1
|
Gleason SM, Polutchko SK, Allen BS, Ocheltree TW, Spitzer D, Li Z, Stewart JJ. A 50-year look-back on the efficacy of limited transpiration traits: does the evidence support the recent surge in interest? THE NEW PHYTOLOGIST 2025; 246:1439-1450. [PMID: 40156228 DOI: 10.1111/nph.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/08/2025] [Indexed: 04/01/2025]
Abstract
We examine limited transpiration (LT) traits in crop species, which are claimed to conserve early season water for critical late season growth. Despite there being theoretical support for LT crops, we suggest that there is insufficient empirical evidence to support the general acceptance of this theory. Our criticism focuses on two main points: the undervaluation of early season carbon assimilation and investment over the lifetime of the plant; and the overestimation of soil water savings. We argue that forgoing early season water use, and therefore also future investment in deeper and denser roots (improved resource acquisition), will negatively impact plant performance in many soil and climate contexts. Furthermore, we challenge the assumption that conserved soil water remains available for later use without loss, noting significant losses resulting from evaporation and other sinks. We advocate for a re-evaluation of LT traits, incorporating a balance of water and carbon dynamics throughout a plant's lifetime. We caution against the adoption of LT traits where they have not been empirically evaluated in the soils and climates of interest to individual research and breeding programs. We propose a more physiologically integrated approach to crop improvement, focusing on water extraction efficiency and strategic carbon investment.
Collapse
Affiliation(s)
- Sean M Gleason
- Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, 80526, USA
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, 80523, USA
| | - Stephanie K Polutchko
- Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, 80526, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Brendan S Allen
- Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, 80526, USA
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, 80523, USA
| | - Troy W Ocheltree
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, 80523, USA
| | - Daniel Spitzer
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ziqiang Li
- Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, 80526, USA
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jared J Stewart
- Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, 80526, USA
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| |
Collapse
|
2
|
Huang Z, Li X, Cai F, Li L, Wu Z. GWSF-EuSWAP70 gene expression to enhance gray mold resistance in Arabidopsis thaliana. BMC PLANT BIOLOGY 2025; 25:152. [PMID: 39910475 PMCID: PMC11796068 DOI: 10.1186/s12870-024-06002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/19/2024] [Indexed: 02/07/2025]
Abstract
BACKGROUND Eucalyptus, a widely cultivated woody plant, is susceptible to a diverse array of pests and diseases, leading to reduced yields and economic losses. Traditional breeding methods are very time-consuming; therefore, plant genetic engineering has emerged as a promising approach for plant pathogen management. However, the genetic transformation system of eucalyptus is still in its early stages of development, while studies on transgenic eucalyptus and its disease resistance genes are limited. The SWAP70 gene has been shown to play a crucial role in the defense response of Arabidopsis thaliana and rice. In this study, the model plant A. thaliana was selected for genetic transformation. The aim was to enhance the expression of the EuSWAP70 gene derived from Eucalyptus grandis, and other disease resistance genes by utilizing an artificial GWSF promoter. RESULTS The results showed that the EuSWAP70 gene was successfully transformed into A. thaliana, and the PCR assay confirmed the presence of the EuSWAP70 gene in transgenic Arabidopsis plants. The gray mold resistance of the EuSWAP70 transgenic Arabidopsis plants under GWSF and CaMV35S promoters was evaluated against Botrytis cinerea infection. After gray mold infection, Arabidopsis plants were ranked by leaf pore area percentage: wildtype > CaMV35S-EuSWAP70 > GWSF-EuSWAP70. The transgenic plants showed stronger gray mold resistance, and the GWSF-EuSWAP70 transgenic plants were stronger than the CaMV35S-EuSWAP70 transgenic plants.
Collapse
Affiliation(s)
| | - Xiaoming Li
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, Zhanjiang, 524022, China
| | - Fenglian Cai
- Medical School of Kunming, University of Science and Technology, Kunming, 650500, China
| | - Lichun Li
- Lingnan Normal University, Zhanjiang, 524048, China
| | - Zhihua Wu
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, Zhanjiang, 524022, China.
| |
Collapse
|
3
|
Ikram AU, Khan MSS, Islam F, Ahmed S, Ling T, Feng F, Sun Z, Chen H, Chen J. All Roads Lead to Rome: Pathways to Engineering Disease Resistance in Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412223. [PMID: 39691979 PMCID: PMC11792000 DOI: 10.1002/advs.202412223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/27/2024] [Indexed: 12/19/2024]
Abstract
Unlike animals, plants are unable to move and lack specialized immune cells and circulating antibodies. As a result, they are always threatened by a large number of microbial pathogens and harmful pests that can significantly reduce crop yield worldwide. Therefore, the development of new strategies to control them is essential to mitigate the increasing risk of crops lost to plant diseases. Recent developments in genetic engineering, including efficient gene manipulation and transformation methods, gene editing and synthetic biology, coupled with the understanding of microbial pathogenicity and plant immunity, both at molecular and genomic levels, have enhanced the capabilities to develop disease resistance in plants. This review comprehensively explains the fundamental mechanisms underlying the tug-of-war between pathogens and hosts, and provides a detailed overview of different strategies for developing disease resistance in plants. Additionally, it provides a summary of the potential genes that can be employed in resistance breeding for key crops to combat a wide range of potential pathogens and pests, including fungi, oomycetes, bacteria, viruses, nematodes, and insects. Furthermore, this review addresses the limitations associated with these strategies and their possible solutions. Finally, it discusses the future perspectives for producing plants with durable and broad-spectrum disease resistance.
Collapse
Affiliation(s)
- Aziz Ul Ikram
- International Genome CenterJiangsu UniversityZhenjiang212013China
| | | | - Faisal Islam
- International Genome CenterJiangsu UniversityZhenjiang212013China
| | - Sulaiman Ahmed
- International Genome CenterJiangsu UniversityZhenjiang212013China
| | - Tengfang Ling
- Plant Systems Engineering Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Yuseong‐guDaejeon34141Republic of Korea
| | - Feng Feng
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Huan Chen
- Joint Center for Single Cell Biology, School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Jian Chen
- International Genome CenterJiangsu UniversityZhenjiang212013China
| |
Collapse
|
4
|
Sangwan A, Singh N. Advanced Nanostrategies for Biomolecule Delivery in Plant Disease Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:66-84. [PMID: 39715428 DOI: 10.1021/acs.jafc.4c08396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Sustainable plant disease management has long been a major issue in agriculture since the excessive reliance on broad-spectrum pesticides exacerbates chemical resistance, presenting environmental and health hazards. Taking cues from nature's intricate defense mechanisms, scientists are exploiting bioactive agents involved in plant-pathogen/pest interactions to develop novel strategies to combat diseases. Embracing biomolecules in agriculture offers an ecofriendly alternative to chemical pesticides. However, traditional delivery methods for biomolecules often suffer from low utilization rates and low field stability, diminishing the overall effectiveness of active compounds. The advent of nanotechnology has facilitated the design of novel delivery systems for biomolecular cargos, further enhancing their capacity to adhere to plant surfaces and make disease control strategies effective. Tailored depending upon the extent of infection and type of plant species, innovative nanoparticle strategies maximize the effectiveness of delivery by modifying the size, surface characteristics, and adhesion capacity of the particles to suit particular requirements. This review examines how the various biological factors involved in innate plant defenses can be exploited, as well as the potential of various nanocarriers in biomolecule delivery for plant disease management.
Collapse
Affiliation(s)
- Anju Sangwan
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
5
|
De Silva A, Kim K, Weiland J, Hwang J, Chung J, Pereira HS, Patel TR, Teyra J, Patel A, Mira MM, Khajehpour M, Bolton M, Stasolla C, Sidhu SS, Mark BL. Suppressing Tymovirus replication in plants using a variant of ubiquitin. PLoS Pathog 2025; 21:e1012899. [PMID: 39869641 PMCID: PMC11819560 DOI: 10.1371/journal.ppat.1012899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/12/2025] [Accepted: 01/11/2025] [Indexed: 01/29/2025] Open
Abstract
RNA viruses have evolved numerous strategies to overcome host resistance and immunity, including the use of multifunctional proteases that not only cleave viral polyproteins during virus replication but also deubiquitinate cellular proteins to suppress ubiquitin (Ub)-mediated antiviral mechanisms. Here, we report an approach to attenuate the infection of Arabidopsis thaliana by Turnip Yellow Mosaic Virus (TYMV) by suppressing the polyprotein cleavage and deubiquitination activities of the TYMV protease (PRO). Performing selections using a library of phage-displayed Ub variants (UbVs) for binding to recombinant PRO yielded several UbVs that bound the viral protease with nanomolar affinities and blocked its function. The strongest binding UbV (UbV3) candidate had a EC50 of 0.3 nM and inhibited both polyprotein cleavage and DUB activity of PRO in vitro. X-ray crystal structures of UbV3 alone and in complex with PRO reveal that the inhibitor exists as a dimer that binds two copies of PRO. Consistent with our biochemical and structural findings, transgenic expression of UbV3 in the cytosol of A. thaliana suppressed TYMV replication in planta, with the reduction in viral load being correlated to UbV3 expression level. Our results demonstrate the potential of using UbVs to protect plants from tymovirus infection, a family of viruses that contain numerous members of significant agricultural concern, as well as other plant viruses that express functionally related proteases with deubiquitinating activity.
Collapse
Affiliation(s)
- Anuradha De Silva
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kihun Kim
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - John Weiland
- Sugarbeet and Potato Research Unit, Edward T. Schafer Agricultural Research Center, USDA Agricultural Research Services, North Dakota, United States of America
| | - Jihyun Hwang
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jacky Chung
- School of Pharmacy, University of Waterloo, Ontario, Canada
| | - Higor S. Pereira
- Alberta RNA Research and Training Institute, University of Lethbridge Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Trushar R. Patel
- Alberta RNA Research and Training Institute, University of Lethbridge Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Joan Teyra
- School of Pharmacy, University of Waterloo, Ontario, Canada
- Icosagen Cell Factory OÜ, Tartu, Estonia
| | - Ankoor Patel
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mohammed M. Mira
- Department of Plant Science, Faculty of Agriculture, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mazdak Khajehpour
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Melvin Bolton
- Sugarbeet and Potato Research Unit, Edward T. Schafer Agricultural Research Center, USDA Agricultural Research Services, North Dakota, United States of America
| | - Claudio Stasolla
- Department of Plant Science, Faculty of Agriculture, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Brian L. Mark
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
6
|
Phogat S, Lankireddy SV, Lekkala S, Anche VC, Sripathi VR, Patil GB, Puppala N, Janga MR. Progress in genetic engineering and genome editing of peanuts: revealing the future of crop improvement. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1759-1775. [PMID: 39687700 PMCID: PMC11646254 DOI: 10.1007/s12298-024-01534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Peanut (Arachis hypogaea L.), also known as groundnut, is cultivated globally and is a widely consumed oilseed crop. Its nutritional composition and abundance in lipids, proteins, vitamins, and essential mineral elements position it as a nutritious food in various forms across the globe, ranging from nuts and confections to peanut butter. Cultivating peanuts provides significant challenges due to abiotic and biotic stress factors and health concerns linked to their consumption, including aflatoxins and allergens. These factors pose risks not only to human health but also to the long-term sustainability of peanut production. Conventional methods, such as traditional and mutation breeding, are time-consuming and do not provide desired genetic variations for peanut improvement. Fortunately, recent advancements in next-generation sequencing and genome editing technologies, coupled with the availability of the complete genome sequence of peanuts, offer promising opportunities to discover novel traits and enhance peanut productivity through innovative biotechnological approaches. In addition, these advancements create opportunities for developing peanut varieties with improved traits, such as increased resistance to pests and diseases, enhanced nutritional content, reduced levels of toxins, anti-nutritional factors and allergens, and increased overall productivity. To achieve these goals, it is crucial to focus on optimizing peanut transformation techniques, genome editing methodologies, stress tolerance mechanisms, functional validation of key genes, and exploring potential applications for peanut improvement. This review aims to illuminate the progress in peanut genetic engineering and genome editing. By closely examining these advancements, we can better understand the developments achieved in these areas.
