1
|
Rawat SS, Laxmi A. Rooted in Communication: Exploring Auxin-Salicylic Acid Nexus in Root Growth and Development. PLANT, CELL & ENVIRONMENT 2025; 48:4140-4160. [PMID: 39910701 DOI: 10.1111/pce.15420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/11/2025] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
Plant hormones are pivotal in orchestrating diverse aspects of growth and developmental processes. Among various phytohormones, auxin and salicylic acid (SA) stand out as important regulators, often exerting opposing effects on overall plant growth. Essentially, research has indicated that auxin and SA-mediated pathways exhibit mutual antagonism during pathogen challenge. Additionally, in recent years, significant advancements have been made in uncovering the molecular intricacies that govern the action and interplay between these two phytohormones during various essential growth-related processes. In this discussion, we briefly delve into the genetic and molecular mechanisms involved in auxin and SA antagonism. We then analyse in detail how this dialogue impacts critical aspects of root development, with an emphasis on the transcriptional and protein regulatory networks. Finally, we propose the potential of exploring their interaction in various other aspects of below ground root growth processes. Understanding this relationship could provide valuable insights for optimizing and enhancing crop growth and yields.
Collapse
Affiliation(s)
- Sanjay Singh Rawat
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Ashverya Laxmi
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, Delhi, India
| |
Collapse
|
2
|
Liang Y, Du Y, Song Y, Wang S, Zhao C, Feng Z, Zuo S, Yang F, Xu K, Huo Z. Dual stimuli-responsive prodrug co-delivery nanosystem of salicylic acid and bioavailable silicon for long-term immunity in plant. J Nanobiotechnology 2025; 23:335. [PMID: 40336038 DOI: 10.1186/s12951-025-03416-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/23/2025] [Indexed: 05/09/2025] Open
Abstract
Plant-induced resistance plays a crucial role in the plant defense system by activating intrinsic immune mechanisms. In this study, a novel amidase- and redox-responsive codelivery nanosystem was developed by covalently linking salicylic acid (SA) to functionalized disulfide-doped mesoporous silica nanoparticles (MSNs-ss-NH2) for the efficient delivery of SA and bioavailable silicon concurrently. Physicochemical characterization confirmed the successful preparation of MSNs-ss-SA, demonstrating its structural integrity and glutathione and amidase responsive degradation mechanism. With a particle size of approximately 90 nm, MSNs-ss-SA could penetrate the stomata of rice leaves, facilitating the efficient intracellular transport of SA and bioavailable silicon. Biological activity assays revealed that MSNs-ss-SA exhibited superior efficacy in inducing resistance to rice sheath blight compared to conventional SA, which was primarily due to its ability to enhance physical barrier formation, strengthen antioxidant defense systems, upregulate the expression of key defense-related genes, and increase chitinase synthesis, collectively triggering both systemic acquired resistance and induced systemic resistance. Most importantly, biological safety assessments confirmed its excellent compatibility with rice plants, aquatic organisms, soil ecosystems, and human cell models. Therefore, the prodrug system of SA and bioavailable silicon shows a significant potential for sustainable agricultural plant disease management.
Collapse
Affiliation(s)
- You Liang
- Co-Innovation Center for Modern Production Technology of Grain Crop, Jiangsu Key Laboratory of Crop Genetics and Physiology, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Yuehong Du
- Co-Innovation Center for Modern Production Technology of Grain Crop, Jiangsu Key Laboratory of Crop Genetics and Physiology, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yuchen Song
- Co-Innovation Center for Modern Production Technology of Grain Crop, Jiangsu Key Laboratory of Crop Genetics and Physiology, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Sijin Wang
- Co-Innovation Center for Modern Production Technology of Grain Crop, Jiangsu Key Laboratory of Crop Genetics and Physiology, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Can Zhao
- Co-Innovation Center for Modern Production Technology of Grain Crop, Jiangsu Key Laboratory of Crop Genetics and Physiology, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhiming Feng
- Co-Innovation Center for Modern Production Technology of Grain Crop, Jiangsu Key Laboratory of Crop Genetics and Physiology, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shimin Zuo
- Co-Innovation Center for Modern Production Technology of Grain Crop, Jiangsu Key Laboratory of Crop Genetics and Physiology, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Fengping Yang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ke Xu
- Co-Innovation Center for Modern Production Technology of Grain Crop, Jiangsu Key Laboratory of Crop Genetics and Physiology, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhongyang Huo
- Co-Innovation Center for Modern Production Technology of Grain Crop, Jiangsu Key Laboratory of Crop Genetics and Physiology, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Zhao LB, Tang ZX, Zhai HF, Lai HY, Li HY, Liu S, Liao XD, Xing SC. Organic fertilizer mitigated the oxidative stress of tomato induced by nanoplastics through affecting rhizosphere soil microorganisms and bacteriophage functions. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138301. [PMID: 40245718 DOI: 10.1016/j.jhazmat.2025.138301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/17/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Nanoplastics (NPs), which are widely present in agricultural soils, are difficult to remove and are potentially harmful to plant growth and development. However, few studies have focused on how to mitigation the oxidative stress in plants induced by soil NPs exposure. Therefore, in this study, the effects of organic and chemical fertilizers on the oxidative stress of tomato under exposure to polystyrene nanoplastics (PS-NPs) in soil were investigated. Compared with chemical fertilizer under exposure to PS-NPs, the organic fertilizer reduced the reactive oxygen species (ROS) content by 25.63 % and the H2O2 content by 34.58 % in tomato stems, whereas no significant effects were observed with respect to the amount of PS-NP internalized in tomato. Additionally, organic fertilizer increased the accumulation of the phytohormones salicylic acid (SA) and abscisic acid (ABA) by 76.53 % and 22.54 %, respectively, and these factors are key for reducing the ROS and H2O2 contents in stems. In the rhizosphere microbiome of organic fertilizer group under exposure to PS-NPs, enrichment in Actinomycetes and an increased abundance of terpenoids and polyketides metabolism were the main factors affecting the accumulation of ABA and SA. Moreover, bacteriophage activity in the rhizosphere indirectly contributed to the increase in this function. These changes ultimately resulted in a reduction in oxidative stress in tomato stems and protected tomato growth. The results of this study will provide a better understanding of the interaction between plants and nanoplastics in soil and provide a new reference for alleviating the oxidative stress caused by nanoplastics in plants.
Collapse
Affiliation(s)
- Liang-Bin Zhao
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zi-Xuan Tang
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Hui-Fang Zhai
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Yu Lai
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Hai-Yang Li
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Shuo Liu
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, Guangdong 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, Guangdong 510642, China.
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, Guangdong 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
4
|
Lan L, Cao L, Zhang L, Fu W, Luo C, Wu C, Zeng X, Qu S, Yu X, Deng W, Xu X, Cai B, Wang S. A novel mode of WRKY1 regulating PR1-mediated immune balance to defend against powdery mildew in apple. MOLECULAR HORTICULTURE 2025; 5:17. [PMID: 40038814 DOI: 10.1186/s43897-024-00141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/29/2024] [Indexed: 03/06/2025]
Abstract
Powdery mildew (PM), caused by the biotrophic fungus Podospharea leucotricha, poses a significant threat to apple production. Salicylic acid (SA) signaling plays a crucial role in enhancing resistance to biotrophic pathogens. While PR1, a defense protein induced by SA, is essential for plant immunity, its excessive accumulation can be detrimental. However, the mechanism of PR1-mediated immune balance remains unclear. This study identified a key transcription factor, WRKY1, which enhances the SA accumulation by modulating the SA biosynthesis gene EPS1, while simultaneously regulating the WRKY40-NPR3g module to prevent sustained PR1 expression caused by continuous SA accumulation. Specifically, the transcription factor WRKY40 upregulates NPR3g expression, and NPR3g interacts with NPR1 in an SA-dependent manner. Then, two TGA2c variants that interact with NPR1 to activate PR1 expression were identified: canonical TGA2c-1 and alternative splicing of TGA2c-2 with an exon deletion. SA does not influence the NPR1-TGA2c-1 interaction but is essential for the NPR1-TGA2c-2 interaction. Notably, NPR3g reduces PR1 levels by selectively disrupting the NPR1-TGA2c-2 complex through competition for the BTB-POZ domain of NPR1. In conclusion, this study identifies a novel mechanism by which WRKY1 modulates PR1-mediated immune balance to defend against PM.
Collapse
Affiliation(s)
- Liming Lan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lifang Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lulu Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weihong Fu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changguo Luo
- Institute of Pomology, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Chao Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xianqi Zeng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyi Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenyi Deng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xu Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Binhua Cai
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sanhong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Shang E, Tu Q, Yu Z, Ding Z. Cell wall dynamic changes and signaling during plant lateral root development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:632-648. [PMID: 39878232 DOI: 10.1111/jipb.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025]
Abstract
Lateral roots (LRs), are an important component of plant roots, playing a crucial role in anchoring the plant in the soil and facilitating the uptake of water and nutrients. As post-embryonic organs, LRs originate from the pericycle cells of the primary root, and their formation is characterized by precise regulation of cell division and complex intercellular interactions, both of which are closely tied to cell wall regulation. Considering the rapid advances in molecular techniques over the past three decades, we reframe the understanding of the dynamic change in cell wall during LR development by summarizing the factors that precipitate these changes and their effects, as well as the regulated signals involved. Additionally, we discuss current challenges in this field and propose potential solutions.
Collapse
Affiliation(s)
- Erlei Shang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qiang Tu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zipeng Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
6
|
Guo K, Li D, Li Y, Wang X, Wang C, Zhu Y, Wu C, Hu Z. Maize DLR1/NHX7 Is Required for Root Development Under Potassium Deficiency. PLANT, CELL & ENVIRONMENT 2025; 48:1329-1343. [PMID: 39444137 DOI: 10.1111/pce.15246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/19/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Root System Architecture (RSA) is a crucial plant trait that governs a plant's ability to absorb water and nutrients. In this study, we describe a mutant with nutrient-dependent defects in root development, affecting both the primary root and lateral roots (LRs). This mutant, identified through a screen for defects in LR development, has been designated dlr1-1. The dlr1-1 mutant exhibits impaired LR emergence rather than defects in the LR primordium (LRP) formation, particularly under potassium (K+)-deprivation conditions. This impairment likely stems from inhibited cell proliferation caused by the dlr1-1 mutation. K+ deprivation specifically leads to the accumulation of salicylic acid (SA) in the dlr1-1 mutant, consistent with the upregulation of SA biosynthesis genes. Moreover, exogenous application of SA to wild-type plants (B73) mimics the dlr1-1 phenotype. Conversely, treatment of the dlr1-1 mutant with 2-aminoindane-2-phosphonic acid, an SA biosynthesis inhibitor, partially restores LR emergence, indicating that elevated SA levels may be responsible for the mutant's developmental defects. MutMap analysis and allelism tests confirmed that the phenotypes of the dlr1-1 mutant results from the loss of the Na+/H+ antiporter, ZmNHX7. Additionally, the application of NaCl exacerbates the dlr1-1 mutant phenotype, suggesting that the root defects in dlr1-1 mutant depend on ion homoeostasis. In conclusion, our findings demonstrate that maize DLR1/NHX7 is essential for root development under potassium deprivation.
