1
|
Zeng Z, Liu R, Zhao J, Lan S, Yang H, Wu H, Lin Y, Cao S. Genome Identification, Expression Profile Analysis, and Abiotic Stress Response Mechanism of Longan BES1 Gene. Int J Mol Sci 2025; 26:3003. [PMID: 40243682 PMCID: PMC11988386 DOI: 10.3390/ijms26073003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
BES1 (BRI1 EMS SUPPRESSOR 1) is a critical transcription factor involved in plant growth, development, and stress responses. Although BES1 genes have been characterized in several species, their roles in longan (Dimocarpus longan Lour.) remain unclear. This study identified and analyzed eight BES1 genes in the longan genome. Phylogenetic analysis classified these genes into four subgroups (I-IV), with conserved motifs and intron-exon structures indicating potential functional similarities within subgroups. Cis-element analysis revealed that the promoters of DlBES1 genes contain numerous hormone-related elements, including ABRE, TGACG, and TCA motifs, suggesting their involvement in hormonal signaling and stress responses. Expression profiling showed differential expression patterns of DlBES1 genes across nine tissues, with notable up-regulation in roots and seeds. Additionally, DlBES1 genes exhibited distinct expression trends under varying temperatures and in response to IAA treatment, indicating potential roles in temperature stress adaptation and hormone signaling. These findings provide novel insights into the regulatory mechanisms of BES1 genes in longan and highlight their potential significance in stress tolerance and growth regulation.
Collapse
Affiliation(s)
- Zilu Zeng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (R.L.); (J.Z.); (H.Y.)
| | - Ronglin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (R.L.); (J.Z.); (H.Y.)
| | - Jin Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (R.L.); (J.Z.); (H.Y.)
| | - Shuoxian Lan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hao Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (R.L.); (J.Z.); (H.Y.)
| | - Hua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (R.L.); (J.Z.); (H.Y.)
| |
Collapse
|
2
|
Kuczyńska A, Michałek M, Ogrodowicz P, Kempa M, Krajewski P, Cardenia V, Rodriguez-Estrada MT, Pérez-Llorca M, Munné-Bosch S, Mikołajczak K. Disorders in brassinosteroids signal transduction triggers the profound molecular alterations in the crown tissue of barley under drought. PLoS One 2025; 20:e0318281. [PMID: 39899562 PMCID: PMC11790124 DOI: 10.1371/journal.pone.0318281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/13/2025] [Indexed: 02/05/2025] Open
Abstract
The advanced molecular tools provide critical inputs in uncovering the regulatory mechanisms underlying plants' adaptation to abiotic stress. Presented holistic studies were done on the barley crown tissue being essential for plant performance under various environmental stimuli. To investigate the effect of brassinosteroids (BRs), the known players in stress management, on molecular response of this tissue to drought, the genotypes with different BRs signal transduction efficiency were employed. Large-scale transcriptomic and proteomic profiling confirmed the specific re-modeling of behavior of the BRs-insensitive barley uzu1.a mutant under drought. On the other hand, a set of genes expressed independently of the genotype was identified, including dehydrin encoding genes. This study also uncovered the candidate genes to be linkers of phytohormones crosstalk. Importantly, we detected the converging upregulation of several proteins and encoding genes under drought, including late embryogenesis abundant proteins and chaperones; they represent a promising target for cereals' improvement. Moreover, the greatest variation between genotypes in accumulation of BRs in the crown tissue exposed to drought was observed for castasterone. Presented multi-omics, high-throughput results enhanced the understanding of molecular response to drought in crown tissue. The new insight was provided into the relationships between gene expression, protein and phytohormone content in barley plants of different BRs signaling.
Collapse
Affiliation(s)
- Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Martyna Michałek
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Michał Kempa
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | | | | | | | | | | |
Collapse
|
3
|
Xie X, Zhang X, Chen T, Yu D, Ma M, Lu X, Xu G. High-coverage identification of hydroxyl compounds based on pyridine derivatization-assisted liquid chromatography mass spectrometry. Anal Chim Acta 2024; 1322:343065. [PMID: 39182991 DOI: 10.1016/j.aca.2024.343065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Hydroxyl compounds are widely present in plants and play essential roles in plant growth and development. High-coverage detection of hydroxyl compounds is crucial for understanding the physiological processes of plants. Despite the prevalence of chemical derivatization-assisted liquid chromatography-high resolution mass spectrometry (CD-LC-HRMS) in high-coverage detection of compounds with diverse functional groups, the confident identification of these compounds after derivatization remains a significant challenge. Herein, a novel method was developed for the identification of pyridine (PY)-derivatized hydroxyl compounds by comparing the MS/MS similarity of derivatized and corresponding underivatized compounds. Fragmentation rules of standards were summarized, and theoretical calculations have demonstrated the MS/MS similarity of PY-derivatized hydroxyl compounds with their underivatized counterparts. The effectiveness of the developed method was demonstrated by identifying PY-derivatized authentic standards. A total of 90 hydroxyl compounds were putatively identified in maize using the proposed method. This method can significantly enhance ionization efficiency with minimal impact on the quality of the MS/MS spectra, enabling the effective utilization of mass spectra databases for the identification of hydroxyl compounds.
Collapse
Affiliation(s)
- Xiaoyu Xie
- CAS Key Laboratory of Separation Science for Anal. Chem, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Key Laboratory of Phytochemical R&D of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Xiuqiong Zhang
- CAS Key Laboratory of Separation Science for Anal. Chem, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Anal. Chem, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Di Yu
- CAS Key Laboratory of Separation Science for Anal. Chem, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Anal. Chem, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Anal. Chem, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| |
Collapse
|
4
|
Lin X, Tang B, Li Z, Shi L, Zhu H. Genome-wide identification and expression analyses of CYP450 genes in sweet potato (Ipomoea batatas L.). BMC Genomics 2024; 25:58. [PMID: 38218763 PMCID: PMC10787477 DOI: 10.1186/s12864-024-09965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Cytochrome P450 monooxygenases (CYP450s) play a crucial role in various biochemical reactions involved in the synthesis of antioxidants, pigments, structural polymers, and defense-related compounds in plants. As sweet potato (Ipomoea batatas L.) holds significant economic importance, a comprehensive analysis of CYP450 genes in this plant species can offer valuable insights into the evolutionary relationships and functional characteristics of these genes. RESULTS In this study, we successfully identified and categorized 95 CYP450 genes from the sweet potato genome into 5 families and 31 subfamilies. The predicted subcellular localization results indicate that CYP450s are distributed in the cell membrane system. The promoter region of the IbCYP450 genes contains various cis-acting elements related to plant hormones and stress responses. In addition, ten conserved motifs (Motif1-Motif10) have been identified in the IbCYP450 family proteins, with 5 genes lacking introns and only one exon. We observed extensive duplication events within the CYP450 gene family, which may account for its expansion. The gene duplication analysis results showed the presence of 15 pairs of genes with tandem repeats. Interaction network analysis reveals that IbCYP450 families can interact with multiple target genes and there are protein-protein interactions within the family. Transcription factor interaction analysis suggests that IbCYP450 families interact with multiple transcription factors. Furthermore, gene expression analysis revealed tissue-specific expression patterns of CYP450 genes in sweet potatoes, as well as their response to abiotic stress and plant hormones. Notably, quantitative real-time polymerase chain reaction (qRT‒PCR) analysis indicated the involvement of CYP450 genes in the defense response against nonbiological stresses in sweet potatoes. CONCLUSIONS These findings provide a foundation for further investigations aiming to elucidate the biological functions of CYP450 genes in sweet potatoes.
Collapse
Affiliation(s)
- Xiongjian Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Binquan Tang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhenqin Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Lei Shi
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hongbo Zhu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
5
|
Teng S, Liu Q, Chen G, Chang Y, Cui X, Wu J, Ai P, Sun X, Zhang Z, Lu T. OsbHLH92, in the noncanonical brassinosteroid signaling pathway, positively regulates leaf angle and grain weight in rice. THE NEW PHYTOLOGIST 2023; 240:1066-1081. [PMID: 37574840 DOI: 10.1111/nph.19204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
Modifications of plant architecture can increase planting density, regulate photosynthesis, and improve crop yields. Many basic helix-loop-helix (bHLH) transcription factors participate in the brassinosteroid (BR) signaling pathway and are critical for plant architecture morphogenesis in rice. However, the number of identified bHLH genes suitable for improving production value is still limited. In this study, we cloned Lam1, encoding the typical bHLH transcription factor OsbHLH92. OsbHLH92 knockout (KO) lines exhibit erect leaves. Decreases in the number and size of parenchyma cell layers on the adaxial side of the lamina joint in KO lines were the main reason for the decreased leaf angle. Genetic experiments verify that OsBU1 and its homologs are downstream of OsbHLH92, which is involved in the noncanonical RGA1-mediated BR signaling pathway. OsbHLH91, an OsbHLH92 homolog, plays both conserved and differentiated roles relative to OsbHLH92. Notably, OsbHLH92-KO lines show erect leaves without the acquisition of adverse agronomic traits. Moreover, by driving a specific panicle promoter, OsbHLH92 can greatly increase productivity by at least 10%. This study identifies new components of the BR signaling pathway, demonstrates the importance of OsbHLH92 in improving planting density and crop productivity, and broadens our knowledge of typical and atypical bHLH family members in rice.
Collapse
Affiliation(s)
- Shouzhen Teng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiming Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoxin Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuan Chang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuean Cui
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Pengfei Ai
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Hebei, 050000, China
| | - Xuehui Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
6
|
Dembitsky VM. Biological Activity and Structural Diversity of Steroids Containing Aromatic Rings, Phosphate Groups, or Halogen Atoms. Molecules 2023; 28:5549. [PMID: 37513423 PMCID: PMC10384810 DOI: 10.3390/molecules28145549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
This review delves into the investigation of the biological activity and structural diversity of steroids and related isoprenoid lipids. The study encompasses various natural compounds, such as steroids with aromatic ring(s), steroid phosphate esters derived from marine invertebrates, and steroids incorporating halogen atoms (I, Br, or Cl). These compounds are either produced by fungi or fungal endophytes or found in extracts of plants, algae, or marine invertebrates. To assess the biological activity of these natural compounds, an extensive examination of referenced literature sources was conducted. The evaluation encompassed in vivo and in vitro studies, as well as the utilization of the QSAR method. Numerous compounds exhibited notable properties such as strong anti-inflammatory, anti-neoplastic, anti-proliferative, anti-hypercholesterolemic, anti-Parkinsonian, diuretic, anti-eczematic, anti-psoriatic, and various other activities. Throughout the review, 3D graphs illustrating the activity of individual steroids are presented alongside images of selected terrestrial or marine organisms. Additionally, the review provides explanations for specific types of biological activity associated with these compounds. The data presented in this review hold scientific interest for academic science as well as practical implications in the fields of pharmacology and practical medicine. The analysis of the biological activity and structural diversity of steroids and related isoprenoid lipids provides valuable insights that can contribute to advancements in both theoretical understanding and applied research.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
7
|
Ranner JL, Schalk S, Martyniak C, Parniske M, Gutjahr C, Stark TD, Dawid C. Primary and Secondary Metabolites in Lotus japonicus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37466334 DOI: 10.1021/acs.jafc.3c02709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Lotus japonicus is a leguminous model plant used to gain insight into plant physiology, stress response, and especially symbiotic plant-microbe interactions, such as root nodule symbiosis or arbuscular mycorrhiza. Responses to changing environmental conditions, stress, microbes, or insect pests are generally accompanied by changes in primary and secondary metabolism to account for physiological needs or to produce defensive or signaling compounds. Here we provide an overview of the primary and secondary metabolites identified in L. japonicus to date. Identification of the metabolites is mainly based on mass spectral tags (MSTs) obtained by gas chromatography linked with tandem mass spectrometry (GC-MS/MS) or liquid chromatography-MS/MS (LC-MS/MS). These MSTs contain retention index and mass spectral information, which are compared to databases with MSTs of authentic standards. More than 600 metabolites are grouped into compound classes such as polyphenols, carbohydrates, organic acids and phosphates, lipids, amino acids, nitrogenous compounds, phytohormones, and additional defense compounds. Their physiological effects are briefly discussed, and the detection methods are explained. This review of the exisiting literature on L. japonicus metabolites provides a valuable basis for future metabolomics studies.