Collapse
Affiliation(s)
- Sachin Phogat
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| | - Sriharsha V. Lankireddy
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| | - Saikrishna Lekkala
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| | - Varsha C. Anche
- Center for Molecular Biology, Alabama A&M University, Normal, AL 35762 USA
| | | | - Gunvant B. Patil
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| | - Naveen Puppala
- New Mexico State University Agricultural Science Center at Clovis, Clovis, 88101 USA
| | - Madhusudhana R. Janga
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| |
Collapse
|
7
|
Farinati S, Devillars A, Gabelli G, Vannozzi A, Scariolo F, Palumbo F, Barcaccia G. How Helpful May Be a CRISPR/Cas-Based System for Food Traceability? Foods 2024; 13:3397. [PMID: 39517184 PMCID: PMC11544785 DOI: 10.3390/foods13213397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Genome editing (GE) technologies have the potential to completely transform breeding and biotechnology applied to crop species, contributing to the advancement of modern agriculture and influencing the market structure. To date, the GE-toolboxes include several distinct platforms able to induce site-specific and predetermined genomic modifications, introducing changes within the existing genetic blueprint of an organism. For these reasons, the GE-derived approaches are considered like new plant breeding methods, known also as New Breeding Techniques (NBTs). Particularly, the GE-based on CRISPR/Cas technology represents a considerable improvement forward biotech-related techniques, being highly sensitive, precise/accurate, and straightforward for targeted gene editing in a reliable and reproducible way, with numerous applications in food-related plants. Furthermore, numerous examples of CRISPR/Cas system exploitation for non-editing purposes, ranging from cell imaging to gene expression regulation and DNA assembly, are also increasing, together with recent engagements in target and multiple chemical detection. This manuscript aims, after providing a general overview, to focus attention on the main advances of CRISPR/Cas-based systems into new frontiers of non-editing, presenting and discussing the associated implications and their relative impacts on molecular traceability, an aspect closely related to food safety, which increasingly arouses general interest within public opinion and the scientific community.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (S.F.); (A.D.); (G.G.); (A.V.); (F.S.); (F.P.)
| |
Collapse
|
8
|
Islam T, Danishuddin, Tamanna NT, Matin MN, Barai HR, Haque MA. Resistance Mechanisms of Plant Pathogenic Fungi to Fungicide, Environmental Impacts of Fungicides, and Sustainable Solutions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2737. [PMID: 39409607 PMCID: PMC11478979 DOI: 10.3390/plants13192737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
The significant reduction in agricultural output and the decline in product quality are two of the most glaring negative impacts caused by plant pathogenic fungi (PPF). Furthermore, contaminated food or transit might introduce mycotoxins produced by PPF directly into the food chain. Eating food tainted with mycotoxin is extremely dangerous for both human and animal health. Using fungicides is the first choice to control PPF or their toxins in food. Fungicide resistance and its effects on the environment and public health are becoming more and more of a concern, despite the fact that chemical fungicides are used to limit PPF toxicity and control growth in crops. Fungicides induce target site alteration and efflux pump activation, and mutations in PPF result in resistance. As a result, global trends are shifting away from chemically manufactured pesticides and toward managing fungal plant diseases using various biocontrol techniques, tactics, and approaches. However, surveillance programs to monitor fungicide resistance and their environmental impact are much fewer compared to bacterial antibiotic resistance surveillance programs. In this review, we discuss the PPF that contributes to disease development in plants, the fungicides used against them, factors causing the spread of PPF and the emergence of new strains, the antifungal resistance mechanisms of PPF, health, the environmental impacts of fungicides, and the use of biocontrol agents (BCAs), antimicrobial peptides (AMPs), and nanotechnologies to control PPF as a safe and eco-friendly alternative to fungicides.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
| | - Noshin Tabassum Tamanna
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Muhammad Nurul Matin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
| |
Collapse
|
9
|
Yuan Z, Rembe M, Mascher M, Stein N, Jayakodi M, Börner A, Oldach K, Jahoor A, Jensen JD, Rudloff J, Dohrendorf VE, Kuhfus LP, Dyrszka E, Conte M, Hinz F, Trouchaud S, Reif JC, El Hanafi S. Capitalizing on genebank core collections for rare and novel disease resistance loci to enhance barley resilience. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5940-5954. [PMID: 38932564 PMCID: PMC11427843 DOI: 10.1093/jxb/erae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
In the realm of agricultural sustainability, the utilization of plant genetic resources for enhanced disease resistance is paramount. Preservation efforts in genebanks are justified by their potential contributions to future crop improvement. To capitalize on the potential of plant genetic resources, we focused on a barley core collection from the German ex situ genebank and contrasted it with a European elite collection. The phenotypic assessment included 812 plant genetic resources and 298 elites, with a particular emphasis on four disease traits (Puccinia hordei, Blumeria graminis hordei, Ramularia collo-cygni, and Rhynchosporium commune). An integrated genome-wide association study, employing both Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK) and a linear mixed model, was performed to unravel the genetic underpinnings of disease resistance. A total of 932 marker-trait associations were identified and assigned to 49 quantitative trait loci. The accumulation of novel and rare resistance alleles significantly bolstered the overall resistance level in plant genetic resources. Three plant genetic resources donors with high counts of novel/rare alleles and exhibiting exceptional resistance to leaf rust and powdery mildew were identified, offering promise for targeted pre-breeding goals and enhanced resilience in future varieties. Our findings underscore the critical contribution of plant genetic resources to strengthening crop resilience and advancing sustainable agricultural practices.
Collapse
Affiliation(s)
- Zhihui Yuan
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Maximilian Rembe
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, D-37574 Einbeck, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Crop Plant Genetics, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Klaus Oldach
- KWS LOCHOW GmbH, Ferdinand-von-Lochow-Str. 5, D-29303 Bergen, Germany
| | - Ahmed Jahoor
- Nordic Seed Germany GmbH, Kirchhorster Str. 16, D-31688 Nienstädt, Germany
| | - Jens Due Jensen
- Nordic Seed Germany GmbH, Kirchhorster Str. 16, D-31688 Nienstädt, Germany
| | - Julia Rudloff
- Limagrain GmbH, Salderstr. 4, D-31226 Peine-Rosenthal, Germany
| | | | | | - Emmanuelle Dyrszka
- Syngenta France SAS, 12 Chemin de l’hobit, BP 27, 31790, Saint-Sauveur, France
| | - Matthieu Conte
- Syngenta France SAS, 12 Chemin de l’hobit, BP 27, 31790, Saint-Sauveur, France
| | - Frederik Hinz
- SAATZUCHT BAUER GmbH & CO.KG, Landshuter Straße 3a, D-93083 Obertraubling, Germany
| | - Salim Trouchaud
- Secobra Saatzucht GmbH, Feldkirchen 3, D-85368 Moosburg an der Isar, Germany
| | - Jochen C Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Samira El Hanafi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| |
Collapse
|
10
|
Thomas WJW, Amas JC, Dolatabadian A, Huang S, Zhang F, Zandberg JD, Neik TX, Edwards D, Batley J. Recent advances in the improvement of genetic resistance against disease in vegetable crops. PLANT PHYSIOLOGY 2024; 196:32-46. [PMID: 38796840 PMCID: PMC11376385 DOI: 10.1093/plphys/kiae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/10/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Affiliation(s)
- William J W Thomas
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Junrey C Amas
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Aria Dolatabadian
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Shuanglong Huang
- Department of Plant Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Fangning Zhang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jaco D Zandberg
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Ting Xiang Neik
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Republic of Singapore
- NUS Agritech Centre, National University of Singapore, Singapore, 118258, Republic of Singapore
| | - David Edwards
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
- Centre for Applied Bioinformatics, The University of Western Australia, Perth, 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| |
Collapse
|
11
|
Yadav V, Pal D, Poonia AK. A Study on Genetically Engineered Foods: Need, Benefits, Risk, and Current Knowledge. Cell Biochem Biophys 2024; 82:1931-1946. [PMID: 39020085 DOI: 10.1007/s12013-024-01390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
Food requirements have always been a top priority, and with the exponential growth of the human population, there is an increasing need for large quantities of food. Traditional cultivation methods are not able to meet the current demand for food products. One significant challenge is the shortened shelf-life of naturally occurring food items, which directly contributes to food scarcity. Contaminating substances such as weeds and pests play a crucial role in this issue. In response, researchers have introduced genetically engineered (GE) food as a potential solution. These food products are typically created by adding or replacing genes in the DNA of naturally occurring foods. GE foods offer various advantages, including increased quality and quantity of food production, adaptability to various climatic conditions, modification of vitamin and mineral levels, and prolonged shelf life. They address the major concerns of global food scarcity and food security. However, the techniques used in the production of GE foods may not be universally acceptable due to the genetic alteration of animal genes into plants or vice versa. Additionally, their unique nature necessitates further long-term studies. This study delves into the procedures and growth stages of DNA sequencing, covering the benefits, risks, industrial relevance, current knowledge, and future challenges of GE foods. GE foods have the potential to extend the shelf life of food items, alleviate food shortages, and fulfill the current nutritional food demand.
Collapse
Affiliation(s)
- Venkteshwar Yadav
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India
| | - Dharm Pal
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India.
| | - Anil Kumar Poonia
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India
| |
Collapse
|
12
|
Tian J, Tang Z, Niu R, Zhou Y, Yang D, Chen D, Luo M, Mou R, Yuan M, Xu G. Engineering disease-resistant plants with alternative translation efficiency by switching uORF types through CRISPR. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1715-1726. [PMID: 38679667 DOI: 10.1007/s11427-024-2588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
Engineering disease-resistant plants can be a powerful solution to the issue of food security. However, it requires addressing two fundamental questions: what genes to express and how to control their expressions. To find a solution, we screen CRISPR-edited upstream open reading frame (uORF) variants in rice, aiming to optimize translational control of disease-related genes. By switching uORF types of the 5'-leader from Arabidopsis TBF1, we modulate the ribosome accessibility to the downstream firefly luciferase. We assume that by switching uORF types using CRISPR, we could generate uORF variants with alternative translation efficiency (CRISPR-aTrE-uORF). These variants, capable of boosting translation for resistance-associated genes and dampening it for susceptible ones, can help pinpoint previously unidentified genes with optimal expression levels. To test the assumption, we screened edited uORF variants and found that enhanced translational suppression of the plastic glutamine synthetase 2 can provide broad-spectrum disease resistance in rice with minimal fitness costs. This strategy, which involves modifying uORFs from none to some, or from some to none or different ones, demonstrates how translational agriculture can speed up the development of disease-resistant crops. This is vital for tackling the food security challenges we face due to growing populations and changing climates.
Collapse
Affiliation(s)
- Jingjing Tian
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhijuan Tang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Dan Yang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Dan Chen
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Luo
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Rui Mou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
13
|
Baird AS, Medeiros CD, Caringella MA, Bowers J, Hii M, Liang J, Matsuda J, Pisipati K, Pohl C, Simon B, Tagaryan S, Buckley TN, Sack L. How and why do species break a developmental trade-off? Elucidating the association of trichomes and stomata across species. AMERICAN JOURNAL OF BOTANY 2024; 111:e16328. [PMID: 38727415 DOI: 10.1002/ajb2.16328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 05/29/2024]
Abstract
PREMISE Previous studies have suggested a trade-off between trichome density (Dt) and stomatal density (Ds) due to shared cell precursors. We clarified how, when, and why this developmental trade-off may be overcome across species. METHODS We derived equations to determine the developmental basis for Dt and Ds in trichome and stomatal indices (it and is) and the sizes of epidermal pavement cells (e), trichome bases (t), and stomata (s) and quantified the importance of these determinants of Dt and Ds for 78 California species. We compiled 17 previous studies of Dt-Ds relationships to determine the commonness of Dt-Ds associations. We modeled the consequences of different Dt-Ds associations for plant carbon balance. RESULTS Our analyses showed that higher Dt was determined by higher it and lower e, and higher Ds by higher is and lower e. Across California species, positive Dt-Ds coordination arose due to it-is coordination and impacts of the variation in e. A Dt-Ds trade-off was found in only 30% of studies. Heuristic modeling showed that species sets would have the highest carbon balance with a positive or negative relationship or decoupling of Dt and Ds, depending on environmental conditions. CONCLUSIONS Shared precursor cells of trichomes and stomata do not limit higher numbers of both cell types or drive a general Dt-Ds trade-off across species. This developmental flexibility across diverse species enables different Dt-Ds associations according to environmental pressures. Developmental trait analysis can clarify how contrasting trait associations would arise within and across species.