Collapse
Affiliation(s)
- Kang Guo
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Daojun Li
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yan Li
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiaoqing Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Chunfei Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yanbin Zhu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Sanya Institute, Henan University, Sanya, China
| | - Chengyun Wu
- The National Engineering Lab of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Zhubing Hu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Sanya Institute, Henan University, Sanya, China
| |
Collapse
|
7
|
Jardim-Messeder D, de Souza-Vieira Y, Sachetto-Martins G. Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought. PLANTS (BASEL, SWITZERLAND) 2025; 14:208. [PMID: 39861561 PMCID: PMC11768152 DOI: 10.3390/plants14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development. Hormonal signaling and the maintenance of ROS homeostasis are interconnected, playing indispensable roles in growth, development, and stress responses and orchestrating diverse molecular responses during environmental adversities. Nine principal classes of phytohormones have been categorized: auxins, brassinosteroids, cytokinins, and gibberellins primarily oversee developmental growth regulation, while abscisic acid, ethylene, jasmonic acid, salicylic acid, and strigolactones are the main orchestrators of environmental stress responses. Coordination between phytohormones and transcriptional regulation is crucial for effective plant responses, especially in drought stress. Understanding the interplay of ROS and phytohormones is pivotal for elucidating the molecular mechanisms involved in plant stress responses. This review provides an overview of the intricate relationship between ROS, redox metabolism, and the nine different phytohormones signaling in plants, shedding light on potential strategies for enhancing drought tolerance for sustainable crop production.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ygor de Souza-Vieira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Gilberto Sachetto-Martins
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
8
|
Ma Y, Xu J, Qi J, Zhao D, Jin M, Wang T, Yang Y, Shi H, Guo L, Zhang H. Crosstalk among plant hormone regulates the root development. PLANT SIGNALING & BEHAVIOR 2024; 19:2404807. [PMID: 39279500 PMCID: PMC11407385 DOI: 10.1080/15592324.2024.2404807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The plant root absorbs water and nutrients, anchors the plant in the soil, and promotes plant development. Root is developed from root apical meristem (RAM), which is formed during embryo stage and is maintained by dividing stem cells. Plant hormones have a predominant role in RAM maintenance. This review evaluates the functional crosstalk among three major hormones (auxin, cytokinin, and brassinolide) in RAM development in Arabidopsis, integrating a variety of experimental data into a regulatory network and revealing multiple layers of complexity in the crosstalk among these three hormones. We also discuss possible directions for future research on the roles of hormones in regulating RAM development and maintenance.
Collapse
Affiliation(s)
- Yuru Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jiahui Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jiahong Qi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Dan Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hengshui University, Hengshui, China
| | - Mei Jin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Tuo Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yufeng Yang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Haojia Shi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Lin Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
9
|
Poznanski P, Shalmani A, Bryla M, Orczyk W. Salicylic Acid Mediates Chitosan-Induced Immune Responses and Growth Enhancement in Barley. Int J Mol Sci 2024; 25:13244. [PMID: 39769012 PMCID: PMC11676727 DOI: 10.3390/ijms252413244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Chitosan (CS), derived from the partial deacetylation and hydrolysis of chitin, varies in the degree of deacetylation, molecular weight, and origin, influencing its biological effects, including antifungal properties. In plants, CS triggers immune responses and stimulates biomass growth. Previously, we found that the antifungal activity of CS was strongly dependent on its physicochemical properties. This study revealed that the chitosan batch CS_10 with the strongest antifungal activity also effectively activated plant immune responses and promoted biomass growth. Barley treated with CS_10 exhibited systemic acquired resistance (SAR), characterized by micronecrotic reactions upon Puccinia hordei (Ph) inoculation and reduced symptoms following Fusarium graminearum (Fg) infection, representing biotrophic and necrotrophic pathogens, respectively. CS_10 treatment (concentration 200 ppm) also enhanced plant biomass growth (by 11% to 15%) and promoted the accumulation of salicylic acid (SA), a hormone that regulates both plant immune responses and growth. Low levels of exogenous SA applied to plants mirrored the stimulation observed with CS_10 treatment, suggesting SA as a key regulator of CS_10-induced responses. Transcriptomic analysis identified SA-regulated genes as drivers of enhanced immunity and biomass stimulation. Thus, CS_10 not only fortifies plant defenses against pathogens like Ph and Fg but also boosts growth through SA-dependent pathways.
Collapse
Affiliation(s)
- Pawel Poznanski
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Blonie, Poland; (P.P.)
| | - Abdullah Shalmani
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Blonie, Poland; (P.P.)
| | - Marcin Bryla
- Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Waclaw Orczyk
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Blonie, Poland; (P.P.)
| |
Collapse
|
10
|
Duhan L, Kumar D, Pasrija R. Enhancing salicylic acid levels by its exogenous pretreatment to mitigate Fusarium oxysporum-induced biotic stress in Vigna mungo: defense pathways insights. PLANT CELL REPORTS 2024; 44:2. [PMID: 39652267 DOI: 10.1007/s00299-024-03394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/29/2024] [Indexed: 01/28/2025]
Abstract
KEY MESSAGE Fusarium oxysporum disrupts redox homeostasis in Vigna mungo, likely by interfering with salicylic acid signaling, which can be ameliorated by boosting PAL and its related pathways via salicylic acid pretreatment. Fusarium oxysporum, a widespread soil-borne fungus, significantly threatens global crops. This study centers on elucidating the infection strategies employed by F. oxysporum against a new and underexplored host Vigna mungo, a leguminous crop of high agronomic value, and the defense mechanisms that can be activated against the infection, aiming to uncover how these responses can be leveraged to develop potential countermeasures. Building on prior work demonstrating the in vitro antifungal efficacy of phytohormones, including salicylic acid (SA), this study further investigates SA pretreatment at 100 µM, which previously reduced reactive oxygen species (ROS) and improved germination under Fusarium stress. Through a comprehensive analysis of V. mungo plants pretreated with SA and subjected to F. oxysporum infection, we observed that fungal exposure reduced growth, chlorophyll content, and levels of proteins, phenolics and flavonoids, while increasing stress markers and antioxidant activity. SA pretreatment mitigated these effects by boosting antioxidant molecules and activating the phenylalanine ammonia-lyase (PAL) pathway, thereby enhancing endogenous SA and ROS scavenging. Furthermore, qRT-PCR analysis confirmed SA-mediated upregulation of antioxidant (catalase and peroxidase), fungal stress response genes ((pathogenesis-related gene 4 (PR4) and defensin (DEF)) and SA synthesis and regulator genes (PAL and WRKY70) involved in plant systemic resistance, while LC-MS data revealed an altered metabolic profile with increased phytoalexins and antioxidants synthesis. Overall, SA pretreatment confers resistance against F. oxysporum in V. mungo by modulating endogenous SA and metabolic profile to activate key defense pathways and redox homeostasis, highlighting its potential in plant defense strategies and reinforcing our proposed model of SA action.
Collapse
Affiliation(s)
- Lucky Duhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, India.
| |
Collapse
|
11
|
Wang X, Chen M, Li J, Kong M, Tan S. The SCOOP-MIK2 immune pathway modulates Arabidopsis root growth and development by regulating PIN-FORMED abundance and auxin transport. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:318-334. [PMID: 39162107 DOI: 10.1111/tpj.16988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Plants synthesize hundreds of small secretory peptides, which are perceived by the receptor-like kinase (RLK) family at the cell surface. Various signaling peptide-RLK pairs ensure plant adaptation to distinct environmental conditions. Here, we report that SERINE RICH ENDOGENOUS PEPTIDE (SCOOP) immune peptides modulate root growth and development by regulating PIN-FORMED (PIN)-regulated polar auxin transport in Arabidopsis. The SCOOP4 and SCOOP12 treatments impaired root gravitropic growth, auxin redistribution in response to gravistimulation, and PIN abundance in the PM. Furthermore, genetic and cell biological analyses revealed that these physiological and cellular effects of SCOOP4 and SCOOP12 peptides are mediated by the receptor MALE DISCOVERER1-INTERACTING RECEPTOR LIKE KINASE2 (MIK2) and the downstream mitogen-activated kinase MPK6. Biochemical evidence indicates that MPK6 directly phosphorylates the cytosolic loop of PIN proteins. Our work established a link between the immune signaling peptide SCOOPs and root growth pathways, providing insights into the molecular mechanisms underlying plant root adaptive growth in the defense response.
Collapse
Affiliation(s)
- Xian Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Meng Chen
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jie Li
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Mengjuan Kong
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shutang Tan
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
12
|
Peng Y, Ji K, Mao Y, Wang Y, Korbei B, Luschnig C, Shen J, Benková E, Friml J, Tan S. Polarly localized Bro1 domain proteins regulate PIN-FORMED abundance and root gravitropic growth in Arabidopsis. Commun Biol 2024; 7:1085. [PMID: 39232040 PMCID: PMC11374797 DOI: 10.1038/s42003-024-06747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 08/18/2024] [Indexed: 09/06/2024] Open
Abstract
The developmental plasticity of the root system plays an essential role in the adaptation of plants to the environment. Among many other signals, auxin and its directional, intercellular transport are critical in regulating root growth and development. In particular, the PIN-FORMED2 (PIN2) auxin exporter acts as a key regulator of root gravitropic growth. Multiple regulators have been reported to be involved in PIN2-mediated root growth; however, our information remains incomplete. Here, we identified ROWY Bro1-domain proteins as important regulators of PIN2 sorting control. Genetic analysis revealed that Arabidopsis rowy1 single mutants and higher-order rowy1 rowy2 rowy3 triple mutants presented a wavy root growth phenotype. Cell biological experiments revealed that ROWY1 and PIN2 colocalized to the apical side of the plasma membrane in the root epidermis and that ROWYs are required for correct PM targeting of PIN2. In addition, ROWYs also affected PIN3 protein abundance in the stele, suggesting the potential involvement of additional PIN transporters as well as other proteins. A global transcriptome analysis revealed that ROWY genes are involved in the Fe2+ availability perception pathway. This work establishes ROWYs as important novel regulators of root gravitropic growth by connecting micronutrient availability to the proper subcellular targeting of PIN auxin transporters.
Collapse
Affiliation(s)
- Yakun Peng
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kangkang Ji
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanbo Mao
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yiqun Wang
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg, Austria
| | - Barbara Korbei
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, Wien, Austria
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, Wien, Austria
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Eva Benková
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg, Austria
| | - Shutang Tan
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
13
|
Lu X, Chen X, Liu J, Zheng M, Liang H. Integrating histology and phytohormone/metabolite profiling to understand rooting in yellow camellia cuttings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112160. [PMID: 38908800 DOI: 10.1016/j.plantsci.2024.112160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
Vegetative propagation through cutting is a widely used clonal approach for maintaining desired genotypes. However, some woody species have difficulty forming adventitious roots (ARs) with this approach, including yellow camellia (YC) C. nitidissima. Yellow camellias, prized for their ornamental value and potential health benefits in tea, remain difficult to propagate clonally due to this rooting recalcitrance. As part of the efforts to understand YC cuttings' recalcitrance, we conducted a detailed investigation into AR formation in yellow camellia cuttings via histology and endogenous phytohormone dynamics during this process. We also compared YC endogenous phytohormone and metabolite phytohormone profiles with those of easy-to-root poplar and willow cuttings. Our results indicate that the induction of ARs in YC cuttings is achievable through auxin treatment, and YC ARs are initiated from cambial derivatives and develop a vascular system connected with that of the stem. During AR induction, endogenous hormones showed a dynamic profile, with IAA continuing to increase starting 9 days after auxin induction. JA, JA-Ile, and OPDA showed a similar trend as IAA but decreased by the 45th day. Cytokinin first decreased to its lowest level by the 18th day and then increased. SA largely exhibited an increasing trend with a drop on the 36th day, while ABA first increased to its peak level by the 18th day and then decreased. Compared to poplar, YC cuttings had a low level of IAA, IAA-Asp, and OPDA, and a high level of cytokinin and SA. Metabolite profiling highlighted significant down-accumulation of compounds associated with AR formation in yellow camellias, such as citric and ascorbic acid, fructose, sucrose, flavonoids, and phenolic acid derivatives. Our study reveals the unfavorable endogenous hormone and metabolite profiles underlying the rooting recalcitrance of YC cuttings, providing valuable knowledge for addressing this challenge in clonal propagation.
