA cycling were enhanced by 1R1B and 2R1B treatments, including ascorbate peroxidase, dehydroascorbate reductase, and monodehydroascorbate reductase. Notably, hydrogen peroxide and malondialdehyde accumulation increased dramatically following 16 h of 1R1B and 2R1B treatments. In addition, although soluble sugar and starch contents were enhanced by EOP-HLI, this effect was comparatively subdued under the 1R1B treatment. Overall, these results indicated that AsA accumulation was improved by irradiation with a blue light proportion of over 50% in lettuce, aligning with the heightened activities of key enzymes responsible for AsA synthesis, as well as the accrual of hydrogen peroxide. The effective strategy holds the potential to enhance the nutritional quality of lettuce while bolstering its antioxidant defenses.
Collapse
Affiliation(s)
- Chengbo Zhou
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu 610213, China; (C.Z.); (Z.L.); (Z.B.); (B.Z.); (S.W.); (Q.L.)
| | - Zonggeng Li
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu 610213, China; (C.Z.); (Z.L.); (Z.B.); (B.Z.); (S.W.); (Q.L.)
| | - Wenke Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zhonghua Bian
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu 610213, China; (C.Z.); (Z.L.); (Z.B.); (B.Z.); (S.W.); (Q.L.)
| | - Wei Lu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611134, China;
| | - Bo Zhou
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu 610213, China; (C.Z.); (Z.L.); (Z.B.); (B.Z.); (S.W.); (Q.L.)
| | - Sen Wang
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu 610213, China; (C.Z.); (Z.L.); (Z.B.); (B.Z.); (S.W.); (Q.L.)
| | - Qingming Li
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu 610213, China; (C.Z.); (Z.L.); (Z.B.); (B.Z.); (S.W.); (Q.L.)
| | - Qichang Yang
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu 610213, China; (C.Z.); (Z.L.); (Z.B.); (B.Z.); (S.W.); (Q.L.)
| |
Collapse
|
14
|
Siebieszuk A, Sejbuk M, Witkowska AM. Studying the Human Microbiota: Advances in Understanding the Fundamentals, Origin, and Evolution of Biological Timekeeping. Int J Mol Sci 2023; 24:16169. [PMID: 38003359 PMCID: PMC10671191 DOI: 10.3390/ijms242216169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The recently observed circadian oscillations of the intestinal microbiota underscore the profound nature of the human-microbiome relationship and its importance for health. Together with the discovery of circadian clocks in non-photosynthetic gut bacteria and circadian rhythms in anucleated cells, these findings have indicated the possibility that virtually all microorganisms may possess functional biological clocks. However, they have also raised many essential questions concerning the fundamentals of biological timekeeping, its evolution, and its origin. This narrative review provides a comprehensive overview of the recent literature in molecular chronobiology, aiming to bring together the latest evidence on the structure and mechanisms driving microbial biological clocks while pointing to potential applications of this knowledge in medicine. Moreover, it discusses the latest hypotheses regarding the evolution of timing mechanisms and describes the functions of peroxiredoxins in cells and their contribution to the cellular clockwork. The diversity of biological clocks among various human-associated microorganisms and the role of transcriptional and post-translational timekeeping mechanisms are also addressed. Finally, recent evidence on metabolic oscillators and host-microbiome communication is presented.
Collapse
Affiliation(s)
- Adam Siebieszuk
- Department of Physiology, Faculty of Medicine, Medical University of Bialystok, Mickiewicza 2C, 15-222 Białystok, Poland;
| | - Monika Sejbuk
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland;
| |
Collapse
|
15
|
Adhikari A, Park SW. Reduced GSH Acts as a Metabolic Cue of OPDA Signaling in Coregulating Photosynthesis and Defense Activation under Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3745. [PMID: 37960101 PMCID: PMC10648297 DOI: 10.3390/plants12213745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
12-oxo-phytodienoic acid (OPDA) is a primary precursor of jasmonates, able to trigger autonomous signaling cascades that activate and fine-tune plant defense responses, as well as growth and development. However, its mechanism of actions remains largely elusive. Here we describe a dual-function messenger of OPDA signaling, reduced glutathione (GSH), that cross-regulates photosynthesis machinery and stress protection/adaptation in concert, optimizing plant plasticity and survival potential. Under stress conditions, the rapid induction of OPDA production stimulates GSH accumulation in the chloroplasts, and in turn leads to protein S-glutathionylation in modulating the structure and function of redox-sensitive enzymes such as 2-cysteine (Cys) peroxiredoxin A (2CPA), a recycler in the water-water cycle. GSH exchanges thiol-disulfides with the resolving CysR175, while donating an electron (e-, H+) to the peroxidatic CysP53, of 2CPA, which revives its reductase activity and fosters peroxide detoxification in photosynthesis. The electron flow protects photosynthetic processes (decreased total non-photochemical quenching, NPQ(T)) and maintains its efficiency (increased photosystem II quantum yield, ΦII). On the other hand, GSH also prompts retrograde signaling from the chloroplasts to the nucleus in adjusting OPDA-responsive gene expressions such as Glutathione S-Transferase 6 (GST6) and GST8, and actuating defense responses against various ecological constraints such as salinity, excess oxidants and light, as well as mechanical wounding. We thus propose that OPDA regulates a unique metabolic switch that interfaces light and defense signaling, where it links cellular and environmental cues to a multitude of plant physiological, e.g., growth, development, recovery, and acclimation, processes.
Collapse
Affiliation(s)
| | - Sang-Wook Park
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
16
|
Choi BY, Park H, Kim J, Wang S, Lee J, Lee Y, Shim D. BLZ8 activates a plastidial peroxiredoxin and a ferredoxin to protect Chlamydomonas reinhardtii against oxidative stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:915-923. [PMID: 37338124 DOI: 10.1111/plb.13552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Reactive oxygen species (ROS) cause damage to various cellular processes in almost all organisms, in particular photosynthetic organisms that depend on the electron transfer chain for CO2 fixation. However, the detoxifying process to mitigate ROS damage has not been studied intensively in microalgae. Here, we characterized the ROS detoxifying role of a bZIP transcription factor, BLZ8, in Chlamydomonas reinhardtii. To identify downstream targets of BLZ8, we carried out comparative genome-wide transcriptomic profiling of BLZ8 OX and its parental CC-4533 under oxidative stress conditions. Luciferase reporter activity assays and RT-qPCR were performed to test whether BLZ8 regulates downstream genes. We performed an in silico functional gene network analysis and an in vivo immunoprecipitation assay to identify the interaction between downstream targets of BLZ8. Comparative transcriptomic analysis and RT-qPCR revealed that overexpression of BLZ8 increased the expression levels of plastid peroxiredoxin1 (PRX1) and ferredoxin-5 (FDX5) under oxidative stress conditions. BLZ8 alone could activate the transcriptional activity of FDX5 and required bZIP2 to activate transcriptional activity of PRX1. Functional gene network analysis using FDX5 and PRX1 orthologs in A. thaliana suggested that these two genes were functionally associated. Indeed, our immunoprecipitation assay revealed the physical interaction between PRX1 and FDX5. Furthermore, the complemented strain, fdx5 (FDX5), recovered growth retardation of the fdx5 mutant under oxidative stress conditions, indicating that FDX5 contributes to oxidative stress tolerance. These results suggest that BLZ8 activates PRX1 and FDX5 expression, resulting in the detoxification of ROS to confer oxidative stress tolerance in microalgae.
