1
|
Singh H, Sekhon BS, Kumar P, Dhall RK, Devi R, Dhillon TS, Sharma S, Khar A, Yadav RK, Tomar BS, Ntanasi T, Sabatino L, Ntatsi G. Genetic Mechanisms for Hybrid Breeding in Vegetable Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:2294. [PMID: 37375919 DOI: 10.3390/plants12122294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
To address the complex challenges faced by our planet such as rapidly changing climate patterns, food and nutritional insecurities, and the escalating world population, the development of hybrid vegetable crops is imperative. Vegetable hybrids could effectively mitigate the above-mentioned fundamental challenges in numerous countries. Utilizing genetic mechanisms to create hybrids not only reduces costs but also holds significant practical implications, particularly in streamlining hybrid seed production. These mechanisms encompass self-incompatibility (SI), male sterility, and gynoecism. The present comprehensive review is primarily focused on the elucidation of fundamental processes associated with floral characteristics, the genetic regulation of floral traits, pollen biology, and development. Specific attention is given to the mechanisms for masculinizing and feminizing cucurbits to facilitate hybrid seed production as well as the hybridization approaches used in the biofortification of vegetable crops. Furthermore, this review provides valuable insights into recent biotechnological advancements and their future utilization for developing the genetic systems of major vegetable crops.
Collapse
Affiliation(s)
- Hira Singh
- Department of Vegetable Science, Punjab Agriculture University, Ludhiana 141004, India
| | - Bhallan Singh Sekhon
- Department of Vegetable Science, Punjab Agriculture University, Ludhiana 141004, India
| | - Pradeep Kumar
- ICAR-Central Arid Zone Research Institute, Jodhpur 342003, India
| | - Rajinder Kumar Dhall
- Department of Vegetable Science, Punjab Agriculture University, Ludhiana 141004, India
| | - Ruma Devi
- Department of Vegetable Science, Punjab Agriculture University, Ludhiana 141004, India
| | - Tarsem Singh Dhillon
- Department of Vegetable Science, Punjab Agriculture University, Ludhiana 141004, India
| | - Suman Sharma
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Anil Khar
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | | | | | - Theodora Ntanasi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, IeraOdos 75, 11855 Athens, Greece
| | - Leo Sabatino
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, IeraOdos 75, 11855 Athens, Greece
| |
Collapse
|
2
|
Htwe YM, Shi P, Zhang D, Li Z, Xiao Y, Yang Y, Lei X, Wang Y. Programmed Cell Death May Be Involved in the Seedless Phenotype Formation of Oil Palm. FRONTIERS IN PLANT SCIENCE 2022; 13:832017. [PMID: 35401608 PMCID: PMC8984474 DOI: 10.3389/fpls.2022.832017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Oil palm (Elaeis guineensis Jacq.) is a well-known vegetable oil-yielding crop. Seedlessness is one of the most prominent traits in oil palm due to its low processing costs and high oil content. Nevertheless, an extensive study on molecular mechanisms regulating seedless phenotype formation in oil palm is very limited so far. In this study, stigma, style, and ovary from seedless and seeded (Tenera and Pisifera) oil palm trees were used to investigate the possible mechanism. Results showed that non-pollination resulted in no fruits, and self- and cross-pollinations resulted in seedless fruits, while boron treatment had no effect on seedless phenotype formation, implying that seedless trees have incomplete self and outcrossing incompatibility. Furthermore, the transcriptome data analysis highlighted eight programmed cell death (PCD) genes and three groups of PCD-related genes: 4-coumarate-CoA ligase (4CL), S-RNase, and MADS-box. The majority of these genes were significantly up-regulated in the stigma and style of Seedless palm trees compared to Tenera and Pisifera. In addition, the co-expression network analysis confirmed the significant correlation among these genes. Moreover, two simple sequence repeats (SSR) markers (S41 and S44) were developed to identify the seedless phenotype. The up-regulation of 4CL and MADS-box TFs activated the expression of PCD genes; on the other hand, S-RNase resulted in pollen tube RNA degradation and triggered PCD. While the link between PCD and seedless phenotype formation in oil palm has not been extensively studied to date, these findings suggest a role of PCD in pollen tube lethality, leading to double fertilization failure and the seedless phenotype.
Collapse
Affiliation(s)
- Yin Min Htwe
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Peng Shi
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Dapeng Zhang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Zhiying Li
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yong Xiao
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yaodong Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Xintao Lei
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- Tropical Crops Genetic Resources Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yong Wang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| |
Collapse
|
3
|
Mondal R, Biswas S, Srivastava A, Basu S, Trivedi M, Singh SK, Mishra Y. In silico analysis and expression profiling of S-domain receptor-like kinases (SD-RLKs) under different abiotic stresses in Arabidopsis thaliana. BMC Genomics 2021; 22:817. [PMID: 34772363 PMCID: PMC8590313 DOI: 10.1186/s12864-021-08133-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND S-domain receptor-like kinases (SD-RLKs) are an important and multi-gene subfamily of plant receptor-like/pelle kinases (RLKs), which are known to play a significant role in the development and immune responses of Arabidopsis thaliana. The conserved cysteine residues in the extracellular domain of SD-RLKs make them interesting candidates for sensing reactive oxygen species (ROS), assisting oxidative stress mitigation and associated signaling pathways during abiotic stresses. However, how closely SD-RLKs are interrelated to abiotic stress mitigation and signaling remains unknown in A. thaliana. RESULTS This study was initiated by examining the chromosomal localization, phylogeny, sequence and differential expression analyses of 37 SD-RLK genes using publicly accessible microarray datasets under cold, osmotic stress, genotoxic stress, drought, salt, UV-B, heat and wounding. Out of 37 SD-RLKs, 12 genes displayed differential expression patterns in both the root and the shoot tissues. Promoter structure analysis suggested that these 12 SD-RLK genes harbour several potential cis-regulatory elements (CREs), which are involved in regulating multiple abiotic stress responses. Based on these observations, we investigated the expression patterns of 12 selected SD-RLKs under ozone, wounding, oxidative (methyl viologen), UV-B, cold, and light stress at different time points using semi-qRT-PCR. Of these 12 SD-SRKs, the genes At1g61360, At1g61460, At1g61380, and At4g27300 emerged as potential candidates that maintain their expression in most of the stress treatments till exposure for 12 h. Expression patterns of these four genes were further verified under similar stress treatments using qRT-PCR. The expression analysis indicated that the gene At1g61360, At1g61380, and At1g61460 were mostly up-regulated, whereas the expression of At4g27300 either up- or down-regulated in these conditions. CONCLUSIONS To summarize, the computational analysis and differential transcript accumulation of SD-RLKs under various abiotic stresses suggested their association with abiotic stress tolerance and related signaling in A. thaliana. We believe that a further detailed study will decipher the specific role of these representative SD-RLKs in abiotic stress mitigation vis-a-vis signaling pathways in A. thaliana.
Collapse
Affiliation(s)
- Raju Mondal
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.,Current address: Mulberry Tissue Culture Lab, Central Sericultural Germplasm Resources Center, Central Silk Board-Ministry of Textiles (GoI), Hosur, Tamil Nadu, 635109, India
| | - Subhankar Biswas
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Akanksha Srivastava
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Suvajit Basu
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Maitri Trivedi
- Plant Cell and Molecular Biology Lab, Department of Botany, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390 002, India
| | - Sunil Kumar Singh
- Plant Cell and Molecular Biology Lab, Department of Botany, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390 002, India
| | - Yogesh Mishra
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
4
|
Liu Z, Li B, Yang Y, Gao C, Yi B, Wen J, Shen J, Tu J, Fu T, Dai C, Ma C. Characterization of a Common S Haplotype BnS-6 in the Self-Incompatibility of Brassica napus. PLANTS 2021; 10:plants10102186. [PMID: 34685996 PMCID: PMC8537745 DOI: 10.3390/plants10102186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/02/2021] [Accepted: 10/12/2021] [Indexed: 01/26/2023]
Abstract
Self-incompatibility (SI) is a pollen-stigma recognition system controlled by a single and highly polymorphic genetic locus known as the S-locus. The S-locus exists in all Brassica napus (B. napus, AACC), but natural B. napus accessions are self-compatible. About 100 and 50 S haplotypes exist in Brassica rapa (AA) and Brassica oleracea (CC), respectively. However, S haplotypes have not been detected in B. napus populations. In this study, we detected the S haplotype distribution in B. napus and ascertained the function of a common S haplotype BnS-6 through genetic transformation. BnS-1/BnS-6 and BnS-7/BnS-6 were the main S haplotypes in 523 B. napus cultivars and inbred lines. The expression of SRK in different S haplotypes was normal (the expression of SCR in the A subgenome affected the SI phenotype) while the expression of BnSCR-6 in the C subgenome had no correlation with the SI phenotype in B. napus. The BnSCR-6 protein in BnSCR-6 overexpressed lines was functional, but the self-compatibility of overexpressed lines did not change. The low expression of BnSCR-6 could be a reason for the inactivation of BnS-6 in the SI response of B. napus. This study lays a foundation for research on the self-compatibility mechanism and the SI-related breeding in B. napus.
Collapse
Affiliation(s)
- Zhiquan Liu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (B.L.); (B.Y.); (J.W.); (J.S.); (J.T.); (T.F.)
| | - Bing Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (B.L.); (B.Y.); (J.W.); (J.S.); (J.T.); (T.F.)
| | - Yong Yang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Changbin Gao
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Science, Wuhan 430345, China;
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (B.L.); (B.Y.); (J.W.); (J.S.); (J.T.); (T.F.)
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (B.L.); (B.Y.); (J.W.); (J.S.); (J.T.); (T.F.)
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (B.L.); (B.Y.); (J.W.); (J.S.); (J.T.); (T.F.)
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (B.L.); (B.Y.); (J.W.); (J.S.); (J.T.); (T.F.)
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (B.L.); (B.Y.); (J.W.); (J.S.); (J.T.); (T.F.)
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (B.L.); (B.Y.); (J.W.); (J.S.); (J.T.); (T.F.)
