1
|
Doidy J, Wang Y, Gouaille L, Goma-Louamba I, Jiang Z, Pourtau N, Le Gourrierec J, Sakr S. Sugar Transport and Signaling in Shoot Branching. Int J Mol Sci 2024; 25:13214. [PMID: 39684924 PMCID: PMC11641904 DOI: 10.3390/ijms252313214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The source-sink relationship is critical for proper plant growth and development, particularly for vegetative axillary buds, whose activity shapes the branching pattern and ultimately the plant architecture. Once formed from axillary meristems, axillary buds remain dormant or become active to grow into new branches. This transition is notably driven by the regulation of the bud sink strength, which is reflected in the ability to unload, metabolize and store photoassimilates. Plants have so far developed two main mechanisms for unloading sugars (sucrose) towards sink organs, a symplasmic pathway and an apoplasmic pathway, but so far limited investigations have been reported about the modes of sugar uptake during the transition from the dormant to the active outgrowth state of the bud. The available data indicate that the switch from dormant bud to active outgrowing state, requires sugar and is shortly preceded by an increase in bud metabolic activity and a remobilization of the stem starch reserves in favor of growing buds. This activation of the bud sink strength is accompanied by an up-regulation of the main markers of apoplasmic unloading, such as sugar transporters (sucrose transporters-SUTs; sugar will eventually be exported transporters-SWEETs), sucrose hydrolyzing enzymes (cell wall invertase-CWINV) and sugar metabolic pathways (glycolysis/tricarboxylic cycle-TCA; oxidative pentose phosphate pathway-OPPP). As these results are limited to a few species, they are not sufficient to provide a complete and accurate picture of the mode(s) of sugar unloading toward axillary buds and deserve to be complemented by additional studies in a wide variety of plants using systems integration, combining genetic, molecular and immunolocalization approaches. Altogether, we discuss here how sugar is a systemic regulator of shoot branching, acting both as an energy-rich molecule and a signaling entity in the establishment of the bud sink strength.
Collapse
Affiliation(s)
- Joan Doidy
- EBI Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267, 86073 Poitiers, France; (J.D.)
| | - Yuhui Wang
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France (L.G.); (Z.J.); (J.L.G.)
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Léo Gouaille
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France (L.G.); (Z.J.); (J.L.G.)
| | - Ingrid Goma-Louamba
- EBI Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267, 86073 Poitiers, France; (J.D.)
| | - Zhengrong Jiang
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France (L.G.); (Z.J.); (J.L.G.)
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Nathalie Pourtau
- EBI Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267, 86073 Poitiers, France; (J.D.)
| | - José Le Gourrierec
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France (L.G.); (Z.J.); (J.L.G.)
| | - Soulaiman Sakr
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France (L.G.); (Z.J.); (J.L.G.)
| |
Collapse
|
2
|
Roitman M, Eshel D. Similar chilling response of dormant buds in potato tuber and woody perennials. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6076-6092. [PMID: 38758594 DOI: 10.1093/jxb/erae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Bud dormancy is a survival strategy that plants have developed in their native habitats. It helps them endure harsh seasonal changes by temporarily halting growth and activity until conditions become more favorable. Research has primarily focused on bud dormancy in tree species and the ability to halt growth in vegetative tissues, particularly in meristems. Various plant species, such as potato, have developed specialized storage organs, enabling them to become dormant during their yearly growth cycle. Deciduous trees and potato tubers exhibit a similar type of bud endodormancy, where the bud meristem will not initiate growth, even under favorable environmental conditions. Chilling accumulation activates C-repeat/dehydration responsive element binding (DREB) factors (CBFs) transcription factors that modify the expression of dormancy-associated genes. Chilling conditions shorten the duration of endodormancy by influencing plant hormones and sugar metabolism, which affect the timing and rate of bud growth. Sugar metabolism and signaling pathways can interact with abscisic acid, affecting the symplastic connection of dormant buds. This review explores how chilling affects endodormancy duration and explores the similarity of the chilling response of dormant buds in potato tubers and woody perennials.