Collapse
Affiliation(s)
- B Y Choi
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| | - H Park
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| | - J Kim
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| | - S Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Suzhou, China
| | - J Lee
- Division of Natural and Applied Sciences, Duke Kunshan University, Suzhou, China
| | - Y Lee
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - D Shim
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Korea
| |
Collapse
|
17
|
Mukarram M, Ali J, Dadkhah-Aghdash H, Kurjak D, Kačík F, Ďurkovič J. Chitosan-induced biotic stress tolerance and crosstalk with phytohormones, antioxidants, and other signalling molecules. FRONTIERS IN PLANT SCIENCE 2023; 14:1217822. [PMID: 37538057 PMCID: PMC10394624 DOI: 10.3389/fpls.2023.1217822] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
Several polysaccharides augment plant growth and productivity and galvanise defence against pathogens. Such elicitors have ecological superiority over traditional growth regulators, considering their amplified biocompatibility, biodegradability, bioactivity, non-toxicity, ubiquity, and inexpensiveness. Chitosan is a chitin-derived polysaccharide that has recently been spotlighted among plant scientists. Chitosan supports plant growth and development and protects against microbial entities such as fungi, bacteria, viruses, nematodes, and insects. In this review, we discuss the current knowledge of chitosan's antimicrobial and insecticidal potential with recent updates. These effects are further explored with the possibilities of chitosan's active correspondence with phytohormones such as jasmonic acid (JA), salicylic acid (SA), indole acetic acid (IAA), abscisic acid (ABA), and gibberellic acid (GA). The stress-induced redox shift in cellular organelles could be substantiated by the intricate participation of chitosan with reactive oxygen species (ROS) and antioxidant metabolism, including hydrogen peroxide (H2O2), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Furthermore, we propose how chitosan could be intertwined with cellular signalling through Ca2+, ROS, nitric oxide (NO), transcription factors (TFs), and defensive gene activation.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Jamin Ali
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
| | - Hamed Dadkhah-Aghdash
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - František Kačík
- Department of Chemistry and Chemical Technologies, Faculty of Wood Sciences and Technology, Technical University in Zvolen, Zvolen, Slovakia
| | - Jaroslav Ďurkovič
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| |
Collapse
|
18
|
Ramachandran P, Pandey NK, Yadav RM, Suresh P, Kumar A, Subramanyam R. Photosynthetic efficiency and transcriptome analysis of Dunaliella salina under hypersaline: a retrograde signaling mechanism in the chloroplast. FRONTIERS IN PLANT SCIENCE 2023; 14:1192258. [PMID: 37416885 PMCID: PMC10322210 DOI: 10.3389/fpls.2023.1192258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/16/2023] [Indexed: 07/08/2023]
Abstract
Understanding the molecular mechanisms of environmental salinity stress tolerance and acclimation strategies by photosynthetic organisms facilitates accelerating the genetic improvement of tolerant economically important crops. In this study, we have chosen the marine algae Dunaliella (D.) salina, a high-potential and unique organism that shows superior tolerance against abiotic stresses, especially hypersaline conditions. We have grown the cells in three different salt concentrations 1.5M NaCl (control), 2M NaCl, and 3M NaCl (hypersaline). Fast chlorophyll fluorescence analysis showed increased initial fluorescence (Fo) and decreased photosynthetic efficiency, indicating hampered photosystem II utilization capacity under hypersaline conditions. Also, the reactive oxygen species (ROS) localization studies and quantification revealed elevated accumulation of ROS was observed in the chloroplast in the 3M condition. Pigment analysis shows a deficit in chlorophyll content and increased carotenoid accumulation, especially lutein and zeaxanthin content. This study majorly explored the chloroplast transcripts of the D. salina cell as it is the major environmental sensor. Even though most of the photosystem transcripts showed moderate upregulation in hypersaline conditions in the transcriptome study, the western blot analysis showed degradation of the core as well as antenna proteins of both the photosystems. Among the upregulated chloroplast transcripts, chloroplast Tidi, flavodoxin IsiB, and carotenoid biosynthesis-related protein transcripts strongly proposed photosynthetic apparatus remodeling. Also, the transcriptomic study revealed the upregulation of the tetrapyrrole biosynthesis pathway (TPB) and identified the presence of a negative regulator of this pathway, called the s-FLP splicing variant. These observations point towards the accumulation of TPB pathway intermediates PROTO-IX, Mg-PROTO-IX, and P-Chlide, those earlier reported as retrograde signaling molecules. Our comparative transcriptomic approach along with biophysical and biochemical studies in D. salina grown under control (1.5 M NaCl) and hypersaline (3M NaCl) conditions, unveil an efficient retrograde signaling mechanism mediated remodeling of photosynthetic apparatus.
Collapse
Affiliation(s)
- Pavithra Ramachandran
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Naveen Kumar Pandey
- Novelegene Technologies Pvt. Ltd, Genomics division, Hyderabad, Telangana, India
| | - Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Praveena Suresh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Aman Kumar
- Novelegene Technologies Pvt. Ltd, Genomics division, Hyderabad, Telangana, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
19
|
Casatejada A, Puerto-Galán L, Pérez-Ruiz JM, Cejudo FJ. The contribution of glutathione peroxidases to chloroplast redox homeostasis in Arabidopsis. Redox Biol 2023; 63:102731. [PMID: 37245286 DOI: 10.1016/j.redox.2023.102731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/30/2023] Open
Abstract
Oxidizing signals mediated by the thiol-dependent peroxidase activity of 2-Cys peroxiredoxins (PRXs) plays an essential role in fine-tuning chloroplast redox balance in response to changes in light intensity, a function that depends on NADPH-dependent thioredoxin reductase C (NTRC). In addition, plant chloroplasts are equipped with glutathione peroxidases (GPXs), thiol-dependent peroxidases that rely on thioredoxins (TRXs). Despite having a similar reaction mechanism than 2-Cys PRXs, the contribution of oxidizing signals mediated by GPXs to the chloroplast redox homeostasis remains poorly known. To address this issue, we have generated the Arabidopsis (Arabidopsis thaliana) double mutant gpx1gpx7, which is devoid of the two GPXs, 1 and 7, localized in the chloroplast. Furthermore, to analyze the functional relationship of chloroplast GPXs with the NTRC-2-Cys PRXs redox system, the 2cpab-gpx1gpx7 and ntrc-gpx1gpx7 mutants were generated. The gpx1gpx7 mutant displayed wild type-like phenotype indicating that chloroplast GPXs are dispensable for plant growth at least under standard conditions. However, the 2cpab-gpx1gpx7 showed more retarded growth than the 2cpab mutant. The simultaneous lack of 2-Cys PRXs and GPXs affected PSII performance and caused higher delay of enzyme oxidation in the dark. In contrast, the ntrc-gpx1gpx7 mutant combining the lack of NTRC and chloroplast GPXs behaved like the ntrc mutant indicating that the contribution of GPXs to chloroplast redox homeostasis is independent of NTRC. Further supporting this notion, in vitro assays showed that GPXs are not reduced by NTRC but by TRX y2. Based on these results, we propose a role for GPXs in the chloroplast redox hierarchy.
Collapse
Affiliation(s)
- Azahara Casatejada
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Leonor Puerto-Galán
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Juan M Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio 49, 41092-Sevilla, Spain.
| | - Francisco J Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio 49, 41092-Sevilla, Spain.
| |
Collapse
|
20
|
Thye KL, Wan Abdullah WMAN, Ong-Abdullah J, Lamasudin DU, Wee CY, Mohd Yusoff MHY, Loh JY, Cheng WH, Lai KS. Calcium lignosulfonate modulates physiological and biochemical responses to enhance shoot multiplication in Vanilla planifolia Andrews. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:377-392. [PMID: 37033764 PMCID: PMC10073391 DOI: 10.1007/s12298-023-01293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
Utilisation of calcium lignosulfonate (CaLS) in Vanilla planifolia has been reported to improve shoot multiplication. However, mechanisms responsible for such observation remain unknown. Here, we elucidated the underlying mechanisms of CaLS in promoting shoot multiplication of V. planifolia via comparative proteomics, biochemical assays, and nutrient analysis. The proteome profile of CaLS-treated plants showed enhancement of several important cellular metabolisms such as photosynthesis, protein synthesis, Krebs cycle, glycolysis, gluconeogenesis, and carbohydrate synthesis. Further biochemical analysis recorded that CaLS increased Rubisco activity, hexokinase activity, isocitrate dehydrogenase activity, total carbohydrate content, glutamate synthase activity and total protein content in plant shoot, suggesting the role of CaLS in enhancing shoot growth via upregulation of cellular metabolism. Subsequent nutrient analysis showed that CaLS treatment elevated the contents of several nutrient ions especially calcium and sodium ions. In addition, our study also revealed that CaLS successfully maintained the cellular homeostasis level through the regulation of signalling molecules such as reactive oxygen species and calcium ions. These results demonstrated that the CaLS treatment can enhance shoot multiplication in V. planifolia Andrews by stimulating nutrient uptake, inducing cell metabolism, and regulating cell homeostasis. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01293-w.
Collapse
Affiliation(s)
- Kah-Lok Thye
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Wan Muhamad Asrul Nizam Wan Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Janna Ong-Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Dhilia Udie Lamasudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Chien-Yeong Wee
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, 43400 Serdang, Selangor Malaysia
| | | | - Jiun-Yan Loh
- Centre of Research for Advanced Aquaculture, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, 56000 Cheras, Kuala Lumpur Malaysia
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan Malaysia
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, United Arab Emirates
| |
Collapse
|
21
|
Gallardo-Martínez AM, Jiménez-López J, Hernández ML, Pérez-Ruiz JM, Cejudo FJ. Plastid 2-Cys peroxiredoxins are essential for embryogenesis in Arabidopsis. Redox Biol 2023; 62:102645. [PMID: 36898225 PMCID: PMC10020101 DOI: 10.1016/j.redox.2023.102645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
The redox couple formed by NADPH-dependent thioredoxin reductase C (NTRC) and 2-Cys peroxiredoxins (Prxs) allows fine-tuning chloroplast performance in response to light intensity changes. Accordingly, the Arabidopsis 2cpab mutant lacking 2-Cys Prxs shows growth inhibition and sensitivity to light stress. However, this mutant also shows defective post-germinative growth, suggesting a relevant role of plastid redox systems in seed development, which is so far unknown. To address this issue, we first analyzed the pattern of expression of NTRC and 2-Cys Prxs in developing seeds. Transgenic lines expressing GFP fusions of these proteins showed their expression in developing embryos, which was low at the globular stage and increased at heart and torpedo stages, coincident with embryo chloroplast differentiation, and confirmed the plastid localization of these enzymes. The 2cpab mutant produced white and abortive seeds, which contained lower and altered composition of fatty acids, thus showing the relevance of 2-Cys Prxs in embryogenesis. Most embryos of white and abortive seeds of the 2cpab mutant were arrested at heart and torpedo stages of embryogenesis suggesting an essential function of 2-Cys Prxs in embryo chloroplast differentiation. This phenotype was not recovered by a mutant version of 2-Cys Prx A replacing the peroxidatic Cys by Ser. Neither the lack nor the overexpression of NTRC had any effect on seed development indicating that the function of 2-Cys Prxs at these early stages of development is independent of NTRC, in clear contrast with the operation of these regulatory redox systems in leaves chloroplasts.