Collapse
Affiliation(s)
- Alec S Baird
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
| | - Camila D Medeiros
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
| | - Marissa A Caringella
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
| | - Julia Bowers
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
| | - Michelle Hii
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
| | - John Liang
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
| | - Joshua Matsuda
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
| | - Kirthana Pisipati
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
| | - Caroline Pohl
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
| | - Benjamin Simon
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
| | - Silvard Tagaryan
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
| |
Collapse
|
14
|
Yu P, Zheng X, Alimi LO, Al-Babili S, Khashab NM. Metal-Organic Framework-Mediated Delivery of Nucleic Acid across Intact Plant Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18245-18251. [PMID: 38564422 DOI: 10.1021/acsami.3c19571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Plant synthetic biology is applied in sustainable agriculture, clean energy, and biopharmaceuticals, addressing crop improvement, pest resistance, and plant-based vaccine production by introducing exogenous genes into plants. This technique faces challenges delivering genes due to plant cell walls and intact cell membranes. Novel approaches are required to address this challenge, such as utilizing nanomaterials known for their efficiency and biocompatibility in gene delivery. This work investigates metal-organic frameworks (MOFs) for gene delivery in intact plant cells by infiltration. Hence, small-sized ZIF-8 nanoparticles (below 20 nm) were synthesized and demonstrated effective DNA/RNA delivery into Nicotiana benthamiana leaves and Arabidopsis thaliana roots, presenting a promising and simplified method for gene delivery in intact plant cells. We further demonstrate that small-sized ZIF-8 nanoparticles protect RNA from RNase degradation and successfully silence an endogenous gene by delivering siRNA in N. benthamiana leaves.
Collapse
Affiliation(s)
- Pei Yu
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xiongjie Zheng
- The BioActives Lab, Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lukman O Alimi
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Salim Al-Babili
- The BioActives Lab, Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
15
|
Das D, Chowdhury N, Sharma M, Suma R, Saikia B, Velmurugan N, Chikkaputtaiah C. Screening for brown-spot disease and drought stress response and identification of dual-stress responsive genes in rice cultivars of Northeast India. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:647-663. [PMID: 38737323 PMCID: PMC11087401 DOI: 10.1007/s12298-024-01447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 05/14/2024]
Abstract
Rice cultivation in Northeast India (NEI) primarily relies on rainfed conditions, making it susceptible to severe drought spells that promote the onset of brown spot disease (BSD) caused by Bipolaris oryzae. This study investigates the response of prevalent rice cultivars of NEI to the combined stress of drought and B. oryzae infection. Morphological, physiological, biochemical, and molecular changes were recorded post-stress imposition. Qualitative assessment of reactive oxygen species through DAB (3,3-diaminobenzidine) assay confirmed the elicitation of plant defense responses. Based on drought scoring system and biochemical analyses, the cultivars were categorized into susceptible (Shasharang and Bahadur), moderately susceptible (Gitesh and Ranjit), and moderately tolerant (Kapilee and Mahsuri) groups. Antioxidant enzyme accumulation (catalase, guaiacol peroxidase) and osmolyte (proline) levels increased in all stressed plants, with drought-tolerant cultivars exhibiting higher enzyme activities, indicating stress mitigation efforts. Nevertheless, electrolyte leakage and lipid peroxidation rates increased in all stressed conditions, though variations were observed among stress types. Based on findings from a previous transcriptomic study, a total of nine genes were chosen for quantitative real-time PCR analysis. Among these, OsEBP89 appeared as a potential negative regulatory gene, demonstrating substantial upregulation in the susceptible cultivars at both 48 and 72 h post-treatment (hpt). This finding suggests that OsEBP89 may play a role in conferring drought-induced susceptibility to BSD in the rice cultivars being investigated. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01447-4.
Collapse
Affiliation(s)
- Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
| | - Naimisha Chowdhury
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
| | - Monica Sharma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Remya Suma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
| | - Banashree Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Natarajan Velmurugan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
- Branch Laboratory-Itanagar, Biological Sciences Division, CSIR-NEIST, Naharlagun, Arunachal Pradesh 791110 India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
16
|
Chauhan S, Rajam MV. Host RNAi-mediated silencing of Fusarium oxysporum f. sp. lycopersici specific-fasciclin-like protein genes provides improved resistance to Fusarium wilt in Solanum lycopersicum. PLANTA 2024; 259:79. [PMID: 38431538 DOI: 10.1007/s00425-024-04360-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
MAIN CONCLUSION Tomato transgenics expressing dsRNA against FoFLPs act as biofungicides and result in enhanced disease resistance upon Fol infection, by downregulating the endogenous gene expression levels of FoFLPs within Fol. Fusarium oxysporum f. sp. lycopersici (Fol) hijacks plant immunity by colonizing within the host and further instigating secondary infection causing vascular wilt disease in tomato that leads to significant yield loss. Here, RNA interference (RNAi) technology was used to determine its potential in enduring resistance against Fusarium wilt in tomato. To gain resistance against Fol infection, host-induced gene silencing (HIGS) of Fol-specific genes encoding for fasciclin-like proteins (FoFLPs) was done by generating tomato transgenics harbouring FoFLP1, FoFLP4 and FoFLP5 RNAi constructs confirmed by southern hybridizations. These tomato transgenics were screened for stable siRNA production in T0 and T1 lines using northern hybridizations. This confirmed stable dsRNAhp expression in tomato transgenics and suggested durable trait heritability in the subsequent progenies. FoFLP-specific siRNAs producing T1 tomato progenies were further selected to ascertain its disease resistance ability using seedling infection assays. We observed a significant reduction in FoFLP1, FoFLP4 and FoFLP5 transcript levels in Fol, upon infecting their respective RNAi tomato transgenic lines. Moreover, tomato transgenic lines, expressing intended siRNA molecules in the T1 generation, exhibit delayed disease onset with improved resistance. Furthermore, reduced fungal colonization was observed in the roots of Fol-infected T1 tomato progenies, without altering the plant photosynthetic efficiency of transgenic plants. These results substantiate the cross-kingdom dsRNA or siRNA delivery from transgenic tomato to Fol, leading to enhanced resistance against Fusarium wilt disease. The results also demonstrated that HIGS is a successful approach in rendering resistance to Fol infection in tomato plants.
Collapse
Affiliation(s)
- Sambhavana Chauhan
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Manchikatla Venkat Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India.
| |
Collapse
|
17
|
Patani A, Patel M, Islam S, Yadav VK, Prajapati D, Yadav AN, Sahoo DK, Patel A. Recent advances in Bacillus-mediated plant growth enhancement: a paradigm shift in redefining crop resilience. World J Microbiol Biotechnol 2024; 40:77. [PMID: 38253986 DOI: 10.1007/s11274-024-03903-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2024]
Abstract
The Bacillus genus has emerged as an important player in modern agriculture, revolutionizing plant growth promotion through recent advances. This review provides a comprehensive overview of the critical role Bacillus species play in boosting plant growth and agricultural sustainability. Bacillus genus bacteria benefit plants in a variety of ways, according to new research. Nitrogen fixation, phosphate solubilization, siderophore production, and the production of growth hormones are examples of these. Bacillus species are also well-known for their ability to act as biocontrol agents, reducing phytopathogens and protecting plants from disease. Molecular biology advances have increased our understanding of the complex interplay between Bacillus species and plants, shedding light on the genetic and metabolic underpinnings of these interactions. Furthermore, novel biotechnology techniques have enabled the development of Bacillus-based biofertilizers and biopesticides, providing sustainable alternatives to conventional chemical inputs. Apart from this, the combination of biochar and Bacillus species in current biotechnology is critical for improving soil fertility and encouraging sustainable agriculture through enhanced nutrient retention and plant growth. This review also emphasizes the Bacillus genus bacteria's ability to alleviate environmental abiotic stresses such as drought and salinity, hence contributing to climate-resilient agriculture. Moreover, the authors discuss the challenges and prospects associated with the practical application of Bacillus-based solutions in the field. Finally, recent advances in Bacillus-mediated plant growth promotion highlight their critical significance in sustainable agriculture. Understanding these improvements is critical for realizing the full potential of Bacillus genus microorganisms to address current global food production concerns.
Collapse
Affiliation(s)
- Anil Patani
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Margi Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Shaikhul Islam
- Plant Pathology Division, Wheat and Maize Research Institute, Nashipur, Dinajpur, 5200, Bangladesh
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Dharmendra Prajapati
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. KSG Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, 173101, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, USA
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India.
| |
Collapse
|
18
|
Santos MG, Nunes da Silva M, Vasconcelos MW, Carvalho SMP. Scientific and technological advances in the development of sustainable disease management tools: a case study on kiwifruit bacterial canker. FRONTIERS IN PLANT SCIENCE 2024; 14:1306420. [PMID: 38273947 PMCID: PMC10808555 DOI: 10.3389/fpls.2023.1306420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024]
Abstract
Plant disease outbreaks are increasing in a world facing climate change and globalized markets, representing a serious threat to food security. Kiwifruit Bacterial Canker (KBC), caused by the bacterium Pseudomonas syringae pv. actinidiae (Psa), was selected as a case study for being an example of a pandemic disease that severely impacted crop production, leading to huge economic losses, and for the effort that has been made to control this disease. This review provides an in-depth and critical analysis on the scientific progress made for developing alternative tools for sustainable KBC management. Their status in terms of technological maturity is discussed and a set of opportunities and threats are also presented. The gradual replacement of susceptible kiwifruit cultivars, with more tolerant ones, significantly reduced KBC incidence and was a major milestone for Psa containment - which highlights the importance of plant breeding. Nonetheless, this is a very laborious process. Moreover, the potential threat of Psa evolving to more virulent biovars, or resistant lineages to existing control methods, strengthens the need of keep on exploring effective and more environmentally friendly tools for KBC management. Currently, plant elicitors and beneficial fungi and bacteria are already being used in the field with some degree of success. Precision agriculture technologies, for improving early disease detection and preventing pathogen dispersal, are also being developed and optimized. These include hyperspectral technologies and forecast models for Psa risk assessment, with the latter being slightly more advanced in terms of technological maturity. Additionally, plant protection products based on innovative formulations with molecules with antibacterial activity against Psa (e.g., essential oils, phages and antimicrobial peptides) have been validated primarily in laboratory trials and with few compounds already reaching field application. The lessons learned with this pandemic disease, and the acquired scientific and technological knowledge, can be of importance for sustainably managing other plant diseases and handling future pandemic outbreaks.