Collapse
Affiliation(s)
- Xinya Lu
- Department of Biochemistry and Genetics, Clemson University, Clemson, SC 29634, United States
| | - Xiaotong Chen
- Department of Biochemistry and Genetics, Clemson University, Clemson, SC 29634, United States
| | - Jiayin Liu
- Department of Biochemistry and Genetics, Clemson University, Clemson, SC 29634, United States
| | - Mo Zheng
- D.W. Daniel High School, Central, SC 29630, United States
| | - Haiying Liang
- Department of Biochemistry and Genetics, Clemson University, Clemson, SC 29634, United States.
| |
Collapse
|
14
|
Kim M, Hyeon DY, Kim K, Hwang D, Lee Y. Phytohormonal regulation determines the organization pattern of shoot aerenchyma in greater duckweed (Spirodela polyrhiza). PLANT PHYSIOLOGY 2024; 195:2694-2711. [PMID: 38527800 PMCID: PMC11288743 DOI: 10.1093/plphys/kiae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/27/2024]
Abstract
Airspace or aerenchyma is crucial for plant development and acclimation to stresses such as hypoxia, drought, and nutritional deficiency. Although ethylene-mediated signaling cascades are known to regulate aerenchyma formation in stems and roots under hypoxic conditions, the precise mechanisms remain unclear. Moreover, the cellular dynamics underlying airspace formation in shoots are poorly understood. We investigated the stage-dependent structural dynamics of shoot aerenchyma in greater duckweed (Spirodela polyrhiza), a fast-growing aquatic herb with well-developed aerenchyma in its floating fronds. Using X-ray micro-computed tomography and histological analysis, we showed that the spatial framework of aerenchyma is established before frond volume increases, driven by cell division and expansion. The substomatal cavity connecting aerenchyma to stomata formed via programmed cell death (PCD) and was closely associated with guard cell development. Additionally, transcriptome analysis and pharmacological studies revealed that the organization of aerenchyma in greater duckweed is determined by the interplay between PCD and proliferation. This balance is governed by spatiotemporal regulation of phytohormone signaling involving ethylene, abscisic acid, and salicylic acid. Overall, our study reveals the structural dynamics and phytohormonal regulation underlying aerenchyma development in duckweed, improving our understanding of how plants establish distinct architectural arrangements. These insights hold the potential for wide-ranging application, not only in comprehending aerenchyma formation across various plant species but also in understanding how airspaces are formed within the leaves of terrestrial plants.
Collapse
Affiliation(s)
- Min Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Do Young Hyeon
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungyoon Kim
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Bioinformatics Institute, Bio-MAX, Seoul National University, Seoul 08826, Republic of Korea
| | - Yuree Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
15
|
Hu L, Mijatovic J, Kong F, Kvitko B, Yang L. Ontogenic stage-associated SA response contributes to leaf age-dependent resistance in Arabidopsis and cotton. FRONTIERS IN PLANT SCIENCE 2024; 15:1398770. [PMID: 39135651 PMCID: PMC11317444 DOI: 10.3389/fpls.2024.1398770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024]
Abstract
Introduction As leaves grow, they transition from a low-microbe environment embedded in shoot apex to a more complex one exposed to phyllosphere microbiomes. Such change requires a coordinated reprogramming of cellular responses to biotic stresses. It remains unclear how plants shift from fast growth to robust resistance during organ development. Results Here, we reported that salicylic acid (SA) accumulation and response were temporarily increased during leaf maturation in herbaceous annual Arabidopsis. Leaf primordia undergoing active cell division were insensitive to the elicitor-induced SA response. This age-dependent increase in SA response was not due to prolonged exposure to environmental microbes. Autoimmune mutants with elevated SA levels did not alter the temporal pattern dependent on ontogenic stage. Young Arabidopsis leaves were more susceptible than mature leaves to Pseudomonas syringae pv. tomato (Pto) DC3000 cor- infection. Finally, we showed a broadly similar pattern in cotton, a woody perennial, where young leaves with reduced SA signaling were preferentially invaded by a Xanthomonas pathogen after leaf surface infection. Discussion Through this work, we provided insights in the SA-mediated ontogenic resistance in Arabidopsis and tomato.
Collapse
Affiliation(s)
| | | | | | - Brian Kvitko
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Li Yang
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
16
|
García-Gómez ML, Ten Tusscher K. Multi-scale mechanisms driving root regeneration: From regeneration competence to tissue repatterning. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38824611 DOI: 10.1111/tpj.16860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
Plants possess an outstanding capacity to regenerate enabling them to repair damages caused by suboptimal environmental conditions, biotic attacks, or mechanical damages impacting the survival of these sessile organisms. Although the extent of regeneration varies greatly between localized cell damage and whole organ recovery, the process of regeneration can be subdivided into a similar sequence of interlinked regulatory processes. That is, competence to regenerate, cell fate reprogramming, and the repatterning of the tissue. Here, using root tip regeneration as a paradigm system to study plant regeneration, we provide a synthesis of the molecular responses that underlie both regeneration competence and the repatterning of the root stump. Regarding regeneration competence, we discuss the role of wound signaling, hormone responses and synthesis, and rapid changes in gene expression observed in the cells close to the cut. Then, we consider how this rapid response is followed by the tissue repatterning phase, where cells experience cell fate changes in a spatial and temporal order to recreate the lost stem cell niche and columella. Lastly, we argue that a multi-scale modeling approach is fundamental to uncovering the mechanisms underlying root regeneration, as it allows to integrate knowledge of cell-level gene expression, cell-to-cell transport of hormones and transcription factors, and tissue-level growth dynamics to reveal how the bi-directional feedbacks between these processes enable self-organized repatterning of the root apex.
Collapse
Affiliation(s)
- Monica L García-Gómez
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Experimental and Computational Plant Development Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- CropXR Institute, Utrecht, The Netherlands
- Translational Plant Biology Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Kirsten Ten Tusscher
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Experimental and Computational Plant Development Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- CropXR Institute, Utrecht, The Netherlands
| |
Collapse
|
17
|
Wu L, Ren Y, Wang X, Zhang Y, Wang J. The Slow Growth of Adventitious Roots in Tetraploid Hybrid Poplar ( Populus simonii × P. nigra var. italica) May Be Caused by Endogenous Hormone-Mediated Meristem Shortening. PLANTS (BASEL, SWITZERLAND) 2024; 13:1430. [PMID: 38891239 PMCID: PMC11174411 DOI: 10.3390/plants13111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Polyploidization produces abundant phenotypic variation. Little is currently known about adventitious root (AR) development variation due to polyploidization. In this study, we analyzed the morphological, cytological, and physiological variations in AR development between tetraploid and diploid Populus plants during in vitro rooting culture. Compared to the diploids, the AR formation times and rooting rates of the tetraploids' stem explants had non-significant changes. However, the tetraploid ARs exhibited significantly slower elongation growth than the diploid ARs. Cytological observation showed that the tetraploid ARs were characterized by shorter root meristems and reduced meristem cell numbers, suggesting the reasons for the slow AR elongation. Analysis of hormones and related metabolites during AR development demonstrated that the total auxin, cytokinin, and jasmonic acid contents were significantly lower in the tetraploid ARs than in those of the diploids, and that the ratio of total auxins to total CKs at 0 h of AR development was also lower in the tetraploids than in the diploids, whereas the total salicylic acid content of the tetraploids was consistently higher than that of the diploids. qPCR analysis showed that the expression levels of several hormone signaling and cell division-related genes in the tetraploid ARs significantly differed from those in the diploids. In conclusion, the slow elongation of the tetraploid ARs may be caused by the endogenous hormone-mediated meristem shortening. Our findings enhance the understanding of polyploidization-induced variation in AR development of forest trees.
Collapse
Affiliation(s)
- Lixia Wu
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; (L.W.); (Y.R.); (X.W.); (Y.Z.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuxin Ren
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; (L.W.); (Y.R.); (X.W.); (Y.Z.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xuefang Wang
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; (L.W.); (Y.R.); (X.W.); (Y.Z.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuntong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; (L.W.); (Y.R.); (X.W.); (Y.Z.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jun Wang
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; (L.W.); (Y.R.); (X.W.); (Y.Z.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
18
|
Uddin S, Munir MZ, Larriba E, Pérez-Pérez JM, Gull S, Pervaiz T, Mahmood U, Mahmood Z, Sun Y, Li Y. Temporal profiling of physiological, histological, and transcriptomic dissection during auxin-induced adventitious root formation in tetraploid Robinia pseudoacacia micro-cuttings. PLANTA 2024; 259:66. [PMID: 38332379 DOI: 10.1007/s00425-024-04341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
MAIN CONCLUSION Optimal levels of indole-3-butyric acid (IBA) applied at the stem base promote adventitious root (AR) initiation and primordia formation, thus promoting the rooting of leafy micro-cuttings of tetraploid Robinia pseudoacacia. Tetraploid Robinia pseudoacacia L. is a widely cultivated tree in most regions of China that has a hard-rooting capability, propagated by stem cuttings. This study utilizes histological, physiological, and transcriptomic approaches to explore how root primordia are induced after indole butyric acid (IBA) treatment of micro-cuttings. IBA application promoted cell divisions in some cells within the vasculature, showing subcellular features associated with adventitious root (AR) founder cells. The anatomical structure explicitly showed that AR initiated from the cambium layer and instigate the inducible development of AR primordia. Meanwhile, the hormone data showed that similar to that of indole-3-acetic acid, the contents of trans-zeatin and abscisic acid peaked at early stages of AR formation and increased gradually in primordia formation across the subsequent stages, suggesting their indispensable roles in AR induction. On the contrary, 24-epibrassinolide roughly maintained at extremely high levels during primordium initiation thoroughly, indicating its presence was involved in cell-specific reorganization during AR development. Furthermore, antioxidant activities transiently increased in the basal region of micro-cuttings and may serve as biochemical indicators for distinct rooting phases, potentially aiding in AR formation. Transcriptomic analysis during the early stages of root formation shows significant downregulation of the abscisic acid and jasmonate signaling pathways, while ethylene and cytokinin signaling seems upregulated. Network analysis of genes involved in carbon metabolism and photosynthesis indicates that the basal region of the micro-cuttings undergoes rapid reprogramming, which results in the breakdown of sugars into pyruvate. This pyruvate is then utilized to fuel the tricarboxylic acid cycle, thereby sustaining growth through aerobic respiration. Collectively, our findings provide a time-course morphophysiological dissection and also suggest the regulatory role of a conserved auxin module in AR development in these species.
Collapse
Affiliation(s)
- Saleem Uddin
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Muhammad Zeeshan Munir
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Eduardo Larriba
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain
| | | | - Sadia Gull
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Tariq Pervaiz
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 22963, USA
| | - Umer Mahmood
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Zahid Mahmood
- Crop Sciences Institute, National Agricultural Research Centre, Islamabad, 44000, Pakistan
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
19
|
Shi J, Zhao M, Zhang F, Feng D, Yang S, Xue Y, Liu Y. Physiological Mechanism through Which Al Toxicity Inhibits Peanut Root Growth. PLANTS (BASEL, SWITZERLAND) 2024; 13:325. [PMID: 38276782 PMCID: PMC10820445 DOI: 10.3390/plants13020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Al (Aluminum) poisoning is a significant limitation to crop yield in acid soil. However, the physiological process involved in the peanut root response to Al poisoning has not been clarified yet and requires further research. In order to investigate the influence of Al toxicity stress on peanut roots, this study employed various methods, including root phenotype analysis, scanning of the root, measuring the physical response indices of the root, measurement of the hormone level in the root, and quantitative PCR (qPCR). This research aimed to explore the physiological mechanism underlying the reaction of peanut roots to Al toxicity. The findings revealed that Al poisoning inhibits the development of peanut roots, resulting in reduced biomass, length, surface area, and volume. Al also significantly affects antioxidant oxidase activity and proline and malondialdehyde contents in peanut roots. Furthermore, Al toxicity led to increased accumulations of Al and Fe in peanut roots, while the contents of zinc (Zn), cuprum (Cu), manganese (Mn), kalium (K), magnesium (Mg), and calcium (Ca) decreased. The hormone content and related gene expression in peanut roots also exhibited significant changes. High concentrations of Al trigger cellular defense mechanisms, resulting in differentially expressed antioxidase genes and enhanced activity of antioxidases to eliminate excessive ROS (reactive oxygen species). Additionally, the differential expression of hormone-related genes in a high-Al environment affects plant hormones, ultimately leading to various negative effects, for example, decreased biomass of roots and hindered root development. The purpose of this study was to explore the physiological response mechanism of peanut roots subjected to aluminum toxicity stress, and the findings of this research will provide a basis for cultivating Al-resistant peanut varieties.