Collapse
Affiliation(s)
- Marina Roitman
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dani Eshel
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
3
|
Dogramaci M, Dobry EP, Fortini EA, Sarkar D, Eshel D, Campbell MA. Physiological and molecular mechanisms associated with potato tuber dormancy. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6093-6109. [PMID: 38650389 PMCID: PMC11480654 DOI: 10.1093/jxb/erae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Tuber dormancy is an important physiological trait that impacts post-harvest storage and end-use qualities of potatoes. Overall, dormancy regulation of potato tubers is a complex process driven by genetic as well as environmental factors. Elucidation of the molecular and physiological mechanisms that influence different dormancy stages of tubers has wider potato breeding and industry-relevant implications. Therefore, the primary objective of this review is to present current knowledge of the diversity in tuber dormancy traits among wild relatives of potatoes and discuss how genetic and epigenetic factors contribute to tuber dormancy. Advancements in understanding of key physiological mechanisms involved in tuber dormancy regulation, such as apical dominance, phytohormone metabolism, and oxidative stress responses, are also discussed. This review highlights the impacts of common sprout suppressors on the molecular and physiological mechanisms associated with tuber dormancy and other storage qualities. Collectively, the literature suggests that significant changes in expression of genes associated with the cell cycle, phytohormone metabolism, and oxidative stress response influence initiation, maintenance, and termination of dormancy in potato tubers. Commercial sprout suppressors mainly alter the expression of genes associated with the cell cycle and stress responses and suppress sprout growth rather than prolonging tuber dormancy.
Collapse
Affiliation(s)
- Munevver Dogramaci
- Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, Fargo, ND 58102, USA
| | - Emily P Dobry
- College of Agricultural Science, Pennsylvania State University, Lake Erie Regional Grape Research and Extension Center, North East, PA 16428, USA
| | - Evandro A Fortini
- Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, Fargo, ND 58102, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Dipayan Sarkar
- Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, Fargo, ND 58102, USA
| | - Dani Eshel
- Department of Postharvest Science, The Volcani Institute, Agricultural Research Organization, Rishon LeZion, Israel
| | - Michael A Campbell
- College of Agricultural Science, Pennsylvania State University, Lake Erie Regional Grape Research and Extension Center, North East, PA 16428, USA
| |
Collapse
|
4
|
Zhan C, Jia R, Yang S, Zhang M, Peng L. Transcriptome Analysis Reveals the Mechanism of Cold-Induced Sweetening in Chestnut during Cold Storage. Foods 2024; 13:2822. [PMID: 39272587 PMCID: PMC11394792 DOI: 10.3390/foods13172822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Chestnuts become sweetened with better tastes for fried products after cold storage, but the possible mechanism is not clear. The dynamics of sugar components and related physiological responses, as well as the possible molecular mechanism in chestnuts during cold storage, were investigated. Sucrose accumulation and starch degradation contributed to taste improvement. Sucrose content reached the peak after two months of cold storage, along with the accumulation of reducing sugars of maltose, fructose and glucose to a much lesser extent. Meanwhile, alpha-amylase and beta-amylase maintained high levels, and the activities of acid invertase and sucrose synthase increased. Transcriptome data demonstrated that differentially expressed genes (DEGs) were significantly enriched in the process of starch and sucrose metabolism pathway, revealing the conversion promotion of starch to sucrose. Furthermore, DEGs involved in multiple phytohormone biosynthesis and signal transduction, as well as the transcription regulators, indicated that sucrose accumulation might be interconnected with the dormancy release of chestnuts, with over 90% germinated after two months of cold storage. Altogether, the results indicated that cold storage improved the taste of chestnuts mainly due to sucrose accumulation induced by DEGs of starch and sucrose metabolism pathway in this period, and the sweetening process was interconnected with dormancy release.