Collapse
Affiliation(s)
- Antonia M Gallardo-Martínez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092, Sevilla, Spain.
| | - Julia Jiménez-López
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092, Sevilla, Spain.
| | - María Luisa Hernández
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092, Sevilla, Spain.
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092, Sevilla, Spain.
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092, Sevilla, Spain.
| |
Collapse
|
22
|
Hipsch M, Michael Y, Lampl N, Sapir O, Cohen Y, Helman D, Rosenwasser S. Early detection of late blight in potato by whole-plant redox imaging. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:649-664. [PMID: 36534114 DOI: 10.1111/tpj.16071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Late blight caused by the oomycete Phytophthora infestans is a most devastating disease of potatoes (Solanum tuberosum). Its early detection is crucial for suppressing disease spread. Necrotic lesions are normally seen in leaves at 4 days post-inoculation (dpi) when colonized cells are dead, but early detection of the initial biotrophic growth stage, when the pathogen feeds on living cells, is challenging. Here, the biotrophic growth phase of P. infestans was detected by whole-plant redox imaging of potato plants expressing chloroplast-targeted reduction-oxidation sensitive green fluorescent protein (chl-roGFP2). Clear spots on potato leaves with a lower chl-roGFP2 oxidation state were detected as early as 2 dpi, before any visual symptoms were recorded. These spots were particularly evident during light-to-dark transitions, and reflected the mislocalization of chl-roGFP2 outside the chloroplasts. Image analysis based on machine learning enabled systematic identification and quantification of spots, and unbiased classification of infected and uninfected leaves in inoculated plants. Comparing redox with chlorophyll fluorescence imaging showed that infected leaf areas that exhibit mislocalized chl-roGFP2 also showed reduced non-photochemical quenching and enhanced quantum PSII yield (ΦPSII) compared with the surrounding leaf areas. The data suggest that mislocalization of chloroplast-targeted proteins is an efficient marker of late blight infection, and demonstrate how it can be utilized for non-destructive monitoring of the disease biotrophic stage using whole-plant redox imaging.
Collapse
Affiliation(s)
- Matanel Hipsch
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Yaron Michael
- Department of Soil & Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Nardy Lampl
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Omer Sapir
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Yigal Cohen
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290000, Israel
| | - David Helman
- Department of Soil & Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
- The Advanced School for Environmental Studies, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shilo Rosenwasser
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| |
Collapse
|
23
|
Richter AS, Nägele T, Grimm B, Kaufmann K, Schroda M, Leister D, Kleine T. Retrograde signaling in plants: A critical review focusing on the GUN pathway and beyond. PLANT COMMUNICATIONS 2023; 4:100511. [PMID: 36575799 PMCID: PMC9860301 DOI: 10.1016/j.xplc.2022.100511] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Plastids communicate their developmental and physiological status to the nucleus via retrograde signaling, allowing nuclear gene expression to be adjusted appropriately. Signaling during plastid biogenesis and responses of mature chloroplasts to environmental changes are designated "biogenic" and "operational" controls, respectively. A prominent example of the investigation of biogenic signaling is the screen for gun (genomes uncoupled) mutants. Although the first five gun mutants were identified 30 years ago, the functions of GUN proteins in retrograde signaling remain controversial, and that of GUN1 is hotly disputed. Here, we provide background information and critically discuss recently proposed concepts that address GUN-related signaling and some novel gun mutants. Moreover, considering heme as a candidate in retrograde signaling, we revisit the spatial organization of heme biosynthesis and export from plastids. Although this review focuses on GUN pathways, we also highlight recent progress in the identification and elucidation of chloroplast-derived signals that regulate the acclimation response in green algae and plants. Here, stress-induced accumulation of unfolded/misassembled chloroplast proteins evokes a chloroplast-specific unfolded protein response, which leads to changes in the expression levels of nucleus-encoded chaperones and proteases to restore plastid protein homeostasis. We also address the importance of chloroplast-derived signals for activation of flavonoid biosynthesis leading to production of anthocyanins during stress acclimation through sucrose non-fermenting 1-related protein kinase 1. Finally, a framework for identification and quantification of intercompartmental signaling cascades at the proteomic and metabolomic levels is provided, and we discuss future directions of dissection of organelle-nucleus communication.
Collapse
Affiliation(s)
- Andreas S Richter
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
24
|
Araguirang GE, Richter AS. Activation of anthocyanin biosynthesis in high light - what is the initial signal? THE NEW PHYTOLOGIST 2022; 236:2037-2043. [PMID: 36110042 DOI: 10.1111/nph.18488] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Due to their sessile nature, plants cannot escape adverse environmental conditions and evolved mechanisms to cope with sudden environmental changes. The reaction to variations in abiotic factors, also summarized as acclimation response, affects all layers of cellular functions and involves rapid modification of enzymatic activities, the metabolome, proteome and transcriptome on different timescales. One trait of plants acclimating to high light (HL) is the rapid transcriptional activation of the flavonoid biosynthesis (FB) pathway resulting in the accumulation of photoprotective and antioxidative flavonoids, such as flavonols and anthocyanins, in the leaf tissue. Although enormous progress has been made in identifying enzymes and transcriptional regulators of FB by forward and reverse genetic approaches in the past, the signals and signalling pathways permitting the conditional activation of FB in HL are still debated. With this Tansley Insight, we summarize the current knowledge on the proposed signals and downstream factors involved in regulating FB and will discuss their contribution to, particularly, HL-induced accumulation of anthocyanins.
Collapse
Affiliation(s)
- Galileo Estopare Araguirang
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Strasse 3, 18059, Rostock, Germany
| | - Andreas S Richter
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Strasse 3, 18059, Rostock, Germany
| |
Collapse
|
25
|
Riaz A, Deng F, Chen G, Jiang W, Zheng Q, Riaz B, Mak M, Zeng F, Chen ZH. Molecular Regulation and Evolution of Redox Homeostasis in Photosynthetic Machinery. Antioxidants (Basel) 2022; 11:antiox11112085. [PMID: 36358456 PMCID: PMC9686623 DOI: 10.3390/antiox11112085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 01/14/2023] Open
Abstract
The recent advances in plant biology have significantly improved our understanding of reactive oxygen species (ROS) as signaling molecules in the redox regulation of complex cellular processes. In plants, free radicals and non-radicals are prevalent intra- and inter-cellular ROS, catalyzing complex metabolic processes such as photosynthesis. Photosynthesis homeostasis is maintained by thiol-based systems and antioxidative enzymes, which belong to some of the evolutionarily conserved protein families. The molecular and biological functions of redox regulation in photosynthesis are usually to balance the electron transport chain, photosystem II, photosystem I, mesophyll and bundle sheath signaling, and photo-protection regulating plant growth and productivity. Here, we review the recent progress of ROS signaling in photosynthesis. We present a comprehensive comparative bioinformatic analysis of redox regulation in evolutionary distinct photosynthetic cells. Gene expression, phylogenies, sequence alignments, and 3D protein structures in representative algal and plant species revealed conserved key features including functional domains catalyzing oxidation and reduction reactions. We then discuss the antioxidant-related ROS signaling and important pathways for achieving homeostasis of photosynthesis. Finally, we highlight the importance of plant responses to stress cues and genetic manipulation of disturbed redox status for balanced and enhanced photosynthetic efficiency and plant productivity.
Collapse
Affiliation(s)
- Adeel Riaz
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
| | - Guang Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
| | - Qingfeng Zheng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
| | - Bisma Riaz
- Department of Biotechnology, University of Okara, Okara, Punjab 56300, Pakistan
| | - Michelle Mak
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
- Correspondence: (F.Z.); (Z.-H.C.)