- Correspondence: (C.D.); (C.M.); Tel.: +86-27-8728-18-07 (C.M.)
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (B.L.); (B.Y.); (J.W.); (J.S.); (J.T.); (T.F.)
- Correspondence: (C.D.); (C.M.); Tel.: +86-27-8728-18-07 (C.M.)
| |
Collapse
|
5
|
Duan Z, Zhang Y, Tu J, Shen J, Yi B, Fu T, Dai C, Ma C. The Brassica napus GATA transcription factor BnA5.ZML1 is a stigma compatibility factor. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1112-1131. [PMID: 32022417 DOI: 10.1111/jipb.12916] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/02/2020] [Indexed: 05/16/2023]
Abstract
Self-incompatibility (SI) is a genetic mechanism that rejects self-pollen and thus prevents inbreeding in some hermaphroditic angiosperms. In the Brassicaceae, SI involves a pollen-stigma recognition system controlled by a single locus known as the S locus, which consists of two highly polymorphic genes that encode S-locus cysteine-rich protein (SCR) and S-receptor kinase (SRK). When self-pollen lands on the stigma, the S-haplotype-specific interaction between SCR and SRK triggers SI. Here, we show that the GATA transcription factor BnA5.ZML1 suppresses SI responses in Brassica napus and is induced after compatible pollination. The loss-of-function mutant bna5.zml1 displays reduced self-compatibility. In contrast, overexpression of BnA5.ZML1 in self-incompatible stigmas leads to a partial breakdown of SI responses, suggesting that BnA5.ZML1 is a stigmatic compatibility factor. Furthermore, the expression levels of SRK and ARC1 are up-regulated in bna5.zml1 mutants, and they are down-regulated in BnA5.ZML1 overexpressing lines. SRK affects the cellular localization of BnA5.ZML1 through direct protein-protein interaction. Overall, our findings highlight the fundamental role of BnA5.ZML1 in SI responses in B. napus, establishing a direct interaction between BnA5.ZML1 and SRK in this process.
Collapse
Affiliation(s)
- Zhiqiang Duan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yatao Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
Durand E, Chantreau M, Le Veve A, Stetsenko R, Dubin M, Genete M, Llaurens V, Poux C, Roux C, Billiard S, Vekemans X, Castric V. Evolution of self-incompatibility in the Brassicaceae: Lessons from a textbook example of natural selection. Evol Appl 2020; 13:1279-1297. [PMID: 32684959 PMCID: PMC7359833 DOI: 10.1111/eva.12933] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Self-incompatibility (SI) is a self-recognition genetic system enforcing outcrossing in hermaphroditic flowering plants and results in one of the arguably best understood forms of natural (balancing) selection maintaining genetic variation over long evolutionary times. A rich theoretical and empirical population genetics literature has considerably clarified how the distribution of SI phenotypes translates into fitness differences among individuals by a combination of inbreeding avoidance and rare-allele advantage. At the same time, the molecular mechanisms by which self-pollen is specifically recognized and rejected have been described in exquisite details in several model organisms, such that the genotype-to-phenotype map is also pretty well understood, notably in the Brassicaceae. Here, we review recent advances in these two fronts and illustrate how the joint availability of detailed characterization of genotype-to-phenotype and phenotype-to-fitness maps on a single genetic system (plant self-incompatibility) provides the opportunity to understand the evolutionary process in a unique perspective, bringing novel insight on general questions about the emergence, maintenance, and diversification of a complex genetic system.
Collapse
Affiliation(s)
| | | | - Audrey Le Veve
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | | | - Manu Dubin
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | - Mathieu Genete
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | - Violaine Llaurens
- Institut de Systématique, Evolution et Biodiversité (ISYEB)Muséum national d'Histoire naturelleCNRS, Sorbonne Université, EPHE, Université des Antilles CP 5057 rue Cuvier, 75005 ParisFrance
| | - Céline Poux
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | - Camille Roux
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | | | | | | |
Collapse
|
7
|
Gu Z, Li W, Doughty J, Meng D, Yang Q, Yuan H, Li Y, Chen Q, Yu J, Liu CS, Li T. A gamma-thionin protein from apple, MdD1, is required for defence against S-RNase-induced inhibition of pollen tube prior to self/non-self recognition. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2184-2198. [PMID: 31001872 PMCID: PMC6790362 DOI: 10.1111/pbi.13131] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 05/09/2023]
Abstract
Apple exhibits S-RNase-mediated self-incompatibility. Although the cytotoxic effect of S-RNase inside the self-pollen tube has been studied extensively, the underlying defence mechanism in pollen tube in Rosaceae remains unclear. On exposure to stylar S-RNase, plant defence responses are activated in the pollen tube; however, how these are regulated is currently poorly understood. Here, we show that entry of both self and non-self S-RNase into pollen tubes of apple (Malus domestica) stimulates jasmonic acid (JA) production, in turn inducing the accumulation of MdMYC2 transcripts, a transcription factor in the JA signalling pathway widely considered to be involved in plant defence processes. MdMYC2 acts as a positive regulator in the pollen tube activating expression of MdD1, a gene encoding a defence protein. Importantly, MdD1 was shown to bind to the RNase activity sites of S-RNase leading to inhibition of enzymatic activity. This work provides intriguing insights into an ancient defence mechanism present in apple pollen tubes where MdD1 likely acts as a primary line of defence to inhibit S-RNase cytotoxicity prior to self/non-self recognition.
Collapse
Affiliation(s)
- Zhaoyu Gu
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Wei Li
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - James Doughty
- Department of Biology and BiochemistryUniversity of BathBathUK
| | - Dong Meng
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Qing Yang
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Hui Yuan
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yang Li
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Qiuju Chen
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Jie Yu
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Chun sheng Liu
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
8
|
Chen F, Yang Y, Li B, Liu Z, Khan F, Zhang T, Zhou G, Tu J, Shen J, Yi B, Fu T, Dai C, Ma C. Functional Analysis of M-Locus Protein Kinase Revealed a Novel Regulatory Mechanism of Self-Incompatibility in Brassica napus L. Int J Mol Sci 2019; 20:ijms20133303. [PMID: 31284391 PMCID: PMC6651594 DOI: 10.3390/ijms20133303] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/24/2019] [Accepted: 07/04/2019] [Indexed: 01/27/2023] Open
Abstract
Self-incompatibility (SI) is a widespread mechanism in angiosperms that prevents inbreeding by rejecting self-pollen. However, the regulation of the SI response in Brassica napus is not well understood. Here, we report that the M-locus protein kinase (MLPK) BnaMLPKs, the functional homolog of BrMLPKs in Brassica rapa, controls SI in B. napus. We identified four paralogue MLPK genes in B. napus, including BnaA3.MLPK, BnaC3.MLPK, BnaA4.MLPK, and BnaC4.MLPK. Two transcripts of BnaA3.MLPK, BnaA3.MLPKf1 and BnaA3.MLPKf2, were generated by alternative splicing. Tissue expression pattern analysis demonstrated that BnaA3.MLPK, especially BnaA3.MLPKf2, is highly expressed in reproductive organs, particularly in stigmas. We subsequently created RNA-silencing lines and CRISPR/Cas9-induced quadruple mutants of BnaMLPKs in B. napus SI line S-70. Phenotypic analysis revealed that SI response is partially suppressed in RNA-silencing lines and is completely blocked in quadruple mutants. These results indicate the importance of BnaMLPKs in regulating the SI response of B. napus. We found that the expression of SI positive regulators S-locus receptor kinase (SRK) and Arm-Repeat Containing 1 (ARC1) are suppressed in bnmlpk mutant, whereas the self-compatibility (SC) element Glyoxalase I (GLO1) maintained a high expression level. Overall, our findings reveal a new regulatory mechanism of MLPK in the SI of B. napus.
Collapse
Affiliation(s)
- Fang Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Bing Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiquan Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Fawad Khan
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Tong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Guilong Zhou
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Sehgal N, Singh S. Progress on deciphering the molecular aspects of cell-to-cell communication in Brassica self-incompatibility response. 3 Biotech 2018; 8:347. [PMID: 30073132 PMCID: PMC6066494 DOI: 10.1007/s13205-018-1372-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/26/2018] [Indexed: 10/28/2022] Open
Abstract
The sporophytic system of self-incompatibility is a widespread genetic phenomenon in plant species, promoting out-breeding and maintaining genetic diversity. This phenomenon is of commercial importance in hybrid breeding of Brassicaceae crops and is controlled by single S locus with multiple S haplotypes. The molecular genetic studies of Brassica 'S' locus has revealed the presence of three tightly linked loci viz. S-receptor kinase (SRK), S-locus cysteine-rich protein/S-locus protein 11 (SCR/SP11), and S-locus glycoprotein (SLG). On self-pollination, the allele-specific ligand-receptor interaction activates signal transduction in stigma papilla cells and leads to rejection of pollen tube on stigmatic surface. In addition, arm-repeat-containing protein 1 (ARC1), M-locus protein kinase (MLPK), kinase-associated protein phosphatase (KAPP), exocyst complex subunit (Exo70A1) etc. has been identified in Brassica crops and plays a key role in self-incompatibility signaling pathway. Furthermore, the cytoplasmic calcium (Ca2+) influx in papilla cells also mediates self-incompatibility response in Brassicaceae, but how this cytoplasmic Ca2+ influx triggers signal transduction to inhibit pollen hydration is still obscure. There are many other signaling components which are not well characterized yet. Much progress has been made in elucidating the downstream multiple pathways of Brassica self-incompatibility response. Hence, in this review, we have made an effort to describe the recent advances made on understanding the molecular aspects of genetic mechanism of self-incompatibility in Brassicaceae.