Collapse
Affiliation(s)
- Chun Zhan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruqi Jia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuzhen Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meihong Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Litao Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Basso MF, Girardin G, Vergata C, Buti M, Martinelli F. Genome-wide transcript expression analysis reveals major chickpea and lentil genes associated with plant branching. FRONTIERS IN PLANT SCIENCE 2024; 15:1384237. [PMID: 38962245 PMCID: PMC11220206 DOI: 10.3389/fpls.2024.1384237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
The search for elite cultivars with better architecture has been a demand by farmers of the chickpea and lentil crops, which aims to systematize their mechanized planting and harvesting on a large scale. Therefore, the identification of genes associated with the regulation of the branching and architecture of these plants has currently gained great importance. Herein, this work aimed to gain insight into transcriptomic changes of two contrasting chickpea and lentil cultivars in terms of branching pattern (little versus highly branched cultivars). In addition, we aimed to identify candidate genes involved in the regulation of shoot branching that could be used as future targets for molecular breeding. The axillary and apical buds of chickpea cultivars Blanco lechoso and FLIP07-318C, and lentil cultivars Castellana and Campisi, considered as little and highly branched, respectively, were harvested. A total of 1,624 and 2,512 transcripts were identified as differentially expressed among different tissues and contrasting cultivars of chickpea and lentil, respectively. Several gene categories were significantly modulated such as cell cycle, DNA transcription, energy metabolism, hormonal biosynthesis and signaling, proteolysis, and vegetative development between apical and axillary tissues and contrasting cultivars of chickpea and lentil. Based on differential expression and branching-associated biological function, ten chickpea genes and seven lentil genes were considered the main players involved in differentially regulating the plant branching between contrasting cultivars. These collective data putatively revealed the general mechanism and high-effect genes associated with the regulation of branching in chickpea and lentil, which are potential targets for manipulation through genome editing and transgenesis aiming to improve plant architecture.
Collapse
Affiliation(s)
| | | | - Chiara Vergata
- Department of Biology, University of Florence, Florence, Italy
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | | |
Collapse
|
6
|
Chen Z, Chen Y, Shi L, Wang L, Li W. Interaction of Phytohormones and External Environmental Factors in the Regulation of the Bud Dormancy in Woody Plants. Int J Mol Sci 2023; 24:17200. [PMID: 38139028 PMCID: PMC10743443 DOI: 10.3390/ijms242417200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Bud dormancy and release are essential phenomena that greatly assist in adapting to adverse growing conditions and promoting the holistic growth and development of perennial plants. The dormancy and release process of buds in temperate perennial trees involves complex interactions between physiological and biochemical processes influenced by various environmental factors, representing a meticulously orchestrated life cycle. In this review, we summarize the role of phytohormones and their crosstalk in the establishment and release of bud dormancy. External environmental factors, such as light and temperature, play a crucial role in regulating bud germination. We also highlight the mechanisms of how light and temperature are involved in the regulation of bud dormancy by modulating phytohormones. Moreover, the role of nutrient factors, including sugar, in regulating bud dormancy is also discussed. This review provides a foundation for enhancing our understanding of plant growth and development patterns, fostering agricultural production, and exploring plant adaptive responses to adversity.
Collapse
Affiliation(s)
| | | | | | | | - Weixing Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.C.); (Y.C.); (L.S.); (L.W.)