Collapse
Affiliation(s)
- Josef L Ranner
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Sabrina Schalk
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Cindy Martyniak
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Martin Parniske
- Faculty of Biology, Genetics, University of Munich (LMU), Großhaderner Straße 2-4, 82152 Martinsried, Germany
| | - Caroline Gutjahr
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Timo D Stark
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
- Professorship of Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| |
Collapse
|
8
|
Mahati K, Padmasree K. Brassinolide promotes interaction between chloroplasts and mitochondria during the optimization of photosynthesis by the mitochondrial electron transport chain in mesophyll cell protoplasts of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1099474. [PMID: 37113597 PMCID: PMC10126290 DOI: 10.3389/fpls.2023.1099474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
The current experimental data unveils the role of brassinolide (BL), a phytohormone of class brassinosteroids (BRs), in augmenting the cross-talk between the mitochondrial electron transport chain (mETC) and chloroplasts to strengthen the efficiency of the Calvin-Benson cycle (CBC) for higher assimilation of carbon dioxide in the mesophyll cell protoplasts (MCP) of Arabidopsis thaliana. The outcome of total respiration (TR) and photosynthetic carbon assimilation (PCA) was monitored as O2 uptake under dark and NaHCO3-dependent O2 evolution under light, respectively, after pre-incubation of MCP at a broad spectrum of BL concentration from 0.05 pM to 5 pM at 25 °C and optimum light intensity of 1000 μmol m-2 s-1. The addition of optimal concentration (0.5 pM) of BL to MCP stimulated the (i) TR, (ii) PCA, and (iii) para-benzoquinone-dependent O2 evolution (PSII activity). Further, in response to BL, the enzyme activity or transcript levels of redox-regulated CBC enzymes and glucose-6-phosphate raised considerably. Also, the addition of BL to MCP remarkably accelerated the capacity of the cytochrome oxidase (COX) and alternative oxidase (AOX) pathways concurrently with an increase in total cellular pyruvate and reactive oxygen species (ROS) levels. Besides, malate valve components (Malate, Chl-MDH, M-MDH) increased in response to BL. At the same time, the cellular redox ratios of pyridine nucleotides (NADPH and NADH) were kept low in the presence of BL. However, BL could not keep up the CBC activity of photosynthesis along with its associated light-activated enzymes/transcripts when mETC through COX or AOX pathway is restricted by antimycin A (AA) or salicylhydroxamic acid (SHAM), respectively. In contrast, adding BL to MCP under restricted mETC showed aggravation in total cellular ROS, pyruvate, malate, and redox ratio of pyridine nucleotides with a concomitant increase in transcripts associated with malate valve and antioxidant systems. These results suggest that BL enhances the PCA by coordinating in cross-talk of chloroplasts and mitochondria to regulate the cellular redox ratio or ROS through the involvement of COX and AOX pathways along with the malate valve and antioxidant systems.
Collapse
|
9
|
Gahtori R, Tripathi AH, Kumari A, Negi N, Paliwal A, Tripathi P, Joshi P, Rai RC, Upadhyay SK. Anticancer plant-derivatives: deciphering their oncopreventive and therapeutic potential in molecular terms. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-023-00465-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Abstract
Background
Over the years, phytomedicines have been widely used as natural modalities for the treatment and prevention of various diseases by different ethnic groups across the globe. Although, 25% of drugs in the USA contain at least one plant-derived therapeutic compound, currently there is a paucity of plant-derived active medicinal ingredients in the pharmaceutical industry. Scientific evidence-based translation of plant-derived ethnomedicines for their clinical application is an urgent need. The anticancer and associated properties (antioxidative, anti-inflammatory, pro-apoptotic and epithelial-mesenchymal transition (EMT) inhibition) of various plant extracts and phytochemicals have been elucidated earlier. Several of the plant derivatives are already in use under prophylactic/therapeutic settings against cancer and many are being investigated under different phases of clinical trials.
Main body
The purpose of this study is to systematically comprehend the progress made in the area of prophylactic and therapeutic potential of the anticancerous plant derivatives. Besides, we aim to understand their anticancer potential in terms of specific sub-phenomena, such as anti-oxidative, anti-inflammatory, pro-apoptotic and inhibition of EMT, with an insight of the molecules/pathways associated with them. The study also provides details of classes of anticancer compounds, their plant source(s) and the molecular pathway(s) targeted by them. In addition to the antioxidative and antiproliferative potentials of anticancer plant derivatives, this study emphasizes on their EMT-inhibition potential and other ‘anticancer related’ properties. The EMT is highlighted as a phenomenon of choice for targeting cancer due to its role in the induction of metastasis and drug resistance. Different phytochemicals in pre-clinical or clinical trials, with promising chemopreventive/anticancer activities have been enlisted and the plant compounds showing synergistic anticancer activity in combination with the existing drugs have been discussed. The review also unravels the need of carrying out pan-signalome studies for identifying the cardinal pathways modulated by phytomedicine(s), as in many cases, the molecular pathway(s) has/have been randomly studied.
Conclusion
This review systematically compiles the studies regarding the impact of various plant derivatives in different cancers and oncogenic processes, as tested in diverse experimental model systems. Availability of more comprehensive information on anticancer phyto-constituents, their relative abundance in crude drugs, pathways/molecules targeted by phytomedicines, their long-term toxicity data and information regarding their safe use under the combinatorial settings, would open greater avenues of their utilization in future against this dreaded disease.
Graphical Abstract
Collapse
|
10
|
Hao Y, Dong Z, Zhao Y, Tang W, Wang X, Li J, Wang L, Hu Y, Fang L, Guan X, Gu F, Liu Z, Zhang Z. Phylogenomic analysis of cytochrome P450 multigene family and its differential expression analysis in pepper ( Capsicum annuum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1078377. [PMID: 36561456 PMCID: PMC9763298 DOI: 10.3389/fpls.2022.1078377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Plant cytochrome P450 is a multifamily enzyme widely involved in biochemical reactions for the synthesis of antioxidants, pigments, structural polymers, and defense-related compounds. Pepper (Capsicum annuum L.) is an economically important plant. A comprehensive identification and characterization of P450 genes would provide valuable information on the evolutionary relationships of genes and their functional characteristics. In this study, we identified P450 genes in pepper with the aid of bioinformatics methods to investigate the phylogenetic relation, gene structure, chromosomal localization, duplicated events, and collinearity among Solanaceae species. We identified and classified 478 genes of P450 from the pepper genome into two major clades and nine subfamilies through phylogenetic analysis. Massive duplication events were found in the P450 gene family, which may explain the expansion of the P450 gene family. In addition, we also found that these duplication genes may have undergone strict purification selection during evolution. Gene expression analysis showed that some P450 genes that belong to clan 71 in pepper may play an important role in placenta and pericarp development. Through quantitative real-time polymerase chain reaction and transcriptome analysis, we also found that many P450 genes were related to defensive and phytohormone response in pepper. These findings provide insight for further studies to identify the biological functions of the P450 genes in pepper.
Collapse
Affiliation(s)
- Yupeng Hao
- Hainan Institute, Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zeyu Dong
- Hainan Institute, Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yongyan Zhao
- Hainan Institute, Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wenchen Tang
- Hainan Institute, Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | | - Jun Li
- Hainan Institute, Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Luyao Wang
- Hainan Institute, Zhejiang University, Sanya, China
| | - Yan Hu
- Hainan Institute, Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lei Fang
- Hainan Institute, Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueying Guan
- Hainan Institute, Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fenglin Gu
- Spice and Beverage Research Institute, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, China
| | - Ziji Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Haikou, China
| | | |
Collapse
|
11
|
Ye J, Zhang M, Yuan X, Hu D, Zhang Y, Xu S, Li Z, Li R, Liu J, Sun Y, Wang S, Feng Y, Xu Q, Yang Y, Wei X. Genomic insight into genetic changes and shaping of major inbred rice cultivars in China. THE NEW PHYTOLOGIST 2022; 236:2311-2326. [PMID: 36114658 DOI: 10.1111/nph.18500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/25/2022] [Indexed: 05/28/2023]
Abstract
The annual planting area of major inbred rice (Oryza sativa) cultivars reach more than half of the total annual planting area of inbred rice cultivars in China. However, how the major inbred rice cultivars changed during decades of genetic improvement and why they can be prevalently cultivated in China remains unclear. Here, we investigated the underlying genetic changes of major inbred cultivars and the contributions of landraces and introduced cultivars during the improvement by resequencing a collection of 439 rice accessions including major inbred cultivars, landraces, and introduced cultivars. The results showed that landraces were the main genetic contribution sources of major inbred Xian (Indica) cultivars, while introduced cultivars were that of major inbred Geng (Japonica) cultivars. Selection scans and haplotype frequency analysis shed light on the reflections of some well-known genes in rice improvement, and breeders had different preferences for the Xian's and Geng's breeding. Six candidate regions associated with agronomic traits were identified by genome-wide association mapping, five of which were under positive selection in rice improvement. Our study provides a comprehensive insight into the development of major inbred rice cultivars and lays the foundation for genomics-based breeding in rice.
Collapse
Affiliation(s)
- Junhua Ye
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Mengchen Zhang
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiaoping Yuan
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dongxiu Hu
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yuanyuan Zhang
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Siliang Xu
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhen Li
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ruosi Li
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Junrong Liu
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yanfei Sun
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shan Wang
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yue Feng
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qun Xu
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yaolong Yang
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xinghua Wei
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| |
Collapse
|
12
|
Li Y, Zhang X, Zhu Y, Cai K, Li H, Zhao Q, Zhang Q, Jiang L, Li Y, Jiang T, Zhao X. Physiological and Transcriptomic Analysis Revealed the Molecular Mechanism of Pinus koraiensis Responses to Light. Int J Mol Sci 2022; 23:13608. [PMID: 36362393 PMCID: PMC9653891 DOI: 10.3390/ijms232113608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 10/28/2023] Open
Abstract
Korean pine (Pinus koraiensis Sieb. et Zucc.), as the main tree species in northeast China, has important economic and ecological values. Currently, supplementary light has been widely used in plant cultivation projects. However, the studies about different supplementary light sources on the growth and development of Korean pine are few. In this study, the one with no supplementary light was used as the control, and two kinds of light sources were set up: light-emitting diode (LED) and incandescent lamp, to supplement light treatment of Korean pine. The spectrum and intensity of these two light sources were different. The results showed that the growth and physiological-biochemical indicators were significantly different under different supplementary light treatments. The biomass of supplementary light treatment was significantly lower than the control. Compared with the control, IAA and GA were lower, and JA, ABA, ZT, and ETH were higher under supplementary light conditions. Photosynthetic parameters in supplementary light conditions were significantly lower than the control. Supplemental light induces chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid accumulation. From RNA-seq data, differentially expressed genes (DEGs) were observed in all the comparison groups, and there were 487 common DEGs. The expression levels of DEGs encoding transcription factors were also changed. According to GO and KEGG analysis, the plant hormone signal transduction, circadian rhythm-plant, and flavonoid biosynthesis pathways were the most enriched. These results provided a theoretical basis for the response of Korean pine to different supplementary lights.
Collapse
Affiliation(s)
- Yuxi Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China
| | - Xinxin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhu
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China
| | - Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hanxi Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China
| | - Qiushuang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Qinhui Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Luping Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yan Li
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
13
|
Zhao M, Ma L, Song N, Cheng J, Zhao Z, Wu J. The regulation of Alternaria alternata resistance by LRR-RK4 through ERF109, defensin19 and phytoalexin scopoletin in Nicotiana attenuata. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111414. [PMID: 35963495 DOI: 10.1016/j.plantsci.2022.111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RKs), belonging to the largest subfamily of transmembrane receptor-like kinases in plants, are proposed to be involved in pathogen resistance. However, it is currently unknown whether LRR-RKs regulate Nicotiana attenuata resistance to Alternaria alternata, a notorious fungal pathogen causing tobacco brown disease. During transcriptome analysis, we identified a highly induced receptor kinase (NaLRR-RK4) in N. attenuata leaves after A. alternata inoculation. We speculated that this NaLRR-RK4 might be the resistance gene of tobacco to brown spot disease, and if so, what is its function and mechanism of action? Silencing of NaLRR-RK4 via virus-induced gene silencing (VIGS) lead to plants highly susceptible to A. alternata, and this result was further confirmed by two stable transformation lines (NaLRR-RK4-RNAi lines) generated by RNA interference technology. The susceptible of NaLRR-RK4-RNAi lines to A. alternata was associated with reduced levels of phytoalexin scopoletin and its key synthesis gene NaF6'H1. Further transcriptome analysis of leaves of WT and NaLRR-RK4-RNAi line after A. alternata inoculation revealed that NaLRR-RK4 regulated NaERF109 and NaDEF19. Silencing NaERF109 or NaDEF19 by VIGS lead to plants more susceptible to A.alternata, demonstrating their role in pathogen resistance. Interestingly, A.alternata-induced expression of NaF6'H1 and NaDEF19 were dramatically reduced in NaERF109-silenced VIGS plants. Taken all together, we identified LRR-RK4 as the first Leucine-rich repeat receptor-like kinases involved in A.alternata resistance in tobacco species, by regulating NaERF109, and subsequently NaDEF19 and NaF6'H1.