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
- Correspondence: (F.Z.); (Z.-H.C.)
| |
Collapse
|
26
|
Zhong Y, Liu Y, Wu W, Chen J, Sun C, Liu H, Shu J, Ebihara A, Yan Y, Zhou R, Schneider H. Genomic insights into genetic diploidization in the homosporous fern Adiantum nelumboides. Genome Biol Evol 2022; 14:evac127. [PMID: 35946426 PMCID: PMC9387920 DOI: 10.1093/gbe/evac127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Whole genome duplication has been recognized as a major process in speciation of land plants, especially in ferns. Whereas genome downsizing contributes greatly to the post-genome shock responses of polyploid flowering plants, diploidization of polyploid ferns diverges by maintaining most of the duplicated DNA and is thus expected to be dominated by genic processes. As a consequence, fern genomes provide excellent opportunities to study ecological speciation enforced by expansion of protein families via polyploidy. To test the key predictions of this hypothesis, we reported the de novo genome sequence of Adiantum nelumboides, a tetraploid homosporous fern. The obtained draft genome had a size of 6.27 Gb assembled into 11,767 scaffolds with the contig N50 of 1.37 Mb. Repetitive DNA sequences contributed with about 81.7%, a remarkably high proportion of the genome. With 69,568 the number of predicted protein-coding genes exceeded those reported in most other land plant genomes. Intragenomic synteny analyses recovered 443 blocks with the average block size of 1.29 Mb and the average gene content of 16 genes. The results are consistent with the hypothesis of high ancestral chromosome number, lack of substantial genome downsizing, and dominance of genic diploidization. As expected in the calciphilous plants, a notable number of detected genes were involved in calcium uptake and transport. In summary, the genome sequence of a tetraploid homosporous fern not only provides access to a genomic resource of a derived fern, but also supports the hypothesis of maintenance of high chromosome numbers and duplicated DNA in young polyploid ferns.
Collapse
Affiliation(s)
- Yan Zhong
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongbo Liu
- State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, China
| | - Wei Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jingfang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chenyu Sun
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongmei Liu
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, China
| | - Jiangping Shu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, and the Orchid Conservation and Research Centre of Shenzhen, Shenzhen, China
| | - Atsushi Ebihara
- Department of Botany, National Museum of Nature and Science, Tsukuba, Japan
| | - Yuehong Yan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, and the Orchid Conservation and Research Centre of Shenzhen, Shenzhen, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Harald Schneider
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, China
| |
Collapse
|
27
|
Systematic monitoring of 2-Cys peroxiredoxin-derived redox signals unveiled its role in attenuating carbon assimilation rate. Proc Natl Acad Sci U S A 2022; 119:e2119719119. [PMID: 35648819 DOI: 10.1073/pnas.2119719119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
SignificanceIdentifying the intrinsic factors that regulate leaf photosynthetic rate may pave the way toward developing new strategies to enhance carbon assimilation. While the dependence of photosynthesis on the reductive activation of the Calvin-Benson cycle enzymes is well established, the role of oxidative signals in counterbalancing the reductive activity is just beginning to be explored. By developing 2-Cys peroxiredoxin-based genetically encoded biosensors, we demonstrated the induction of photosynthetically derived oxidative signals under habitual light conditions, a phenomenon typically masked by the dominance of the reductive power. Moreover, we unraveled the simultaneous activation of reductive and oxidative signals during photosynthesis induction phase and showed that 2-Cys peroxiredoxin activity attenuates carbon assimilation rates, demonstrating the restrictions imposed on photosynthetic performance by oxidative signals.
Collapse
|
28
|
Lukan T, Coll A. Intertwined Roles of Reactive Oxygen Species and Salicylic Acid Signaling Are Crucial for the Plant Response to Biotic Stress. Int J Mol Sci 2022; 23:5568. [PMID: 35628379 PMCID: PMC9147500 DOI: 10.3390/ijms23105568] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
One of the earliest hallmarks of plant immune response is production of reactive oxygen species (ROS) in different subcellular compartments, which regulate plant immunity. A suitable equilibrium, which is crucial to prevent ROS overaccumulation leading to oxidative stress, is maintained by salicylic acid (SA), a chief regulator of ROS. However, ROS not only act downstream of SA signaling, but are also proposed to be a central component of a self-amplifying loop that regulates SA signaling as well as the interaction balance between different phytohormones. The exact role of this crosstalk, the position where SA interferes with ROS signaling and ROS interferes with SA signaling and the outcome of this regulation, depend on the origin of ROS but also on the pathosystem. The precise spatiotemporal regulation of organelle-specific ROS and SA levels determine the effectiveness of pathogen arrest and is therefore crucial for a successful immune response. However, the regulatory interplay behind still remains poorly understood, as up until now, the role of organelle-specific ROS and SA in hypersensitive response (HR)-conferred resistance has mostly been studied by altering the level of a single component. In order to address these aspects, a sophisticated combination of research methods for monitoring the spatiotemporal dynamics of key players and transcriptional activity in plants is needed and will most probably consist of biosensors and precision transcriptomics.
Collapse
Affiliation(s)
- Tjaša Lukan
- National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia;
| | | |
Collapse
|
29
|
Transcriptomic Data Meta-Analysis Sheds Light on High Light Response in Arabidopsis thaliana L. Int J Mol Sci 2022; 23:ijms23084455. [PMID: 35457273 PMCID: PMC9026532 DOI: 10.3390/ijms23084455] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
The availability and intensity of sunlight are among the major factors of growth, development and metabolism in plants. However, excessive illumination disrupts the electronic balance of photosystems and leads to the accumulation of reactive oxygen species in chloroplasts, further mediating several regulatory mechanisms at the subcellular, genetic, and molecular levels. We carried out a comprehensive bioinformatic analysis that aimed to identify genetic systems and candidate transcription factors involved in the response to high light stress in Arabidopsis thaliana L. using resources GEO NCBI, string-db, ShinyGO, STREME, and Tomtom, as well as programs metaRE, CisCross, and Cytoscape. Through the meta-analysis of five transcriptomic experiments, we selected a set of 1151 differentially expressed genes, including 453 genes that compose the gene network. Ten significantly enriched regulatory motifs for TFs families ZF-HD, HB, C2H2, NAC, BZR, and ARID were found in the promoter regions of differentially expressed genes. In addition, we predicted families of transcription factors associated with the duration of exposure (RAV, HSF), intensity of high light treatment (MYB, REM), and the direction of gene expression change (HSF, S1Fa-like). We predicted genetic components systems involved in a high light response and their expression changes, potential transcriptional regulators, and associated processes.
Collapse
|
30
|
Chaturvedi S, Khan S, Bhunia RK, Kaur K, Tiwari S. Metabolic engineering in food crops to enhance ascorbic acid production: crop biofortification perspectives for human health. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:871-884. [PMID: 35464783 PMCID: PMC9016690 DOI: 10.1007/s12298-022-01172-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Ascorbic acid (AsA) also known as vitamin C is considered as an essential micronutrient in the diet of humans. The human body is unable to synthesize AsA, thus solely dependent on exogenous sources to accomplish the nutritional requirement. AsA plays a crucial role in different physiological aspects of human health like bone formation, iron absorption, maintenance and development of connective tissues, conversion of cholesterol to bile acid and production of serotonin. It carries antioxidant properties and is involved in curing various clinical disorders such as scurvy, viral infection, neurodegenerative diseases, cardiovascular diseases, anemia, and diabetes. It also plays a significant role in COVID-19 prevention and recovery by improving the oxygen index and enhancing the production of natural killer cells and T-lymphocytes. In plants, AsA plays important role in floral induction, seed germination, senescence, ROS regulation and photosynthesis. AsA is an essential counterpart of the antioxidant system and helps to defend the plants against abiotic and biotic stresses. Surprisingly, the deficiencies of AsA are spreading in both developed and developing countries. The amount of AsA in the major food crops such as wheat, rice, maize, and other raw natural plant foods is inadequate to fulfill its dietary requirements. Hence, the biofortification of AsA in staple crops would be feasible and cost-effective means of delivering AsA to populations that may have limited access to diverse diets and other interventions. In this review, we endeavor to provide information on the role of AsA in plants and human health, and also perused various biotechnological and agronomical approaches for elevating AsA content in food crops.
Collapse
Affiliation(s)
- Siddhant Chaturvedi
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-
Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector-81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306 India
- Department of Biotechnology, Panjab University, Chandigarh, 160014 India
| | - Shahirina Khan
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-
Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector-81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306 India
- Department of Botany, Central University of Punjab, Bathinda, Punjab, 151001 India
| | - Rupam Kumar Bhunia
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-
Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector-81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306 India
| | - Karambir Kaur
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-
Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector-81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306 India
| | - Siddharth Tiwari
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-
Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector-81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306 India
| |
Collapse
|
31
|
Iwagami T, Ogawa T, Ishikawa T, Maruta T. Activation of ascorbate metabolism by nitrogen starvation and its physiological impacts in Arabidopsis thaliana. Biosci Biotechnol Biochem 2022; 86:476-489. [PMID: 35090004 DOI: 10.1093/bbb/zbac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/13/2022] [Indexed: 11/12/2022]
Abstract
Redox homeostasis is crucial for plant acclimation to nutrient-deficient conditions, but its molecular mechanisms remain largely unknown. In this study, the effects of nutrient deficiencies on antioxidant systems in Arabidopsis thaliana were investigated. We found that ascorbate content in the plants grown with nitrogen starvation was higher than those with complete nutrition. The higher ascorbate levels were associated with enhanced gene expression of ascorbate biosynthesis enzymes and cytosolic isozymes of the ascorbate-glutathione cycle, suggesting that nitrogen starvation facilitated both consumption and biosynthesis of ascorbate. Nevertheless, we did not identify any phenotypic differences between wild type and ascorbate-deficient mutants (vtc2) under nitrogen starvation. Under high-light stress, the vtc2 mutants suffered severer photoinhibition than wild type. Interestingly, when high-light stress and nitrogen starvation were combined, wild type and vtc2 plants exhibited photoinhibition to the same extent. Based on these findings, we discuss the regulation and role of ascorbate metabolism under nitrogen starvation.