| |
Collapse
|
7
|
Wang Q, Xue N, Sun C, Tao J, Mi C, Yuan Y, Pan X, Gui M, Long R, Ding R, Li S, Lin L. Transcriptomic Profiling of Shoot Apical Meristem Aberrations in the Multi-Main-Stem Mutant ( ms) of Brassica napus L. Genes (Basel) 2023; 14:1396. [PMID: 37510301 PMCID: PMC10378962 DOI: 10.3390/genes14071396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Rapeseed (Brassica napus L.) is a globally important oilseed crop with various uses, including the consumption of its succulent stems as a seasonal vegetable, but its uniaxial branching habit limits the stem yield. Therefore, developing a multi-stem rapeseed variety has become increasingly crucial. In this study, a natural mutant of the wild type (ZY511, Zhongyou511) with stable inheritance of the multi-stem trait (ms) was obtained, and it showed abnormal shoot apical meristem (SAM) development and an increased main stem number compared to the WT. Histological and scanning electron microscopy analyses revealed multiple SAMs in the ms mutant, whereas only a single SAM was found in the WT. Transcriptome analyses showed significant alterations in the expression of genes involved in cytokinin (CK) biosynthesis and metabolism pathways in the ms mutant. These findings provide insight into the mechanism of multi-main-stem formation in Brassica napus L. and lay a theoretical foundation for breeding multi-main-stem rapeseed vegetable varieties.
Collapse
Affiliation(s)
- Qian Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
- Engineering Research Center of Vegetable Germplasm Innovation and Support Production Technology, Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China
| | - Na Xue
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
- Engineering Research Center of Vegetable Germplasm Innovation and Support Production Technology, Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China
| | - Chao Sun
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China
| | - Jing Tao
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
- Engineering Research Center of Vegetable Germplasm Innovation and Support Production Technology, Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China
| | - Chao Mi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Yi Yuan
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
- Engineering Research Center of Vegetable Germplasm Innovation and Support Production Technology, Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China
| | - Xiangwei Pan
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Min Gui
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
- Engineering Research Center of Vegetable Germplasm Innovation and Support Production Technology, Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China
| | - Ronghua Long
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
- Engineering Research Center of Vegetable Germplasm Innovation and Support Production Technology, Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China
| | - Renzhan Ding
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Shikai Li
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
- Engineering Research Center of Vegetable Germplasm Innovation and Support Production Technology, Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China
| | - Liangbin Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
8
|
Considine MJ, Foyer CH. Metabolic regulation of quiescence in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1132-1148. [PMID: 36994639 PMCID: PMC10952390 DOI: 10.1111/tpj.16216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 05/31/2023]
Abstract
Quiescence is a crucial survival attribute in which cell division is repressed in a reversible manner. Although quiescence has long been viewed as an inactive state, recent studies have shown that it is an actively monitored process that is influenced by environmental stimuli. Here, we provide a perspective of the quiescent state and discuss how this process is tuned by energy, nutrient and oxygen status, and the pathways that sense and transmit these signals. We not only highlight the governance of canonical regulators and signalling mechanisms that respond to changes in nutrient and energy status, but also consider the central significance of mitochondrial functions and cues as key regulators of nuclear gene expression. Furthermore, we discuss how reactive oxygen species and the associated redox processes, which are intrinsically linked to energy carbohydrate metabolism, also play a key role in the orchestration of quiescence.
Collapse
Affiliation(s)
- Michael J. Considine
- The UWA Institute of Agriculture and the School of Molecular SciencesThe University of Western AustraliaPerthWestern Australia6009Australia
- The Department of Primary Industries and Regional DevelopmentPerthWestern Australia6000Australia
| | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonB15 2TTUK
| |
Collapse
|
9
|
Confraria A, Muñoz-Gasca A, Ferreira L, Baena-González E, Cubas P. Shoot Branching Phenotyping in Arabidopsis and Tomato. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2494:47-59. [PMID: 35467200 DOI: 10.1007/978-1-0716-2297-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Shoot branching is an important trait that depends on the activity of axillary meristems and buds and their outgrowth into branches. It is remarkably plastic, being influenced by a number of external cues, such as light, temperature, soil nutrients, and mechanical manipulation. These are transduced into an internal hormone signaling network where auxin, cytokinins, and strigolactones play leading regulatory roles. Recently, sugars have also emerged as important signals promoting bud activation. These signals are in part integrated by the bud-specific growth repressor BRANCHED1 (BRC1).To understand how shoot branching is affected by particular growth conditions or in specific plant lines, it is necessary to count the number of branches and/or quantify other branch-related parameters. Here we describe how to perform such quantifications in Arabidopsis and in tomato.