Collapse
Affiliation(s)
- Meiwei Zhao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road 452, Panlong District, Kunming City, Yunnan Province, China.
| | - Lan Ma
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201 Kunming, China.
| | - Na Song
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201 Kunming, China.
| | - Junbin Cheng
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201 Kunming, China.
| | - Zhengxiong Zhao
- College of Resources and Environment, Yunnan Agricultural University, Fengyuan Road 452, Panlong District, Kunming City, Yunnan Province, China.
| | - Jinsong Wu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201 Kunming, China.
| |
Collapse
|
14
|
Yanagui K, Camargo ELO, Abreu LGFD, Nagamatsu ST, Fiamenghi MB, Silva NV, Carazzolle MF, Nascimento LC, Franco SF, Bressiani JA, Mieczkowski PA, Grassi MCB, Pereira GAG. Internode elongation in energy cane shows remarkable clues on lignocellulosic biomass biosynthesis in Saccharum hybrids. Gene 2022; 828:146476. [PMID: 35413393 DOI: 10.1016/j.gene.2022.146476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/17/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022]
Abstract
Energy cane is a dedicated crop to high biomass production and selected during Saccharum breeding programs to fit specific industrial needs for 2G bioethanol production. Internode elongation is one of the most important characteristics in Saccharum hybrids due to its relationship with crop yield. In this study, we selected the third internode elongation of the energy cane. To characterize this process, we divided the internode into five sections and performed a detailed transcriptome analysis (RNA-Seq) and cell wall characterization. The histological analyses revealed a remarkable gradient that spans from cell division and protoxylem lignification to the internode maturation and complete vascular bundle lignification. RNA-Seq analysis revealed more than 11,000 differentially expressed genes between the sections internal. Gene ontology analyzes showed enriched categories in each section, as well as the most expressed genes in each section, presented different biological processes. We found that the internode elongation and division zones have a large number of unique genes. Evaluated the specific profile of genes related to primary and secondary cell wall formation, cellulose synthesis, hemicellulose, lignin, and growth-related genes. For each section these genes presented different profiles along the internode in elongation in energy cane. The results of this study provide an overview of the regulation of gene expression of an internode elongation in energy cane. Gene expression analysis revealed promising candidates for transcriptional regulation of energy cane lignification and evidence key genes for the regulation of internode development, which can serve as a basis for understanding the molecular regulatory mechanisms that support the growth and development of plants in the Saccahrum complex.
Collapse
Affiliation(s)
- Karina Yanagui
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Eduardo L O Camargo
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Luís Guilherme F de Abreu
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Sheila T Nagamatsu
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Mateus B Fiamenghi
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Nicholas V Silva
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Marcelo F Carazzolle
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Leandro C Nascimento
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Sulamita F Franco
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - José A Bressiani
- GranBio Investimentos SA, AV. Brigadeiro Faria Lima, 2777, cj. 1503, Alto de Pinheiros, São Paulo 01452-000, SP, Brazil
| | - Piotr A Mieczkowski
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maria Carolina B Grassi
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil; Roundtable on Sustainable Biomaterials (RSB), Impact Hub Geneva, Rue Fendt 1, 1201, Geneva, Switzerland
| | - Gonçalo Amarante G Pereira
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil.
| |
Collapse
|
15
|
Aboobucker SI, Showman LJ, Lübberstedt T, Suza WP. Maize Zmcyp710a8 Mutant as a Tool to Decipher the Function of Stigmasterol in Plant Metabolism. FRONTIERS IN PLANT SCIENCE 2021; 12:732216. [PMID: 34804084 PMCID: PMC8597121 DOI: 10.3389/fpls.2021.732216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Sterols are integral components of membrane lipid bilayers in eukaryotic organisms and serve as precursors to steroid hormones in vertebrates and brassinosteroids (BR) in plants. In vertebrates, cholesterol is the terminal sterol serving both indirect and direct roles in cell signaling. Plants synthesize a mixture of sterols including cholesterol, sitosterol, campesterol, and stigmasterol but the signaling role for the free forms of individual plant sterols is unclear. Since stigmasterol is the terminal sterol in the sitosterol branch and produced from a single enzymatic step, modifying stigmasterol concentration may shed light on its role in plant metabolism. Although Arabidopsis has been the model of choice to study sterol function, the functional redundancy of AtCYP710A genes and the presence of brassicasterol may hinder our ability to test the biological function of stigmasterol. We report here the identification and characterization of ZmCYP710A8, the sole maize C-22 sterol desaturase involved in stigmasterol biosynthesis and the identification of a stigmasterol-free Zmcyp710a8 mutant. ZmCYP710A8 mRNA expression pattern correlated with transcripts for several sterol biosynthesis genes and loss of stigmasterol impacted sterol composition. Exogenous stigmasterol also had a stimulatory effect on mRNA for ZmHMGR and ZmSMT2. This demonstrates the potential of Zmcyp710a8 in understanding the role of stigmasterol in modulating sterol biosynthesis and global cellular metabolism. Several amino acids accumulate in the Zmcyp710a8 mutant, offering opportunity for genetic enhancement of nutritional quality of maize. Other cellular metabolites in roots and shoots of maize and Arabidopsis were also impacted by genetic modification of stigmasterol content. Yet lack of obvious developmental defects in Zmcyp710a8 suggest that stigmasterol might not be essential for plant growth under normal conditions. Nonetheless, the Zmcyp710a8 mutant reported here is of great utility to advance our understanding of the additional roles of stigmasterol in plant metabolism. A number of biological and agronomic questions can be interrogated using this tool such as gene expression studies, spatio-temporal localization of sterols, cellular metabolism, pathway regulation, physiological studies, and crop improvement.
Collapse
Affiliation(s)
| | - Lucas J. Showman
- W. M. Keck Metabolomics Research Laboratory, Iowa State University, Ames, IA, United States
| | | | - Walter P. Suza
- Department of Agronomy, Iowa State University, Ames, IA, United States
| |
Collapse
|
16
|
Patisaul HB. REPRODUCTIVE TOXICOLOGY: Endocrine disruption and reproductive disorders: impacts on sexually dimorphic neuroendocrine pathways. Reproduction 2021; 162:F111-F130. [PMID: 33929341 PMCID: PMC8484365 DOI: 10.1530/rep-20-0596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/30/2021] [Indexed: 11/08/2022]
Abstract
We are all living with hundreds of anthropogenic chemicals in our bodies every day, a situation that threatens the reproductive health of present and future generations. This review focuses on endocrine-disrupting compounds (EDCs), both naturally occurring and man-made, and summarizes how they interfere with the neuroendocrine system to adversely impact pregnancy outcomes, semen quality, age at puberty, and other aspects of human reproductive health. While obvious malformations of the genitals and other reproductive organs are a clear sign of adverse reproductive health outcomes and injury to brain sexual differentiation, the hypothalamic-pituitary-gonadal (HPG) axis can be much more difficult to discern, particularly in humans. It is well-established that, over the course of development, gonadal hormones shape the vertebrate brain such that sex-specific reproductive physiology and behaviors emerge. Decades of work in neuroendocrinology have elucidated many of the discrete and often very short developmental windows across pre- and postnatal development in which this occurs. This has allowed toxicologists to probe how EDC exposures in these critical windows can permanently alter the structure and function of the HPG axis. This review includes a discussion of key EDC principles including how latency between exposure and the emergence of consequential health effects can be long, along with a summary of the most common and less well-understood EDC modes of action. Extensive examples of how EDCs are impacting human reproductive health, and evidence that they have the potential for multi-generational physiological and behavioral effects are also provided.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
17
|
Nobusawa T, Kamei M, Ueda H, Matsushima N, Yamatani H, Kusaba M. Highly pleiotropic functions of CYP78As and AMP1 are regulated in non-cell-autonomous/organ-specific manners. PLANT PHYSIOLOGY 2021; 186:767-781. [PMID: 33620479 PMCID: PMC8154090 DOI: 10.1093/plphys/kiab067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/26/2021] [Indexed: 05/07/2023]
Abstract
The cytochrome P450 CYP78A5/KLUH in Arabidopsis thaliana is predicted to be involved in the synthesis of a mobile signal molecule that has a pleiotropic function that is distinct from classical phytohormones. CYP78A5 has five close relatives in Arabidopsis. We first investigated their functions, focusing on the plastochron, leaf size, and leaf senescence. Our analyses revealed that CYP78A5 and CYP78A7 are involved in the plastochron and leaf size, and CYP78A6 and CYP78A9 are involved in leaf senescence. Complementation analyses using heterologous promoters and expression analyses suggested that CYP78A isoforms have a common biochemical function and are functionally differentiated via organ-specific expression. The altered meristem program1 (amp1) carboxypeptidase mutant shows a phenotype very similar to that of the cyp78a5 mutant. Complementation analyses using boundary and organizing center-specific promoters suggested that both CYP78A5 and AMP1 act in a non-cell-autonomous manner. Analyses of multiple cyp78a mutants and crosses between cyp78a and amp1 mutants revealed that AMP1/LIKE AMP1 (LAMP1) and CYP78A isoforms regulate plastochron length and leaf senescence in the same genetic pathway, whereas leaf size is independently regulated. Furthermore, we detected feedback regulation between CYP78A6/CYP78A9 and AMP1 at the gene expression level. These observations raise the possibility that AMP1 and CYP78A isoforms are involved in the synthesis of the same mobile signal molecule, and suggest that AMP1 and CYP78A signaling pathways have a very close, albeit complex, functional relationship.
Collapse
Affiliation(s)
- Takashi Nobusawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Misaki Kamei
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Hiroaki Ueda
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
- Present address: Fruit Tree Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Shimoidai 1618, Matsuyama 791-0112, Japan
| | - Naoya Matsushima
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Hiroshi Yamatani
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
- Institute of Crop Science NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Makoto Kusaba
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
- Author for communication:
| |
Collapse
|
18
|
Ji Y, Qu Y, Jiang Z, Yan J, Chu J, Xu M, Su X, Yuan H, Wang A. The mechanism for brassinosteroids suppressing climacteric fruit ripening. PLANT PHYSIOLOGY 2021; 185:1875-1893. [PMID: 33743010 PMCID: PMC8133653 DOI: 10.1093/plphys/kiab013] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/02/2021] [Indexed: 05/21/2023]
Abstract
The plant hormone ethylene is important for the ripening of climacteric fruit, such as pear (Pyrus ussuriensis), and the brassinosteroid (BR) class of phytohormones affects ethylene biosynthesis during ripening via an unknown molecular mechanism. Here, we observed that exogenous BR treatment suppressed ethylene production and delayed fruit ripening, whereas treatment with a BR biosynthesis inhibitor promoted ethylene production and accelerated fruit ripening in pear, suggesting BR is a ripening suppressor. The expression of the transcription factor BRASSINAZOLE-RESISTANT 1PuBZR1 was enhanced by BR treatment during pear fruit ripening. PuBZR1 interacted with PuACO1, which converts 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene, and suppressed its activity. BR-activated PuBZR1 bound to the promoters of PuACO1 and of PuACS1a, which encodes ACC synthase, and directly suppressed their transcription. Moreover, PuBZR1 suppressed the expression of transcription factor PuERF2 by binding its promoter, and PuERF2 bound to the promoters of PuACO1 and PuACS1a. We concluded that PuBZR1 indirectly suppresses the transcription of PuACO1 and PuACS1a through its regulation of PuERF2. Ethylene production and expression profiles of corresponding apple (Malus domestica) homologs showed similar changes following epibrassinolide treatment. Together, these results suggest that BR-activated BZR1 suppresses ACO1 activity and the expression of ACO1 and ACS1, thereby reducing ethylene production and suppressing fruit ripening. This likely represents a conserved mechanism by which BR suppresses ethylene biosynthesis during climacteric fruit ripening.