Collapse
Affiliation(s)
- Takumi Iwagami
- Graduate School of Natural Science and Technology, Shimane University, Matsue, Shimane, Japan
| | - Takahisa Ogawa
- Graduate School of Natural Science and Technology, Shimane University, Matsue, Shimane, Japan.,Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, Japan
| | - Takahiro Ishikawa
- Graduate School of Natural Science and Technology, Shimane University, Matsue, Shimane, Japan.,Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, Japan
| | - Takanori Maruta
- Graduate School of Natural Science and Technology, Shimane University, Matsue, Shimane, Japan.,Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, Japan
| |
Collapse
|
32
|
How to Cope with the Challenges of Environmental Stresses in the Era of Global Climate Change: An Update on ROS Stave off in Plants. Int J Mol Sci 2022; 23:ijms23041995. [PMID: 35216108 PMCID: PMC8879091 DOI: 10.3390/ijms23041995] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023] Open
Abstract
With the advent of human civilization and anthropogenic activities in the shade of urbanization and global climate change, plants are exposed to a complex set of abiotic stresses. These stresses affect plants’ growth, development, and yield and cause enormous crop losses worldwide. In this alarming scenario of global climate conditions, plants respond to such stresses through a highly balanced and finely tuned interaction between signaling molecules. The abiotic stresses initiate the quick release of reactive oxygen species (ROS) as toxic by-products of altered aerobic metabolism during different stress conditions at the cellular level. ROS includes both free oxygen radicals {superoxide (O2•−) and hydroxyl (OH−)} as well as non-radicals [hydrogen peroxide (H2O2) and singlet oxygen (1O2)]. ROS can be generated and scavenged in different cell organelles and cytoplasm depending on the type of stimulus. At high concentrations, ROS cause lipid peroxidation, DNA damage, protein oxidation, and necrosis, but at low to moderate concentrations, they play a crucial role as secondary messengers in intracellular signaling cascades. Because of their concentration-dependent dual role, a huge number of molecules tightly control the level of ROS in cells. The plants have evolved antioxidants and scavenging machinery equipped with different enzymes to maintain the equilibrium between the production and detoxification of ROS generated during stress. In this present article, we have focused on current insights on generation and scavenging of ROS during abiotic stresses. Moreover, the article will act as a knowledge base for new and pivotal studies on ROS generation and scavenging.
Collapse
|
33
|
García-Caparrós P, De Filippis L, Gul A, Hasanuzzaman M, Ozturk M, Altay V, Lao MT. Oxidative Stress and Antioxidant Metabolism under Adverse Environmental Conditions: a Review. THE BOTANICAL REVIEW 2021; 87:421-466. [PMID: 0 DOI: 10.1007/s12229-020-09231-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 05/25/2023]
|
34
|
Wakao S, Niyogi KK. Chlamydomonas as a model for reactive oxygen species signaling and thiol redox regulation in the green lineage. PLANT PHYSIOLOGY 2021; 187:687-698. [PMID: 35237823 PMCID: PMC8491031 DOI: 10.1093/plphys/kiab355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 05/15/2023]
Abstract
One-sentence summary: Advances in proteomic and transcriptomic studies have made Chlamydomonas a powerful research model in redox and reactive oxygen species regulation with unique and overlapping mechanisms with plants.
Collapse
Affiliation(s)
- Setsuko Wakao
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Author for communication: Senior author
| | - Krishna K. Niyogi
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
35
|
Ojeda V, Jiménez-López J, Romero-Campero FJ, Cejudo FJ, Pérez-Ruiz JM. A chloroplast redox relay adapts plastid metabolism to light and affects cytosolic protein quality control. PLANT PHYSIOLOGY 2021; 187:88-102. [PMID: 34618130 PMCID: PMC8418392 DOI: 10.1093/plphys/kiab246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/04/2021] [Indexed: 06/01/2023]
Abstract
In chloroplasts, thiol-dependent redox regulation is linked to light since the disulfide reductase activity of thioredoxins (Trxs) relies on photo-reduced ferredoxin (Fdx). Furthermore, chloroplasts harbor an NADPH-dependent Trx reductase (NTR) with a joint Trx domain, termed NTRC. The activity of these two redox systems is integrated by the redox balance of 2-Cys peroxiredoxin (Prx), which is controlled by NTRC. However, NTRC was proposed to participate in redox regulation of additional targets, prompting inquiry into whether the function of NTRC depends on its capacity to maintain the redox balance of 2-Cys Prxs or by direct redox interaction with chloroplast enzymes. To answer this, we studied the functional relationship of NTRC and 2-Cys Prxs by a comparative analysis of the triple Arabidopsis (Arabidopsis thaliana) mutant, ntrc-2cpab, which lacks NTRC and 2-Cys Prxs, and the double mutant 2cpab, which lacks 2-Cys Prxs. These mutants exhibit almost indistinguishable phenotypes: in growth rate, photosynthesis performance, and redox regulation of chloroplast enzymes in response to light and darkness. These results suggest that the most relevant function of NTRC is in controlling the redox balance of 2-Cys Prxs. A comparative transcriptomics analysis confirmed the phenotypic similarity of the two mutants and suggested that the NTRC-2-Cys Prxs system participates in cytosolic protein quality control. We propose that NTRC and 2-Cys Prxs constitute a redox relay, exclusive to photosynthetic organisms that fine-tunes the redox state of chloroplast enzymes in response to light and affects transduction pathways towards the cytosol.
Collapse
Affiliation(s)
- Valle Ojeda
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Julia Jiménez-López
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Francisco José Romero-Campero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| |
Collapse
|
36
|
Kameoka T, Okayasu T, Kikuraku K, Ogawa T, Sawa Y, Yamamoto H, Ishikawa T, Maruta T. Cooperation of chloroplast ascorbate peroxidases and proton gradient regulation 5 is critical for protecting Arabidopsis plants from photo-oxidative stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:876-892. [PMID: 34028907 DOI: 10.1111/tpj.15352] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 05/24/2023]
Abstract
High-light (HL) stress enhances the production of H2 O2 from the photosynthetic electron transport chain in chloroplasts, potentially causing photo-oxidative damage. Although stromal and thylakoid membrane-bound ascorbate peroxidases (sAPX and tAPX, respectively) are major H2 O2 -scavenging enzymes in chloroplasts, their knockout mutants do not exhibit a visible phenotype under HL stress. Trans-thylakoid proton gradient (∆pH)-dependent mechanisms exist for controlling H2 O2 production from photosynthesis, such as thermal dissipation of light energy and downregulation of electron transfer between photosystems II and I, and these may compensate for the lack of APXs. To test this hypothesis, we focused on a proton gradient regulation 5 (pgr5) mutant, wherein both ∆pH-dependent mechanisms are impaired, and an Arabidopsis sapx tapx double mutant was crossed with the pgr5 single mutant. The sapx tapx pgr5 triple mutant exhibited extreme sensitivity to HL compared with its parental lines. This phenotype was consistent with cellular redox perturbations and enhanced expression of many oxidative stress-responsive genes. These findings demonstrate that the PGR5-dependent mechanisms compensate for chloroplast APXs, and vice versa. An intriguing finding was that the failure of induction of non-photochemical quenching in pgr5 (because of the limitation in ∆pH formation) was partially recovered in sapx tapx pgr5. Further genetic studies suggested that this recovery was dependent on the NADH dehydrogenase-like complex-dependent pathway for cyclic electron flow around photosystem I. Together with data from the sapx tapx npq4 mutant, we discuss the interrelationship between APXs and ∆pH-dependent mechanisms under HL stress.
