1
|
Tan R, Sha G, Gong Q, Yang L, Yang W, Liu X, Li Y, Cheng J, Du XQ, Xue H, Li Q, Luo J, Li G. CDP-DAG synthases regulate plant growth and broad-spectrum disease resistance. PLANT SIGNALING & BEHAVIOR 2025; 20:2471503. [PMID: 39996429 PMCID: PMC11864314 DOI: 10.1080/15592324.2025.2471503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Phosphatidic acid (PA) functions as a cell membrane component and signaling molecule in plants. PA metabolism has multiple routes, in one of which PA is converted into cytidine diphosphate diacylglycerol (CDP-DAG) by CDP-DAG synthases (CDSs). CDS genes are highly conserved in plants. Here, we found that knock-down of the CDS gene enhanced the resistance of Arabidopsis thaliana to multiple pathogens, with a growth penalty. When Arabidopsis leaves were treated with chitin or flg22, reactive oxygen species (ROS) production in cds mutants was significantly higher than that in the wild-type (WT). Similarly, phosphorylation of mitogen-activated protein kinases (MAPKs) in the cds1cds2 double mutant was significantly increased compared to the WT. By integrating lipidomics, transcriptomics, and metabolomics data, PA accumulation was observed in mutants cds1cds2, activating the jasmonic acid (JA) and salicylic acid (SA) signaling pathway, and increasing transcript levels of plant defense-related genes. Significant accumulation of the downstream metabolites including serotonin and 5-methoxyindole was also found, which plays important roles in plant immunity. In conclusion, our study indicated the role of CDSs in broad-spectrum disease resistance in Arabidopsis and that CDSs are involved in plant metabolic regulation.
Collapse
Affiliation(s)
- Ronglei Tan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Gan Sha
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Qiuwen Gong
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Lei Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Wei Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Xiaofan Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yufei Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xin Qiao Du
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongwei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- College of Agricultural, South China Agricultural University, Guangzhou, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- Yazhouwan National Laboratory, Sanya, China
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Saake P, Brands M, Endeshaw AB, Stolze SC, Westhoff P, Balcke GU, Hensel G, Holton N, Zipfel C, Tissier A, Nakagami H, Zuccaro A. Ergosterol-induced immune response in barley involves phosphorylation of phosphatidylinositol phosphate metabolic enzymes and activation of diterpene biosynthesis. THE NEW PHYTOLOGIST 2025; 246:1236-1255. [PMID: 40051371 PMCID: PMC11982792 DOI: 10.1111/nph.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/23/2025] [Indexed: 04/11/2025]
Abstract
Lipids play crucial roles in plant-microbe interactions, functioning as structural components, signaling molecules, and microbe-associated molecular patterns (MAMPs). However, the mechanisms underlying lipid perception and signaling in plants remain largely unknown. Here, we investigate the immune responses activated in barley (Hordeum vulgare) by lipid extracts from the beneficial root endophytic fungus Serendipita indica and compare them to responses elicited by chitohexaose and the fungal sterol ergosterol. We demonstrate that S. indica lipid extract induces hallmarks of pattern-triggered immunity (PTI) in barley. Ergosterol emerged as the primary immunogenic component and was detected in the apoplastic fluid of S. indica-colonized barley roots. Notably, S. indica colonization suppresses the ergosterol-induced burst of reactive oxygen species (ROS) in barley. By employing a multi-omics approach, which integrates transcriptomics, phosphoproteomics, and metabolomics, we provide evidence for the phosphorylation of phosphatidylinositol phosphate (PIP) metabolic enzymes and activation of diterpene biosynthesis upon exposure to fungal lipids. Furthermore, we show that phosphatidic acid (PA) enhances lipid-mediated apoplastic ROS production in barley. These findings indicate that plant lipids facilitate immune responses to fungal lipids in barley, providing new insights into lipid-based signaling mechanisms in plant-microbe interactions.
Collapse
Affiliation(s)
- Pia Saake
- Institute for Plant SciencesUniversity of Cologne50674CologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)50674CologneGermany
| | - Mathias Brands
- Institute for Plant SciencesUniversity of Cologne50674CologneGermany
| | | | - Sara Christina Stolze
- Max Planck Institute for Plant Breeding ResearchProtein Mass Spectrometry50829CologneGermany
| | - Philipp Westhoff
- Cluster of Excellence on Plant Sciences (CEPLAS)50674CologneGermany
- Heinrich Heine University DüsseldorfInstitute for Plant Biochemistry40225DüsseldorfGermany
| | | | - Götz Hensel
- Cluster of Excellence on Plant Sciences (CEPLAS)50674CologneGermany
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural SciencesCentre for Plant Genome Engineering40225DüsseldorfGermany
| | - Nicholas Holton
- The Sainsbury LaboratoryUniversity of East AngliaNorwichNR4 7UHUK
| | - Cyril Zipfel
- The Sainsbury LaboratoryUniversity of East AngliaNorwichNR4 7UHUK
- Institute of Plant and Microbial Biology, Zurich‐Basel Plant Science CenterUniversity of Zurich8008ZurichSwitzerland
| | - Alain Tissier
- Leibniz Institute for Plant Biochemistry06120Halle (Saale)Germany
| | - Hirofumi Nakagami
- Max Planck Institute for Plant Breeding ResearchProtein Mass Spectrometry50829CologneGermany
| | - Alga Zuccaro
- Institute for Plant SciencesUniversity of Cologne50674CologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)50674CologneGermany
| |
Collapse
|
3
|
Feng L, Zhou M, Tao A, Ma X, Wang N, Zhang H, Duan H, Tao Y. Map-based cloning of Zmccr3 and its network construction and validation for regulating maize seed germination. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:105. [PMID: 40261412 DOI: 10.1007/s00122-025-04890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/26/2025] [Indexed: 04/24/2025]
Abstract
KEY MESSAGE Map-based cloning of Zmccr3 for regulate SG and its molecular regulatory pathway was performed and validated. WGCNA, target genes/pathways during the process of seed dormancy formation were obtained. Seed dormancy (SD) and pre-harvest sprouting (PHS) affect the grain yield and quality of grain in cereal and hybrid seed production. Although the benefits of studying SD and seed germination (SG) during seed development are well established, research into the genetic variation and molecular regulation of SD, particularly during the transition from SD to SG, remains very limited. In this study, bulked segregant analysis (BSA) and linkage analysis were used to map the QTL for the maize vp16 mutant of PHS. Using genetic and biological methods, the candidate gene was identified as Zmccr3, encoding cinnamoyl-CoA reductase 3 (ccr3), which is involved in the phenylalanine pathway of lignin metabolism and affects SG. Based on RNA-seq (RNA sequencing) at two stages of grain development with extreme PHS traits, a weighted gene coexpression network analysis (WGCNA) related to SD and SG formation was constructed, and ten target genes and three pathways during the transition from SD to SG were identified. Simultaneously, the Zmccr3 pathway was established and validated, involving upstream lipid metabolism, redox modification and degradation of cell wall oligosaccharides (as electrophilic compounds), regulation of GA signaling and intracellular ROS homeostasis, and downstream oxidation of cell wall lignin units and synthesis of phenolic compounds that affect endosperm weakening and cell wall loosening, ultimately regulating SG or SD. Therefore, we propose the Zmccr3 hypothesis to elucidate its possible functions. These findings have important theoretical and practical implications for understanding the genetic basis of PHS and SD in maize, increasing genetic resources and improving traits.
Collapse
Affiliation(s)
- Liqing Feng
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Mingting Zhou
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001, China
| | - Anyan Tao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Xiaolin Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - He Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| | - Yongsheng Tao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
4
|
Zhang T, Zhang Y, Ding Y, Yang Y, Zhao D, Wang H, Ye Y, Shi H, Yuan B, Liang Z, Guo Y, Cui Y, Liu X, Zhang H. Research on the regulation mechanism of drought tolerance in wheat. PLANT CELL REPORTS 2025; 44:77. [PMID: 40111482 DOI: 10.1007/s00299-025-03465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops in arid and semi-arid areas of the world, and its sustainable and efficient production is essential for ensuring food security in China and globally. However, with the global climate change, wheat production is increasingly endangered by abiotic stress, and drought stress has become the main abiotic stress factor restricting wheat production efficiently. Therefore, investigating drought resistance genes and elucidating the mechanisms underlying drought resistance regulation is crucial for the genetic enhancement of drought resistance and the development of new drought-resistant wheat varieties. This paper reviews the majority of research conducted on wheat drought resistance over the past five years, focusing on aspects, such as transcriptional regulation, protein post-translational modifications, and other regulatory mechanisms related to drought resistance in wheat. Additionally, this paper discusses future directions for the genetic improvement of drought resistance and the breeding of new drought-resistant wheat varieties.
Collapse
Affiliation(s)
- Tengteng Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ying Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
| | - Yi Ding
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yufeng Yang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Dan Zhao
- College of Life Sciences, Hengshui University, Hengshui, 053010, China
| | - Huiqiang Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yifan Ye
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Haojia Shi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Bowen Yuan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zizheng Liang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yulu Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yue Cui
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
- College of Teacher Education, Molecular and Cellular Postdoctoral Research Station, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Hao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
5
|
Bykova NV, Igamberdiev AU. Redox Control of Seed Germination is Mediated by the Crosstalk of Nitric Oxide and Reactive Oxygen Species. Antioxid Redox Signal 2025; 42:442-461. [PMID: 39602281 DOI: 10.1089/ars.2024.0699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Significance: Seed germination and seedling establishment are characterized by changes in the intracellular redox state modulated by accelerated production of nitric oxide (NO) and reactive oxygen species (ROS). Redox regulation and enhanced accumulation of NO and ROS, approaching excessively high levels during seed imbibition, are critically important for breaking endodormancy and inducing germination. Recent Advances: Upon depletion of oxygen under the seed coat, NO is produced anaerobically in the reductive pathway associated mainly with mitochondria, and it participates in the energy metabolism of the seed until radicle protrusion. NO turnover involves nitrate reduction to nitrite in the cytosol, nitrite reduction to NO in mitochondria, and NO oxygenation in the cytosol in the reaction involving the hypoxically induced class 1 phytoglobin. In postgerminative degradation of seed tissues, NO and ROS are involved in redox signaling via post-translational modification of proteins and mediation of phytohormonal responses. Critical Issues: The crosstalk between the cellular redox potential, NO, ROS, and phytohormones integrates major physiological processes related to seed germination. Intensive accumulation of NO and ROS during imbibition is critically important for breaking seed dormancy. Upon oxygen depletion, NO and other nitrous oxides (NOx) are produced anaerobically and support energy metabolism prior to radicle protrusion. Future Directions: The turnover of NOx and ROS is determined by the intracellular redox balance, and it self-controls redox and energy levels upon germination. The particular details, regulation of this process, and its physiological significance remain to be established. Antioxid. Redox Signal. 42, 442-461.