Collapse
Affiliation(s)
- Nidhi Sehgal
- Department of Vegetable Science, CCS Haryana Agricultural University, Hisar, 125 004 India
| | - Saurabh Singh
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110 012 India
| |
Collapse
|
10
|
Gao Q, Shi S, Liu Y, Pu Q, Liu X, Zhang Y, Zhu L. Identification of a novel MLPK homologous gene MLPKn1 and its expression analysis in Brassica oleracea. PLANT REPRODUCTION 2016; 29:239-250. [PMID: 27342989 DOI: 10.1007/s00497-016-0287-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
M locus protein kinase, one of the SRK-interacting proteins, is a necessary positive regulator for the self-incompatibility response in Brassica. In B. rapa, MLPK is expressed as two different transcripts, MLPKf1 and MLPKf2, and either isoform can complement the mlpk/mlpk mutation. The AtAPK1B gene has been considered to be the ortholog of BrMLPK, and AtAPK1B has no role in self-incompatibility (SI) response in A. thaliana SRK-SCR plants. Until now, what causes the MLPK and APK1B function difference during SI response in Brassica and A. thaliana SRKb-SCRb plants has remained unknown. Here, in addition to the reported MLPKf1/2, we identified the new MLPKf1 homologous gene MLPKn1 from B. oleracea. BoMLPKn1 and BoMLPKf1 shared nucleotide sequence identity as high as 84.3 %, and the most striking difference consisted in two fragment insertions in BoMLPKn1. BoMLPKn1 and BoMLPKf1 had a similar gene structure; both their deduced amino acid sequences contained a typical plant myristoylation consensus sequence and a Ser/Thr protein kinase domain. BoMLPKn1 was widely expressed in petal, sepal, anther, stigma and leaf. Genome-wide survey revealed that the B. oleracea genome contained three MLPK homologous genes: BoMLPKf1/2, BoMLPKn1 and Bol008343n. The B. rapa genome also contained three MLPK homologous genes, BrMLPKf1/2, BraMLPKn1 and Bra040929. Phylogenetic analysis revealed that BoMLPKf1/2 and BrMLPKf1/2 were phylogenetically more distant from AtAPK1A than Bol008343n, Bra040929, BraMLPKn1 and BoMLPKn1, Synteny analysis revealed that the B. oleracea chromosomal region containing BoMLPKn1 displayed high synteny with the A. thaliana chromosomal region containing APK1B, whereas the B. rapa chromosomal region containing BraMLPKn1 showed high synteny with the A. thaliana chromosomal region containing APK1B. Together, these results revealed that BoMLPKn1/BraMLPKn1, and not the formerly reported BoMLPKf1/2 (BrMLPKf1/2), was the orthologous genes of AtAPK1B, and no ortholog of BoMLPKf1/2 (BrMLPKf1/2) was found in the A. thaliana genome. We speculated that Brassica MLPKf1/2 might have emerged after speciation of Brassica and A. thailiana, and that it was recruited to the SRK-triggered SI signaling cascade in Brassica.
Collapse
Affiliation(s)
- Qiguo Gao
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China.
| | - Songmei Shi
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Yudong Liu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Quanming Pu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Xiaohuan Liu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Ying Zhang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Liquan Zhu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
11
|
Videvall E, Sletvold N, Hagenblad J, Ågren J, Hansson B. Strong Maternal Effects on Gene Expression inArabidopsis lyrataHybrids. Mol Biol Evol 2015; 33:984-94. [DOI: 10.1093/molbev/msv342] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
12
|
Pourkheirandish M, Hensel G, Kilian B, Senthil N, Chen G, Sameri M, Azhaguvel P, Sakuma S, Dhanagond S, Sharma R, Mascher M, Himmelbach A, Gottwald S, Nair SK, Tagiri A, Yukuhiro F, Nagamura Y, Kanamori H, Matsumoto T, Willcox G, Middleton CP, Wicker T, Walther A, Waugh R, Fincher GB, Stein N, Kumlehn J, Sato K, Komatsuda T. Evolution of the Grain Dispersal System in Barley. Cell 2015; 162:527-39. [PMID: 26232223 DOI: 10.1016/j.cell.2015.07.002] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/13/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
About 12,000 years ago in the Near East, humans began the transition from hunter-gathering to agriculture-based societies. Barley was a founder crop in this process, and the most important steps in its domestication were mutations in two adjacent, dominant, and complementary genes, through which grains were retained on the inflorescence at maturity, enabling effective harvesting. Independent recessive mutations in each of these genes caused cell wall thickening in a highly specific grain "disarticulation zone," converting the brittle floral axis (the rachis) of the wild-type into a tough, non-brittle form that promoted grain retention. By tracing the evolutionary history of allelic variation in both genes, we conclude that spatially and temporally independent selections of germplasm with a non-brittle rachis were made during the domestication of barley by farmers in the southern and northern regions of the Levant, actions that made a major contribution to the emergence of early agrarian societies.
Collapse
Affiliation(s)
| | - Goetz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466 Stadt Seeland, Germany
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466 Stadt Seeland, Germany
| | - Natesan Senthil
- National Institute of Agrobiological Sciences, 305-8602 Tsukuba, Japan
| | - Guoxiong Chen
- National Institute of Agrobiological Sciences, 305-8602 Tsukuba, Japan
| | - Mohammad Sameri
- National Institute of Agrobiological Sciences, 305-8602 Tsukuba, Japan
| | - Perumal Azhaguvel
- National Institute of Agrobiological Sciences, 305-8602 Tsukuba, Japan
| | - Shun Sakuma
- National Institute of Agrobiological Sciences, 305-8602 Tsukuba, Japan
| | - Sidram Dhanagond
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466 Stadt Seeland, Germany
| | - Rajiv Sharma
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466 Stadt Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466 Stadt Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466 Stadt Seeland, Germany
| | - Sven Gottwald
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466 Stadt Seeland, Germany
| | - Sudha K Nair
- National Institute of Agrobiological Sciences, 305-8602 Tsukuba, Japan
| | - Akemi Tagiri
- National Institute of Agrobiological Sciences, 305-8602 Tsukuba, Japan
| | - Fumiko Yukuhiro
- National Institute of Agrobiological Sciences, 305-8602 Tsukuba, Japan
| | - Yoshiaki Nagamura
- National Institute of Agrobiological Sciences, 305-8602 Tsukuba, Japan
| | - Hiroyuki Kanamori
- National Institute of Agrobiological Sciences, 305-8602 Tsukuba, Japan
| | - Takashi Matsumoto
- National Institute of Agrobiological Sciences, 305-8602 Tsukuba, Japan
| | - George Willcox
- Archéorient CNRS UMR 5133, Université de Lyon II, Jalés, Berrias 07460, France
| | | | - Thomas Wicker
- Institute of Plant Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Alexander Walther
- Department of Earth Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Robbie Waugh
- University of Dundee, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Geoffrey B Fincher
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus Glen Osmond, SA 5066, Australia
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466 Stadt Seeland, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466 Stadt Seeland, Germany
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, 710-0046 Kurashiki, Japan
| | - Takao Komatsuda
- National Institute of Agrobiological Sciences, 305-8602 Tsukuba, Japan.
| |
Collapse
|
13
|
Menzel M, Sletvold N, Ågren J, Hansson B. Inbreeding Affects Gene Expression Differently in Two Self-Incompatible Arabidopsis lyrata Populations with Similar Levels of Inbreeding Depression. Mol Biol Evol 2015; 32:2036-47. [PMID: 25855783 PMCID: PMC4833072 DOI: 10.1093/molbev/msv086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Knowledge of which genes and pathways are affected by inbreeding may help understanding the genetic basis of inbreeding depression, the potential for purging (selection against deleterious recessive alleles), and the transition from outcrossing to selfing. Arabidopsis lyrata is a predominantly self-incompatible perennial plant, closely related to the selfing model species A. thaliana. To examine how inbreeding affects gene expression, we compared the transcriptome of experimentally selfed and outcrossed A. lyrata originating from two Scandinavian populations that express similar inbreeding depression for fitness (∂ ≈ 0.80). The number of genes significantly differentially expressed between selfed and outcrossed individuals were 2.5 times higher in the Norwegian population (≈ 500 genes) than in the Swedish population (≈ 200 genes). In both populations, a majority of genes were upregulated on selfing (≈ 80%). Functional annotation analysis of the differentially expressed genes showed that selfed offspring were characterized by 1) upregulation of stress-related genes in both populations and 2) upregulation of photosynthesis-related genes in Sweden but downregulation in Norway. Moreover, we found that reproduction- and pollination-related genes were affected by inbreeding only in Norway. We conclude that inbreeding causes both general and population-specific effects. The observed common effects suggest that inbreeding generally upregulates rather than downregulates gene expression and affects genes associated with stress response and general metabolic activity. Population differences in the number of affected genes and in effects on the expression of photosynthesis-related genes show that the genetic basis of inbreeding depression can differ between populations with very similar levels of inbreeding depression.
Collapse
Affiliation(s)
- Mandy Menzel
- Molecular Ecology and Evolution Laboratory, Department of Biology, Lund University, Lund, Sweden Unit of Respiratory Immunopharmacology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Nina Sletvold
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Bengt Hansson
- Molecular Ecology and Evolution Laboratory, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Yang L, Wu K, Gao P, Liu X, Li G, Wu Z. GsLRPK, a novel cold-activated leucine-rich repeat receptor-like protein kinase from Glycine soja, is a positive regulator to cold stress tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 215-216:19-28. [PMID: 24388511 DOI: 10.1016/j.plantsci.2013.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 10/12/2013] [Accepted: 10/17/2013] [Indexed: 05/11/2023]
Abstract
Plant LRR-RLKs serve as protein interaction platforms, and as regulatory modules of protein activation. Here, we report the isolation of a novel plant-specific LRR-RLK from Glycine soja (termed GsLRPK) by differential screening. GsLRPK expression was cold-inducible and shows Ser/Thr protein kinase activity. Subcellular localization studies using GFP fusion protein indicated that GsLRPK is localized in the plasma membrane. Real-time PCR analysis indicated that temperature, salt, drought, and ABA treatment can alter GsLRPK gene transcription in G. soja. However, just protein induced by cold stress not by salinity and ABA treatment in tobacco was found to possess kinase activity. Furthermore, we found that overexpression of GsLRPK in yeast and Arabidopsis can enhance resistance to cold stress and increase the expression of a number of cold responsive gene markers.