Collapse
Affiliation(s)
- Jianning Shi
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Min Zhao
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Feng Zhang
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Didi Feng
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shaoxia Yang
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yingbin Xue
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ying Liu
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
20
|
Du Q, Song K, Wang L, Du L, Du H, Li B, Li H, Yang L, Wang Y, Liu P. Integrated Transcriptomics and Metabolomics Analysis Promotes the Understanding of Adventitious Root Formation in Eucommia ulmoides Oliver. PLANTS (BASEL, SWITZERLAND) 2024; 13:136. [PMID: 38202444 PMCID: PMC10780705 DOI: 10.3390/plants13010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
As a primary approach to nutrient propagation for many woody plants, cutting roots is essential for the breeding and production of Eucommia ulmoides Oliver. In this study, hormone level, transcriptomics, and metabolomics analyses were performed on two E. ulmoides varieties with different adventitious root (AR) formation abilities. The higher JA level on the 0th day and the lower JA level on the 18th day promoted superior AR development. Several hub genes executed crucial roles in the crosstalk regulation of JA and other hormones, including F-box protein (EU012075), SAUR-like protein (EU0125382), LOB protein (EU0124232), AP2/ERF transcription factor (EU0128499), and CYP450 protein (EU0127354). Differentially expressed genes (DEGs) and metabolites of AR formation were enriched in phenylpropanoid biosynthesis, flavonoid biosynthesis, and isoflavonoid biosynthesis pathways. The up-regulated expression of PAL, CCR, CAD, DFR, and HIDH genes on the 18th day could contribute to AR formation. The 130 cis-acting lncRNAs had potential regulatory functions on hub genes in the module that significantly correlated with JA and DEGs in three metabolism pathways. These revealed key molecules, and vital pathways provided more comprehensive insight for the AR formation mechanism of E. ulmoides and other plants.
Collapse
Affiliation(s)
- Qingxin Du
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Q.D.); (L.W.); (L.D.); (H.D.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Kangkang Song
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Lu Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Q.D.); (L.W.); (L.D.); (H.D.)
| | - Lanying Du
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Q.D.); (L.W.); (L.D.); (H.D.)
| | - Hongyan Du
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Q.D.); (L.W.); (L.D.); (H.D.)
| | - Bin Li
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Haozhen Li
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Yan Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Q.D.); (L.W.); (L.D.); (H.D.)
| | - Panfeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Q.D.); (L.W.); (L.D.); (H.D.)
| |
Collapse
|
21
|
Tang L, Li D, Liu W, Sun Y, Dai Y, Cui W, Geng X, Li D, Song F, Sun L. Continuous In Vivo Monitoring of Indole-3-Acetic Acid and Salicylic Acid in Tomato Leaf Veins Based on an Electrochemical Microsensor. BIOSENSORS 2023; 13:1002. [PMID: 38131762 PMCID: PMC10742318 DOI: 10.3390/bios13121002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
Indole-3-acetic acid (IAA) and salicylic acid (SA), as critical plant hormones, are involved in multiple physiological regulatory processes of plants. Simultaneous and continuous in vivo detection of IAA and SA will help clarify the mechanisms of their regulation and crosstalk. First, this study reports the development and application of an electrochemical microsensor for simultaneous and continuous in vivo detection of IAA and SA. This electrochemical microsensor system consisted of a tip (length, 2 mm) of platinum wire (diameter, 0.1 mm) modified with carbon cement and multi-walled carbon nanotubes, an untreated tip (length, 2 mm) of platinum wire (diameter, 0.1 mm), as well as a tip (length, 2 mm) of Ag/AgCl wire (diameter, 0.1 mm). It was capable of detecting IAA in the level ranging from 0.1 to 30 µM and SA ranging from 0.1 to 50 µM based on the differential pulse voltammetry or amperometric i-t., respectively. The dynamics of IAA and SA levels in tomato leaf veins under high salinity stress were continuously detected in vivo, and very little damage occurred. Compared to conventional detection methods, the constructed microsensor is not only suitable for continuously detecting IAA and SA in microscopic plant tissue in vivo, it also reduces the damage done to plants during the detection. More importantly, the continuous and dynamic changes in IAA and SA data obtained in stiu through this system not only can help clarify the interaction mechanisms of IAA and SA in plants, it also helps to evaluate the health status of plants, which will promote the development of basic research in botany and precision agriculture.
Collapse
Affiliation(s)
- Lingjuan Tang
- School of Life Sciences, Nantong University, Nantong 226019, China; (L.T.); (D.L.); (W.L.); (Y.S.); (Y.D.); (W.C.); (X.G.)
- Analysis and Testing Center, Nantong University, Nantong 226019, China
| | - Daodong Li
- School of Life Sciences, Nantong University, Nantong 226019, China; (L.T.); (D.L.); (W.L.); (Y.S.); (Y.D.); (W.C.); (X.G.)
| | - Wei Liu
- School of Life Sciences, Nantong University, Nantong 226019, China; (L.T.); (D.L.); (W.L.); (Y.S.); (Y.D.); (W.C.); (X.G.)
| | - Yafang Sun
- School of Life Sciences, Nantong University, Nantong 226019, China; (L.T.); (D.L.); (W.L.); (Y.S.); (Y.D.); (W.C.); (X.G.)
| | - Ying Dai
- School of Life Sciences, Nantong University, Nantong 226019, China; (L.T.); (D.L.); (W.L.); (Y.S.); (Y.D.); (W.C.); (X.G.)
| | - Wenjing Cui
- School of Life Sciences, Nantong University, Nantong 226019, China; (L.T.); (D.L.); (W.L.); (Y.S.); (Y.D.); (W.C.); (X.G.)
| | - Xinliu Geng
- School of Life Sciences, Nantong University, Nantong 226019, China; (L.T.); (D.L.); (W.L.); (Y.S.); (Y.D.); (W.C.); (X.G.)
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China; (D.L.); (F.S.)
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China; (D.L.); (F.S.)
| | - Lijun Sun
- School of Life Sciences, Nantong University, Nantong 226019, China; (L.T.); (D.L.); (W.L.); (Y.S.); (Y.D.); (W.C.); (X.G.)
| |
Collapse
|
22
|
Xia J, Kong M, Yang Z, Sun L, Peng Y, Mao Y, Wei H, Ying W, Gao Y, Friml J, Weng J, Liu X, Sun L, Tan S. Chemical inhibition of Arabidopsis PIN-FORMED auxin transporters by the anti-inflammatory drug naproxen. PLANT COMMUNICATIONS 2023; 4:100632. [PMID: 37254481 PMCID: PMC10721474 DOI: 10.1016/j.xplc.2023.100632] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/12/2023] [Accepted: 05/24/2023] [Indexed: 06/01/2023]
Abstract
The phytohormone auxin plays central roles in many growth and developmental processes in plants. Development of chemical tools targeting the auxin pathway is useful for both plant biology and agriculture. Here we reveal that naproxen, a synthetic compound with anti-inflammatory activity in humans, acts as an auxin transport inhibitor targeting PIN-FORMED (PIN) transporters in plants. Physiological experiments indicate that exogenous naproxen treatment affects pleiotropic auxin-regulated developmental processes. Additional cellular and biochemical evidence indicates that naproxen suppresses auxin transport, specifically PIN-mediated auxin efflux. Moreover, biochemical and structural analyses confirm that naproxen binds directly to PIN1 protein via the same binding cavity as the indole-3-acetic acid substrate. Thus, by combining cellular, biochemical, and structural approaches, this study clearly establishes that naproxen is a PIN inhibitor and elucidates the underlying mechanisms. Further use of this compound may advance our understanding of the molecular mechanisms of PIN-mediated auxin transport and expand our toolkit in auxin biology and agriculture.
Collapse
Affiliation(s)
- Jing Xia
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Mengjuan Kong
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhisen Yang
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lianghanxiao Sun
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yakun Peng
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yanbo Mao
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hong Wei
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wei Ying
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yongxiang Gao
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Jianping Weng
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Xin Liu
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Linfeng Sun
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Shutang Tan
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
23
|
Ghodsimaab SP, Ghasimi Hagh Z, Makarian H, Gholipoor M. Deciphering morphological and biochemical responses of Salvia leriifolia to seed cold plasma treatment, priming, and foliar spraying with nano-salicylic acid. Sci Rep 2023; 13:18672. [PMID: 37907628 PMCID: PMC10618475 DOI: 10.1038/s41598-023-45823-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023] Open
Abstract
The pretreatment of seeds with cold plasma (CP) (0 and 100 w for 240 s), and salicylic acid priming (SA) (0 and 2 mM normal and nano form), and foliar spraying of SA at the six-leaf stage (0 and 2 mM normal and nano form) of Salvia leriifolia plants in field condition was studied. Compared to the control plants of S. leriifolia, the results showed that CP + both forms of SA priming + nano-SA spraying increased plant height, leaf length, plant dry weight, total phenol, and the activities of phenylalanine ammonia-lyase (PAL) and tyrosine ammonia-lyase (TAL) enzymes. The chlorophyll a and b contents in all treated plants remained either unchanged or decreased when compared to the control. The highest PAL activity was obtained in CP-free + hydro-priming + nano-SA foliar spraying. The highest content of caffeic acid was achieved in CP + SA priming + SA foliar spraying in the leaf. The maximum contents of rosmarinic and salvianolic acid were obtained in the control plants. In conclusion, CP and nano-SA can increase PAL and TAL activity and total phenol accumulation in S. leriifolia plants, but not rosmarinic and salvianolic acid contents. Other phenolic compound enzymes and their production require further study.
Collapse
Affiliation(s)
- Seyedeh Parisa Ghodsimaab
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood, 3619995161, Iran
| | - Ziba Ghasimi Hagh
- Department of Horticulture Science and Plant Protection, Faculty of Agriculture, Shahrood University of Technology, Shahrood, 3619995161, Iran.
| | - Hassan Makarian
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood, 3619995161, Iran
| | - Manoochehr Gholipoor
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood, 3619995161, Iran
| |
Collapse
|
24
|
Dudits D, Cseri A, Török K, Vankova R, Dobrev PI, Sass L, Steinbach G, Kelemen-Valkony I, Zombori Z, Ferenc G, Ayaydin F. Manifestation of Triploid Heterosis in the Root System after Crossing Diploid and Autotetraploid Energy Willow Plants. Genes (Basel) 2023; 14:1929. [PMID: 37895278 PMCID: PMC10606394 DOI: 10.3390/genes14101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Successful use of woody species in reducing climatic and environmental risks of energy shortage and spreading pollution requires deeper understanding of the physiological functions controlling biomass productivity and phytoremediation efficiency. Targets in the breeding of energy willow include the size and the functionality of the root system. For the combination of polyploidy and heterosis, we have generated triploid hybrids (THs) of energy willow by crossing autotetraploid willow plants with leading cultivars (Tordis and Inger). These novel Salix genotypes (TH3/12, TH17/17, TH21/2) have provided a unique experimental material for characterization of Mid-Parent Heterosis (MPH) in various root traits. Using a root phenotyping platform, we detected heterosis (TH3/12: MPH 43.99%; TH21/2: MPH 26.93%) in the size of the root system in soil. Triploid heterosis was also recorded in the fresh root weights, but it was less pronounced (MPH%: 9.63-19.31). In agreement with root growth characteristics in soil, the TH3/12 hybrids showed considerable heterosis (MPH: 70.08%) under in vitro conditions. Confocal microscopy-based imaging and quantitative analysis of root parenchyma cells at the division-elongation transition zone showed increased average cell diameter as a sign of cellular heterosis in plants from TH17/17 and TH21/2 triploid lines. Analysis of the hormonal background revealed that the auxin level was seven times higher than the total cytokinin contents in root tips of parental Tordis plants. In triploid hybrids, the auxin-cytokinin ratios were considerably reduced in TH3/12 and TH17/17 roots. In particular, the contents of cytokinin precursor, such as isopentenyl adenosine monophosphate, were elevated in all three triploid hybrids. Heterosis was also recorded in the amounts of active gibberellin precursor, GA19, in roots of TH3/12 plants. The presented experimental findings highlight the physiological basics of triploid heterosis in energy willow roots.