Collapse
Affiliation(s)
- Natalia V Bykova
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, Canada
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
6
|
Cui Z, Hao F, Dong X, Gao Y, Yao B, Wang Y, Zhang Y, Lin G. Integrated physiological, transcriptomic and metabolomic analyses reveal ROS regulatory mechanisms in two castor bean varieties under alkaline stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109518. [PMID: 39864292 DOI: 10.1016/j.plaphy.2025.109518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/28/2025]
Abstract
Saline-alkaline stress has caused severe ecological and environmental problems. Castor bean is a potential alkali-tolerant plant, however, its reactive oxygen species (ROS) regulatory mechanisms under alkaline stress remain unclear. This study investigated the physiological, transcriptomic, and metabolomic characteristics of two varieties (ZB8, alkaline-sensitive; JX22, alkaline-resistant) under alkaline stress. Results showed that under alkaline stress, JX22's root length was 1.66-fold greater than ZB8's, while its superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities were 1.25-, 1.41-, and 1.29-fold higher than ZB8's, respectively. The levels of superoxide anion (O2-) and malondialdehyde (MDA) in JX22 were 0.2- and 0.68-fold of those in ZB8, respectively. Integrated transcriptomic and metabolomic analyses revealed that regarding ROS generation, alkaline stress promoted the upregulation of ACX1 and RBOHD genes in JX22, enabling more efficient ROS signal transduction and subsequent stress response regulation. In terms of ROS signal transduction, alkaline stress induced significant upregulation of protein kinase-encoding genes including CPK4, CPK9, and CPK10 in JX22, which cooperated with RBOHD to regulate ROS production. Concerning ROS scavenging, significant upregulation of SODA, CAT2, and PRXⅡB genes ensured a more efficient enzymatic ROS scavenging system in JX22 under alkaline stress. In contrast, ZB8 could only rely on less efficient non-enzymatic systems, such as carotenoid antioxidants, to mitigate oxidative damage, where genes like CCD7, CYP897B and metabolites including lutein and zeaxanthin played crucial roles. These findings elucidate the ROS response mechanisms of castor bean under alkaline stress, paving new ways for breeding alkaline-resistant varieties.
Collapse
Affiliation(s)
- Zhigang Cui
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Fei Hao
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Xuan Dong
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China; Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, 8 No. 1 Xuefu Road, Anning Town, Xichang, 615000, China.
| | - Yan Gao
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Bingyu Yao
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yunlong Wang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yongyong Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Guolin Lin
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
7
|
Zhang X, Li G, Wei P, Du B, Liu S, Dai J. Synergistic Regulation at Physiological, Transcriptional, and Metabolic Levels in Dendrobium huoshanense Plants Under Combined Drought and High-Temperature Stress. Genes (Basel) 2025; 16:287. [PMID: 40149439 PMCID: PMC11942376 DOI: 10.3390/genes16030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Background: With global warming and climate change, the occurrence of abiotic stresses has become increasingly prevalent. Drought often occurs with high temperatures, especially in arid and semi-arid regions. However, the molecular mechanisms of plants responding to combined drought and high-temperature stress remains unclear. Results: Through integrative physiological, transcriptomic, and metabolomic analyses, we systematically investigated the adaptive mechanisms of Dendrobium huoshanense under combined drought and high-temperature stress. Our findings revealed that combined drought and high-temperature stress led to significant reductions in photosynthetic efficiency and increased oxidative damage in Dendrobium huoshanense, with high-temperature stress being the primary contributor to these adverse effects. The joint analysis shows that three core pathways-signal transduction, lipid metabolism, and secondary metabolite biosynthesis-were identified as critical for antioxidant defense and stress adaptation. Conclusions: These findings not only deepen our understanding of plant responses to combined drought and high-temperature stress but also provide new directions for future research on the cultivation and resistance improvement of Dendrobium huoshanense.
Collapse
Affiliation(s)
- Xingen Zhang
- Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu’an 237012, China;
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (G.L.); (P.W.); (B.D.); (S.L.)
| | - Guohui Li
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (G.L.); (P.W.); (B.D.); (S.L.)
| | - Peipei Wei
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (G.L.); (P.W.); (B.D.); (S.L.)
| | - Binbin Du
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (G.L.); (P.W.); (B.D.); (S.L.)
| | - Shifan Liu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (G.L.); (P.W.); (B.D.); (S.L.)
| | - Jun Dai
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (G.L.); (P.W.); (B.D.); (S.L.)
| |
Collapse
|
8
|
Lamers J, Zhang Y, van Zelm E, Leong CK, Meyer AJ, de Zeeuw T, Verstappen F, Veen M, Deolu-Ajayi AO, Gommers CMM, Testerink C. Abscisic acid signaling gates salt-induced responses of plant roots. Proc Natl Acad Sci U S A 2025; 122:e2406373122. [PMID: 39908104 PMCID: PMC11831169 DOI: 10.1073/pnas.2406373122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/09/2024] [Indexed: 02/07/2025] Open
Abstract
Soil salinity presents a dual challenge for plants, involving both osmotic and ionic stress. In response, plants deploy distinct yet interconnected mechanisms to cope with these facets of salinity stress. In this investigation, we observed a substantial overlap in the salt (NaCl)-induced transcriptional responses of Arabidopsis roots with those triggered by osmotic stress or the plant stress hormone abscisic acid (ABA), as anticipated. Notably, a specific cluster of genes responded uniquely to sodium (Na+) ions and are not regulated by the known monovalent cation sensing mechanism MOCA1. Surprisingly, expression of sodium-induced genes exhibited a negative correlation with the ABA response and preceded the activation of genes induced by the osmotic stress component of salt. Elevated exogenous ABA levels resulted in the complete abolition of sodium-induced responses. Consistently, the ABA insensitive snrk2.2/2.3 double mutant displayed prolonged sodium-induced gene expression, coupled with increased root cell damage and root swelling under high salinity conditions. Moreover, ABA biosynthesis and signaling mutants were unable to redirect root growth to avoid high sodium concentrations and had increased sodium accumulation in the shoot. In summary, our findings unveil an unexpected and pivotal role for ABA signaling in mitigating cellular damage induced by salinity stress and modulating sodium-induced responses in plant roots.
Collapse
Affiliation(s)
- Jasper Lamers
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen6708 PB, The Netherlands
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen6708 PB, The Netherlands
| | - Eva van Zelm
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen6708 PB, The Netherlands
| | - Cheuk Ka Leong
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen6708 PB, The Netherlands
| | - A. Jessica Meyer
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen6708 PB, The Netherlands
| | - Thijs de Zeeuw
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen6708 PB, The Netherlands
| | - Francel Verstappen
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen6708 PB, The Netherlands
| | - Mark Veen
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen6708 PB, The Netherlands
| | - Ayodeji O. Deolu-Ajayi
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen6708 PB, The Netherlands
| | - Charlotte M. M. Gommers
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen6708 PB, The Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen6708 PB, The Netherlands
| |
Collapse
|
9
|
Yao S, Yang B, Li J, Tang S, Tang S, Kim SC, Wang X. Phosphatidic acid signaling in modulating plant reproduction and architecture. PLANT COMMUNICATIONS 2025; 6:101234. [PMID: 39722455 PMCID: PMC11897466 DOI: 10.1016/j.xplc.2024.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Phosphatidic acid (PA) is an important class of signaling lipids involved in various biological processes in plants. Functional characterization of mutants of PA-metabolizing enzymes, combined with lipidomics and protein-lipid interaction analyses, has revealed the key role of PA signaling in plant responses to biotic and abiotic stresses. Moreover, PA and its metabolizing enzymes influence several reproductive processes, including gametogenesis, pollen tube growth, self-incompatibility, haploid embryo formation, embryogenesis, and seed development. They also play a significant role in shaping plant reproductive and root architecture. Recent studies have shed light on the diverse mechanisms of PA's action, though much remains to be elucidated. Here, we summarize recent advances in the study of PA and its metabolizing enzymes, emphasizing their roles in plant sexual reproduction and architecture. We also explore potential mechanisms underlying PA's functions and discuss future research directions.
Collapse
Affiliation(s)
- Shuaibing Yao
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Bao Yang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Jianwu Li
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Shan Tang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Shaohua Tang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Sang-Chul Kim
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
10
|
Laxalt AM, van Hooren M, Munnik T. Plant PI-PLC signaling in stress and development. PLANT PHYSIOLOGY 2025; 197:kiae534. [PMID: 39928581 PMCID: PMC11809592 DOI: 10.1093/plphys/kiae534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/26/2024] [Indexed: 02/12/2025]
Abstract
Phosphoinositide-specific phospholipase C (PI-PLC) signaling is involved in various plant stress and developmental responses. Though several aspects of this lipid signaling pathway are conserved within animals and plants, clear differences have also emerged. While animal PLC signaling is characterized by the hydrolysis of PIP2 and production of IP3 and DAG as second messengers to activate Ca2+ and PKC signaling, plant PI-PLCs seem to predominantly use PIP as substrate and convert IP2 and DAG into inositolpolyphosphates and phosphatidic acid (PA) as plant second messengers. Sequencing of multiple plant genomes confirmed that plant PLC signaling evolved differently from animals, lacking homologs of the IP3 gated-Ca2+ channel, PKC and TRP channels, and with PLC enzymes resembling the PLCζ subfamily, which lacks the conserved PH domain that binds PIP2. With emerging tools in plant molecular biology, data analyses, and advanced imaging, plant PLC signaling is ready to gain momentum.
Collapse
Affiliation(s)
- Ana M Laxalt
- Instituto de Investigaciones Biológicas, IIB-CONICET, Universidad Nacional de Mar del Plata, Argentina
| | - Max van Hooren
- Plant Cell Biologie, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Teun Munnik
- Plant Cell Biologie, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Zhang Q, Shen L, Lin F, Liao Q, Xiao S, Zhang W. Anionic phospholipid-mediated transmembrane transport and intracellular membrane trafficking in plant cells. THE NEW PHYTOLOGIST 2025; 245:1386-1402. [PMID: 39639545 DOI: 10.1111/nph.20329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Cellular membranes primarily consist of proteins and lipids. These proteins perform cellular functions such as metabolic regulation, environmental and hormonal signal sensing, and nutrient transport. There is increasing experimental evidence that certain lipids, particularly anionic phospholipids, can act as signaling molecules. Specific examples of functional regulation by anionic phospholipids in plant cells have been reported for transporters, channels, and even receptors. By regulating the structure and activity of membrane-integral proteins, these phospholipids mediate the transport of phytohormones and ions, and elicit physiological responses to developmental and environmental cues. Phospholipids also control membrane protein abundance and lipid composition and abundance by facilitating vesicular trafficking. In this review, we discuss recent research that elucidates the mechanisms by which membrane-integral transporters and channels are controlled via phospholipid signaling, as well as the regulation of membrane protein accumulation by phospholipids through coordinated removal, recycling, and degradation processes.
Collapse
Affiliation(s)
- Qun Zhang
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Like Shen
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Lin
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Liao
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenhua Zhang
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Laboratory, Nanjing, 210095, China
| |
Collapse
|
12
|
Zhang X, Zhang D, Zhong C, Li W, Dinesh-Kumar SP, Zhang Y. Orchestrating ROS regulation: coordinated post-translational modification switches in NADPH oxidases. THE NEW PHYTOLOGIST 2025; 245:510-522. [PMID: 39468860 DOI: 10.1111/nph.20231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
Reactive oxygen species (ROS) are among the most important signaling molecules, playing a significant role in plant growth, development, and responses to various environmental stresses. Respiratory burst oxidase homologs (RBOHs) are key enzymes in ROS production. Plants tightly regulate the activation and deactivation of RBOHs through various post-translational modifications (PTMs), including phosphorylation, ubiquitination, S-nitrosylation, and persulfidation. These PTMs fine-tune ROS production, ensuring normal plant growth and development while facilitating rapid responses to abiotic and biotic stresses. This review discusses the effects of different PTMs on RBOH function and their biological relevance. Additionally, we examine the evolutionary conservation of PTM sites and emphasize the complex interplay between multiple PTMs regulating RBOHs.
