1
|
Saikia R, Kaldis A, Spetz CJ, Borah BK, Voloudakis A. Silencing of Putative Plasmodesmata-Associated Genes PDLP and SRC2 Reveals Their Differential Involvement during Plant Infection with Cucumber Mosaic Virus. PLANTS (BASEL, SWITZERLAND) 2025; 14:495. [PMID: 39943057 PMCID: PMC11819965 DOI: 10.3390/plants14030495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
Plant viruses utilize a subset of host plasmodesmata-associated proteins to establish infection in plants. In the present study, we aimed to understand the role of two plant genes, one encoding a putative plasmodesma located protein (PDLP) and a homolog of soybean gene regulated by cold 2 protein (SRC2) during Cucumber mosaic virus (CMV) infection. Virus-induced gene silencing (VIGS) was used to silence PDLP and SRC2 genes in Nicotiana benthamiana and in two related solanaceous plants, N. tabacum and Capsicum chinense Jacq. (Bhut Jolokia). Up to 50% downregulation in the expression of the PDLP gene using the TRV2-PDLP VIGS construct was observed in N. benthamiana and N. tabacum while, using the same gene construct, 30% downregulation of the target mRNA was observed in C. chinense. Similarly, using the TRV2-SRC2 VIGS construct, a 60% downregulation of the SRC2 mRNA was observed in N. benthamiana, N. tabacum, and a 40% downregulation in C. chinense as confirmed by qRT-PCR analysis. Downregulation of the PDLP gene in N. benthamiana resulted in delayed symptom appearance up to 7-12 days post inoculation with reduced CMV accumulation compared to the control plants expressing TRV2-eGFP. In contrast, SRC2-silenced plants showed enhanced susceptibility to CMV infection compared to the control plants. Our data suggest that the PDLP gene might facilitate infection of CMV, thus being a susceptibility factor, while the SRC2 gene could play a role in resistance to CMV infection in N. benthamiana.
Collapse
Affiliation(s)
- Richita Saikia
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (R.S.); (A.K.)
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, Assam, India;
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, 1433 Ås, Norway;
| | - Athanasios Kaldis
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (R.S.); (A.K.)
| | - Carl Jonas Spetz
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, 1433 Ås, Norway;
| | - Basanta Kumar Borah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, Assam, India;
| | - Andreas Voloudakis
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (R.S.); (A.K.)
| |
Collapse
|
2
|
Ibrahim A, Sasaki N, Schoelz JE, Nelson RS. Tobacco Mosaic Virus Movement: From Capsid Disassembly to Transport Through Plasmodesmata. Viruses 2025; 17:214. [PMID: 40006969 PMCID: PMC11861069 DOI: 10.3390/v17020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Determining mechanisms to establish an initial infection and form intracellular complexes for accumulation and movement of RNA plant viruses are important areas of study in plant virology. The impact of these findings on the basic understanding of plant molecular virology and its application in agriculture is significant. Studies with tobacco mosaic virus (TMV) and related tobamoviruses often provide important foundational knowledge for studies involving other viruses. Topics discussed here include capsid disassembly, establishment of a virus replication complex (VRC), and transport of the VRCs or virus components within the cell to locations at the plasmodesmata for intercellular virus RNA (vRNA) movement. Seminal findings with TMV and related tobamoviruses include detecting co-translational disassembly of the vRNA from the virus rod, full sequencing of genomic vRNA and production of infectious transcript for genetic studies determining virus components necessary for intercellular movement, and biochemical and cell biological studies determining the host factors, protein and membrane, needed for replication and movement. This review highlights many of the studies through the years on TMV and selected tobamoviruses that have impacted not only our understanding of tobamovirus accumulation and movement but also that of other plant viruses.
Collapse
Affiliation(s)
- Amr Ibrahim
- Department of Nucleic Acid and Protein Structure, Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Nobumitsu Sasaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu 183-8509, Japan;
| | - James E. Schoelz
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA;
| | | |
Collapse
|
3
|
Shi Z, Wu J, Mo H, Xue W, Zhang Z, Pang X. Identification of an ethylene-responsive and cell wall-secreting β-1,3-glucanase, VvGLU1, in the early cell regrowth of grape winter buds triggered by exogenous dormancy releasers. BMC Biol 2025; 23:22. [PMID: 39849520 PMCID: PMC11756123 DOI: 10.1186/s12915-025-02120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Grape (Vitis vinifera) crops encounter significant challenges in overcoming bud endodormancy in warm winter areas worldwide. Research on the mechanisms governing bud dormancy release has focused primarily on stress regulation; however, cell wall regulation of bud meristem regrowth mechanism during the dormancy release remains obscure. RESULTS In this study, transmission electron microscopy revealed significant changes in the grape bud cell wall following hydrogen cyanamide (HC) treatment, accompanied by an increase in β-1,3-glucanase activity. We then investigated the potential contribution of β-1,3-glucanases (GLUs) to the regulation of cell wall remodeling. Forty-eight VvGLUs distributed in clades α, β, and γ were identified and nominated based on the genome data of V. vinifera. Three γ-clade VvGLUs (VvGLU1, VvGLU16, and VvGLU32) were upregulated by dormancy-releasing stimuli, including HC, sodium azide (AZ), ethylene and hypoxia. Among these, VvGLU1 presented increased gene transcription and protein expression in response to HC and ethylene treatment. The VvGLU1 promoter positively responded to ethylene, and its activity could be activated by VvERF57. Using both immunogold labeling and GFP fusion protein analysis, we observed that VvGLU1 localized in the endoplasmic reticulum, accumulated in the vacuole, and was secreted into the cell wall during HC-triggered dormancy release. CONCLUSIONS Based on these findings, we propose that ethylene-regulated VvGLU1 plays a pivotal role in cell wall remodeling, thereby facilitating the regrowth of the bud meristem.
Collapse
Affiliation(s)
- Zhaowan Shi
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Jiamin Wu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hairuo Mo
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Weiwen Xue
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoqi Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xuequn Pang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Ershova NM, Kamarova KA, Sheshukova EV, Komarova TV. Cellular Partners of Tobamoviral Movement Proteins. Int J Mol Sci 2025; 26:400. [PMID: 39796254 PMCID: PMC11721203 DOI: 10.3390/ijms26010400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
The size of viral genomes is limited, thus the majority of encoded proteins possess multiple functions. The main function of tobamoviral movement protein (MP) is to perform plasmodesmata gating and mediate intercellular transport of the viral RNA. MP is a remarkable example of a protein that, in addition to the initially discovered and most obvious function, carries out numerous activities that are important both for the manifestation of its key function and for successful and productive infection in general. Briefly, MP binds the viral genome, delivers it to the plasmodesmata (PD) and mediates its intercellular transfer. To implement the transport function, MP interacts with diverse cellular factors. Each of these cellular proteins has its own function, which could be different under normal conditions and upon viral infection. Here, we summarize the data available at present on the plethora of cellular factors that were identified as tobamoviral MP partners and analyze the role of these interactions in infection development.
Collapse
Affiliation(s)
- Natalia M. Ershova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119333 Moscow, Russia; (N.M.E.); (K.A.K.); (E.V.S.)
| | - Kamila A. Kamarova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119333 Moscow, Russia; (N.M.E.); (K.A.K.); (E.V.S.)
| | - Ekaterina V. Sheshukova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119333 Moscow, Russia; (N.M.E.); (K.A.K.); (E.V.S.)
| | - Tatiana V. Komarova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119333 Moscow, Russia; (N.M.E.); (K.A.K.); (E.V.S.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
5
|
Singh P, Raj R, Savithri H. Five questions on the cell-to-cell movement of Orthotospoviruses. BBA ADVANCES 2024; 6:100124. [PMID: 39498475 PMCID: PMC11533504 DOI: 10.1016/j.bbadva.2024.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Plant viruses employ Movement proteins (MP) for their cell to cell spread through plasmodesmata (PD). MP modifies the PD and increases its size exclusion limit (SEL). However, the mechanism by which MPs are targeted to the PD is still unresolved and there is a lack of consensus owing to limited studies on their biochemical and structural characters. The non structural protein m (NSm) functions as the MP in Orthotospoviruses. Tospoviral NSm associate with ER membrane. They also form tubules in protoplasts. Groundnut bud necrosis virus (GBNV), a tospovirus, infects several crop plants throughout India and is economically very important. GBNV NSm associates with the membrane strongly via the C-terminal coiled-coil domain, modifies the membrane and causes vesicle fusion in vitro and remodels the ER network into vesicles in vivo. These vesicles are in contrast to the tubules formed by other related tospovirus in cells lacking cell wall. In this review, five important questions on the cell-to-cell movement of tospoviruses have been addressed and based on the various reports, a plausible model on the cell-to-cell movement of Orthotospoviruses is presented.
Collapse
Affiliation(s)
- Pratibha Singh
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - Rishi Raj
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - H.S. Savithri
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
6
|
Zhang H, Xiao X, Li Z, Chen Y, Li P, Peng R, Lu Q, Wang Y. Exploring the plasmodesmata callose-binding protein gene family in upland cotton: unraveling insights for enhancing fiber length. PeerJ 2024; 12:e17625. [PMID: 38948221 PMCID: PMC11214431 DOI: 10.7717/peerj.17625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/02/2024] [Indexed: 07/02/2024] Open
Abstract
Plasmodesmata are transmembrane channels embedded within the cell wall that can facilitate the intercellular communication in plants. Plasmodesmata callose-binding (PDCB) protein that associates with the plasmodesmata contributes to cell wall extension. Given that the elongation of cotton fiber cells correlates with the dynamics of the cell wall, this protein can be related to the cotton fiber elongation. This study sought to identify PDCB family members within the Gossypium. hirsutum genome and to elucidate their expression profiles. A total of 45 distinct family members were observed through the identification and screening processes. The analysis of their physicochemical properties revealed the similarity in the amino acid composition and molecular weight across most members. The phylogenetic analysis facilitated the construction of an evolutionary tree, categorizing these members into five groups mainly distributed on 20 chromosomes. The fine mapping results facilitated a tissue-specific examination of group V, revealing that the expression level of GhPDCB9 peaked five days after flowering. The VIGS experiments resulted in a marked decrease in the gene expression level and a significant reduction in the mature fiber length, averaging a shortening of 1.43-4.77 mm. The results indicated that GhPDCB9 played a pivotal role in the cotton fiber development and served as a candidate for enhancing cotton yield.
