1
|
Kimberlin AN, Mahmud S, Holtsclaw RE, Walker A, Conrad K, Morley SA, Welti R, Allen DK, Koo AJ. Inducible expression of DEFECTIVE IN ANTHER DEHISCENCE 1 enhances triacylglycerol accumulation and lipid droplet formation in vegetative tissues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70088. [PMID: 40052427 PMCID: PMC11886949 DOI: 10.1111/tpj.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
Bioengineering efforts to increase oil in non-storage vegetative tissues, which constitute the majority of plant biomass, are promising sustainable sources of renewable fuels and feedstocks. While plants typically do not accumulate significant amounts of triacylglycerol (TAG) in vegetative tissues, we report here that the expression of a plastid-localized phospholipase A1 protein, DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1), led to a substantial increase in leaf TAG in Arabidopsis. Using an inducible system to control DAD1 expression circumvented growth penalties associated with overexpressing DAD1 and resulted in a rapid burst of TAG within several hours. The increase of TAG was accompanied by the formation of oil bodies in the leaves, petioles, and stems, but not in the roots. Lipid analysis indicated that the increase in TAG was negatively correlated with plastidial galactolipid concentration. The fatty acid (FA) composition of TAG predominantly consisted of 18:3. Expression of DAD1 in the fad3fad7fad8 mutant, devoid of 18:3, resulted in comparable TAG accumulation with 18:2 as the major FA constituent, reflecting the flexible in vivo substrate use of DAD1. The transient expression of either Arabidopsis DAD1 or Nicotiana benthamiana DAD1 (NbDAD1) in N. benthamiana leaves stimulated the accumulation of TAG. Similarly, transgenic soybeans expressing Arabidopsis DAD1 exhibited an accumulation of TAG in the leaves, showcasing the biotechnological potential of this technology. In summary, inducible expression of a plastidial lipase resulted in enhanced oil production in vegetative tissues, extending our understanding of lipid remodeling mediated by DAD1 and offering a valuable tool for metabolic engineering.
Collapse
Affiliation(s)
- Athen N. Kimberlin
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
- Present address:
Aldevron LLCMadisonWisconsin53719USA
| | - Sakil Mahmud
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
- Present address:
Department of Agriculture and Environmental SciencesLincoln UniversityJefferson CityMissouri65101USA
| | - Rebekah E. Holtsclaw
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
- Present address:
Rubi LaboratoriesAlamedaCalifornia94502USA
| | - Alexie Walker
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
| | - Kristyn Conrad
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
| | | | - Ruth Welti
- Division of BiologyKansas State UniversityManhattanKansas66506USA
| | - Doug K. Allen
- Donald Danforth Plant Science CenterSt. LouisMissouri63132USA
- USDA‐ARSSt. LouisMissouri63132USA
| | - Abraham J. Koo
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
| |
Collapse
|
2
|
Scholz P, Doner NM, Gutbrod K, Herrfurth C, Niemeyer PW, Lim MSS, Blersch KF, Schmitt K, Valerius O, Shanklin J, Feussner I, Dörmann P, Braus GH, Mullen RT, Ischebeck T. Plasticity of the Arabidopsis leaf lipidome and proteome in response to pathogen infection and heat stress. PLANT PHYSIOLOGY 2025; 197:kiae274. [PMID: 38781317 PMCID: PMC11823117 DOI: 10.1093/plphys/kiae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Plants must cope with a variety of stressors during their life cycle, and the adaptive responses to these environmental cues involve all cellular organelles. Among them, comparatively little is known about the contribution of cytosolic lipid droplets (LDs) and their core set of neutral lipids and associated surface proteins to the rewiring of cellular processes in response to stress. Here, we analyzed the changes that occur in the lipidome and proteome of Arabidopsis (Arabidopsis thaliana) leaves after pathogen infection with Botrytis cinerea or Pseudomonas syringae, or after heat stress. Analyses were carried out in wild-type plants and the oil-rich double mutant trigalactosyldiacylglycerol1-1 sugar dependent 1-4 (tgd1-1 sdp1-4) that allowed for an allied study of the LD proteome in stressed leaves. Using liquid chromatography-tandem mass spectrometry-based methods, we showed that a hyperaccumulation of the primary LD core lipid TAG is a general response to stress and that acyl chain and sterol composition are remodeled during cellular adaptation. Likewise, comparative analysis of the LD protein composition in stress-treated leaves highlighted the plasticity of the LD proteome as part of the general stress response. We further identified at least two additional LD-associated proteins, whose localization to LDs in leaves was confirmed by confocal microscopy of fluorescent protein fusions. Taken together, these results highlight LDs as dynamic contributors to the cellular adaptation processes that underlie how plants respond to environmental stress.
Collapse
Affiliation(s)
- Patricia Scholz
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
| | - Nathan M Doner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Katharina Gutbrod
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn 53115, Germany
| | - Cornelia Herrfurth
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen 37077, Germany
| | - Philipp W Niemeyer
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
| | - Magdiel S S Lim
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster 48143, Germany
| | - Katharina F Blersch
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster 48143, Germany
| | - Kerstin Schmitt
- Institute for Microbiology and Genetics, Service Unit LCMS Protein Analytics Department for Molecular Microbiology and Genetics, University of Goettingen, Goettingen 37077, Germany
| | - Oliver Valerius
- Institute for Microbiology and Genetics, Service Unit LCMS Protein Analytics Department for Molecular Microbiology and Genetics, University of Goettingen, Goettingen 37077, Germany
| | - John Shanklin
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ivo Feussner
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen 37077, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn 53115, Germany
| | - Gerhard H Braus
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen 37077, Germany
- Institute for Microbiology and Genetics, Service Unit LCMS Protein Analytics Department for Molecular Microbiology and Genetics, University of Goettingen, Goettingen 37077, Germany
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Till Ischebeck
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen 37077, Germany
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster 48143, Germany
| |
Collapse
|
3
|
Kaur M, Sinha K, Eastmond PJ, Bhunia RK. Exploiting lipid droplet metabolic pathway to foster lipid production: oleosin in focus. PLANT CELL REPORTS 2024; 44:12. [PMID: 39724216 DOI: 10.1007/s00299-024-03390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024]
Abstract
In the past decade, there has been an emerging gap between the demand and supply of vegetable oils globally for both edible and industrial use. Lipids are important biomolecules with enormous applications in the industrial sector and a major source of energy for animals and plants. Hence, to elevate the lipid content through metabolic engineering, new strategies have come up for triacylglycerol (TAG) accumulation and in raising the lipid or oil yield in crop plants. Increased levels of energy density can be achieved by single and multiple gene strategies that re-orient the carbon flux into TAG. Transcription factors and enzymes of the metabolic pathways have been targeted to foster lipid production. Oleosin, a structural protein of the lipid droplet plays a vital role in its stabilization and subsequently in its mobilization for seed germination and seedling growth. Maintenance of increased lipid content with optimal composition is a major target. Knowledge gained from genetic engineering strategies suggests that oleosin co-expression can result in a significant shift in carbon allocation to LDs. In this review, we present a detailed analysis of the recent advancements in metabolic engineering of plant lipids with emphasis on oleosin with its distinct patterns and functions in plants.
Collapse
Affiliation(s)
- Manmehar Kaur
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Kshitija Sinha
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
- National Agri-Food and Biomanufacturing Institute (NABI), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | | | - Rupam Kumar Bhunia
- National Agri-Food and Biomanufacturing Institute (NABI), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
4
|
Barroga NAM, Nguyen VC, Nakamura Y. The role of lysophosphatidic acid acyltransferase 1 in reproductive growth of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7190-7201. [PMID: 39169564 DOI: 10.1093/jxb/erae304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Lysophosphatidic acid acyltransferase1 (LPAT1) catalyzes the second step of de novo glycerolipid biosynthesis in chloroplasts. However, the embryonic-lethal phenotype of the knockout mutant suggested an unknown role for LPAT1 in non-photosynthetic reproductive organs. Reciprocal genetic crossing of the lpat1-1 heterozygous line suggested a female gametophytic defect of the lpat1-1 knockout mutant. By suppressing LPAT1 specifically during seed development, we showed that LPAT1 suppression affected silique growth and seed production. Glycerolipid analysis of the LPAT1 knockdown lines revealed a pronounced decrease of phosphatidylcholine (PC) content in mature siliques along with an altered polyunsaturation level of the polar glycerolipids. In seeds, the acyl composition of triacylglycerol (TAG) was altered albeit not the content. These results indicate that plastidic LPAT1 plays an important role in reproductive growth and extraplastidic glycerolipid metabolism involving PC and TAG.
Collapse
Affiliation(s)
- Niña Alyssa M Barroga
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Van C Nguyen
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan
| | - Yuki Nakamura
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei 11529, Taiwan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-8654, Japan
- Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
5
|
Fan J, Sah SK, Lemes Jorge G, Blanford J, Xie D, Yu L, Thelen J, Shanklin J, Xu C. Arabidopsis trigalactosyldiacylglycerol1 mutants reveal a critical role for phosphtidylcholine remodeling in lipid homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:788-798. [PMID: 39276345 DOI: 10.1111/tpj.17020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
Lipid remodeling plays a critical role in plant response to abiotic stress and metabolic perturbations. Key steps in this process involve modifications of phosphatidylcholine (PC) acyl chains mediated by lysophosphatidylcholine: acyl-CoA acyltransferases (LPCATs) and phosphatidylcholine: diacylglycerol cholinephosphotransferase (ROD1). To assess their importance in lipid homeostasis, we took advantage of the trigalactosyldiacylglycerol1 (tgd1) mutant that exhibits marked increases in fatty acid synthesis and fatty acid flux through PC due to a block in inter-organelle lipid trafficking. Here, we showed that the increased fatty acid synthesis in tgd1 is due to posttranslational activation of the plastidic acetyl-coenzyme A carboxylase. Genetic analysis showed that knockout of LPCAT1 and 2 resulted in a lethal phenotype in tgd1. In addition, plants homozygous for lpcat2 and heterozygous for lpcat1 in the tgd1 background showed reduced levels of PC and triacylglycerols (TAG) and alterations in their fatty acid profiles. We further showed that disruption of ROD1 in tgd1 resulted in changes in fatty acid composition of PC and TAG, decreased leaf TAG content and reduced seedling growth. Together, our results reveal a critical role of LPCATs and ROD1 in maintaining cellular lipid homeostasis under conditions, in which fatty acid production largely exceeds the cellular demand for membrane lipid synthesis.
Collapse
Affiliation(s)
- Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Saroj Kumar Sah
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Gabriel Lemes Jorge
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, 1201 E Rollins, Columbia, Missouri, 65211, USA
| | - Jantana Blanford
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Dongling Xie
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Jay Thelen
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, 1201 E Rollins, Columbia, Missouri, 65211, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| |
Collapse
|
6
|
Sah SK, Fan J, Blanford J, Shanklin J, Xu C. Physiological Functions of Phospholipid:Diacylglycerol Acyltransferases. PLANT & CELL PHYSIOLOGY 2024; 65:863-871. [PMID: 37702708 DOI: 10.1093/pcp/pcad106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Triacylglycerol (TAG) is among the most energy dense storage forms of reduced carbon in living systems. TAG metabolism plays critical roles in cellular energy balance, lipid homeostasis, cell growth and stress responses. In higher plants, microalgae and fungi, TAG is assembled by acyl-CoA-dependent and acyl-CoA-independent pathways catalyzed by diacylglycerol (DAG) acyltransferase and phospholipid:DAG acyltransferase (PDAT), respectively. This review contains a summary of the current understanding of the physiological functions of PDATs. Emphasis is placed on their role in lipid remodeling and lipid homeostasis in response to abiotic stress or perturbations in lipid metabolism.
Collapse
Affiliation(s)
- Saroj Kumar Sah
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jantana Blanford
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
7
|
Cook R, Froehlich JE, Yang Y, Korkmaz I, Kramer DM, Benning C. Chloroplast phosphatases LPPγ and LPPε1 facilitate conversion of extraplastidic phospholipids to galactolipids. PLANT PHYSIOLOGY 2024; 195:1506-1520. [PMID: 38401529 DOI: 10.1093/plphys/kiae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
Galactolipids comprise the majority of chloroplast membranes in plants, and their biosynthesis requires dephosphorylation of phosphatidic acid at the chloroplast envelope membranes. In Arabidopsis (Arabidopsis thaliana), the lipid phosphate phosphatases LPPγ, LPPε1, and LPPε2 have been previously implicated in chloroplast lipid assembly, with LPPγ being essential, as null mutants were reported to exhibit embryo lethality. Here, we show that lppγ mutants are in fact viable and that LPPγ, LPPε1, and LPPε2 do not appear to have central roles in the plastid pathway of membrane lipid biosynthesis. Redundant LPPγ and LPPε1 activity at the outer envelope membrane is important for plant development, and the respective lppγ lppε1 double mutant exhibits reduced flux through the ER pathway of galactolipid synthesis. While LPPε2 is imported and associated with interior chloroplast membranes, its role remains elusive and does not include basal nor phosphate limitation-induced biosynthesis of glycolipids. The specific physiological roles of LPPγ, LPPε1, and LPPε2 are yet to be uncovered, as does the identity of the phosphatidic acid phosphatase required for plastid galactolipid biosynthesis.