Collapse
Affiliation(s)
- Liang Yang
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou 350002, Fujian, China
| | - Kangcheng Wu
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou 350002, Fujian, China
| | - Peng Gao
- College of Horticulture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Xiaojuan Liu
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou 350002, Fujian, China
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zujian Wu
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou 350002, Fujian, China.
| |
Collapse
|
15
|
Serra TS, Figueiredo DD, Cordeiro AM, Almeida DM, Lourenço T, Abreu IA, Sebastián A, Fernandes L, Contreras-Moreira B, Oliveira MM, Saibo NJM. OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. PLANT MOLECULAR BIOLOGY 2013; 82:439-55. [PMID: 23703395 DOI: 10.1007/s11103-013-0073-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 05/13/2013] [Indexed: 05/03/2023]
Abstract
High salinity causes remarkable losses in rice productivity worldwide mainly because it inhibits growth and reduces grain yield. To cope with environmental changes, plants evolved several adaptive mechanisms, which involve the regulation of many stress-responsive genes. Among these, we have chosen OsRMC to study its transcriptional regulation in rice seedlings subjected to high salinity. Its transcription was highly induced by salt treatment and showed a stress-dose-dependent pattern. OsRMC encodes a receptor-like kinase described as a negative regulator of salt stress responses in rice. To investigate how OsRMC is regulated in response to high salinity, a salt-induced rice cDNA expression library was constructed and subsequently screened using the yeast one-hybrid system and the OsRMC promoter as bait. Thereby, two transcription factors (TFs), OsEREBP1 and OsEREBP2, belonging to the AP2/ERF family were identified. Both TFs were shown to bind to the same GCC-like DNA motif in OsRMC promoter and to negatively regulate its gene expression. The identified TFs were characterized regarding their gene expression under different abiotic stress conditions. This study revealed that OsEREBP1 transcript level is not significantly affected by salt, ABA or severe cold (5 °C) and is only slightly regulated by drought and moderate cold. On the other hand, the OsEREBP2 transcript level increased after cold, ABA, drought and high salinity treatments, indicating that OsEREBP2 may play a central role mediating the response to different abiotic stresses. Gene expression analysis in rice varieties with contrasting salt tolerance further suggests that OsEREBP2 is involved in salt stress response in rice.
Collapse
Affiliation(s)
- Tânia S Serra
- Genomics of Plant Stress Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sletvold N, Mousset M, Hagenblad J, Hansson B, Agren J. Strong inbreeding depression in two Scandinavian populations of the self-incompatible perennial herb Arabidopsis lyrata. Evolution 2013; 67:2876-88. [PMID: 24094340 DOI: 10.1111/evo.12174] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/05/2013] [Indexed: 11/30/2022]
Abstract
Inbreeding depression is a key factor influencing mating system evolution in plants, but current understanding of its relationship with selfing rate is limited by a sampling bias with few estimates for self-incompatible species. We quantified inbreeding depression (δ) over two growing seasons in two populations of the self-incompatible perennial herb Arabidopsis lyrata ssp. petraea in Scandinavia. Inbreeding depression was strong and of similar magnitude in both populations. Inbreeding depression for overall fitness across two seasons (the product of number of seeds, offspring viability, and offspring biomass) was 81% and 78% in the two populations. Chlorophyll deficiency accounted for 81% of seedling mortality in the selfing treatment, and was not observed among offspring resulting from outcrossing. The strong reduction in both early viability and late quantitative traits suggests that inbreeding depression is due to deleterious alleles of both large and small effect, and that both populations experience strong selection against the loss of self-incompatibility. A review of available estimates suggested that inbreeding depression tends to be stronger in self-incompatible than in self-compatible highly outcrossing species, implying that undersampling of self-incompatible taxa may bias estimates of the relationship between mating system and inbreeding depression.
Collapse
Affiliation(s)
- Nina Sletvold
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen, 18 D, SE-752 36 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
17
|
Chalivendra SC, Lopez-Casado G, Kumar A, Kassenbrock AR, Royer S, Tovar-Mèndez A, Covey PA, Dempsey LA, Randle AM, Stack SM, Rose JK, McClure B, Bedinger PA. Developmental onset of reproductive barriers and associated proteome changes in stigma/styles of Solanum pennellii. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:265-79. [PMID: 23166371 PMCID: PMC3528032 DOI: 10.1093/jxb/ers324] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although self-incompatibility (SI) in plants has been studied extensively, far less is known about interspecific reproductive barriers. One interspecific barrier, known as unilateral incongruity or incompatibility (UI), occurs when species display unidirectional compatibility in interspecific crosses. In the wild tomato species Solanum pennellii, both SI and self-compatible (SC) populations express UI when crossed with domesticated tomato, offering a useful model system to dissect the molecular mechanisms involved in reproductive barriers. In this study, the timing of reproductive barrier establishment during pistil development was determined in SI and SC accessions of S. pennellii using a semi-in vivo system to track pollen-tube growth in developing styles. Both SI and UI barriers were absent in styles 5 days prior to flower opening, but were established by 2 days before flower opening, with partial barriers detected during a transition period 3-4 days before flower opening. The developmental expression dynamics of known SI factors, S-RNases and HT proteins, was also examined. The accumulation of HT-A protein coincided temporally and spatially with UI barriers in developing pistils. Proteomic analysis of stigma/styles from key developmental stages showed a switch in protein profiles from cell-division-associated proteins in immature stigma/styles to a set of proteins in mature stigma/styles that included S-RNases, HT-A protein and proteins associated with cell-wall loosening and defense responses, which could be involved in pollen-pistil interactions. Other prominent proteins in mature stigma/styles were those involved in lipid metabolism, consistent with the accumulation of lipid-rich material during pistil maturation.
Collapse
Affiliation(s)
- Subbaiah C. Chalivendra
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
- Present address: Valent BioSciences Corporation, Long Grove, IL 60047, USA
| | - Gloria Lopez-Casado
- Department of Plant Biology, 412 Mann Library Building, Cornell University, Ithaca, NY 14853, USA
- Present address: Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM) ‘La Mayora’, Centro Mixto CSIC-Universidad de Málaga, E-29760 Algarrobo-Costa, Málaga, Spain
| | - Aruna Kumar
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
- Present address: Amity Institute of Biotechnology, J3 block, Sector-125, Noida, Uttar Pradesh 201303, India
| | - Alina R. Kassenbrock
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Suzanne Royer
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | | | - Paul A. Covey
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Laura A. Dempsey
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - April M. Randle
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Stephen M. Stack
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Jocelyn K.C. Rose
- Department of Plant Biology, 412 Mann Library Building, Cornell University, Ithaca, NY 14853, USA
| | - Bruce McClure
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Patricia A. Bedinger
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| |
Collapse
|
18
|
Sanabria NM, van Heerden H, Dubery IA. Molecular characterisation and regulation of a Nicotiana tabacum S-domain receptor-like kinase gene induced during an early rapid response to lipopolysaccharides. Gene 2012; 501:39-48. [PMID: 22507449 DOI: 10.1016/j.gene.2012.03.073] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/30/2012] [Accepted: 03/31/2012] [Indexed: 01/03/2023]
Abstract
The isolation, characterization and regulation of the first lipopolysaccharide (LPS)-responsive S-domain receptor-like kinase (RLK) in Nicotiana tabacum are reported. The gene, corresponding to a differentially expressed LPS-responsive EST, was fully characterised to investigate its involvement in LPS-induced responses. The full genomic sequence, designated Nt-Sd-RLK, encodes for a S-domain RLK protein containing conserved modules (B-lectin-, S- and PAN-domains) reported to function in mediating protein-protein and protein-carbohydrate interactions in its extracellular domain, as well as the molecular architecture to transduce signals intracellularly through a Ser/Thr kinase domain. Phylogenetic analysis clustered Nt-Sd-RLK with S-domain RLKs induced by bacteria, wounding and salicylic acid. Perception of LPS induced a rapid, bi-phasic response in Nt-Sd-RLK expression with a 17-fold up-regulation at 3 and 9h. A defence-related W-box cis element was found in the promoter region of Nt-Sd-RLK and the transient induction of Nt-Sd-RLK in cultured cells by LPS exhibited a pattern typical of early response defence genes. Nt-Sd-RLK was also responsive to salicylic acid induction and was expressed in differentiated leaf tissue, where LPS elicited local as well as systemic up-regulation. The results contribute new knowledge about the potential role that S-domain RLKs may play within interactive signal transduction pathways associated with immunity and defence.
Collapse
Affiliation(s)
- Natasha M Sanabria
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | | | | |
Collapse
|
19
|
Li Y, Suen DF, Huang CY, Kung SY, Huang AH. The maize tapetum employs diverse mechanisms to synthesize and store proteins and flavonoids and transfer them to the pollen surface. PLANT PHYSIOLOGY 2012; 158:1548-61. [PMID: 22291199 PMCID: PMC3320169 DOI: 10.1104/pp.111.189241] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/24/2012] [Indexed: 05/17/2023]
Abstract
In anthers, the tapetum synthesizes and stores proteins and flavonoids, which will be transferred to the surface of adjacent microspores. The mechanism of synthesis, storage, and transfer of these pollen-coat materials in maize (Zea mays) differs completely from that reported in Arabidopsis (Arabidopsis thaliana), which stores major pollen-coat materials in tapetosomes and elaioplasts. On maize pollen, three proteins, glucanase, xylanase, and a novel protease, Zea mays pollen coat protease (ZmPCP), are predominant. During anther development, glucanase and xylanase transcripts appeared at a mid developmental stage, whereas protease transcript emerged at a late developmental stage. Protease and xylanase transcripts were present only in the anther tapetum of the plant, whereas glucanase transcript was distributed ubiquitously. ZmPCP belongs to the cysteine protease family but has no closely related paralogs. Its nascent polypeptide has a putative amino-terminal endoplasmic reticulum (ER)-targeting peptide and a propeptide. All three proteins were synthesized in the tapetum and were present on mature pollen after tapetum death. Electron microscopy of tapetum cells of mid to late developmental stages revealed small vacuoles distributed throughout the cytoplasm and numerous secretory vesicles concentrated near the locular side. Immunofluorescence microscopy and subcellular fractionation localized glucanase in ER-derived vesicles in the cytoplasm and the wall facing the locule, xylanase in the cytosol, protease in vacuoles, and flavonoids in subdomains of ER rather than in vacuoles. The nonoverlapping subcellular locations of the three proteins and flavonoids indicate distinct modes of their storage in tapetum cells and transfer to the pollen surface, which in turn reflect their respective functions in tapetum cells or the pollen surface.