Collapse
Affiliation(s)
- Ana Confraria
- Instituto Gulbenkian de Ciência, Oeiras, Portugal. .,GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal.
| | - Aitor Muñoz-Gasca
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Liliana Ferreira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | - Elena Baena-González
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Huang XJ, Jian SF, Chen DL, Zhong C, Miao JH. Concentration-dependent dual effects of exogenous sucrose on nitrogen metabolism in Andrographis paniculata. Sci Rep 2022; 12:4906. [PMID: 35318399 PMCID: PMC8940917 DOI: 10.1038/s41598-022-08971-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
The effects of exogenous sucrose (Suc) concentrations (0, 0.5, 1, 5, 10 mmol L−1) on carbon (C) and nitrogen (N) metabolisms were investigated in a medicinal plant Andrographis paniculata (Chuanxinlian). Suc application with the concentration of 0.5–5 mmol L−1 significantly promoted plant growth. In contrast, 10 mmol L−1 Suc retarded plant growth and increased contents of anthocyanin and MDA and activity of SOD in comparison to 0.5–5 mmol L−1 Suc. Suc application increased contents of leaf soluble sugar, reducing sugar and trerhalose, as well as isocitrate dehydrogenase (ICDH) activity, increasing supply of C-skeleton for N assimilation. However, total leaf N was peaked at 1 mmol L−1 Suc, which was consistent with root activity, suggesting that exogenous Suc enhanced root N uptake. At 10 mmol L−1 Suc, total leaf N and activities of glutamine synthase (GS), glutamate synthase (GOGAT), NADH-dependent glutamate dehydrogenase (NADH-GDH) and glutamic–pyruvic transaminase (GPT) were strongly reduced but NH4+ concentration was significantly increased. The results revealed that exogenous Suc is an effective stimulant for A. paniculata plant growth. Low Suc concentration (e.g. 1 mmol L−1) increased supply of C-skeleton and promoted N uptake and assimilation in A. paniculata plant, whereas high Suc concentration (e.g. 10 mmol L−1) uncoupled C and N metabolisms, reduced N metabolism and induced plant senescence.
Collapse
Affiliation(s)
- Xue-Jing Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Shao-Fen Jian
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.,Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Dong-Liang Chen
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.,Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Chu Zhong
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China. .,Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Jian-Hua Miao
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China. .,Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China. .,Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| |
Collapse
|
11
|
Barbier FF, Cao D, Fichtner F, Weiste C, Perez-Garcia MD, Caradeuc M, Le Gourrierec J, Sakr S, Beveridge CA. HEXOKINASE1 signalling promotes shoot branching and interacts with cytokinin and strigolactone pathways. THE NEW PHYTOLOGIST 2021; 231:1088-1104. [PMID: 33909299 DOI: 10.1111/nph.17427] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/18/2021] [Indexed: 05/08/2023]
Abstract
Plant architecture is controlled by several endogenous signals including hormones and sugars. However, only little information is known about the nature and roles of the sugar signalling pathways in this process. Here we test whether the sugar signalling pathway mediated by HEXOKINASE1 (HXK1) is involved in the control of shoot branching. To test the involvement of HXK1 in shoot branching and in the hormonal network controlling this process, we modulated the HXK1 pathway using physiological and genetic approaches in rose, pea and arabidopsis. Mannose-induced HXK signalling triggered bud outgrowth in rose and pea. In arabidopsis, both HXK1 deficiency and defoliation led to decreased shoot branching and conferred hypersensitivity to auxin. Complementation of the HXK1 knockout mutant gin2 with a catalytically inactive HXK1, restored shoot branching to the wild-type level. HXK1-deficient plants displayed decreased cytokinin levels and increased expression of MAX2, which is required for strigolactone signalling. The branching phenotype of HXK1-deficient plants could be partly restored by cytokinin treatment and strigolactone deficiency could override the negative impact of HXK1 deficiency on shoot branching. Our observations demonstrate that HXK1 signalling contributes to the regulation of shoot branching and interacts with hormones to modulate plant architecture.