Collapse
Affiliation(s)
- Ron Cook
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - John E Froehlich
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yang Yang
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Ilayda Korkmaz
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - David M Kramer
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Christoph Benning
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
You L, Połońska A, Jasieniecka-Gazarkiewicz K, Richard F, Jouhet J, Maréchal E, Banaś A, Hu H, Pan Y, Hao X, Jin H, Allen AE, Amato A, Gong Y. Two plastidial lysophosphatidic acid acyltransferases differentially mediate the biosynthesis of membrane lipids and triacylglycerols in Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2024; 241:1543-1558. [PMID: 38031462 DOI: 10.1111/nph.19434] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Lysophosphatidic acid acyltransferases (LPAATs) catalyze the formation of phosphatidic acid (PA), a central metabolite in both prokaryotic and eukaryotic organisms for glycerolipid biosynthesis. Phaeodactylum tricornutum contains at least two plastid-localized LPAATs (ptATS2a and ptATS2b), but their roles in lipid synthesis remain unknown. Both ptATS2a and ptATS2b could complement the high temperature sensitivity of the bacterial plsC mutant deficient in LPAAT. In vitro enzyme assays showed that they prefer lysophosphatidic acid over other lysophospholipids. ptATS2a is localized in the plastid inner envelope membrane and CRISPR/Cas9-generated ptATS2a mutants showed compromised cell growth, significantly changed plastid and extra-plastidial membrane lipids at nitrogen-replete condition and reduced triacylglycerols (TAGs) under nitrogen-depleted condition. ptATS2b is localized in thylakoid membranes and its knockout led to reduced growth rate and TAG content but slightly altered molecular composition of membrane lipids. The changes in glycerolipid profiles are consistent with the role of both LPAATs in the sn-2 acylation of sn-1-acyl-glycerol-3-phosphate substrates harboring 20:5 at the sn-1 position. Our findings suggest that both LPAATs are important for membrane lipids and TAG biosynthesis in P. tricornutum and further highlight that 20:5-Lyso-PA is likely involved in the massive import of 20:5 back to the plastid to feed plastid glycerolipid syntheses.
Collapse
Affiliation(s)
- Lingjie You
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Ada Połońska
- Intercollegiate Faculty of Biotechnology of UG and MUG, Gdansk, 80-307, Poland
| | | | - Fabien Richard
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041, Grenoble, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041, Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041, Grenoble, France
| | - Antoni Banaś
- Intercollegiate Faculty of Biotechnology of UG and MUG, Gdansk, 80-307, Poland
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yufang Pan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiahui Hao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Hu Jin
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Andrew E Allen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041, Grenoble, France
| | - Yangmin Gong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| |
Collapse
|
9
|
Mueller-Schuessele SJ, Leterme S, Michaud M. Plastid Transient and Stable Interactions with Other Cell Compartments. Methods Mol Biol 2024; 2776:107-134. [PMID: 38502500 DOI: 10.1007/978-1-0716-3726-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Plastids are organelles delineated by two envelopes playing important roles in different cellular processes such as energy production or lipid biosynthesis. To regulate their biogenesis and their function, plastids have to communicate with other cellular compartments. This communication can be mediated by metabolites, signaling molecules, and by the establishment of direct contacts between the plastid envelope and other organelles such as the endoplasmic reticulum, mitochondria, peroxisomes, plasma membrane, and the nucleus. These interactions are highly dynamic and respond to different biotic and abiotic stresses. However, the mechanisms involved in the formation of plastid-organelle contact sites and their functions are still far from being understood. In this chapter, we summarize our current knowledge about plastid contact sites and their role in the regulation of plastid biogenesis and function.
Collapse
Affiliation(s)
| | - Sébastien Leterme
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France.
| |
Collapse
|
10
|
Gong W, Chen W, Gao Q, Qian L, Yuan X, Tang S, Hong Y. Glycerol-3-Phosphate Acyltransferase GPAT9 Enhanced Seed Oil Accumulation and Eukaryotic Galactolipid Synthesis in Brassica napus. Int J Mol Sci 2023; 24:16111. [PMID: 38003299 PMCID: PMC10671787 DOI: 10.3390/ijms242216111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Glycerol-3-phosphate acyltransferase GPAT9 catalyzes the first acylation of glycerol-3-phosphate (G3P), a committed step of glycerolipid synthesis in Arabidopsis. The role of GPAT9 in Brassica napus remains to be elucidated. Here, we identified four orthologs of GPAT9 and found that BnaGPAT9 encoded by BnaC01T0014600WE is a predominant isoform and promotes seed oil accumulation and eukaryotic galactolipid synthesis in Brassica napus. BnaGPAT9 is highly expressed in developing seeds and is localized in the endoplasmic reticulum (ER). Ectopic expression of BnaGPAT9 in E. coli and siliques of Brassica napus enhanced phosphatidic acid (PA) production. Overexpression of BnaGPAT9 enhanced seed oil accumulation resulting from increased 18:2-fatty acid. Lipid profiling in developing seeds showed that overexpression of BnaGPAT9 led to decreased phosphatidylcholine (PC) and a corresponding increase in phosphatidylethanolamine (PE), implying that BnaGPAT9 promotes PC flux to storage triacylglycerol (TAG). Furthermore, overexpression of BnaGPAT9 also enhanced eukaryotic galactolipids including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), with increased 36:6-MGDG and 36:6-DGDG, and decreased 34:6-MGDG in developing seeds. Collectively, these results suggest that ER-localized BnaGPAT9 promotes PA production, thereby enhancing seed oil accumulation and eukaryotic galactolipid biosynthesis in Brassica napus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (W.G.); (W.C.); (Q.G.); (L.Q.); (X.Y.); (S.T.)
| |
Collapse
|
11
|
Xu Y, Singer SD, Chen G. Protein interactomes for plant lipid biosynthesis and their biotechnological applications. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1734-1744. [PMID: 36762506 PMCID: PMC10440990 DOI: 10.1111/pbi.14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Plant lipids have essential biological roles in plant development and stress responses through their functions in cell membrane formation, energy storage and signalling. Vegetable oil, which is composed mainly of the storage lipid triacylglycerol, also has important applications in food, biofuel and oleochemical industries. Lipid biosynthesis occurs in multiple subcellular compartments and involves the coordinated action of various pathways. Although biochemical and molecular biology research over the last few decades has identified many proteins associated with lipid metabolism, our current understanding of the dynamic protein interactomes involved in lipid biosynthesis, modification and channelling is limited. This review examines advances in the identification and characterization of protein interactomes involved in plant lipid biosynthesis, with a focus on protein complexes consisting of different subunits for sequential reactions such as those in fatty acid biosynthesis and modification, as well as transient or dynamic interactomes formed from enzymes in cooperative pathways such as assemblies of membrane-bound enzymes for triacylglycerol biosynthesis. We also showcase a selection of representative protein interactome structures predicted using AlphaFold2, and discuss current and prospective strategies involving the use of interactome knowledge in plant lipid biotechnology. Finally, unresolved questions in this research area and possible approaches to address them are also discussed.
Collapse
Affiliation(s)
- Yang Xu
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| | - Stacy D. Singer
- Agriculture and Agri‐Food Canada, Lethbridge Research and Development CentreLethbridgeAlbertaCanada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
12
|
Yu L, Shen W, Fan J, Sah SK, Mavraganis I, Wang L, Gao P, Gao J, Zheng Q, Meesapyodsuk D, Yang H, Li Q, Zou J, Xu C. A chloroplast diacylglycerol lipase modulates glycerolipid pathway balance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37006186 DOI: 10.1111/tpj.16228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Two parallel pathways compartmentalized in the chloroplast and the endoplasmic reticulum contribute to thylakoid lipid synthesis in plants, but how these two pathways are coordinated during thylakoid biogenesis and remodeling remains unknown. We report here the molecular characterization of a homologous ADIPOSE TRIGLYCERIDE LIPASE-LIKE gene, previously referred to as ATGLL. The ATGLL gene is ubiquitously expressed throughout development and rapidly upregulated in response to a wide range of environmental cues. We show that ATGLL is a chloroplast non-regioselective lipase with a hydrolytic activity preferentially towards 16:0 of diacylglycerol (DAG). Comprehensive lipid profiling and radiotracer labeling studies revealed a negative correlation of ATGLL expression and the relative contribution of the chloroplast lipid pathway to thylakoid lipid biosynthesis. Additionally, we show that genetic manipulation of ATGLL expression resulted in changes in triacylglycerol levels in leaves. We propose that ATGLL, through affecting the level of prokaryotic DAG in the chloroplast, plays important roles in balancing the two glycerolipid pathways and in maintaining lipid homeostasis in plants.
Collapse
Affiliation(s)
- Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
- State Key Laboratory of Crop Stress Biology for Arid Areas and Institute of Future Agriculture, Northwest A&F University, Yangling, Shanxi, China
| | - Wenyun Shen
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Saroj Kumar Sah
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Ioannis Mavraganis
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Liping Wang
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Peng Gao
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Jie Gao
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Qian Zheng
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Dauenpen Meesapyodsuk
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Hui Yang
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Qiang Li
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Jitao Zou
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| |
Collapse
|
13
|
Barroga NAM, Nakamura Y. LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE 2 (LPAT2) is required for de novo glycerolipid biosynthesis, growth, and development in vegetative and reproductive tissues of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:709-721. [PMID: 36226675 DOI: 10.1111/tpj.15974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
The Kennedy pathway is a highly conserved de novo glycerolipid biosynthesis pathway in prokaryotes and eukaryotes. In Arabidopsis, LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE 2 (LPAT2) was assumed to catalyze a crucial reaction step of the endoplasmic reticulum (ER)-localized Kennedy pathway because of lethality in the lpat2-1 knockout mutant. However, whether this lethal phenotype was due to the essential role of the Kennedy pathway or LPAT2 as the key enzyme of the Kennedy pathway was unclear. By creating non-lethal LPAT2-knockdown mutants in Arabidopsis, we found that LPAT2 is required for phospholipid content and plant development in vegetative and reproductive growth. Functional in vivo reporter assays revealed that LPAT2 was ubiquitously expressed and localized to the ER, where de novo phospholipid biosynthesis takes place. Intriguingly, our lipid analysis revealed that LPAT2 suppression had different effects among the organs examined: phospholipid levels were decreased both in leaves and flowers and the effect was more pronounced in flowers, a non-photosynthetic organ enriched with phospholipids. Although seed size was reduced in the LPAT2 suppression lines, no remarkable effect was observed in the lipid content of mature siliques. Our results show that LPAT2 is involved in the ER-localized Kennedy pathway, and suggest that its contribution to de novo phospholipid biosynthesis may have organ selectivity.