Collapse
Affiliation(s)
- Yinglin Ji
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yi Qu
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhongyu Jiang
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Jijun Yan
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Mingyang Xu
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Su
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Hui Yuan
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Author for communication:
| |
Collapse
|
19
|
Agatonovic-Kustrin S, Ramenskaya G, Kustrin E, Morton DW. Characterisation of α-amylase inhibitors in marigold plants via bioassay-guided high-performance thin-layer chromatography and attenuated total reflectance-Fourier transform infrared spectroscopy. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122676. [PMID: 33848802 DOI: 10.1016/j.jchromb.2021.122676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
A high-performance thin-layer chromatography with microchemical derivatization and bioassay guided detection was used for bioanalytical profiling of selected marigold plant extracts. Anisaldehyde/sulfuric acid reagent and thymol/sulfuric acid reagent were used to visualize separated components on the chromatograms. Antioxidant activity and α-amylase inhibition were assessed with 2 bioassays, DPPH assay to detect free radical scavengers and starch-iodineassay method to detect compounds that inhibit α-amylase. The highest antioxidant activity of 10.12 μg of gallic acid equivalents (GAE) per 20 µL of extract was measured in extract from Tagetes flowers and the lowest in the extract from Calendula leaves with 5.10 μg of GAE. Multiple zones of α-amylase inhibition were detected. A detailed analysis of the ATR-FTIR spectra from the bands at RF = 0.24 suggest that faradiol esters and saturated fatty acids esters, palmitic acid, myristic acid, and lauric acid are responsible for α-amylase inhibition, unsaturated fatty acids for the band at RF = 0.51 and phytoecdysteroids for the band at RF = 0.53.
Collapse
Affiliation(s)
- Snezana Agatonovic-Kustrin
- A.P. Arzamastsev Department of Pharmaceutical and Toxicological Chemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russian Federation; School of Pharmacy and Biomedical Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia.
| | - Galina Ramenskaya
- A.P. Arzamastsev Department of Pharmaceutical and Toxicological Chemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russian Federation; Scientific Center for Expert Evaluation of Medicinal Products, Ministry of Health of the Russian Federation, 8/2 Petrovskii Blvd., Moscow 127051, Russian Federation
| | - Ella Kustrin
- Department of Creative Arts and English, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| | - David W Morton
- A.P. Arzamastsev Department of Pharmaceutical and Toxicological Chemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russian Federation; School of Pharmacy and Biomedical Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| |
Collapse
|
20
|
Hao N, Zou X, Lin X, Cai R, Xiao W, Tong T, Yin H, Sun A, Guo X. LecRK-Ⅷ.2 mediates the cross-talk between sugar and brassinosteroid during hypocotyl elongation in Arabidopsis. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
21
|
A rapid RNA extraction method from oil palm tissues suitable for reverse transcription quantitative real-time PCR (RT-qPCR). 3 Biotech 2020; 10:530. [PMID: 33214977 DOI: 10.1007/s13205-020-02514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022] Open
Abstract
Cetyltrimethylammonium bromide (CTAB) is the preferred detergent in RNA extraction of oil palm tissues. However, the CTAB-based protocol is time-consuming. In this study, a combination of the CTAB-based method and silica-based purification reduced the extraction time from two days to five hours. Quality of total RNA from 27 different tissues of oil palm was shown to have an RNA integrity number (RIN) value of more than seven. The extracted RNA was evaluated by RT-qPCR using three reference oil palm genes (GRAS, CYP2, and SLU7) and three putative mesocarp-specific transcripts annotated as WRKY DNA-binding protein 70 (WRKY-70), metallothionein (MT) and pentatricopeptide repeat (PPR) genes. Tissue-specific expression profiling across complete developmental stages of mesocarp and vegetative tissues was determined in this study. Overall, the RNA extraction protocol described here is rapid, simple and yields good quality RNAs from oil palm tissues.
Collapse
|
22
|
Matzke CM, Shore JS, Neff MM, McCubbin AG. The Turnera Style S-Locus Gene TsBAHD Possesses Brassinosteroid-Inactivating Activity When Expressed in Arabidopsis thaliana. PLANTS 2020; 9:plants9111566. [PMID: 33202834 PMCID: PMC7697239 DOI: 10.3390/plants9111566] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 11/29/2022]
Abstract
Heterostyly distinct hermaphroditic floral morphs enforce outbreeding. Morphs differ structurally, promote cross-pollination, and physiologically block self-fertilization. In Turnera the self-incompatibility (S)-locus controlling heterostyly possesses three genes specific to short-styled morph genomes. Only one gene, TsBAHD, is expressed in pistils and this has been hypothesized to possess brassinosteroid (BR)-inactivating activity. We tested this hypothesis using heterologous expression in Arabidopsis thaliana as a bioassay, thereby assessing growth phenotype, and the impacts on the expression of endogenous genes involved in BR homeostasis and seedling photomorphogenesis. Transgenic A. thaliana expressing TsBAHD displayed phenotypes typical of BR-deficient mutants, with phenotype severity dependent on TsBAHD expression level. BAS1, which encodes an enzyme involved in BR inactivation, was downregulated in TsBAHD-expressing lines. CPD and DWF, which encode enzymes involved in BR biosynthesis, were upregulated. Hypocotyl growth of TsBAHD dwarfs responded to application of brassinolide in light and dark in a manner typical of plants over-expressing genes encoding BR-inactivating activity. These results provide empirical support for the hypothesis that TsBAHD possesses BR-inactivating activity. Further this suggests that style length in Turnera is controlled by the same mechanism (BR inactivation) as that reported for Primula, but using a different class of enzyme. This reveals interesting convergent evolution in a biochemical mechanism to regulate floral form in heterostyly.
Collapse
Affiliation(s)
- Courtney M. Matzke
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA;
| | - Joel S. Shore
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J1P3, Canada;
| | - Michael M. Neff
- Department of Crops and Soils, Washington State University, PO Box 644236, Pullman, WA 99164, USA;
| | - Andrew G. McCubbin
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA;
- Correspondence:
| |
Collapse
|
23
|
Zhao XF. G protein-coupled receptors function as cell membrane receptors for the steroid hormone 20-hydroxyecdysone. Cell Commun Signal 2020; 18:146. [PMID: 32907599 PMCID: PMC7488307 DOI: 10.1186/s12964-020-00620-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022] Open
Abstract
Abstract G protein-coupled receptors (GPCRs) are cell membrane receptors for various ligands. Recent studies have suggested that GPCRs transmit animal steroid hormone signals. Certain GPCRs have been shown to bind steroid hormones, for example, G protein-coupled estrogen receptor 1 (GPER1) binds estrogen in humans, and Drosophila dopamine/ecdysteroid receptor (DopEcR) binds the molting hormone 20-hydroxyecdysone (20E) in insects. This review summarizes the research progress on GPCRs as animal steroid hormone cell membrane receptors, including the nuclear and cell membrane receptors of steroid hormones in mammals and insects, the 20E signaling cascade via GPCRs, termination of 20E signaling, and the relationship between genomic action and the nongenomic action of 20E. Studies indicate that 20E induces a signal via GPCRs to regulate rapid cellular responses, including rapid Ca2+ release from the endoplasmic reticulum and influx from the extracellular medium, as well as rapid protein phosphorylation and subcellular translocation. 20E via the GPCR/Ca2+/PKC/signaling axis and the GPCR/cAMP/PKA-signaling axis regulates gene transcription by adjusting transcription complex formation and DNA binding activity. GPCRs can bind 20E in the cell membrane and after being isolated, suggesting GPCRs as cell membrane receptors of 20E. This review deepens our understanding of GPCRs as steroid hormone cell membrane receptors and the GPCR-mediated signaling pathway of 20E (20E-GPCR pathway), which will promote further study of steroid hormone signaling via GPCRs, and presents GPCRs as targets to explore new pharmaceutical materials to treat steroid hormone-related diseases or control pest insects. Video abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
24
|
He Y, Hong G, Zhang H, Tan X, Li L, Kong Y, Sang T, Xie K, Wei J, Li J, Yan F, Wang P, Tong H, Chu C, Chen J, Sun Z. The OsGSK2 Kinase Integrates Brassinosteroid and Jasmonic Acid Signaling by Interacting with OsJAZ4. THE PLANT CELL 2020; 32:2806-2822. [PMID: 32586913 PMCID: PMC7474301 DOI: 10.1105/tpc.19.00499] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/26/2020] [Accepted: 06/21/2020] [Indexed: 05/20/2023]
Abstract
The crosstalk between brassinosteroid (BR) and jasmonic acid (JA) signaling is crucial for plant growth and defense responses. However, the detailed interplay between BRs and JA remains obscure. Here, we found that the rice (Oryza sativa) Glycogen synthase kinase3 (GSK3)-like kinase OsGSK2, a conserved kinase serving as a key suppressor of BR signaling, enhanced antiviral defense and the JA response. We identified a member of the JASMONATE ZIM-domain (JAZ) family, OsJAZ4, as a OsGSK2 substrate and confirmed that OsGSK2 interacted with and phosphorylated OsJAZ4. We demonstrated that OsGSK2 disrupted the OsJAZ4-OsNINJA complex and OsJAZ4-OsJAZ11 dimerization by competitively binding to the ZIM domain, perhaps helping to facilitate the degradation of OsJAZ4 via the 26S proteasome pathway. We also showed that OsJAZ4 negatively modulated JA signaling and antiviral defense and that the BR pathway was involved in modulating the stability of OsJAZ4 protein in an OsCORONATINE INSENSITIVE1-dependent manner. Collectively, these results suggest that OsGSK2 enhances plant antiviral defenses by activating JA signaling as it directly interacts with, phosphorylates, and destabilizes OsJAZ4. Thus, our findings provide a clear link between BR and JA signaling.
Collapse
Affiliation(s)
- Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiaoxiang Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Lulu Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yaze Kong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tian Sang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kaili Xie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jia Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junmin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Pengcheng Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongning Tong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengcai Chu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
25
|
Hu J, Huang J, Xu H, Wang Y, Li C, Wen P, You X, Zhang X, Pan G, Li Q, Zhang H, He J, Wu H, Jiang L, Wang H, Liu Y, Wan J. Rice stripe virus suppresses jasmonic acid-mediated resistance by hijacking brassinosteroid signaling pathway in rice. PLoS Pathog 2020; 16:e1008801. [PMID: 32866183 PMCID: PMC7485985 DOI: 10.1371/journal.ppat.1008801] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 09/11/2020] [Accepted: 07/12/2020] [Indexed: 01/23/2023] Open
Abstract
Rice stripe virus (RSV) is one of the most destructive viral diseases affecting rice production. However, so far, only one RSV resistance gene has been cloned, the molecular mechanisms underlying host-RSV interaction are still poorly understood. Here, we show that increasing levels or signaling of brassinosteroids (BR) and jasmonic acid (JA) can significantly enhance the resistance against RSV. On the contrary, plants impaired in BR or JA signaling are more susceptible to RSV. Moreover, the enhancement of RSV resistance conferred by BR is impaired in OsMYC2 (a key positive regulator of JA response) knockout plants, suggesting that BR-mediated RSV resistance requires active JA pathway. In addition, we found that RSV infection suppresses the endogenous BR levels to increase the accumulation of OsGSK2, a key negative regulator of BR signaling. OsGSK2 physically interacts with OsMYC2, resulting in the degradation of OsMYC2 by phosphorylation and reduces JA-mediated defense to facilitate virus infection. These findings not only reveal a novel molecular mechanism mediating the crosstalk between BR and JA in response to virus infection and deepen our understanding about the interaction of virus and plants, but also suggest new effective means of breeding RSV resistant crops using genetic engineering. Brassinosteroids (BR) and jasmonic acid (JA) play critical roles in responding to various stresses. However, the roles of BR and JA, particularly, the crosstalk between these two phytohormones in viral resistance is still very limited. In this work, we found that both BR and JA positively regulate RSV resistance, and JA pathway is necessary for BR-mediated RSV resistance in rice. RSV infection significantly inhibits the BR signaling pathway and increases the accumulation of OsGSK2. OsGSK2 interacts with and phosphorylates OsMYC2, resulting in the degradation of OsMYC2 and suppression of the JA-mediated RSV resistance response to facilitate virus infection. These findings revealed the molecular mechanism of crosstalk between the BR and JA in response to virus infection and deepen our understanding about the mechanism of RSV resistance.