Collapse
Affiliation(s)
- Miguel G. Santos
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of the University of Porto, Vairão, Portugal
| | - Marta Nunes da Silva
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of the University of Porto, Vairão, Portugal
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Susana M. P. Carvalho
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of the University of Porto, Vairão, Portugal
| |
Collapse
|
19
|
Vanama S, Gopalan NSR, Pesari M, Baskar M, Gali UD, Lakshmi DL, Koteshwar P, Jesudasu G, Rathod S, Prasad MS, Panuganti R, Sundaram RM, Mohapatra S, Kannan C. Native bio-control agents from the rice fields of Telangana, India: characterization and unveiling the potential against stem rot and false smut diseases of rice. World J Microbiol Biotechnol 2023; 40:2. [PMID: 37923802 DOI: 10.1007/s11274-023-03782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/28/2023] [Indexed: 11/06/2023]
Abstract
The stem rot caused by Sclerotium hydrophilum and false smut caused by Ustilaginoidea virens are two of the major production constraints in rice cultivation in India and other countries. Stem rot and false smut can be effectively controlled with synthetic fungicides. However, the indiscriminate use of chemical fungicides may cause development of resistance among the pathogens. In addition to this, synthetic fungicides also exhibit harmful impacts on the environment. Exploiting microbe-based alternatives for managing plant diseases diminishes public concerns about the ill effects of pesticide usage in crops. In this regard, the present study was designed to investigate the potential of native microbial biocontrol agents (BCAs) from rice rhizosphere for the sustainable management of stem rot and false smut diseases in rice. Potential BCAs and pathogens were identified and characterized through morphological, biochemical, and sanger sequencing techniques. Bio-efficacy tests of potential BCAs against stem rot and false smut diseases on rice under glasshouse conditions indicated higher seed vigour index of the treated seeds, significant improvement in the growth of the seedling, increased dry weight, reduction in percentage disease index viz., 70.03% (stem rot) and 69.24% (false smut) over the control plants. Phytohormones indole acetic acid (IAA), abscisic acid (ABA), gibberellic acid (GA), salicylic acid (SA), and zeatin (tZ) were detected and quantified in the four potential BCAs using liquid chromatography- tandem mass spectrometry (LC-MS/MS). Scanning electron microscopy (SEM) studies revealed the endophytic nature of the strains in rice. The study indicated a positive correlation between the diversity and concentration of phytohormones released by the bioagents and enhanced plant growth promotion and disease suppression in rice.
Collapse
Affiliation(s)
- Sowmya Vanama
- Professor Jayashankar, Telangana State Agricultural University, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - N S Raja Gopalan
- Birla Institute of Technology and Science Pilani, Hyderabad Campus, Secunderabad, Telangana, 500078, India
| | - Maruthi Pesari
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - M Baskar
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - Uma Devi Gali
- Professor Jayashankar, Telangana State Agricultural University, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - D Ladha Lakshmi
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - P Koteshwar
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - G Jesudasu
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - Santosha Rathod
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - M Srinivas Prasad
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - Rajanikanth Panuganti
- Professor Jayashankar, Telangana State Agricultural University, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - R M Sundaram
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - Sridev Mohapatra
- Birla Institute of Technology and Science Pilani, Hyderabad Campus, Secunderabad, Telangana, 500078, India
| | - C Kannan
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana, 500030, India.
| |
Collapse
|
20
|
Baghini SS, Razeghian E, Malayer SK, Pecho RDC, Obaid M, Awfi ZS, Zainab HA, Shamsara M. Recent advances in the application of genetic and epigenetic modalities in the improvement of antibody-producing cell lines. Int Immunopharmacol 2023; 123:110724. [PMID: 37582312 DOI: 10.1016/j.intimp.2023.110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
There are numerous applications for recombinant antibodies (rAbs) in biological and toxicological research. Monoclonal antibodies are synthesized using genetic engineering and other related processes involved in the generation of rAbs. Because they can identify specific antigenic sites on practically any molecule, including medicines, hormones, microbial antigens, and cell receptors, rAbs are particularly useful in scientific research. The key benefits of rAbs are improved repeatability, control, and consistency, shorter manufacturing times than with hybridoma technology, an easier transition from one format of antibody to another, and an animal-free process. The engineering of the host cell has recently been developed method for enhancing the production efficiency and improving the quality of antibodies from mammalian cell lines. In this light, genetic engineering is mostly utilized to manage cellular chaperones, decrease cell death, increase cell viability, change the microRNAs (miRNAs) pattern in mammalian cells, and glycoengineered cell lines. Here, we shed light on how genetic engineering can be used therapeutically to produce antibodies at higher levels with greater potency and effectiveness.
Collapse
Affiliation(s)
- Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Setare Kakavand Malayer
- Department of Biology, Faculty of Biological Science, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Zinah Salem Awfi
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq.
| | - H A Zainab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq.
| | - Mehdi Shamsara
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
21
|
Liang B, Bai Y, Zang C, Pei X, Xie J, Lin Y, Liu X, Ahsan T, Liang C. Overexpression of the First Peanut-Susceptible Gene, AhS5H1 or AhS5H2, Enhanced Susceptibility to Pst DC3000 in Arabidopsis. Int J Mol Sci 2023; 24:14210. [PMID: 37762513 PMCID: PMC10531710 DOI: 10.3390/ijms241814210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Salicylic acid (SA) serves as a pivotal plant hormone involved in regulating plant defense mechanisms against biotic stresses, but the extent of its biological significance in relation to peanut resistance is currently lacking. This study elucidated the involvement of salicylic acid (SA) in conferring broad-spectrum disease resistance in peanuts through the experimental approach of inoculating SA-treated leaves. In several other plants, the salicylate hydroxylase genes are the typical susceptible genes (S genes). Here, we characterized two SA hydroxylase genes (AhS5H1 and AhS5H2) as the first S genes in peanut. Recombinant AhS5H proteins catalyzed SA in vitro, and showed SA 5-ydroxylase (S5H) activity. Overexpression of AhS5H1 or AhS5H2 decreased SA content and increased 2,5-DHBA levels in Arabidopsis, suggesting that both enzymes had a similar role in planta. Moreover, overexpression of each AhS5H gene increased susceptibility to Pst DC3000. Analysis of the transcript levels of defense-related genes indicated that the expression of AhS5H genes, AhNPR1 and AhPR10 was simultaneously induced by chitin. Overexpression of each AhS5H in Arabidopsis abolished the induction of AtPR1 or AtPR2 upon chitin treatment. Eventually, AhS5H2 expression levels were highly correlated with SA content in different tissues of peanut. Hence, the expression of AhS5H1 and AhS5H2 was tissue-specific.
Collapse
Affiliation(s)
- Bingbing Liang
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| | - Yuanjun Bai
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
- Institute of Rice Research, Liaoning Academy of Agricultural Sciences, Shenyang 110101, China
| | - Chaoqun Zang
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| | - Xue Pei
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| | - Jinhui Xie
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| | - Ying Lin
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| | - Xiaozhou Liu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| | - Taswar Ahsan
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| | - Chunhao Liang
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| |
Collapse
|
22
|
Kasi Viswanath K, Hamid A, Ateka E, Pappu HR. CRISPR/Cas, Multiomics, and RNA Interference in Virus Disease Management. PHYTOPATHOLOGY 2023; 113:1661-1676. [PMID: 37486077 DOI: 10.1094/phyto-01-23-0002-v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Plant viruses infect a wide range of commercially important crop plants and cause significant crop production losses worldwide. Numerous alterations in plant physiology related to the reprogramming of gene expression may result from viral infections. Although conventional integrated pest management-based strategies have been effective in reducing the impact of several viral diseases, continued emergence of new viruses and strains, expanding host ranges, and emergence of resistance-breaking strains necessitate a sustained effort toward the development and application of new approaches for virus management that would complement existing tactics. RNA interference-based techniques, and more recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing technologies have paved the way for precise targeting of viral transcripts and manipulation of viral genomes and host factors. In-depth knowledge of the molecular mechanisms underlying the development of disease would further expand the applicability of these recent methods. Advances in next-generation/high-throughput sequencing have made possible more intensive studies into host-virus interactions. Utilizing the omics data and its application has the potential to expedite fast-tracking traditional plant breeding methods, as well as applying modern molecular tools for trait enhancement, including virus resistance. Here, we summarize the recent developments in the CRISPR/Cas system, transcriptomics, endogenous RNA interference, and exogenous application of dsRNA in virus disease management.
Collapse
Affiliation(s)
| | - Aflaq Hamid
- Department of Plant Pathology, Washington State University, Pullman, WA, U.S.A
| | - Elijah Ateka
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, U.S.A
| |
Collapse
|
23
|
Farinati S, Draga S, Betto A, Palumbo F, Vannozzi A, Lucchin M, Barcaccia G. Current insights and advances into plant male sterility: new precision breeding technology based on genome editing applications. FRONTIERS IN PLANT SCIENCE 2023; 14:1223861. [PMID: 37521915 PMCID: PMC10382145 DOI: 10.3389/fpls.2023.1223861] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023]
Abstract
Plant male sterility (MS) represents the inability of the plant to generate functional anthers, pollen, or male gametes. Developing MS lines represents one of the most important challenges in plant breeding programs, since the establishment of MS lines is a major goal in F1 hybrid production. For these reasons, MS lines have been developed in several species of economic interest, particularly in horticultural crops and ornamental plants. Over the years, MS has been accomplished through many different techniques ranging from approaches based on cross-mediated conventional breeding methods, to advanced devices based on knowledge of genetics and genomics to the most advanced molecular technologies based on genome editing (GE). GE methods, in particular gene knockout mediated by CRISPR/Cas-related tools, have resulted in flexible and successful strategic ideas used to alter the function of key genes, regulating numerous biological processes including MS. These precision breeding technologies are less time-consuming and can accelerate the creation of new genetic variability with the accumulation of favorable alleles, able to dramatically change the biological process and resulting in a potential efficiency of cultivar development bypassing sexual crosses. The main goal of this manuscript is to provide a general overview of insights and advances into plant male sterility, focusing the attention on the recent new breeding GE-based applications capable of inducing MS by targeting specific nuclear genic loci. A summary of the mechanisms underlying the recent CRISPR technology and relative success applications are described for the main crop and ornamental species. The future challenges and new potential applications of CRISPR/Cas systems in MS mutant production and other potential opportunities will be discussed, as generating CRISPR-edited DNA-free by transient transformation system and transgenerational gene editing for introducing desirable alleles and for precision breeding strategies.
Collapse
|
24
|
Bishnoi R, Kaur S, Sandhu JS, Singla D. Genome engineering of disease susceptibility genes for enhancing resistance in plants. Funct Integr Genomics 2023; 23:207. [PMID: 37338599 DOI: 10.1007/s10142-023-01133-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
Introgression of disease resistance genes (R-genes) to fight against an array of phytopathogens takes several years using conventional breeding approaches. Pathogens develop mechanism(s) to escape plants immune system by evolving new strains/races, thus making them susceptible to disease. Conversely, disruption of host susceptibility factors (or S-genes) provides opportunities for resistance breeding in crops. S-genes are often exploited by phytopathogens to promote their growth and infection. Therefore, identification and targeting of disease susceptibility genes (S-genes) are gaining more attention for the acquisition of resistance in plants. Genome engineering of S-genes results in targeted, transgene-free gene modification through CRISPR-Cas-mediated technology and has been reported in several agriculturally important crops. In this review, we discuss the defense mechanism in plants against phytopathogens, tug of war between R-genes and S-genes, in silico techniques for identification of host-target (S-) genes and pathogen effector molecule(s), CRISPR-Cas-mediated S-gene engineering, its applications, challenges, and future prospects.
Collapse
Affiliation(s)
- Ritika Bishnoi
- Bioinformatics Centre, School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India.
| | - Sehgeet Kaur
- Bioinformatics Centre, School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Jagdeep Singh Sandhu
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Deepak Singla
- Bioinformatics Centre, School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India.
| |
Collapse
|
25
|
Nadarajah K, Abdul Rahman NSN. The Microbial Connection to Sustainable Agriculture. PLANTS (BASEL, SWITZERLAND) 2023; 12:2307. [PMID: 37375932 DOI: 10.3390/plants12122307] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Microorganisms are an important element in modeling sustainable agriculture. Their role in soil fertility and health is crucial in maintaining plants' growth, development, and yield. Further, microorganisms impact agriculture negatively through disease and emerging diseases. Deciphering the extensive functionality and structural diversity within the plant-soil microbiome is necessary to effectively deploy these organisms in sustainable agriculture. Although both the plant and soil microbiome have been studied over the decades, the efficiency of translating the laboratory and greenhouse findings to the field is largely dependent on the ability of the inoculants or beneficial microorganisms to colonize the soil and maintain stability in the ecosystem. Further, the plant and its environment are two variables that influence the plant and soil microbiome's diversity and structure. Thus, in recent years, researchers have looked into microbiome engineering that would enable them to modify the microbial communities in order to increase the efficiency and effectiveness of the inoculants. The engineering of environments is believed to support resistance to biotic and abiotic stressors, plant fitness, and productivity. Population characterization is crucial in microbiome manipulation, as well as in the identification of potential biofertilizers and biocontrol agents. Next-generation sequencing approaches that identify both culturable and non-culturable microbes associated with the soil and plant microbiome have expanded our knowledge in this area. Additionally, genome editing and multidisciplinary omics methods have provided scientists with a framework to engineer dependable and sustainable microbial communities that support high yield, disease resistance, nutrient cycling, and management of stressors. In this review, we present an overview of the role of beneficial microbes in sustainable agriculture, microbiome engineering, translation of this technology to the field, and the main approaches used by laboratories worldwide to study the plant-soil microbiome. These initiatives are important to the advancement of green technologies in agriculture.