Collapse
Affiliation(s)
- Niña Alyssa M Barroga
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
- Center for Sustainable Resource Science, RIKEN, Yokohama, 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, 113-8654, Japan
| |
Collapse
|
14
|
Rathore D, Sevda S, Prasad S, Venkatramanan V, Chandel AK, Kataki R, Bhadra S, Channashettar V, Bora N, Singh A. Bioengineering to Accelerate Biodiesel Production for a Sustainable Biorefinery. Bioengineering (Basel) 2022; 9:618. [PMID: 36354528 PMCID: PMC9687738 DOI: 10.3390/bioengineering9110618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Biodiesel is an alternative, carbon-neutral fuel compared to fossil-based diesel, which can reduce greenhouse gas (GHGs) emissions. Biodiesel is a product of microorganisms, crop plants, and animal-based oil and has the potential to prosper as a sustainable and renewable energy source and tackle growing energy problems. Biodiesel has a similar composition and combustion properties to fossil diesel and thus can be directly used in internal combustion engines as an energy source at the commercial level. Since biodiesel produced using edible/non-edible crops raises concerns about food vs. fuel, high production cost, monocropping crisis, and unintended environmental effects, such as land utilization patterns, it is essential to explore new approaches, feedstock and technologies to advance the production of biodiesel and maintain its sustainability. Adopting bioengineering methods to produce biodiesel from various sources such as crop plants, yeast, algae, and plant-based waste is one of the recent technologies, which could act as a promising alternative for creating genuinely sustainable, technically feasible, and cost-competitive biodiesel. Advancements in genetic engineering have enhanced lipid production in cellulosic crops and it can be used for biodiesel generation. Bioengineering intervention to produce lipids/fat/oil (TGA) and further their chemical or enzymatic transesterification to accelerate biodiesel production has a great future. Additionally, the valorization of waste and adoption of the biorefinery concept for biodiesel production would make it eco-friendly, cost-effective, energy positive, sustainable and fit for commercialization. A life cycle assessment will not only provide a better understanding of the various approaches for biodiesel production and waste valorization in the biorefinery model to identify the best technique for the production of sustainable biodiesel, but also show a path to draw a new policy for the adoption and commercialization of biodiesel.
Collapse
Affiliation(s)
- Dheeraj Rathore
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Surajbhan Sevda
- Environmental Bioprocess Laboratory, Department of Biotechnology, National Institute of Technology, Warangal 506004, Telangana, India
| | - Shiv Prasad
- Division of Environment Science, ICAR—Indian Agricultural Research Institute, New Delhi 110012, Delhi, India
| | - Veluswamy Venkatramanan
- School of Interdisciplinary and Transdisciplinary Studies, Indira Gandhi National Open University, New Delhi 110068, Delhi, India
| | - Anuj Kumar Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo (USP), Estrada Municipal do Campinho, Lorena 12602-810, SP, Brazil
| | - Rupam Kataki
- Department of Energy, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Sudipa Bhadra
- Environmental Bioprocess Laboratory, Department of Biotechnology, National Institute of Technology, Warangal 506004, Telangana, India
| | - Veeranna Channashettar
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, Lodhi Road, New Delhi 110003, Delhi, India
| | - Neelam Bora
- Department of Energy, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Anoop Singh
- Department of Scientific and Industrial Research (DSIR), Ministry of Science and Technology, Government of India, Technology Bhawan, New Mehrauli Road, New Delhi 110016, Delhi, India
| |
Collapse
|
15
|
Luo G, Cao VD, Kannan B, Liu H, Shanklin J, Altpeter F. Metabolic engineering of energycane to hyperaccumulate lipids in vegetative biomass. BMC Biotechnol 2022; 22:24. [PMID: 36042455 PMCID: PMC9425976 DOI: 10.1186/s12896-022-00753-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background The metabolic engineering of high-biomass crops for lipid production in their vegetative biomass has recently been proposed as a strategy to elevate energy density and lipid yields for biodiesel production. Energycane and sugarcane are highly polyploid, interspecific hybrids between Saccharum officinarum and Saccharum spontaneum that differ in the amount of ancestral contribution to their genomes. This results in greater biomass yield and persistence in energycane, which makes it the preferred target crop for biofuel production. Results Here, we report on the hyperaccumulation of triacylglycerol (TAG) in energycane following the overexpression of the lipogenic factors Diacylglycerol acyltransferase1-2 (DGAT1-2) and Oleosin1 (OLE1) in combination with RNAi suppression of SUGAR-DEPENDENT1 (SDP1) and Trigalactosyl diacylglycerol1 (TGD1). TAG accumulated up to 1.52% of leaf dry weight (DW,) a rate that was 30-fold that of non-modified energycane, in addition to almost doubling the total fatty acid content in leaves to 4.42% of its DW. Pearson’s correlation analysis showed that the accumulation of TAG had the highest correlation with the expression level of ZmDGAT1-2, followed by the level of RNAi suppression for SDP1. Conclusions This is the first report on the metabolic engineering of energycane and demonstrates that this resilient, high-biomass crop is an excellent target for the further optimization of the production of lipids from vegetative tissues. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-022-00753-7.
Collapse
Affiliation(s)
- Guangbin Luo
- Plant Molecular and Cellular Biology Program, Agronomy Department, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| | - Viet Dang Cao
- Plant Molecular and Cellular Biology Program, Agronomy Department, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| | - Baskaran Kannan
- Plant Molecular and Cellular Biology Program, Agronomy Department, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| | - Hui Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA.
| | - Fredy Altpeter
- Plant Molecular and Cellular Biology Program, Agronomy Department, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA.
| |
Collapse
|
16
|
Xiao R, Zou Y, Guo X, Li H, Lu H. Fatty acid desaturases (FADs) modulate multiple lipid metabolism pathways to improve plant resistance. Mol Biol Rep 2022; 49:9997-10011. [PMID: 35819557 DOI: 10.1007/s11033-022-07568-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/28/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Biological and abiotic stresses such as salt, extreme temperatures, and pests and diseases place major constraints on plant growth and crop yields. Fatty acids (FAs) and FA- derivatives are unique biologically active substance that show a wide range of functions in biological systems. They are not only participated in the regulation of energy storage substances and cell membrane plasm composition, but also extensively participate in the regulation of plant basic immunity, effector induced resistance and systemic resistance and other defense pathways, thereby improving plant resistance to adversity stress. Fatty acid desaturases (FADs) is involved in the desaturation of fatty acids, where desaturated fatty acids can be used as substrates for FA-derivatives. OBJECTIVE In this paper, the role of omega-FADs (ω-3 FADs and ω-6 FADs) in the prokaryotic and eukaryotic pathways of fatty acid biosynthesis in plant defense against stress (biological and abiotic stress) and the latest research progress were summarized. Moreover' the existing problems in related research and future research directions were also discussed. RESULTS Fatty acid desaturases are involved in various responses of plants during biotic and abiotic stress. For example, it is involved in regulating the stability and fluidity of cell membranes, reactive oxygen species signaling pathways, etc. In this review, we have collected several experimental studies to represent the differential effects of fatty acid desaturases on biotic and abiotic species. CONCLUSION Fatty acid desaturases play an important role in regulating biotic and abiotic stresses.
Collapse
Affiliation(s)
- Ruixue Xiao
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Yirong Zou
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Xiaorui Guo
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Hui Li
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Hai Lu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China.
| |
Collapse
|
17
|
Lavell A, Smith M, Xu Y, Froehlich JE, De La Mora C, Benning C. Proteins associated with the Arabidopsis thaliana plastid rhomboid-like protein RBL10. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1332-1345. [PMID: 34582071 PMCID: PMC9219029 DOI: 10.1111/tpj.15514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 09/10/2021] [Accepted: 09/21/2021] [Indexed: 05/07/2023]
Abstract
Rhomboid-like proteins are intramembrane proteases with a variety of regulatory roles in cells. Though many rhomboid-like proteins are predicted in plants, their detailed molecular mechanisms or cellular functions are not yet known. Of the 13 predicted rhomboids in Arabidopsis thaliana, one, RBL10, affects lipid metabolism in the chloroplast, because in the respective rbl10 mutant the transfer of phosphatidic acid through the inner envelope membrane is disrupted. Here we show that RBL10 is part of a high-molecular-weight complex of 250 kDa or greater in size. Nine likely components of this complex are identified by two independent methods and include Acyl Carrier Protein 4 (ACP4) and Carboxyltransferase Interactor1 (CTI1), which have known roles in chloroplast lipid metabolism. The acp4 mutant has decreased C16:3 fatty acid content of monogalactosyldiacylglycerol, similar to the rbl10 mutant, prompting us to offer a mechanistic model of how an interaction between ACP4 and RBL10 might affect chloroplast lipid assembly. We also demonstrate the presence of a seventh transmembrane domain in RBL10, refining the currently accepted topology of this protein. Taken together, the identity of possible RBL10 complex components as well as insights into RBL10 topology and distribution in the membrane provide a stepping-stone towards a deeper understanding of RBL10 function in Arabidopsis lipid metabolism.
Collapse
Affiliation(s)
- Anastasiya Lavell
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - Montgomery Smith
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI 48824
| | - Yang Xu
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - John E. Froehlich
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - Cameron De La Mora
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Dept. of Molecular & Cellular Biology, Illinois State University, Normal, IL 61761
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
18
|
Wijerathna-Yapa A, Signorelli S, Fenske R, Ganguly DR, Stroeher E, Li L, Pogson BJ, Duncan O, Millar AH. Autophagy mutants show delayed chloroplast development during de-etiolation in carbon limiting conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:459-477. [PMID: 34365695 DOI: 10.1111/tpj.15452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Autophagy is a conserved catabolic process that plays an essential role under nutrient starvation conditions and influences different developmental processes. We observed that seedlings of autophagy mutants (atg2, atg5, atg7, and atg9) germinated in the dark showed delayed chloroplast development following illumination. The delayed chloroplast development was characterized by a decrease in photosynthetic and chlorophyll biosynthetic proteins, lower chlorophyll content, reduced chloroplast size, and increased levels of proteins involved in lipid biosynthesis. Confirming the biological impact of these differences, photosynthetic performance was impaired in autophagy mutants 12 h post-illumination. We observed that while gene expression for photosynthetic machinery during de-etiolation was largely unaffected in atg mutants, several genes involved in photosystem assembly were transcriptionally downregulated. We also investigated if the delayed chloroplast development could be explained by lower lipid import to the chloroplast or lower triglyceride (TAG) turnover. We observed that the limitations in the chloroplast lipid import imposed by trigalactosyldiacylglycerol1 are unlikely to explain the delay in chloroplast development. However, we found that lower TAG mobility in the triacylglycerol lipase mutant sugardependent1 significantly affected de-etiolation. Moreover, we showed that lower levels of carbon resources exacerbated the slow greening phenotype whereas higher levels of carbon resources had an opposite effect. This work suggests a lack of autophagy machinery limits chloroplast development during de-etiolation, and this is exacerbated by limited lipid turnover (lipophagy) that physically or energetically restrains chloroplast development.
Collapse
Affiliation(s)
- Akila Wijerathna-Yapa
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
| | - Santiago Signorelli
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Uruguay
| | - Ricarda Fenske
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
| | - Diep R Ganguly
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Elke Stroeher
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
| | - Lei Li
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, PR China
| | - Barry J Pogson
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
| |
Collapse
|
19
|
Tagami S, Ohnishi K, Hikichi Y, Kiba A. Trigalactosyldiacylglycerol 3 protein orthologs are required for basal disease resistance in Nicotiana benthamiana. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:373-378. [PMID: 34782825 PMCID: PMC8562578 DOI: 10.5511/plantbiotechnology.21.0624a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Phosphatidic acid plays an important role in Nicotiana benthamiana immune responses against phytopathogenic bacteria. We analyzed the contributions of endoplasmic reticulum-derived chloroplast phospholipids, including phosphatidic acid, to the resistance of N. benthamiana against Ralstonia solanacearum. Here, we focused on trigalactosyldiacylglycerol 3 (TGD3) protein as a candidate required for phosphatidic acid signaling. On the basis of Arabidopsis thaliana TGD3 sequences, we identified two putative TGD3 orthologs in the N. benthamiana genome, NbTGD3-1 and NbTGD3-2. To address the role of TGD3s in plant defense responses, we created double NbTGD3-silenced plants using virus-induced gene silencing. The NbTGD3-silenced plants showed a moderately reduced growth phenotype. Bacterial growth and the appearance of bacterial wilt disease were accelerated in NbTGD3-silenced plants, compared with control plants, challenged with R. solanacearum. The NbTGD3-silenced plants showed reduced both expression of allene oxide synthase that encoded jasmonic acid biosynthetic enzyme and NbPR-4, a marker gene for jasmonic acid signaling, after inoculation with R. solanacearum. Thus, NbTGD3-mediated endoplasmic reticulum-chloroplast lipid transport might be required for jasmonic acid signaling-mediated basal disease resistance in N. benthamiana.