Collapse
Affiliation(s)
- Takashi Kameoka
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Takaya Okayasu
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Kana Kikuraku
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori, Tottori, 680-8553, Japan
| | - Takahisa Ogawa
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori, Tottori, 680-8553, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Yoshihiro Sawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Takahiro Ishikawa
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori, Tottori, 680-8553, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Takanori Maruta
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori, Tottori, 680-8553, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| |
Collapse
|
37
|
Haber Z, Lampl N, Meyer AJ, Zelinger E, Hipsch M, Rosenwasser S. Resolving diurnal dynamics of the chloroplastic glutathione redox state in Arabidopsis reveals its photosynthetically derived oxidation. THE PLANT CELL 2021; 33:1828-1844. [PMID: 33624811 PMCID: PMC8254480 DOI: 10.1093/plcell/koab068] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/23/2021] [Indexed: 05/05/2023]
Abstract
Plants are subjected to fluctuations in light intensity, and this might cause unbalanced photosynthetic electron fluxes and overproduction of reactive oxygen species (ROS). Electrons needed for ROS detoxification are drawn, at least partially, from the cellular glutathione (GSH) pool via the ascorbate-glutathione cycle. Here, we explore the dynamics of the chloroplastic glutathione redox potential (chl-EGSH) using high-temporal-resolution monitoring of Arabidopsis (Arabidopsis thaliana) lines expressing the reduction-oxidation sensitive green fluorescent protein 2 (roGFP2) in chloroplasts. This was carried out over several days under dynamic environmental conditions and in correlation with PSII operating efficiency. Peaks in chl-EGSH oxidation during dark-to-light and light-to-dark transitions were observed. Increasing light intensities triggered a binary oxidation response, with a threshold around the light saturating point, suggesting two regulated oxidative states of the chl-EGSH. These patterns were not affected in npq1 plants, which are impaired in non-photochemical quenching. Oscillations between the two oxidation states were observed under fluctuating light in WT and npq1 plants, but not in pgr5 plants, suggesting a role for PSI photoinhibition in regulating the chl-EGSH dynamics. Remarkably, pgr5 plants showed an increase in chl-EGSH oxidation during the nights following light stresses, linking daytime photoinhibition and nighttime GSH metabolism. This work provides a systematic view of the dynamics of the in vivo chloroplastic glutathione redox state during varying light conditions.
Collapse
Affiliation(s)
- Zechariah Haber
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture,
The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Nardy Lampl
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture,
The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), Rheinische
Friedrich–Wilhelms Universität Bonn, Friedrich-Ebert-Allee 144, D-53113
Bonn, Germany
| | - Einat Zelinger
- The Interdepartmental Equipment Unit, The Robert H. Smith Faculty of
Agriculture, Food and Environment, The Hebrew University of Jerusalem,
Rehovot 7610001, Israel
| | - Matanel Hipsch
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture,
The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Shilo Rosenwasser
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture,
The Hebrew University of Jerusalem, Rehovot 7610000, Israel
- Author for correspondence:
| |
Collapse
|
38
|
Bassi R, Dall'Osto L. Dissipation of Light Energy Absorbed in Excess: The Molecular Mechanisms. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:47-76. [PMID: 34143647 DOI: 10.1146/annurev-arplant-071720-015522] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Light is essential for photosynthesis. Nevertheless, its intensity widely changes depending on time of day, weather, season, and localization of individual leaves within canopies. This variability means that light collected by the light-harvesting system is often in excess with respect to photon fluence or spectral quality in the context of the capacity of photosynthetic metabolism to use ATP and reductants produced from the light reactions. Absorption of excess light can lead to increased production of excited, highly reactive intermediates, which expose photosynthetic organisms to serious risks of oxidative damage. Prevention and management of such stress are performed by photoprotective mechanisms, which operate by cutting down light absorption, limiting the generation of redox-active molecules, or scavenging reactive oxygen species that are released despite the operation of preventive mechanisms. Here, we describe the major physiological and molecular mechanisms of photoprotection involved in the harmless removal of the excess light energy absorbed by green algae and land plants. In vivo analyses of mutants targeting photosynthetic components and the enhanced resolution of spectroscopic techniques have highlighted specific mechanisms protecting the photosynthetic apparatus from overexcitation. Recent findings unveil a network of multiple interacting elements, the reaction times of which vary from a millisecond to weeks, that continuously maintain photosynthetic organisms within the narrow safety range between efficient light harvesting and photoprotection.
Collapse
Affiliation(s)
- Roberto Bassi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| | - Luca Dall'Osto
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
39
|
Hu Z, Li J, Ding S, Cheng F, Li X, Jiang Y, Yu J, Foyer CH, Shi K. The protein kinase CPK28 phosphorylates ascorbate peroxidase and enhances thermotolerance in tomato. PLANT PHYSIOLOGY 2021; 186:1302-1317. [PMID: 33711164 PMCID: PMC8195530 DOI: 10.1093/plphys/kiab120] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/26/2021] [Indexed: 05/02/2023]
Abstract
High temperatures are a major threat to plant growth and development, leading to yield losses in crops. Calcium-dependent protein kinases (CPKs) act as critical components of Ca2+ sensing in plants that transduce rapid stress-induced responses to multiple environmental stimuli. However, the role of CPKs in plant thermotolerance and their mechanisms of action remain poorly understood. To address this issue, tomato (Solanum lycopersicum) cpk28 mutants were generated using a CRISPR-Cas9 gene-editing approach. The responses of mutant and wild-type plants to normal (25°C) and high temperatures (45°C) were documented. Thermotolerance was significantly decreased in the cpk28 mutants, which showed increased heat stress-induced accumulation of reactive oxygen species (ROS) and levels of protein oxidation, together with decreased activities of ascorbate peroxidase (APX) and other antioxidant enzymes. The redox status of ascorbate and glutathione were also modified. Using a yeast two-hybrid library screen and protein interaction assays, we provide evidence that CPK28 directly interacts with cytosolic APX2. Mutations in APX2 rendered plants more sensitive to high temperatures, whereas the addition of exogenous reduced ascorbate (AsA) rescued the thermotolerance phenotype of the cpk28 mutants. Moreover, protein phosphorylation analysis demonstrated that CPK28 phosphorylates the APX2 protein at Thr-59 and Thr-164. This process is suggested to be responsive to Ca2+ stimuli and may be required for CPK28-mediated thermotolerance. Taken together, these results demonstrate that CPK28 targets APX2, thus improving thermotolerance. This study suggests that CPK28 is an attractive target for the development of improved crop cultivars that are better adapted to heat stress in a changing climate.
Collapse
Affiliation(s)
- Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Jianxin Li
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Shuting Ding
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Fei Cheng
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuping Jiang
- Department of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
- Author for communication:
| |
Collapse
|
40
|
Cejudo FJ, González MC, Pérez-Ruiz JM. Redox regulation of chloroplast metabolism. PLANT PHYSIOLOGY 2021; 186:9-21. [PMID: 33793865 PMCID: PMC8154093 DOI: 10.1093/plphys/kiaa062] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/16/2020] [Indexed: 05/08/2023]
Abstract
Regulation of enzyme activity based on thiol-disulfide exchange is a regulatory mechanism in which the protein disulfide reductase activity of thioredoxins (TRXs) plays a central role. Plant chloroplasts are equipped with a complex set of up to 20 TRXs and TRX-like proteins, the activity of which is supported by reducing power provided by photosynthetically reduced ferredoxin (FDX) with the participation of a FDX-dependent TRX reductase (FTR). Therefore, the FDX-FTR-TRXs pathway allows the regulation of redox-sensitive chloroplast enzymes in response to light. In addition, chloroplasts contain an NADPH-dependent redox system, termed NTRC, which allows the use of NADPH in the redox network of these organelles. Genetic approaches using mutants of Arabidopsis (Arabidopsis thaliana) in combination with biochemical and physiological studies have shown that both redox systems, NTRC and FDX-FTR-TRXs, participate in fine-tuning chloroplast performance in response to changes in light intensity. Moreover, these studies revealed the participation of 2-Cys peroxiredoxin (2-Cys PRX), a thiol-dependent peroxidase, in the control of the reducing activity of chloroplast TRXs as well as in the rapid oxidation of stromal enzymes upon darkness. In this review, we provide an update on recent findings regarding the redox regulatory network of plant chloroplasts, focusing on the functional relationship of 2-Cys PRXs with NTRC and the FDX-FTR-TRXs redox systems for fine-tuning chloroplast performance in response to changes in light intensity and darkness. Finally, we consider redox regulation as an additional layer of control of the signaling function of the chloroplast.
Collapse
Affiliation(s)
- Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla—Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
- Author for communication:
| | - María-Cruz González
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla—Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla—Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
41
|
Montillet JL, Rondet D, Brugière S, Henri P, Rumeau D, Reichheld JP, Couté Y, Leonhardt N, Rey P. Plastidial and cytosolic thiol reductases participate in the control of stomatal functioning. PLANT, CELL & ENVIRONMENT 2021; 44:1417-1435. [PMID: 33537988 DOI: 10.1111/pce.14013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Stomatal movements via the control of gas exchanges determine plant growth in relation to environmental stimuli through a complex signalling network involving reactive oxygen species that lead to post-translational modifications of Cys and Met residues, and alter protein activity and/or conformation. Thiol-reductases (TRs), which include thioredoxins, glutaredoxins (GRXs) and peroxiredoxins (PRXs), participate in signalling pathways through the control of Cys redox status in client proteins. Their involvement in stomatal functioning remains poorly characterized. By performing a mass spectrometry-based proteomic analysis, we show that numerous thiol reductases, like PRXs, are highly abundant in guard cells. When investigating various Arabidopsis mutants impaired in the expression of TR genes, no change in stomatal density and index was noticed. In optimal growth conditions, a line deficient in cytosolic NADPH-thioredoxin reductases displayed higher stomatal conductance and lower leaf temperature evaluated by thermal infrared imaging. In contrast, lines deficient in plastidial 2-CysPRXs or type-II GRXs exhibited compared to WT reduced conductance and warmer leaves in optimal conditions, and enhanced stomatal closure in epidermal peels treated with abscisic acid or hydrogen peroxide. Altogether, these data strongly support the contribution of thiol redox switches within the signalling network regulating guard cell movements and stomatal functioning.