Collapse
Affiliation(s)
- Xinyu Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dingliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chenchen Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenli Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
13
|
Chen H, Chen X, Li X, Lin X, Yue L, Liu C, Li Y. Growth and physiological response of Yulu Hippophae rhamnoides to drought stress and its omics analysis. PLANT SIGNALING & BEHAVIOR 2024; 19:2439256. [PMID: 39653502 PMCID: PMC11633206 DOI: 10.1080/15592324.2024.2439256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Hippophae rhamnoides (H. rhamnoides) is the primary tree species known for its ecological and economic benefits in arid and semi-arid regions. Understanding the response of H. rhamnoides roots to drought stress is essential for promoting the development of varieties. One-year-old Yulu H. rhamnoides was utilized as the experimental material, and three water gradients were established: control (CK), moderate (T1) and severe (T2), over a period of 120 days. The phenotypic traits and physiological indies were assessed and analyzed, while the roots were subjected by RNA-Seq transcriptome and Tandem Mass Tags (TMT) proteome analysis. Drought stress significantly reduced the plant height, ground diameter, root biomass and superoxide dismutase activity; however, the main root length increased. In comparison with CK, a total of 5789 and 5594 differential genes, as well as 63 and 1012 differential proteins, were identified in T1 and T2, respectively. The combined analysis of transcriptome and proteome showed that the number of differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) associated with T1, T2 and CK was 28 and 126, respectively, with 7 and 36 genes achieving effective KEGG annotation. In T1 and T2, the differential genes were significantly enriched in the plant hormone signal transduction pathway, but there was no significant enrichment in the protein expression profile. In T2, 38 plant hormone signal transduction function genes and 10 peroxisome related genes were identified. With the increase of drought stress, the combined expression of DEGs and DEPs increased. Yulu H. rhamnoides may allocate more resources toward CAT while simultaneously decreasing SOD and POD to mitigate the oxidative stress induced by drought. Furthermore, the molecular mechanisms underlying plant hormone signal transduction and peroxisome-related genes in the roots of H. rhamnoides were discussed in greater detail.
Collapse
Affiliation(s)
- Haipeng Chen
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaolin Chen
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaogang Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xin Lin
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Lihua Yue
- Technical Center, Chengde Astronaut Mountainous Plant Technology Co. Ltd. Chengde, Hebei, China
| | - Chunhai Liu
- Technical Center, Chengde Astronaut Mountainous Plant Technology Co. Ltd. Chengde, Hebei, China
| | - Yuling Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
14
|
Bakshi A, Gilroy S. Calcium signaling in hypoxic response. PLANT PHYSIOLOGY 2024; 197:kiae654. [PMID: 39707915 DOI: 10.1093/plphys/kiae654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/23/2024]
Abstract
Plants can experience a lack of oxygen due to environmental conditions, such as flooding events or intense microbial blooms in the soil, and from their own metabolic activities. The associated limit on aerobic respiration can be fatal. Therefore, plants have evolved sensing systems that monitor oxygen levels and trigger a suite of metabolic, physiologic, and developmental responses to endure, or potentially escape, these oxygen-limiting conditions. Low oxygen stress has long been known to trigger changes in cytosolic Ca2+ levels in plants, and recent work has seen some major steps forward in characterizing these events as part of a Ca2+-based signaling system through (1) defining how hypoxia may trigger and then shape the dynamics of these Ca2+ signals, and (2) identifying a host of the downstream elements that allow Ca2+ to regulate a wide-ranging network of hypoxia responses. Calcium transporters such as the CAX family of Ca2+/H+ antiporters at the tonoplast have emerged as important components of the system that forms hypoxia-related Ca2+ signals. Downstream lies a web of Ca2+-responsive proteins such as the calmodulin like proteins, Ca2+-dependent kinases, and the calcineurin-B like proteins along with their interacting kinases. A host of other regulators such as reactive oxygen species and lipid-mediated signals then act in parallel to the Ca2+-dependent events to closely control and coordinate the myriad responses that characterize the plant's low oxygen response.
Collapse
Affiliation(s)
- Arkadipta Bakshi
- Department of Botany, University of Wisconsin-Madison, Birge Hall, 430 lincoln Drive, Madison, WI 53706, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin-Madison, Birge Hall, 430 lincoln Drive, Madison, WI 53706, USA
| |
Collapse
|
15
|
Withycombe J, Han J, MacWilliams J, Dorn KM, Nalam VJ, Nachappa P. Transcriptomic profiling reveals distinct responses to beet curly top virus (BCTV) infection in resistant and susceptible sugar beet genotypes. BMC Genomics 2024; 25:1237. [PMID: 39716086 DOI: 10.1186/s12864-024-11143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Sugar beets (Beta vulgaris L.) are grown worldwide and suffer economic loss annually due to curly top disease caused by the beet curly top virus (BCTV). The virus is spread by the beet leafhopper (BLH), Circulifer tenellus Baker. Current management strategies rely on chemical control and planting BCTV-resistant sugar beet genotypes. However, the genetic mechanism underlying BCTV resistance in sugar beet is unknown. This study aimed to determine these mechanisms by comparing a resistant (EL10) and susceptible (FC709-2) sugar beet genotype using host plant suitability (no-choice), host preference (choice) assays, and transcriptomic analysis. RESULTS Host plant suitability assays revealed no significant differences in adult survival or nymph production between viruliferous and non-viruliferous BLH on either genotype, suggesting that BCTV resistance is not directly associated with reduced beet leafhopper fitness. However, host preference assays showed that viruliferous BLH preferred settling on the susceptible genotype, FC709-2, compared to the resistant genotype, EL10 whereas the non-viruliferous BLH showed no preference. RNA-sequencing analysis of BCTV-inoculated (viruliferous BLH-fed) and mock-inoculated (non-viruliferous BLH-fed) plants at day 1, 7, or 14 post-inoculations highlighted dynamic and contrasting responses between the two genotypes. The resistant genotype had differentially expressed transcripts (DETs) associated with jasmonic acid and abscisic acid biosynthesis and signaling. DETs associated with stress mitigation mechanisms and reduction in plant primary metabolic processes were also observed. In contrast, the susceptible genotype had DETs associated with opposing phytohormones like salicylic acid and auxin. Moreover, this genotype exhibited an upregulation in DETs involved in volatile organic compounds (VOCs) production and increased primary plant metabolic processes. CONCLUSIONS These results provide novel insight into the opposing transcriptional responses underlying BCTV resistance and susceptibility in sugar beet. Understanding and classifying the mechanisms of resistance or susceptibility to BCTV infection in sugar beet is beneficial to researchers and plant breeders as it provides a basis for further exploration of the host plant-virus-vector interactions.
Collapse
Affiliation(s)
- Jordan Withycombe
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jinlong Han
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jacob MacWilliams
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Kevin M Dorn
- Soil Management and Sugarbeet Research, USDA-ARS, Fort Collins, CO, 80523, USA
| | - Vamsi J Nalam
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Punya Nachappa
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
16
|
Ding LN, Hu YH, Li T, Li M, Li YT, Wu YZ, Cao J, Tan XL. A GDSL motif-containing lipase modulates Sclerotinia sclerotiorum resistance in Brassica napus. PLANT PHYSIOLOGY 2024; 196:2973-2988. [PMID: 39321167 PMCID: PMC11638095 DOI: 10.1093/plphys/kiae500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum (Lib.) De Bary is a devastating disease infecting hundreds of plant species. It also restricts the yield, quality, and safe production of rapeseed (Brassica napus) worldwide. However, the lack of resistance sources and genes to S. sclerotiorum has greatly restricted rapeseed SSR-resistance breeding. In this study, a previously identified GDSL motif-containing lipase gene, B. napus GDSL LIPASE-LIKE 1 (BnaC07.GLIP1), encoding a protein localized to the intercellular space, was characterized as functioning in plant immunity to S. sclerotiorum. The BnaC07.GLIP1 promoter is S. sclerotiorum-inducible and the expression of BnaC07.GLIP1 is substantially enhanced after S. sclerotiorum infection. Arabidopsis (Arabidopsis thaliana) heterologously expressing and rapeseed lines overexpressing BnaC07.GLIP1 showed enhanced resistance to S. sclerotiorum, whereas RNAi suppression and CRISPR/Cas9 knockout B. napus lines were hyper-susceptible to S. sclerotiorum. Moreover, BnaC07.GLIP1 affected the lipid composition and induced the production of phospholipid molecules, such as phosphatidylethanolamine, phosphatidylcholine, and phosphatidic acid, which were correlated with decreased levels of reactive oxygen species (ROS) and enhanced expression of defense-related genes. A B. napus bZIP44 transcription factor specifically binds the CGTCA motif of the BnaC07.GLIP1 promoter to positively regulate its expression. BnbZIP44 responded to S. sclerotiorum infection, and its heterologous expression inhibited ROS accumulation, thereby enhancing S. sclerotiorum resistance in Arabidopsis. Thus, BnaC07.GLIP1 functions downstream of BnbZIP44 and is involved in S. sclerotiorum resistance by modulating the production of phospholipid molecules and ROS homeostasis in B. napus, providing insights into the potential roles and functional mechanisms of BnaC07.GLIP1 in plant immunity and for improving rapeseed SSR disease-resistance breeding.
Collapse
Affiliation(s)
- Li-Na Ding
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Ying-Hui Hu
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Teng Li
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Ming Li
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yue-Tao Li
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yuan-Zhen Wu
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jun Cao
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiao-Li Tan
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
17
|
Liu YN, Chen YL, Zhang ZJ, Wu FY, Wang HJ, Wang XL, Liu GQ. Phosphatidic acid directly activates mTOR and then regulates SREBP to promote ganoderic acid biosynthesis under heat stress in Ganoderma lingzhi. Commun Biol 2024; 7:1503. [PMID: 39537975 PMCID: PMC11560937 DOI: 10.1038/s42003-024-07225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Ganoderic acids (GAs), a class of secondary metabolites produced by the traditional medicinal mushroom Ganoderma, are a group of triterpenoids with superior biological activities. Heat stress (HS) is one of the most important environmental abiotic stresses. Understanding how organisms sense temperature and integrate this information into their metabolism is important for determining how organisms adapt to climate change and for applying this knowledge to breeding. We previously reported that HS induced GA biosynthesis, and phospholipase D (PLD)-mediated phosphatidic acid (PA) was involved in HS-induced GA biosynthesis. We screened a proteome to identify the PA-binding proteins in G. lingzhi. We reported that PA directly interacted with mTOR and positively correlated with the ability of mTOR to promote GA biosynthesis under HS. The PA-activated mTOR pathway promoted the processing of the transcription factor sterol regulatory element-binding protein (SREBP) under HS, which directly activated GA biosynthesis. Our results suggest that SREBP is an intermediate of the PLD-mediated PA-interacting protein mTOR in HS-induced GA biosynthesis. Our report established the link between PLD-mediated PA production and the activation of mTOR and SREBP in the HS response and HS-induced secondary metabolism in filamentous fungi.
Collapse
Affiliation(s)
- Yong-Nan Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China.
- Laboratory of Yuelushan Seed Industry, Changsha, China.
| | - Yu-Lin Chen
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Zi-Juan Zhang
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Feng-Yuan Wu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Hao-Jin Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Xiao-Ling Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China.