Collapse
Affiliation(s)
- Shuhei Tagami
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
20
|
Hanley SJ, Pellny TK, de Vega JJ, Castiblanco V, Arango J, Eastmond PJ, Heslop-Harrison JS(P, Mitchell RAC. Allele mining in diverse accessions of tropical grasses to improve forage quality and reduce environmental impact. ANNALS OF BOTANY 2021; 128:627-637. [PMID: 34320174 PMCID: PMC8422886 DOI: 10.1093/aob/mcab101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS The C4Urochloa species (syn. Brachiaria) and Megathyrsus maximus (syn. Panicum maximum) are used as pasture for cattle across vast areas in tropical agriculture systems in Africa and South America. A key target for variety improvement is forage quality: enhanced digestibility could decrease the amount of land required per unit production, and enhanced lipid content could decrease methane emissions from cattle. For these traits, loss-of-function (LOF) alleles in known gene targets are predicted to improve them, making a reverse genetics approach of allele mining feasible. We therefore set out to look for such alleles in diverse accessions of Urochloa species and Megathyrsus maximus from the genebank collection held at the CIAT. METHODS We studied allelic diversity of 20 target genes (11 for digestibility, nine for lipid content) in 104 accessions selected to represent genetic diversity and ploidy levels of U. brizantha, U. decumbens, U. humidicola, U. ruziziensis and M. maximum. We used RNA sequencing and then bait capture DNA sequencing to improve gene models in a U. ruziziensis reference genome to assign polymorphisms with high confidence. KEY RESULTS We found 953 non-synonymous polymorphisms across all genes and accessions; within these, we identified seven putative LOF alleles with high confidence, including those in the non-redundant SDP1 and BAHD01 genes present in diploid and tetraploid accessions. These LOF alleles could respectively confer increased lipid content and digestibility if incorporated into a breeding programme. CONCLUSIONS We demonstrated a novel, effective approach to allele discovery in diverse accessions using a draft reference genome from a single species. We used this to find gene variants in a collection of tropical grasses that could help reduce the environmental impact of cattle production.
Collapse
Affiliation(s)
| | | | | | | | - Jacobo Arango
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | | | | |
Collapse
|
21
|
Zoong Lwe Z, Sah S, Persaud L, Li J, Gao W, Raja Reddy K, Narayanan S. Alterations in the leaf lipidome of Brassica carinata under high-temperature stress. BMC PLANT BIOLOGY 2021; 21:404. [PMID: 34488625 PMCID: PMC8419912 DOI: 10.1186/s12870-021-03189-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/13/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND Brassica carinata (A) Braun has recently gained increased attention across the world as a sustainable biofuel crop. B. carinata is grown as a summer crop in many regions where high temperature is a significant stress during the growing season. However, little research has been conducted to understand the mechanisms through which this crop responds to high temperatures. Understanding traits that improve the high-temperature adaption of this crop is essential for developing heat-tolerant varieties. This study investigated lipid remodeling in B. carinata in response to high-temperature stress. A commercial cultivar, Avanza 641, was grown under sunlit-controlled environmental conditions in Soil-Plant-Atmosphere-Research (SPAR) chambers under optimal temperature (OT; 23/15°C) conditions. At eight days after sowing, plants were exposed to one of the three temperature treatments [OT, high-temperature treatment-1 (HT-1; 33/25°C), and high-temperature treatment-2 (HT-2; 38/30°C)]. The temperature treatment period lasted until the final harvest at 84 days after sowing. Leaf samples were collected at 74 days after sowing to profile lipids using electrospray-ionization triple quadrupole mass spectrometry. RESULTS Temperature treatment significantly affected the growth and development of Avanza 641. Both high-temperature treatments caused alterations in the leaf lipidome. The alterations were primarily manifested in terms of decreases in unsaturation levels of membrane lipids, which was a cumulative effect of lipid remodeling. The decline in unsaturation index was driven by (a) decreases in lipids that contain the highly unsaturated linolenic (18:3) acid and (b) increases in lipids containing less unsaturated fatty acids such as oleic (18:1) and linoleic (18:2) acids and/or saturated fatty acids such as palmitic (16:0) acid. A third mechanism that likely contributed to lowering unsaturation levels, particularly for chloroplast membrane lipids, is a shift toward lipids made by the eukaryotic pathway and the channeling of eukaryotic pathway-derived glycerolipids that are composed of less unsaturated fatty acids into chloroplasts. CONCLUSIONS The lipid alterations appear to be acclimation mechanisms to maintain optimal membrane fluidity under high-temperature conditions. The lipid-related mechanisms contributing to heat stress response as identified in this study could be utilized to develop biomarkers for heat tolerance and ultimately heat-tolerant varieties.
Collapse
Affiliation(s)
- Zolian Zoong Lwe
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Saroj Sah
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, 39762, USA
| | - Leelawatti Persaud
- Plant and Soil Sciences, Mississippi State University, Starkville, MS, 39762, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, 39762, USA
| | - Wei Gao
- USDA UVB Monitoring and Research Program, Natural Resource Ecology Laboratory, Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, 80523, USA
| | - K Raja Reddy
- Plant and Soil Sciences, Mississippi State University, Starkville, MS, 39762, USA.
| | - Sruthi Narayanan
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
22
|
Itoh RD, Nakajima KP, Sasaki S, Ishikawa H, Kazama Y, Abe T, Fujiwara MT. TGD5 is required for normal morphogenesis of non-mesophyll plastids, but not mesophyll chloroplasts, in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:237-255. [PMID: 33884686 DOI: 10.1111/tpj.15287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Stromules are dynamic membrane-bound tubular structures that emanate from plastids. Stromule formation is triggered in response to various stresses and during plant development, suggesting that stromules may have physiological and developmental roles in these processes. Despite the possible biological importance of stromules and their prevalence in green plants, their exact roles and formation mechanisms remain unclear. To explore these issues, we obtained Arabidopsis thaliana mutants with excess stromule formation in the leaf epidermis by microscopy-based screening. Here, we characterized one of these mutants, stromule biogenesis altered 1 (suba1). suba1 forms plastids with severely altered morphology in a variety of non-mesophyll tissues, such as leaf epidermis, hypocotyl epidermis, floral tissues, and pollen grains, but apparently normal leaf mesophyll chloroplasts. The suba1 mutation causes impaired chloroplast pigmentation and altered chloroplast ultrastructure in stomatal guard cells, as well as the aberrant accumulation of lipid droplets and their autophagic engulfment by the vacuole. The causal defective gene in suba1 is TRIGALACTOSYLDIACYLGLYCEROL5 (TGD5), which encodes a protein putatively involved in the endoplasmic reticulum (ER)-to-plastid lipid trafficking required for the ER pathway of thylakoid lipid assembly. These findings suggest that a non-mesophyll-specific mechanism maintains plastid morphology. The distinct mechanisms maintaining plastid morphology in mesophyll versus non-mesophyll plastids might be attributable, at least in part, to the differential contributions of the plastidial and ER pathways of lipid metabolism between mesophyll and non-mesophyll plastids.
Collapse
Affiliation(s)
- Ryuuichi D Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Kohdai P Nakajima
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Shun Sasaki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo, 102-8554, Japan
| | - Hiroki Ishikawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo, 102-8554, Japan
| | - Yusuke Kazama
- Nishina Center, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Tomoko Abe
- Nishina Center, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Makoto T Fujiwara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo, 102-8554, Japan
| |
Collapse
|
23
|
Yoshihara A, Nagata N, Wada H, Kobayashi K. Plastid Anionic Lipids Are Essential for the Development of Both Photosynthetic and Non-Photosynthetic Organs in Arabidopsis thaliana. Int J Mol Sci 2021; 22:4860. [PMID: 34064353 PMCID: PMC8124801 DOI: 10.3390/ijms22094860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 01/03/2023] Open
Abstract
The lipid bilayer matrix of the thylakoid membrane of cyanobacteria and chloroplasts of plants and algae is mainly composed of uncharged galactolipids, but also contains anionic lipids sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) as major constituents. The necessity of PG for photosynthesis is evident in all photosynthetic organisms examined to date, whereas the requirement of SQDG varies with species. In plants, although PG and SQDG are also found in non-photosynthetic plastids, their importance for the growth and functions of non-photosynthetic organs remains unclear. In addition, plants synthesize another anionic lipid glucuronosyldiacylglycerol (GlcADG) during phosphorus starvation, but its role in plant cells is not elucidated yet. To understand the functional relationships among PG, SQDG, and GlcADG, we characterized several Arabidopsis thaliana mutants defective in biosynthesis of these lipids. The mutants completely lacking both PG and SQDG biosynthesis in plastids showed developmental defects of roots, hypocotyls, and embryos in addition to leaves, which suggests that these lipids are pleiotropically required for the development of both photosynthetic and non-photosynthetic organs. Furthermore, our analysis revealed that SQDG, but not GlcADG, is essential for complementing the role of PG, particularly in photosynthesis under PG-deficient conditions such as phosphorus starvation.
Collapse
Affiliation(s)
- Akiko Yoshihara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho, Naka-ku, Sakai 599-8531, Japan;
| | - Noriko Nagata
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan;
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
| | - Koichi Kobayashi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho, Naka-ku, Sakai 599-8531, Japan;
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
24
|
Wang R, Ren Y, Yan H, Teng X, Zhu X, Wang Y, Zhang X, Guo X, Lin Q, Cheng Z, Lei C, Wang J, Jiang L, Wang Y, Wan J. ENLARGED STARCH GRAIN1 affects amyloplast development and starch biosynthesis in rice endosperm. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110831. [PMID: 33691965 DOI: 10.1016/j.plantsci.2021.110831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Cereal crops accumulate large amounts of starch which is synthesized and stored in amyloplasts in the form of starch grains (SGs). Despite significant progress in deciphering starch biosynthesis, our understanding of amyloplast development in rice (Oryza sativa) endosperm remains largely unknown. Here, we report a novel rice floury mutant named enlarged starch grain1 (esg1). The mutant has decreased starch content, altered starch physicochemical properties, slower grain-filling rate and reduced 1000-grain weight. A distinctive feature in esg1 endosperm is that SGs are much larger, mainly due to an increased number of starch granules per SG. Spherical and loosely assembled granules, together with those weakly stained SGs may account for decreased starch content in esg1. Map-based cloning revealed that ESG1 encodes a putative permease subunit of a bacterial-type ABC (ATP-binding cassette) lipid transporter. ESG1 is constitutively expressed in various tissues. It encodes a protein localized to the chloroplast and amyloplast membranes. Mutation of ESG1 causes defective galactolipid synthesis. The overall study indicates that ESG1 is a newly identified protein affecting SG development and subsequent starch biosynthesis, which provides novel insights into amyloplast development in rice.
Collapse
Affiliation(s)
- Rongqi Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haigang Yan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Teng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaopin Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yupeng Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
25
|
Cook R, Lupette J, Benning C. The Role of Chloroplast Membrane Lipid Metabolism in Plant Environmental Responses. Cells 2021; 10:cells10030706. [PMID: 33806748 PMCID: PMC8005216 DOI: 10.3390/cells10030706] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/30/2022] Open
Abstract
Plants are nonmotile life forms that are constantly exposed to changing environmental conditions during the course of their life cycle. Fluctuations in environmental conditions can be drastic during both day–night and seasonal cycles, as well as in the long term as the climate changes. Plants are naturally adapted to face these environmental challenges, and it has become increasingly apparent that membranes and their lipid composition are an important component of this adaptive response. Plants can remodel their membranes to change the abundance of different lipid classes, and they can release fatty acids that give rise to signaling compounds in response to environmental cues. Chloroplasts harbor the photosynthetic apparatus of plants embedded into one of the most extensive membrane systems found in nature. In part one of this review, we focus on changes in chloroplast membrane lipid class composition in response to environmental changes, and in part two, we will detail chloroplast lipid-derived signals.
Collapse
Affiliation(s)
- Ron Cook
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1319, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Josselin Lupette
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Christoph Benning
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1319, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| |
Collapse
|
26
|
Zhai Z, Liu H, Shanklin J. Ectopic Expression of OLEOSIN 1 and Inactivation of GBSS1 Have a Synergistic Effect on Oil Accumulation in Plant Leaves. PLANTS (BASEL, SWITZERLAND) 2021; 10:513. [PMID: 33803467 PMCID: PMC8000217 DOI: 10.3390/plants10030513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
During the transformation of wild-type (WT) Arabidopsis thaliana, a T-DNA containing OLEOSIN-GFP (OLE1-GFP) was inserted by happenstance within the GBSS1 gene, resulting in significant reduction in amylose and increase in leaf oil content in the transgenic line (OG). The synergistic effect on oil accumulation of combining gbss1 with the expression of OLE1-GFP was confirmed by transforming an independent gbss1 mutant (GABI_914G01) with OLE1-GFP. The resulting OLE1-GFP/gbss1 transgenic lines showed higher leaf oil content than the individual OLE1-GFP/WT or single gbss1 mutant lines. Further stacking of the lipogenic factors WRINKLED1, Diacylglycerol O-Acyltransferase (DGAT1), and Cys-OLEOSIN1 (an engineered sesame OLEOSIN1) in OG significantly elevated its oil content in mature leaves to 2.3% of dry weight, which is 15 times higher than that in WT Arabidopsis. Inducible expression of the same lipogenic factors was shown to be an effective strategy for triacylglycerol (TAG) accumulation without incurring growth, development, and yield penalties.