Collapse
Affiliation(s)
- Francois F Barbier
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université Angers, Angers, 49000, France
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Da Cao
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Franziska Fichtner
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| | | | - Mathieu Caradeuc
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université Angers, Angers, 49000, France
| | - José Le Gourrierec
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université Angers, Angers, 49000, France
| | - Soulaiman Sakr
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université Angers, Angers, 49000, France
| | - Christine A Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Qld, 4072, Australia
| |
Collapse
|
12
|
Majda M. Branching out: new insights into sucrose-induced branching. PLANT PHYSIOLOGY 2021; 185:1479-1480. [PMID: 33893819 PMCID: PMC8133655 DOI: 10.1093/plphys/kiab041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Mateusz Majda
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
13
|
Salam BB, Barbier F, Danieli R, Teper-Bamnolker P, Ziv C, Spíchal L, Aruchamy K, Shnaider Y, Leibman D, Shaya F, Carmeli-Weissberg M, Gal-On A, Jiang J, Ori N, Beveridge C, Eshel D. Sucrose promotes stem branching through cytokinin. PLANT PHYSIOLOGY 2021; 185:1708-1721. [PMID: 33793932 PMCID: PMC8133652 DOI: 10.1093/plphys/kiab003] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/16/2020] [Indexed: 05/23/2023]
Abstract
Shoot branching is an important aspect of plant architecture because it substantially affects plant biology and agricultural performance. Sugars play an important role in the induction of shoot branching in several species, including potato (Solanum tuberosum L.). However, the mechanism by which sugars affect shoot branching remains mostly unknown. In the present study, we addressed this question using sugar-mediated induction of bud outgrowth in potato stems under etiolated conditions. Our results indicate that sucrose feeding to detached stems promotes the accumulation of cytokinin (CK), as well as the expression of vacuolar invertase (VInv), an enzyme that contributes to sugar sink strength. These effects of sucrose were suppressed by CK synthesis and perception inhibitors, while CK supplied to detached stems induced bud outgrowth and VInv activity in the absence of sucrose. CK-induced bud outgrowth was suppressed in vinv mutants, which we generated by genome editing. Altogether, our results identify a branching-promoting module, and suggest that sugar-induced lateral bud outgrowth is in part promoted by the induction of CK-mediated VInv activity.
Collapse
Affiliation(s)
- Bolaji Babajide Salam
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel
| | - Francois Barbier
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia
| | - Raz Danieli
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel
| | | | - Carmit Ziv
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Lukáš Spíchal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University in Olomouc, Czech Republic (L.S.)
| | - Kalaivani Aruchamy
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Yula Shnaider
- Department of Plant Pathology and Weed Research, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Diana Leibman
- Department of Plant Pathology and Weed Research, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Felix Shaya
- Department of Fruit Tree Sciences, The Volcani Center, ARO, Rishon LeZion, Israel
| | | | - Amit Gal-On
- Department of Plant Pathology and Weed Research, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Jiming Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel
| | - Christine Beveridge
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia
| | - Dani Eshel
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel
| |
Collapse
|
14
|
Convergence and Divergence of Sugar and Cytokinin Signaling in Plant Development. Int J Mol Sci 2021; 22:ijms22031282. [PMID: 33525430 PMCID: PMC7865218 DOI: 10.3390/ijms22031282] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
Plants adjust their growth and development through a sophisticated regulatory system integrating endogenous and exogenous cues. Many of them rely on intricate crosstalk between nutrients and hormones, an effective way of coupling nutritional and developmental information and ensuring plant survival. Sugars in their different forms such as sucrose, glucose, fructose and trehalose-6-P and the hormone family of cytokinins (CKs) are major regulators of the shoot and root functioning throughout the plant life cycle. While their individual roles have been extensively investigated, their combined effects have unexpectedly received little attention, resulting in many gaps in current knowledge. The present review provides an overview of the relationship between sugars and CKs signaling in the main developmental transition during the plant lifecycle, including seed development, germination, seedling establishment, root and shoot branching, leaf senescence, and flowering. These new insights highlight the diversity and the complexity of the crosstalk between sugars and CKs and raise several questions that will open onto further investigations of these regulation networks orchestrating plant growth and development.