Collapse
Affiliation(s)
- Kalaivani Nadarajah
- Department of Biological Sciences and Biotechnology, Faculty of Sciences and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Nur Sabrina Natasha Abdul Rahman
- Department of Biological Sciences and Biotechnology, Faculty of Sciences and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
26
|
Wang P, Zhou J, Sun W, Li H, Rehman S, Xu C, Li D, Zhuge Q. Poplar CCR4-associated factor PtCAF1I is necessary for poplar development and defense response. Int J Biol Macromol 2023:125090. [PMID: 37247707 DOI: 10.1016/j.ijbiomac.2023.125090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Poplar is one of the most widely used tree species in afforestation projects. CCR4 associated factor 1 (CAF1) is a major member of CCR4-NOT and plays an important role in eukaryotic mRNA deadenylation. However, its role in poplar remains unclear. In this study, the full-length cDNA of the PtCAF1I gene was cloned from the poplar by screening the highly expressed PtCAF1I gene in the identified PtCAF1 gene family by poplar sterilization. PtCAF1I was localized in the nucleus. Through sequence alignment, it was found that the PtCAF1I sequence contains three motifs and is highly similar to the CAF1 protein sequence of other species. In the quantitative expression analysis of tissues, the expression of PtCAF1I in different tissues of Populus trichocarpa, 'Nanlin895', and Shanxinyang was not much different. In addition, the analysis of the expression of the PtCAF1I gene under different stress treatments showed that PtCAF1I responded to abscisic acid (ABA), salicylic acid (SA), methyl jasmonate (MeJA), NaCl, PEG6000, hydrogen peroxide (H2O2) and cold stress to different degrees. To study the potential biological functions of PtCAF1I, 6 transgenic lines were obtained through transformation using an Agrobacterium tumefaciens infection system. The transcriptome sequencing results showed that DEGs were mainly concentrated in pathways of phenylpropanoid biosynthesis, biosynthesis of secondary metabolites, carbon metabolism, and carotenoid biosynthesis. Compared with WT poplar, the contents of cellulose, hemicellulose, lignin, total sugar, and flavonoids, and the cell wall thickness of PtCAF1I overexpression poplars were significantly higher. Under Septotinia populiperda treatment, transgenic poplars clearly exhibited certain disease resistance. Meanwhile, upregulation of the expression of JA and SA pathway-related genes also contributed to improving the disease tolerance of transgenic poplar. In conclusion, our results suggest that PtCAF1I plays an important role in the growth and development of poplars and their resistance to pathogens.
Collapse
Affiliation(s)
- Pu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Jie Zhou
- Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Weibo Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Hongyan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Shamsur Rehman
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Xu
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
27
|
Ijaz M, Khan F, Zaki HEM, Khan MM, Radwan KSA, Jiang Y, Qian J, Ahmed T, Shahid MS, Luo J, Li B. Recent Trends and Advancements in CRISPR-Based Tools for Enhancing Resistance against Plant Pathogens. PLANTS (BASEL, SWITZERLAND) 2023; 12:1911. [PMID: 37176969 PMCID: PMC10180734 DOI: 10.3390/plants12091911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Targeted genome editing technologies are becoming the most important and widely used genetic tools in studies of phytopathology. The "clustered regularly interspaced short palindromic repeats (CRISPR)" and its accompanying proteins (Cas) have been first identified as a natural system associated with the adaptive immunity of prokaryotes that have been successfully used in various genome-editing techniques because of its flexibility, simplicity, and high efficiency in recent years. In this review, we have provided a general idea about different CRISPR/Cas systems and their uses in phytopathology. This review focuses on the benefits of knock-down technologies for targeting important genes involved in the susceptibility and gaining resistance against viral, bacterial, and fungal pathogens by targeting the negative regulators of defense pathways of hosts in crop plants via different CRISPR/Cas systems. Moreover, the possible strategies to employ CRISPR/Cas system for improving pathogen resistance in plants and studying plant-pathogen interactions have been discussed.
Collapse
Affiliation(s)
- Munazza Ijaz
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fahad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS 7250, Australia
| | - Haitham E. M. Zaki
- Horticulture Department, Faculty of Agriculture, Minia University, El-Minia 61517, Egypt
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur 411, Oman
| | - Muhammad Munem Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Khlode S. A. Radwan
- Plant Pathology Department, Faculty of Agriculture, Minia University, El-Minia 61517, Egypt
| | - Yugen Jiang
- Agricultural Technology Extension Center of Fuyang District, Hangzhou 311400, China
| | - Jiahui Qian
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Oman
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
28
|
A novel biocompatible polymer derived from D-mannitol used as a vector in the field of genetic engineering of eukaryotic cells. Colloids Surf B Biointerfaces 2023; 224:113219. [PMID: 36848782 DOI: 10.1016/j.colsurfb.2023.113219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
The design and preparation of new vectors to transport genetic material and increase the transfection efficiency continue being an important research line. Here, a novel biocompatible sugar-based polymer derived from D-mannitol has been synthesized to be used as a gene material nanocarrier in human (gene transfection) and microalga cells (transformation process). Its low toxicity allows its use in processes with both medical and industrial applications. A multidisciplinary study about the formation of polymer/p-DNA polyplexes has been carried out using techniques such as gel electrophoresis, zeta potential, dynamic light scattering, atomic force microscopy, and circular dichroism spectroscopy. The nucleic acids used were the eukaryotic expression plasmid pEGFP-C1 and the microalgal expression plasmid Phyco69, which showed different behaviors. The importance of DNA supercoiling in both transfection and transformation processes was demonstrated. Better results were obtained in microalga cells nuclear transformation than in human cells gene transfection. This was related to the plasmid's conformational changes, in particular to their superhelical structure. It is noteworthy that the same nanocarrier has been used with eukaryotic cells from both human and microalga.
Collapse
|
29
|
Serag A, Salem MA, Gong S, Wu JL, Farag MA. Decoding Metabolic Reprogramming in Plants under Pathogen Attacks, a Comprehensive Review of Emerging Metabolomics Technologies to Maximize Their Applications. Metabolites 2023; 13:424. [PMID: 36984864 PMCID: PMC10055942 DOI: 10.3390/metabo13030424] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
In their environment, plants interact with a multitude of living organisms and have to cope with a large variety of aggressions of biotic or abiotic origin. What has been known for several decades is that the extraordinary variety of chemical compounds the plants are capable of synthesizing may be estimated in the range of hundreds of thousands, but only a fraction has been fully characterized to be implicated in defense responses. Despite the vast importance of these metabolites for plants and also for human health, our knowledge about their biosynthetic pathways and functions is still fragmentary. Recent progress has been made particularly for the phenylpropanoids and oxylipids metabolism, which is more emphasized in this review. With an increasing interest in monitoring plant metabolic reprogramming, the development of advanced analysis methods should now follow. This review capitalizes on the advanced technologies used in metabolome mapping in planta, including different metabolomics approaches, imaging, flux analysis, and interpretation using bioinformatics tools. Advantages and limitations with regards to the application of each technique towards monitoring which metabolite class or type are highlighted, with special emphasis on the necessary future developments to better mirror such intricate metabolic interactions in planta.
Collapse
Affiliation(s)
- Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| | - Mohamed A. Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibin Elkom 32511, Menoufia, Egypt
| | - Shilin Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| |
Collapse
|
30
|
Seka D, Kouago BA, Bonny BS. Assessment of the variability of the morphological traits and differentiation of Cucurbita moschata in Cote d'Ivoire. Sci Rep 2023; 13:3689. [PMID: 36878922 PMCID: PMC9988981 DOI: 10.1038/s41598-023-30295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
With its predisposition to adapt to different environments, Cucurbita moschata grows well in various ecosystems. It is not a very exigent plant and has an inherent capacity for plasticity that underlies its large variability. An assessment of the accessions of C. moschata in Cote d'Ivoire shows that the plant exhibits large morphological and phenological variability for all the 28 measured traits. There are outliers among most measured traits. Further analysis indicates the emergence of three ecotypes in congruence with the three distinct ecosystems and their respective bioclimatic characteristics. In the savannah region, characterized by a short rainy season followed by a long dry season, a total yearly rainfall of 900 mm, an elevated daily temperature of 29 °C, and a high relative humidity of 80%, the cline of C. moschata is long and thin, with small leaves, small peduncles and small fruits. It has a high growth rate and accelerated phenology. The mountain region has a very long rainy season followed by a short dry season, a total pluviometry of 1400 mm, an average daily temperature of 27 °C and a relative humidity of 69%. The cline of C. moschata in the mountain region is characterized by a delayed flowering and a delayed fruit maturity, large number of small seeds and large fruits. The forest region has a favorable climate for the growth of C. moschata in Cote d'Ivoire. It has two rainy seasons that alternate with two dry seasons of unequal durations, an annual rainfall of 1200 mm, an average daily temperature of 27 °C and a relative humidity of 70%. The cline of C. moschata in that region has a large girth size, large dimensions of the leaves, long peduncles and larger and heavier fruits. The seeds are also large but in small number. It appears that the anatomy and physiology of the clines are differentiated primarily in response to soil water content and availability for the ontogeny of the plant.
Collapse
Affiliation(s)
- Dagou Seka
- School of Natural Sciences, University Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire.
| | - Badié Arnaud Kouago
- School of Natural Sciences, University Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
| | - Beket Severin Bonny
- School of Natural Sciences, University Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
| |
Collapse
|
31
|
Tyczewska A, Twardowski T, Woźniak-Gientka E. Agricultural biotechnology for sustainable food security. Trends Biotechnol 2023; 41:331-341. [PMID: 36710131 PMCID: PMC9881846 DOI: 10.1016/j.tibtech.2022.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 01/30/2023]
Abstract
Of late, global food security has been under threat by the coronavirus disease 2019 (COVID-19) pandemic and the recent military conflict in Eastern Europe. This article presents the objectives of the Sustainable Development Goals and the European Green Deal related to achieving food security and sustainable development in European Union (EU) agriculture, taking the aforementioned threats into account. In addition, it discusses the future of plant agricultural biotechnology and artificial intelligence (AI) systems, considering their potential for reaching the goal of food security. Paradoxically, the present challenging situation may allow politicians and stakeholders of the EU to realize opportunities and use the potential of the biotechnology sector.