- Laboratory of Yuelushan Seed Industry, Changsha, China.
| |
Collapse
|
18
|
Chen W, Zhang P, Liu D, Wang X, Lu S, Liu Z, Yang M, Deng T, Chen L, Qi H, Xiao S, Chen Q, Qiu R, Xie L. OsPLDα1 mediates cadmium stress response in rice by regulating reactive oxygen species accumulation and lipid remodeling. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135702. [PMID: 39217932 DOI: 10.1016/j.jhazmat.2024.135702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Lipid remodeling is crucial for various cellular activities and the stress tolerance of plants; however, little is known about the lipid dynamics induced by the heavy metal cadmium (Cd). In this study, we investigated the phospholipid profiles in rice (Oryza sativa) under Cd exposure. We observed a significant decline in the total amounts of phosphatidylcholine and phosphatidylserine, contrasted with an elevation in phosphatidic acid (PA) due to Cd stress. Additionally, Cd stress prompted the activation of phospholipase D (PLD) and induced the expression of PLDα1. OsPLDα1 knockout mutants (Ospldα1) showed increased sensitivity to Cd, characterized by a heightened accumulation of hydrogen peroxide in roots and diminished PA production following Cd treatment. Conversely, PLDα1-overexpressing (OsPLDα1-OE) lines demonstrated enhanced tolerance to Cd, with suppressed transcription of the respiratory burst oxidase homolog (Rboh) genes. The transcription levels of genes associated with Cd uptake and transport were accordingly modulated in Ospldα1 and OsPLDα1-OE plants relative to the wild-type. Taken together, our findings underscore the pivotal role of OsPLDα1 in conferring tolerance to Cd by modulating reactive oxygen species homeostasis and lipid remodeling in rice.
Collapse
Affiliation(s)
- Wenzhen Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Peixian Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Di Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaozhuo Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Sen Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhixuan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Mingkang Yang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Tenghaobo Deng
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Liang Chen
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hua Qi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qinfang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Lijuan Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Gang D, Jia H, Ji H, Li J, Yu H, Hu C, Qu J. Ecological risk of per-and polyfluorinated alkyl substances in the phytoremediation process: a case study for ecologically keystone species across two generations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174961. [PMID: 39067584 DOI: 10.1016/j.scitotenv.2024.174961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
The potential ecological risk of per- and polyfluorinated alkyl substances (PFASs) in phytoremediation has raised social concerns, promoting a need to better understand their distribution and risks in the recovery process of aquatic plants. Herein, we aim to fill this knowledge gap by investigating the distribution and ecotoxicological effects of PFASs on the structure and function of water-macrophyte-sediment microcosm systems. Among the entire system, 63.0 %-73.1 % PFOA was found in sediments and submerged plants, however, 52.5 %-53.0 % of PFPeA and 47.0 %-47.5 % of PFBS remained in the water under different treatments. PFOA was more bioavailable than the other substances, as demonstrated by the bioaccumulation factors (BAF) with ranges exposed to PFPeA and PFBS. Bioaccumulation PFASs induced plant oxidative stress which generates enzymes to suppress superoxide, and disturbed the processes of lysine biosynthesis, in which allysine, meso-2,6-diaminoheptanedioate, and Nsuccinyl-2-amino-6-ketopimelate were downregulated. PFASs were detected in the propagator (turions) of an ecological restoration species, where short-chain PFASs (70.1 % and 45.7 % for 2 or 20 μg/L PFAS exposure, respectively) were found to spread further into new individuals and profoundly influence ecological processes shaping populations. PFASs significantly enhanced the number of microbial species in the sediment, but the degree of differentiation in the microbial community structure was not significantly different. This study enhances our understanding of the ecological mechanisms of PFASs in the water-macrophyte-sediment systems and potential threats to the recovery process of macrophytes.
Collapse
Affiliation(s)
- Diga Gang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huawei Jia
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - He Ji
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwen Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Hongwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Gajewska E, Witusińska A, Bernat P. Nickel-induced oxidative stress and phospholipid remodeling in cucumber leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112229. [PMID: 39151803 DOI: 10.1016/j.plantsci.2024.112229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Nickel phytotoxicity has been attributed, among others, to oxidative stress. However, little is known about Ni-induced phospholipid modifications, including the oxidative ones. Accumulation of reactive oxygen species (ROS), antioxidative enzyme activities, malondialdehyde and the early lipid oxidation products contents, membrane permeability, phospholipid profile as well as phospholipid unsaturation degree were studied in the 1st and the 2nd leaves of hydroponically grown cucumber seedlings subjected to Ni stress. Compared to the 2nd leaf the 1st one showed stronger visual Ni toxicity symptoms, higher Ni, O2.- and H2O2 accumulation as well as greater enhancement in membrane permeability. Enzyme activities were differently influenced by Ni stress, however most pronounced changes were generally found in the 1st leaf. Ni treatment resulted in oxidation of leaf lipids, which was evidenced by appearance of increased contents of MDA and the early produced oxylipins. Among the latter 9-hydroxyoctadecatrienoic acid (9-HOTrE) and 13-hydroxyoctadecatrienoic acid (13-HOTrE) contents showed the most pronounced increase in response to Ni treatment. Exposure to the metal led to the changes in the leaf phospholipid profile and increased degree of phospholipid unsaturation. The obtained results have been discussed in relation to the difference in Ni stress severity between the 1st and the 2nd leaves.
Collapse
Affiliation(s)
- Ewa Gajewska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Plant Physiology and Biochemistry, Banacha 12/16, Lodz 90-237, Poland.
| | - Aleksandra Witusińska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Plant Physiology and Biochemistry, Banacha 12/16, Lodz 90-237, Poland.
| | - Przemysław Bernat
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Industrial Microbiology and Biotechnology, Banacha 12/16, Lodz 90-237, Poland.
| |
Collapse
|
21
|
Zhao Y, Yang J, Jiang F, Zhao G. Hydrogen Peroxide Is Involved in Methane-Alleviated Cadmium Toxicity in Alfalfa ( Medicago sativa L.) Seedlings by Enhancing Cadmium Chelation onto Root Cell Walls. PLANTS (BASEL, SWITZERLAND) 2024; 13:2639. [PMID: 39339613 PMCID: PMC11435170 DOI: 10.3390/plants13182639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Although previous studies have demonstrated that methane (CH4) can mitigate the toxicity of cadmium (Cd) in alfalfa seedlings, the CH4-rich water used in these studies may create hypoxic conditions, potentially influencing the experimental outcomes. Therefore, this study aimed to investigate whether CH4 can reduce Cd toxicity in alfalfa seedlings without the interference of hypoxia and to analyze its underlying mechanisms. Here, it was observed that supplementing oxygen with saturated CH4-rich water can significantly alleviate the inhibition of 75 μM CdCl2 on the growth of alfalfa (Medicago sativa L.) seedlings. Less Cd accumulation was also observed in both root and shoot parts, which could be explained by the CH4-altered cell wall components in alfalfa seedling roots, including covalent and ionic soluble pectin, and the degree of demethylation in pectin, thus enabling a higher proportion of Cd binding to the cell walls and reducing the entry of Cd into the cells. The above actions of CH4 were accompanied by an increase in hydrogen peroxide (H2O2) content and NADPH oxidase activity, which could be blocked by the addition of the NADPH oxidase inhibitor diphenylene iodonium (DPI). Taken together, these results implied that exogenously applied CH4 could alleviate Cd toxicity in alfalfa seedlings by enhancing Cd chelation onto the root cell walls, which might be closely associated with NADPH oxidase-dependent H2O2 signals. These findings could provide insight into the mechanism through which CH4 alleviates Cd toxicity in alfalfa plants.
Collapse
Affiliation(s)
- Yingying Zhao
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou 233100, China; (Y.Z.); (F.J.)
| | - Jie Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| | - Feiyan Jiang
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou 233100, China; (Y.Z.); (F.J.)
| | - Gan Zhao
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou 233100, China; (Y.Z.); (F.J.)
| |
Collapse
|
22
|
Chen Y, Zhang R, Wang R, Li J, Wu B, Zhang H, Xiao G. Overexpression of OsRbohH Enhances Heat and Drought Tolerance through ROS Homeostasis and ABA Mediated Pathways in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2494. [PMID: 39273977 PMCID: PMC11397177 DOI: 10.3390/plants13172494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/05/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Respiratory burst oxidase homologs (Rbohs) are the primary producers of reactive oxygen species (ROS), which have been demonstrated to play critical roles in plant responses to abiotic stress. Here, we explored the function of OsRbohH in heat and drought stress tolerance by generating overexpression lines (OsRbohH-OE). OsRbohH was highly induced by various abiotic stress and hormone treatments. Compared to wild-type (WT) controls, OsRbohH-OE plants exhibited enhanced tolerance to heat and drought, as determined by survival rate analyses and total chlorophyll content. Histochemical staining revealed that OsRbohH-OE accumulated less ROS. This is consistent with the observed increase in catalase (CAT) and peroxidase (POD) activities, as well as a reduced electrolyte leakage rate and malondialdehyde (MDA) content. Moreover, OsRbohH-OE exhibited enhanced sensitivity to exogenous abscisic acid (ABA), accompanied by altered expression levels of ABA synthesis and catabolic genes. Further analysis indicated that transgenic lines had lower transcripts of ABA signaling-related genes (OsDREB2A, OsLEA3, OsbZIP66, and OsbZIP72) under heat but higher levels under drought than WT. In conclusion, these results suggest that OsRbohH is a positive regulator of heat and drought tolerance in rice, which is probably performed through OsRbohH-mediated ROS homeostasis and ABA signaling.
Collapse
Affiliation(s)
- Yating Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Rui Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Rujie Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jiangdi Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Bin Wu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guiqing Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
23
|
Li Y, Zhang W, Yang Y, Liang X, Lu S, Ma C, Dai C. BnaPLDα1-BnaMPK6 Involved in NaCl-Mediated Overcoming of Self-Incompatibility in Brassica napus L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112116. [PMID: 38750797 DOI: 10.1016/j.plantsci.2024.112116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024]
Abstract
Self-incompatibility (SI) is an important genetic mechanism exploited by numerous angiosperm species to prevent inbreeding. This mechanism has been widely used in the breeding of SI trilinear hybrids of Brassica napus. The SI responses in these hybrids can be overcome by using a salt (NaCl) solution, which is used for seed propagation in SI lines. However, the mechanism underlying the NaCl-induced breakdown of the SI response in B. napus remains unclear. Here, we investigated the role of two key proteins, BnaPLDα1 and BnaMPK6, in the breakdown of SI induced by NaCl. Pollen grain germination and seed set were reduced in BnaPLDα1 triple mutants following incompatible pollination with NaCl treatment. Conversely, SI responses were partially abolished by overexpression of BnaC05.PLDα1 without salt treatment. Furthermore, we observed that phosphatidic acid (PA) produced by BnaPLDα1 bound to B. napus BnaMPK6. The suppression and enhancement of the NaCl-induced breakdown of the SI response in B. napus were observed in BnaMPK6 quadruple mutants and BnaA05.MPK6 overexpression lines, respectively. Moreover, salt-induced stigmatic reactive oxygen species (ROS) accumulation had a minimal effect on the NaCl-induced breakdown of the SI response. In conclusion, our results demonstrate the essential role of the BnaPLDα1-PA-BnaMPK6 pathway in overcoming the SI response to salt treatment in SI B. napus. Additionally, our study provides new insights into the relationship between SI signaling and salt stress response. SIGNIFICANCE STATEMENT: A new molecular mechanism underlying the breakdown of the NaCl-induced self-incompatibility (SI) response in B. napus has been discovered. It involves the induction of BnaPLDα1 expression by NaCl, followed by the activation of BnaMPK6 through the production of phosphatidic acid (PA) by BnaPLDα1. Ultimately, this pathway leads to the breakdown of SI. The involvement of the BnaPLDα1-PA-BnaMPK6 pathway in overcoming the SI response following NaCl treatment provides new insights into the relationship between SI signalling and the response to salt stress.