Collapse
Affiliation(s)
- Jean-Luc Montillet
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Damien Rondet
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
- Laboratoire Nixe, Sophia-Antipolis, Valbonne, France
| | - Sabine Brugière
- Laboratoire EDyP, University of Grenoble Alpes, CEA, INSERM, IRIG, BGE, Grenoble, France
| | - Patricia Henri
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Dominique Rumeau
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, CNRS, Université Perpignan Via Domitia, Perpignan, France
| | - Yohann Couté
- Laboratoire EDyP, University of Grenoble Alpes, CEA, INSERM, IRIG, BGE, Grenoble, France
| | - Nathalie Leonhardt
- SAVE Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Pascal Rey
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| |
Collapse
|
42
|
Gjindali A, Herrmann HA, Schwartz JM, Johnson GN, Calzadilla PI. A Holistic Approach to Study Photosynthetic Acclimation Responses of Plants to Fluctuating Light. FRONTIERS IN PLANT SCIENCE 2021; 12:668512. [PMID: 33936157 PMCID: PMC8079764 DOI: 10.3389/fpls.2021.668512] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/23/2021] [Indexed: 05/10/2023]
Abstract
Plants in natural environments receive light through sunflecks, the duration and distribution of these being highly variable across the day. Consequently, plants need to adjust their photosynthetic processes to avoid photoinhibition and maximize yield. Changes in the composition of the photosynthetic apparatus in response to sustained changes in the environment are referred to as photosynthetic acclimation, a process that involves changes in protein content and composition. Considering this definition, acclimation differs from regulation, which involves processes that alter the activity of individual proteins over short-time periods, without changing the abundance of those proteins. The interconnection and overlapping of the short- and long-term photosynthetic responses, which can occur simultaneously or/and sequentially over time, make the study of long-term acclimation to fluctuating light in plants challenging. In this review we identify short-term responses of plants to fluctuating light that could act as sensors and signals for acclimation responses, with the aim of understanding how plants integrate environmental fluctuations over time and tailor their responses accordingly. Mathematical modeling has the potential to integrate physiological processes over different timescales and to help disentangle short-term regulatory responses from long-term acclimation responses. We review existing mathematical modeling techniques for studying photosynthetic responses to fluctuating light and propose new methods for addressing the topic from a holistic point of view.
Collapse
Affiliation(s)
- Armida Gjindali
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Helena A. Herrmann
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jean-Marc Schwartz
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Giles N. Johnson
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Pablo I. Calzadilla
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
43
|
Oxidative Stress-Induced Alteration of Plant Central Metabolism. Life (Basel) 2021; 11:life11040304. [PMID: 33915958 PMCID: PMC8066879 DOI: 10.3390/life11040304] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is an integral component of various stress conditions in plants, and this fact largely determines the substantial overlap in physiological and molecular responses to biotic and abiotic environmental challenges. In this review, we discuss the alterations in central metabolism occurring in plants experiencing oxidative stress. To focus on the changes in metabolite profile associated with oxidative stress per se, we primarily analyzed the information generated in the studies based on the exogenous application of agents, inducing oxidative stress, and the analysis of mutants displaying altered oxidative stress response. Despite of the significant variation in oxidative stress responses among different plant species and tissues, the dynamic and transient character of stress-induced changes in metabolites, and the strong dependence of metabolic responses on the intensity of stress, specific characteristic changes in sugars, sugar derivatives, tricarboxylic acid cycle metabolites, and amino acids, associated with adaptation to oxidative stress have been detected. The presented analysis of the available data demonstrates the oxidative stress-induced redistribution of metabolic fluxes targeted at the enhancement of plant stress tolerance through the prevention of ROS accumulation, maintenance of the biosynthesis of indispensable metabolites, and production of protective compounds. This analysis provides a theoretical basis for the selection/generation of plants with improved tolerance to oxidative stress and the development of metabolic markers applicable in research and routine agricultural practice.
Collapse
|
44
|
Mishra D, Shekhar S, Chakraborty S, Chakraborty N. Wheat 2-Cys peroxiredoxin plays a dual role in chlorophyll biosynthesis and adaptation to high temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1374-1389. [PMID: 33283912 DOI: 10.1111/tpj.15119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 05/19/2023]
Abstract
The molecular mechanism of high-temperature stress (HTS) response, in plants, has so far been investigated using transcriptomics, while the dynamics of HTS-responsive proteome remain unexplored. We examined the adaptive responses of the resilient wheat cultivar 'Unnat Halna' and dissected the HTS-responsive proteome landscape. This led to the identification of 55 HTS-responsive proteins (HRPs), which are predominantly involved in metabolism and defense pathways. Interestingly, HRPs included a 2-cysteine peroxiredoxin (2CP), designated Ta2CP, presumably involved in stress perception and adaptation. Complementation of Ta2CP in yeast and heterologous expression in Arabidopsis demonstrated its role in thermotolerance. Both Ta2CP silencing and overexpression inferred the involvement of Ta2CP in plant growth and chlorophyll biosynthesis. We demonstrated that Ta2CP interacts with protochlorophyllide reductase b, TaPORB. Reduced TaPORB expression was found in Ta2cp-silenced plants, while upregulation was observed in Ta2CP-overexpressed plants. Furthermore, the downregulation of Ta2CP in Taporb-silenced plants and reduction of protochlorophyllide in Ta2cp-silenced plants suggested the key role of Ta2CP in chlorophyll metabolism. Additionally, the transcript levels of AGPase1 and starch were increased in Ta2cp-silenced plants. More significantly, HTS-treated Ta2cp-silenced plants showed adaptive responses despite increased reactive oxygen species and peroxide concentrations, which might help in rapid induction of high-temperature acclimation.
Collapse
Affiliation(s)
- Divya Mishra
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shubhendu Shekhar
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
45
|
Label-Free Quantitative Proteomics Analysis in Susceptible and Resistant Brassica napus Cultivars Infected with Xanthomonas campestris pv. campestris. Microorganisms 2021; 9:microorganisms9020253. [PMID: 33513868 PMCID: PMC7911590 DOI: 10.3390/microorganisms9020253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 01/18/2023] Open
Abstract
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is the main disease of cruciferous vegetables. To characterize the resistance mechanism in the Brassica napus–Xcc pathosystem, Xcc-responsive proteins in susceptible (cv. Mosa) and resistant (cv. Capitol) cultivars were investigated using gel-free quantitative proteomics and analysis of gene expression. This allowed us to identify 158 and 163 differentially expressed proteins following Xcc infection in cv. Mosa and cv. Capitol, respectively, and to classify them into five major categories including antioxidative systems, proteolysis, photosynthesis, redox, and innate immunity. All proteins involved in protein degradation such as the protease complex, proteasome subunits, and ATP-dependent Clp protease proteolytic subunits, were upregulated only in cv. Mosa, in which higher hydrogen peroxide accumulation concurred with upregulated superoxide dismutase. In cv. Capitol, photosystem II (PS II)-related proteins were downregulated (excepting PS II 22 kDa), whereas the PS I proteins, ATP synthase, and ferredoxin-NADP+ reductase, were upregulated. For redox-related proteins, upregulation of thioredoxin, 2-cys peroxiredoxin, and glutathione S-transferase occurred in cv. Capitol, consistent with higher NADH-, ascorbate-, and glutathione-based reducing potential, whereas the proteins involved in the C2 oxidative cycle and glycolysis were highly activated in cv. Mosa. Most innate immunity-related proteins, including zinc finger domain (ZFD)-containing protein, glycine-rich RNA-binding protein (GRP) and mitochondrial outer membrane porin, were highly enhanced in cv. Capitol, concomitant with enhanced expression of ZFD and GRP genes. Distinguishable differences in the protein profile between the two cultivars deserves higher importance for breeding programs and understanding of disease resistance in the B. napus–Xcc pathosystem.
Collapse
|
46
|
Feng Y, Wei R, Liu A, Fan S, Che J, Zhang Z, Tian B, Yuan Y, Shi G, Shang H. Genome-wide identification, evolution, expression, and alternative splicing profiles of peroxiredoxin genes in cotton. PeerJ 2021; 9:e10685. [PMID: 33552724 PMCID: PMC7819121 DOI: 10.7717/peerj.10685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Peroxiredoxin (PRX) is a ubiquitous thioredoxin-dependent peroxidase that can eliminate excessive free radicals produced by stress and protect cells from oxidative damage. PRXs are also involved in reactive oxygen species (ROS)- and redox-dependent signaling by performing redox interactions with other proteins and modify their redox status. At present, PRX family identification, evolution and regulation research has been conducted in some plants; however, systematic research about this family is lacking in cotton. In this study, a total of 44 PRXs were identified in the cotton genome. Phylogenetic and conserved active site analyses showed that the PRXs were divided into six subfamilies according to the conserved site (PxxxTxxC…S…W/F) and conserved cysteinyl residues positions. Segmental duplication and polyploid events were the main methods for PRX family expansion, and the PRXs of diploid G. arboreum were the donors of PRXs in the D subgenomes of allotetraploid G. hirsutum and G. barbadense during the evolution of the PRX family. qRT-PCR analysis confirmed that cis-acting elements play important roles in regulating the expression of PRXs. Alternative splicing events occurred in GhPRX14-D that can increased the complexity of transcripts in G. hirsutum. Subcellular localization showed that most PRX members were located in chloroplasts, the cytoplasmic membrane and the nucleus. Our results provide systematic support for a better understanding of PRXs in cotton and a starting point for further studies of the specific functions of PRXs in cotton.