Collapse
Affiliation(s)
- Zhiyang Zhai
- Biology Department, Brookhaven National Laboratory, BNL 463, 50 Bell Ave., Upton, NY 11953, USA;
| | | | - John Shanklin
- Biology Department, Brookhaven National Laboratory, BNL 463, 50 Bell Ave., Upton, NY 11953, USA;
| |
Collapse
|
27
|
Yu L, Fan J, Zhou C, Xu C. Chloroplast lipid biosynthesis is fine-tuned to thylakoid membrane remodeling during light acclimation. PLANT PHYSIOLOGY 2021; 185:94-107. [PMID: 33631801 PMCID: PMC8133659 DOI: 10.1093/plphys/kiaa013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/21/2020] [Indexed: 05/29/2023]
Abstract
Reprogramming metabolism, in addition to modifying the structure and function of the photosynthetic machinery, is crucial for plant acclimation to changing light conditions. One of the key acclimatory responses involves reorganization of the photosynthetic membrane system including changes in thylakoid stacking. Glycerolipids are the main structural component of thylakoids and their synthesis involves two main pathways localized in the plastid and the endoplasmic reticulum (ER); however, the role of lipid metabolism in light acclimation remains poorly understood. We found that fatty acid synthesis, membrane lipid content, the plastid lipid biosynthetic pathway activity, and the degree of thylakoid stacking were significantly higher in plants grown under low light compared with plants grown under normal light. Plants grown under high light, on the other hand, showed a lower rate of fatty acid synthesis, a higher fatty acid flux through the ER pathway, higher triacylglycerol content, and thylakoid membrane unstacking. We additionally demonstrated that changes in rates of fatty acid synthesis under different growth light conditions are due to post-translational regulation of the plastidic acetyl-CoA carboxylase activity. Furthermore, Arabidopsis mutants defective in one of the two glycerolipid biosynthetic pathways displayed altered growth patterns and a severely reduced ability to remodel thylakoid architecture, particularly under high light. Overall, this study reveals how plants fine-tune fatty acid and glycerolipid biosynthesis to cellular metabolic needs in response to long-term changes in light conditions, highlighting the importance of lipid metabolism in light acclimation.
Collapse
Affiliation(s)
- Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Chao Zhou
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
28
|
Obata T, Kobayashi K, Tadakuma R, Akasaka T, Iba K, Negi J. The Endoplasmic Reticulum Pathway for Membrane Lipid Synthesis Has a Significant Contribution toward Shoot Removal-Induced Root Chloroplast Development in Arabidopsis. ACTA ACUST UNITED AC 2021; 62:494-501. [DOI: 10.1093/pcp/pcab009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/14/2021] [Indexed: 12/25/2022]
Abstract
Abstract
Chloroplast lipids are synthesized via two distinct pathways: the plastidic pathway and endoplasmic reticulum (ER) pathway. We previously reported that the contribution of the two pathways toward chloroplast development is different between mesophyll cells and guard cells in Arabidopsis leaf tissues and that the ER pathway plays a major role in guard cell chloroplast development. However, little is known about the contribution of the two pathways toward chloroplast development in other tissue cells, and in this study, we focused on root cells. Chloroplast development is normally repressed in roots but can be induced when the roots are detached from the shoots (root greening). We found that, similar to guard cells, root cells exhibit a higher proportion of glycolipid from the ER pathway. Root greening was repressed in the gles1 mutant, which has a defect in ER-to-plastid lipid transportation via the ER pathway, while normal root greening was observed in the ats1 mutant, whose plastidic pathway is blocked. Lipid analysis revealed that the gles1 mutation caused drastic decrease in the ER-derived glycolipids in roots. Furthermore, the gles1 detached roots showed smaller chloroplasts containing less starch than WT. These results suggest that the ER pathway has a significant contribution toward chloroplast development in the root cells.
Collapse
Affiliation(s)
- Tomoki Obata
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395 Japan
| | - Koichi Kobayashi
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai Osaka, 599-8531 Japan
| | - Ryosuke Tadakuma
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395 Japan
| | - Taiki Akasaka
- Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Koh Iba
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395 Japan
| | - Juntaro Negi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395 Japan
| |
Collapse
|
29
|
Hirashima T, Jimbo H, Kobayashi K, Wada H. A START domain-containing protein is involved in the incorporation of ER-derived fatty acids into chloroplast glycolipids in Marchantia polymorpha. Biochem Biophys Res Commun 2020; 534:436-441. [PMID: 33246557 DOI: 10.1016/j.bbrc.2020.11.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 11/18/2022]
Abstract
The appropriate regulation of thylakoid lipid synthesis is essential for the function of chloroplasts. In plant cells, membrane lipids synthesized in the ER are utilized as a precursor for the synthesis of chloroplast glycolipids. This pathway is thought to be mediated by the transport of glycerolipids synthesized in the ER into chloroplasts. However, we have little knowledge about the proteins involved in the lipid transfer between these organelles in plant cells. Here we show a protein, STAR2, containing the START (Steroidogenic acute regulatory protein-related lipid transfer) domain known to function as a lipid transporter, is involved in the incorporation of ER-derived fatty acids into chloroplast glycolipids in Marchantia polymorpha. We found that STAR2 localizes on the chloroplast envelope membrane as a punctuate structure and is required for the increase of C20 fatty acids, which are synthesized in the ER, in chloroplast glycolipids in response to phosphate deprivation. Our results indicate that STAR2 of M. polymorpha is likely to be involved in the lipid transfer from ER to chloroplast, presumably as a lipid transporter.
Collapse
Affiliation(s)
- Takashi Hirashima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Haruhiko Jimbo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Koichi Kobayashi
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
30
|
Kang H, Jia C, Liu N, Aboagla AAA, Chen W, Gong W, Tang S, Hong Y. Plastid Glycerol-3-phosphate Acyltransferase Enhanced Plant Growth and Prokaryotic Glycerolipid Synthesis in Brassica napus. Int J Mol Sci 2020; 21:ijms21155325. [PMID: 32727046 PMCID: PMC7432870 DOI: 10.3390/ijms21155325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 12/04/2022] Open
Abstract
Plastid-localized glycerol-3-phosphate acyltransferase (ATS1) catalyzes the first-step reaction in glycerolipid assembly through transferring an acyl moiety to glycerol-3-phosphate (G3P) to generate lysophosphatidic acid (LPA), an intermediate in lipid metabolism. The effect of ATS1 overexpression on glycerolipid metabolism and growth remained to be elucidated in plants, particularly oil crop plants. Here, we found that overexpression of BnATS1 from Brassica napus enhanced plant growth and prokaryotic glycerolipid biosynthesis. BnATS1 is localized in chloroplasts and an in vitro assay showed that BnATS1 had acylation activity toward glycerol 3-phosphate to produce LPA. Lipid profiling showed that overexpression of BnATS1 led to increases in multiple glycerolipids including phosphatidylglycerol (PG), monogalactosyldiacylglycerol (MGDG), phosphatidylcholine (PC), and phosphatidylinositol (PI), with increased polyunsaturated fatty acids. Moreover, increased MGDG was attributed to the elevation of 34:6- and 34:5-MGDG, which were derived from the prokaryotic pathway. These results suggest that BnATS1 promotes accumulation of polyunsaturated fatty acids in cellular membranes, thus enhances plant growth under low-temperature conditions in Brassica napus.
Collapse
|
31
|
Parajuli S, Kannan B, Karan R, Sanahuja G, Liu H, Garcia‐Ruiz E, Kumar D, Singh V, Zhao H, Long S, Shanklin J, Altpeter F. Towards oilcane: Engineering hyperaccumulation of triacylglycerol into sugarcane stems. GCB BIOENERGY 2020; 12:476-490. [DOI: 10.1111/gcbb.12684] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/16/2020] [Indexed: 08/30/2024]
Abstract
AbstractMetabolic engineering to divert carbon flux from sucrose to oil in high biomass crop like sugarcane is an emerging strategy to boost lipid yields per hectare for biodiesel production. Sugarcane stems comprise more than 70% of the crops' biomass and can accumulate sucrose in excess of 20% of their extracted juice. The energy content of oils in the form of triacylglycerol (TAG) is more than twofold that of carbohydrates. Here, we report a step change in TAG accumulation in sugarcane stem tissues achieving an average of 4.3% of their dry weight (DW) in replicated greenhouse experiments by multigene engineering. The metabolic engineering included constitutive co‐expression of wrinkled1; diacylglycerol acyltransferase1‐2; cysteine‐oleosin; and ribonucleic acid interference‐suppression of sugar‐dependent1. The TAG content in leaf tissue was also elevated by more than 400‐fold compared to non‐engineered sugarcane to an average of 8.0% of the DW and the amount of total fatty acids reached about 13% of the DW. With increasing TAG accumulation an increase of 18:1 unsaturated fatty acids was observed at the expense of 16:0 and 18:0 saturated fatty acids. Total biomass accumulation, soluble lignin, Brix and juice content were significantly reduced in the TAG hyperaccumulating sugarcane lines. Overcoming this yield drag by engineering lipid accumulation into late stem development will be critical to exceed lipid yields of current oilseed crops.
Collapse
Affiliation(s)
- Saroj Parajuli
- Agronomy Department Plant Molecular and Cellular Biology Program Genetics Institute University of Florida, IFAS Gainesville FL USA
| | - Baskaran Kannan
- Agronomy Department Plant Molecular and Cellular Biology Program Genetics Institute University of Florida, IFAS Gainesville FL USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation Gainesville FL USA
| | - Ratna Karan
- Agronomy Department Plant Molecular and Cellular Biology Program Genetics Institute University of Florida, IFAS Gainesville FL USA
| | - Georgina Sanahuja
- Agronomy Department Plant Molecular and Cellular Biology Program Genetics Institute University of Florida, IFAS Gainesville FL USA
| | - Hui Liu
- DOE Center for Advanced Bioenergy and Bioproducts Innovation Upton NY USA
- Biosciences Department Brookhaven National Laboratory Upton NY USA
| | - Eva Garcia‐Ruiz
- Department of Chemical and Biomolecular Engineering University of Illinois at Urbana‐Champaign Urbana IL USA
| | - Deepak Kumar
- Department of Agricultural and Biological Engineering University of Illinois at Urbana‐Champaign Urbana IL USA
| | - Vijay Singh
- Department of Agricultural and Biological Engineering University of Illinois at Urbana‐Champaign Urbana IL USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation Urbana IL USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering University of Illinois at Urbana‐Champaign Urbana IL USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation Urbana IL USA
| | - Stephen Long
- DOE Center for Advanced Bioenergy and Bioproducts Innovation Urbana IL USA
- Departments of Plant Biology and Crop Sciences Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana IL USA
| | - John Shanklin
- DOE Center for Advanced Bioenergy and Bioproducts Innovation Upton NY USA
- Biosciences Department Brookhaven National Laboratory Upton NY USA
| | - Fredy Altpeter
- Agronomy Department Plant Molecular and Cellular Biology Program Genetics Institute University of Florida, IFAS Gainesville FL USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation Gainesville FL USA
| |
Collapse
|
32
|
Nitenberg M, Makshakova O, Rocha J, Perez S, Maréchal E, Block MA, Girard-Egrot A, Breton C. Mechanism of activation of plant monogalactosyldiacylglycerol synthase 1 (MGD1) by phosphatidylglycerol. Glycobiology 2020; 30:396-406. [PMID: 32100029 DOI: 10.1093/glycob/cwz106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 11/13/2022] Open
Abstract
Mono- and digalactosyldiacylglycerol are essential galactolipids for the biogenesis of plastids and functioning of the photosynthetic machinery. In Arabidopsis, the first step of galactolipid synthesis is catalyzed by monogalactosyldiacylglycerol synthase 1 (MGD1), a monotopic protein located in the inner envelope membrane of chloroplasts, which transfers a galactose residue from UDP-galactose to diacylglycerol (DAG). MGD1 needs anionic lipids such as phosphatidylglycerol (PG) to be active, but the mechanism by which PG activates MGD1 is still unknown. Recent studies shed light on the catalytic mechanism of MGD1 and on the possible PG binding site. Particularly, Pro189 was identified as a potential residue implicated in PG binding and His155 as the putative catalytic residue. In the present study, using a multifaceted approach (Langmuir membrane models, atomic force microscopy, molecular dynamics; MD), we investigated the membrane binding properties of native MGD1 and mutants (P189A and H115A). We demonstrated that both residues are involved in PG binding, thus suggesting the existence of a PG-His catalytic dyad that should facilitate deprotonation of the nucleophile hydroxyl group of DAG acceptor. Interestingly, MD simulations showed that MGD1 induces a reorganization of lipids by attracting DAG molecules to create an optimal platform for binding.