Collapse
Affiliation(s)
- Haibo Zhang
- College of Agriculture, Tarim University, Alar, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Xianghui Xiao
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Ziyin Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Yu Chen
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Renhai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Quanwei Lu
- College of Agriculture, Tarim University, Alar, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Youwu Wang
- College of Agriculture, Tarim University, Alar, China
| |
Collapse
|
7
|
Kurotani KI, Kawakatsu Y, Kikkawa M, Tabata R, Kurihara D, Honda H, Shimizu K, Notaguchi M. Analysis of plasmodesmata permeability using cultured tobacco BY-2 cells entrapped in microfluidic chips. JOURNAL OF PLANT RESEARCH 2022; 135:693-701. [PMID: 35834070 DOI: 10.1007/s10265-022-01406-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Plasmodesmata are unique channel structures in plants that link the fluid cytoplasm between adjacent cells. Plants have evolved these microchannels to allow trafficking of nutritious substances as well as regulatory factors for intercellular communication. However, tracking the behavior of plasmodesmata in real time is difficult because they are located inside tissues. Hence, a system was constructed to monitor the movement of substances by plasmodesmata using tobacco BY-2 cells, which are linearly organized cells, and a microfluidic device that traps them in place and facilitates observation. After targeting one cell for photobleaching, recovery of the lost H2B-GFP protein was detected within 200 min. No recovery was detected in that time frame by photobleaching the entire cell filaments. This suggested that the recovery of H2B-GFP protein was not due to de novo protein synthesis, but rather to translocation from neighboring cells. The transport of H2B-GFP protein was not observed when sodium chloride, a compound known to cause plasmodesmata closure, was present in the microfluid channel. Thus, using the microfluidic device and BY-2 cells, it was confirmed that the behavior of plasmodesmata could be observed in real time under controllable conditions.
Collapse
Affiliation(s)
- Ken-Ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Yaichi Kawakatsu
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Masahiro Kikkawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Ryo Tabata
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daisuke Kurihara
- JST PRESTO, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Kazunori Shimizu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan.
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan.
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan.
| |
Collapse
|
8
|
Kirk P, Amsbury S, German L, Gaudioso-Pedraza R, Benitez-Alfonso Y. A comparative meta-proteomic pipeline for the identification of plasmodesmata proteins and regulatory conditions in diverse plant species. BMC Biol 2022; 20:128. [PMID: 35655273 PMCID: PMC9164936 DOI: 10.1186/s12915-022-01331-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/16/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND A major route for cell-to-cell signalling in plants is mediated by cell wall-embedded pores termed plasmodesmata forming the symplasm. Plasmodesmata regulate the plant development and responses to the environment; however, our understanding of what factors or regulatory cues affect their structure and permeability is still limited. In this paper, a meta-analysis was carried out for the identification of conditions affecting plasmodesmata transport and for the in silico prediction of plasmodesmata proteins in species for which the plasmodesmata proteome has not been experimentally determined. RESULTS Using the information obtained from experimental proteomes, an analysis pipeline (named plasmodesmata in silico proteome 1 or PIP1) was developed to rapidly generate candidate plasmodesmata proteomes for 22 plant species. Using the in silico proteomes to interrogate published transcriptomes, gene interaction networks were identified pointing to conditions likely affecting plasmodesmata transport capacity. High salinity, drought and osmotic stress regulate the expression of clusters enriched in genes encoding plasmodesmata proteins, including those involved in the metabolism of the cell wall polysaccharide callose. Experimental determinations showed restriction in the intercellular transport of the symplasmic reporter GFP and enhanced callose deposition in Arabidopsis roots exposed to 75-mM NaCl and 3% PEG (polyethylene glycol). Using PIP1 and transcriptome meta-analyses, candidate plasmodesmata proteins for the legume Medicago truncatula were generated, leading to the identification of Medtr1g073320, a novel receptor-like protein that localises at plasmodesmata. Expression of Medtr1g073320 affects callose deposition and the root response to infection with the soil-borne bacteria rhizobia in the presence of nitrate. CONCLUSIONS Our study shows that combining proteomic meta-analysis and transcriptomic data can be a valuable tool for the identification of new proteins and regulatory mechanisms affecting plasmodesmata function. We have created the freely accessible pipeline PIP1 as a resource for the screening of experimental proteomes and for the in silico prediction of PD proteins in diverse plant species.
Collapse
Affiliation(s)
- Philip Kirk
- Centre for Plant Science, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sam Amsbury
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Liam German
- Centre for Plant Science, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | | |
Collapse
|
9
|
Shimizu K, Kawakatsu Y, Kurotani KI, Kikkawa M, Tabata R, Kurihara D, Honda H, Notaguchi M. Development of microfluidic chip for entrapping tobacco BY-2 cells. PLoS One 2022; 17:e0266982. [PMID: 35421187 PMCID: PMC9009702 DOI: 10.1371/journal.pone.0266982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
The tobacco BY-2 cell line has been used widely as a model system in plant cell biology. BY-2 cells are nearly transparent, which facilitates cell imaging using fluorescent markers. As cultured cells are drifted in the medium, therefore, it was difficult to observe them for a long period. Hence, we developed a microfluidic device that traps BY-2 cells and fixes their positions to allow monitoring the physiological activity of cells. The device contains 112 trap zones, with parallel slots connected in series at three levels in the flow channel. BY-2 cells were cultured for 7 days and filtered using a sieve and a cell strainer before use to isolate short cell filaments consisting of only a few cells. The isolated cells were introduced into the flow channel, resulting in entrapment of cell filaments at 25 out of 112 trap zones (22.3%). The cell numbers increased through cell division from 1 to 4 days after trapping with a peak of mitotic index on day 2. Recovery experiments of fluorescent proteins after photobleaching confirmed cell survival and permeability of plasmodesmata. Thus, this microfluidic device and one-dimensional plant cell samples allowed us to observe cell activity in real time under controllable conditions.
Collapse
Affiliation(s)
- Kazunori Shimizu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Yaichi Kawakatsu
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Ken-ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Masahiro Kikkawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Ryo Tabata
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daisuke Kurihara
- JST PRESTO, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Michitaka Notaguchi
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
| |
Collapse
|
10
|
Isolation of Plasmodesmata Membranes for Lipidomic and Proteomic Analysis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2457:189-207. [PMID: 35349141 DOI: 10.1007/978-1-0716-2132-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Plasmodesmata (PD) are membranous intercellular nanochannels crossing the plant cell wall to connect adjacent cells in plants. Our understanding of PD function heavily relies on the identification of their molecular components, these being proteins or lipids. In that regard, proteomic and lipidomic analyses of purified PD represent a crucial strategy in the field. Here we describe a simple two-step purification procedure that allows isolation of pure PD-derived membranes from Arabidopsis suspension cells suitable for "omic" approaches. The first step of this procedure consists on isolating pure cell walls containing intact PD, followed by a second step which involves an enzymatic degradation of the wall matrix to release PD membranes. The PD-enriched fraction can then serve to identify the lipid and protein composition of PD using lipidomic and proteomic approaches, which we also describe in this method article.
Collapse
|
11
|
Miras M, Pottier M, Schladt TM, Ejike JO, Redzich L, Frommer WB, Kim JY. Plasmodesmata and their role in assimilate translocation. JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153633. [PMID: 35151953 DOI: 10.1016/j.jplph.2022.153633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
During multicellularization, plants evolved unique cell-cell connections, the plasmodesmata (PD). PD of angiosperms are complex cellular domains, embedded in the cell wall and consisting of multiple membranes and a large number of proteins. From the beginning, it had been assumed that PD provide passage for a wide range of molecules, from ions to metabolites and hormones, to RNAs and even proteins. In the context of assimilate allocation, it has been hypothesized that sucrose produced in mesophyll cells is transported via PD from cell to cell down a concentration gradient towards the phloem. Entry into the sieve element companion cell complex (SECCC) is then mediated on three potential routes, depending on the species and conditions, - either via diffusion across PD, after conversion to raffinose via PD using a polymer trap mechanism, or via a set of transporters which secrete sucrose from one cell and secondary active uptake into the SECCC. Multiple loading mechanisms can likely coexist. We here review the current knowledge regarding photoassimilate transport across PD between cells as a prerequisite for translocation from leaves to recipient organs, in particular roots and developing seeds. We summarize the state-of-the-art in protein composition, structure, transport mechanism and regulation of PD to apprehend their functions in carbohydrate allocation. Since many aspects of PD biology remain elusive, we highlight areas that require new approaches and technologies to advance our understanding of these enigmatic and important cell-cell connections.
Collapse
Affiliation(s)
- Manuel Miras
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Mathieu Pottier
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - T Moritz Schladt
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - J Obinna Ejike
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Laura Redzich
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Wolf B Frommer
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| | - Ji-Yun Kim
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| |
Collapse
|
12
|
Kirk P, Benitez-Alfonso Y. Plasmodesmata Structural Components and Their Role in Signaling and Plant Development. Methods Mol Biol 2022; 2457:3-22. [PMID: 35349130 DOI: 10.1007/978-1-0716-2132-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmodesmata are plant intercellular channels that mediate the transport of small and large molecules including RNAs and transcription factors (TFs) that regulate plant development. In this review, we present current research on plasmodesmata form and function and discuss the main regulatory pathways. We show the progress made in the development of approaches and tools to dissect the plasmodesmata proteome in diverse plant species and discuss future perspectives and challenges in this field of research.
Collapse
Affiliation(s)
- Philip Kirk
- Centre for Plant Science, School of Biology, University of Leeds, Leeds, UK
| | | |
Collapse
|
13
|
Diao M, Huang S. Quantification of Plasmodesmata Permeability in Arabidopsis Leaves by Tracing the Movement of GFP. Methods Mol Biol 2022; 2457:313-320. [PMID: 35349150 DOI: 10.1007/978-1-0716-2132-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmodesmata (PD) play an important role in plant growth and development and defense. The permeability of PD is strictly regulated. Here, we describe an assay for measuring the permeability of PD in Arabidopsis thaliana leaves, which relies on tracing intercellular movement of green fluorescent protein (GFP) upon transient expression of the protein-encoding plasmid delivered by particle bombardment. The method allows to assess GFP movement at single-cell resolution.