Collapse
Affiliation(s)
- Yulong Feng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Renhui Wei
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Anyang, China
| | - Aiying Liu
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Anyang, China
| | - Senmiao Fan
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Anyang, China
| | - JinCan Che
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Zhen Zhang
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Anyang, China
| | - Baoming Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Youlu Yuan
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Anyang, China
| | - Gongyao Shi
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Haihong Shang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Anyang, China
| |
Collapse
|
47
|
Hasanuzzaman M, Bhuyan MHMB, Parvin K, Bhuiyan TF, Anee TI, Nahar K, Hossen MS, Zulfiqar F, Alam MM, Fujita M. Regulation of ROS Metabolism in Plants under Environmental Stress: A Review of Recent Experimental Evidence. Int J Mol Sci 2020; 21:ijms21228695. [PMID: 33218014 PMCID: PMC7698618 DOI: 10.3390/ijms21228695] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation and subsequent damaging effects in plants but also for their diversified roles in signaling cascade, affecting other biomolecules, hormones concerning growth, development, or regulation of stress tolerance. Therefore, a good balance between ROS generation and the antioxidant defense system protects photosynthetic machinery, maintains membrane integrity, and prevents damage to nucleic acids and proteins. Notably, the antioxidant defense system not only scavenges ROS but also regulates the ROS titer for signaling. A glut of studies have been executed over the last few decades to discover the pattern of ROS generation and ROS scavenging. Reports suggested a sharp threshold level of ROS for being beneficial or toxic, depending on the plant species, their growth stages, types of abiotic stresses, stress intensity, and duration. Approaches towards enhancing the antioxidant defense in plants is one of the vital areas of research for plant biologists. Therefore, in this review, we accumulated and discussed the physicochemical basis of ROS production, cellular compartment-specific ROS generation pathways, and their possible distressing effects. Moreover, the function of the antioxidant defense system for detoxification and homeostasis of ROS for maximizing defense is also discussed in light of the latest research endeavors and experimental evidence.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
- Correspondence: (M.H.); (M.F.)
| | | | - Khursheda Parvin
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan;
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Tasnim Farha Bhuiyan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.F.B.); (K.N.)
| | - Taufika Islam Anee
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.F.B.); (K.N.)
| | | | - Faisal Zulfiqar
- Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Md. Mahabub Alam
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan;
- Correspondence: (M.H.); (M.F.)
| |
Collapse
|
48
|
Liu W, Barbosa Dos Santos I, Moye A, Park SW. CYP20-3 deglutathionylates 2-CysPRX A and suppresses peroxide detoxification during heat stress. Life Sci Alliance 2020; 3:e202000775. [PMID: 32732254 PMCID: PMC7409537 DOI: 10.26508/lsa.202000775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 11/24/2022] Open
Abstract
In plants, growth-defense trade-offs occur because of limited resources, which demand prioritization towards either of them depending on various external and internal factors. However, very little is known about molecular mechanisms underlying their occurrence. Here, we describe that cyclophilin 20-3 (CYP20-3), a 12-oxo-phytodienoic acid (OPDA)-binding protein, crisscrosses stress responses with light-dependent electron reactions, which fine-tunes activities of key enzymes in plastid sulfur assimilations and photosynthesis. Under stressed states, OPDA, accumulates in the chloroplasts, binds and stimulates CYP20-3 to convey electrons towards serine acetyltransferase 1 (SAT1) and 2-Cys peroxiredoxin A (2CPA). The latter is a thiol-based peroxidase, protecting and optimizing photosynthesis by reducing its toxic byproducts (e.g., H2O2). Reduction of 2CPA then inactivates its peroxidase activity, suppressing the peroxide detoxification machinery, whereas the activation of SAT1 promotes thiol synthesis and builds up reduction capacity, which in turn triggers the retrograde regulation of defense gene expressions against abiotic stress. Thus, we conclude that CYP20-3 is a unique metabolic hub conveying resource allocations between plant growth and defense responses (trade-offs), ultimately balancing optimal growth phonotype.
Collapse
Affiliation(s)
- Wenshan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | | | - Anna Moye
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Sang-Wook Park
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| |
Collapse
|
49
|
Telman W, Liebthal M, Dietz KJ. Redox regulation by peroxiredoxins is linked to their thioredoxin-dependent oxidase function. PHOTOSYNTHESIS RESEARCH 2020; 145:31-41. [PMID: 31768716 DOI: 10.1007/s11120-019-00691-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
The chloroplast contains three types of peroxiredoxins (PRXs). Recently, 2-CysPRX was associated with thioredoxin (TRX) oxidation-dependent redox regulation. Here, this analysis was expanded to include PRXQ and PRXIIE. Oxidized PRXQ was able to inactivate NADPH malate dehydrogenase and fructose-1,6-bisphosphatase most efficiently in the presence of TRX-m1 and TRX-m4. The inactivation ability of TRXs did not entirely match their reductive activation efficiency. PRXIIE was unable to function as TRX oxidase in enzyme regulation. This conclusion was further supported by the observation that PRXQ adopts the oxidized form by about 50% in leaves, supporting a possible function as a TRX oxidase similar to 2-CysPRX. Results on the oxidation state of photosystem I (P700), plastocyanin, and ferredoxin in intact leaves indicate that each type of PRX has distinct regulatory functions, and that both 2-CysPRX and PRXQ conditionally assist in adjusting the redox state of target proteins for proper activity.
Collapse
Affiliation(s)
- Wilena Telman
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, University Str. 25, 33615, Bielefeld, Germany
| | - Michael Liebthal
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, University Str. 25, 33615, Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, University Str. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
50
|
Liebthal M, Schuetze J, Dreyer A, Mock HP, Dietz KJ. Redox Conformation-Specific Protein-Protein Interactions of the 2-Cysteine Peroxiredoxin in Arabidopsis. Antioxidants (Basel) 2020; 9:E515. [PMID: 32545358 PMCID: PMC7346168 DOI: 10.3390/antiox9060515] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 01/02/2023] Open
Abstract
2-Cysteine peroxiredoxins (2-CysPRX) are highly abundant thiol peroxidases in chloroplasts and play key roles in reactive oxygen species (ROS) defense and redox signaling. Peroxide-dependent oxidation of cysteines induces conformational changes that alter the ability for protein-protein interactions. For regeneration, 2-CysPRXs withdraw electrons from thioredoxins (TRXs) and participate in redox-dependent regulation by affecting the redox state of TRX-dependent targets, for example, in chloroplast metabolism. This work explores the redox conformation-specific 2-CysPRX interactome using an affinity-based pull down with recombinant variants arrested in specific quaternary conformations. This allowed us to address a critical and poorly explored aspect of the redox-regulatory network and showed that the interaction of TRXs, their interaction partners, and 2-CysPRX occur under contrasting redox conditions. A set of 178 chloroplast proteins were identified from leaf proteins and included proteins with functions in photosynthesis, carbohydrate, fatty acid and amino acid metabolism, and defense. These processes are known to be deregulated in plants devoid of 2-CysPRX. Selected enzymes like LIPOXYGENASE 2, CHLOROPLAST PROTEIN 12-1, CHORISMATE SYNTHASE, ß-CARBONIC ANHYDRASE, and FERREDOXIN-dependent GLUTAMATE SYNTHASE 1 were subjected to far Western, isothermal titration calorimetry, and enzyme assays for validation. The pull down fractions frequently contained TRXs as well as their target proteins, for example, FRUCTOSE-1,6-BISPHOSPHATASE and MALATE DEHYDROGENASE. The difference between TRX-dependent indirect interactions of TRX targets and 2-CysPRX and direct 2-CysPRX binding is hypothesized to be related to quaternary structure formation, where 2-CysPRX oligomers function as scaffold for complex formation, whereas TRX oxidase activity of 2-CysPRX controls the redox state of TRX-related enzyme activity.
Collapse
Affiliation(s)
- Michael Liebthal
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (M.L.); (A.D.)
| | - Johannes Schuetze
- Angewandte Biochemie, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstraße 3, D-06466 Seeland, Germany; (J.S.); (H.-P.M.)
| | - Anna Dreyer
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (M.L.); (A.D.)
| | - Hans-Peter Mock
- Angewandte Biochemie, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstraße 3, D-06466 Seeland, Germany; (J.S.); (H.-P.M.)
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (M.L.); (A.D.)
| |
Collapse
|