Collapse
Affiliation(s)
- Dénes Dudits
- Institute of Plant Biology, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (D.D.); (K.T.); (L.S.); (Z.Z.)
| | - András Cseri
- Institute of Plant Biology, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (D.D.); (K.T.); (L.S.); (Z.Z.)
| | - Katalin Török
- Institute of Plant Biology, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (D.D.); (K.T.); (L.S.); (Z.Z.)
| | - Radomira Vankova
- Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (R.V.); (P.I.D.)
| | - Petre I. Dobrev
- Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (R.V.); (P.I.D.)
| | - László Sass
- Institute of Plant Biology, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (D.D.); (K.T.); (L.S.); (Z.Z.)
| | - Gábor Steinbach
- Laboratory of Cellular Imaging, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (G.S.); (I.K.-V.); (F.A.)
| | - Ildikó Kelemen-Valkony
- Laboratory of Cellular Imaging, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (G.S.); (I.K.-V.); (F.A.)
| | - Zoltán Zombori
- Institute of Plant Biology, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (D.D.); (K.T.); (L.S.); (Z.Z.)
| | - Györgyi Ferenc
- Institute of Plant Biology, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (D.D.); (K.T.); (L.S.); (Z.Z.)
| | - Ferhan Ayaydin
- Laboratory of Cellular Imaging, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (G.S.); (I.K.-V.); (F.A.)
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM) Nonprofit Ltd., 6728 Szeged, Hungary
| |
Collapse
|
25
|
Jiang L, Yao B, Zhang X, Wu L, Fu Q, Zhao Y, Cao Y, Zhu R, Lu X, Huang W, Zhao J, Li K, Zhao S, Han L, Zhou X, Luo C, Zhu H, Yang J, Huang H, Zhu Z, He X, Friml J, Zhang Z, Liu C, Du Y. Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:155-174. [PMID: 37025008 DOI: 10.1111/tpj.16218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Salicylic acid (SA) plays important roles in different aspects of plant development, including root growth, where auxin is also a major player by means of its asymmetric distribution. However, the mechanism underlying the effect of SA on the development of rice roots remains poorly understood. Here, we show that SA inhibits rice root growth by interfering with auxin transport associated with the OsPIN3t- and clathrin-mediated gene regulatory network (GRN). SA inhibits root growth as well as Brefeldin A-sensitive trafficking through a non-canonical SA signaling mechanism. Transcriptome analysis of rice seedlings treated with SA revealed that the OsPIN3t auxin transporter is at the center of a GRN involving the coat protein clathrin. The root growth and endocytic trafficking in both the pin3t and clathrin heavy chain mutants were SA insensitivity. SA inhibitory effect on the endocytosis of OsPIN3t was dependent on clathrin; however, the root growth and endocytic trafficking mediated by tyrphostin A23 (TyrA23) were independent of the pin3t mutant under SA treatment. These data reveal that SA affects rice root growth through the convergence of transcriptional and non-SA signaling mechanisms involving OsPIN3t-mediated auxin transport and clathrin-mediated trafficking as key components.
Collapse
Affiliation(s)
- Lihui Jiang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Baolin Yao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Xiaoyan Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Lixia Wu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Qijing Fu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Yiting Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
- Shanxi Agricultural University/Shanxi Academy of Agricultural Sciences, The Industrial Crop Institute, Fenyang, 032200, China
| | - Yuxin Cao
- Key Lab of Agricultural Biotechnology of Yunnan Province, Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Ruomeng Zhu
- Key Lab of Agricultural Biotechnology of Yunnan Province, Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Xinqi Lu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Wuying Huang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Jianping Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Kuixiu Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Shuanglu Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Li Han
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuan Zhou
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Chongyu Luo
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Haiyan Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jing Yang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Huichuan Huang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhengge Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiahong He
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Zhongkai Zhang
- Key Lab of Agricultural Biotechnology of Yunnan Province, Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Yunlong Du
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
26
|
Ali Q, Ahmad M, Kamran M, Ashraf S, Shabaan M, Babar BH, Zulfiqar U, Haider FU, Ali MA, Elshikh MS. Synergistic Effects of Rhizobacteria and Salicylic Acid on Maize Salt-Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:2519. [PMID: 37447077 DOI: 10.3390/plants12132519] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Maize (Zea mays L.) is a salt-sensitive plant that experiences stunted growth and development during early seedling stages under salt stress. Salicylic acid (SA) is a major growth hormone that has been observed to induce resistance in plants against different abiotic stresses. Furthermore, plant growth-promoting rhizobacteria (PGPR) have shown considerable potential in conferring salinity tolerance to crops via facilitating growth promotion, yield improvement, and regulation of various physiological processes. In this regard, combined application of PGPR and SA can have wide applicability in supporting plant growth under salt stress. We investigated the impact of salinity on the growth and yield attributes of maize and explored the combined role of PGPR and SA in mitigating the effect of salt stress. Three different levels of salinity were developed (original, 4 and 8 dS m-1) in pots using NaCl. Maize seeds were inoculated with salt-tolerant Pseudomonas aeruginosa strain, whereas foliar application of SA was given at the three-leaf stage. We observed that salinity stress adversely affected maize growth, yield, and physiological attributes compared to the control. However, both individual and combined applications of PGPR and SA alleviated the negative effects of salinity and improved all the measured plant attributes. The response of PGPR + SA was significant in enhancing the shoot and root dry weights (41 and 56%), relative water contents (32%), chlorophyll a and b contents (25 and 27%), and grain yield (41%) of maize under higher salinity level (i.e., 8 dS m-1) as compared to untreated unstressed control. Moreover, significant alterations in ascorbate peroxidase (53%), catalase (47%), superoxide dismutase (21%), MDA contents (40%), Na+ (25%), and K+ (30%) concentration of leaves were pragmatic under combined application of PGPR and SA. We concluded that integration of PGPR and SA can efficiently induce salinity tolerance and improve plant growth under stressed conditions.
Collapse
Affiliation(s)
- Qasim Ali
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Maqshoof Ahmad
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Kamran
- Pakistan Council for Science and Technology, Ministry of Science and Technology, Islamabad 44000, Pakistan
| | - Sana Ashraf
- College of Earth and Environmental Sciences, Quaid-e-Azam Campus, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Shabaan
- Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad 44000, Pakistan
| | - Babar Hussain Babar
- Vegetable and Oilseed Section, Agronomic Research Institute, Faisalabad 38850, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
27
|
Sampedro-Guerrero J, Vives-Peris V, Gomez-Cadenas A, Clausell-Terol C. Efficient strategies for controlled release of nanoencapsulated phytohormones to improve plant stress tolerance. PLANT METHODS 2023; 19:47. [PMID: 37189192 PMCID: PMC10184380 DOI: 10.1186/s13007-023-01025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
Climate change due to different human activities is causing adverse environmental conditions and uncontrolled extreme weather events. These harsh conditions are directly affecting the crop areas, and consequently, their yield (both in quantity and quality) is often impaired. It is essential to seek new advanced technologies to allow plants to tolerate environmental stresses and maintain their normal growth and development. Treatments performed with exogenous phytohormones stand out because they mitigate the negative effects of stress and promote the growth rate of plants. However, the technical limitations in field application, the putative side effects, and the difficulty in determining the correct dose, limit their widespread use. Nanoencapsulated systems have attracted attention because they allow a controlled delivery of active compounds and for their protection with eco-friendly shell biomaterials. Encapsulation is in continuous evolution due to the development and improvement of new techniques economically affordable and environmentally friendly, as well as new biomaterials with high affinity to carry and coat bioactive compounds. Despite their potential as an efficient alternative to phytohormone treatments, encapsulation systems remain relatively unexplored to date. This review aims to emphasize the potential of phytohormone treatments as a means of enhancing plant stress tolerance, with a specific focus on the benefits that can be gained through the improved exogenous application of these treatments using encapsulation techniques. Moreover, the main encapsulation techniques, shell materials and recent work on plants treated with encapsulated phytohormones have been compiled.
Collapse
Affiliation(s)
- Jimmy Sampedro-Guerrero
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de la Plana, Castellón, Spain
| | - Vicente Vives-Peris
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de la Plana, Castellón, Spain
| | - Aurelio Gomez-Cadenas
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de la Plana, Castellón, Spain.
| | - Carolina Clausell-Terol
- Departamento de Ingeniería Química, Instituto Universitario de Tecnología Cerámica, Universitat Jaume I, 12071, Castelló de la Plana, Castellón, Spain.
| |
Collapse
|
28
|
Ji B, Xuan L, Zhang Y, Mu W, Paek KY, Park SY, Wang J, Gao W. Application of Data Modeling, Instrument Engineering and Nanomaterials in Selected Medid the Scientific Recinal Plant Tissue Culture. PLANTS (BASEL, SWITZERLAND) 2023; 12:1505. [PMID: 37050131 PMCID: PMC10096660 DOI: 10.3390/plants12071505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
At present, most precious compounds are still obtained by plant cultivation such as ginsenosides, glycyrrhizic acid, and paclitaxel, which cannot be easily obtained by artificial synthesis. Plant tissue culture technology is the most commonly used biotechnology tool, which can be used for a variety of studies such as the production of natural compounds, functional gene research, plant micropropagation, plant breeding, and crop improvement. Tissue culture material is a basic and important part of this issue. The formation of different plant tissues and natural products is affected by growth conditions and endogenous substances. The accumulation of secondary metabolites are affected by plant tissue type, culture method, and environmental stress. Multi-domain technologies are developing rapidly, and they have made outstanding contributions to the application of plant tissue culture. The modes of action have their own characteristics, covering the whole process of plant tissue from the induction, culture, and production of natural secondary metabolites. This paper reviews the induction mechanism of different plant tissues and the application of multi-domain technologies such as artificial intelligence, biosensors, bioreactors, multi-omics monitoring, and nanomaterials in plant tissue culture and the production of secondary metabolites. This will help to improve the tissue culture technology of medicinal plants and increase the availability and the yield of natural metabolites.
Collapse
Affiliation(s)
- Baoyu Ji
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Shool of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Liangshuang Xuan
- Shool of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yunxiang Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wenrong Mu
- Shool of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Kee-Yoeup Paek
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - So-Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
29
|
Tran S, Ison M, Ferreira Dias NC, Ortega MA, Chen YFS, Peper A, Hu L, Xu D, Mozaffari K, Severns PM, Yao Y, Tsai CJ, Teixeira PJPL, Yang L. Endogenous salicylic acid suppresses de novo root regeneration from leaf explants. PLoS Genet 2023; 19:e1010636. [PMID: 36857386 PMCID: PMC10010561 DOI: 10.1371/journal.pgen.1010636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/13/2023] [Accepted: 01/25/2023] [Indexed: 03/02/2023] Open
Abstract
Plants can regenerate new organs from damaged or detached tissues. In the process of de novo root regeneration (DNRR), adventitious roots are frequently formed from the wound site on a detached leaf. Salicylic acid (SA) is a key phytohormone regulating plant defenses and stress responses. The role of SA and its acting mechanisms during de novo organogenesis is still unclear. Here, we found that endogenous SA inhibited the adventitious root formation after cutting. Free SA rapidly accumulated at the wound site, which was accompanied by an activation of SA response. SA receptors NPR3 and NPR4, but not NPR1, were required for DNRR. Wounding-elevated SA compromised the expression of AUX1, and subsequent transport of auxin to the wound site. A mutation in AUX1 abolished the enhanced DNRR in low SA mutants. Our work elucidates a role of SA in regulating DNRR and suggests a potential link between biotic stress and tissue regeneration.
Collapse
Affiliation(s)
- Sorrel Tran
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Madalene Ison
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | | | - Maria Andrea Ortega
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
- Department of Plant Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Yun-Fan Stephanie Chen
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Alan Peper
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Lanxi Hu
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Dawei Xu
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Khadijeh Mozaffari
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
| | - Paul M. Severns
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Yao Yao
- Department of Animal and Diary Sciences, College of Agricultural & Environmental Sciences, University of Georgia, Georgia, United States of America
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
- Department of Plant Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Paulo José Pereira Lima Teixeira
- Department of Biology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Sao Paulo, Brazil
- * E-mail: (PJPLT); (LY)
| | - Li Yang
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (PJPLT); (LY)
| |
Collapse
|
30
|
Vañó MS, Nourimand M, MacLean A, Pérez-López E. Getting to the root of a club - Understanding developmental manipulation by the clubroot pathogen. Semin Cell Dev Biol 2023; 148-149:22-32. [PMID: 36792438 DOI: 10.1016/j.semcdb.2023.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Plasmodiophora brassicae Wor., the clubroot pathogen, is the perfect example of an "atypical" plant pathogen. This soil-borne protist and obligate biotrophic parasite infects the roots of cruciferous crops, inducing galls or clubs that lead to wilting, loss of productivity, and plant death. Unlike many other agriculturally relevant pathosystems, research into the molecular mechanisms that underlie clubroot disease and Plasmodiophora-host interactions is limited. After release of the first P. brassicae genome sequence and subsequent availability of transcriptomic data, the clubroot research community have implicated the involvement of phytohormones during the clubroot pathogen's manipulation of host development. Herein we review the main events leading to the formation of root galls and describe how modulation of select phytohormones may be key to modulating development of the plant host to the benefit of the pathogen. Effector-host interactions are at the base of different strategies employed by pathogens to hijack plant cellular processes. This is how we suspect the clubroot pathogen hijacks host plant metabolism and development to induce nutrient-sink roots galls, emphasizing a need to deepen our understanding of this master manipulator.