Collapse
Affiliation(s)
- Yuanyuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - WenXuan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaomei Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
24
|
Wang L, Liu Y, Hou S. DGK5 phosphorylation finetunes PA homeostasis in plant immunity. TRENDS IN PLANT SCIENCE 2024; 29:842-844. [PMID: 38570280 DOI: 10.1016/j.tplants.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Phosphatidic acid (PA) as a universal second messenger is transiently and rapidly produced upon immune activation in plants. A recent study by Kong et al. elucidated a mechanism for maintaining PA homeostasis via two uncoupled phosphorylation events of DIACYLGLYCEROL KINASE 5 (DGK5) at different phosphorylation sites by two distinct kinases.
Collapse
Affiliation(s)
- Lijun Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China; College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yukun Liu
- College of Forestry, Southwest Forestry University, Kunming, Yunnan 650224, China.
| | - Shuguo Hou
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China.
| |
Collapse
|
25
|
Wang D, Yuan M, Zhuang Y, Xin XF, Qi G. DGK5-mediated phosphatidic acid homeostasis interplays with reactive oxygen species in plant immune signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1263-1265. [PMID: 38818976 DOI: 10.1111/jipb.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Reactive oxygen species (ROS) and phosphatidic acid (PA) are important second messengers in plant immunity. PA binding to RBOHD, an NADPH oxidase responsible for ROS production, enhances RBOHD stability and promotes ROS production. Distinct phosphorylation of the lipid kinase DGK5 optimizes the PA burst in regulating ROS production.
Collapse
Affiliation(s)
- Dian Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Jinan, 252100, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Minhang Yuan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yamei Zhuang
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Jinan, 252100, China
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Guang Qi
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Jinan, 252100, China
| |
Collapse
|
26
|
Amokrane L, Pokotylo I, Acket S, Ducloy A, Troncoso-Ponce A, Cacas JL, Ruelland E. Phospholipid Signaling in Crop Plants: A Field to Explore. PLANTS (BASEL, SWITZERLAND) 2024; 13:1532. [PMID: 38891340 PMCID: PMC11174929 DOI: 10.3390/plants13111532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
In plant models such as Arabidopsis thaliana, phosphatidic acid (PA), a key molecule of lipid signaling, was shown not only to be involved in stress responses, but also in plant development and nutrition. In this article, we highlight lipid signaling existing in crop species. Based on open access databases, we update the list of sequences encoding phospholipases D, phosphoinositide-dependent phospholipases C, and diacylglycerol-kinases, enzymes that lead to the production of PA. We show that structural features of these enzymes from model plants are conserved in equivalent proteins from selected crop species. We then present an in-depth discussion of the structural characteristics of these proteins before focusing on PA binding proteins. For the purpose of this article, we consider RESPIRATORY BURST OXIDASE HOMOLOGUEs (RBOHs), the most documented PA target proteins. Finally, we present pioneering experiments that show, by different approaches such as monitoring of gene expression, use of pharmacological agents, ectopic over-expression of genes, and the creation of silenced mutants, that lipid signaling plays major roles in crop species. Finally, we present major open questions that require attention since we have only a perception of the peak of the iceberg when it comes to the exciting field of phospholipid signaling in plants.
Collapse
Affiliation(s)
- Lucas Amokrane
- Unité Génie Enzymatique & Cellulaire, Université de Technologie de Compiègne, UMR CNRS 7025, 60200 Compiègne, France; (L.A.); (I.P.); (S.A.); (A.T.-P.)
| | - Igor Pokotylo
- Unité Génie Enzymatique & Cellulaire, Université de Technologie de Compiègne, UMR CNRS 7025, 60200 Compiègne, France; (L.A.); (I.P.); (S.A.); (A.T.-P.)
- INRAE, AgroParisTech, Institute Jean-Pierre Bourgin (IJPB), University Paris-Saclay, 78000 Versailles, France (J.-L.C.)
| | - Sébastien Acket
- Unité Génie Enzymatique & Cellulaire, Université de Technologie de Compiègne, UMR CNRS 7025, 60200 Compiègne, France; (L.A.); (I.P.); (S.A.); (A.T.-P.)
| | - Amélie Ducloy
- INRAE, AgroParisTech, Institute Jean-Pierre Bourgin (IJPB), University Paris-Saclay, 78000 Versailles, France (J.-L.C.)
| | - Adrian Troncoso-Ponce
- Unité Génie Enzymatique & Cellulaire, Université de Technologie de Compiègne, UMR CNRS 7025, 60200 Compiègne, France; (L.A.); (I.P.); (S.A.); (A.T.-P.)
| | - Jean-Luc Cacas
- INRAE, AgroParisTech, Institute Jean-Pierre Bourgin (IJPB), University Paris-Saclay, 78000 Versailles, France (J.-L.C.)
| | - Eric Ruelland
- Unité Génie Enzymatique & Cellulaire, Université de Technologie de Compiègne, UMR CNRS 7025, 60200 Compiègne, France; (L.A.); (I.P.); (S.A.); (A.T.-P.)
| |
Collapse
|
27
|
Getzke F, Wang L, Chesneau G, Böhringer N, Mesny F, Denissen N, Wesseler H, Adisa PT, Marner M, Schulze-Lefert P, Schäberle TF, Hacquard S. Physiochemical interaction between osmotic stress and a bacterial exometabolite promotes plant disease. Nat Commun 2024; 15:4438. [PMID: 38806462 PMCID: PMC11133316 DOI: 10.1038/s41467-024-48517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/01/2024] [Indexed: 05/30/2024] Open
Abstract
Various microbes isolated from healthy plants are detrimental under laboratory conditions, indicating the existence of molecular mechanisms preventing disease in nature. Here, we demonstrated that application of sodium chloride (NaCl) in natural and gnotobiotic soil systems is sufficient to induce plant disease caused by an otherwise non-pathogenic root-derived Pseudomonas brassicacearum isolate (R401). Disease caused by combinatorial treatment of NaCl and R401 triggered extensive, root-specific transcriptional reprogramming that did not involve down-regulation of host innate immune genes, nor dampening of ROS-mediated immunity. Instead, we identified and structurally characterized the R401 lipopeptide brassicapeptin A as necessary and sufficient to promote disease on salt-treated plants. Brassicapeptin A production is salt-inducible, promotes root colonization and transitions R401 from being beneficial to being detrimental on salt-treated plants by disturbing host ion homeostasis, thereby bolstering susceptibility to osmolytes. We conclude that the interaction between a global change stressor and a single exometabolite from a member of the root microbiome promotes plant disease in complex soil systems.
Collapse
Affiliation(s)
- Felix Getzke
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Lei Wang
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Guillaume Chesneau
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Nils Böhringer
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392, Giessen, Germany
| | - Fantin Mesny
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Institute for Plant Sciences, University of Cologne, 50674, Cologne, Germany
| | - Nienke Denissen
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Hidde Wesseler
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Priscilla Tijesuni Adisa
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Michael Marner
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392, Giessen, Germany
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany.
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392, Giessen, Germany.
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392, Giessen, Germany.
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
| |
Collapse
|
28
|
Wang S, Zhang C, Chen R, Cheng K, Ma L, Wang W, Yang N. H 2S is involved in drought-mediated stomatal closure through PLDα1 in Arabidopsis. PLANTA 2024; 259:142. [PMID: 38702456 DOI: 10.1007/s00425-024-04421-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
MAIN CONCLUSION PLDα1 promoted H2S production by positively regulating the expression of LCD. Stomatal closure promoted by PLDα1 required the accumulation of H2S under drought stress. Phospholipase Dα1 (PLDα1) acting as one of the signal enzymes can respond to drought stress. It is well known that hydrogen sulfide (H2S) plays an important role in plant responding to biotic or abiotic stress. In this study, the functions and relationship between PLDα1 and H2S in drought stress resistance in Arabidopsis were explored. Our results indicated that drought stress promotes PLDα1 and H2S production by inducing the expression of PLDα1 and LCD genes. PLDα1 and LCD enhanced plant tolerance to drought by regulating membrane lipid peroxidation, proline accumulation, H2O2 content and stomatal closure. Under drought stress, the H2O2 content of PLDα1-deficient mutant (pldα1), L-cysteine desulfhydrase (LCD)-deficient mutant (lcd) was higher than that of ecotype (WT), the stomatal aperture of pldα1 and lcd was larger than that of WT. The transcriptional and translational levels of LCD were lower in pldα1 than that in WT. Exogenous application of the H2S donor NaHS or GYY reduced the stomatal aperture of WT, pldα1, PLDα1-CO, and PLDα1-OE lines, while exogenous application of the H2S scavenger hypotaurine (HT) increased the stomatal aperture. qRT-PCR analysis of stomatal movement-related genes showed that the expression of CAX1, ABCG5, SCAB1, and SLAC1 genes in pldα1 and lcd were down-regulated, while ACA1 and OST1 gene expression was significantly up-regulated. Thus, PLDα1 and LCD are required for stomatal closure to improve drought stress tolerance.
Collapse
Affiliation(s)
- Simin Wang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Cuixia Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Rongshan Chen
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Kailin Cheng
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Liai Ma
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Wei Wang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Ning Yang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
29
|
Zhou H, Huo Y, Yang N, Wei T. Phosphatidic acid: from biophysical properties to diverse functions. FEBS J 2024; 291:1870-1885. [PMID: 37103336 DOI: 10.1111/febs.16809] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/15/2023] [Accepted: 04/26/2023] [Indexed: 04/28/2023]
Abstract
Phosphatidic acid (PA), the simplest phospholipid, acts as a key metabolic intermediate and second messenger that impacts diverse cellular and physiological processes across species ranging from microbes to plants and mammals. The cellular levels of PA dynamically change in response to stimuli, and multiple enzymatic reactions can mediate its production and degradation. PA acts as a signalling molecule and regulates various cellular processes via its effects on membrane tethering, enzymatic activities of target proteins, and vesicular trafficking. Because of its unique physicochemical properties compared to other phospholipids, PA has emerged as a class of new lipid mediators influencing membrane structure, dynamics, and protein interactions. This review summarizes the biosynthesis, dynamics, and cellular functions and properties of PA.
Collapse
Affiliation(s)
- Hejiang Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanwu Huo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Na Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Laboratory of Genetic and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Taotao Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Zou W, Yu Q, Ma Y, Sun G, Feng X, Ge L. Pivotal role of heterotrimeric G protein in the crosstalk between sugar signaling and abiotic stress response in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108567. [PMID: 38554538 DOI: 10.1016/j.plaphy.2024.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
Heterotrimeric G-proteins are key modulators of multiple signaling and developmental pathways in plants, in which they act as molecular switches to engage in transmitting various stimuli signals from outside into the cells. Substantial studies have identified G proteins as essential components of the organismal response to abiotic stress, leading to adaptation and survival in plants. Meanwhile, sugars are also well acknowledged key players in stress perception, signaling, and gene expression regulation. Connections between the two significant signaling pathways in stress response are of interest to a general audience in plant biology. In this article, advances unraveling a pivotal role of G proteins in the process of sugar signals outside the cells being translated into the operation of autophagy in cells during stress are reviewed. In addition, we have presented recent findings on G proteins regulating the response to drought, salt, alkali, cold, heat and other abiotic stresses. Perspectives on G-protein research are also provided in the end. Since G protein signaling regulates many agronomic traits, elucidation of detailed mechanism of the related pathways would provide useful insights for the breeding of abiotic stress resistant and high-yield crops.