Collapse
|
20
|
Isolation of a gene encoding for a class III peroxidase in female flower of Corylus avellana L. Mol Biol Rep 2012; 39:4997-5008. [DOI: 10.1007/s11033-011-1296-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 11/30/2011] [Indexed: 02/07/2023]
|
21
|
Kear PJ, McClure B. How did Flowering Plants Learn to Avoid Blind Date Mistakes? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 738:108-23. [DOI: 10.1007/978-1-4614-1680-7_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
22
|
Guo YL, Zhao X, Lanz C, Weigel D. Evolution of the S-locus region in Arabidopsis relatives. PLANT PHYSIOLOGY 2011; 157:937-46. [PMID: 21810962 PMCID: PMC3192562 DOI: 10.1104/pp.111.174912] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 08/01/2011] [Indexed: 05/21/2023]
Abstract
The S locus, a single polymorphic locus, is responsible for self-incompatibility (SI) in the Brassicaceae family and many related plant families. Despite its importance, our knowledge of S-locus evolution is largely restricted to the causal genes encoding the S-locus receptor kinase (SRK) receptor and S-locus cysteine-rich protein (SCR) ligand of the SI system. Here, we present high-quality sequences of the genomic region of six S-locus haplotypes: Arabidopsis (Arabidopsis thaliana; one haplotype), Arabidopsis lyrata (four haplotypes), and Capsella rubella (one haplotype). We compared these with reference S-locus haplotypes of the self-compatible Arabidopsis and its SI congener A. lyrata. We subsequently reconstructed the likely genomic organization of the S locus in the most recent common ancestor of Arabidopsis and Capsella. As previously reported, the two SI-determining genes, SCR and SRK, showed a pattern of coevolution. In addition, consistent with previous studies, we found that duplication, gene conversion, and positive selection have been important factors in the evolution of these two genes and appear to contribute to the generation of new recognition specificities. Intriguingly, the inactive pseudo-S-locus haplotype in the self-compatible species C. rubella is likely to be an old S-locus haplotype that only very recently became fixed when C. rubella split off from its SI ancestor, Capsella grandiflora.
Collapse
Affiliation(s)
- Ya-Long Guo
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany.
| | | | | | | |
Collapse
|
23
|
Zhang X, Wang L, Yuan Y, Tian D, Yang S. Rapid copy number expansion and recent recruitment of domains in S-receptor kinase-like genes contribute to the origin of self-incompatibility. FEBS J 2011; 278:4323-37. [DOI: 10.1111/j.1742-4658.2011.08349.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Willmann MR, Endres MW, Cook RT, Gregory BD. The Functions of RNA-Dependent RNA Polymerases in Arabidopsis. THE ARABIDOPSIS BOOK 2011; 9:e0146. [PMID: 22303271 PMCID: PMC3268507 DOI: 10.1199/tab.0146] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
One recently identified mechanism that regulates mRNA abundance is RNA silencing, and pioneering work in Arabidopsis thaliana and other genetic model organisms helped define this process. RNA silencing pathways are triggered by either self-complementary fold-back structures or the production of double-stranded RNA (dsRNA) that gives rise to small RNAs (smRNAs) known as microRNAs (miRNAs) or small-interfering RNAs (siRNAs). These smRNAs direct sequence-specific regulation of various gene transcripts, repetitive sequences, viruses, and mobile elements via RNA cleavage, translational inhibition, or transcriptional silencing through DNA methylation and heterochromatin formation. Early genetic screens in Arabidopsis were instrumental in uncovering numerous proteins required for these important regulatory pathways. Among the factors identified by these studies were RNA-dependent RNA polymerases (RDRs), which are proteins that synthesize siRNA-producing dsRNA molecules using a single-stranded RNA (ssRNA) molecule as a template. Recently, a growing body of evidence has implicated RDR-dependent RNA silencing in many different aspects of plant biology ranging from reproductive development to pathogen resistance. Here, we focus on the specific functions of the six Arabidopsis RDRs in RNA silencing, their ssRNA substrates and resulting RDR-dependent smRNAs, and the numerous biological functions of these proteins in plant development and stress responses.
Collapse
Affiliation(s)
| | | | | | - Brian D. Gregory
- Department of Biology
- PENN Genome Frontiers Institute
- Genomics and Computational Biology Graduate Program University of Pennsylvania, Philadelphia, PA 19104, USA
- Address correspondence to
| |
Collapse
|
25
|
Dwivedi SL, Perotti E, Upadhyaya HD, Ortiz R. Sexual and apomictic plant reproduction in the genomics era: exploring the mechanisms potentially useful in crop plants. ACTA ACUST UNITED AC 2010; 23:265-79. [PMID: 20509033 DOI: 10.1007/s00497-010-0144-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 05/11/2010] [Indexed: 11/26/2022]
Abstract
Arabidopsis, Mimulus and tomato have emerged as model plants in researching genetic and molecular basis of differences in mating systems. Variations in floral traits and loss of self-incompatibility have been associated with mating system differences in crops. Genomics research has advanced considerably, both in model and crop plants, which may provide opportunities to modify breeding systems as evidenced in Arabidopsis and tomato. Mating system, however, not recombination per se, has greater effect on the level of polymorphism. Generating targeted recombination remains one of the most important factors for crop genetic enhancement. Asexual reproduction through seeds or apomixis, by producing maternal clones, presents a tremendous potential for agriculture. Although believed to be under simple genetic control, recent research has revealed that apomixis results as a consequence of the deregulation of the timing of sexual events rather than being the product of specific apomixis genes. Further, forward genetic studies in Arabidopsis have permitted the isolation of novel genes reported to control meiosis I and II entry. Mutations in these genes trigger the production of unreduced or apomeiotic megagametes and are an important step toward understanding and engineering apomixis.
Collapse
Affiliation(s)
- Sangam L Dwivedi
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, 502324 AP, India.
| | | | | | | |
Collapse
|
26
|
Lin H, Moghe G, Ouyang S, Iezzoni A, Shiu SH, Gu X, Buell CR. Comparative analyses reveal distinct sets of lineage-specific genes within Arabidopsis thaliana. BMC Evol Biol 2010; 10:41. [PMID: 20152032 PMCID: PMC2829037 DOI: 10.1186/1471-2148-10-41] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 02/12/2010] [Indexed: 11/25/2022] Open
Abstract
Background The availability of genome and transcriptome sequences for a number of species permits the identification and characterization of conserved as well as divergent genes such as lineage-specific genes which have no detectable sequence similarity to genes from other lineages. While genes conserved among taxa provide insight into the core processes among species, lineage-specific genes provide insights into evolutionary processes and biological functions that are likely clade or species specific. Results Comparative analyses using the Arabidopsis thaliana genome and sequences from 178 other species within the Plant Kingdom enabled the identification of 24,624 A. thaliana genes (91.7%) that were termed Evolutionary Conserved (EC) as defined by sequence similarity to a database entry as well as two sets of lineage-specific genes within A. thaliana. One of the A. thaliana lineage-specific gene sets share sequence similarity only to sequences from species within the Brassicaceae family and are termed Conserved Brassicaceae-Specific Genes (914, 3.4%, CBSG). The other set of A. thaliana lineage-specific genes, the Arabidopsis Lineage-Specific Genes (1,324, 4.9%, ALSG), lack sequence similarity to any sequence outside A. thaliana. While many CBSGs (76.7%) and ALSGs (52.9%) are transcribed, the majority of the CBSGs (76.1%) and ALSGs (94.4%) have no annotated function. Co-expression analysis indicated significant enrichment of the CBSGs and ALSGs in multiple functional categories suggesting their involvement in a wide range of biological functions. Subcellular localization prediction revealed that the CBSGs were significantly enriched in proteins targeted to the secretory pathway (412, 45.1%). Among the 107 putatively secreted CBSGs with known functions, 67 encode a putative pollen coat protein or cysteine-rich protein with sequence similarity to the S-locus cysteine-rich protein that is the pollen determinant controlling allele specific pollen rejection in self-incompatible Brassicaceae species. Overall, the ALSGs and CBSGs were more highly methylated in floral tissue compared to the ECs. Single Nucleotide Polymorphism (SNP) analysis showed an elevated ratio of non-synonymous to synonymous SNPs within the ALSGs (1.99) and CBSGs (1.65) relative to the EC set (0.92), mainly caused by an elevated number of non-synonymous SNPs, indicating that they are fast-evolving at the protein sequence level. Conclusions Our analyses suggest that while a significant fraction of the A. thaliana proteome is conserved within the Plant Kingdom, evolutionarily distinct sets of genes that may function in defining biological processes unique to these lineages have arisen within the Brassicaceae and A. thaliana.
Collapse
Affiliation(s)
- Haining Lin
- Department of Plant Biology, Michigan State University, 166 Plant Biology Building, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Labonne JJD, Goultiaeva A, Shore JS. High-resolution mapping of the S-locus in Turnera leads to the discovery of three genes tightly associated with the S-alleles. Mol Genet Genomics 2009; 281:673-85. [PMID: 19283410 DOI: 10.1007/s00438-009-0439-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 02/25/2009] [Indexed: 10/21/2022]
Abstract
While the breeding system known as distyly has been used as a model system in genetics, and evolutionary biology for over a century, the genes determining this system remain unknown. To positionally clone genes determining distyly, a high-resolution map of the S-locus region of Turnera has been constructed using segregation data from 2,013 backcross progeny. We discovered three putative genes tightly linked with the S-locus. An N-acetyltransferase (TkNACE) flanks the S-locus at 0.35 cM while a sulfotransferase (TkST1) and a non-LTR retroelement (TsRETRO) show complete linkage to the S-locus. An assay of population samples of six species revealed that TsRETRO, initially discovered in diploid Turnera subulata, is also associated with the S-allele in tetraploid T. subulata and diploid Turnera scabra. The sulfotransferase gene shows some level of differential expression in long versus short styles, indicating it might be involved in some aspect of distyly. The complete linkage of TkST1 and TsRETRO to the S-locus suggests that both genes may reside within, or in the immediate vicinity of the S-locus. Chromosome walking has been initiated using one of the genes discovered in the present study to identify the genes determining distyly.