Collapse
Affiliation(s)
- Agata Tyczewska
- Laboratory of Animal Model Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Tomasz Twardowski
- Bioeconomy and Sustainable Development Team, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Ewa Woźniak-Gientka
- Bioeconomy and Sustainable Development Team, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland.
| |
Collapse
|
32
|
Qi P, Wang N, Zhang T, Feng Y, Zhou X, Zeng D, Meng J, Liu L, Jin L, Yang S. Anti-Virulence Strategy of Novel Dehydroabietic Acid Derivatives: Design, Synthesis, and Antibacterial Evaluation. Int J Mol Sci 2023; 24:2897. [PMID: 36769220 PMCID: PMC9917773 DOI: 10.3390/ijms24032897] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Anti-virulence strategies are attractive and interesting strategies for controlling bacterial diseases because virulence factors are fundamental to the infection process of numerous serious phytopathogenics. To extend the novel anti-virulence agents, a series of dehydroabietic acid (DAA) derivatives decorated with amino alcohol unit were semi-synthesized based on structural modification of the renewable natural DAA and evaluated for their antibacterial activity against Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac), and Pseudomonas syringae pv. actinidiae (Psa). Compound 2b showed the most promising antibacterial activity against Xoo with an EC50 of 2.7 μg mL-1. Furthermore, compound 2b demonstrated remarkable control effectiveness against bacterial leaf blight (BLB) in rice, with values of 48.6% and 61.4% for curative and protective activities. In addition, antibacterial behavior suggested that compound 2b could suppress various virulence factors, including EPS, biofilm, swimming motility, and flagella. Therefore, the current study provided promising lead compounds for novel bactericides discovery by inhibiting bacterial virulence factors.
Collapse
Affiliation(s)
| | | | | | | | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | | | | | | | | | | |
Collapse
|
33
|
Tatineni S, Hein GL. Plant Viruses of Agricultural Importance: Current and Future Perspectives of Virus Disease Management Strategies. PHYTOPATHOLOGY 2023; 113:117-141. [PMID: 36095333 DOI: 10.1094/phyto-05-22-0167-rvw] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plant viruses cause significant losses in agricultural crops worldwide, affecting the yield and quality of agricultural products. The emergence of novel viruses or variants through genetic evolution and spillover from reservoir host species, changes in agricultural practices, mixed infections with disease synergism, and impacts from global warming pose continuous challenges for the management of epidemics resulting from emerging plant virus diseases. This review describes some of the most devastating virus diseases plus select virus diseases with regional importance in agriculturally important crops that have caused significant yield losses. The lack of curative measures for plant virus infections prompts the use of risk-reducing measures for managing plant virus diseases. These measures include exclusion, avoidance, and eradication techniques, along with vector management practices. The use of sensitive, high throughput, and user-friendly diagnostic methods is crucial for defining preventive and management strategies against plant viruses. The advent of next-generation sequencing technologies has great potential for detecting unknown viruses in quarantine samples. The deployment of genetic resistance in crop plants is an effective and desirable method of managing virus diseases. Several dominant and recessive resistance genes have been used to manage virus diseases in crops. Recently, RNA-based technologies such as dsRNA- and siRNA-based RNA interference, microRNA, and CRISPR/Cas9 provide transgenic and nontransgenic approaches for developing virus-resistant crop plants. Importantly, the topical application of dsRNA, hairpin RNA, and artificial microRNA and trans-active siRNA molecules on plants has the potential to develop GMO-free virus disease management methods. However, the long-term efficacy and acceptance of these new technologies, especially transgenic methods, remain to be established.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- U.S. Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Gary L Hein
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583
| |
Collapse
|
34
|
The rising threat of geminiviruses: molecular insights into the disease mechanism and mitigation strategies. Mol Biol Rep 2023; 50:3835-3848. [PMID: 36701042 DOI: 10.1007/s11033-023-08266-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Geminiviruses are among the most threatening emerging plant viruses, accountable for a huge loss to agricultural production worldwide. These viruses have been responsible for some serious outbreaks during the last few decades across different parts of the world. Sincere efforts have been made to regulate the disease incidence by incorporating a multi-dimensional approach, and this process has been facilitated greatly by the advent of molecular techniques. But, the mixed infection due to the polyphagous nature of vectors results in viral recombination followed by the emergence of novel viral strains which thus renders the existing mitigation strategies ineffective. Hence, a multifaceted insight into the molecular mechanism of the disease is really needed to understand the regulatory points; much has been done in this direction during the last few years. The present review aims to explore all the latest developments made so far and to organize the information in a comprehensive manner so that some novel hypotheses for controlling the disease may be generated. METHODS AND RESULTS Starting with the background information, diverse genera of geminiviruses are listed along with their pathological and economic impacts. A comprehensive and detailed mechanism of infection is elaborated to study the interactions between vector, host, and virus at different stages in the life cycle of geminiviruses. Finally, an effort isalso made to analyze the progress made at the molecular level for the development of various mitigation strategies and suggest more effective and better approaches for controlling the disease. CONCLUSION The study has provided a thorough understanding of molecular mechanism of geminivirus infection.
Collapse
|
35
|
Yuan G, Tuskan GA, Yang X. Use of Fluorescent Protein Reporters for Assessing and Detecting Genome Editing Reagents and Transgene Expression in Plants. Methods Mol Biol 2023; 2653:115-127. [PMID: 36995623 DOI: 10.1007/978-1-0716-3131-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Fluorescent protein reporters have been widely used for monitoring the expression of target genes in various engineered organisms. Although a wide range of analytical approaches (e.g., genotyping PCR, digital PCR, DNA sequencing) have been utilized to detect and identify genome editing reagents and transgene expression in genetically modified plants, these methods are usually limited to use in the late stages of plant transformation and can only be used invasively. Here we describe GFP- and eYGFPuv-based strategies and methods for assessing and detecting genome editing reagents and transgene expression in plants, including protoplast transformation, leaf infiltration, and stable transformation. These methods and strategies enable easy, noninvasive screening of genome editing and transgenic events in plants.
Collapse
Affiliation(s)
- Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
36
|
Rozov SM, Zagorskaya AA, Konstantinov YM, Deineko EV. Three Parts of the Plant Genome: On the Way to Success in the Production of Recombinant Proteins. PLANTS (BASEL, SWITZERLAND) 2022; 12:38. [PMID: 36616166 PMCID: PMC9824153 DOI: 10.3390/plants12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Recombinant proteins are the most important product of current industrial biotechnology. They are indispensable in medicine (for diagnostics and treatment), food and chemical industries, and research. Plant cells combine advantages of the eukaryotic protein production system with simplicity and efficacy of the bacterial one. The use of plants for the production of recombinant proteins is an economically important and promising area that has emerged as an alternative to traditional approaches. This review discusses advantages of plant systems for the expression of recombinant proteins using nuclear, plastid, and mitochondrial genomes. Possibilities, problems, and prospects of modifications of the three parts of the genome in light of obtaining producer plants are examined. Examples of successful use of the nuclear expression platform for production of various biopharmaceuticals, veterinary drugs, and technologically important proteins are described, as are examples of a high yield of recombinant proteins upon modification of the chloroplast genome. Potential utility of plant mitochondria as an expression system for the production of recombinant proteins and its advantages over the nucleus and chloroplasts are substantiated. Although these opportunities have not yet been exploited, potential utility of plant mitochondria as an expression system for the production of recombinant proteins and its advantages over the nucleus and chloroplasts are substantiated.
Collapse
Affiliation(s)
- Sergey M. Rozov
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| | - Alla A. Zagorskaya
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| | - Yuri M. Konstantinov
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences, Lermontova Str. 132, Irkutsk 664033, Russia
| | - Elena V. Deineko
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| |
Collapse
|
37
|
Wang Y, Zafar N, Ali Q, Manghwar H, Wang G, Yu L, Ding X, Ding F, Hong N, Wang G, Jin S. CRISPR/Cas Genome Editing Technologies for Plant Improvement against Biotic and Abiotic Stresses: Advances, Limitations, and Future Perspectives. Cells 2022; 11:3928. [PMID: 36497186 PMCID: PMC9736268 DOI: 10.3390/cells11233928] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Crossbreeding, mutation breeding, and traditional transgenic breeding take much time to improve desirable characters/traits. CRISPR/Cas-mediated genome editing (GE) is a game-changing tool that can create variation in desired traits, such as biotic and abiotic resistance, increase quality and yield in less time with easy applications, high efficiency, and low cost in producing the targeted edits for rapid improvement of crop plants. Plant pathogens and the severe environment cause considerable crop losses worldwide. GE approaches have emerged and opened new doors for breeding multiple-resistance crop varieties. Here, we have summarized recent advances in CRISPR/Cas-mediated GE for resistance against biotic and abiotic stresses in a crop molecular breeding program that includes the modification and improvement of genes response to biotic stresses induced by fungus, virus, and bacterial pathogens. We also discussed in depth the application of CRISPR/Cas for abiotic stresses (herbicide, drought, heat, and cold) in plants. In addition, we discussed the limitations and future challenges faced by breeders using GE tools for crop improvement and suggested directions for future improvements in GE for agricultural applications, providing novel ideas to create super cultivars with broad resistance to biotic and abiotic stress.
Collapse
Affiliation(s)
- Yaxin Wang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Naeem Zafar
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qurban Ali
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hakim Manghwar
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanying Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Yu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Ding
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ni Hong
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoping Wang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
38
|
Joubert PM, Krasileva KV. The extrachromosomal circular DNAs of the rice blast pathogen Magnaporthe oryzae contain a wide variety of LTR retrotransposons, genes, and effectors. BMC Biol 2022; 20:260. [PMID: 36424609 PMCID: PMC9694575 DOI: 10.1186/s12915-022-01457-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND One of the ways genomes respond to stress is by producing extrachromosomal circular DNAs (eccDNAs). EccDNAs can contain genes and dramatically increase their copy number. They can also reinsert into the genome, generating structural variation. They have been shown to provide a source of phenotypic and genotypic plasticity in several species. However, whole circularome studies have so far been limited to a few model organisms. Fungal plant pathogens are a serious threat to global food security in part because of their rapid adaptation to disease prevention strategies. Understanding the mechanisms fungal pathogens use to escape disease control is paramount to curbing their threat. RESULTS We present a whole circularome sequencing study of the rice blast pathogen, Magnaporthe oryzae. We find that M. oryzae has a highly diverse circularome that contains many genes and shows evidence of large LTR retrotransposon activity. We find that genes enriched on eccDNAs in M. oryzae occur in genomic regions prone to presence-absence variation and that disease-associated genes are frequently on eccDNAs. Finally, we find that a subset of genes is never present on eccDNAs in our data, which indicates that the presence of these genes on eccDNAs is selected against. CONCLUSIONS Our study paves the way to understanding how eccDNAs contribute to adaptation in M. oryzae. Our analysis also reveals how M. oryzae eccDNAs differ from those of other species and highlights the need for further comparative characterization of eccDNAs across species to gain a better understanding of these molecules.
Collapse
Affiliation(s)
- Pierre M Joubert
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
39
|
Case NT, Berman J, Blehert DS, Cramer RA, Cuomo C, Currie CR, Ene IV, Fisher MC, Fritz-Laylin LK, Gerstein AC, Glass NL, Gow NAR, Gurr SJ, Hittinger CT, Hohl TM, Iliev ID, James TY, Jin H, Klein BS, Kronstad JW, Lorch JM, McGovern V, Mitchell AP, Segre JA, Shapiro RS, Sheppard DC, Sil A, Stajich JE, Stukenbrock EE, Taylor JW, Thompson D, Wright GD, Heitman J, Cowen LE. The future of fungi: threats and opportunities. G3 (BETHESDA, MD.) 2022; 12:jkac224. [PMID: 36179219 PMCID: PMC9635647 DOI: 10.1093/g3journal/jkac224] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/12/2022] [Indexed: 01/13/2023]
Abstract
The fungal kingdom represents an extraordinary diversity of organisms with profound impacts across animal, plant, and ecosystem health. Fungi simultaneously support life, by forming beneficial symbioses with plants and producing life-saving medicines, and bring death, by causing devastating diseases in humans, plants, and animals. With climate change, increased antimicrobial resistance, global trade, environmental degradation, and novel viruses altering the impact of fungi on health and disease, developing new approaches is now more crucial than ever to combat the threats posed by fungi and to harness their extraordinary potential for applications in human health, food supply, and environmental remediation. To address this aim, the Canadian Institute for Advanced Research (CIFAR) and the Burroughs Wellcome Fund convened a workshop to unite leading experts on fungal biology from academia and industry to strategize innovative solutions to global challenges and fungal threats. This report provides recommendations to accelerate fungal research and highlights the major research advances and ideas discussed at the meeting pertaining to 5 major topics: (1) Connections between fungi and climate change and ways to avert climate catastrophe; (2) Fungal threats to humans and ways to mitigate them; (3) Fungal threats to agriculture and food security and approaches to ensure a robust global food supply; (4) Fungal threats to animals and approaches to avoid species collapse and extinction; and (5) Opportunities presented by the fungal kingdom, including novel medicines and enzymes.