Collapse
Affiliation(s)
- Wenjiao Zou
- Collaborative Innovation Center for Ecological Protection and High Quality Development of Characteristic Traditional Chinese Medicine in the Yellow River Basin, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Qian Yu
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Ma
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guoning Sun
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xue Feng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lei Ge
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China; Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong, 257300, China.
| |
Collapse
|
31
|
John A, Krämer M, Lehmann M, Kunz HH, Aarabi F, Alseekh S, Fernie A, Sommer F, Schroda M, Zimmer D, Mühlhaus T, Peisker H, Gutbrod K, Dörmann P, Neunzig J, Philippar K, Neuhaus HE. Degradation of FATTY ACID EXPORT PROTEIN1 by RHOMBOID-LIKE PROTEASE11 contributes to cold tolerance in Arabidopsis. THE PLANT CELL 2024; 36:1937-1962. [PMID: 38242838 PMCID: PMC11062452 DOI: 10.1093/plcell/koae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/21/2024]
Abstract
Plants need to acclimate to different stresses to optimize growth under unfavorable conditions. In Arabidopsis (Arabidopsis thaliana), the abundance of the chloroplast envelope protein FATTY ACID EXPORT PROTEIN1 (FAX1) decreases after the onset of low temperatures. However, how FAX1 degradation occurs and whether altered FAX1 abundance contributes to cold tolerance in plants remains unclear. The rapid cold-induced increase in RHOMBOID-LIKE PROTEASE11 (RBL11) transcript levels, the physical interaction of RBL11 with FAX1, the specific FAX1 degradation after RBL11 expression, and the absence of cold-induced FAX1 degradation in rbl11 loss-of-function mutants suggest that this enzyme is responsible for FAX1 degradation. Proteomic analyses showed that rbl11 mutants have higher levels of FAX1 and other proteins involved in membrane lipid homeostasis, suggesting that RBL11 is a key element in the remodeling of membrane properties during cold conditions. Consequently, in the cold, rbl11 mutants show a shift in lipid biosynthesis toward the eukaryotic pathway, which coincides with impaired cold tolerance. To test whether cold sensitivity is due to increased FAX1 levels, we analyzed FAX1 overexpressors. The rbl11 mutants and FAX1 overexpressor lines show superimposable phenotypic defects upon exposure to cold temperatures. Our re-sults show that the cold-induced degradation of FAX1 by RBL11 is critical for Arabidop-sis to survive cold and freezing periods.
Collapse
Affiliation(s)
- Annalisa John
- Plant Physiology, University of Kaiserslautern, Kaiserslautern D-67653, Germany
| | - Moritz Krämer
- Plant Biochemistry, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried 82152, Germany
| | - Martin Lehmann
- Plant Biochemistry, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried 82152, Germany
| | - Hans-Henning Kunz
- Plant Biochemistry, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried 82152, Germany
| | - Fayezeh Aarabi
- Max Planck Institut for Molecular Plant Physiology, Central Metabolism, Potsdam D-14476, Germany
| | - Saleh Alseekh
- Max Planck Institut for Molecular Plant Physiology, Central Metabolism, Potsdam D-14476, Germany
| | - Alisdair Fernie
- Max Planck Institut for Molecular Plant Physiology, Central Metabolism, Potsdam D-14476, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, Kaiserslautern D-67653, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, Kaiserslautern D-67653, Germany
| | - David Zimmer
- Computational Systems Biology, University of Kaiserslautern, Kaiserslautern D-67653, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, University of Kaiserslautern, Kaiserslautern D-67653, Germany
| | - Helga Peisker
- Institute for Molecular Physiology and Biotechnology of Plants, IMBIO, University of Bonn, Bonn D-53115, Germany
| | - Katharina Gutbrod
- Institute for Molecular Physiology and Biotechnology of Plants, IMBIO, University of Bonn, Bonn D-53115, Germany
| | - Peter Dörmann
- Institute for Molecular Physiology and Biotechnology of Plants, IMBIO, University of Bonn, Bonn D-53115, Germany
| | - Jens Neunzig
- Plant Biology, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken D-66123, Germany
| | - Katrin Philippar
- Plant Biology, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken D-66123, Germany
| | | |
Collapse
|
32
|
Fukuoka N, Watanabe R, Hamada T. Impact of changes in root biomass on the occurrence of internal browning in radish root. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108563. [PMID: 38554535 DOI: 10.1016/j.plaphy.2024.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
The purpose of this study was to investigate the effects of root biomass during the later stage of growth on fatty acid composition and lipid peroxidation, and to clarify the physiological mechanisms by which these differences affect internal browning (IB) development in radish roots. Therefore, we controlled the enlargement of roots by changing the thinning period and generated plots composed of roots with different biomass in the latter half of growth. The earlier the radish seedlings were thinned, the more vigorous the root growth from an earlier stage was achieved. Earlier thinning caused IB from the early stage of root maturation, and IB severity progressed with subsequent age progression; however, IB damage did not occur when root size during the later growth stage was kept small by later thinning. Higher levels of hydrogen peroxide, peroxidase activity, NADPH-dependent reactive oxygen species (ROS) burst-related genes, and carbonyl compounds were detected in earlier-thinned large-sized roots compared to later-thinned small-sized ones. Compared with the latter small-sized roots, the former large-sized roots had a lower ratio of linoleic acid (18:2) and a higher ratio of α-linolenic acid (α-18:3). Furthermore, in earlier-thinned large-sized roots, higher levels of phospholipase- and/or lipoxygenase-related genes were detected compared to later-thinned small-sized ones. These facts suggest the possibility that root biomass in the later stage of growth affects the desaturation of membrane fatty acids, ROS concentration, and activity of fatty acid degrading enzymes, and controls the occurrence of IB injury through membrane oxidative degradation.
Collapse
Affiliation(s)
- Nobuyuki Fukuoka
- Experimental Farm, Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa 921-8836, Japan.
| | - Ryusei Watanabe
- Experimental Farm, Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa 921-8836, Japan.
| | - Tatsuro Hamada
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa 921-8836, Japan.
| |
Collapse
|
33
|
Ndathe R, Kato N. Phosphatidic acid produced by phospholipase Dα1 and Dδ is incorporated into the internal membranes but not involved in the gene expression of RD29A in the abscisic acid signaling network in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:1356699. [PMID: 38681216 PMCID: PMC11045897 DOI: 10.3389/fpls.2024.1356699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/21/2024] [Indexed: 05/01/2024]
Abstract
Core protein components of the abscisic acid (ABA) signaling network, pyrabactin resistance (PYR), protein phosphatases 2C (PP2C), and SNF1-related protein kinase 2 (SnRK2) are involved in the regulation of stomatal closure and gene expression downstream responses in Arabidopsis thaliana. Phosphatidic acid (PA) produced by the phospholipases Dα1 and Dδ (PLDs) in the plasma membrane has been identified as a necessary molecule in ABA-inducible stomatal closure. On the other hand, the involvement of PA in ABA-inducible gene expression has been suggested but remains a question. In this study, the involvement of PA in the ABA-inducible gene expression was examined in the model plant Arabidopsis thaliana and the canonical RD29A ABA-inducible gene that possesses a single ABA-responsive element (ABRE) in the promoter. The promoter activity and accumulation of the RD29A mRNA during ABA exposure to the plants were analyzed under conditions in which the production of PA by PLDs is abrogated through chemical and genetic modification. Changes in the subcellular localization of PA during the signal transduction were analyzed with confocal microscopy. The results obtained in this study suggest that inhibition of PA production by the PLDs does not affect the promoter activity of RD29A. PA produced by the PLDs and exogenously added PA in the plasma membrane are effectively incorporated into internal membranes to transduce the signal. However, exogenously added PA induces stomatal closure but not RD29A expression. This is because PA produced by the PLDs most likely inhibits the activity of not all but only the selected PP2C family members, the negative regulators of the RD29A promoter. This finding underscores the necessity for experimental verifications to adapt previous knowledge into a signaling network model before its construction.
Collapse
Affiliation(s)
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
34
|
Li K, Zhang R, Wang Y, Liu F, Fu ZQ. Distinct phosphorylation optimizes pathogen-induced PA and ROS bursts. MOLECULAR PLANT 2024; 17:525-527. [PMID: 38449307 DOI: 10.1016/j.molp.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Affiliation(s)
- Kaihuai Li
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Ruize Zhang
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Fengquan Liu
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China.
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
35
|
Qi F, Li J, Ai Y, Shangguan K, Li P, Lin F, Liang Y. DGK5β-derived phosphatidic acid regulates ROS production in plant immunity by stabilizing NADPH oxidase. Cell Host Microbe 2024; 32:425-440.e7. [PMID: 38309260 DOI: 10.1016/j.chom.2024.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
In plant immunity, phosphatidic acid (PA) regulates reactive oxygen species (ROS) by binding to respiratory burst oxidase homolog D (RBOHD), an NADPH oxidase responsible for ROS production. Here, we analyze the influence of PA binding on RBOHD activity and the mechanism of RBOHD-bound PA generation. PA binding enhances RBOHD protein stability by inhibiting vacuolar degradation, thereby increasing chitin-induced ROS production. Mutations in diacylglycerol kinase 5 (DGK5), which phosphorylates diacylglycerol to produce PA, impair chitin-induced PA and ROS production. The DGK5 transcript DGK5β (but not DGK5α) complements reduced PA and ROS production in dgk5-1 mutants, as well as resistance to Botrytis cinerea. Phosphorylation of S506 residue in the C-terminal calmodulin-binding domain of DGK5β contributes to the activation of DGK5β to produce PA. These findings suggest that DGK5β-derived PA regulates ROS production by inhibiting RBOHD protein degradation, elucidating the role of PA-ROS interplay in immune response regulation.
Collapse
Affiliation(s)
- Fan Qi
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Li
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Yingfei Ai
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Keke Shangguan
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Ping Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 311200, China
| | - Fucheng Lin
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 311200, China.
| | - Yan Liang
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
36
|
Guo X, Zhu W, Wang F, Wang H. Genome-Wide Investigation of the PLD Gene Family in Tomato: Identification, Analysis, and Expression. Genes (Basel) 2024; 15:326. [PMID: 38540385 PMCID: PMC10970076 DOI: 10.3390/genes15030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 06/14/2024] Open
Abstract
Phospholipase Ds (PLDs) are important phospholipid hydrolases in plants that play crucial roles in the regulation of plant growth, development, and stress tolerance. In this study, 14 PLD genes were identified in the tomato genome and were localized on eight chromosomes, and one tandem-duplicated gene pair was identified. According to a phylogenetic analysis, the genes were categorized into four subtypes: SlPLDα, β, and δ belonged to the C2-PLD subfamily, while SlPLDζ belonged to the PXPH-PLD subfamily. The gene structure and protein physicochemical properties were highly conserved within the same subtype. The promoter of all the SlPLD genes contained hormone-, light-, and stress-responsive cis-acting regulatory elements, but no significant correlation between the number, distribution, and type of cis-acting elements was observed among the members of the same subtype. Transcriptome data showed that the expression of the SlPLD genes was different in multiple tissues. A quantitative RT-PCR analysis revealed that the SlPLD genes responded positively to cold, salt, drought, and abscisic acid treatments, particularly to salt stress. Different expression patterns were observed for different genes under the same stress, and for the same gene under different stresses. The results provide important insights into the functions of SlPLD genes and lay a foundation for further studies of the response of SlPLD genes to abiotic stresses.