Collapse
Affiliation(s)
- Jonathan J D Labonne
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | | | | |
Collapse
|
28
|
Wu T, Tian Z, Liu J, Xie C. A novel leucine-rich repeat receptor-like kinase gene in potato, StLRPK1, is involved in response to diverse stresses. Mol Biol Rep 2009; 36:2365-74. [PMID: 19214776 DOI: 10.1007/s11033-009-9459-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 02/02/2009] [Indexed: 10/21/2022]
Abstract
A potato gene, StLRPK1 (Solanum tuberosum L. leucine-rich-repeat receptor-like protein kinases 1), encoding a protein belonging to leucine-rich repeat receptor-like kinases (LRR-RLKs) was identified. It encodes 796 amino acids with 88% of identity to SRF3 of Arabidopsis thaliana and contains a signal peptide, five LRR motifs, a transmembrane domain, two proline-rich regions and a serine/threonine protein kinase domain. The transcripts were present at high levels in flowers and young leaves, while low in other tested organs. The mRNA of StLRPK1 was inducible in potato leaves by Phytophthora infestans, a pathogen causing late blight disease, and showed different profiles after treatment with salicylic acid, methyl jasmonate, ethylene, abscissic acid, wounding, 40 degrees C, 4 degrees C and a salinity stress. The results suggest that StLRPK1 may participate in the responses against environmental stresses and disease resistance in potato.
Collapse
Affiliation(s)
- Tian Wu
- Key Laboratory of Horticulture Plant Biology, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Jurca ME, Bottka S, Fehér A. Characterization of a family of Arabidopsis receptor-like cytoplasmic kinases (RLCK class VI). PLANT CELL REPORTS 2008; 27:739-48. [PMID: 18087702 DOI: 10.1007/s00299-007-0494-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 11/06/2007] [Accepted: 12/01/2007] [Indexed: 05/05/2023]
Abstract
The receptor-like cytoplasmic protein kinases (RLCKs) are plant-specific proteins encoded by almost 200 genes in the Arabidopsis genome. Despite of their high number, the available information on the potential function of RLCKs is very limited. In this report, the sequence analysis and the gene expression pattern of 14 members of one of the Arabidopsis RLCK families (RLCK class VI) are described. Sequence comparison indicated that gene duplication played a significant role in the formation of the kinase family and that several members carry an N-terminal "universal stress protein" (UspA) domain. In order to gain insight into the potential function of the RLCK VI kinases, real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to determine the relative transcript levels in the various organs of the Arabidopsis plant as well as under a series of abiotic stress/hormone treatments in seedlings. The obtained data revealed the differentially regulated expression of the genes in agreement with a high variability of sequence elements in their promoters. The divergent expression patterns indicate that the encoded kinase proteins may be involved in a wide variety of signal transduction pathways related to plant development and stress responses. The significance of gene duplication and expression divergence in the extension of the Arabidopsis RLCK VI family during evolution is discussed.
Collapse
Affiliation(s)
- Manuela E Jurca
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726, Szeged, Hungary
| | | | | |
Collapse
|
30
|
Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J, Yang WC, Grossniklaus U. The FERONIA Receptor-like Kinase Mediates Male-Female Interactions During Pollen Tube Reception. Science 2007; 317:656-60. [PMID: 17673660 DOI: 10.1126/science.1143562] [Citation(s) in RCA: 476] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In flowering plants, signaling between the male pollen tube and the synergid cells of the female gametophyte is required for fertilization. In the Arabidopsis thaliana mutant feronia (fer), fertilization is impaired; the pollen tube fails to arrest and thus continues to grow inside the female gametophyte. FER encodes a synergid-expressed, plasma membrane-localized receptor-like kinase. We found that the FER protein accumulates asymmetrically in the synergid membrane at the filiform apparatus. Interspecific crosses using pollen from Arabidopsis lyrata and Cardamine flexuosa on A. thaliana stigmas resulted in a fer-like phenotype that correlates with sequence divergence in the extracellular domain of FER. Our findings show that the female control of pollen tube reception is based on a FER-dependent signaling pathway, which may play a role in reproductive isolation barriers.
Collapse
Affiliation(s)
- Juan-Miguel Escobar-Restrepo
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
31
|
Li M, Xu W, Yang W, Kong Z, Xue Y. Genome-wide gene expression profiling reveals conserved and novel molecular functions of the stigma in rice. PLANT PHYSIOLOGY 2007; 144:1797-812. [PMID: 17556504 PMCID: PMC1949881 DOI: 10.1104/pp.107.101600] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In angiosperms, the stigma provides initial nutrients and guidance cues for pollen grain germination and tube growth. However, little is known about the genes that regulate these processes in rice (Oryza sativa). Here, we generate rice stigma-specific or -preferential gene expression profiles through comparing genome-wide expression patterns of hand-dissected, unpollinated stigma at anthesis with seven tissues, including seedling shoot, seedling root, mature anther, ovary at anthesis, seeds 5 d after pollination, 10-d-old embryo, 10-d-old endosperm, and suspension-cultured cells by using both 57 K Affymetrix rice whole-genome array and 10 K rice cDNA microarray. A high reproducibility of the microarray results was detected between the two different technology platforms. In total, we identified 548 genes to be expressed specifically or predominantly in the stigma papillar cells of rice. Real-time quantitative reverse transcription-polymerase chain reaction analysis of 34 selected genes all confirmed their stigma-specific expression. The expression of five selected genes was further validated by RNA in situ hybridization. Gene Ontology analysis shows that several auxin-signaling components, transcription, and stress-related genes are significantly overrepresented in the rice stigma gene set. Interestingly, most of them also share several cis-regulatory elements with known stress-responsive genes, supporting the notion of an overlap of genetic programs regulating pollination and stress/defense responses. We also found that genes involved in cell wall metabolism and cellular communication appear to be conserved in the stigma between rice and Arabidopsis (Arabidopsis thaliana). Our results indicate that the stigmas appear to have conserved and novel molecular functions between rice and Arabidopsis.
Collapse
Affiliation(s)
- Meina Li
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Centre for Plant Gene Research, Beijing 100080, China
| | | | | | | | | |
Collapse
|
32
|
Wang H, Chevalier D, Larue C, Ki Cho S, Walker JC. The Protein Phosphatases and Protein Kinases of Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2007; 5:e0106. [PMID: 22303230 PMCID: PMC3243368 DOI: 10.1199/tab.0106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
| | | | | | | | - John C. Walker
- Corresponding author: Division of Biological Sciences, University of Missouri, Columbia MO 65211 USA,
| |
Collapse
|
33
|
Geldner N, Jürgens G. Endocytosis in signalling and development. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:589-94. [PMID: 17011816 DOI: 10.1016/j.pbi.2006.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 09/19/2006] [Indexed: 05/08/2023]
Abstract
After a long period of neglect, endocytosis in plants is finally coming of age. The constitutive recycling of plasma membrane proteins has been well established in the past few years, and recent studies report the ligand-induced endocytosis of receptors and other plasma membrane proteins. Signalling by ligand-bound receptors from endosomes has not, however, been demonstrated in plants. Although novel markers have been used to map endocytic pathways, the functional compartmentalisation of endosomes is still controversial. It is thus not clear where and how cargo proteins such as receptors are sorted towards either recycling to the plasma membrane or targeting to the vacuole for degradation.
Collapse
Affiliation(s)
- Niko Geldner
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
34
|
Haag ES. Compensatory vs. pseudocompensatory evolution in molecular and developmental interactions. Genetica 2006; 129:45-55. [PMID: 17109184 DOI: 10.1007/s10709-006-0032-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 06/17/2005] [Indexed: 11/25/2022]
Abstract
The evolution of molecules, developmental circuits, and new species are all characterized by the accumulation of incompatibilities between ancestors and descendants. When specific interactions between components are necessary at any of these levels, this requires compensatory coevolution. Theoretical treatments of compensatory evolution that only consider the endpoints predict that it should be rare because intermediate states are deleterious. However, empirical data suggest that compensatory evolution is common at all levels of molecular interaction. A general solution to this paradox is provided by plausible neutral or nearly neutral intermediates that possess informational redundancy. These intermediates provide an evolutionary path between coadapted allelic combinations. Although they allow incompatible end points to evolve, at no point was a deleterious mutation ever in need of compensation. As a result, what appears to be compensatory evolution may often actually be "pseudocompensatory." Both theoretical and empirical studies indicate that pseudocompensation can speed the evolution of intergenic incompatibility, especially when driven by adaptation. However, under strong stabilizing selection the rate of pseudocompensatory evolution is still significant. Important examples of this process at work discussed here include the evolution of rRNA secondary structures, intra- and inter-protein interactions, and developmental genetic pathways. Future empirical work in this area should focus on comparing the details of intra- and intergenic interactions in closely related organisms.
Collapse
Affiliation(s)
- Eric S Haag
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
35
|
Suen DF, Huang AHC. Maize pollen coat xylanase facilitates pollen tube penetration into silk during sexual reproduction. J Biol Chem 2006; 282:625-36. [PMID: 17062571 DOI: 10.1074/jbc.m608567200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell wall hydrolases are well documented to be present on pollen, but their roles on the stigma during sexual reproduction have not been previously demonstrated. We explored the function of the tapetum-synthesized xylanase, ZmXYN1, on maize (Zea mays L.) pollen. Transgenic lines (xyl-less) containing little or no xylanase in the pollen coat were generated with use of an antisense construct of the xylanase gene-coding region driven by the XYN1 gene promoter. Xyl-less and wild-type plants had similar vegetative growth. Electron microscopy revealed no appreciable morphological difference in anther cells and pollen between xyl-less lines and the wild type, whereas immunofluorescence microscopy and biochemical analyses indicated an absence of xylanase on xyl-less pollen. Xyl-less pollen germinated as efficiently as wild-type pollen in vitro in a liquid medium but less so on gel media of increasing solidity or on silk, which is indicative of partial impaired water uptake. Once germinated in vitro or on silk, the xyl-less and wild-type pollen tubes elongated at comparable rates. Tubes of germinated xyl-less pollen on silk did not penetrate into the silk as efficiently as tubes of wild-type pollen, and this lower efficiency could be overcome by the addition of xylanase to the silk. For wild-type pollen, coat xylanase activity on oat spelled xylan in vitro and tube penetration into silk were inhibited by xylose but not glucose. The overall findings indicate that maize pollen coat xylanase facilitates pollen tube penetration into silk via enzymatic xylan hydrolysis.