Collapse
|
15
|
Teper-Bamnolker P, Danieli R, Peled-Zehavi H, Belausov E, Abu-Abied M, Avin-Wittenberg T, Sadot E, Eshel D. Vacuolar processing enzyme translocates to the vacuole through the autophagy pathway to induce programmed cell death. Autophagy 2020; 17:3109-3123. [PMID: 33249982 DOI: 10.1080/15548627.2020.1856492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
The caspase-like vacuolar processing enzyme (VPE) is a key factor in programmed cell death (PCD) associated with plant stress responses. Growth medium lacking a carbon source and dark conditions caused punctate labeling of 35S::VPE1-GFP (StVPE1-GFP) in potato leaves. Under conditions of carbon starvation, VPE activity and PCD symptoms strongly increased in BY-2 cells, but to a much lesser extent in VPE-RNAi BY-2 cells. During extended exposure to carbon starvation, VPE expression and activity levels peaked, with a gradual increase in BY-2 cell death. Histological analysis of StVPE1-GFP in BY-2 cells showed that carbon starvation induces its translocation from the endoplasmic reticulum to the central vacuole through tonoplast engulfment. Exposure of BY-2 culture to the macroautophagy/autophagy inhibitor concanamycin A led to, along with an accumulation of autophagic bodies, accumulation of StVPE1-GFP in the cell vacuole. This accumulation did not occur in the presence of 3-methyladenine, an inhibitor of early-stage autophagy. BY-2 cells constitutively expressing RFP-StATG8IL, an autophagosome marker, showed colocalization with the StVPE1-GFP protein in the cytoplasm and vacuole. RNAi silencing of the core autophagy component ATG4 in BY-2 cells reduced VPE activity and cell death. These results are the first to suggest that VPE translocates to the cell vacuole through the autophagy pathway, leading to PCD.Abbreviations: ATG: autophagy related; CLP: caspase-like protease; HR: hypersensitive response; PCD: programmed cell death; St: Solanum tuberosum; VPE: vacuolar processing enzyme.
Collapse
Affiliation(s)
| | - Raz Danieli
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel.,Institute of Plant Sciences and Genetics in Agriculture, the Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot Israel
| | - Hadas Peled-Zehavi
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot Israel
| | - Eduard Belausov
- Department of Ornamental Horticulture, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Mohamad Abu-Abied
- Department of Ornamental Horticulture, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Einat Sadot
- Department of Ornamental Horticulture, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Dani Eshel
- Department of Postharvest Science, The Volcani Center, ARO, Rishon LeZion, Israel
| |
Collapse
|
16
|
Liu H, Wen Y, Cui M, Qi X, Deng R, Gao J, Cheng Z. Histological, Physiological and Transcriptomic Analysis Reveal Gibberellin-Induced Axillary Meristem Formation in Garlic ( Allium sativum). PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9080970. [PMID: 32751960 PMCID: PMC7464525 DOI: 10.3390/plants9080970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 05/11/2023]
Abstract
The number of cloves in a garlic bulb is controlled by axillary meristem differentiation, which directly determines the propagation efficiency. Our previous study showed that injecting garlic plants with gibberellins (GA3) solution significantly increased clove number per bulb. However, the physiological and molecular mechanism of GA-induced axillary bud formation is still unknown. Herein, dynamic changes in histology, phytohormones, sugars and related genes expression at 2, 4, 8, 16 and 32 days after treatment (DAT) were investigated. Histological results indicated two stages (axillary meristem initiation and dormancy) were in the period of 0-30 days after GA3 treatment. Application of GA3 caused a significant increase of GA3 and GA4, and the downregulation of AsGA20ox expression. Furthermore, the change trends in zeatin riboside (ZR) and soluble sugar were the same, in which a high level of ZR at 2 DAT and high content of soluble sugar, glucose and fructose at 4 DAT were recorded, and a low level of ZR and soluble sugar arose at 16 and 32 DAT. Overall, injection of GA3 firstly caused the downregulation of AsGA20ox, a significant increase in the level of ZR and abscisic acid (ABA), and the upregulation of AsCYP735 and AsAHK to activate axillary meristem initiation. Low level of ZR and soluble sugar and a high level of sucrose maintained axillary meristem dormancy.