Collapse
Affiliation(s)
- Milène Nitenberg
- CNRS, Centre de Recherches sur les Macromolécules Végétales, University Grenoble Alpes, Domaine universitaire, 38041 Grenoble, France
| | - Olga Makshakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str. 2/31, P.O. Box 420111 Kazan, Russia
| | - Joana Rocha
- CNRS, Centre de Recherches sur les Macromolécules Végétales, University Grenoble Alpes, Domaine universitaire, 38041 Grenoble, France
| | - Serge Perez
- CNRS, Centre de Recherches sur les Macromolécules Végétales, University Grenoble Alpes, Domaine universitaire, 38041 Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, CNRS, CEA, INRA, University Grenoble Alpes, 17 rue des martyrs, 38000 Grenoble, France
| | - Maryse A Block
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, CNRS, CEA, INRA, University Grenoble Alpes, 17 rue des martyrs, 38000 Grenoble, France
| | - Agnès Girard-Egrot
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, Univ. Lyon 1, GEMBAS team, University of Lyon, 1 rue Victor Grignard, 69622 Villeurbanne, France
| | - Christelle Breton
- CNRS, Centre de Recherches sur les Macromolécules Végétales, University Grenoble Alpes, Domaine universitaire, 38041 Grenoble, France
| |
Collapse
|
33
|
Maghuly F, Deák T, Vierlinger K, Pabinger S, Tafer H, Laimer M. Gene expression profiling identifies pathways involved in seed maturation of Jatropha curcas. BMC Genomics 2020; 21:290. [PMID: 32272887 PMCID: PMC7146973 DOI: 10.1186/s12864-020-6666-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/11/2020] [Indexed: 11/10/2022] Open
Abstract
Background Jatropha curcas, a tropical shrub, is a promising biofuel crop, which produces seeds with high content of oil and protein. To better understand the maturation process of J. curcas seeds and to improve its agronomic performance, a two-step approach was performed in six different maturation stages of seeds: 1) generation of the entire transcriptome of J. curcas seeds using 454-Roche sequencing of a cDNA library, 2) comparison of transcriptional expression levels using a custom Agilent 8x60K oligonucleotide microarray. Results A total of 793,875 high-quality reads were assembled into 19,382 unique full-length contigs, of which 13,507 could be annotated with Gene Ontology (GO) terms. Microarray data analysis identified 9111 probes (out of 57,842 probes), which were differentially expressed between the six maturation stages. The expression results were validated for 75 selected transcripts based on expression levels, predicted function, pathway, and length. Result from cluster analyses showed that transcripts associated with fatty acid, flavonoid, and phenylpropanoid biosynthesis were over-represented in the early stages, while those of lipid storage were over-represented in the late stages. Expression analyses of different maturation stages of J. curcas seed showed that most changes in transcript abundance occurred between the two last stages, suggesting that the timing of metabolic pathways during seed maturation in J. curcas occurs in late stages. The co-expression results showed that the hubs (CB5-D, CDR1, TT8, DFR, HVA22) with the highest number of edges, associated with fatty acid and flavonoid biosynthesis, are showing a decrease in their expression during seed maturation. Furthermore, seed development and hormone pathways are significantly well connected. Conclusion The obtained results revealed differentially expressed sequences (DESs) regulating important pathways related to seed maturation, which could contribute to the understanding of the complex regulatory network during seed maturation with the focus on lipid, flavonoid and phenylpropanoid biosynthesis. This study provides detailed information on transcriptional changes during J. curcas seed maturation and provides a starting point for a genomic survey of seed quality traits. The results highlighted specific genes and processes relevant to the molecular mechanisms involved in Jatropha seed maturation. These data can also be utilized regarding other Euphorbiaceae species.
Collapse
Affiliation(s)
- Fatemeh Maghuly
- Plant Functional Genomics, Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | - Tamás Deák
- Department of Viticulture, Szent István University, Villányi út 29-43, 1118 Budapest, Hungary
| | - Klemens Vierlinger
- Center for Health and Bioresources, Molecular Diagnostics, Austrian Institute of Technology (AIT), Giefinggasse 4, 1210, Vienna, Austria
| | - Stephan Pabinger
- Center for Health and Bioresources, Molecular Diagnostics, Austrian Institute of Technology (AIT), Giefinggasse 4, 1210, Vienna, Austria
| | - Hakim Tafer
- Austrian Center of Biological Resources (ACBR), Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Margit Laimer
- Plant Biotechnology Unit, Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
34
|
Wan H, Liu H, Zhang J, Lyu Y, Li Z, He Y, Zhang X, Deng X, Brotman Y, Fernie AR, Cheng Y, Wen W. Lipidomic and transcriptomic analysis reveals reallocation of carbon flux from cuticular wax into plastid membrane lipids in a glossy "Newhall" navel orange mutant. HORTICULTURE RESEARCH 2020; 7:41. [PMID: 32257227 PMCID: PMC7109130 DOI: 10.1038/s41438-020-0262-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/26/2019] [Accepted: 02/07/2020] [Indexed: 05/10/2023]
Abstract
Both cuticle and membrane lipids play essential roles in quality maintenance and disease resistance in fresh fruits. Many reports have indicated the modification of alternative branch pathways in epicuticular wax mutants; however, the specific alterations concerning lipids have not been clarified thus far. Here, we conducted a comprehensive, time-resolved lipidomic, and transcriptomic analysis on the "Newhall" navel orange (WT) and its glossy mutant (MT) "Gannan No. 1". The results revealed severely suppressed wax formation accompanied by significantly elevated production of 36-carbon plastid lipids with increasing fruit maturation in MT. Transcriptomics analysis further identified a series of key functional enzymes and transcription factors putatively involved in the biosynthesis pathways of wax and membrane lipids. Moreover, the high accumulation of jasmonic acid (JA) in MT was possibly due to the need to maintain plastid lipid homeostasis, as the expression levels of two significantly upregulated lipases (CsDAD1 and CsDALL2) were positively correlated with plastid lipids and characterized to hydrolyze plastid lipids to increase the JA content. Our results will provide new insights into the molecular mechanisms underlying the natural variation of plant lipids to lay a foundation for the quality improvement of citrus fruit.
Collapse
Affiliation(s)
- Haoliang Wan
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Jingyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yi Lyu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Youyi Xilu 127, Xi’an, 710072 Shaanxi China
| | - Zhuoran Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yizhong He
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xiaoliang Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| |
Collapse
|
35
|
Baers LL, Breckels LM, Mills LA, Gatto L, Deery MJ, Stevens TJ, Howe CJ, Lilley KS, Lea-Smith DJ. Proteome Mapping of a Cyanobacterium Reveals Distinct Compartment Organization and Cell-Dispersed Metabolism. PLANT PHYSIOLOGY 2019; 181:1721-1738. [PMID: 31578229 PMCID: PMC6878006 DOI: 10.1104/pp.19.00897] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/11/2019] [Indexed: 05/23/2023]
Abstract
Cyanobacteria are complex prokaryotes, incorporating a Gram-negative cell wall and internal thylakoid membranes (TMs). However, localization of proteins within cyanobacterial cells is poorly understood. Using subcellular fractionation and quantitative proteomics, we produced an extensive subcellular proteome map of an entire cyanobacterial cell, identifying ∼67% of proteins in Synechocystis sp. PCC 6803, ∼1000 more than previous studies. Assigned to six specific subcellular regions were 1,712 proteins. Proteins involved in energy conversion localized to TMs. The majority of transporters, with the exception of a TM-localized copper importer, resided in the plasma membrane (PM). Most metabolic enzymes were soluble, although numerous pathways terminated in the TM (notably those involved in peptidoglycan monomer, NADP+, heme, lipid, and carotenoid biosynthesis) or PM (specifically, those catalyzing lipopolysaccharide, molybdopterin, FAD, and phylloquinol biosynthesis). We also identified the proteins involved in the TM and PM electron transport chains. The majority of ribosomal proteins and enzymes synthesizing the storage compound polyhydroxybuyrate formed distinct clusters within the data, suggesting similar subcellular distributions to one another, as expected for proteins operating within multicomponent structures. Moreover, heterogeneity within membrane regions was observed, indicating further cellular complexity. Cyanobacterial TM protein localization was conserved in Arabidopsis (Arabidopsis thaliana) chloroplasts, suggesting similar proteome organization in more developed photosynthetic organisms. Successful application of this technique in Synechocystis suggests it could be applied to mapping the proteomes of other cyanobacteria and single-celled organisms. The organization of the cyanobacterial cell revealed here substantially aids our understanding of these environmentally and biotechnologically important organisms.
Collapse
Affiliation(s)
- Laura L Baers
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Lisa M Breckels
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
- Computational Proteomics Unit, Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Lauren A Mills
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Laurent Gatto
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
- Computational Proteomics Unit, Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Michael J Deery
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Tim J Stevens
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH United Kingdom
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - David J Lea-Smith
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
36
|
Karki N, Johnson BS, Bates PD. Metabolically Distinct Pools of Phosphatidylcholine Are Involved in Trafficking of Fatty Acids out of and into the Chloroplast for Membrane Production. THE PLANT CELL 2019; 31:2768-2788. [PMID: 31511316 PMCID: PMC6881139 DOI: 10.1105/tpc.19.00121] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/12/2019] [Accepted: 09/11/2019] [Indexed: 05/18/2023]
Abstract
The eukaryotic pathway of galactolipid synthesis involves fatty acid synthesis in the chloroplast, followed by assembly of phosphatidylcholine (PC) in the endoplasmic reticulum (ER), and then turnover of PC to provide a substrate for chloroplast galactolipid synthesis. However, the mechanisms and classes of lipids transported between the chloroplast and the ER are unclear. PC, PC-derived diacylglycerol, phosphatidic acid, and lyso-phosphatidylcholine (LPC) have all been implicated in ER-to-chloroplast lipid transfer. LPC transport requires lysophosphatidylcholine acyltransferase (LPCAT) activity at the chloroplast to form PC before conversion to galactolipids. However, LPCAT has also been implicated in the opposite chloroplast-to-ER trafficking of newly synthesized fatty acids through PC acyl editing. To understand the role of LPC and LPCAT in acyl trafficking we produced and analyzed the Arabidopsis (Arabidopsis thaliana) act1 lpcat1 lpcat2 triple mutant. LPCAT1 and LPCAT2 encode the major lysophospholipid acyltransferase activity of the chloroplast, and it is predominantly for incorporation of nascent fatty acids exported form the chloroplast into PC by acyl editing. In vivo acyl flux analysis revealed eukaryotic galactolipid synthesis is not impaired in act1 lpcat1 lpcat2 and uses a PC pool distinct from that of PC acyl editing. We present a model for the eukaryotic pathway with metabolically distinct pools of PC, suggesting an underlying spatial organization of PC metabolism as part of the ER-chloroplast metabolic interactions.
Collapse
Affiliation(s)
- Nischal Karki
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406
| | - Brandon S Johnson
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| | - Philip D Bates
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| |
Collapse
|
37
|
Lavell A, Froehlich J, Baylis O, Rotondo A, Benning C. A predicted plastid rhomboid protease affects phosphatidic acid metabolism in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:978-987. [PMID: 31062431 PMCID: PMC6711814 DOI: 10.1111/tpj.14377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/22/2019] [Accepted: 05/01/2019] [Indexed: 05/23/2023]
Abstract
The thylakoid membranes of the chloroplast harbor the photosynthetic machinery that converts light into chemical energy. Chloroplast membranes are unique in their lipid makeup, which is dominated by the galactolipids mono- and digalactosyldiacylglycerol (MGDG and DGDG). The most abundant galactolipid, MGDG, is assembled through both plastid and endoplasmic reticulum (ER) pathways in Arabidopsis, resulting in distinguishable molecular lipid species. Phosphatidic acid (PA) is the first glycerolipid formed by the plastid galactolipid biosynthetic pathway. It is converted to substrate diacylglycerol (DAG) for MGDG Synthase (MGD1) which adds to it a galactose from UDP-Gal. The enzymatic reactions yielding these galactolipids have been well established. However, auxiliary or regulatory factors are largely unknown. We identified a predicted rhomboid-like protease 10 (RBL10), located in plastids of Arabidopsis thaliana, that affects galactolipid biosynthesis likely through intramembrane proteolysis. Plants with T-DNA disruptions in RBL10 have greatly decreased 16:3 (acyl carbons:double bonds) and increased 18:3 acyl chain abundance in MGDG of leaves. Additionally, rbl10-1 mutants show reduced [14 C]-acetate incorporation into MGDG during pulse-chase labeling, indicating a reduced flux through the plastid galactolipid biosynthesis pathway. While plastid MGDG biosynthesis is blocked in rbl10-1 mutants, they are capable of synthesizing PA, as well as producing normal amounts of MGDG by compensating with ER-derived lipid precursors. These findings link this predicted protease to the utilization of PA for plastid galactolipid biosynthesis potentially revealing a regulatory mechanism in chloroplasts.