Collapse
Affiliation(s)
- Der Fen Suen
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
36
|
Morillo SA, Tax FE. Functional analysis of receptor-like kinases in monocots and dicots. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:460-9. [PMID: 16877029 DOI: 10.1016/j.pbi.2006.07.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Accepted: 07/17/2006] [Indexed: 05/03/2023]
Abstract
Receptor-like kinases (RLKs) are signaling proteins that feature an extracellular domain connected via a transmembrane domain to a cytoplasmic kinase. This architecture indicates that RLKs perceive external signals, transducing them into the cell. In plants, RLKs were first implicated in the regulation of development, in pathogen responses, and in recognition events. RLKs comprise a major gene family in plants, with more than 600 encoded in the Arabidopsis genome and more than 1100 found in rice genomes. The greater number of RLKs in rice is mostly attributable to expansions in the clades that are involved in pathogen responses. Recent functional studies in both monocots and dicots continue to identify individual RLKs that have similar developmental and abiotic stress roles. Analysis of closely related RLKs reveals that family members might have overlapping roles but can also possess distinct functions.
Collapse
Affiliation(s)
- Santiago A Morillo
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
37
|
Malhó R, Liu Q, Monteiro D, Rato C, Camacho L, Dinis A. Signalling pathways in pollen germination and tube growth. PROTOPLASMA 2006; 228:21-30. [PMID: 16937051 DOI: 10.1007/s00709-006-0162-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 06/08/2005] [Indexed: 05/11/2023]
Abstract
Signalling is an integral component in the establishment and maintenance of cellular identity. In plants, tip-growing cells represent an ideal system to investigate signal transduction mechanisms, and among these, pollen tubes (PTs) are one of the favourite models. Many signalling pathways have been identified during germination and tip growth, namely, Ca(2+), calmodulin, phosphoinositides, protein kinases, cyclic AMP, and GTPases. These constitute a large and complex web of signalling networks that intersect at various levels such as the control of vesicle targeting and fusion and the physical state of the actin cytoskeleton. Here we discuss some of the most recent advances made in PT signal transduction cascades and their implications for our future research. For reasons of space, emphasis was given to signalling mechanisms that control PT reorientation, so naturally many other relevant works have not been cited.
Collapse
Affiliation(s)
- R Malhó
- Departamento de Biologia Vegetal, Instituto de Ciência Aplicada e Tecnologia, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | | | | | | | | | | |
Collapse
|
38
|
Krupa A, Srinivasan N. Genome-wide comparative analyses of domain organisation of repertoires of protein kinases of Arabidopsis thaliana and Oryza sativa. Gene 2006; 380:1-13. [PMID: 16843620 DOI: 10.1016/j.gene.2006.05.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 05/06/2006] [Accepted: 05/18/2006] [Indexed: 10/24/2022]
Abstract
A comparative analysis on protein kinases encoded in the completely sequenced genomes of two plant species, namely Arabidopsis thaliana and Oryza sativa spp japonica cv. Nipponbare is reported in the current study. We have analysed 836 and 1386 kinases identified from A. thaliana and the O. sativa genomes respectively. Their classification into known subfamilies reveals selective expansions of the plant receptor kinase subfamily comprising of Ser/Thr receptor kinases. The presence of calcium dependent kinases, and potential absence of cyclic nucleotide-dependent protein kinase of the type found in other (non-plant) eukaryotes, are other notable features of the two plant kinomes described here. An analysis on domain organisation of each of the protein kinases encoded in the plant genome has been carried out. Uncommon composition of functional domains like nuclear translocation factor domain, redox sensor domain (PAS), ACT and lectin domains are observed in few protein kinases shared between the two plant species. Biochemical functions characteristic of the domains recruited in these protein kinase gene products suggest their mode of regulation by alternate cellular localisation, oxidation potential, amino acid flux and binding of carbohydrates. Occurrence of multi-functional kinases with diverse enzymatic modules, such as Transposases and peptidases, tethered to the kinase catalytic domain is another interesting feature of the protein kinase complement of the O. sativa genome. Co-occurrence of diverse nucleotide and carbohydrate binding domains with catalytic kinase domain containing gene products has also been observed. Putative homologues of protein kinases of A. thaliana that regulate plant-specific physiological processes like ethylene hormone response, somatic embryogenesis and pathogen defence have been identified in O. sativa genome as well.
Collapse
Affiliation(s)
- A Krupa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
39
|
Pollen–pistil barriers to crossing in maize and teosinte result from incongruity rather than active rejection. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/s00497-005-0012-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Swanson R, Clark T, Preuss D. Expression profiling of Arabidopsis stigma tissue identifies stigma-specific genes. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/s00497-005-0009-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Sainudiin R, Wong WSW, Yogeeswaran K, Nasrallah JB, Yang Z, Nielsen R. Detecting site-specific physicochemical selective pressures: applications to the Class I HLA of the human major histocompatibility complex and the SRK of the plant sporophytic self-incompatibility system. J Mol Evol 2005; 60:315-26. [PMID: 15871042 DOI: 10.1007/s00239-004-0153-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 10/20/2004] [Indexed: 11/24/2022]
Abstract
Models of codon substitution are developed that incorporate physicochemical properties of amino acids. When amino acid sites are inferred to be under positive selection, these models suggest the nature and extent of the physicochemical properties under selection. This is accomplished by first partitioning the codons on the basis of some property of the encoded amino acids. This partition is used to parametrize the rates of property-conserving and property-altering base substitutions at the codon level by means of finite mixtures of Markov models that also account for codon and transition:transversion biases. Here, we apply this method to two positively selected receptors involved in ligand-recognition: the class I alleles of the human major histocompatibility complex (MHC) of known structure and the S-locus receptor kinase (SRK) of the sporophytic self-incompatibility system (SSI) in cruciferous plants (Brassicaceae), whose structure is unknown. Through likelihood ratio tests we demonstrate that at some sites, the positively selected MHC and SRK proteins are under physicochemical selective pressures to alter polarity, volume, polarity and/or volume, and charge to various extents. An empirical Bayes approach is used to identify sites that may be important for ligand recognition in these proteins.
Collapse
Affiliation(s)
- Raazesh Sainudiin
- Department of Statistical Science, Cornell University, Ithaca, NY14853, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Scheer JM, Pearce G, Ryan CA. LeRALF, a plant peptide that regulates root growth and development, specifically binds to 25 and 120 kDa cell surface membrane proteins of Lycopersicon peruvianum. PLANTA 2005; 221:667-74. [PMID: 15909150 DOI: 10.1007/s00425-004-1442-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Accepted: 11/01/2004] [Indexed: 05/02/2023]
Abstract
A photoaffinity analog of tomato leaf RALF peptide (LeRALF), (125)I-azido-LeRALF, bound saturably to tomato suspension cultured cells in the dark in a classical receptor binding assay. Classical kinetic analyses revealed that the analog interacted with a single binding site on the surface of the cells with a KD of 0.8x10(-9) M, typical of known peptide hormone-receptor interactions in both plants and animals. The (125)I-azido-LeRALF, when exposed to UVB light in the presence of the cells, strongly labeled only two proteins of 25 kDa and 120 kDa, with the 25 kDa protein being more strongly labeled than the 120 kDa protein. The cell-surface localization of the interaction was indicated, as suramin, a known inhibitor of peptide-receptor interactions, and native LeRALF peptide competed with (125)I-azido-LeRALF labeling of both proteins. Two biologically inactive LeRALF analogs were not competitors. Incubation of (125)I-azido-LeRALF with suspension cultured cells in the dark, where it was fully active, could subsequently be totally dissociated from cells by acid washes, indicating that it was interacting at the cell surface and was not internalized. The (125)I-azido-LeRALF-labeled 25 kDa and 120 kDa proteins could not be solubilized from cell membranes by methods that release peripheral proteins, indicating that they are integral membrane components. The cumulative kinetic and biochemical evidence strongly indicates that the two proteins may be components of a LeRALF receptor complex.
Collapse
Affiliation(s)
- Justin M Scheer
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | | | |
Collapse
|
43
|
Tung CW, Dwyer KG, Nasrallah ME, Nasrallah JB. Genome-wide identification of genes expressed in Arabidopsis pistils specifically along the path of pollen tube growth. PLANT PHYSIOLOGY 2005; 138:977-89. [PMID: 15894741 PMCID: PMC1150412 DOI: 10.1104/pp.105.060558] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant reproductive development is dependent on successful pollen-pistil interactions. In crucifers, the pollen tube must breach the stigma surface and burrow through the extracellular matrix of the stigma epidermal cells and transmitting tract cells before reaching its ovule targets. The high degree of specificity in pollen-pistil interactions and the precision of directional pollen tube growth suggest that signals are continually being exchanged between pollen/pollen tubes and cells of the pistil that line their path. However, with few exceptions, little is known about the genes that control these interactions. The specialized functions of stigma epidermal cells and transmitting tract cells are likely to depend on the activity of genes expressed specifically in these cells. In order to identify these genes, we used the Arabidopsis (Arabidopsis thaliana) ATH1 microarray to compare the whole-genome transcriptional profiles of stigmas and ovaries isolated from wild-type Arabidopsis and from transgenic plants in which cells of the stigma epidermis and transmitting tract were specifically ablated by expression of a cellular toxin. Among the 23,000 genes represented on the array, we identified 115 and 34 genes predicted to be expressed specifically in the stigma epidermis and transmitting tract, respectively. Both gene sets were significantly enriched in predicted secreted proteins, including potential signaling components and proteins that might contribute to reinforcing, modifying, or remodeling the structure of the extracellular matrix during pollination. The possible role of these genes in compatible and incompatible pollen-pistil interactions is discussed.