Collapse
Affiliation(s)
- Min Diao
- iHuman Institute, Shanghai Tech University, Shanghai, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
14
|
Li Y, Li Y, Chen Y, Wang M, Yang J, Zhang X, Zhu L, Kong J, Min L. Genome-wide identification, evolutionary estimation and functional characterization of two cotton CKI gene types. BMC PLANT BIOLOGY 2021; 21:229. [PMID: 34022812 PMCID: PMC8140429 DOI: 10.1186/s12870-021-02990-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/21/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Casein kinase I (CKI) is a kind of serine/threonine protein kinase highly conserved in plants and animals. Although molecular function of individual member of CKI family has been investigated in Arabidopsis, little is known about their evolution and functions in Gossypium. RESULTS In this study, five cotton species were applied to study CKI gene family in cotton, twenty-two species were applied to trace the origin and divergence of CKI genes. Four important insights were gained: (i) the cotton CKI genes were classified into two types based on their structural characteristics; (ii) two types of CKI genes expanded with tetraploid event in cotton; (iii) two types of CKI genes likely diverged about 1.5 billion years ago when red and green algae diverged; (iv) two types of cotton CKI genes which highly expressed in leaves showed stronger response to photoperiod (circadian clock) and light signal, and most two types of CKI genes highly expressed in anther showed identical heat inducible expression during anther development in tetraploid cotton (Gossypium hirsutum). CONCLUSION This study provides genome-wide insights into the evolutionary history of cotton CKI genes and lays a foundation for further investigation of the functional differentiation of two types of CKI genes in specific developmental processes and environmental stress conditions.
Collapse
Affiliation(s)
- Yanlong Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan , 430070, Hubei, China
| | - Yaoyao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan , 430070, Hubei, China
- College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou , 510642, Guangdong, China
| | - Yuanyuan Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan , 430070, Hubei, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan , 430070, Hubei, China
| | - Jing Yang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Xinjiang, 830091, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan , 430070, Hubei, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan , 430070, Hubei, China
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Xinjiang, 830091, China.
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan , 430070, Hubei, China.
| |
Collapse
|
15
|
Tran PT, Citovsky V. Receptor-like kinase BAM1 facilitates early movement of the Tobacco mosaic virus. Commun Biol 2021; 4:511. [PMID: 33931721 PMCID: PMC8087827 DOI: 10.1038/s42003-021-02041-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/26/2021] [Indexed: 02/02/2023] Open
Abstract
Cell-to-cell movement is an important step for initiation and spreading of virus infection in plants. This process occurs through the intercellular connections, termed plasmodesmata (PD), and is usually mediated by one or more virus-encoded movement proteins (MP) which interact with multiple cellular factors, among them protein kinases that usually have negative effects on MP function and virus movement. In this study, we report physical and functional interaction between MP of Tobacco mosaic virus (TMV), the paradigm of PD-moving proteins, and a receptor-like kinase BAM1 from Arabidopsis and its homolog from Nicotiana benthamiana. The interacting proteins accumulated in the PD regions, colocalizing with a PD marker. Reversed genetics experiments, using BAM1 gain-of-function and loss-of-function plants, indicated that BAM1 is required for efficient spread and accumulation the virus during initial stages of infection of both plant species by TMV. Furthermore, BAM1 was also required for the efficient cell-to-cell movement of TMV MP, suggesting that BAM1 interacts with TMV MP to support early movement of the virus. Interestingly, this role of BAM1 in viral movement did not require its protein kinase activity. Thus, we propose that association of BAM1 with TMV MP at PD facilitates the MP transport through PD, which, in turn, enhances the spread of the viral infection.
Collapse
Affiliation(s)
- Phu-Tri Tran
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA.
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA
| |
Collapse
|
16
|
Kumar G, Dasgupta I. Variability, Functions and Interactions of Plant Virus Movement Proteins: What Do We Know So Far? Microorganisms 2021; 9:microorganisms9040695. [PMID: 33801711 PMCID: PMC8066623 DOI: 10.3390/microorganisms9040695] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Of the various proteins encoded by plant viruses, one of the most interesting is the movement protein (MP). MPs are unique to plant viruses and show surprising structural and functional variability while maintaining their core function, which is to facilitate the intercellular transport of viruses or viral nucleoprotein complexes. MPs interact with components of the intercellular channels, the plasmodesmata (PD), modifying their size exclusion limits and thus allowing larger particles, including virions, to pass through. The interaction of MPs with the components of PD, the formation of transport complexes and the recruitment of host cellular components have all revealed different facets of their functions. Multitasking is an inherent property of most viral proteins, and MPs are no exception. Some MPs carry out multitasking, which includes gene silencing suppression, viral replication and modulation of host protein turnover machinery. This review brings together the current knowledge on MPs, focusing on their structural variability, various functions and interactions with host proteins.
Collapse
|
17
|
Sáray R, Fábián A, Palkovics L, Salánki K. The 28 Ser Amino Acid of Cucumber Mosaic Virus Movement Protein Has a Role in Symptom Formation and Plasmodesmata Localization. Viruses 2021; 13:222. [PMID: 33572676 PMCID: PMC7912182 DOI: 10.3390/v13020222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/28/2022] Open
Abstract
Cucumber mosaic virus (CMV, Cucumovirus, Bromoviridae) is an economically significant virus infecting important horticultural and field crops. Current knowledge regarding the specific functions of its movement protein (MP) is still incomplete. In the present study, potential post-translational modification sites of its MP were assayed with mutant viruses: MP/S28A, MP/S28D, MP/S120A and MP/S120D. Ser28 was identified as an important factor in viral pathogenicity on Nicotiana tabacum cv. Xanthi, Cucumis sativus and Chenopodium murale. The subcellular localization of GFP-tagged movement proteins was determined with confocal laser-scanning microscopy. The wild type movement protein fused to green fluorescent protein (GFP) (MP-eGFP) greatly colocalized with callose at plasmodesmata, while MP/S28A-eGFP and MP/S28D-eGFP were detected as punctate spots along the cell membrane without callose colocalization. These results underline the importance of phosphorylatable amino acids in symptom formation and provide data regarding the essential factors for plasmodesmata localization of CMV MP.
Collapse
Affiliation(s)
- Réka Sáray
- Centre for Agricultural Research, Plant Protection Institute, Herman Ottó Street 15., H-1022 Budapest, Hungary;
- Department of Plant Pathology, Faculty of Horticultural Science, Szent István University, Villányi Street 29-43., H-1118 Budapest, Hungary;
| | - Attila Fábián
- Centre for Agricultural Research, Agricultural Institute, Brunszvik Street 2, H-2462 Martonvásár, Hungary;
| | - László Palkovics
- Department of Plant Pathology, Faculty of Horticultural Science, Szent István University, Villányi Street 29-43., H-1118 Budapest, Hungary;
| | - Katalin Salánki
- Centre for Agricultural Research, Plant Protection Institute, Herman Ottó Street 15., H-1022 Budapest, Hungary;
| |
Collapse
|
18
|
Azim MF, Burch-Smith TM. Organelles-nucleus-plasmodesmata signaling (ONPS): an update on its roles in plant physiology, metabolism and stress responses. CURRENT OPINION IN PLANT BIOLOGY 2020; 58:48-59. [PMID: 33197746 DOI: 10.1016/j.pbi.2020.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 05/03/2023]
Abstract
Plasmodesmata allow movement of metabolites and signaling molecules between plant cells and are, therefore, critical players in plant development and physiology, and in responding to environmental signals and stresses. There is emerging evidence that plasmodesmata are controlled by signaling originating from other organelles, primarily the chloroplasts and mitochondria. These signals act in the nucleus to alter expression of genetic pathways that control both trafficking via plasmodesmata and the plasmodesmatal pores themselves. This control circuit was dubbed organelle-nucleus-plasmodesmata signaling (ONPS). Here we discuss how ONPS arose during plant evolution and highlight the discovery of an ONPS-like module for regulating stomata. We also consider recent findings that illuminate details of the ONPS circuit and its roles in plant physiology, metabolism, and defense.
Collapse
Affiliation(s)
- Mohammad F Azim
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
19
|
Wang Y, Lu Y, Guo Z, Ding Y, Ding C. RICE CENTRORADIALIS 1, a TFL1-like Gene, Responses to Drought Stress and Regulates Rice Flowering Transition. RICE (NEW YORK, N.Y.) 2020; 13:70. [PMID: 32970268 PMCID: PMC7516004 DOI: 10.1186/s12284-020-00430-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/17/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND The initiation of flowering transition in rice (Oryza sativa) is a complex process regulated by genes and environment. In particular, drought can interfere with flowering; therefore, many plants hasten this process to shorten their life cycle under water scarcity, and this is known as drought-escape response. However, rice has other strategies; for example, drought stress can delay flowering instead of accelerating it. RICE CENTRORADIALIS 1 (RCN1) is a TERMINAL FLOWER-like gene that influences rice flowering transition and spike differentiation. It interacts with 14-3-3 proteins and transcription factor OsFD1 to form a florigen repression complex that suppresses flowering transition in rice. RESULTS In this study, we explored the role of RCN1 in the molecular pathway of drought-regulated flowering transition. The rcn1 mutant plants displayed early heading under both normal water and drought stress conditions, and they were more insensitive to drought stress than the wild-type plants. Abscisic acid (ABA) signaling-mediated drought-induced RCN1 is involved in this process. CONCLUSIONS Thus, RCN1 plays an important role in the process of drought stress inhibiting flowering transition. It may worked by suppressing the protein function rather than transcription of HEADING DATE 3a.