Collapse
Affiliation(s)
- Nicola T Case
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - David S Blehert
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA
| | - Robert A Cramer
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Christina Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Iuliana V Ene
- Department of Mycology, Institut Pasteur, Université de Paris, Paris 75015, France
| | - Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, Imperial College, London W2 1PG, UK
| | | | - Aleeza C Gerstein
- Department of Microbiology and Department of Statistics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720, USA
| | - Neil A R Gow
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Sarah J Gurr
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Chris Todd Hittinger
- Laboratory of Genetics, Center for Genomic Science Innovation, J.F. Crow Institute for the Study of Evolution, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, and Immunology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Iliyan D Iliev
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California—Riverside, Riverside, CA 92507, USA
| | - Bruce S Klein
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI 53706, USA
- Department of Internal Medicine, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI 53706, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jeffrey M Lorch
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA
| | | | - Aaron P Mitchell
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Donald C Sheppard
- McGill Interdisciplinary Initiative in Infection and Immunology, Departments of Medicine, Microbiology & Immunology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Anita Sil
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94117, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California—Riverside, Riverside, CA 92507, USA
| | - Eva E Stukenbrock
- Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
- Environmental Genomics, Christian-Albrechts University, Kiel 24118, Germany
| | - John W Taylor
- Department of Plant and Microbial Biology, University of California—Berkeley, Berkeley, CA 94720, USA
| | | | - Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
40
|
Lin L, Fan J, Li P, Liu D, Ren S, Lin K, Fang Y, Lin C, Wang Y, Wu J. The Sclerotinia sclerotiorum-inducible promoter pBnGH17D7 in Brassica napus: isolation, characterization, and application in host-induced gene silencing. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6663-6677. [PMID: 35927220 PMCID: PMC9629790 DOI: 10.1093/jxb/erac328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum, is among the most devastating diseases in Brassica napus worldwide. Conventional breeding for SSR resistance in Brassica species is challenging due to the limited availability of resistant germplasm. Therefore, genetic engineering is an attractive approach for developing SSR-resistant Brassica crops. Compared with the constitutive promoter, an S. sclerotiorum-inducible promoter would avoid ectopic expression of defense genes that may cause plant growth deficits. In this study, we generated a S. sclerotiorum-inducible promoter. pBnGH17D7, from the promoter of B. napus glycosyl hydrolase 17 gene (pBnGH17). Specifically, 5'-deletion and promoter activity analyses in transgenic Arabidopsis thaliana plants defined a 189 bp region of pBnGH17 which was indispensable for S. sclerotiorum-induced response. Compared with pBnGH17, pBnGH17D7 showed a similar response upon S. sclerotiorum infection, but lower activity in plant tissues in the absence of S. sclerotiorum infection. Moreover, we revealed that the transcription factor BnTGA7 directly binds to the TGACG motif in pBnGH17D7 to activate BnGH17. Ultimately, pBnGH17D7 was exploited for engineering Sclerotinia-resistant B. napus via host-induced gene silencing. It induces high expression of siRNAs against the S. sclerotiorum pathogenic factor gene specifically during infection, leading to increased resistance.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Jialin Fan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Panpan Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Dongxiao Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Sichao Ren
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Keyun Lin
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Yujie Fang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Chen Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | | | | |
Collapse
|
41
|
Robertson G, Burger J, Campa M. CRISPR/Cas-based tools for the targeted control of plant viruses. MOLECULAR PLANT PATHOLOGY 2022; 23:1701-1718. [PMID: 35920132 PMCID: PMC9562834 DOI: 10.1111/mpp.13252] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 05/15/2023]
Abstract
Plant viruses are known to infect most economically important crops and pose a major threat to global food security. Currently, few resistant host phenotypes have been delineated, and while chemicals are used for crop protection against insect pests and bacterial or fungal diseases, these are inefficient against viral diseases. Genetic engineering emerged as a way of modifying the plant genome by introducing functional genes in plants to improve crop productivity under adverse environmental conditions. Recently, new breeding technologies, and in particular the exciting CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) technology, was shown to be a powerful alternative to engineer resistance against plant viruses, thus has great potential for reducing crop losses and improving plant productivity to directly contribute to food security. Indeed, it could circumvent the "Genetic modification" issues because it allows for genome editing without the integration of foreign DNA or RNA into the genome of the host plant, and it is simpler and more versatile than other new breeding technologies. In this review, we describe the predominant features of the major CRISPR/Cas systems and outline strategies for the delivery of CRISPR/Cas reagents to plant cells. We also provide an overview of recent advances that have engineered CRISPR/Cas-based resistance against DNA and RNA viruses in plants through the targeted manipulation of either the viral genome or susceptibility factors of the host plant genome. Finally, we provide insight into the limitations and challenges that CRISPR/Cas technology currently faces and discuss a few alternative applications of the technology in virus research.
Collapse
Affiliation(s)
- Gaëlle Robertson
- Department of GeneticsStellenbosch UniversityMatielandSouth Africa
- Department of Experimental and Health SciencesUniversitat Pompeu FabraBarcelonaSpain
| | - Johan Burger
- Department of GeneticsStellenbosch UniversityMatielandSouth Africa
| | - Manuela Campa
- Department of GeneticsStellenbosch UniversityMatielandSouth Africa
| |
Collapse
|
42
|
Mesel F, Zhao M, García B, Simón‐Mateo C, García J. Targeting of genomic and negative-sense strands of viral RNA contributes to antiviral resistance mediated by artificial miRNAs and promotes the emergence of complex viral populations. MOLECULAR PLANT PATHOLOGY 2022; 23:1640-1657. [PMID: 35989243 PMCID: PMC9562735 DOI: 10.1111/mpp.13258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/07/2022] [Accepted: 07/16/2022] [Indexed: 05/27/2023]
Abstract
Technology based on artificial small RNAs, including artificial microRNAs (amiRNAs), exploits natural RNA silencing mechanisms to achieve silencing of endogenous genes or pathogens. This technology has been successfully employed to generate resistance against different eukaryotic viruses. However, information about viral RNA molecules effectively targeted by these small RNAs is rather conflicting, and factors contributing to the selection of virus mutants escaping the antiviral activity of virus-specific small RNAs have not been studied in detail. In this work, we transformed Nicotiana benthamiana plants with amiRNA constructs designed against the potyvirus plum pox virus (PPV), a positive-sense RNA virus, and obtained lines highly resistant to PPV infection and others showing partial resistance. These lines have allowed us to verify that amiRNA directed against genomic RNA is more efficient than amiRNA targeting its complementary strand. However, we also provide evidence that the negative-sense RNA strand is cleaved by the amiRNA-guided RNA silencing machinery. Our results show that the selection pressure posed by the amiRNA action on both viral RNA strands causes an evolutionary explosion that results in the emergence of a broad range of virus variants, which can further expand in the presence, and even in the absence, of antiviral challenges.
Collapse
Affiliation(s)
- Frida Mesel
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de MadridMadridSpain
| | - Mingmin Zhao
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de MadridMadridSpain
- College of Horticulture and Plant ProtectionInner Mongolia Agricultural UniversityHohhotChina
| | - Beatriz García
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de MadridMadridSpain
| | - Carmen Simón‐Mateo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de MadridMadridSpain
| | - Juan Antonio García
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de MadridMadridSpain
| |
Collapse
|
43
|
The Ubiquitin–Proteasome System (UPS) and Viral Infection in Plants. PLANTS 2022; 11:plants11192476. [PMID: 36235343 PMCID: PMC9572368 DOI: 10.3390/plants11192476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
Abstract
The ubiquitin–proteasome system (UPS) is crucial in maintaining cellular physiological balance. The UPS performs quality control and degrades proteins that have already fulfilled their regulatory purpose. The UPS is essential for cellular and organic homeostasis, and its functions regulate DNA repair, gene transcription, protein activation, and receptor trafficking. Besides that, the UPS protects cellular immunity and acts on the host’s defense system. In order to produce successful infections, viruses frequently need to manipulate the UPS to maintain the proper level of viral proteins and hijack defense mechanisms. This review highlights and updates the mechanisms and strategies used by plant viruses to subvert the defenses of their hosts. Proteins involved in these mechanisms are important clues for biotechnological approaches in viral resistance.
Collapse
|
44
|
Liu H, Chen W, Li Y, Sun L, Chai Y, Chen H, Nie H, Huang C. CRISPR/Cas9 Technology and Its Utility for Crop Improvement. Int J Mol Sci 2022; 23:10442. [PMID: 36142353 PMCID: PMC9499353 DOI: 10.3390/ijms231810442] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The rapid growth of the global population has resulted in a considerable increase in the demand for food crops. However, traditional crop breeding methods will not be able to satisfy the worldwide demand for food in the future. New gene-editing technologies, the most widely used of which is CRISPR/Cas9, may enable the rapid improvement of crop traits. Specifically, CRISPR/Cas9 genome-editing technology involves the use of a guide RNA and a Cas9 protein that can cleave the genome at specific loci. Due to its simplicity and efficiency, the CRISPR/Cas9 system has rapidly become the most widely used tool for editing animal and plant genomes. It is ideal for modifying the traits of many plants, including food crops, and for creating new germplasm materials. In this review, the development of the CRISPR/Cas9 system, the underlying mechanism, and examples of its use for editing genes in important crops are discussed. Furthermore, certain limitations of the CRISPR/Cas9 system and potential solutions are described. This article will provide researchers with important information regarding the use of CRISPR/Cas9 gene-editing technology for crop improvement, plant breeding, and gene functional analyses.
Collapse
Affiliation(s)
- Hua Liu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wendan Chen
- Beijing Key Laboratory of Forest Food Processing and Safety, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yushu Li
- Beijing Vocational College of Agriculture, Beijing 100097, China
| | - Lei Sun
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yuhong Chai
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Haixia Chen
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Haochen Nie
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Conglin Huang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
45
|
Anuradha C, Chandrasekar A, Backiyarani S, Uma S. MusaRgeneDB: an online comprehensive database for disease resistance genes in Musa spp. 3 Biotech 2022; 12:222. [PMID: 35971335 PMCID: PMC9374869 DOI: 10.1007/s13205-022-03285-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
Banana is one of the major food crops and its production is subject to many pests and diseases. Banana breeding exploits wild relatives and progenitor species for the introgression of resistant genes (R) into cultivated varieties to overcome these hurdles. With advances in sequencing technologies, whole-genome sequences are available for many Musa spp. and many of them are potential donors of disease resistance genes. Considering their potential role, R genes from these species were explored to develop an user-friendly open-access database that will be useful for studying and implementing disease resistance in bananas. MusaRgene database is complemented with complete details of 3598 R genes identified from eight Musa spp. and rice, Arabidopsis, sorghum along with its classification and separate modules on its expression under various stresses in resistant and susceptible cultivars and corresponding SSRs are also provided. This database can be regarded as the primary resource of information on R genes from bananas and their relatives. R genes from other allele mining studies are also incorporated which will enable the identification of its homolog in related Musa spp. MusaRgene database will aid in the identification of genes and markers associated, cloning of full-length R genes, and genetic transformation or gene editing of the R genes in susceptible cultivars. Multiple R genes can also be identified for pyramiding the genes to increase the level of resistance and durability. Overall, this database will facilitate the understanding of defense mechanisms in bananas against biotic or abiotic stresses leading to the development of promising disease-resistant varieties.