Collapse
Affiliation(s)
| | | | | | - Hui Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (X.G.)
| |
Collapse
|
37
|
Robuschi L, Mariani O, Perk EA, Cerrudo I, Villarreal F, Laxalt AM. Arabidopsis thaliana phosphoinositide-specific phospholipase C 2 is required for Botrytis cinerea proliferation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111971. [PMID: 38160760 DOI: 10.1016/j.plantsci.2023.111971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/24/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Phospholipase C (PLC) plays a key role in lipid signaling during plant development and stress responses. PLC activation is one of the earliest responses during pathogen perception. Arabidopsis thaliana contains seven PLC encoding genes (AtPLC1 to AtPLC7) and two pseudogenes (AtPLC8 and AtPLC9), being AtPLC2 the most abundant isoform with constitutive expression in all plant organs. PLC has been linked to plant defense signaling, in particular to the production of reactive oxygen species (ROS). Previously, we demonstrated that AtPLC2 is involved in ROS production via the NADPH oxidase isoforms RBOHD activation during stomata plant immunity. Here we studied the role of AtPLC2 on plant resistance against the necrotrophic fungus Botrytis cinerea, a broad host-range and serious agricultural pathogen. We show that the AtPLC2-silenced (amiR PLC2) or null mutant (plc2-1) plants developed smaller B. cinerea lesions. Moreover, plc2-1 showed less ROS production and an intensified SA-dependent signaling upon infection, indicating that B. cinerea uses AtPLC2-triggered responses for a successful proliferation. Therefore, AtPLC2 is a susceptibility (S) gene that facilitates B. cinerea infection and proliferation.
Collapse
Affiliation(s)
- Luciana Robuschi
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Oriana Mariani
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse, 06120 Halle (Saale), Germany
| | - Enzo A Perk
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Ignacio Cerrudo
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Fernando Villarreal
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina.
| |
Collapse
|
38
|
Zhang J, Chen X, Song Y, Gong Z. Integrative regulatory mechanisms of stomatal movements under changing climate. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:368-393. [PMID: 38319001 DOI: 10.1111/jipb.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Global climate change-caused drought stress, high temperatures and other extreme weather profoundly impact plant growth and development, restricting sustainable crop production. To cope with various environmental stimuli, plants can optimize the opening and closing of stomata to balance CO2 uptake for photosynthesis and water loss from leaves. Guard cells perceive and integrate various signals to adjust stomatal pores through turgor pressure regulation. Molecular mechanisms and signaling networks underlying the stomatal movements in response to environmental stresses have been extensively studied and elucidated. This review focuses on the molecular mechanisms of stomatal movements mediated by abscisic acid, light, CO2 , reactive oxygen species, pathogens, temperature, and other phytohormones. We discussed the significance of elucidating the integrative mechanisms that regulate stomatal movements in helping design smart crops with enhanced water use efficiency and resilience in a climate-changing world.
Collapse
Affiliation(s)
- Jingbo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Xuexue Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yajing Song
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Institute of Life Science and Green Development, School of Life Sciences, Hebei University, Baoding, 071001, China
| |
Collapse
|
39
|
Yao X, Li R, Liu Y, Song P, Wu Z, Yan M, Luo J, Fan F, Wang Y. Feedback regulation of the isoprenoid pathway by SsdTPS overexpression has the potential to enhance plant tolerance to drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14277. [PMID: 38566271 DOI: 10.1111/ppl.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
In order to maintain the dynamic physiological balance, plants are compelled to adjust their energy metabolism and signal transduction to cope with the abiotic stresses caused by complex and changeable environments. The diterpenoid natural compound and secondary metabolites, sclareol, derived from Salvia sclarea, has gained significant attention owing to its economic value as a spice material and diverse physiological activities. Here, we focused on the roles and regulatory mechanisms of the sclareol diterpene synthase gene SsdTPS in the resistance of S. sclarea to abiotic stresses. Our results suggested that abiotic stresses could induce the response and upregulation of SsdTPS expression and isoprenoid pathway in S. sclarea. Ectopic expression of SsdTPS conferred drought tolerance in transgenic Arabidopsis, compared with wild-type. Overexpression of SsdTPS enhanced the transcription of ABA signal transduction synthetic regulators and induced the positive feedback upregulating key regulatory genes in the MEP pathway, thereby promoting the increase of ABA content and improving drought tolerance in transgenic plants. In addition, SsdTPS-overexpressed transgenic Arabidopsis improved the responses of stomatal regulatory genes and ROS scavenging enzyme activities and gene expression to drought stress. This promoted the stomatal closure and ROS reduction, thus enhancing water retention capacity and reducing oxidative stress damage. These findings unveil the potentially positive role of SsdTPS in orchestrating multiple regulatory mechanisms and maintaining homeostasis for improved abiotic stress resistance in S. sclarea, providing a novel insight into strategies for promoting drought resistance and cultivating highly tolerant plants.
Collapse
Affiliation(s)
- Xiangyu Yao
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| | - Rui Li
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| | - Yanan Liu
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| | - Peng Song
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| | - Ziyi Wu
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| | - Meilin Yan
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| | - Jinmei Luo
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| | - Fenggui Fan
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
- Shaanxi Institute for Food and Drug Control, Shaanxi Key Laboratory of Food and Drug Safety Monitoring, China
| | - Yingjuan Wang
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| |
Collapse
|
40
|
Bao HN, Yin J, Wang LY, Wang RH, Huang LQ, Chen YL, Wu JX, Sun JQ, Liu WW, Yao N, Li J. Aberrant accumulation of ceramides in mitochondria triggers cell death by inducing autophagy in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1314-1330. [PMID: 38069660 DOI: 10.1093/jxb/erad456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/05/2023] [Indexed: 02/29/2024]
Abstract
Sphingolipids are membrane lipids and play critical roles in signal transduction. Ceramides are central components of sphingolipid metabolism that are involved in cell death. However, the mechanism of ceramides regulating cell death in plants remains unclear. Here, we found that ceramides accumulated in mitochondria of accelerated cell death 5 mutant (acd5), and expression of mitochondrion-localized ceramide kinase (ACD5) suppressed mitochondrial ceramide accumulation and the acd5 cell death phenotype. Using immuno-electron microscopy, we observed hyperaccumulation of ceramides in acer acd5 double mutants, which are characterized by mutations in both ACER (alkaline ceramidase) and ACD5 genes. The results confirmed that plants with specific ceramide accumulation exhibited localization of ceramides to mitochondria, resulting in an increase in mitochondrial reactive oxygen species production. Interestingly, when compared with the wild type, autophagy-deficient mutants showed stronger resistance to ceramide-induced cell death. Lipid profiling analysis demonstrated that plants with ceramide accumulation exhibited a significant increase in phosphatidylethanolamine levels. Furthermore, exogenous ceramide treatment or endogenous ceramide accumulation induces autophagy. When exposed to exogenous ceramides, an increase in the level of the autophagy-specific ubiquitin-like protein, ATG8e, associated with mitochondria, where it directly bound to ceramides. Taken together, we propose that the accumulation of ceramides in mitochondria can induce cell death by regulating autophagy.
Collapse
Affiliation(s)
- He-Nan Bao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jian Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- College of JunCao Science and Ecology and Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
| | - Ling-Yan Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Rui-Hua Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Li-Qun Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yi-Li Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jian-Xin Wu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jia-Qi Sun
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Wei-Wei Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jian Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
41
|
Liu Z, Liu Y, Liao W. Hydrogen Sulfide in the Oxidative Stress Response of Plants: Crosstalk with Reactive Oxygen Species. Int J Mol Sci 2024; 25:1935. [PMID: 38339212 PMCID: PMC10856001 DOI: 10.3390/ijms25031935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Growing evidence suggests that exposure of plants to unfavorable environments leads to the accumulation of hydrogen sulfide (H2S) and reactive oxygen species (ROS). H2S interacts with the ROS-mediated oxidative stress response network at multiple levels. Therefore, it is essential to elucidate the mechanisms by which H2S and ROS interact. The molecular mechanism of action by H2S relies on the post-translational modification of the cysteine sulfur group (-SH), known as persulfidation. H2S cannot react directly with -SH, but it can react with oxidized cysteine residues, and this oxidation process is induced by H2O2. Evidently, ROS is involved in the signaling pathway of H2S and plays a significant role. In this review, we summarize the role of H2S-mediated post-translational modification mechanisms in oxidative stress responses. Moreover, the mechanism of interaction between H2S and ROS in the regulation of redox reactions is focused upon, and the positive cooperative role of H2S and ROS is elucidated. Subsequently, based on the existing evidence and clues, we propose some potential problems and new clues to be explored, which are crucial for the development of the crosstalk mechanism of H2S and ROS in plants.
Collapse
Affiliation(s)
| | | | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China; (Z.L.); (Y.L.)
| |
Collapse
|
42
|
Li J, Yao S, Kim SC, Wang X. Lipid phosphorylation by a diacylglycerol kinase suppresses ABA biosynthesis to regulate plant stress responses. MOLECULAR PLANT 2024; 17:342-358. [PMID: 38243594 PMCID: PMC10869644 DOI: 10.1016/j.molp.2024.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
Lipid phosphorylation by diacylglycerol kinase (DGK) that produces phosphatidic acid (PA) plays important roles in various biological processes, including stress responses, but the underlying mechanisms remain elusive. Here, we show that DGK5 and its lipid product PA suppress ABA biosynthesis by interacting with ABA-DEFICIENT 2 (ABA2), a key ABA biosynthesis enzyme, to negatively modulate plant response to abiotic stress tested in Arabidopsis thaliana. Loss of DGK5 function rendered plants less damaged, whereas overexpression (OE) of DGK5 enhanced plant damage to water and salt stress. The dgk5 mutant plants exhibited decreased total cellular and nuclear levels of PA with increased levels of diacylglycerol, whereas DGK5-OE plants displayed the opposite effect. Interestingly, we found that both DGK5 and PA bind to the ABA-synthesizing enzyme ABA2 and suppress its enzymatic activity. Consistently, the dgk5 mutant plants exhibited increased levels of ABA, while DGK5-OE plants showed reduced ABA levels. In addition, we showed that both DGK5 and ABA2 are detected in and outside the nuclei, and loss of DGK5 function decreased the nuclear association of ABA2. We found that both DGK5 activity and PA promote nuclear association of ABA2. Taken together, these results indicate that both DGK5 and PA interact with ABA2 to inhibit its enzymatic activity and promote its nuclear sequestration, thereby suppressing ABA production in response to abiotic stress. Our study reveals a sophisticated mechanism by which DGK5 and PA regulate plant stress responses.