Collapse
Affiliation(s)
- Yan Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, People's Republic of China
| | - Yuyang Lu
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ziyu Guo
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chengqiang Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
20
|
Gao Q, Yan T, Zhang ZJ, Liu SY, Fang XD, Gao DM, Yang YZ, Xu WY, Qiao JH, Cao Q, Ding ZH, Wang Y, Yu J, Wang XB. Casein Kinase 1 Regulates Cytorhabdovirus Replication and Transcription by Phosphorylating a Phosphoprotein Serine-Rich Motif. THE PLANT CELL 2020; 32:2878-2897. [PMID: 32641349 PMCID: PMC7474278 DOI: 10.1105/tpc.20.00369] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 05/04/2023]
Abstract
Casein kinase 1 (CK1) family members are conserved Ser/Thr protein kinases that regulate important developmental processes in all eukaryotic organisms. However, the functions of CK1 in plant immunity remain largely unknown. Barley yellow striate mosaic virus (BYSMV), a plant cytorhabdovirus, infects cereal crops and is obligately transmitted by the small brown planthopper (SBPH; Laodelphax striatellus). The BYSMV phosphoprotein (P) exists as two forms with different mobilities corresponding to 42 kD (P42) and 44 kD (P44) in SDS-PAGE gels. Mass spectrometric analyses revealed a highly phosphorylated serine-rich (SR) motif at the C-terminal intrinsically disordered region of the P protein. The Ala-substitution mutant (PS5A) in the SR motif stimulated virus replication, whereas the phosphorylation-mimic mutant (PS5D) facilitated virus transcription. Furthermore, PS5A and PS5D associated preferentially with nucleocapsid protein-RNA templates and the large polymerase protein to provide optimal replication and transcription complexes, respectively. Biochemistry assays demonstrated that plant and insect CK1 protein kinases could phosphorylate the SR motif and induce conformational changes from P42 to P44. Moreover, overexpression of CK1 or a dominant-negative mutant impaired the balance between P42 and P44, thereby compromising virus infections. Our results demonstrate that BYSMV recruits the conserved CK1 kinases to achieve its cross-kingdom infection in host plants and insect vectors.
Collapse
Affiliation(s)
- Qiang Gao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Teng Yan
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen-Jia Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Song-Yu Liu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiao-Dong Fang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dong-Min Gao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi-Zhou Yang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wen-Ya Xu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ji-Hui Qiao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Cao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhi-Hang Ding
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
Kleinow T, Happle A, Kober S, Linzmeier L, Rehm TM, Fritze J, Buchholz PCF, Kepp G, Jeske H, Wege C. Phosphorylations of the Abutilon Mosaic Virus Movement Protein Affect Its Self-Interaction, Symptom Development, Viral DNA Accumulation, and Host Range. FRONTIERS IN PLANT SCIENCE 2020; 11:1155. [PMID: 32849713 PMCID: PMC7411133 DOI: 10.3389/fpls.2020.01155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
The genome of bipartite geminiviruses in the genus Begomovirus comprises two circular DNAs: DNA-A and DNA-B. The DNA-B component encodes a nuclear shuttle protein (NSP) and a movement protein (MP), which cooperate for systemic spread of infectious nucleic acids within host plants and affect pathogenicity. MP mediates multiple functions during intra- and intercellular trafficking, such as binding of viral nucleoprotein complexes, targeting to and modification of plasmodesmata, and release of the cargo after cell-to-cell transfer. For Abutilon mosaic virus (AbMV), phosphorylation of MP expressed in bacteria, yeast, and Nicotiana benthamiana plants, respectively, has been demonstrated in previous studies. Three phosphorylation sites (T221, S223, and S250) were identified in its C-terminal oligomerization domain by mass spectrometry, suggesting a regulation of MP by posttranslational modification. To examine the influence of the three sites on the self-interaction in more detail, MP mutants were tested for their interaction in yeast by two-hybrid assays, or by Förster resonance energy transfer (FRET) techniques in planta. Expression constructs with point mutations leading to simultaneous (triple) exchange of T221, S223, and S250 to either uncharged alanine (MPAAA), or phosphorylation charge-mimicking aspartate residues (MPDDD) were compared. MPDDD interfered with MP-MP binding in contrast to MPAAA. The roles of the phosphorylation sites for the viral life cycle were studied further, using plant-infectious AbMV DNA-B variants with the same triple mutants each. When co-inoculated with wild-type DNA-A, both mutants infected N. benthamiana plants systemically, but were unable to do so for some other plant species of the families Solanaceae or Malvaceae. Systemically infected plants developed symptoms and viral DNA levels different from those of wild-type AbMV for most virus-plant combinations. The results indicate a regulation of diverse MP functions by posttranslational modifications and underscore their biological relevance for a complex host plant-geminivirus interaction.
Collapse
|
22
|
Karpov PA, Sheremet YA, Blume YB, Yemets AI. Studying the Role of Protein Kinases CK1 in Organization of Cortical Microtubules in Arabidopsis thaliana Root Cells. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452719060033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Reagan BC, Burch-Smith TM. Viruses Reveal the Secrets of Plasmodesmal Cell Biology. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:26-39. [PMID: 31715107 DOI: 10.1094/mpmi-07-19-0212-fi] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plasmodesmata (PD) are essential for intercellular trafficking of molecules required for plant life, from small molecules like sugars and ions to macromolecules including proteins and RNA molecules that act as signals to regulate plant development and defense. As obligate intracellular pathogens, plant viruses have evolved to manipulate this communication system to facilitate the initial cell-to-cell and eventual systemic spread in their plant hosts. There has been considerable interest in how viruses manipulate the PD that connect the protoplasts of neighboring cells, and viruses have yielded invaluable tools for probing the structure and function of PD. With recent advances in biochemistry and imaging, we have gained new insights into the composition and structure of PD in the presence and absence of viruses. Here, we first discuss viral strategies for manipulating PD for their intercellular movement and examine how this has shed light on our understanding of native PD function. We then address the controversial role of the cytoskeleton in trafficking to and through PD. Finally, we address how viruses could alter PD structure and consider possible mechanisms of the phenomenon described as 'gating'. This discussion supports the significance of virus research in elucidating the properties of PD, these persistently enigmatic plant organelles.
Collapse
Affiliation(s)
- Brandon C Reagan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, U.S.A
| |
Collapse
|
24
|
Han X, Huang LJ, Feng D, Jiang W, Miu W, Li N. Plasmodesmata-Related Structural and Functional Proteins: The Long Sought-After Secrets of a Cytoplasmic Channel in Plant Cell Walls. Int J Mol Sci 2019; 20:ijms20122946. [PMID: 31212892 PMCID: PMC6627144 DOI: 10.3390/ijms20122946] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022] Open
Abstract
Plant cells are separated by cellulose cell walls that impede direct cell-to-cell contact. In order to facilitate intercellular communication, plant cells develop unique cell-wall-spanning structures termed plasmodesmata (PD). PD are membranous channels that link the cytoplasm, plasma membranes, and endoplasmic reticulum of adjacent cells to provide cytoplasmic and membrane continuity for molecular trafficking. PD play important roles for the development and physiology of all plants. The structure and function of PD in the plant cell walls are highly dynamic and tightly regulated. Despite their importance, plasmodesmata are among the few plant cell organelles that remain poorly understood. The molecular properties of PD seem largely elusive or speculative. In this review, we firstly describe the general PD structure and its protein composition. We then discuss the recent progress in identification and characterization of PD-associated plant cell-wall proteins that regulate PD function, with particular emphasis on callose metabolizing and binding proteins, and protein kinases targeted to and around PD.
Collapse
Affiliation(s)
- Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Li-Jun Huang
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Dan Feng
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Wenhan Jiang
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Wenzhuo Miu
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
25
|
Diao M, Wang Q, Huang S. Quantitative Plasmodesmata Permeability Assay for Pavement Cells of Arabidopsis Leaves. Bio Protoc 2019; 9:e3206. [PMID: 33655002 DOI: 10.21769/bioprotoc.3206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/05/2019] [Indexed: 11/02/2022] Open
Abstract
Plasmodesmata (PD) are intercellular channels between walled plant cells that enable the transportation of materials between adjacent cells, which are important for plant growth and development. The permeability of PD must be tightly regulated. Assays to determine the permeability of PD are crucial for related studies on the regulation of PD development and permeability. Here we describe an assay for the determination of PD permeability via the observation and quantification of GFP diffusion and cell-to-cell transport of CMV MP-GFP in Arabidopsis leaves.
Collapse
Affiliation(s)
- Min Diao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,iHuman Institute, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Qiannan Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
Mizoi J, Kanazawa N, Kidokoro S, Takahashi F, Qin F, Morimoto K, Shinozaki K, Yamaguchi-Shinozaki K. Heat-induced inhibition of phosphorylation of the stress-protective transcription factor DREB2A promotes thermotolerance of Arabidopsis thaliana. J Biol Chem 2018; 294:902-917. [PMID: 30487287 DOI: 10.1074/jbc.ra118.002662] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 11/13/2018] [Indexed: 12/19/2022] Open
Abstract
Plants have evolved complex systems to rapidly respond to severe stress conditions, such as heat, cold, and dehydration. Dehydration-responsive element-binding protein 2A (DREB2A) is a key transcriptional activator that induces many heat- and drought-responsive genes, increases tolerance to both heat and drought stress, and suppresses plant growth in Arabidopsis thaliana. DREB2A expression is induced by stress, but stabilization of the DREB2A protein in response to stress is essential for activating the expression of downstream stress-inducible genes. Under nonstress growth conditions, an integral negative regulatory domain (NRD) destabilizes DREB2A, but the mechanism by which DREB2A is stabilized in response to stress remains unclear. Here, based on bioinformatics, mutational, MS, and biochemical analyses, we report that Ser/Thr residues in the NRD are phosphorylated under nonstress growth conditions and that their phosphorylation decreases in response to heat. Furthermore, we found that this phosphorylation is likely mediated by casein kinase 1 and is essential for the NRD-dependent, proteasomal degradation of DREB2A under nonstress conditions. These observations suggest that inhibition of NRD phosphorylation stabilizes and activates DREB2A in response to heat stress to enhance plant thermotolerance. Our study reveals the molecular basis for the coordination of stress tolerance and plant growth through stress-dependent transcriptional regulation, which may allow the plants to rapidly respond to fluctuating environmental conditions.