Collapse
Affiliation(s)
- Jinlong Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jie Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Haosen Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yongsheng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Chen Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Peizheng Wen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiaoman You
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiao Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Gen Pan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Qi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Hongliang Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jun He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Hongming Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yuqiang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
- * E-mail: (YL); (JW)
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- * E-mail: (YL); (JW)
| |
Collapse
|
26
|
Wang K, Li MQ, Chang YP, Zhang B, Zhao QZ, Zhao WL. The basic helix-loop-helix transcription factor OsBLR1 regulates leaf angle in rice via brassinosteroid signalling. PLANT MOLECULAR BIOLOGY 2020; 102:589-602. [PMID: 32026326 DOI: 10.1007/s11103-020-00965-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 01/09/2020] [Indexed: 05/10/2023]
Abstract
Leaf angle is a key factor in plant architecture and crop yield. Brassinosteroids (BRs) regulate many developmental processes, especially the leaf angle in monocots. However, the BR signalling pathway is complex and includes many unknown members. Here, we propose that Oryza sativa BRASSINOSTEROID-RESPONSIVE LEAF ANGLE REGULATOR 1 (OsBLR1) encodes a bHLH transcription factor, and positively regulates BR signalling to increase the leaf angle and grain length in rice (Oryza sativa L.). Lines overexpressing OsBLR1 (blr1-D and BLR1-OE-1/2/3) had similar traits, with increased leaf angle and grain length. Conversely, OsBLR1-knockout mutants (blr1-1/2/3) had erect leaves and shorter grains. Lamina joint inclination, coleoptile elongation, and root elongation assay results indicated that these overexpression lines were more sensitive to BR, while the knockout mutants were less sensitive. There was no significant difference in the endogenous BR contents of blr1-1/2 and wild-type plants. These results suggest that OsBLR1 is involved in BR signal transduction. The blr1-D mutant, with increased cell growth in the lamina joint and smaller leaf midrib, showed significant changes in gene expression related to the cell wall and leaf development compared with wild-type plants; furthermore, the cellulose and protopectin contents in blr1-D were reduced, which resulted in the increased leaf angle and bent leaves. As the potential downstream target gene of OsBLR1, the REGULATOR OF LEAF INCLINATION1 (OsRLI1) gene expression was up-regulated in OsBLR1-overexpression lines and down-regulated in OsBLR1-knockout mutants. Moreover, we screened OsRACK1A as an interaction protein of OsBLR1 using a yeast two-hybrid assay and glutathione-S-transferase pull-down.
Collapse
Affiliation(s)
- Kun Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Meng-Qi Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yan-Peng Chang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Bo Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Quan-Zhi Zhao
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| | - Wen-Li Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
27
|
Xu H, Lian L, Wang F, Jiang J, Lin Q, Xie H, Luo X, Zhu Y, Zhuo C, Wang J, Xie H, Jiang Z, Zhang J. Brassinosteroid signaling may regulate the germination of axillary buds in ratoon rice. BMC PLANT BIOLOGY 2020; 20:76. [PMID: 32059642 PMCID: PMC7023735 DOI: 10.1186/s12870-020-2277-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Rice ratooning has traditionally been an important component of the rice cropping system in China. However, compared with the rice of the first harvest, few studies on factors effecting ratoon rice yield have been conducted. Because ratoon rice is a one-season rice cultivated using axillary buds that germinate on rice stakes and generate panicles after the first crop's harvest, its production is mainly affected by the growth of axillary buds. The objectives of this study were to evaluate the sprouting mechanism of axillary buds to improve the ratoon rice yield. RESULTS First, we observed the differentiation and growth dynamics of axillary buds at different nodes of Shanyou 63, and found that they differentiated from bottom to top before the heading of the mother stem, and that they developed very slowly. After heading they differentiated from top to bottom, and the ones on the top, especially the top 2nd node, developed much faster than those at the other nodes. The average length and dry weight of the axillary buds were significantly greater than those at other nodes by the yellow ripe stage, and they differentiated into pistils and stamens by 6 d after the yellow ripe stage. The morphology of vegetative organs from regenerated tillers of Shanyou 63 also suggested the superior growth of the upper buds, which was regulated by hormones, in ratoon rice. Furthermore, a comprehensive proteome map of the rice axillary buds at the top 2nd node before and after the yellow ripe stage was established, and some proteins involved in steroid biosynthesis were significantly increased. Of these, four took part in brassinosteroid (BR) biosynthesis. Thus, BR signaling may play a role in the germination of axillary buds of ratoon rice. CONCLUSIONS The data provide insights into the molecular mechanisms underlying BR signaling, and may allow researchers to explore further the biological functions of endogenous BRs in the germination of axillary buds of ratoon rice.
Collapse
Affiliation(s)
- Huibin Xu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, Fujian, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs, Fuzhou, 350003, Fujian, China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, 350003, Fujian, China
- Fuzhou Branch, National Rice Improvement Center of China, P.R. China, Fuzhou, 350003, Fujian, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, P.R. China, Fuzhou, 350003, Fujian, China
- Fujian Key Laboratory of Rice Molecular Breeding, P.R. China, Fuzhou, 350003, Fujian, China
- Base of South China, State Key Laboratory of Hybrid Rice, P.R. China, Fuzhou, 350003, Fujian, China
| | - Ling Lian
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, Fujian, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs, Fuzhou, 350003, Fujian, China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, 350003, Fujian, China
- Fuzhou Branch, National Rice Improvement Center of China, P.R. China, Fuzhou, 350003, Fujian, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, P.R. China, Fuzhou, 350003, Fujian, China
- Fujian Key Laboratory of Rice Molecular Breeding, P.R. China, Fuzhou, 350003, Fujian, China
- Base of South China, State Key Laboratory of Hybrid Rice, P.R. China, Fuzhou, 350003, Fujian, China
| | - Fuxiang Wang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, Fujian, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs, Fuzhou, 350003, Fujian, China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, 350003, Fujian, China
- Fuzhou Branch, National Rice Improvement Center of China, P.R. China, Fuzhou, 350003, Fujian, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, P.R. China, Fuzhou, 350003, Fujian, China
- Fujian Key Laboratory of Rice Molecular Breeding, P.R. China, Fuzhou, 350003, Fujian, China
- Base of South China, State Key Laboratory of Hybrid Rice, P.R. China, Fuzhou, 350003, Fujian, China
| | - Jiahuan Jiang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, Fujian, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs, Fuzhou, 350003, Fujian, China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, 350003, Fujian, China
- Fuzhou Branch, National Rice Improvement Center of China, P.R. China, Fuzhou, 350003, Fujian, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, P.R. China, Fuzhou, 350003, Fujian, China
- Fujian Key Laboratory of Rice Molecular Breeding, P.R. China, Fuzhou, 350003, Fujian, China
- Base of South China, State Key Laboratory of Hybrid Rice, P.R. China, Fuzhou, 350003, Fujian, China
| | - Qiang Lin
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, Fujian, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs, Fuzhou, 350003, Fujian, China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, 350003, Fujian, China
- Fuzhou Branch, National Rice Improvement Center of China, P.R. China, Fuzhou, 350003, Fujian, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, P.R. China, Fuzhou, 350003, Fujian, China
- Fujian Key Laboratory of Rice Molecular Breeding, P.R. China, Fuzhou, 350003, Fujian, China
- Base of South China, State Key Laboratory of Hybrid Rice, P.R. China, Fuzhou, 350003, Fujian, China
| | - Hongguang Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, Fujian, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs, Fuzhou, 350003, Fujian, China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, 350003, Fujian, China
- Fuzhou Branch, National Rice Improvement Center of China, P.R. China, Fuzhou, 350003, Fujian, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, P.R. China, Fuzhou, 350003, Fujian, China
- Fujian Key Laboratory of Rice Molecular Breeding, P.R. China, Fuzhou, 350003, Fujian, China
- Base of South China, State Key Laboratory of Hybrid Rice, P.R. China, Fuzhou, 350003, Fujian, China
| | - Xi Luo
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, Fujian, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs, Fuzhou, 350003, Fujian, China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, 350003, Fujian, China
- Fuzhou Branch, National Rice Improvement Center of China, P.R. China, Fuzhou, 350003, Fujian, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, P.R. China, Fuzhou, 350003, Fujian, China
- Fujian Key Laboratory of Rice Molecular Breeding, P.R. China, Fuzhou, 350003, Fujian, China
- Base of South China, State Key Laboratory of Hybrid Rice, P.R. China, Fuzhou, 350003, Fujian, China
| | - Yongsheng Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, Fujian, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs, Fuzhou, 350003, Fujian, China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, 350003, Fujian, China
- Fuzhou Branch, National Rice Improvement Center of China, P.R. China, Fuzhou, 350003, Fujian, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, P.R. China, Fuzhou, 350003, Fujian, China
- Fujian Key Laboratory of Rice Molecular Breeding, P.R. China, Fuzhou, 350003, Fujian, China
- Base of South China, State Key Laboratory of Hybrid Rice, P.R. China, Fuzhou, 350003, Fujian, China
| | - Chuanying Zhuo
- Bureau of Agricultural and Rural Affairs of Youxi County, Sanming, 350108, Fujian, China
| | - Jinlan Wang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, Fujian, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs, Fuzhou, 350003, Fujian, China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, 350003, Fujian, China
- Fuzhou Branch, National Rice Improvement Center of China, P.R. China, Fuzhou, 350003, Fujian, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, P.R. China, Fuzhou, 350003, Fujian, China
- Fujian Key Laboratory of Rice Molecular Breeding, P.R. China, Fuzhou, 350003, Fujian, China
- Base of South China, State Key Laboratory of Hybrid Rice, P.R. China, Fuzhou, 350003, Fujian, China
| | - Huaan Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, Fujian, China.
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs, Fuzhou, 350003, Fujian, China.
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, 350003, Fujian, China.
- Fuzhou Branch, National Rice Improvement Center of China, P.R. China, Fuzhou, 350003, Fujian, China.
- Fujian Engineering Laboratory of Crop Molecular Breeding, P.R. China, Fuzhou, 350003, Fujian, China.
- Fujian Key Laboratory of Rice Molecular Breeding, P.R. China, Fuzhou, 350003, Fujian, China.
- Base of South China, State Key Laboratory of Hybrid Rice, P.R. China, Fuzhou, 350003, Fujian, China.
| | - Zhaowei Jiang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, Fujian, China.
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, Fujian, China.
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs, Fuzhou, 350003, Fujian, China.
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, 350003, Fujian, China.
- Fuzhou Branch, National Rice Improvement Center of China, P.R. China, Fuzhou, 350003, Fujian, China.
- Fujian Engineering Laboratory of Crop Molecular Breeding, P.R. China, Fuzhou, 350003, Fujian, China.
- Fujian Key Laboratory of Rice Molecular Breeding, P.R. China, Fuzhou, 350003, Fujian, China.
- Base of South China, State Key Laboratory of Hybrid Rice, P.R. China, Fuzhou, 350003, Fujian, China.
| |
Collapse
|
28
|
Li T, Kang X, Wei L, Zhang D, Lin H. A gain-of-function mutation in Brassinosteroid-insensitive 2 alters Arabidopsis floral organ development by altering auxin levels. PLANT CELL REPORTS 2020; 39:259-271. [PMID: 31820142 DOI: 10.1007/s00299-019-02489-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/11/2019] [Indexed: 05/28/2023]
Abstract
Auxin can alter the fertility of bin2-1 plants and depends on the expression of SHY2. Brassinosteroids (BRs) play important roles in plant growth and developmental processes. By systematically evaluating the phenotypes of BR biosynthesis and BR signaling mutants, researchers have reported that BRs positively regulate floral development. In this study, we found that brassinosteroid-insensitive 2 (bin2-1) and short-hypocotyl 2 (shy2-2) mutants exhibited significantly reduced fertility. These mutants had short inflorescences, decreased floral organ length (short petals, stamens, carpels, and stigmas), and short siliques. Exogenous auxin applications could partially rescue the shortened length of the floral organs and siliques of the bin2-1 mutants. Additional experiments revealed that a lack of SHY2 activity increased the fertility of the bin2-1 mutants. A search for downstream affected genes revealed that auxin influences the expression of ARFs and PINs in the bin2-1 mutants, suggesting that auxin plays a major role in the regulation of bin2-1 plant fertility. Thus, BIN2 plays a role in fertility by affecting auxin levels, mainly by altering the expression of SHY2.