Collapse
|
17
|
Spatial regulation of resource allocation in response to nutritional availability. J Theor Biol 2020; 486:110078. [PMID: 31734241 DOI: 10.1016/j.jtbi.2019.110078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 01/31/2023]
Abstract
It is critical for a living organism to appropriately allocate resources among its organs, or within a specific organ, because available resources are generally limited. For example, in response to the nutritional environment of their soil, plants regulate resource allocation in their roots in order to plastically change their root system architecture (RSA) for efficiently absorbing nutrients. However, it is still not understood why and how RSA is adaptively controlled. Therefore, we modeled and investigated the spatial regulation of resource allocation, focusing on RSA in response to nutrient availability, and provided analytical solutions to the optimal strategy in the case of simple fitness functions. We first showed that our model could explain the experimental evidence where root growth is maximized at the optimal nutrient concentration under the homogeneous condition. Next, we extended our model to incorporate the spatial heterogeneity of nutrient availability. This extended model revealed that growth suppression by systemic control is required for adapting to high nutrient conditions, whereas growth promotion by local control is sufficient for adaptation to low-nutrient environments. This evidence predicts that systemic control can be evolved in the presence of excessive amounts of nutrition, consistent with the 'N-supply' systemic signal that is observed experimentally. Furthermore, our model can also explain various experimental results using nitrogen nutrition. Our model provides a theoretical basis for understanding the spatial regulation of adaptive resource allocation in response to nutritional environment.
Collapse
|
18
|
Barbier FF, Dun EA, Kerr SC, Chabikwa TG, Beveridge CA. An Update on the Signals Controlling Shoot Branching. TRENDS IN PLANT SCIENCE 2019; 24:220-236. [PMID: 30797425 DOI: 10.1016/j.tplants.2018.12.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 05/21/2023]
Abstract
Many new questions on the regulation of shoot branching have been raised in recent years, prompting a review and reassessment of the role of each signal involved. Sugars and their signaling networks have been attributed a major role in the early events of axillary bud outgrowth, whereas cytokinin appears to play a critical role in the modulation of this process in response to the environment. Perception of the recently discovered hormone strigolactone is now quite well understood, while the downstream targets remain largely unknown. Recent literature has highlighted that auxin export from a bud is important for its subsequent growth.
Collapse
Affiliation(s)
- Francois F Barbier
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia
| | - Elizabeth A Dun
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia; These authors contributed equally to this publication
| | - Stephanie C Kerr
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia; These authors contributed equally to this publication
| | - Tinashe G Chabikwa
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia
| | - Christine A Beveridge
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
19
|
Bailey-Serres J, Pierik R, Ruban A, Wingler A. The Dynamic Plant: Capture, Transformation, and Management of Energy. PLANT PHYSIOLOGY 2018; 176:961-966. [PMID: 29438068 PMCID: PMC5813544 DOI: 10.1104/pp.18.00041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Julia Bailey-Serres
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521; Plant Ecophysiology, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Alexander Ruban
- Department of Cell and Molecular Biology, School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Astrid Wingler
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland
| |
Collapse
|