Collapse
Affiliation(s)
- Marina Silvestre Vañó
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, Quebec, Canada; Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada; Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Maryam Nourimand
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Allyson MacLean
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Edel Pérez-López
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, Quebec, Canada; Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada; Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
31
|
Friero I, Larriba E, Martínez-Melgarejo PA, Justamante MS, Alarcón MV, Albacete A, Salguero J, Pérez-Pérez JM. Transcriptomic and hormonal analysis of the roots of maize seedlings grown hydroponically at low temperature. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111525. [PMID: 36328179 DOI: 10.1016/j.plantsci.2022.111525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Prolonged cold stress has a strong effect on plant growth and development, especially in subtropical crops such as maize. Soil temperature limits primary root elongation, mainly during early seedling establishment. However, little is known about how moderate temperature fluctuations affect root growth at the molecular and physiological levels. We have studied root tips of young maize seedlings grown hydroponically at 30 ºC and after a short period (up to 24 h) of moderate cooling (20 ºC). We found that both cell division and cell elongation in the root apical meristem are affected by temperature. Time-course analyses of hormonal and transcriptomic profiles were achieved after temperature reduction from 30 ºC to 20 ºC. Our results highlighted a complex regulation of endogenous pathways leading to adaptive root responses to moderate cooling conditions.
Collapse
Affiliation(s)
- Iván Friero
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Universidad de Extremadura, 06006 Badajoz, Spain.
| | - Eduardo Larriba
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain.
| | | | | | - M Victoria Alarcón
- Área de Agronomía de Cultivos Leñosos y Hortícolas, Instituto de Investigaciones Agrarias "La Orden-Valdesequera" (CICYTEX), Junta de Extremadura, 06187 Badajoz, Spain.
| | - Alfonso Albacete
- Departamento de Nutrición Vegetal, CEBAS-CSIC, 30100 Murcia, Spain.
| | - Julio Salguero
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Universidad de Extremadura, 06006 Badajoz, Spain.
| | | |
Collapse
|
32
|
Wang Y, Zhao H, Hu X, Zhang Y, Zhang Z, Zhang L, Li L, Hou L, Li M. Transcriptome and hormone Analyses reveal that melatonin promotes adventitious rooting in shaded cucumber hypocotyls. FRONTIERS IN PLANT SCIENCE 2022; 13:1059482. [PMID: 36518515 PMCID: PMC9742233 DOI: 10.3389/fpls.2022.1059482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Melatonin, a multi-regulatory molecule, stimulates root generation and regulates many aspects of plant growth and developmental processes. To gain insight into the effects of melatonin on adventitious root (AR) formation, we use cucumber seedings subjected to one of three treatments: EW (hypocotyl exposed and irrigated with water), SW (hypocotyl shaded and irrigated with water) and SM (hypocotyl shaded and irrigated with 100 µM melatonin). Under shaded conditions, melatonin induced significant AR formation in the hypocotyl. To explore the mechanism of this melatonin-induced AR formation, we used transcriptome analysis to identify 1296 significant differentially expressed genes (DEGs). Comparing SM with SW, a total of 774 genes were upregulated and 522 genes were downregulated. The DEGs were classified among different metabolic pathways, especially those connected with the synthesis of secondary metabolites, with hormone signal transduction and with plant-pathogen interactions. Analyses indicate exogenous melatonin increased contents of endogenous auxin, jasmonic acid, salicylic acid, cytokinin and abscisic acid levels during AR formation. This study indicates melatonin promotes AR formation in cucumber seedings by regulating the expressions of genes related to hormone synthesis, signaling and cell wall formation, as well as by increasing the contents of auxin, cytokinin, jasmonic acid, salicylic acid and abscisic acid. This research elucidates the molecular mechanisms of melatonin's role in promoting AR formation in the hypocotyl of cucumber seedings under shaded conditions.
Collapse
Affiliation(s)
- Yuping Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
- Experimental Teaching Center, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Hailiang Zhao
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Yi Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zicun Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Lu Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Lixia Li
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Leiping Hou
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Meilan Li
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
33
|
Wei X, Zhang W, Zulfiqar F, Zhang C, Chen J. Ericoid mycorrhizal fungi as biostimulants for improving propagation and production of ericaceous plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1027390. [PMID: 36466284 PMCID: PMC9709444 DOI: 10.3389/fpls.2022.1027390] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
The mutualistic relationship between mycorrhizal fungi and plant roots is a widespread terrestrial symbiosis. The symbiosis enables plants to better adapt to adverse soil conditions, enhances plant tolerance to abiotic and biotic stresses, and improves plant establishment and growth. Thus, mycorrhizal fungi are considered biostimulants. Among the four most common types of mycorrhizae, arbuscular mycorrhiza (AM) and ectomycorrhiza (EcM) have been more intensively studied than ericoid mycorrhiza (ErM) and orchidaceous mycorrhiza (OrM). ErM fungi can form symbiotic relationships with plants in the family Ericaceae. Economically important plants in this family include blueberry, bilberry, cranberry, and rhododendron. ErM fungi are versatile as they are both saprotrophic and biotrophic. Increasing reports have shown that they can degrade soil organic matter, resulting in the bioavailability of nutrients for plants and microbes. ErM fungi can synthesize hormones to improve fungal establishment and plant root initiation and growth. ErM colonization enables plants to effective acquisition of mineral nutrients. Colonized plants are able to tolerate different abiotic stresses, including drought, heavy metals, and soil salinity as well as biotic stresses, such as pathogen infections. This article is intended to briefly introduce ErM fungi and document their beneficial effects on ericaceous plants. It is anticipated that the exploration of this special group of fungi will further improve our understanding of their value of symbiosis to ericaceous plants and ultimately result in the application of valuable species or strains for improving the establishment and growth of ericaceous plants.
Collapse
Affiliation(s)
- Xiangying Wei
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Wenbing Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Chunying Zhang
- Shanghai Engineering Research Center of Sustainable Plant Innovation, Shanghai Botanical Garden, Shanghai, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| |
Collapse
|
34
|
Sampedro-Guerrero J, Vives-Peris V, Gomez-Cadenas A, Clausell-Terol C. Encapsulation Reduces the Deleterious Effects of Salicylic Acid Treatments on Root Growth and Gravitropic Response. Int J Mol Sci 2022; 23:ijms232214019. [PMID: 36430498 PMCID: PMC9696185 DOI: 10.3390/ijms232214019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The role of salicylic acid (SA) on plant responses to biotic and abiotic stresses is well documented. However, the mechanism by which exogenous SA protects plants and its interactions with other phytohormones remains elusive. SA effect, both free and encapsulated (using silica and chitosan capsules), on Arabidopsis thaliana development was studied. The effect of SA on roots and rosettes was analysed, determining plant morphological characteristics and hormone endogenous levels. Free SA treatment affected length, growth rate, gravitropic response of roots and rosette size in a dose-dependent manner. This damage was due to the increase of root endogenous SA concentration that led to a reduction in auxin levels. The encapsulation process reduced the deleterious effects of free SA on root and rosette growth and in the gravitropic response. Encapsulation allowed for a controlled release of the SA, reducing the amount of hormone available and the uptake by the plant, mitigating the deleterious effects of the free SA treatment. Although both capsules are suitable as SA carrier matrices, slightly better results were found with chitosan. Encapsulation appears as an attractive technology to deliver phytohormones when crops are cultivated under adverse conditions. Moreover, it can be a good tool to perform basic experiments on phytohormone interactions.
Collapse
Affiliation(s)
- Jimmy Sampedro-Guerrero
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, 12071 Castellón de la Plana, Spain
| | - Vicente Vives-Peris
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, 12071 Castellón de la Plana, Spain
| | - Aurelio Gomez-Cadenas
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, 12071 Castellón de la Plana, Spain
- Correspondence: (A.G.-C.); (C.C.-T.)
| | - Carolina Clausell-Terol
- Departamento de Ingeniería Química, Instituto Universitario de Tecnología Cerámica, Universitat Jaume I, 12071 Castellón de la Plana, Spain
- Correspondence: (A.G.-C.); (C.C.-T.)
| |
Collapse
|
35
|
Bano K, Kumar B, Alyemeni MN, Ahmad P. Exogenously-Sourced Salicylic Acid Imparts Resilience towards Arsenic Stress by Modulating Photosynthesis, Antioxidant Potential and Arsenic Sequestration in Brassica napus Plants. Antioxidants (Basel) 2022; 11:2010. [PMID: 36290733 PMCID: PMC9598392 DOI: 10.3390/antiox11102010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 12/19/2023] Open
Abstract
In the current study, salicylic acid (SA) assesses the physiological and biochemical responses in overcoming the potential deleterious impacts of arsenic (As) on Brassica napus cultivar Neelam. The toxicity caused by As significantly reduced the observed growth and photosynthetic attributes and accelerated the reactive oxygen species (ROS). Plants subjected to As stress revealed a significant (p ≤ 0.05) reduction in the plant growth and photosynthetic parameters, which accounts for decreased carbon (C) and sulfur (S) assimilation. Foliar spray of SA lowered the oxidative burden in terms of hydrogen peroxide (H2O2), superoxide anion (O2•-), and lipid peroxidation in As-affected plants. Application of SA in two levels (250 and 500 mM) protected the Brassica napus cultivar from As stress by enhancing the antioxidant capacity of the plant by lowering oxidative stress. Among the two doses, 500 mM SA was most effective in mitigating the adverse effects of As on the Brassica napus cultivar. It was found that SA application to the Brassica napus cultivar alleviated the stress by lowering the accumulation of As in roots and leaves due to the participation of metal chelators like phytochelatins, enhancing the S-assimilatory pathway, carbohydrate metabolism, higher cell viability in roots, activity of ribulose 1, 5-bisphosphate carboxylase (Rubisco), and proline metabolism through the active participation of γ-glutamyl kinase (GK) and proline oxidase (PROX) enzyme. The current study shows that SA has the capability to enhance the growth and productivity of B. napus plants cultivated in agricultural soil polluted with As and perhaps other heavy metals.
Collapse
Affiliation(s)
- Koser Bano
- Department of Botany, Government, MVM College, Barkatullah University Bhopal (M.P.), Bhopal 462004, India
| | - Bharty Kumar
- Department of Botany, Government, MVM College, Barkatullah University Bhopal (M.P.), Bhopal 462004, India
| | | | - Parvaiz Ahmad
- Botany and Microbiology Department, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Botany, GDC Pulwama, Jammu and Kashmir 192301, India
| |
Collapse
|
36
|
The TGA Transcription Factors from Clade II Negatively Regulate the Salicylic Acid Accumulation in Arabidopsis. Int J Mol Sci 2022; 23:ijms231911631. [PMID: 36232932 PMCID: PMC9569720 DOI: 10.3390/ijms231911631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Salicylic acid (SA) is a hormone that modulates plant defenses by inducing changes in gene expression. The mechanisms that control SA accumulation are essential for understanding the defensive process. TGA transcription factors from clade II in Arabidopsis, which include the proteins TGA2, TGA5, and TGA6, are known to be key positive mediators for the transcription of genes such as PR-1 that are induced by SA application. However, unexpectedly, stress conditions that induce SA accumulation, such as infection with the avirulent pathogen P. syringae DC3000/AvrRPM1 and UV-C irradiation, result in enhanced PR-1 induction in plants lacking the clade II TGAs (tga256 plants). Increased PR-1 induction was accompanied by enhanced isochorismate synthase-dependent SA production as well as the upregulation of several genes involved in the hormone’s accumulation. In response to avirulent P. syringae, PR-1 was previously shown to be controlled by both SA-dependent and -independent pathways. Therefore, the enhanced induction of PR-1 (and other defense genes) and accumulation of SA in the tga256 mutant plants is consistent with the clade II TGA factors providing negative feedback regulation of the SA-dependent and/or -independent pathways. Together, our results indicate that the TGA transcription factors from clade II negatively control SA accumulation under stress conditions that induce the hormone production. Our study describes a mechanism involving old actors playing new roles in regulating SA homeostasis under stress.