Collapse
Affiliation(s)
- Taotao Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Xinke Kang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Lin Wei
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
29
|
Kandelinskaya OL, Grischenko HR, Кhripach VA, Zhabinskii VN, Kartizhova LE, Shashko YK, Kosmachevskaya OV, Nasybullina EI, Topunov AF. Anabolic/anticatabolic and adaptogenic effects of 24-epibrassinolide on Lupinus angustifolius: Causes and consequences. Steroids 2020; 154:108545. [PMID: 31758963 DOI: 10.1016/j.steroids.2019.108545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/19/2019] [Accepted: 11/14/2019] [Indexed: 11/19/2022]
Abstract
Lupinus angustifolius L. is a legume culture known as a source of valuable feed protein and the N2-fixator for improving soil fertility. However, its low ecological resistance does not allow for a stable yield of the crop. Earlier, we have shown that steroid phytohormone 24-epibrassinolide (EBR) increases the tolerance of lupine to chlorine ions by activating the protective proteins in ripening seeds (such as proteinase inhibitors that prevent protein breakdown) and lectins. Here we investigated the effect of EBR on the functional status of the N2-fixing system in root nodules, protein synthesis in ripening seeds and the resistance of lupine plants to various pathogens. It was found that EBR enhanced the nodulation process, N2-fixing activity of nitrogenase and the accumulation of poly-β-hydroxybutirate in the bacteroides, increased the leghemoglobin content in the nodules as well as the metabolic activity of bacteroides. According to data on the inclusion of 14C-leucine in maturing seed proteins, EBR increased the accumulation of protein in them against the background of a short-term decrease in protein synthesis and its subsequent regeneration to the control level. Gradual inhibition of protein synthesis, characteristic of other legumes, was observed in control variants of lupine. EBR increased lupine resistance to phytopathogenic fungi of Colletotrichum genus and insects of Noctuidae and Scarabaeidae families. We concluded that a more complete implementation of the potential productivity and sustainability of lupine under the action of EBR was achieved due to the anabolic/anti-catabolic effect on the N2 fixation system in root nodules, as well as on protein synthesis in ripening seeds.
Collapse
Affiliation(s)
- Olga L Kandelinskaya
- Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus, 220072 Minsk, Akademicheskaya, 27, Belarus.
| | - Helena R Grischenko
- Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus, 220072 Minsk, Akademicheskaya, 27, Belarus
| | - Vladimir A Кhripach
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, 2200141 Minsk, Kuprevich st, 5/2, Belarus
| | - Vladimir N Zhabinskii
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, 2200141 Minsk, Kuprevich st, 5/2, Belarus
| | - Lylia E Kartizhova
- Institute of Microbiology of the National Academy of Sciences of Belarus, 2200141 Minsk, Kuprevich st, 2, Belarus
| | - Yuriy K Shashko
- Research and Practical Center of the National Academy of Sciences of Belarus for Arable Farming, 222160 Zhodino, Timiriyazeva, 1, Belarus
| | - Olga V Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Elvira I Nasybullina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Alexey F Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| |
Collapse
|
30
|
Qiu L, Chen R, Fan Y, Huang X, Luo H, Xiong F, Liu J, Zhang R, Lei J, Zhou H, Wu J, Li Y. Integrated mRNA and small RNA sequencing reveals microRNA regulatory network associated with internode elongation in sugarcane (Saccharum officinarum L.). BMC Genomics 2019; 20:817. [PMID: 31699032 PMCID: PMC6836457 DOI: 10.1186/s12864-019-6201-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/18/2019] [Indexed: 12/31/2022] Open
Abstract
Background Internode elongation is one of the most important traits in sugarcane because of its relation to crop productivity. Understanding the microRNA (miRNA) and mRNA expression profiles related to sugarcane internode elongation would help develop molecular improvement strategies but they are not yet well-investigated. To identify genes and miRNAs involved in internode elongation, the cDNA and small RNA libraries from the pre-elongation stage (EI), early elongation stage (EII) and rapid elongation stage (EIII) were sequenced and their expression were studied. Results Based on the sequencing results, 499,495,518 reads and 80,745 unigenes were identified from stem internodes of sugarcane. The comparisons of EI vs. EII, EI vs. EIII, and EII vs. EIII identified 493, 5035 and 3041 differentially expressed genes, respectively. Further analysis revealed that the differentially expressed genes were enriched in the GO terms oxidoreductase activity and tetrapyrrole binding. KEGG pathway annotation showed significant enrichment in “zeatin biosynthesis”, “nitrogen metabolism” and “plant hormone signal transduction”, which might be participating in internode elongation. miRNA identification showed 241 known miRNAs and 245 novel candidate miRNAs. By pairwise comparison, 11, 42 and 26 differentially expressed miRNAs were identified from EI and EII, EI and EIII, and EII and EIII comparisons, respectively. The target prediction revealed that the genes involved in “zeatin biosynthesis”, “nitrogen metabolism” and “plant hormone signal transduction” pathways are targets of the miRNAs. We found that the known miRNAs miR2592-y, miR1520-x, miR390-x, miR5658-x, miR6169-x and miR8154-x were likely regulators of genes with internode elongation in sugarcane. Conclusions The results of this study provided a global view of mRNA and miRNA regulation during sugarcane internode elongation. A genetic network of miRNA-mRNA was identified with miRNA-mediated gene expression as a mechanism in sugarcane internode elongation. Such evidence will be valuable for further investigations of the molecular regulatory mechanisms underpinning sugarcane growth and development.
Collapse
Affiliation(s)
- Lihang Qiu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, East Daxue Road 172, Nanning, 530004, Guangxi, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Rongfa Chen
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, East Daxue Road 172, Nanning, 530004, Guangxi, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Yegeng Fan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, East Daxue Road 172, Nanning, 530004, Guangxi, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Xing Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, East Daxue Road 172, Nanning, 530004, Guangxi, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Hanmin Luo
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, East Daxue Road 172, Nanning, 530004, Guangxi, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Faqian Xiong
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Junxian Liu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, East Daxue Road 172, Nanning, 530004, Guangxi, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Ronghua Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, East Daxue Road 172, Nanning, 530004, Guangxi, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Jingchao Lei
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, East Daxue Road 172, Nanning, 530004, Guangxi, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Huiwen Zhou
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, East Daxue Road 172, Nanning, 530004, Guangxi, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Jianming Wu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, East Daxue Road 172, Nanning, 530004, Guangxi, China. .,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China.
| | - Yangrui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, East Daxue Road 172, Nanning, 530004, Guangxi, China. .,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China.
| |
Collapse
|
31
|
Tan X, Long W, Zeng L, Ding X, Cheng Y, Zhang X, Zou X. Melatonin-Induced Transcriptome Variation of Rapeseed Seedlings under Salt Stress. Int J Mol Sci 2019; 20:ijms20215355. [PMID: 31661818 PMCID: PMC6862158 DOI: 10.3390/ijms20215355] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
Salt stress inhibits the production of all crop species, including rapeseed (Brassica napus L.), the second most widely planted oil crop species. Although melatonin was confirmed to alleviate salt stress in rapeseed seedlings recently, the mechanism governing the expression levels remains unknown. Therefore, the melatonin-induced transcriptome variation of salt-stressed seedlings was explored. In this study, the transcriptomes of leaves and roots under control (CK), salt (125 mM NaCl, ST) and melatonin (125 mM NaCl plus 50 µM melatonin, MS) treatments were evaluated by using next-generation sequencing techniques. After conducting comparisons of gene expression in the roots and leaves between MS and ST, the differentially expressed gene (DEG) pools were screened. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses highlighted the significant pathways, which were mainly related to plant hormone synthesis and signal transduction, lignin and fatty acid metabolism. The functional genes in the objective KEGG pathways were identified. Furthermore, members of several transcription factor (TF) families participated in the response process. Combined with the hormone (campesterol (CS), jasmonic acid (JA), and gibberellic acid 3 (GA3)) contents measured in the seedlings, it could be concluded that melatonin induced changes in the intrinsic hormone metabolic network, which promoted seedling growth. Thus, this study identified new candidate genes and pathways active during the interactions between melatonin and salt stress, which provide clues for disclosing melatonin’s function in resistance to salt injury. Our results contribute to developing a practical method for sustainable agriculture on saline lands.
Collapse
Affiliation(s)
- Xiaoyu Tan
- Key Lab of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- College of Plant Science and Technology of Huazhong Agricultural University, Wuhan 430070, China.
| | - Weihua Long
- Key Lab of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture and Rural Affairs, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China.
| | - Liu Zeng
- Key Lab of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Xiaoyu Ding
- Key Lab of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Yong Cheng
- Key Lab of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Xuekun Zhang
- Key Lab of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Xiling Zou
- Key Lab of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| |
Collapse
|
32
|
Chakraborty S, Nguyen B, Wasti SD, Xu G. Plant Leucine-Rich Repeat Receptor Kinase (LRR-RK): Structure, Ligand Perception, and Activation Mechanism. Molecules 2019. [PMID: 31450667 DOI: 10.3390/molecules2473081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
In recent years, secreted peptides have been recognized as essential mediators of intercellular communication which governs plant growth, development, environmental interactions, and other mediated biological responses, such as stem cell homeostasis, cell proliferation, wound healing, hormone sensation, immune defense, and symbiosis, among others. Many of the known secreted peptide ligand receptors belong to the leucine-rich repeat receptor kinase (LRR-RK) family of membrane integral receptors, which contain more than 200 members within Arabidopsis making it the largest family of plant receptor kinases (RKs). Genetic and biochemical studies have provided valuable data regarding peptide ligands and LRR-RKs, however, visualization of ligand/LRR-RK complex structures at the atomic level is vital to understand the functions of LRR-RKs and their mediated biological processes. The structures of many plant LRR-RK receptors in complex with corresponding ligands have been solved by X-ray crystallography, revealing new mechanisms of ligand-induced receptor kinase activation. In this review, we briefly elaborate the peptide ligands, and aim to detail the structures and mechanisms of LRR-RK activation as induced by secreted peptide ligands within plants.
Collapse
Affiliation(s)
- Sayan Chakraborty
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Brian Nguyen
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Syed Danyal Wasti
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Guozhou Xu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
33
|
Plant Leucine-Rich Repeat Receptor Kinase (LRR-RK): Structure, Ligand Perception, and Activation Mechanism. Molecules 2019; 24:molecules24173081. [PMID: 31450667 PMCID: PMC6749341 DOI: 10.3390/molecules24173081] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 11/16/2022] Open
Abstract
In recent years, secreted peptides have been recognized as essential mediators of intercellular communication which governs plant growth, development, environmental interactions, and other mediated biological responses, such as stem cell homeostasis, cell proliferation, wound healing, hormone sensation, immune defense, and symbiosis, among others. Many of the known secreted peptide ligand receptors belong to the leucine-rich repeat receptor kinase (LRR-RK) family of membrane integral receptors, which contain more than 200 members within Arabidopsis making it the largest family of plant receptor kinases (RKs). Genetic and biochemical studies have provided valuable data regarding peptide ligands and LRR-RKs, however, visualization of ligand/LRR-RK complex structures at the atomic level is vital to understand the functions of LRR-RKs and their mediated biological processes. The structures of many plant LRR-RK receptors in complex with corresponding ligands have been solved by X-ray crystallography, revealing new mechanisms of ligand-induced receptor kinase activation. In this review, we briefly elaborate the peptide ligands, and aim to detail the structures and mechanisms of LRR-RK activation as induced by secreted peptide ligands within plants.
Collapse
|
34
|
Pakkish Z, Ghorbani B, Najafzadeh R. Fruit quality and shelf life improvement of grape cv. Rish Baba using Brassinosteroid during cold storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-018-0011-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Shaaf S, Bretani G, Biswas A, Fontana IM, Rossini L. Genetics of barley tiller and leaf development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:226-256. [PMID: 30548413 DOI: 10.1111/jipb.12757] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
In cereals, tillering and leaf development are key factors in the concept of crop ideotype, introduced in the 1960s to enhance crop yield, via manipulation of plant architecture. In the present review, we discuss advances in genetic analysis of barley shoot architecture, focusing on tillering, leaf size and angle. We also discuss novel phenotyping techniques, such as 2D and 3D imaging, that have been introduced in the era of phenomics, facilitating reliable trait measurement. We discuss the identification of genes and pathways that are involved in barley tillering and leaf development, highlighting key hormones involved in the control of plant architecture in barley and rice. Knowledge on genetic control of traits related to plant architecture provides useful resources for designing ideotypes for enhanced barley yield and performance.