Collapse
Affiliation(s)
- Chelliah Anuradha
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Arumugam Chandrasekar
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Suthanthiram Backiyarani
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Subbaraya Uma
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| |
Collapse
|
46
|
McLellan H, Harvey SE, Steinbrenner J, Armstrong MR, He Q, Clewes R, Pritchard L, Wang W, Wang S, Nussbaumer T, Dohai B, Luo Q, Kumari P, Duan H, Roberts A, Boevink PC, Neumann C, Champouret N, Hein I, Falter-Braun P, Beynon J, Denby K, Birch PRJ. Exploiting breakdown in nonhost effector-target interactions to boost host disease resistance. Proc Natl Acad Sci U S A 2022; 119:e2114064119. [PMID: 35994659 PMCID: PMC9436328 DOI: 10.1073/pnas.2114064119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Plants are resistant to most microbial species due to nonhost resistance (NHR), providing broad-spectrum and durable immunity. However, the molecular components contributing to NHR are poorly characterised. We address the question of whether failure of pathogen effectors to manipulate nonhost plants plays a critical role in NHR. RxLR (Arg-any amino acid-Leu-Arg) effectors from two oomycete pathogens, Phytophthora infestans and Hyaloperonospora arabidopsidis, enhanced pathogen infection when expressed in host plants (Nicotiana benthamiana and Arabidopsis, respectively) but the same effectors performed poorly in distantly related nonhost pathosystems. Putative target proteins in the host plant potato were identified for 64 P. infestans RxLR effectors using yeast 2-hybrid (Y2H) screens. Candidate orthologues of these target proteins in the distantly related non-host plant Arabidopsis were identified and screened using matrix Y2H for interaction with RxLR effectors from both P. infestans and H. arabidopsidis. Few P. infestans effector-target protein interactions were conserved from potato to candidate Arabidopsis target orthologues (cAtOrths). However, there was an enrichment of H. arabidopsidis RxLR effectors interacting with cAtOrths. We expressed the cAtOrth AtPUB33, which unlike its potato orthologue did not interact with P. infestans effector PiSFI3, in potato and Nicotiana benthamiana. Expression of AtPUB33 significantly reduced P. infestans colonization in both host plants. Our results provide evidence that failure of pathogen effectors to interact with and/or correctly manipulate target proteins in distantly related non-host plants contributes to NHR. Moreover, exploiting this breakdown in effector-nonhost target interaction, transferring effector target orthologues from non-host to host plants is a strategy to reduce disease.
Collapse
Affiliation(s)
- Hazel McLellan
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Sarah E. Harvey
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jens Steinbrenner
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Justus Liebig Universität Giessen, JLU Institute of Phytopathology, Giessen, Hesse, Germany
| | - Miles R. Armstrong
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Qin He
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Department of Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Rachel Clewes
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Leighton Pritchard
- Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Wei Wang
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Shumei Wang
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Thomas Nussbaumer
- Institute of Network Biology, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health, Munich, Germany
| | - Bushra Dohai
- Institute of Network Biology, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health, Munich, Germany
| | - Qingquan Luo
- Justus Liebig Universität Giessen, JLU Institute of Phytopathology, Giessen, Hesse, Germany
| | - Priyanka Kumari
- Justus Liebig Universität Giessen, JLU Institute of Phytopathology, Giessen, Hesse, Germany
| | - Hui Duan
- Simplot Plant Sciences, J. R. Simplot Company, Boise, ID 83707
| | - Ana Roberts
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Petra C. Boevink
- Department of Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Christina Neumann
- Justus Liebig Universität Giessen, JLU Institute of Phytopathology, Giessen, Hesse, Germany
| | | | - Ingo Hein
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Department of Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Pascal Falter-Braun
- Institute of Network Biology, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health, Munich, Germany
| | - Jim Beynon
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Katherine Denby
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Paul R. J. Birch
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Department of Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| |
Collapse
|
47
|
Sharma A, Abrahamian P, Carvalho R, Choudhary M, Paret ML, Vallad GE, Jones JB. Future of Bacterial Disease Management in Crop Production. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:259-282. [PMID: 35790244 DOI: 10.1146/annurev-phyto-021621-121806] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacterial diseases are a constant threat to crop production globally. Current management strategies rely on an array of tactics, including improved cultural practices; application of bactericides, plant activators, and biocontrol agents; and use of resistant varieties when available. However, effective management remains a challenge, as the longevity of deployed tactics is threatened by constantly changing bacterial populations. Increased scrutiny of the impact of pesticides on human and environmental health underscores the need for alternative solutions that are durable, sustainable, accessible to farmers, and environmentally friendly. In this review, we discuss the strengths and shortcomings of existing practices and dissect recent advances that may shape the future of bacterial disease management. We conclude that disease resistance through genome modification may be the most effective arsenal against bacterial diseases. Nonetheless, more research is necessary for developing novel bacterial disease management tactics to meet the food demand of a growing global population.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| | - Peter Abrahamian
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, USA
- Plant Pathogen Confirmatory Diagnostic Laboratory, USDA-APHIS, Beltsville, Maryland, USA
| | - Renato Carvalho
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| | - Manoj Choudhary
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| | - Mathews L Paret
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
- North Florida Research and Education Center, University of Florida, Quincy, Florida, USA
| | - Gary E Vallad
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, USA
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
48
|
Tan YC, Kumar AU, Wong YP, Ling APK. Bioinformatics approaches and applications in plant biotechnology. J Genet Eng Biotechnol 2022; 20:106. [PMID: 35838847 PMCID: PMC9287518 DOI: 10.1186/s43141-022-00394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/05/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND In recent years, major advance in molecular biology and genomic technologies have led to an exponential growth in biological information. As the deluge of genomic information, there is a parallel growth in the demands of tools in the storage and management of data, and the development of software for analysis, visualization, modelling, and prediction of large data set. MAIN BODY Particularly in plant biotechnology, the amount of information has multiplied exponentially with a large number of databases available from many individual plant species. Efficient bioinformatics tools and methodologies are also developed to allow rapid genome sequence and the study of plant genome in the 'omics' approach. This review focuses on the various bioinformatic applications in plant biotechnology, and their advantages in improving the outcome in agriculture. The challenges or limitations faced in plant biotechnology in the aspect of bioinformatics approach that explained the low progression in plant genomics than in animal genomics are also reviewed and assessed. CONCLUSION There is a critical need for effective bioinformatic tools, which are able to provide longer reads with unbiased coverage in order to overcome the complexity of the plant's genome. The advancement in bioinformatics is not only beneficial to the field of plant biotechnology and agriculture sectors, but will also contribute enormously to the future of humanity.
Collapse
Affiliation(s)
- Yung Cheng Tan
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Asqwin Uthaya Kumar
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.,School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia
| | - Ying Pei Wong
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
49
|
de Moura SM, Freitas EO, Ribeiro TP, Paes-de-Melo B, Arraes FBM, Macedo LLP, Paixão JFR, Lourenço-Tessutti IT, Artico S, da Cunha Valença D, Silva MCM, de Oliveira AC, Alves-Ferreira M, Grossi-de-Sa MF. Discovery and functional characterization of novel cotton promoters with potential application to pest control. PLANT CELL REPORTS 2022; 41:1589-1601. [PMID: 35665839 DOI: 10.1007/s00299-022-02880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
pGhERF105 and pGhNc-HARBI1 promoters are highly responsive to CBW infestation and exhibit strong activity in vegetative and reproductive tissues, increasing their potential application in GM crop plants for pest control. The main challenge to cotton (Gossypium hirsutum) crop productivity is the constant attack of several pests, including the cotton boll weevil (CBW, Anthonomus grandis), which uses cotton floral buds for feeding and egg-laying. The endophytic nature of the early developmental stages of CBW makes conventional pesticide-based control poorly efficient. Most biotechnological assets used for pest control are based on Bacillus thurigiensis insecticidal Cry toxins or the silencing of insect-pest essential genes using RNA-interference technology. However, suitable plant promoter sequences are required to efficiently drive insecticidal molecules to the target plant tissue. This study selected the Ethylene Responsive Factor 105 (GhERF105) and Harbinger transposase-derived nuclease (GhNc-HARBI1) genes based on available transcriptome-wide data from cotton plants infested by CBW larvae. The GhERF105 and GhNc-HARBI1 genes showed induction kinetics from 2 to 96 h under CBW's infestation in cotton floral buds, uncovering the potential application of their promoters. Therefore, the promoter regions (1,500 base pairs) were assessed and characterized using Arabidopsis thaliana transgenic plants. The pGhERF105 and pGhNc-HARBI1 promoters showed strong activity in plant vegetative (leaves and roots) and reproductive (flowers and fruits) tissues, encompassing higher GUS transcriptional activity than the viral-constitutive Cauliflower Mosaic Virus 35S promoter (pCaMV35S). Notably, pGhERF105 and pGhNc-HARBI1 promoters demonstrated more efficiency in driving reporter genes in flowers than other previously characterized cotton flower-specific promoters. Overall, the present study provides a new set of cotton promoters suitable for biotechnological application in cotton plants for pest resistance.
Collapse
Affiliation(s)
- Stéfanie Menezes de Moura
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Elinea Oliveira Freitas
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- Federal University of Brasilia (UnB), Brasília, DF, Brazil
| | - Thuanne Pires Ribeiro
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
- Federal University of Brasilia (UnB), Brasília, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Fabrício B M Arraes
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
- Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Leonardo Lima Pepino Macedo
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Joaquin F R Paixão
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
| | - Isabela T Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Sinara Artico
- Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - David da Cunha Valença
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
| | - Maria Cristina Mattar Silva
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Antonio C de Oliveira
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
- Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Marcio Alves-Ferreira
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
- Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil.
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil.
- Catholic University of Brasília (UCB), Brasília, DF, Brazil.
| |
Collapse
|
50
|
Mejias J, Chen Y, Bazin J, Truong NM, Mulet K, Noureddine Y, Jaubert-Possamai S, Ranty-Roby S, Soulé S, Abad P, Crespi MD, Favery B, Quentin M. Silencing the conserved small nuclear ribonucleoprotein SmD1 target gene alters susceptibility to root-knot nematodes in plants. PLANT PHYSIOLOGY 2022; 189:1741-1756. [PMID: 35385078 PMCID: PMC9237699 DOI: 10.1093/plphys/kiac155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 06/01/2023]
Abstract
Root-knot nematodes (RKNs) are among the most damaging pests of agricultural crops. Meloidogyne is an extremely polyphagous genus of nematodes that can infect thousands of plant species. A few genes for resistance (R-genes) to RKN suitable for use in crop breeding have been identified, but virulent strains and species of RKN have emerged that render these R-genes ineffective. Secretion of RKN effectors targeting plant functions mediates the reprogramming of root cells into specialized feeding cells, the giant cells, essential for RKN development and reproduction. Conserved targets among plant species define the more relevant strategies for controlling nematode infection. The EFFECTOR18 (EFF18) protein from M. incognita interacts with the spliceosomal small nuclear ribonucleoprotein D1 (SmD1) in Arabidopsis (Arabidopsis thaliana), disrupting its function in alternative splicing regulation and modulating the giant cell transcriptome. We show here that EFF18 is a conserved RKN-specific effector that targets this conserved spliceosomal SmD1 protein in Solanaceae. This interaction modulates alternative splicing events produced by tomato (Solanum lycopersicum) in response to M. incognita infection. The alteration of SmD1 expression by virus-induced gene silencing in Solanaceae affects giant cell formation and nematode development. Thus, our work defines a promising conserved SmD1 target gene to develop broad resistance for the control of Meloidogyne spp. in plants.
Collapse
Affiliation(s)
| | | | - Jérémie Bazin
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universités Paris Saclay, Evry, Université de Paris, 91192 Gif sur Yvette, France
| | | | - Karine Mulet
- INRAE, Université Côte d’Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Yara Noureddine
- INRAE, Université Côte d’Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | | | - Sarah Ranty-Roby
- INRAE, Université Côte d’Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Salomé Soulé
- INRAE, Université Côte d’Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Pierre Abad
- INRAE, Université Côte d’Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Martin D Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universités Paris Saclay, Evry, Université de Paris, 91192 Gif sur Yvette, France
| | | | | |
Collapse
|