Collapse
|
37
|
Fu R, Meng D, Song B, Wang H, Zhang J, Li J. The carbohydrate elicitor Riclinoctaose facilitates defense and growth of potato roots by inducing changes in transcriptional and metabolic profiles. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111349. [PMID: 35709981 DOI: 10.1016/j.plantsci.2022.111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Promoting both root growth and defense is conducive to the production of potatoes (Solanum tuberosum L.), while the role of elicitors in this topic hasn't been fully understood. To investigate the effect of Riclinoctaose (RiOc) on root growth and defense, potato tissue cuttings were cultivated with different concentration of RiOc (0, 50, 200 mg/L) for 5 weeks and changes in root morphology, transcription, enzymatic and metabolomic profiles were monitored over time. The results indicated that RiOc triggered the salicylic acid (SA)-mediated defense response and facilitated the growth of adventitious and lateral roots in a dose- and time-dependent manner. MPK3/MPK6, SA- and auxin-signaling pathways and transcription factors such as WUS, SCR and GRAS4/GRAS9 participated in this process. Moreover, the 1H NMR based metabolome profiling demonstrated that potato roots altered the primary metabolism to respond to the RiOc elicitation and efficiency in production and allocation of defense and growth-related metabolites was improved. After 5-week treatment, the level of glucose, N-acetylglucosamine, glutamine, asparagine, isoleucine, valine, 3-hydroxyisovalerate and ferulate increased, while acetate, acetoacetate, fucose, and 2-hydroxyphenylacetate declined. In conclusion, RiOc played dual roles in activating the SA-mediated defense response and in promoting growth of potato roots by inducing changes in root transcription and metabolism.
Collapse
Affiliation(s)
- Renjie Fu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Deyao Meng
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Baocai Song
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Hongyang Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Jing Li
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
38
|
Verma PK, Verma S, Pandey N. Root system architecture in rice: impacts of genes, phytohormones and root microbiota. 3 Biotech 2022; 12:239. [PMID: 36016841 PMCID: PMC9395555 DOI: 10.1007/s13205-022-03299-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022] Open
Abstract
To feed the continuously expanding world's population, new crop varieties have been generated, which significantly contribute to the world's food security. However, the growth of these improved plant varieties relies primarily on synthetic fertilizers, which negatively affect the environment and human health; therefore, continuous improvement is needed for sustainable agriculture. Several plants, including cereal crops, have the adaptive capability to combat adverse environmental changes by altering physiological and molecular mechanisms and modifying their root system to improve nutrient uptake efficiency. These plants operate distinct pathways at various developmental stages to optimally establish their root system. These processes include changes in the expression profile of genes, changes in phytohormone level, and microbiome-induced root system architecture (RSA) modification. Several studies have been performed to understand microbial colonization and their involvement in RSA improvement through changes in phytohormone and transcriptomic levels. This review highlights the impact of genes, phytohormones, and particularly root microbiota in influencing RSA and provides new insights resulting from recent studies on rice root as a model system and summarizes the current knowledge about biochemical and central molecular mechanisms.
Collapse
Affiliation(s)
- Pankaj Kumar Verma
- Department of Botany, University of Lucknow, Lucknow, India
- Present Address: French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Shikha Verma
- Present Address: French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Nalini Pandey
- Department of Botany, University of Lucknow, Lucknow, India
| |
Collapse
|
39
|
Zhou H, Ge H, Chen J, Li X, Yang L, Zhang H, Wang Y. Salicylic Acid Regulates Root Gravitropic Growth via Clathrin-Independent Endocytic Trafficking of PIN2 Auxin Transporter in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23169379. [PMID: 36012641 PMCID: PMC9409447 DOI: 10.3390/ijms23169379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
The phytohormone salicylic acid (SA) plays a crucial role in plant growth and development. However, the mechanism of high-concentration SA-affected gravitropic response in plant root growth and root hair development is still largely unclear. In this study, wild-type, pin2 mutant and various transgenic fluorescence marker lines of Arabidopsis thaliana were investigated to understand how root growth is affected by high SA treatment under gravitropic stress conditions. We found that exogenous SA application inhibited gravitropic root growth and root hair development in a dose-dependent manner. Further analyses using DIRECT REPEAT5 (DR5)-GFP, auxin sensor DII-VENUS, auxin efflux transporter PIN2-GFP, trans-Golgi network/early endosome (TGN/EE) clathrin-light-chain 2 (CLC2)-mCherry and prevacuolar compartment (PVC) (Rha1)-mCherry transgenic marker lines demonstrated that high SA treatment severely affected auxin accumulation, root-specific PIN2 distribution and PIN2 gene transcription and promoted the vacuolar degradation of PIN2, possibly independent of clathrin-mediated endocytic protein trafficking. Our findings proposed a new underlying mechanism of SA-affected gravitropic root growth and root hair development via the regulation of PIN2 gene transcription and PIN2 protein endocytosis in plants.
Collapse
Affiliation(s)
- Houjun Zhou
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai 264025, China
| | - Haiman Ge
- College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jiahong Chen
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai 201602, China
| | - Xueqin Li
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai 201602, China
| | - Lei Yang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai 264025, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai 264025, China
- Correspondence: (H.Z.); (Y.W.)
| | - Yuan Wang
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai 201602, China
- Correspondence: (H.Z.); (Y.W.)
| |
Collapse
|
40
|
Smailagić D, Banjac N, Ninković S, Savić J, Ćosić T, Pěnčík A, Ćalić D, Bogdanović M, Trajković M, Stanišić M. New Insights Into the Activity of Apple Dihydrochalcone Phloretin: Disturbance of Auxin Homeostasis as Physiological Basis of Phloretin Phytotoxic Action. FRONTIERS IN PLANT SCIENCE 2022; 13:875528. [PMID: 35873993 PMCID: PMC9302884 DOI: 10.3389/fpls.2022.875528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Apple species are the unique naturally rich source of dihydrochalcones, phenolic compounds with an elusive role in planta, but suggested auto-allelochemical features related to "apple replant disease" (ARD). Our aim was to elucidate the physiological basis of the phytotoxic action of dihydrochalcone phloretin in the model plant Arabidopsis and to promote phloretin as a new prospective eco-friendly phytotoxic compound. Phloretin treatment induced a significant dose-dependent growth retardation and severe morphological abnormalities and agravitropic behavior in Arabidopsis seedlings. Histological examination revealed a reduced starch content in the columella cells and a serious disturbance in root architecture, which resulted in the reduction in length of meristematic and elongation zones. Significantly disturbed auxin metabolome profile in roots with a particularly increased content of IAA accumulated in the lateral parts of the root apex, accompanied by changes in the expression of auxin biosynthetic and transport genes, especially PIN1, PIN3, PIN7, and ABCB1, indicates the role of auxin in physiological basis of phloretin-induced growth retardation. The results reveal a disturbance of auxin homeostasis as the main mechanism of phytotoxic action of phloretin. This mechanism makes phloretin a prospective candidate for an eco-friendly bioherbicide and paves the way for further research of phloretin role in ARD.
Collapse
Affiliation(s)
- Dijana Smailagić
- Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nevena Banjac
- Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Slavica Ninković
- Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Savić
- Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tatjana Ćosić
- Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czechia
| | - Dušica Ćalić
- Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Bogdanović
- Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milena Trajković
- Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mariana Stanišić
- Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
41
|
Zhang Z, Jatana BS, Campbell BJ, Gill J, Suseela V, Tharayil N. Cross-inoculation of rhizobiome from a congeneric ruderal plant imparts drought tolerance in maize (Zea mays) through changes in root morphology and proteome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:54-71. [PMID: 35426964 PMCID: PMC9542220 DOI: 10.1111/tpj.15775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Rhizobiome confer stress tolerance to ruderal plants, yet their ability to alleviate stress in crops is widely debated, and the associated mechanisms are poorly understood. We monitored the drought tolerance of maize (Zea mays) as influenced by the cross-inoculation of rhizobiota from a congeneric ruderal grass Andropogon virginicus (andropogon-inoculum), and rhizobiota from organic farm maintained under mesic condition (organic-inoculum). Across drought treatments (40% field capacity), maize that received andropogon-inoculum produced two-fold greater biomass. This drought tolerance translated to a similar leaf metabolomic composition as that of the well-watered control (80% field capacity) and reduced oxidative damage, despite a lower activity of antioxidant enzymes. At a morphological-level, drought tolerance was associated with an increase in specific root length and surface area facilitated by the homeostasis of phytohormones promoting root branching. At a proteome-level, the drought tolerance was associated with upregulation of proteins related to glutathione metabolism and endoplasmic reticulum-associated degradation process. Fungal taxa belonging to Ascomycota, Mortierellomycota, Archaeorhizomycetes, Dothideomycetes, and Agaricomycetes in andropogon-inoculum were identified as potential indicators of drought tolerance. Our study provides a mechanistic understanding of the rhizobiome-facilitated drought tolerance and demonstrates a better path to utilize plant-rhizobiome associations to enhance drought tolerance in crops.
Collapse
Affiliation(s)
- Ziliang Zhang
- Department of Plant & Environmental SciencesClemson UniversityClemsonSCUSA
| | | | | | - Jasmine Gill
- Department of Plant & Environmental SciencesClemson UniversityClemsonSCUSA
| | - Vidya Suseela
- Department of Plant & Environmental SciencesClemson UniversityClemsonSCUSA
| | - Nishanth Tharayil
- Department of Plant & Environmental SciencesClemson UniversityClemsonSCUSA
| |
Collapse
|
42
|
Li D, Ding Y, Cheng L, Zhang X, Cheng S, Ye Y, Gao Y, Qin Y, Liu Z, Li C, Ma F, Gong X. Target of rapamycin (TOR) regulates the response to low nitrogen stress via autophagy and hormone pathways in Malus hupehensis. HORTICULTURE RESEARCH 2022; 9:uhac143. [PMID: 36072834 PMCID: PMC9437726 DOI: 10.1093/hr/uhac143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/20/2022] [Indexed: 05/28/2023]
Abstract
Target of rapamycin (TOR) is a highly conserved master regulator in eukaryotes; it regulates cell proliferation and growth by integrating different signals. However, little is known about the function of TOR in perennial woody plants. Different concentrations of AZD8055 (an inhibitor of TOR) were used in this study to investigate the role of TOR in the response to low nitrogen (N) stress in the wild apple species Malus hupehensis. Low N stress inhibited the growth of M. hupehensis plants, and 1 μM AZD alleviated this effect. Plants supplied with 1 μM AZD had higher photosynthetic capacity, which promoted the accumulation of biomass, as well as higher contents of N and anthocyanins and lower content of starch. Exogenous application of 1 μM AZD also promoted the development of the root system. Plants supplied with at least 5 μM AZD displayed early leaf senescence. RNA-seq analysis indicated that TOR altered the expression of genes related to the low N stress response, such as genes involved in photosystem, starch metabolism, autophagy, and hormone metabolism. Further analysis revealed altered autophagy in plants supplied with AZD under low N stress; the metabolism of plant hormones also changed following AZD supplementation. In sum, our findings revealed that appropriate inhibition of TOR activated autophagy and jasmonic acid signaling in M. hupehensis, which allowed plants to cope with low N stress. Severe TOR inhibition resulted in the excessive accumulation of salicylic acid, which probably led to programmed cell death in M. hupehensis.