Collapse
Affiliation(s)
- A. Lavell
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - J.E. Froehlich
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - O. Baylis
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - A. Rotondo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - C. Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
38
|
Powers MJ, Trent MS. Intermembrane transport: Glycerophospholipid homeostasis of the Gram-negative cell envelope. Proc Natl Acad Sci U S A 2019; 116:17147-17155. [PMID: 31420510 PMCID: PMC6717313 DOI: 10.1073/pnas.1902026116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This perspective addresses recent advances in lipid transport across the Gram-negative inner and outer membranes. While we include a summary of previously existing literature regarding this topic, we focus on the maintenance of lipid asymmetry (Mla) pathway. Discovered in 2009 by the Silhavy group [J. C. Malinverni, T. J. Silhavy, Proc. Natl. Acad. Sci. U.S.A. 106, 8009-8014 (2009)], Mla has become increasingly appreciated for its role in bacterial cell envelope physiology. Through the work of many, we have gained an increasingly mechanistic understanding of the function of Mla via genetic, biochemical, and structural methods. Despite this, there is a degree of controversy surrounding the directionality in which Mla transports lipids. While the initial discovery and subsequent studies have posited that it mediated retrograde lipid transport (removing glycerophospholipids from the outer membrane and returning them to the inner membrane), others have asserted the opposite. This Perspective aims to lay out the evidence in an unbiased, yet critical, manner for Mla-mediated transport in addition to postulation of mechanisms for anterograde lipid transport from the inner to outer membranes.
Collapse
Affiliation(s)
- Matthew J Powers
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- Department of Microbiology, College of Arts and Sciences, University of Georgia, Athens, GA 30602
| | - M Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602;
- Department of Microbiology, College of Arts and Sciences, University of Georgia, Athens, GA 30602
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| |
Collapse
|
39
|
Fan J, Yu L, Xu C. Dual Role for Autophagy in Lipid Metabolism in Arabidopsis. THE PLANT CELL 2019; 31:1598-1613. [PMID: 31036588 PMCID: PMC6635848 DOI: 10.1105/tpc.19.00170] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/26/2019] [Accepted: 04/19/2019] [Indexed: 05/18/2023]
Abstract
Autophagy is a major catabolic pathway whereby cytoplasmic constituents including lipid droplets (LDs), storage compartments for neutral lipids, are delivered to the lysosome or vacuole for degradation. The autophagic degradation of cytosolic LDs, a process termed lipophagy, has been extensively studied in yeast and mammals, but little is known about the role for autophagy in lipid metabolism in plants. Organisms maintain a basal level of autophagy under favorable conditions and upregulate the autophagic activity under stress including starvation. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) basal autophagy contributes to triacylglycerol (TAG) synthesis, whereas inducible autophagy contributes to LD degradation. We found that disruption of basal autophagy impedes organellar membrane lipid turnover and hence fatty acid mobilization from membrane lipids to TAG. We show that lipophagy is induced under starvation as indicated by colocalization of LDs with the autophagic marker and the presence of LDs in vacuoles. We additionally show that lipophagy occurs in a process morphologically resembling microlipophagy and requires the core components of the macroautophagic machinery. Together, this study provides mechanistic insight into lipophagy and reveals a dual role for autophagy in regulating lipid synthesis and turnover in plants.
Collapse
Affiliation(s)
- Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
40
|
Lavell AA, Benning C. Cellular Organization and Regulation of Plant Glycerolipid Metabolism. PLANT & CELL PHYSIOLOGY 2019; 60:1176-1183. [PMID: 30690552 PMCID: PMC6553661 DOI: 10.1093/pcp/pcz016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/14/2019] [Indexed: 05/07/2023]
Abstract
Great strides have been made in understanding how membranes and lipid droplets are formed and maintained in land plants, yet much more is to be learned given the complexity of plant lipid metabolism. A complicating factor is the multi-organellar presence of biosynthetic enzymes and unique compositional requirements of different membrane systems. This necessitates a rich network of transporters and transport mechanisms that supply fatty acids, membrane lipids and storage lipids to their final cellular destination. Though we know a large number of the biosynthetic enzymes involved in lipid biosynthesis and a few transport proteins, the regulatory mechanisms, in particular, coordinating expression and/or activity of the majority remain yet to be described. Plants undergoing stress alter their membranes' compositions, and lipids such as phosphatidic acid have been implicated in stress signaling. Additionally, lipid metabolism in chloroplasts supplies precursors for jasmonic acid (JA) biosynthesis, and perturbations in lipid homeostasis has consequences on JA signaling. In this review, several aspects of plant lipid metabolism are discussed that are currently under investigation: cellular transport of lipids, regulation of lipid biosynthesis, roles of lipids in stress signaling, and lastly the structural and oligomeric states of lipid enzymes.
Collapse
Affiliation(s)
- A A Lavell
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - C Benning
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Corresponding author: E-mail, ; Fax, 517-353-9168
| |
Collapse
|
41
|
Vanhercke T, Dyer JM, Mullen RT, Kilaru A, Rahman MM, Petrie JR, Green AG, Yurchenko O, Singh SP. Metabolic engineering for enhanced oil in biomass. Prog Lipid Res 2019; 74:103-129. [PMID: 30822461 DOI: 10.1016/j.plipres.2019.02.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
The world is hungry for energy. Plant oils in the form of triacylglycerol (TAG) are one of the most reduced storage forms of carbon found in nature and hence represent an excellent source of energy. The myriad of applications for plant oils range across foods, feeds, biofuels, and chemical feedstocks as a unique substitute for petroleum derivatives. Traditionally, plant oils are sourced either from oilseeds or tissues surrounding the seed (mesocarp). Most vegetative tissues, such as leaves and stems, however, accumulate relatively low levels of TAG. Since non-seed tissues constitute the majority of the plant biomass, metabolic engineering to improve their low-intrinsic TAG-biosynthetic capacity has recently attracted significant attention as a novel, sustainable and potentially high-yielding oil production platform. While initial attempts predominantly targeted single genes, recent combinatorial metabolic engineering strategies have focused on the simultaneous optimization of oil synthesis, packaging and degradation pathways (i.e., 'push, pull, package and protect'). This holistic approach has resulted in dramatic, seed-like TAG levels in vegetative tissues. With the first proof of concept hurdle addressed, new challenges and opportunities emerge, including engineering fatty acid profile, translation into agronomic crops, extraction, and downstream processing to deliver accessible and sustainable bioenergy.
Collapse
Affiliation(s)
- Thomas Vanhercke
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia.
| | - John M Dyer
- USDA-ARS, US Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - James R Petrie
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia; Folear, Goulburn, NSW, Australia
| | - Allan G Green
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Olga Yurchenko
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Surinder P Singh
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| |
Collapse
|
42
|
Michaud M, Jouhet J. Lipid Trafficking at Membrane Contact Sites During Plant Development and Stress Response. FRONTIERS IN PLANT SCIENCE 2019; 10:2. [PMID: 30713540 PMCID: PMC6346683 DOI: 10.3389/fpls.2019.00002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/03/2019] [Indexed: 05/20/2023]
Abstract
The biogenesis of cellular membranes involves an important traffic of lipids from their site of synthesis to their final destination. Lipid transfer can be mediated by vesicular or non-vesicular pathways. The non-vesicular pathway requires the close apposition of two membranes to form a functional platform, called membrane contact sites (MCSs), where lipids are exchanged. These last decades, MCSs have been observed between virtually all organelles and a role in lipid transfer has been demonstrated for some of them. In plants, the lipid composition of membranes is highly dynamic and can be drastically modified in response to environmental changes. This highlights the importance of understanding the mechanisms involved in the regulation of membrane lipid homeostasis in plants. This review summarizes our current knowledge about the non-vesicular transport of lipids at MCSs in plants and its regulation during stress.
Collapse
|
43
|
Li N, Zhang Y, Meng H, Li S, Wang S, Xiao Z, Chang P, Zhang X, Li Q, Guo L, Igarashi Y, Luo F. Characterization of Fatty Acid Exporters involved in fatty acid transport for oil accumulation in the green alga Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:14. [PMID: 30651755 PMCID: PMC6330502 DOI: 10.1186/s13068-018-1332-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/06/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND In the past few decades, microalgae biofuel has become one of the most interesting sources of renewable energy. However, the higher cost of microalgae biofuel compared to that of petroleum prevented microalgae biofuel production. Therefore, the research on increasing lipid productivity from microalgae becomes more important. The lipid production source, triacylglycerol biosynthesis in microalgae requires short chain fatty acids as substrates, which are synthesized in chloroplasts. However, the transport mechanism of fatty acids from microalgae chloroplasts to cytosol remains unknown. RESULTS cDNAs from two homologs of the Arabidopsis fatty acid exporter 1 (FAX1) were cloned from Chlamydomonas reinhardtii and were named crfax1 and crfax2. Both CrFAXs were involved in fatty acid transport, and their substrates were mainly C16 and C18 fatty acids. Overexpression of both CrFAXs increased the accumulation of the total lipid content in algae cells, and the fatty acid compositions were changed under normal TAP or nitrogen deprivation conditions. Overexpression of both CrFAXs also increased the chlorophyll content. The MGDG content was decreased but the TAG, DAG, DGDG and other lipid contents were increased in CrFAXs overexpression strains. CONCLUSION These results reveal that CrFAX1 and CrFAX2 were involved in mediating fatty acid export for lipids biosynthesis in C. reinhardtii. In addition, overexpression of both CrFAXs obviously increased the intracellular lipid content, especially the triacylglycerol content in microalgae, which provides a potential technology for the production of more biofuels using microalgae.
Collapse
Affiliation(s)
- Nannan Li
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
- Academy of Agricultural Science, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Yan Zhang
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Hongjun Meng
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Shengting Li
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Shufeng Wang
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Zhongchun Xiao
- Academy of Agricultural Science, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Peng Chang
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Xiaohui Zhang
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yasuo Igarashi
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Feng Luo
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| |
Collapse
|
44
|
LaBrant E, Barnes AC, Roston RL. Lipid transport required to make lipids of photosynthetic membranes. PHOTOSYNTHESIS RESEARCH 2018; 138:345-360. [PMID: 29961189 DOI: 10.1007/s11120-018-0545-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/20/2018] [Indexed: 05/21/2023]
Abstract
Photosynthetic membranes provide much of the usable energy for life on earth. To produce photosynthetic membrane lipids, multiple transport steps are required, including fatty acid export from the chloroplast stroma to the endoplasmic reticulum, and lipid transport from the endoplasmic reticulum to the chloroplast envelope membranes. Transport of hydrophobic molecules through aqueous space is energetically unfavorable and must be catalyzed by dedicated enzymes, frequently on specialized membrane structures. Here, we review photosynthetic membrane lipid transport to the chloroplast in the context of photosynthetic membrane lipid synthesis. We independently consider the identity of transported lipids, the proteinaceous transport components, and membrane structures which may allow efficient transport. Recent advances in lipid transport of chloroplasts, bacteria, and other systems strongly suggest that lipid transport is achieved by multiple mechanisms which include membrane contact sites with specialized protein machinery. This machinery is likely to include the TGD1, 2, 3 complex with the TGD5 and TGD4/LPTD1 systems, and may also include a number of proteins with domains similar to other membrane contact site lipid-binding proteins. Importantly, the likelihood of membrane contact sites does not preclude lipid transport by other mechanisms including vectorial acylation and vesicle transport. Substantial progress is needed to fully understand all photosynthetic membrane lipid transport processes and how they are integrated.