Collapse
Affiliation(s)
- Chih-Wei Tung
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
44
|
Affiliation(s)
- David R Smyth
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia.
| |
Collapse
|
45
|
Abstract
Sexual reproduction in many flowering plants involves self-incompatibility (SI), which is one of the most important systems to prevent inbreeding. In many species, the self-/nonself-recognition of SI is controlled by a single polymorphic locus, the S-locus. Molecular dissection of the S-locus revealed that SI represents not one system, but a collection of divergent mechanisms. Here, we discuss recent advances in the understanding of three distinct SI mechanisms, each controlled by two separate determinant genes at the S-locus. In the Brassicaceae, the determinant genes encode a pollen ligand and its stigmatic receptor kinase; their interaction induces incompatible signaling(s) within the stigma papilla cells. In the Solanaceae-type SI, the determinants are a ribonuclease and an F-box protein, suggesting the involvement of RNA and protein degradation in the system. In the Papaveraceae, the only identified female determinant induces a Ca2+-dependent signaling network that ultimately results in the death of incompatible pollen.
Collapse
Affiliation(s)
- Seiji Takayama
- Laboratory of Intercellular Communications, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan.
| | | |
Collapse
|
46
|
Ma H. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. ANNUAL REVIEW OF PLANT BIOLOGY 2005; 56:393-434. [PMID: 15862102 DOI: 10.1146/annurev.arplant.55.031903.141717] [Citation(s) in RCA: 423] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In flowering plants, male reproductive development requires the formation of the stamen, including the differentiation of anther tissues. Within the anther, male meiosis produces microspores, which further develop into pollen grains, relying on both sporophytic and gametophytic gene functions. The mature pollen is released when the anther dehisces, allowing pollination to occur. Molecular studies have identified a large number of genes that are expressed during stamen and pollen development. Genetic analyses have demonstrated the function of some of these genes in specifying stamen identity, regulating anther cell division and differentiation, controlling male meiosis, supporting pollen development, and promoting anther dehiscence. These genes encode a variety of proteins, including transcriptional regulators, signal transduction proteins, regulators of protein degradation, and enzymes for the biosynthesis of hormones. Although much has been learned in recent decades, much more awaits to be discovered and understood; the future of the study of plant male reproduction remains bright and exciting with the ever-growing tool kits and rapidly expanding information and resources for gene function studies.
Collapse
Affiliation(s)
- Hong Ma
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
47
|
Nasrallah ME, Liu P, Sherman-Broyles S, Boggs NA, Nasrallah JB. Natural variation in expression of self-incompatibility in Arabidopsis thaliana: implications for the evolution of selfing. Proc Natl Acad Sci U S A 2004; 101:16070-4. [PMID: 15505209 PMCID: PMC528763 DOI: 10.1073/pnas.0406970101] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The switch from an out-crossing to a self-fertilizing mating system is one of the most prevalent evolutionary trends in plant reproduction and is thought to have occurred repeatedly in flowering plants. However, little is known about the evolution of self-fertility and the genetic architecture of selfing. Here, we establish Arabidopsis thaliana as a model for genetic analysis of the switch to self-fertility in the crucifer family, where the ancestral out-crossing mode of mating is determined by self-incompatibility (SI), a genetic system controlled by the S locus. We show that A. thaliana ecotypes exhibit S-locus polymorphisms and differ in their ability to express the SI trait upon transformation with S-locus genes derived from the obligate out-crosser Arabidopsis lyrata. Remarkably, at least one ecotype was reverted to a stable, self-incompatible phenotype identical to that of naturally self-incompatible species. These ecotype differences are heritable and reflect the fixation in different A. thaliana populations of independent mutations that caused or enforced the switch to self-fertility. Their continued analysis promises to identify the loci that were the targets of natural selection for selfing and to contribute to a mechanistic understanding of the SI response.
Collapse
Affiliation(s)
- M E Nasrallah
- Department of Plant Biology, Cornell University, Ithaca, NY 14853
| | | | | | | | | |
Collapse
|
48
|
Yang T, Chaudhuri S, Yang L, Chen Y, Poovaiah BW. Calcium/calmodulin up-regulates a cytoplasmic receptor-like kinase in plants. J Biol Chem 2004; 279:42552-9. [PMID: 15292241 DOI: 10.1074/jbc.m402830200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium/calmodulin-dependent kinases play an important role in protein phosphorylation in eukaryotes. However, not much is known about calcium/calmodulin-dependent protein phosphorylation and its role in signal transduction in plants. By using a protein-protein interaction-based approach, we have isolated a novel plant-specific calmodulin-binding receptor-like cytoplasmic kinase (CRCK1) from Arabidopsis thaliana, as well as its ortholog from Medicago sativa (alfalfa). CRCK1 does not show high homology to calcium/calmodulin-dependent protein kinases in animals. In contrast, it shows high homology in the kinase domain to serine/threonine receptor-like kinases in plants. However, it contains neither a transmembrane domain nor an extracellular domain. Calmodulin binds to CRCK1 in a calcium-dependent manner with an affinity of approximately 20.5 nm. The calmodulin-binding site in CRCK1 is located in amino acids 160-183, which overlap subdomain II of the kinase domain. CRCK1 undergoes autophosphorylation in the presence of Mg2+ at the threonine residue(s). The Km and Vmax values of CRCK1 for ATP are 1 microm and 33.6 pmol/mg/min, respectively. Calcium/calmodulin stimulates the kinase activity of CRCK1, which increases the Vmax of CRCK1 approximately 9-fold. The expression of CRCK1 is increased in response to stresses such as cold and salt and stress molecules such as abscisic acid and hydrogen peroxide. These results indicate the presence of a calcium/calmodulin-regulated receptor-like cytoplasmic kinase in plants. Furthermore, these results also suggest that calcium/calmodulin-regulated protein phosphorylation involving CRCK1 plays a role in stress signal transduction in plants.
Collapse
Affiliation(s)
- Tianbao Yang
- Center for Integrated Biotechnology and Department of Horticulture, Washington State University, Pullman, Washington 99164-6414, USA
| | | | | | | | | |
Collapse
|
49
|
Hennig L, Gruissem W, Grossniklaus U, Köhler C. Transcriptional programs of early reproductive stages in Arabidopsis. PLANT PHYSIOLOGY 2004; 135:1765-75. [PMID: 15247381 PMCID: PMC519088 DOI: 10.1104/pp.104.043182] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2004] [Revised: 04/19/2004] [Accepted: 04/23/2004] [Indexed: 05/18/2023]
Abstract
The life cycle of flowering plants alternates between a diploid sporophytic and a haploid gametophytic generation. After fertilization of each the egg and central cells by one male gamete, the development of both fertilization products occurs coordinated with the maternally derived seed coat and carpel tissues forming the fruit. The reproduction program is likely to involve the concerted activity of many genes. To identify genes with specific functions during reproduction, we have analyzed the expression profile of more than 22,000 genes present on the Arabidopsis ATH1 microarray during three stages of flower and fruit development. We found 1,886 genes regulated during reproductive development and 1,043 genes that were specifically expressed during reproduction. When compared to cells from an Arabidopsis suspension culture, S-phase genes were underrepresented and G2 and M-phase genes were strongly enriched in the set of specific genes, indicating that important functions during reproduction are exerted in the G2 and M phases of the cell cycle. Many potential signaling components, such as receptor-like protein kinases, phosphatases, and transcription factors, were present in both groups of genes. Members of the YABBY, MADS box, and Myb transcription factor families were significantly overrepresented in the group of specific genes, revealing an important role of these families during reproduction. Furthermore, we found a significant enrichment of predicted secreted proteins smaller than 15 kD that could function directly as signaling molecules or as precursors for peptide hormones. Our study provides a basis for targeted reverse-genetic approaches aimed to identify key genes of reproductive development in plants.
Collapse
Affiliation(s)
- Lars Hennig
- Institute of Plant Sciences and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, ETH Center, CH-8092 Zurich, Switzerland
| | | | | | | |
Collapse
|
50
|
Wen J, Lease KA, Walker JC. DVL, a novel class of small polypeptides: overexpression alters Arabidopsis development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:668-77. [PMID: 14871303 DOI: 10.1111/j.1365-313x.2003.01994.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Small polypeptides can act as important regulatory molecules that coordinate cellular responses required for differentiation, growth, and development. In a gain-of-function genetic screen for genes that influence fruit development in Arabidopsis, we identified a novel gene -DEVIL1 (DVL1) - encoding a small protein. Overexpression of DVL1 results in pleiotropic phenotypes featured by shortened stature, rounder rosette leaves, clustered inflorescences, shortened pedicles, and siliques with pronged tips. cDNA analysis indicates that DVL1 has a 153-nucleotide (nt) open-reading frame (ORF) encoding a 51-amino acid polypeptide that shares no significant similarity to previously identified proteins. Sequence alignment shows that DVL1 belongs to a family of related genes that are limited to angiosperm plants. Ectopic overexpression of each of the five closely related Arabidopsis DVL genes causes similar phenotypic changes, suggesting overlapping function in the DVL gene family. Point mutations of conserved amino acids in the C-terminal region of the DVL1 polypeptide reveal that these conserved residues are required for DVL1-overexpression phenotypes. Our results show that the DVL family is a novel class of small polypeptides and the overexpression phenotypes suggest that these polypeptides may have a role in plant development.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Fruit/genetics
- Fruit/growth & development
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genome, Plant
- MADS Domain Proteins/genetics
- MADS Domain Proteins/metabolism
- Molecular Sequence Data
- Multigene Family
- Mutation
- Phenotype
- Phylogeny
- RNA Interference
- RNA, Antisense/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Jiangqi Wen
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211-7400, USA
| | | | | |
Collapse
|