Collapse
Affiliation(s)
| | | | | | - Xiaoli Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Siyuan Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ying Ye
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yongchen Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ying Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | | |
Collapse
|
43
|
Pu L, Li Z, Jia M, Ke X, Liu H, Christie P, Wu L. Effects of a soil collembolan on the growth and metal uptake of a hyperaccumulator: Modification of root morphology and the expression of plant defense genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119169. [PMID: 35307496 DOI: 10.1016/j.envpol.2022.119169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Soil collembolans live in close proximity to plant roots and may have a role in the phytoextraction of potentially toxic metals from contaminated soils but the underlying mechanisms remain poorly investigated. We hypothesize that soil collembolans may change the root morphology of hyperaccumulators by regulating plant physiological characteristics. Here, a pot experiment was conducted in which a cadmium (Cd) and zinc (Zn) hyperaccumulator (Sedum plumbizincicola) was grown with or without a collembolan (Folsomia candida), and plant transcriptome and hormones as well as the root characteristics of S. plumbizincicola were analyzed. F. candida promoted the growth and Cd/Zn uptake of S. plumbizincicola, the root and shoot biomass increasing by 53.3 and 34.4%, and the uptake of Cd and Zn in roots increased by 83.2 and 65.4%, respectively. Plant root morphology, total root length, root tip number and lateral root number increased significantly by 40.7, 37.2 and 33.8%, respectively, with the addition of F. candida. Transcriptome analysis reveals that the expression levels of defense-related genes in S. plumbizincicola were significantly up-regulated. In addition, the defensive plant hormones, i.e. salicylic acid in the roots, increased significantly by 338%. These results suggest that the plant in defense of the action of F. candida regulated the expression of the corresponding genes and increased the defensive plant hormones, thus modifying root morphology and plant performance. Overall, this study highlights the importance of the regulation by collembolans of plant growth and metal uptake by interaction with hyperaccumulator roots.
Collapse
Affiliation(s)
- Liming Pu
- College of Agriculture, Guizhou University, Guiyang, 550025, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhu Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Mingyun Jia
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xin Ke
- Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongyan Liu
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
44
|
Pokotylo I, Hodges M, Kravets V, Ruelland E. A ménage à trois: salicylic acid, growth inhibition, and immunity. TRENDS IN PLANT SCIENCE 2022; 27:460-471. [PMID: 34872837 DOI: 10.1016/j.tplants.2021.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Salicylic acid (SA) is a plant hormone almost exclusively associated with the promotion of immunity. It is also known that SA has a negative impact on plant growth, yet only limited efforts have been dedicated to explain this facet of SA action. In this review, we focus on SA-related reduced growth and discuss whether it is a regulated process and if the role of SA in immunity imperatively comes with growth suppression. We highlight molecular targets of SA that interfere with growth and describe scenarios where SA can improve plant immunity without a growth penalty.
Collapse
Affiliation(s)
- Igor Pokotylo
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NASU, 02094 Kyiv, Ukraine.
| | - Michael Hodges
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR CNRS 9213, Université Paris-Saclay, INRAE, Université d'Evry, Université de Paris, 91190 Gif-sur-Yvette, France
| | - Volodymyr Kravets
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NASU, 02094 Kyiv, Ukraine
| | - Eric Ruelland
- Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue du Docteur Schweitzer, 60203 Compiègne, France.
| |
Collapse
|
45
|
Li A, Sun X, Liu L. Action of Salicylic Acid on Plant Growth. FRONTIERS IN PLANT SCIENCE 2022; 13:878076. [PMID: 35574112 PMCID: PMC9093677 DOI: 10.3389/fpls.2022.878076] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/06/2022] [Indexed: 06/02/2023]
Abstract
The phytohormone salicylic acid (SA) not only is a well-known signal molecule mediating plant immunity, but also is involved in plant growth regulation. However, while its role in plant immunity has been well elucidated, its action on plant growth has not been clearly described to date. Recently, increasing evidence has shown that SA plays crucial roles in regulating cell division and cell expansion, the key processes that determines the final stature of plant. This review summarizes the current knowledge on the action and molecular mechanisms through which SA regulates plant growth via multiple pathways. It is here highlighted that SA mediates growth regulation by affecting cell division and expansion. In addition, the interactions of SA with other hormones and their role in plant growth determination were also discussed. Further understanding of the mechanism underlying SA-mediated growth will be instrumental for future crop improvement.
Collapse
|
46
|
Effects of Elevated Temperature and Salicylic Acid on Heat Shock Response and Growth of Potato Microplants. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Potato is a globally important, highly heat-susceptible crop species. We investigated the effects of prolonged exposure to elevated temperatures and exogenous salicylic acid (SA) on microplant growth and heat-shock response (HSR) in three unrelated potato genotypes/cultivars. Long-term exposure to 29 °C (mild heat stress) caused a significant reduction in the number of surviving explants and shoot morphometric parameters in heat-sensitive genotypes, while exposure to 26 °C (warming) caused only a decline in shoot growth. Interestingly, 26 °C-temperature treatment stimulated root growth in some investigated genotypes, indicating a difference between favorable temperatures for potato shoot and root growth. SA showed a protective effect regarding potato shoot growth at 26 °C. At 29 °C, this effect was genotype-dependent. SA did not affect the number of roots and inhibited root elongation at all temperature treatments, indicating the difference between shoot and root responses to applied SA concentration. Although HSR is mainly considered rapid and short-lived, elevated transcript levels of most investigated HSFs and HSPs were detected after three weeks of heat stress. Besides, two StHSFs and StHSP21 showed elevated expression at 26 °C, indicating extreme potato heat-susceptibility and significance of HSR during prolonged warming. SA effects on HSFs and HSPs expression were minor and alterable.
Collapse
|
47
|
Srivastava S, Pandey SP, Singh P, Pradhan L, Pande V, Sane AP. Early wound-responsive cues regulate the expression of WRKY family genes in chickpea differently under wounded and unwounded conditions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:719-735. [PMID: 35592484 PMCID: PMC9110599 DOI: 10.1007/s12298-022-01170-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/05/2022] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Insect wounding activates a large number of signals that function coordinately to modulate gene expression and elicit defense responses. How each signal influences gene expression in absence of wounding is also important since it can shed light on changes occurring during the shift to wound response. Using simulated Helicoverpa armigera herbivory on chickpea, we had identified at least 14 WRKY genes that showed 5-50 fold increase in expression within 5-20 min of wounding. Our studies show that contrary to their collective effects upon wounding, individual chemical cues show distinct and often opposite effects in absence of wounding. In particular, jasmonic acid, a key early defense hormone, reduced transcripts of most WRKY genes by > 50% upon treatment of unwounded chickpea leaves as did salicylic acid. Neomycin (a JA biosynthesis inhibitor) delayed and also reduced early wound expression. H2O2 transiently activated several genes within 5-20 min by 5-8 fold while ethylene activated only a few WRKY genes by 2-5 fold. The summation of the individual effects of these chemical cues does not explain the strong increase in transcript levels upon wounding. Detailed studies of a 931 nt region of the CaWRKY41 promoter, show strong wound-responsive GUS expression in Arabidopsis even in presence of neomycin. Surprisingly its expression was lost in the coi1, ein2 and myc2myc3myc4 mutant backgrounds suggesting the requirement of intact ethylene and JA signaling pathways (dependent on MYCs) for wound-responsive expression. The studies highlight the complexity of gene regulation by different chemical cues in the presence and absence of wounding. SUPPLEMENTARY INFORMATION The online version contains Supplementary material available at 10.1007/s12298-022-01170-y.
Collapse
Affiliation(s)
- Shruti Srivastava
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Department of Biotechnology, Kumaun University, Nainital, 26300 India
| | - Saurabh Prakash Pandey
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Priya Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Laxmipriya Pradhan
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, 26300 India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
48
|
Shields A, Shivnauth V, Castroverde CDM. Salicylic Acid and N-Hydroxypipecolic Acid at the Fulcrum of the Plant Immunity-Growth Equilibrium. FRONTIERS IN PLANT SCIENCE 2022; 13:841688. [PMID: 35360332 PMCID: PMC8960316 DOI: 10.3389/fpls.2022.841688] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/14/2022] [Indexed: 05/31/2023]
Abstract
Salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are two central plant immune signals involved in both resistance at local sites of pathogen infection (basal resistance) and at distal uninfected sites after primary infection (systemic acquired resistance). Major discoveries and advances have led to deeper understanding of their biosynthesis and signaling during plant defense responses. In addition to their well-defined roles in immunity, recent research is emerging on their direct mechanistic impacts on plant growth and development. In this review, we will first provide an overview of how SA and NHP regulate local and systemic immune responses in plants. We will emphasize how these two signals are mutually potentiated and are convergent on multiple aspects-from biosynthesis to homeostasis, and from signaling to gene expression and phenotypic responses. We will then highlight how SA and NHP are emerging to be crucial regulators of the growth-defense balance, showcasing recent multi-faceted studies on their metabolism, receptor signaling and direct growth/development-related host targets. Overall, this article reflects current advances and provides future outlooks on SA/NHP biology and their functional significance as central signals for plant immunity and growth. Because global climate change will increasingly influence plant health and resilience, it is paramount to fundamentally understand how these two tightly linked plant signals are at the nexus of the growth-defense balance.
Collapse
|
49
|
Tiwari M, Kumar R, Min D, Jagadish SVK. Genetic and molecular mechanisms underlying root architecture and function under heat stress-A hidden story. PLANT, CELL & ENVIRONMENT 2022; 45:771-788. [PMID: 35043409 DOI: 10.1111/pce.14266] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 05/22/2023]
Abstract
Heat stress events are resulting in a significant negative impact on global food production. The dynamics of cellular, molecular and physiological homoeostasis in aboveground parts under heat stress are extensively deciphered. However, root responses to higher soil/air temperature or stress signalling from shoot to root are limited. Therefore, this review presents a holistic view of root physio-morphological and molecular responses to adapt under hotter environments. Heat stress reprogrammes root cellular machinery, including crosstalk between genes, phytohormones, reactive oxygen species (ROS) and antioxidants. Spatio-temporal regulation and long-distance transport of phytohormones, such as auxin, cytokinin and abscisic acid (ABA) determine the root growth and development under heat stress. ABA cardinally integrates a signalling pathway involving heat shock factors, heat shock proteins and ROS to govern heat stress responses. Additionally, epigenetic modifications by transposable elements, DNA methylation and acetylation also regulate root growth under heat stress. Exogenous application of chemical compounds or biological agents such as ascorbic acid, metal ion chelators, fungi and bacteria can alleviate heat stress-induced reduction in root biomass. Future research should focus on the systemic effect of heat stress from shoot to root with more detailed investigations to decipher the molecular cues underlying the roots architecture and function.
Collapse
Affiliation(s)
- Manish Tiwari
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| | - Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| | - Doohong Min
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| | | |
Collapse
|
50
|
Improvement of salicylic acid biological effect through its encapsulation with silica or chitosan. Int J Biol Macromol 2022; 199:108-120. [PMID: 34973991 DOI: 10.1016/j.ijbiomac.2021.12.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/09/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
Attacks of necrotrophic and biotrophic fungi affect a large number of crops worldwide and are difficult to control with fungicides due to their genetic plasticity. Encapsulation technology is a good alternative for controlling fungal diseases. In this work, encapsulated samples of salicylic acid (SA) with silica (Si:SA) or chitosan (Ch:SA) at three different ratios were prepared by spray drying, and morphological and physicochemical characterised. Therefore, size distribution, specific surface area, thermal stability, encapsulation efficiency, and in-vitro SA release were determined. Biological activity of encapsulated samples were tested against different fungi of agricultural interest at various concentrations (0-1000 µM). Treatments prepared with the lowest ratios for both capsules, were found to have the best antifungal effect in an in vitro system, inhibiting the mycelial growth of Alternaria alternata, Botrytis cinerea, Fusarium oxysporum and Geotrichum candidum. Similarly, treatments with the lowest ratios of both encapsulated samples reduced free SA toxicity on Arabidopsis thaliana seeds. In this system, plants treated with capsules had higher root and rosette development than those treated with free SA. In conclusion, a product with a great potential in agriculture that shows high antifungal capacity and low toxicity for plants have been developed through a controlled and industrially viable process.
Collapse
|