Collapse
Affiliation(s)
- Salar Shaaf
- University of Milan, DiSAA, Via Celoria 2, 20133 Milan, Italy
| | | | - Abhisek Biswas
- University of Milan, DiSAA, Via Celoria 2, 20133 Milan, Italy
| | | | - Laura Rossini
- University of Milan, DiSAA, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
36
|
Genome-wide identification and expression analysis of brassinosteroid action-related genes during the shoot growth of moso bamboo. Mol Biol Rep 2019; 46:1909-1930. [PMID: 30721422 DOI: 10.1007/s11033-019-04642-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
Brassinosteroids (BRs) are a group of plant steroid hormones that play crucial roles in a range of plant growth and development processes. BR action includes active BR formation by a complex biosynthesis process and driving BR biological function through signal transduction. Although the characterization of several BR action-related genes has been conducted in a few model plants, systematic information about these genes in bamboo is still lacking. We identified 64 genes related to BR action from the genome of moso bamboo (Phyllostachys edulis), including twenty that participated in BR biosynthesis and forty-four involved in BR signal transduction. The characteristics of all these candidate genes were identified by bioinformatics methods, including the gene structures, basic physical and chemical properties of proteins, conserved domains and evolutionary relationships. Based on the transcriptome data, the candidate genes demonstrated different expression patterns, which were further validated by qRT-PCR using templates from bamboo shoots with different heights. Thirty-four positive and three negative co-expression modules were identified by 44 candidate genes in the newly emerging bamboo shoot. The gene expression patterns and co-expression modules of BR action-related genes in bamboo shoots indicated that they might function to promote bamboo growth through BR biosynthesis and signal transduction processes. This study provides the first step towards the cloning and functional dissection of the role of BR action-related genes in moso bamboo, which also presents an excellent opportunity for genetic engineering using the candidate genes to improve bamboo quantity and quality.
Collapse
|
37
|
Gao J, Chen H, Yang H, He Y, Tian Z, Li J. A brassinosteroid responsive miRNA-target module regulates gibberellin biosynthesis and plant development. THE NEW PHYTOLOGIST 2018; 220:488-501. [PMID: 30009574 DOI: 10.1111/nph.15331] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 05/29/2018] [Indexed: 05/04/2023]
Abstract
Plant growth and development are highly coordinated by hormones, including brassinosteroid (BR) and gibberellin (GA). Although much progress has been made in understanding the fundamental signaling transduction in BR and GA, their relationship remains elusive in rice. Here, we show that BR suppresses the level of OsmiR159d, which cleaves the target OsGAMYBL2 gene. The OsmiR159d-OsGAMYBL2 pair functions as an early BR-responsive module regulating the expression of BU1, a BR-regulated gene involved in BR signaling, and CPS1 and GA3ox2, two genes in GA biosynthesis, by binding to the promoters of these genes. Furthermore, OsGSK2, a key negative player in BR signaling, interacts with OsGAMYBL2 and prevents it from being degraded under 24-epibrassinolide treatment, whereas SLR1, a rice DELLA protein negatively regulating GA signaling, interacts with OsGAMYBL2 and prevents OsGAMYBL2 from binding to the target gene promoter. GA signaling induces degradation of OsGAMYBL2 and, consequently, enhances BR signaling. These results demonstrate that a BR-responsive module acts as a common component functioning in both BR and GA pathways, which connects BR signaling and GA biosynthesis, and thus coordinates the regulation of BR and GA in plant growth and development.
Collapse
Affiliation(s)
- Jing Gao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huifang Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong He
- Hubei Collaborative Innovation Center for Grain Industry, College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Zhihong Tian
- Hubei Collaborative Innovation Center for Grain Industry, College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Jianxiong Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Hubei Collaborative Innovation Center for Grain Industry, College of Life Science, Yangtze University, Jingzhou, 434025, China
| |
Collapse
|
38
|
Speicher TL, Li PZ, Wallace IS. Phosphoregulation of the Plant Cellulose Synthase Complex and Cellulose Synthase-Like Proteins. PLANTS (BASEL, SWITZERLAND) 2018; 7:E52. [PMID: 29966291 PMCID: PMC6161211 DOI: 10.3390/plants7030052] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 02/04/2023]
Abstract
Cellulose, the most abundant biopolymer on the planet, is synthesized at the plasma membrane of plant cells by the cellulose synthase complex (CSC). Cellulose is the primary load-bearing polysaccharide of plant cell walls and enables cell walls to maintain cellular shape and rigidity. The CSC is comprised of functionally distinct cellulose synthase A (CESA) proteins, which are responsible for synthesizing cellulose, and additional accessory proteins. Moreover, CESA-like (CSL) proteins are proposed to synthesize other essential non-cellulosic polysaccharides that comprise plant cell walls. The deposition of cell-wall polysaccharides is dynamically regulated in response to a variety of developmental and environmental stimuli, and post-translational phosphorylation has been proposed as one mechanism to mediate this dynamic regulation. In this review, we discuss CSC composition, the dynamics of CSCs in vivo, critical studies that highlight the post-translational control of CESAs and CSLs, and the receptor kinases implicated in plant cell-wall biosynthesis. Furthermore, we highlight the emerging importance of post-translational phosphorylation-based regulation of CSCs on the basis of current knowledge in the field.
Collapse
Affiliation(s)
- Tori L Speicher
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | - Patrick Ziqiang Li
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | - Ian S Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
39
|
Xue Z, Tan Z, Huang A, Zhou Y, Sun J, Wang X, Thimmappa RB, Stephenson MJ, Osbourn A, Qi X. Identification of key amino acid residues determining product specificity of 2,3-oxidosqualene cyclase in Oryza species. THE NEW PHYTOLOGIST 2018; 218:1076-1088. [PMID: 29528490 DOI: 10.1111/nph.15080] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/05/2018] [Indexed: 05/27/2023]
Abstract
Triterpene synthases, also known as 2,3-oxidosqualene cyclases (OSCs), synthesize diverse triterpene skeletons that form the basis of an array of functionally divergent steroids and triterpenoids. Tetracyclic and pentacyclic triterpene skeletons are synthesized via protosteryl and dammarenyl cations, respectively. The mechanism of conversion between two scaffolds is not well understood. Here, we report a promiscuous OSC from rice (Oryza sativa) (OsOS) that synthesizes a novel pentacyclic triterpene orysatinol as its main product. The OsOS gene is widely distributed in indica subspecies of cultivated rice and in wild rice accessions. Previously, we have characterized a different OSC, OsPS, a tetracyclic parkeol synthase found in japonica subspecies. Phylogenetic and protein structural analyses identified three key amino acid residues (#732, #365, #124) amongst 46 polymorphic sites that determine functional conversion between OsPS and OsOS, specifically, the chair-semi(chair)-chair and chair-boat-chair interconversions. The different orientation of a fourth amino acid residue Y257 was shown to be important for functional conversion The discovery of orysatinol unlocks a new path to triterpene diversity in nature. Our findings also reveal mechanistic insights into the cyclization of oxidosqualene into tetra- and pentacyclic skeletons, and provide a new strategy to identify key residues determining OSC specificity.
Collapse
Affiliation(s)
- Zheyong Xue
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Zhengwei Tan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Ancheng Huang
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Yuan Zhou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juncong Sun
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoning Wang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Ramesha B Thimmappa
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Michael J Stephenson
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
40
|
Chemistry, biochemistry, metabolic fate and mechanism of action of 6-oxo-cholestan-3β,5α-diol (OCDO), a tumor promoter and cholesterol metabolite. Biochimie 2018; 153:139-149. [PMID: 29654865 DOI: 10.1016/j.biochi.2018.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022]
Abstract
Oxygenation products of cholesterol, named oxysterols, were suspected since the 20th century to be involved in carcinogenesis. Among the family of oxysterol molecules, cholesterol-5,6-epoxides (5,6-EC) retained the attention of scientists because they contain a putative alkylating epoxide group. However, studies failed into demonstrating that 5,6-EC were direct carcinogens and revealed a surprising chemical stability and unreactivity towards nucleophiles in standard conditions. Analyses of 5,6-EC metabolism in normal cells showed that they were extensively transformed into cholestane-3β,5α,6β-triol (CT) by the cholesterol-5,6-epoxide hydrolase (ChEH). Studies performed in cancer cells showed that CT was additionally metabolized into an oxysterol identified as the 6-oxo-cholestan-3β,5α-diol (OCDO), by the 11β-hydroxysteroid dehydrogenase of type 2 (HSD2), the enzyme which inactivates cortisol into cortisone. Importantly, OCDO was shown to display tumor promoter properties in breast cancers, by binding to the glucocorticoid receptor, and independently of their estrogen receptor status, revealing the existence of a new tumorigenic pathway centered on 5,6-EC. In breast tumors from patients, OCDO production as well as the expression of the enzymes involved in the pathway producing OCDO, namely ChEH subunits and HSD2, were higher compared to normal tissues, and overexpression of these enzymes correlate with a higher risk of patient death, indicating that this onco-metabolism is of major importance to breast cancer pathology. Herein, we will review the actual knowledge and the future trends in OCDO chemistry, biochemistry, metabolism and mechanism of action and will discuss the impact of OCDO discovery on new anticancer therapeutic strategies.
Collapse
|
41
|
Han YJ, Kim YS, Hwang OJ, Roh J, Ganguly K, Kim SK, Hwang I, Kim JI. Overexpression of Arabidopsis thaliana brassinosteroid-related acyltransferase 1 gene induces brassinosteroid-deficient phenotypes in creeping bentgrass. PLoS One 2017; 12:e0187378. [PMID: 29084267 PMCID: PMC5662239 DOI: 10.1371/journal.pone.0187378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/18/2017] [Indexed: 11/19/2022] Open
Abstract
Brassinosteroids (BRs) are naturally occurring steroidal hormones that play diverse roles in various processes during plant growth and development. Thus, genetic manipulation of endogenous BR levels might offer a way of improving the agronomic traits of crops, including plant architecture and stress tolerance. In this study, we produced transgenic creeping bentgrass (Agrostis stolonifera L.) overexpressing a BR-inactivating enzyme, Arabidopsis thaliana BR-related acyltransferase 1 (AtBAT1), which is known to catalyze the conversion of BR intermediates to inactive acylated conjugates. After putative transgenic plants were selected using herbicide resistance assay, genomic integration of the AtBAT1 gene was confirmed by genomic PCR and Southern blot analysis, and transgene expression was validated by northern blot analysis. The transgenic creeping bentgrass plants exhibited BR-deficient phenotypes, including reduced plant height with shortened internodes (i.e., semi-dwarf), reduced leaf growth rates with short, wide, and thick architecture, high chlorophyll contents, decreased numbers of vascular bundles, and large lamina joint bending angles (i.e., erect leaves). Subsequent analyses showed that the transgenic plants had significantly reduced amounts of endogenous BR intermediates, including typhasterol, 6-deoxocastasterone, and castasterone. Moreover, the AtBAT1 transgenic plants displayed drought tolerance as well as delayed senescence. Therefore, the results of the present study demonstrate that overexpression of an Arabidopsis BR-inactivating enzyme can reduce the endogenous levels of BRs in creeping bentgrass resulting in BR-deficient phenotypes, indicating that the AtBAT1 gene from a dicot plant is also functional in the monocot crop.
Collapse
Affiliation(s)
- Yun-Jeong Han
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Young Soon Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Ok-Jin Hwang
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Jeehee Roh
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Keya Ganguly
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ildoo Hwang
- Department of Life Sciences and Biotechnology Research Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
42
|
Hu S, Sanchez DL, Wang C, Lipka AE, Yin Y, Gardner CAC, Lübberstedt T. Brassinosteroid and gibberellin control of seedling traits in maize (Zea mays L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:132-141. [PMID: 28818369 DOI: 10.1016/j.plantsci.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 05/24/2023]
Abstract
In this study, we established two doubled haploid (DH) libraries with a total of 207 DH lines. We applied BR and GA inhibitors to all DH lines at seedling stage and measured seedling BR and GA inhibitor responses. Moreover, we evaluated field traits for each DH line (untreated). We conducted genome-wide association studies (GWAS) with 62,049 genome wide SNPs to explore the genetic control of seedling traits by BR and GA. In addition, we correlate seedling stage hormone inhibitor response with field traits. Large variation for BR and GA inhibitor response and field traits was observed across these DH lines. Seedling stage BR and GA inhibitor response was significantly correlate with yield and flowering time. Using three different GWAS approaches to balance false positive/negatives, multiple SNPs were discovered to be significantly associated with BR/GA inhibitor responses with some localized within gene models. SNPs from gene model GRMZM2G013391 were associated with GA inhibitor response across all three GWAS models. This gene is expressed in roots and shoots and was shown to regulate GA signaling. These results show that BRs and GAs have a great impact for controlling seedling growth. Gene models from GWAS results could be targets for seeding traits improvement.