Collapse
Affiliation(s)
- Junya Mizoi
- From the Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Natsumi Kanazawa
- From the Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kidokoro
- From the Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan, and
| | - Feng Qin
- the Biological Resources and Postharvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Kyoko Morimoto
- From the Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan, and
| | - Kazuko Yamaguchi-Shinozaki
- From the Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan,
| |
Collapse
|
27
|
Li Y, Min L, Zhang L, Hu Q, Wu Y, Li J, Xie S, Ma Y, Zhang X, Zhu L. Promoters of Arabidopsis Casein kinase I-like 2 and 7 confer specific high-temperature response in anther. PLANT MOLECULAR BIOLOGY 2018; 98:33-49. [PMID: 30145767 DOI: 10.1007/s11103-018-0760-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/30/2018] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE: (1) We systematically analyze the promoter activities of AtCKLs in various tissues; (2) AtCKL2 and AtCKL7 were expressed in early developmental anthers under high temperature (HT) conditions; (3) AtMYB24 may function as a positive regulator of AtCKL2 and AtCKL7 expression under HT. High temperature (HT) can seriously impede plant growth and development, causing severe loss of crop production. In Arabidopsis, AtCKL genes show high similarity to GhCKI, a gene reported to disrupt tapetal programmed cell death in cotton. However, most of AtCKL genes are not well characterized. Here, we systematically analyzed the expression patterns of AtCKLs in various tissues. The expression of AtCKL2 and AtCKL7 was induced in early anther development under HT, which is similar to the case of GhCKI. In silico analysis of AtCKL2 and AtCKL7 promoters indicated that four types of transcription factors (TFs) (MADS, NAC, WRKY and R2R3-MYB) might bind to AtCKL2 and AtCKL7 promoters. Furthermore, three MADS, three NAC, one WRKY, and three R2R3-MYB TFs were up-regulated in stage 1-8 anthers and three R2R3-MYB TFs were up-regulated in stage 9-10 anthers under HT, implying the important roles of R2R3-MYB genes in the response of anthers to HT. Among the R2R3-MYB genes, AtMYB24 showed the similar expression as AtCKL2 and AtCKL7 in the anthers under HT. Additionally, yeast one-hybrid and dual-luciferase reporter system assays verified that AtMYB24 could bind to AtCKL2 and AtCKL7 promoters and activate the expression of these two genes. In brief, this study provides the overall expression profiles of AtCKLs, useful information for unraveling the molecular mechanism of AtCKL2 and AtCKL7 gene expression in early anther development under HT, and important clues for elucidating the mechanism of transcriptional regulation of CKI genes in plant anther under HT, which are critical to the reduction of crop yield loss resulting from HT.
Collapse
Affiliation(s)
- Yaoyao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Lin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yuanlong Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jie Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Sai Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
28
|
Diao M, Ren S, Wang Q, Qian L, Shen J, Liu Y, Huang S. Arabidopsis formin 2 regulates cell-to-cell trafficking by capping and stabilizing actin filaments at plasmodesmata. eLife 2018; 7:e36316. [PMID: 30113309 PMCID: PMC6126924 DOI: 10.7554/elife.36316] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/15/2018] [Indexed: 11/13/2022] Open
Abstract
Here, we demonstrate that Arabidopsis thaliana Formin 2 (AtFH2) localizes to plasmodesmata (PD) through its transmembrane domain and is required for normal intercellular trafficking. Although loss-of-function atfh2 mutants have no overt developmental defect, PD's permeability and sensitivity to virus infection are increased in atfh2 plants. Interestingly, AtFH2 functions in a partially redundant manner with its closest homolog AtFH1, which also contains a PD localization signal. Strikingly, targeting of Class I formins to PD was also confirmed in rice, suggesting that the involvement of Class I formins in regulating actin dynamics at PD may be evolutionarily conserved in plants. In vitro biochemical analysis showed that AtFH2 fails to nucleate actin assembly but caps and stabilizes actin filaments. We also demonstrate that the interaction between AtFH2 and actin filaments is crucial for its function in vivo. These data allow us to propose that AtFH2 regulates PD's permeability by anchoring actin filaments to PD.
Collapse
Affiliation(s)
- Min Diao
- Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
- Institute of Botany, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Sulin Ren
- Institute of Botany, Chinese Academy of SciencesBeijingChina
| | - Qiannan Wang
- Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
| | - Lichao Qian
- Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life SciencesTsinghua UniversityBeijingChina
| | - Jiangfeng Shen
- Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
| | - Yule Liu
- Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life SciencesTsinghua UniversityBeijingChina
| | - Shanjin Huang
- Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
| |
Collapse
|
29
|
Kehr J, Kragler F. Long distance RNA movement. THE NEW PHYTOLOGIST 2018; 218:29-40. [PMID: 29418002 DOI: 10.1111/nph.15025] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/28/2017] [Indexed: 05/06/2023]
Abstract
Contents Summary 29 I. Introduction 29 II. Phloem as a conduit for macromolecules 30 III. Classes of phloem transported RNAs and their function 32 IV. Mode of RNA transport 35 V. Conclusions 37 Acknowledgements 37 References 37 SUMMARY: In higher plants, small noncoding RNAs and large messenger RNA (mRNA) molecules are transported between cells and over long distances via the phloem. These large macromolecules are thought to get access to the sugar-conducting phloem vessels via specialized plasmodesmata (PD). Analyses of the phloem exudate suggest that all classes of RNA molecules, including silencing-induced RNAs (siRNAs), micro RNAs (miRNAs), transfer RNAs (tRNAs), ribosomal RNA (rRNAs) and mRNAs, are transported via the vasculature to distant tissues. Although the functions of mobile siRNAs and miRNAs as signalling molecules are well established, we lack a profound understanding of mobile mRNA function(s) in recipient cells and tissues, and how they are selected for transport. A surprisingly high number of up to thousands of mRNAs were described in diverse plant species such as cucumber, pumpkin, Arabidopsis and grapevine to move long distances over graft junctions to distinct body parts. In this review, we present an overview of the classes of mobile RNAs, the potential mechanisms facilitating RNA long-distance transport, and the roles of mobile RNAs in regulating transcription and translation. Furthermore, we address potential function(s) of mobile protein-encoding mRNAs with respect to their characteristics and evolutionary constraints.
Collapse
Affiliation(s)
- Julia Kehr
- Biocenter Klein Flottbek, Molekulare Pflanzengenetik, University Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Friedrich Kragler
- Department II, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| |
Collapse
|
30
|
Park SH, Li F, Renaud J, Shen W, Li Y, Guo L, Cui H, Sumarah M, Wang A. NbEXPA1, an α-expansin, is plasmodesmata-specific and a novel host factor for potyviral infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:846-861. [PMID: 28941316 DOI: 10.1111/tpj.13723] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 05/23/2023]
Abstract
Plasmodesmata (PD), unique to the plant kingdom, are structurally complex microchannels that cross the cell wall to establish symplastic communication between neighbouring cells. Viral intercellular movement occurs through PD. To better understand the involvement of PD in viral infection, we conducted a quantitative proteomic study on the PD-enriched fraction from Nicotiana benthamiana leaves in response to infection by Turnip mosaic virus (TuMV). We report the identification of a total of 1070 PD protein candidates, of which 100 (≥2-fold increase) and 48 (≥2-fold reduction) are significantly differentially accumulated in the PD-enriched fraction, when compared with protein levels in the corresponding healthy control. Among the differentially accumulated PD protein candidates, we show that an α-expansin designated NbEXPA1, a cell wall loosening protein, is PD-specific. TuMV infection downregulates NbEXPA1 mRNA expression and protein accumulation. We further demonstrate that NbEXPA1 is recruited to the viral replication complex via the interaction with NIb, the only RNA-dependent RNA polymerase of TuMV. Silencing of NbEXPA1 inhibits plant growth and TuMV infection, whereas overexpression of NbEXPA1 promotes viral replication and intercellular movement. These data suggest that NbEXPA1 is a host factor for potyviral infection. This study not only generates a PD-proteome dataset that is useful in future studies to expound PD biology and PD-mediated virus-host interactions but also characterizes NbEXPA1 as the first PD-specific cell wall loosening protein and its essential role in potyviral infection.
Collapse
Affiliation(s)
- Sang-Ho Park
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Department of Biology, Western University, London, ON, N6A 5B7, Canada
| | - Fangfang Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Justin Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Wentao Shen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Department of Biology, Western University, London, ON, N6A 5B7, Canada
| | - Lihua Guo
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongguang Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Mark Sumarah
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Department of Biology, Western University, London, ON, N6A 5B7, Canada
| |
Collapse
|
31
|
Nemes K, Gellért Á, Almási A, Vági P, Sáray R, Kádár K, Salánki K. Phosphorylation regulates the subcellular localization of Cucumber Mosaic Virus 2b protein. Sci Rep 2017; 7:13444. [PMID: 29044170 PMCID: PMC5647415 DOI: 10.1038/s41598-017-13870-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 10/03/2017] [Indexed: 11/27/2022] Open
Abstract
The 2b protein of Cucumber mosaic virus has a role in nearly all steps of the viral cycle including cell-to-cell movement, symptom induction and suppression of antiviral RNA silencing. Previous studies demonstrated the presence of 2b protein in the nucleus and in cytoplasm as well. Phosphorylation site of 2b protein is conserved in all CMV isolates, including proposed constitute motifs for casein kinase II and cyclin-dependent kinase 2. To discern the impact of 2b protein phosphorylation, we created eight different mutants to mimic the non-phosporylated (serine to alanine) as well as the phosphorylated state (serine to aspartic acid) of the protein. We compared these mutants to the wild-type (Rs-CMV) virus in terms of symptom induction, gene silencing suppressor activity as well as in cellular localization. Here, in this study we confirmed the phosphorylation of 2b protein in vivo, both in infected N. benthamiana and in infiltrated patches. Mutants containing aspartic acid in the phosphorylation site accumulated only in the cytoplasm indicating that phosphorylated 2b protein could not enter the nucleus. We identified a conserved dual phosphorylation switch in CMV 2b protein, which equilibrates the shuttling of the 2b protein between the nucleus and the cytoplasm, and regulates the suppressor activity of the 2b protein.