Collapse
Affiliation(s)
- Evan LaBrant
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Allison C Barnes
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Rebecca L Roston
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA.
| |
Collapse
|
45
|
Moner AM, Furtado A, Henry RJ. Chloroplast phylogeography of AA genome rice species. Mol Phylogenet Evol 2018; 127:475-487. [DOI: 10.1016/j.ympev.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/15/2018] [Accepted: 05/03/2018] [Indexed: 01/08/2023]
|
46
|
Negi J, Munemasa S, Song B, Tadakuma R, Fujita M, Azoulay-Shemer T, Engineer CB, Kusumi K, Nishida I, Schroeder JI, Iba K. Eukaryotic lipid metabolic pathway is essential for functional chloroplasts and CO 2 and light responses in Arabidopsis guard cells. Proc Natl Acad Sci U S A 2018; 115:9038-9043. [PMID: 30127035 PMCID: PMC6130404 DOI: 10.1073/pnas.1810458115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stomatal guard cells develop unique chloroplasts in land plant species. However, the developmental mechanisms and function of chloroplasts in guard cells remain unclear. In seed plants, chloroplast membrane lipids are synthesized via two pathways: the prokaryotic and eukaryotic pathways. Here we report the central contribution of endoplasmic reticulum (ER)-derived chloroplast lipids, which are synthesized through the eukaryotic lipid metabolic pathway, in the development of functional guard cell chloroplasts. We gained insight into this pathway by isolating and examining an Arabidopsis mutant, gles1 (green less stomata 1), which had achlorophyllous stomatal guard cells and impaired stomatal responses to CO2 and light. The GLES1 gene encodes a small glycine-rich protein, which is a putative regulatory component of the trigalactosyldiacylglycerol (TGD) protein complex that mediates ER-to-chloroplast lipid transport via the eukaryotic pathway. Lipidomic analysis revealed that in the wild type, the prokaryotic pathway is dysfunctional, specifically in guard cells, whereas in gles1 guard cells, the eukaryotic pathway is also abrogated. CO2-induced stomatal closing and activation of guard cell S-type anion channels that drive stomatal closure were disrupted in gles1 guard cells. In conclusion, the eukaryotic lipid pathway plays an essential role in the development of a sensing/signaling machinery for CO2 and light in guard cell chloroplasts.
Collapse
Affiliation(s)
- Juntaro Negi
- Department of Biology, Faculty of Science, Kyushu University, 819-0395 Fukuoka, Japan;
| | - Shintaro Munemasa
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Boseok Song
- Department of Biology, Faculty of Science, Kyushu University, 819-0395 Fukuoka, Japan
| | - Ryosuke Tadakuma
- Department of Biology, Faculty of Science, Kyushu University, 819-0395 Fukuoka, Japan
| | - Mayumi Fujita
- Department of Biology, Faculty of Science, Kyushu University, 819-0395 Fukuoka, Japan
| | - Tamar Azoulay-Shemer
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Cawas B Engineer
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Kensuke Kusumi
- Department of Biology, Faculty of Science, Kyushu University, 819-0395 Fukuoka, Japan
| | - Ikuo Nishida
- Graduate School of Science and Engineering, Saitama University, 338-8570 Saitama, Japan
| | - Julian I Schroeder
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Koh Iba
- Department of Biology, Faculty of Science, Kyushu University, 819-0395 Fukuoka, Japan;
| |
Collapse
|
47
|
Yao HY, Xue HW. Phosphatidic acid plays key roles regulating plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:851-863. [PMID: 29660254 DOI: 10.1111/jipb.12655] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/11/2018] [Indexed: 05/28/2023]
Abstract
Phospholipids, including phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylserine (PS) and phosphoinositides, have emerged as an important class of cellular messenger molecules in various cellular and physiological processes, of which PA attracts much attention of researchers. In addition to its effect on stimulating vesicle trafficking, many studies have demonstrated that PA plays a crucial role in various signaling pathways by binding target proteins and regulating their activity and subcellular localization. Here, we summarize the functional mechanisms and target proteins underlying PA-mediated regulation of cellular signaling, development, hormonal responses, and stress responses in plants.
Collapse
Affiliation(s)
- Hong-Yan Yao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
48
|
Zhang Y, Li W, Lin Y, Zhang L, Wang C, Xu R. Construction of a high-density genetic map and mapping of QTLs for soybean (Glycine max) agronomic and seed quality traits by specific length amplified fragment sequencing. BMC Genomics 2018; 19:641. [PMID: 30157757 PMCID: PMC6116504 DOI: 10.1186/s12864-018-5035-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 08/23/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Soybean is not only an important oil crop, but also an important source of edible protein and industrial raw material. Yield-traits and quality-traits are increasingly attracting the attention of breeders. Therefore, fine mapping the QTLs associated with yield-traits and quality-traits of soybean would be helpful for soybean breeders. In the present study, a high-density linkage map was constructed to identify the QTLs for the yield-traits and quality-traits, using specific length amplified fragment sequencing (SLAF-seq). RESULTS SLAF-seq was performed to screen SLAF markers with 149 F8:11 individuals from a cross between a semi wild soybean, 'Huapidou', and a cultivated soybean, 'Qihuang26', which generated 400.91 M paired-end reads. In total, 53,132 polymorphic SLAF markers were obtained. The genetic linkage map was constructed by 5111 SLAF markers with segregation type of aa×bb. The final map, containing 20 linkage groups (LGs), was 2909.46 cM in length with an average distance of 0.57 cM between adjacent markers. The average coverage for each SLAF marker on the map was 81.26-fold in the male parent, 45.79-fold in the female parent, and 19.84-fold average in each F8:11 individual. According to the high-density map, 35 QTLs for plant height (PH), 100-seeds weight (SW), oil content in seeds (Oil) and protein content in seeds (Protein) were found to be distributed on 17 chromosomes, and 14 novel QTLs were identified for the first time. The physical distance of 11 QTLs was shorter than 100 Kb, suggesting a direct opportunity to find candidate genes. Furthermore, three pairs of epistatic QTLs associated with Protein involving 6 loci on 5 chromosomes were identified. Moreover, 13, 14, 7 and 9 genes, which showed tissue-specific expression patterns, might be associated with PH, SW, Oil and Protein, respectively. CONCLUSIONS With SLAF-sequencing, some novel QTLs and important QTLs for both yield-related and quality traits were identified based on a new, high-density linkage map. Moreover, 43 genes with tissue-specific expression patterns were regarded as potential genes in further study. Our findings might be beneficial to molecular marker-assisted breeding, and could provide detailed information for accurate QTL localization.
Collapse
Affiliation(s)
- Yanwei Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| | - Wei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| | - Yanhui Lin
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| | - Lifeng Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| | - Caijie Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| | - Ran Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| |
Collapse
|
49
|
Wang K, Guo Q, Froehlich JE, Hersh HL, Zienkiewicz A, Howe GA, Benning C. Two Abscisic Acid-Responsive Plastid Lipase Genes Involved in Jasmonic Acid Biosynthesis in Arabidopsis thaliana. THE PLANT CELL 2018; 30:1006-1022. [PMID: 29666162 PMCID: PMC6002186 DOI: 10.1105/tpc.18.00250] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/14/2018] [Accepted: 04/14/2018] [Indexed: 05/18/2023]
Abstract
Chloroplast membranes with their unique lipid composition are crucial for photosynthesis. Maintenance of the chloroplast membranes requires finely tuned lipid anabolic and catabolic reactions. Despite the presence of a large number of predicted lipid-degrading enzymes in the chloroplasts, their biological functions remain largely unknown. Recently, we described PLASTID LIPASE1 (PLIP1), a plastid phospholipase A1 that contributes to seed oil biosynthesis. The Arabidopsis thaliana genome encodes two putative PLIP1 paralogs, which we designated PLIP2 and PLIP3. PLIP2 and PLIP3 are also present in the chloroplasts, but likely with different subplastid locations. In vitro analysis indicated that both are glycerolipid A1 lipases. In vivo, PLIP2 prefers monogalactosyldiacylglycerol as substrate and PLIP3 phosphatidylglycerol. Overexpression of PLIP2 or PLIP3 severely reduced plant growth and led to accumulation of the bioactive form of jasmonate and related oxylipins. Genetically blocking jasmonate perception restored the growth of the PLIP2/3-overexpressing plants. The expression of PLIP2 and PLIP3, but not PLIP1, was induced by abscisic acid (ABA), and plip1 plip2 plip3 triple mutants exhibited compromised oxylipin biosynthesis in response to ABA. The plip triple mutants also showed hypersensitivity to ABA. We propose that PLIP2 and PLIP3 provide a mechanistic link between ABA-mediated abiotic stress responses and oxylipin signaling.
Collapse
Affiliation(s)
- Kun Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- MSU-Department of Energy, Plant Research Laboratory, East Lansing, Michigan 48824
| | - Qiang Guo
- MSU-Department of Energy, Plant Research Laboratory, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - John E Froehlich
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- MSU-Department of Energy, Plant Research Laboratory, East Lansing, Michigan 48824
| | - Hope Lynn Hersh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- MSU-Department of Energy, Plant Research Laboratory, East Lansing, Michigan 48824
| | - Agnieszka Zienkiewicz
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- MSU-Department of Energy, Plant Research Laboratory, East Lansing, Michigan 48824
- Great Lakes Bioenergy Research Center, East Lansing, Michigan 48823
| | - Gregg A Howe
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- MSU-Department of Energy, Plant Research Laboratory, East Lansing, Michigan 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- MSU-Department of Energy, Plant Research Laboratory, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Great Lakes Bioenergy Research Center, East Lansing, Michigan 48823
| |
Collapse
|
50
|
Rocha J, Nitenberg M, Girard-Egrot A, Jouhet J, Maréchal E, Block MA, Breton C. Do Galactolipid Synthases Play a Key Role in the Biogenesis of Chloroplast Membranes of Higher Plants? FRONTIERS IN PLANT SCIENCE 2018; 9:126. [PMID: 29472943 PMCID: PMC5809773 DOI: 10.3389/fpls.2018.00126] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/23/2018] [Indexed: 05/17/2023]
Abstract
A unique feature of chloroplasts is their high content of the galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), which constitute up to 80% of their lipids. These galactolipids are synthesized in the chloroplast envelope membrane through the concerted action of galactosyltransferases, the so-called 'MGDG synthases (MGDs)' and 'DGDG synthases (DGDs),' which use uridine diphosphate (UDP)-galactose as donor. In Arabidopsis leaves, under standard conditions, the enzymes MGD1 and DGD1 provide the bulk of galactolipids, necessary for the massive expansion of thylakoid membranes. Under phosphate limited conditions, plants activate another pathway involving MGD2/MGD3 and DGD2 to provide additional DGDG that is exported to extraplastidial membranes where they partly replace phospholipids, a phosphate-saving mechanism in plants. A third enzyme system, which relies on the UDP-Gal-independent GGGT (also called SFR2 for SENSITIVE TO FREEZING 2), can be activated in response to a freezing stress. The biosynthesis of galactolipids by these multiple enzyme sets must be tightly regulated to meet the cellular demand in response to changing environmental conditions. The cooperation between MGD and DGD enzymes with a possible substrate channeling from diacylglycerol to MGDG and DGDG is supported by biochemical and biophysical studies and mutant analyses reviewed herein. The fine-tuning of MGDG to DGDG ratio, which allows the reversible transition from the hexagonal II to lamellar α phase of the lipid bilayer, could be a key factor in thylakoid biogenesis.
Collapse
Affiliation(s)
- Joana Rocha
- Université Grenoble Alpes, Grenoble, France
- CERMAV, CNRS, Grenoble, France
| | - Milène Nitenberg
- Université Grenoble Alpes, Grenoble, France
- CERMAV, CNRS, Grenoble, France
| | | | - Juliette Jouhet
- Université Grenoble Alpes, Grenoble, France
- LPCV, UMR 5168 CNRS/CEA/INRA/UGA, Université Grenoble Alpes, Grenoble, France
| | - Eric Maréchal
- Université Grenoble Alpes, Grenoble, France
- LPCV, UMR 5168 CNRS/CEA/INRA/UGA, Université Grenoble Alpes, Grenoble, France
| | - Maryse A. Block
- Université Grenoble Alpes, Grenoble, France
- LPCV, UMR 5168 CNRS/CEA/INRA/UGA, Université Grenoble Alpes, Grenoble, France
| | - Christelle Breton
- Université Grenoble Alpes, Grenoble, France
- CERMAV, CNRS, Grenoble, France
- *Correspondence: Christelle Breton,
| |
Collapse
|