Collapse
Affiliation(s)
- Songlin Hu
- Department of Agronomy, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA.
| | - Darlene L Sanchez
- Department of Agronomy, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA
| | - Cuiling Wang
- Department of Agronomy, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, Henan 471023, China
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois, Champaign, IL 61801, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA
| | - Candice A C Gardner
- Department of Agronomy, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA; U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), 100 Osborn Drive, Ames, IA 50011, USA
| | - Thomas Lübberstedt
- Department of Agronomy, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA
| |
Collapse
|
43
|
Azhar N, Su N, Shabala L, Shabala S. Exogenously Applied 24-Epibrassinolide (EBL) Ameliorates Detrimental Effects of Salinity by Reducing K+ Efflux via Depolarization-Activated K+ Channels. PLANT & CELL PHYSIOLOGY 2017; 58:802-810. [PMID: 28340062 DOI: 10.1093/pcp/pcx026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/06/2017] [Indexed: 05/19/2023]
Abstract
This study has investigated mechanisms conferring beneficial effects of exogenous application of 24-epibrassinolides (EBL) on plant growth and performance under saline conditions. Barley seedlings treated with 0.25 mg l-1 EBL showed significant improvements in root hair length, shoot length, shoot fresh weight and relative water content when grown in the presence of 150 mM NaCl in the growth medium. In addition, EBL treatment significantly decreased the Na+ content in both shoots (by approximately 50%) and roots. Electrophysiological experiments revealed that pre-treatment with EBL for 1 and 24 h suppressed or completely prevented the NaCl-induced K+ leak in the elongation zone of barley roots, but did not affect root sensitivity to oxidative stress. Further experiments using Arabidopsis loss-of-function gork1-1 (lacking functional depolarization-activated outward-rectifying K+ channels in the root epidermal cells) and akt1 (lacking inward-rectifying K+ uptake channel) mutants showed that NaCl-induced K+ loss in the elongation zone of roots was reduced by EBL pre-treatment 50- to 100-fold in wild-type Col-0 and akt1, but only 10-fold in the gork1-1 mutant. At the same time, EBL treatment shifted vanadate-sensitive H+ flux towards net efflux. Taken together, these data indicate that exogenous application of EBL effectively improves plant salinity tolerance by prevention of K+ loss via regulating depolarization-activated K+ channels.
Collapse
Affiliation(s)
- Nazila Azhar
- School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Nana Su
- School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
44
|
Wallace JG, Zhang X, Beyene Y, Semagn K, Olsen M, Prasanna BM, Buckler ES. Genome‐wide Association for Plant Height and Flowering Time across 15 Tropical Maize Populations under Managed Drought Stress and Well‐Watered Conditions in Sub‐Saharan Africa. CROP SCIENCE 2016; 56:2365-2378. [PMID: 0 DOI: 10.2135/cropsci2015.10.0632] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Affiliation(s)
- Jason G. Wallace
- Dep. of Crop and Soil Sciences The Univ. of Georgia Athens GA 30602‐6810
- Inst. for Genomic Diversity Cornell Univ. Ithaca NY 14853
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT) Apdo. Postal 6‐641 06600 Mexico, DF Mexico
| | - Yoseph Beyene
- CIMMYT P.O. Box 1041, Village Market 00621 Nairobi Kenya
| | - Kassa Semagn
- Dep. of Agricultural, Food and Nutritional Science Univ. of Alberta Edmonton Canada
| | - Michael Olsen
- CIMMYT P.O. Box 1041, Village Market 00621 Nairobi Kenya
| | | | - Edward S. Buckler
- Inst. for Genomic Diversity Cornell Univ. Ithaca NY 14853
- USDA – Agricultural Research Service Ithaca NY 14853
| |
Collapse
|
45
|
Suza WP, Chappell J. Spatial and temporal regulation of sterol biosynthesis in Nicotiana benthamiana. PHYSIOLOGIA PLANTARUM 2016; 157:120-34. [PMID: 26671544 DOI: 10.1111/ppl.12413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 05/22/2023]
Abstract
Nicotiana benthamiana was used as a model to investigate the spatial and developmental relationship between sterol synthesis rates and sterol content in plants. Stigmasterol levels were approximately twice the level in roots as that found in aerial tissues, while its progenitor sterol sitosterol was the inverse. When incorporation of radiolabeled precursors into sterols was used as measure of in vivo synthesis rates, acetate incorporation was similar across all tissue types, but approximately twofold greater in roots than any other tissue. In contrast, mevalonate incorporation exhibited the greatest differential with the rate of incorporation in roots approximately one-tenth that in apical shoots. Similar to acetate, incorporation of farnesol was higher in roots but remained fairly constant in aerial tissues, suggesting less regulation of the downstream sterol biosynthetic steps. Consistent with the precursor incorporation data, analysis of gene transcript and measurements of putative rate-limiting enzyme activities for 3-hydroxy-3-methylglutaryl-coenzyme A synthase (EC 2.3.3.10) and reductase (EC 1.1.1.34) showed the greatest modulation of levels, while the activity levels for isopentenyl diphosphate isomerase (EC 5.3.3.2) and prenyltransferases (EC 2.5.1.10 and EC 2.5.1.1) also exhibited a strong but moderate correlation with the development age of the aerial tissues of the plants. Overall, the data suggest a multitude of means from transcriptional to posttranslational control affecting sterol biosynthesis and accumulation across an entire plant, and point to some particular control points that might be manipulated using molecular genetic approaches to better probe the role of sterols in plant growth and development.
Collapse
Affiliation(s)
- Walter P Suza
- Department of Agronomy, Iowa State University, Ames, IA, 50011-1010, USA
| | - Joe Chappell
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA
| |
Collapse
|
46
|
Elicitation, an Effective Strategy for the Biotechnological Production of Bioactive High-Added Value Compounds in Plant Cell Factories. Molecules 2016; 21:182. [PMID: 26848649 PMCID: PMC6273650 DOI: 10.3390/molecules21020182] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 12/04/2022] Open
Abstract
Plant in vitro cultures represent an attractive and cost-effective alternative to classical approaches to plant secondary metabolite (PSM) production (the “Plant Cell Factory” concept). Among other advantages, they constitute the only sustainable and eco-friendly system to obtain complex chemical structures biosynthesized by rare or endangered plant species that resist domestication. For successful results, the biotechnological production of PSM requires an optimized system, for which elicitation has proved one of the most effective strategies. In plant cell cultures, an elicitor can be defined as a compound introduced in small concentrations to a living system to promote the biosynthesis of the target metabolite. Traditionally, elicitors have been classified in two types, abiotic or biotic, according to their chemical nature and exogenous or endogenous origin, and notably include yeast extract, methyl jasmonate, salicylic acid, vanadyl sulphate and chitosan. In this review, we summarize the enhancing effects of elicitors on the production of high-added value plant compounds such as taxanes, ginsenosides, aryltetralin lignans and other types of polyphenols, focusing particularly on the use of a new generation of elicitors such as coronatine and cyclodextrins.
Collapse
|
47
|
A transcriptional reference map of defence hormone responses in potato. Sci Rep 2015; 5:15229. [PMID: 26477733 PMCID: PMC4610000 DOI: 10.1038/srep15229] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/14/2015] [Indexed: 11/23/2022] Open
Abstract
Phytohormones are involved in diverse aspects of plant life including the regulation of plant growth, development and reproduction, as well as governing biotic and abiotic stress responses. We have generated a comprehensive transcriptional reference map of the early potato responses to exogenous application of the defence hormones abscisic acid, brassinolides (applied as epibrassinolide), ethylene (applied as the ethylene precursor aminocyclopropanecarboxylic acid), salicylic acid and jasmonic acid (applied as methyl jasmonate). Of the 39000 predicted genes on the microarray, a total of 2677 and 2473 genes were significantly differentially expressed at 1 h and 6 h after hormone treatment, respectively. Specific marker genes newly identified for the early hormone responses in potato include: a homeodomain 20 transcription factor (DMG400000248) for abscisic acid; a SAUR gene (DMG400016561) induced in epibrassinolide treated plants; an osmotin gene (DMG400003057) specifically enhanced by aminocyclopropanecarboxylic acid; a gene weakly similar to AtWRKY40 (DMG402007388) that was induced by salicylic acid; and a jasmonate ZIM-domain protein 1 (DMG400002930) which was specifically activated by methyl jasmonate. An online database has been set up to query the expression patterns of potato genes represented on the microarray that can also incorporate future microarray or RNAseq-based expression studies.
Collapse
|
48
|
Wu L, Yang H. Combined Application of Carboxymethyl Chitosan Coating and Brassinolide Maintains the Postharvest Quality and Shelf Life of Green Asparagus. J FOOD PROCESS PRES 2015. [DOI: 10.1111/jfpp.12592] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Lingyan Wu
- School of Agriculture and Food Science; Zhejiang Agricultural & Forestry University; Huan Cheng Bei Lu # 88, Lin'an Hangzhou Zhejiang 311300 China
| | - Huqing Yang
- School of Agriculture and Food Science; Zhejiang Agricultural & Forestry University; Huan Cheng Bei Lu # 88, Lin'an Hangzhou Zhejiang 311300 China
| |
Collapse
|
49
|
Greenwell M, Rahman P. Medicinal Plants: Their Use in Anticancer Treatment. INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH 2015; 6:4103-4112. [PMID: 26594645 PMCID: PMC4650206 DOI: 10.13040/ijpsr.0975-8232.6(10).4103-12] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Globally cancer is a disease which severely effects the human population. There is a constant demand for new therapies to treat and prevent this life-threatening disease. Scientific and research interest is drawing its attention towards naturally-derived compounds as they are considered to have less toxic side effects compared to current treatments such as chemotherapy. The Plant Kingdom produces naturally occurring secondary metabolites which are being investigated for their anticancer activities leading to the development of new clinical drugs. With the success of these compounds that have been developed into staple drugs for cancer treatment new technologies are emerging to develop the area further. New technologies include nanoparticles for nano-medicines which aim to enhance anticancer activities of plant-derived drugs by controlling the release of the compound and investigating new methods for administration. This review discusses the demand for naturally-derived compounds from medicinal plants and their properties which make them targets for potential anticancer treatments.
Collapse
Affiliation(s)
| | - P.K.S.M. Rahman
- Address for correspondence: School of Science and Engineering, Teesside University, Middlesbrough –TS13BA, Cleveland, United Kingdom.
| |
Collapse
|
50
|
Tamiru M, Undan JR, Takagi H, Abe A, Yoshida K, Undan JQ, Natsume S, Uemura A, Saitoh H, Matsumura H, Urasaki N, Yokota T, Terauchi R. A cytochrome P450, OsDSS1, is involved in growth and drought stress responses in rice (Oryza sativa L.). PLANT MOLECULAR BIOLOGY 2015; 88:85-99. [PMID: 25800365 DOI: 10.1007/s11103-015-0310-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 03/16/2015] [Indexed: 05/05/2023]
Abstract
Cytochrome P450s are among the largest protein coding gene families in plant genomes. However, majority of the genes remain uncharacterized. Here, we report the characterization of dss1, a rice mutant showing dwarfism and reduced grain size. The dss1 phenotype is caused by a non-synonymous point mutation we identified in DSS1, which is member of a P450 gene cluster located on rice chromosome 3 and corresponds to the previously reported CYP96B4/SD37 gene. Phenotypes of several dwarf mutants characterized in rice are associated with defects in the biosynthesis or perception of the phytohormones gibberellins (GAs) and brassinosteroids (BRs). However, both GA and BR failed to rescue the dss1 phenotype. Hormone profiling revealed the accumulation of abscisic acid (ABA) and ABA metabolites, as well as significant reductions in GA19 and GA53 levels, precursors of the bioactive GA1, in the mutant. The dss1 contents of cytokinin and auxins were not significantly different from wild-type plants. Consistent with the accumulation of ABA and metabolites, germination and early growth was delayed in dss1, which also exhibited an enhanced tolerance to drought. Additionally, expressions of members of the DSS1/CYP96B gene cluster were regulated by drought stress and exogenous ABA. RNA-seq-based transcriptome profiling revealed, among others, that cell wall-related genes and genes involved in lipid metabolism were up- and down-regulated in dss1, respectively. Taken together, these findings suggest that DSS1 mediates growth and stress responses in rice by fine-tuning GA-to-ABA balance, and might as well play a role in lipid metabolism.
Collapse
Affiliation(s)
- Muluneh Tamiru
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|