Collapse
Affiliation(s)
- Katalin Nemes
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ákos Gellért
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Asztéria Almási
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Pál Vági
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Plant Anatomy, Eötvös Loránd University, Faculty of Sciences, Budapest, Hungary
| | - Réka Sáray
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Kádár
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Salánki
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
32
|
Qu X, Zhang R, Zhang M, Diao M, Xue Y, Huang S. Organizational Innovation of Apical Actin Filaments Drives Rapid Pollen Tube Growth and Turning. MOLECULAR PLANT 2017; 10:930-947. [PMID: 28502709 DOI: 10.1016/j.molp.2017.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/15/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Polarized tip growth is a fundamental cellular process in many eukaryotes. In this study, we examined the dynamic restructuring of the actin cytoskeleton and its relationship to vesicle transport during pollen tip growth in Arabidopsis. We found that actin filaments originating from the apical membrane form a specialized structure consisting of longitudinally aligned actin bundles at the cortex and inner cytoplasmic filaments with a distinct distribution. Using actin-based pharmacological treatments and genetic mutants in combination with FRAP (fluorescence recovery after photobleaching) technology to visualize the transport of vesicles within the growth domain of pollen tubes, we demonstrated that cortical actin filaments facilitate tip-ward vesicle transport. We also discovered that the inner apical actin filaments prevent backward movement of vesicles, thus ensuring that sufficient vesicles accumulate at the pollen tube tip to support the rapid growth of the pollen tube. The combinatorial effect of cortical and internal apical actin filaments perfectly explains the generation of the inverted "V" cone-shaped vesicle distribution pattern at the pollen tube tip. When pollen tubes turn, apical actin filaments at the facing side undergo depolymerization and repolymerization to reorient the apical actin structure toward the new growth direction. This actin restructuring precedes vesicle accumulation and changes in tube morphology. Thus, our study provides new insights into the functional relationship between actin dynamics and vesicle transport during rapid and directional pollen tube growth.
Collapse
Affiliation(s)
- Xiaolu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruihui Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Min Diao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yongbiao Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
33
|
Liu Q, Wang Q, Deng W, Wang X, Piao M, Cai D, Li Y, Barshop WD, Yu X, Zhou T, Liu B, Oka Y, Wohlschlegel J, Zuo Z, Lin C. Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2. Nat Commun 2017; 8:15234. [PMID: 28492234 PMCID: PMC5437284 DOI: 10.1038/ncomms15234] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/03/2017] [Indexed: 12/16/2022] Open
Abstract
Plant cryptochromes undergo blue light-dependent phosphorylation to regulate their activity and abundance, but the protein kinases that phosphorylate plant cryptochromes have remained unclear. Here we show that photoexcited Arabidopsis cryptochrome 2 (CRY2) is phosphorylated in vivo on as many as 24 different residues, including 7 major phosphoserines. We demonstrate that four closely related Photoregulatory Protein Kinases (previously referred to as MUT9-like kinases) interact with and phosphorylate photoexcited CRY2. Analyses of the ppk123 and ppk124 triple mutants and amiR4k artificial microRNA-expressing lines demonstrate that PPKs catalyse blue light-dependent CRY2 phosphorylation to both activate and destabilize the photoreceptor. Phenotypic analyses of these mutant lines indicate that PPKs may have additional substrates, including those involved in the phytochrome signal transduction pathway. These results reveal a mechanism underlying the co-action of cryptochromes and phytochromes to coordinate plant growth and development in response to different wavelengths of solar radiation in nature. Plant cryptochromes are regulated by blue-light dependent phosphorylation. Here the authors map the in vivo phosphorylation sites of Arabidopsis cryptochrome 2 and identify four closely related kinases that act to both activate and destabilize the receptor in response to blue light.
Collapse
Affiliation(s)
- Qing Liu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Plant Science, Jilin University, Changchun 130062, China.,Department of Molecular, Cell &Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Qin Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Department of Molecular, Cell &Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Weixian Deng
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Plant Science, Jilin University, Changchun 130062, China
| | - Xu Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Department of Molecular, Cell &Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Mingxin Piao
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Plant Science, Jilin University, Changchun 130062, China
| | - Dawei Cai
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaxing Li
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - William D Barshop
- Department of Biological Chemistry, University of California, Los Angeles, California 90095, USA
| | - Xiaolan Yu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tingting Zhou
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Yoshito Oka
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, California 90095, USA
| | - Zecheng Zuo
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Plant Science, Jilin University, Changchun 130062, China
| | - Chentao Lin
- Department of Molecular, Cell &Developmental Biology, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
34
|
Conti G, Rodriguez MC, Venturuzzi AL, Asurmendi S. Modulation of host plant immunity by Tobamovirus proteins. ANNALS OF BOTANY 2017; 119:737-747. [PMID: 27941090 PMCID: PMC5378186 DOI: 10.1093/aob/mcw216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND To establish successful infection, plant viruses produce profound alterations of host physiology, disturbing unrelated endogenous processes and contributing to the development of disease. In tobamoviruses, emerging evidence suggests that viral-encoded proteins display a great variety of functions beyond the canonical roles required for virus structure and replication. Among these, their modulation of host immunity appears to be relevant in infection progression. SCOPE In this review, some recently described effects on host plant physiology of Tobacco mosaic virus (TMV)-encoded proteins, namely replicase, movement protein (MP) and coat protein (CP), are summarized. The discussion is focused on the effects of each viral component on the modulation of host defense responses, through mechanisms involving hormonal imbalance, innate immunity modulation and antiviral RNA silencing. These effects are described taking into consideration the differential spatial distribution and temporality of viral proteins during the dynamic process of replication and spread of the virus. CONCLUSION In discussion of these mechanisms, it is shown that both individual and combined effects of viral-encoded proteins contribute to the development of the pathogenesis process, with the host plant's ability to control infection to some extent potentially advantageous to the invading virus.
Collapse
Affiliation(s)
- G. Conti
- Instituto de Biotecnologia, CICVyA, INTA, Argentina
- CONICET, Argentina
| | | | - A. L. Venturuzzi
- Instituto de Biotecnologia, CICVyA, INTA, Argentina
- CONICET, Argentina
| | - S. Asurmendi
- Instituto de Biotecnologia, CICVyA, INTA, Argentina
- CONICET, Argentina
- For correspondence. E-mail
| |
Collapse
|
35
|
Abstract
Plasmodesmata (PD) are plasma membrane lined pores that cross the plant cell wall and connect adjacent cells. Plasmodesmata are composed of elements of the endoplasmic reticulum, plasma membrane, cytosol, and cell wall and thus, as multicomposite structures that are embedded in the cell wall, they are notoriously difficult to isolate from whole plant tissue. However, understanding PD structure, function, and regulation necessitates identification of their molecular components and therefore proteomic and lipidomic analyses of PD fractions are an essential strategy for plasmodesmal biology. Here we outline a simple two-step purification procedure that allows isolation of PD-derived membranes from Arabidopsis suspension cells. The method involves isolation of purified cell wall fragments containing intact PD which is followed by enzymatic degradation of the cell wall to release the PD. This membrane-rich fraction can be subjected to protein and lipid extraction for molecular characterization of PD components. The first step of this procedure involves the isolation of cell wall fragments containing intact PD, free from contamination from other cellular compartments. Purified PD membranes are then released from the cell wall matrix by enzymatic degradation. Isolated PD membranes provide a suitable starting material for the analysis of PD-associated proteins and lipids.
Collapse
Affiliation(s)
| | - Emmanuelle M F Bayer
- Laboratory of Membrane Biogenesis, CNRS-UMR 5200, Université Bordeaux, Segalen Bâtiment A3, INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux CS 20032, F-33140, Villenave d'Ornon, France.
| |
Collapse
|
36
|
Zhang R, Chang M, Zhang M, Wu Y, Qu X, Huang S. The Structurally Plastic CH2 Domain Is Linked to Distinct Functions of Fimbrins/Plastins. J Biol Chem 2016; 291:17881-96. [PMID: 27261463 DOI: 10.1074/jbc.m116.730069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 01/08/2023] Open
Abstract
Fimbrins/plastins have been implicated in the generation of distinct actin structures, which are linked to different cellular processes. Historically, fimbrins/plastins were mainly considered as generating tight actin bundles. Here, we demonstrate that different members of the fimbrin/plastin family have diverged biochemically during evolution to generate either tight actin bundles or loose networks with distinct biochemical and biophysical properties. Using the phylogenetically and functionally distinct Arabidopsis fimbrins FIM4 and FIM5 we found that FIM4 generates both actin bundles and cross-linked actin filaments, whereas FIM5 only generates actin bundles. The distinct functions of FIM4 and FIM5 are clearly observed at single-filament resolution. Domain swapping experiments showed that cooperation between the conformationally plastic calponin-homology domain 2 (CH2) and the N-terminal headpiece determines the function of the full-length protein. Our study suggests that the structural plasticity of fimbrins/plastins has biologically meaningful consequences, and provides novel insights into the structure-function relationship of fimbrins/plastins as well as shedding light on how cells generate distinct actin structures.
Collapse
Affiliation(s)
- Ruihui Zhang
- From the Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Chang
- the Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084
| | - Meng Zhang
- From the Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youjun Wu
- From the Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093
| | - Xiaolu Qu
- the Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, the Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, and
| | - Shanjin Huang
- From the Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, the Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084,
| |
Collapse
|
37
|
Stahl Y, Faulkner C. Receptor Complex Mediated Regulation of Symplastic Traffic. TRENDS IN PLANT SCIENCE 2016; 21:450-459. [PMID: 26655263 DOI: 10.1016/j.tplants.2015.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/22/2015] [Accepted: 11/04/2015] [Indexed: 05/23/2023]
Abstract
Plant receptor kinases (RKs) and receptor proteins (RPs) are involved in a plethora of cellular processes, including developmental decisions and immune responses. There is increasing evidence that plasmodesmata (PD)-localized RKs and RPs act as nexuses that perceive extracellular signals and convey them into intra- and intercellular responses by regulating the exchange of molecules through PD. How RK/RP complexes regulate the specific and nonspecific traffic of molecules through PD, and how these receptors are specifically targeted to PD, have been elusive but underpin comprehensive understanding of the function and regulation of the symplast. In this review we gather the current knowledge of RK/RP complex function at PD and how they might regulate intercellular traffic.
Collapse
Affiliation(s)
- Yvonne Stahl
- Institute for Developmental Genetics, Heinrich-Heine-University, Universitätsstrasse 1, D-40225, Düsseldorf, Germany.
| | | |
Collapse
|
38
|
Mair A, Pedrotti L, Wurzinger B, Anrather D, Simeunovic A, Weiste C, Valerio C, Dietrich K, Kirchler T, Nägele T, Vicente Carbajosa J, Hanson J, Baena-González E, Chaban C, Weckwerth W, Dröge-Laser W, Teige M. SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants. eLife 2015; 4. [PMID: 26263501 PMCID: PMC4558565 DOI: 10.7554/elife.05828] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 08/10/2015] [Indexed: 01/20/2023] Open
Abstract
Metabolic adjustment to changing environmental conditions, particularly balancing of growth and defense responses, is crucial for all organisms to survive. The evolutionary conserved AMPK/Snf1/SnRK1 kinases are well-known metabolic master regulators in the low-energy response in animals, yeast and plants. They act at two different levels: by modulating the activity of key metabolic enzymes, and by massive transcriptional reprogramming. While the first part is well established, the latter function is only partially understood in animals and not at all in plants. Here we identified the Arabidopsis transcription factor bZIP63 as key regulator of the starvation response and direct target of the SnRK1 kinase. Phosphorylation of bZIP63 by SnRK1 changed its dimerization preference, thereby affecting target gene expression and ultimately primary metabolism. A bzip63 knock-out mutant exhibited starvation-related phenotypes, which could be functionally complemented by wild type bZIP63, but not by a version harboring point mutations in the identified SnRK1 target sites. DOI:http://dx.doi.org/10.7554/eLife.05828.001 Organisms need to adjust their metabolism in response to changing environmental conditions to ensure that they balance their energy intake with the demands of growth and reproduction. In plants, an enzyme called SnRK1 plays a crucial role in responses to starvation in two ways: by altering the activities of enzymes involved in metabolism and by regulating the expression of genes. To perform the second job, SnRK1 is thought to control the activity of proteins called transcription factors—which alter the expression of genes by binding to DNA—but it is not known which ones. SnRK1 has ‘kinase’ activity, that is, it can alter the activities of other proteins by adding small molecules called phosphates to them. It has been suggested that a group of transcription factors called the bZIP proteins may be regulated by SnRK1. Two bZIP proteins work together to switch on a gene, and the combination of bZIP proteins that interact can influence which genes are switched on. Here, Mair et al. studied the role of a bZIP protein called bZIP63 during starvation in the plant Arabidopsis. The experiments show that bZIP63 is involved in controlling responses to starvation. Furthermore, its activity is regulated by SnRK1, which adds phosphates to three specific locations on the protein. These phosphates alter the ability of bZIP63 to interact with other bZIP proteins, leading to changes in gene expression during starvation. Mair et al. triggered starvation in Arabidopsis plants by keeping the plants in darkness for several days. The leaves of normal plants turn yellow in response to starvation, but the leaves of mutant plants that lacked bZIP63 remained green. In contrast, plants containing higher amounts of this bZIP protein showed the opposite effect and their leaves turned yellow much more quickly than normal plants. The mutant plants that lacked bZIP63 could be rescued by the normal protein, but not by another version of the protein that SnRK1 is unable to add phosphates to. These data suggest that SnRK1 regulates bZIP63 activity to alter metabolism in response to starvation. Mair et al. propose a model in which the ability of bZIP63 to interact with other bZIPs is normally rather low. However, when the plants are starved, SnRK1 adds phosphates to bZIP63, which increases its ability to bind to other bZIP proteins and leads to changes in gene expression. The bZIP proteins are also found in animals; therefore a future challenge is to find out whether these proteins are also regulated in a similar way. DOI:http://dx.doi.org/10.7554/eLife.05828.002
Collapse
Affiliation(s)
- Andrea Mair
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Lorenzo Pedrotti
- Pharmaceutical Biology, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| | - Bernhard Wurzinger
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Dorothea Anrather
- Mass Spectrometry Facility, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Andrea Simeunovic
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Christoph Weiste
- Pharmaceutical Biology, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| | | | - Katrin Dietrich
- Pharmaceutical Biology, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| | - Tobias Kirchler
- Department of Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Thomas Nägele
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Jesús Vicente Carbajosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Johannes Hanson
- Department of Molecular Plant Physiology, Utrecht University, Utrecht, Netherlands
| | | | - Christina Chaban
- Department of Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Wolfgang Dröge-Laser
- Pharmaceutical Biology, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Hu Y, Li Z, Yuan C, Jin X, Yan L, Zhao X, Zhang Y, Jackson AO, Wang X, Han C, Yu J, Li D. Phosphorylation of TGB1 by protein kinase CK2 promotes barley stripe mosaic virus movement in monocots and dicots. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4733-47. [PMID: 25998907 PMCID: PMC4507770 DOI: 10.1093/jxb/erv237] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The barley stripe mosaic virus (BSMV) triple gene block 1 (TGB1) protein is required for virus cell-to-cell movement. However, little information is available about how these activities are regulated by post-translational modifications. In this study, we showed that the BSMV Xinjiang strain TGB1 (XJTGB1) is phosphorylated in vivo and in vitro by protein kinase CK2 from barley and Nicotiana benthamiana. Liquid chromatography tandem mass spectrometry analysis and in vitro phosphorylation assays demonstrated that Thr-401 is the major phosphorylation site of the XJTGB1 protein, and suggested that a Thr-395 kinase docking site supports Thr-401 phosphorylation. Substitution of Thr-395 with alanine (T395A) only moderately impaired virus cell-to-cell movement and systemic infection. In contrast, the Thr-401 alanine (T401A) virus mutant was unable to systemically infect N. benthamiana but had only minor effects in monocot hosts. Substitution of Thr-395 or Thr-401 with aspartic acid interfered with monocot and dicot cell-to-cell movement and the plants failed to develop systemic infections. However, virus derivatives with single glutamic acid substitutions at Thr-395 and Thr-401 developed nearly normal systemic infections in the monocot hosts but were unable to infect N. benthamiana systemically, and none of the double mutants was able to infect dicot and monocot hosts. The mutant XJTGB1T395A/T401A weakened in vitro interactions between XJTGB1 and XJTGB3 proteins but had little effect on XJTGB1 RNA-binding ability. Taken together, our results support a critical role of CK2 phosphorylation in the movement of BSMV in monocots and dicots, and provide new insights into the roles of phosphorylation in TGB protein functions.
Collapse
Affiliation(s)
- Yue Hu
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Zhenggang Li
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Cheng Yuan
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xuejiao Jin
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Lijie Yan
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xiaofei Zhao
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yongliang Zhang
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Andrew O Jackson
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Xianbing Wang
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Chenggui Han
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Jialin Yu
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Dawei Li
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
40
|
Abstract
Plasmodesmata (PDs) are microscopic channels that connect virtually every plant cell to its neighbors. They also provide a route for molecules to access the phloem for systemic movement throughout the plant. In this report, I review recent findings that broaden the potential impact of these channels, by revealing their contribution to auxin movement and as potential sites of receptor signaling. These discoveries should prompt a reassessment of symplasmic connectivity and its importance to plant development, defense, and physiology.
Collapse
|
41
|
Grison MS, Fernandez-Calvino L, Mongrand S, Bayer EMF. Isolation of plasmodesmata from Arabidopsis suspension culture cells. Methods Mol Biol 2015; 1217:83-93. [PMID: 25287197 DOI: 10.1007/978-1-4939-1523-1_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
Due to their position firmly anchored within the plant cell wall, plasmodesmata (PD) are notoriously difficult to isolate from plant tissue. Yet, getting access to isolated PD represents the most straightforward strategy for the identification of their molecular components. Proteomic and lipidomic analyses of such PD fractions have provided and will continue to provide critical information on the functional and structural elements that define these membranous nano-pores. Here, we describe a two-step simple purification procedure that allows isolation of pure PD-derived membranes from Arabidopsis suspension cells. The first step of this procedure consists in isolating cell wall fragments containing intact PD while free of contamination from other cellular compartments. The second step relies on an enzymatic degradation of the wall matrix and the subsequent release of "free" PD. Isolated PD membranes provide a suitable starting material for the analysis of PD-associated proteins and lipids.
Collapse
Affiliation(s)
- Magali S Grison
- Laboratory of Membrane Biogenesis, CNRS UMR5200, University of Bordeaux, Campus INRA de Bordeaux, 71 avenue E. Bourlaux, 33883, Villenave d'Ornon Cedex, France
| | | | | | | |
Collapse
|
42
|
Abstract
The symplastic communication network established by plasmodesmata (PD) and connected phloem provides an essential pathway for spatiotemporal intercellular signaling in plant development but is also exploited by viruses for moving their genomes between cells in order to infect plants systemically. Virus movement depends on virus-encoded movement proteins (MPs) that target PD and therefore represent important keys to the cellular mechanisms underlying the intercellular trafficking of viruses and other macromolecules. Viruses and their MPs have evolved different mechanisms for intracellular transport and interaction with PD. Some viruses move from cell to cell by interacting with cellular mechanisms that control the size exclusion limit of PD whereas other viruses alter the PD architecture through assembly of specialized transport structures within the channel. Some viruses move between cells in the form of assembled virus particles whereas other viruses may interact with nucleic acid transport mechanisms to move their genomes in a non-encapsidated form. Moreover, whereas several viruses rely on the secretory pathway to target PD, other viruses interact with the cortical endoplasmic reticulum and associated cytoskeleton to spread infection. This chapter provides an introduction into viruses and their role in studying the diverse cellular mechanisms involved in intercellular PD-mediated macromolecular trafficking.
Collapse
Affiliation(s)
- Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes (IBMP), Centre National de la Recherche Scientifique (CNRS), 12 rue du Général Zimmer, 67084, Strasbourg, France,
| |
Collapse
|
43
|
Kumar D, Kumar R, Hyun TK, Kim JY. Cell-to-cell movement of viruses via plasmodesmata. JOURNAL OF PLANT RESEARCH 2015; 128:37-47. [PMID: 25527904 DOI: 10.1007/s10265-014-0683-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/14/2014] [Indexed: 05/03/2023]
Abstract
Plant viruses utilize plasmodesmata (PD), unique membrane-lined cytoplasmic nanobridges in plants, to spread infection cell-to-cell and long-distance. Such invasion involves a range of regulatory mechanisms to target and modify PD. Exciting discoveries in this field suggest that these mechanisms are executed by the interaction between plant cellular components and viral movement proteins (MPs) or other virus-encoded factors. Striking working analogies exist among endogenous non-cell-autonomous proteins and viral MPs, in which not only do they all use PD to traffic, but also they exploit same regulatory components to exert their functions. Thus, this review discusses on the viral strategies to move via PD and the PD-regulatory mechanisms involved in viral pathogenesis.
Collapse
Affiliation(s)
- Dhinesh Kumar
- Division of Applied Life Science (BK21plus), Department of Biochemistry, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, 27-306, 501 Jinju-Daero, Jinju, 660-701, Korea
| | | | | | | |
Collapse
|
44
|
Abstract
Plant kinases are one of the largest protein families in Arabidopsis. There are almost 600 membrane-located receptor kinases and almost 400 soluble kinases with distinct functions in signal transduction. In this minireview we discuss phylogeny and functional context of prominent members from major protein kinase subfamilies in plants.
Collapse
Affiliation(s)
- Monika Zulawski
- Max Planck Institute of molecular Plant Physiology, 14470, Potsdam, Germany
| | | |
Collapse
|
45
|
Wang A. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:45-66. [PMID: 25938276 DOI: 10.1146/annurev-phyto-080614-120001] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A successful infection by a plant virus results from the complex molecular interplay between the host plant and the invading virus. Thus, dissecting the molecular network of virus-host interactions advances the understanding of the viral infection process and may assist in the development of novel antiviral strategies. In the past decade, molecular identification and functional characterization of host factors in the virus life cycle, particularly single-stranded, positive-sense RNA viruses, have been a research focus in plant virology. As a result, a number of host factors have been identified. These host factors are implicated in all the major steps of the infection process. Some host factors are diverted for the viral genome translation, some are recruited to improvise the viral replicase complexes for genome multiplication, and others are components of transport complexes for cell-to-cell spread via plasmodesmata and systemic movement through the phloem. This review summarizes current knowledge about host factors and discusses future research directions.
Collapse
Affiliation(s)
- Aiming Wang
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada;
| |
Collapse
|
46
|
Peiro A, Izquierdo-Garcia AC, Sanchez-Navarro JA, Pallas V, Mulet JM, Aparicio F. Patellins 3 and 6, two members of the Plant Patellin family, interact with the movement protein of Alfalfa mosaic virus and interfere with viral movement. MOLECULAR PLANT PATHOLOGY 2014; 15:881-91. [PMID: 24751128 PMCID: PMC6638666 DOI: 10.1111/mpp.12146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Movement proteins (MPs) encoded by plant viruses interact with host proteins to facilitate or interfere with intra- and/or intercellular viral movement. Using yeast two-hybrid and bimolecular fluorescence complementation assays, we herein present in vivo evidence for the interaction between Alfalfa mosaic virus (AMV) MP and Arabidopsis Patellin 3 (atPATL3) and Patellin 6 (atPATL6), two proteins containing a Sec14 domain. Proteins with Sec14 domains are implicated in membrane trafficking, cytoskeleton dynamics, lipid metabolism and lipid-mediated regulatory functions. Interestingly, the overexpression of atPATL3 and/or atPATL6 interfered with the plasmodesmata targeting of AMV MP and correlated with reduced infection foci size. Consistently, the viral RNA levels increased in the single and double Arabidopsis knockout mutants for atPATL3 and atPATL6. Our results indicate that, in general, MP-PATL interactions interfere with the correct subcellular targeting of MP, thus rendering the intracellular transport of viral MP-containing complexes less efficient and diminishing cell-to-cell movement.
Collapse
Affiliation(s)
- Ana Peiro
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Sager R, Lee JY. Plasmodesmata in integrated cell signalling: insights from development and environmental signals and stresses. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6337-58. [PMID: 25262225 PMCID: PMC4303807 DOI: 10.1093/jxb/eru365] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
To survive as sedentary organisms built of immobile cells, plants require an effective intercellular communication system, both locally between neighbouring cells within each tissue and systemically across distantly located organs. Such a system enables cells to coordinate their intracellular activities and produce concerted responses to internal and external stimuli. Plasmodesmata, membrane-lined intercellular channels, are essential for direct cell-to-cell communication involving exchange of diffusible factors, including signalling and information molecules. Recent advances corroborate that plasmodesmata are not passive but rather highly dynamic channels, in that their density in the cell walls and gating activities are tightly linked to developmental and physiological processes. Moreover, it is becoming clear that specific hormonal signalling pathways play crucial roles in relaying primary cellular signals to plasmodesmata. In this review, we examine a number of studies in which plasmodesmal structure, occurrence, and/or permeability responses are found to be altered upon given cellular or environmental signals, and discuss common themes illustrating how plasmodesmal regulation is integrated into specific cellular signalling pathways.
Collapse
Affiliation(s)
- Ross Sager
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Jung-Youn Lee
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
48
|
Casein kinase 1 regulates ethylene synthesis by phosphorylating and promoting the turnover of ACS5. Cell Rep 2014; 9:1692-1702. [PMID: 25464840 DOI: 10.1016/j.celrep.2014.10.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/03/2014] [Accepted: 10/17/2014] [Indexed: 12/29/2022] Open
Abstract
The casein kinase 1 (CK1) family participates in various cellular processes in eukaryotes, but CK1 function in higher plants remains largely unknown. Here, we characterize the function of Arabidopsis CK1 in the regulation of ethylene biosynthesis. Etiolated seedlings of a CK1.8-deficient mutant, ck1.8-1, showed characteristic ethylene-specific constitutive responses due to overaccumulation of ethylene. Biochemical and physiological studies showed that CK1.8 phosphorylates ACS5, a key enzyme of ethylene biosynthesis, at threonine 463 to promote its interaction with the E3 ubiquitin ligase Ethylene Overproduction 1 (ETO1). Deficiency of CK1.8 leads to the accumulation of ACS5, and transgenic plants harboring a dephosphorylation-mimic ACS5(T463A) showed constitutive ethylene responses, confirming the role of CK1.8 in regulating ACS5 stability by phosphorylation and demonstrating that CK1.8 is an important regulator of ethylene biosynthesis. CK1.8 expression is feedback regulated by ethylene. Our studies provide insight into the regulation of ACS5 and ethylene biosynthesis.
Collapse
|
49
|
Lionetti V, Raiola A, Cervone F, Bellincampi D. Transgenic expression of pectin methylesterase inhibitors limits tobamovirus spread in tobacco and Arabidopsis. MOLECULAR PLANT PATHOLOGY 2014; 15:265-74. [PMID: 24127644 PMCID: PMC6638747 DOI: 10.1111/mpp.12090] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant infection by a virus is a complex process influenced by virus-encoded factors and host components which support replication and movement. Critical factors for a successful tobamovirus infection are the viral movement protein (MP) and the host pectin methylesterase (PME), an important plant counterpart that cooperates with MP to sustain viral spread. The activity of PME is modulated by endogenous protein inhibitors (pectin methylesterase inhibitors, PMEIs). PMEIs are targeted to the extracellular matrix and typically inhibit plant PMEs by forming a specific and stable stoichiometric 1:1 complex. PMEIs counteract the action of plant PMEs and therefore may affect plant susceptibility to virus. To test this hypothesis, we overexpressed genes encoding two well-characterized PMEIs in tobacco and Arabidopsis plants. Here, we report that, in tobacco plants constitutively expressing a PMEI from Actinidia chinensis (AcPMEI), systemic movement of Tobacco mosaic virus (TMV) is limited and viral symptoms are reduced. A delayed movement of Turnip vein clearing virus (TVCV) and a reduced susceptibility to the virus were also observed in Arabidopsis plants overexpressing AtPMEI-2. Our results provide evidence that PMEIs are able to limit tobamovirus movement and to reduce plant susceptibility to the virus.
Collapse
Affiliation(s)
- Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', 'Sapienza' Università di Roma, 00185, Roma, Italy
| | | | | | | |
Collapse
|
50
|
Li Y, Jing Y, Li J, Xu G, Lin R. Arabidopsis VQ MOTIF-CONTAINING PROTEIN29 represses seedling deetiolation by interacting with PHYTOCHROME-INTERACTING FACTOR1. PLANT PHYSIOLOGY 2014; 164:2068-80. [PMID: 24569844 PMCID: PMC3982763 DOI: 10.1104/pp.113.234492] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/21/2014] [Indexed: 05/19/2023]
Abstract
Seedling deetiolation, a critical process in early plant development, is regulated by an intricate transcriptional network. Here, we identified VQ MOTIF-CONTAINING PROTEIN29 (VQ29) as a novel regulator of the photomorphogenic response in Arabidopsis (Arabidopsis thaliana). We showed that 29 of the 34 VQ proteins present in Arabidopsis exhibit transcriptional activity in plant cells and that mutations in the VQ motif affect the transcriptional activity of VQ29. We then functionally characterized VQ29 and showed that the hypocotyl growth of plants overexpressing VQ29 is hyposensitive to far-red and low-intensity white light, whereas a vq29 loss-of-function mutant exhibits decreased hypocotyl elongation under a low intensity of far-red or white light. Consistent with this, VQ29 expression is repressed by light in a phytochrome-dependent manner. Intriguingly, our yeast (Saccharomyces cerevisiae) two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays showed that VQ29 physically interacts with PHYTOCHROME-INTERACTING FACTOR1 (PIF1). We then showed that VQ29 and PIF1 directly bind to the promoter of a cell elongation-related gene, XYLOGLUCAN ENDOTRANSGLYCOSYLASE7, and coactivate its expression. Furthermore, the vq29 pif1 double mutant has shorter hypocotyls than either of the corresponding single mutants. Therefore, our study reveals that VQ29 is a negative transcriptional regulator of light-mediated inhibition of hypocotyl elongation that likely promotes the transcriptional activity of PIF1 during early seedling development.
Collapse
|