Collapse
Affiliation(s)
- Jianwu Li
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Shuaibing Yao
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Sang-Chul Kim
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
43
|
Kong L, Ma X, Zhang C, Kim SI, Li B, Xie Y, Yeo IC, Thapa H, Chen S, Devarenne TP, Munnik T, He P, Shan L. Dual phosphorylation of DGK5-mediated PA burst regulates ROS in plant immunity. Cell 2024; 187:609-623.e21. [PMID: 38244548 PMCID: PMC10872252 DOI: 10.1016/j.cell.2023.12.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/05/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
Phosphatidic acid (PA) and reactive oxygen species (ROS) are crucial cellular messengers mediating diverse signaling processes in metazoans and plants. How PA homeostasis is tightly regulated and intertwined with ROS signaling upon immune elicitation remains elusive. We report here that Arabidopsis diacylglycerol kinase 5 (DGK5) regulates plant pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). The pattern recognition receptor (PRR)-associated kinase BIK1 phosphorylates DGK5 at Ser-506, leading to a rapid PA burst and activation of plant immunity, whereas PRR-activated intracellular MPK4 phosphorylates DGK5 at Thr-446, which subsequently suppresses DGK5 activity and PA production, resulting in attenuated plant immunity. PA binds and stabilizes the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD), regulating ROS production in plant PTI and ETI, and their potentiation. Our data indicate that distinct phosphorylation of DGK5 by PRR-activated BIK1 and MPK4 balances the homeostasis of cellular PA burst that regulates ROS generation in coordinating two branches of plant immunity.
Collapse
Affiliation(s)
- Liang Kong
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Xiyu Ma
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA.
| | - Chao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Sung-Il Kim
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Bo Li
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Yingpeng Xie
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - In-Cheol Yeo
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Hem Thapa
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Timothy P Devarenne
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Teun Munnik
- Department of Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, the Netherlands
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA.
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
44
|
Lin J, Zhao J, Du L, Wang P, Sun B, Zhang C, Shi Y, Li H, Sun H. Activation of MAPK-mediated immunity by phosphatidic acid in response to positive-strand RNA viruses. PLANT COMMUNICATIONS 2024; 5:100659. [PMID: 37434356 PMCID: PMC10811337 DOI: 10.1016/j.xplc.2023.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/31/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
Increasing evidence suggests that mitogen-activated protein kinase (MAPK) cascades play a crucial role in plant defense against viruses. However, the mechanisms that underlie the activation of MAPK cascades in response to viral infection remain unclear. In this study, we discovered that phosphatidic acid (PA) represents a major class of lipids that respond to Potato virus Y (PVY) at an early stage of infection. We identified NbPLDα1 (Nicotiana benthamiana phospholipase Dα1) as the key enzyme responsible for increased PA levels during PVY infection and found that it plays an antiviral role. 6K2 of PVY interacts with NbPLDα1, leading to elevated PA levels. In addition, NbPLDα1 and PA are recruited by 6K2 to membrane-bound viral replication complexes. On the other hand, 6K2 also induces activation of the MAPK pathway, dependent on its interaction with NbPLDα1 and the derived PA. PA binds to WIPK/SIPK/NTF4, prompting their phosphorylation of WRKY8. Notably, spraying with exogenous PA is sufficient to activate the MAPK pathway. Knockdown of the MEK2-WIPK/SIPK-WRKY8 cascade resulted in enhanced accumulation of PVY genomic RNA. 6K2 of Turnip mosaic virus and p33 of Tomato bushy stunt virus also interacted with NbPLDα1 and induced the activation of MAPK-mediated immunity. Loss of function of NbPLDα1 inhibited virus-induced activation of MAPK cascades and promoted viral RNA accumulation. Thus, activation of MAPK-mediated immunity by NbPLDα1-derived PA is a common strategy employed by hosts to counteract positive-strand RNA virus infection.
Collapse
Affiliation(s)
- Jiayu Lin
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Jinpeng Zhao
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Linlin Du
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Pengkun Wang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Bingjian Sun
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Chao Zhang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Yan Shi
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Honglian Li
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Hangjun Sun
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China.
| |
Collapse
|
45
|
Yu J, Yin K, Liu Y, Li Y, Zhang J, Han X, Tong Z. Co-expression network analysis reveals PbTGA4 and PbAPRR2 as core transcription factors of drought response in an important timber species Phoebe bournei. FRONTIERS IN PLANT SCIENCE 2024; 14:1297235. [PMID: 38259934 PMCID: PMC10800493 DOI: 10.3389/fpls.2023.1297235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024]
Abstract
Phoebe bournei is one of the main afforestation tree species in subtropical regions of China and is famous for its timber. Its distribution and growth are significantly impaired by water conditions. Thus, it is essential to understand the mechanism of the stress response in P. bournei. Here, we analyzed the phenotypic changes and transcriptomic rearrangement in the leaves and roots of P. bournei seedlings grown for 0 h, 1 h, 24 h, and 72 h under simulated drought conditions (10% PEG 6000). The results showed that drought stress inhibited plant photosynthesis and increased oxidoreductase activity and abscisic acid (ABA) accumulation. Spatio-temporal transcriptomic analysis identified 2836 and 3704 differentially expressed genes (DEGs) in leaves and roots, respectively. The responsive genes in different organs presented various expression profiles at different times. Gene co-expression network analysis identified two core transcription factors, TGA4 and APRR2, from two modules that showed a strong positive correlation with ABA accumulation. Our study investigated the different responses of aboveground and belowground organs of P. bournei to drought stress and provides critical information for improving the drought resistance of this timber species.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiao Han
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
46
|
Wang Y, Wakelam MJO, Bankaitis VA, McDermott MI. The wide world of non-mammalian phospholipase D enzymes. Adv Biol Regul 2024; 91:101000. [PMID: 38081756 DOI: 10.1016/j.jbior.2023.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2024]
Abstract
Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
- Y Wang
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Microbiology, University of Washington, Seattle, WA98109, USA
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - M I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
47
|
Seth T, Asija S, Umar S, Gupta R. The intricate role of lipids in orchestrating plant defense responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111904. [PMID: 37925973 DOI: 10.1016/j.plantsci.2023.111904] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Plants are exposed to a variety of pests and pathogens that reduce crop productivity. Plants respond to such attacks by activating a sophisticated signaling cascade that initiates with the recognition of pests/pathogens and may culminate into a resistance response. Lipids, being the structural components of cellular membranes, function as mediators of these signaling cascades and thus are instrumental in the regulation of plant defense responses. Accumulating evidence indicates that various lipids such as oxylipins, phospholipids, glycolipids, glycerolipids, sterols, and sphingolipids, among others, are involved in mediating cell signaling during plant-pathogen interaction with each lipid exhibiting a specific biological relevance, follows a distinct biosynthetic mechanism, and contributes to specific signaling cascade(s). Omics studies have further confirmed the involvement of lipid biosynthetic enzymes including the family of phospholipases in the production of defense signaling molecules subsequent to pathogen attack. Lipids participate in stress signaling by (1) mediating the signal transduction, (2) acting as precursors for bioactive molecules, (3) regulating ROS formation, and (4) interacting with various phytohormones to orchestrate the defense response in plants. In this review, we present the biosynthetic pathways of different lipids, their specific functions, and their intricate roles upstream and downstream of phytohormones under pathogen attack to get a deeper insight into the molecular mechanism of lipids-mediated regulation of defense responses in plants.
Collapse
Affiliation(s)
- Tanashvi Seth
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Sejal Asija
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, South Korea.
| |
Collapse
|
48
|
Yao S, Kim SC, Li J, Tang S, Wang X. Phosphatidic acid signaling and function in nuclei. Prog Lipid Res 2024; 93:101267. [PMID: 38154743 PMCID: PMC10843600 DOI: 10.1016/j.plipres.2023.101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Membrane lipidomes are dynamic and their changes generate lipid mediators affecting various biological processes. Phosphatidic acid (PA) has emerged as an important class of lipid mediators involved in a wide range of cellular and physiological responses in plants, animals, and microbes. The regulatory functions of PA have been studied primarily outside the nuclei, but an increasing number of recent studies indicates that some of the PA effects result from its action in nuclei. PA levels in nuclei are dynamic in response to stimuli. Changes in nuclear PA levels can result from activities of enzymes associated with nuclei and/or from movements of PA generated extranuclearly. PA has also been found to interact with proteins involved in nuclear functions, such as transcription factors and proteins undergoing nuclear translocation in response to stimuli. The nuclear action of PA affects various aspects of plant growth, development, and response to stress and environmental changes.
Collapse
Affiliation(s)
- Shuaibing Yao
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Sang-Chul Kim
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Jianwu Li
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Shan Tang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
49
|
Fu N, Wang L, Han X, Yang Q, Zhang Y, Tong Z, Zhang J. Genome-Wide Identification and Expression Analysis of Calmodulin and Calmodulin-like Genes, Revealing CaM3 and CML13 Participating in Drought Stress in Phoebe bournei. Int J Mol Sci 2023; 25:545. [PMID: 38203715 PMCID: PMC10778748 DOI: 10.3390/ijms25010545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Calmodulin (CaM) and calmodulin-like (CML) proteins are major Ca2+ sensors involved in the regulation of plant development and stress responses by converting Ca2+ signals into appropriate cellular responses. However, characterization and expression analyses of CaM/CML genes in the precious species, Phoebe bournei, remain limited. In this study, five PbCaM and sixty PbCML genes were identified that only had EF-hand motifs with no other functional domains. The phylogenetic tree was clustered into 11 subgroups, including a unique clade of PbCaMs. The PbCaMs were intron-rich with four EF-hand motifs, whereas PbCMLs had two to four EF-hands and were mostly intronless. PbCaMs/CMLs were unevenly distributed across the 12 chromosomes of P. bournei and underwent purifying selection. Fragment duplication was the main driving force for the evolution of the PbCaM/CML gene family. Cis-acting element analysis indicated that PbCaMs/CMLs might be related to hormones, growth and development, and stress response. Expression analysis showed that PbCaMs were generally highly expressed in five different tissues and under drought stress, whereas PbCMLs showed specific expression patterns. The expression levels of 11 candidate PbCaMs/CMLs were responsive to ABA and MeJA, suggesting that these genes might act through multiple signaling pathways. The overexpression of PbCaM3/CML13 genes significantly increased the tolerance of yeast cells to drought stress. The identification and characterization of the CaM/CML gene family in P. bournei laid the foundation for future functional studies of these genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (N.F.); (L.W.); (X.H.); (Q.Y.); (Y.Z.)
| | - Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (N.F.); (L.W.); (X.H.); (Q.Y.); (Y.Z.)
| |
Collapse
|
50
|
Mahmud S, Hamza A, Lee YB, Min JK, Islam R, Dogsom O, Park JB. Lipopolysaccharide Stimulates A549 Cell Migration through p-Tyr 42 RhoA and Phospholipase D1 Activity. Biomolecules 2023; 14:6. [PMID: 38275747 PMCID: PMC10813223 DOI: 10.3390/biom14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Cell migration is a crucial contributor to metastasis, a critical process associated with the mortality of cancer patients. The initiation of metastasis is triggered by epithelial-mesenchymal transition (EMT), along with the changes in the expression of EMT marker proteins. Inflammation plays a significant role in carcinogenesis and metastasis. Lipopolysaccharide (LPS), a typical inflammatory agent, promoted the generation of superoxide through the activation of p-Tyr42 RhoA, Rho-dependent kinase 2 (ROCK2), and the phosphorylation of p47phox. In addition, p-Tyr42 RhoA activated phospholipase D1 (PLD1), with PLD1 and phosphatidic acid (PA) being involved in superoxide production. PA also regulated the expression of EMT proteins. Consequently, we have identified MHY9 (Myosin IIA, NMIIA) as a PA-binding protein in response to LPS. MYH9 also contributed to cell migration and the alteration in the expression of EMT marker proteins. Co-immunoprecipitation revealed the formation of a complex involving p-Tyr42 RhoA, PLD1, and MYH9. These proteins were found to be distributed in both the cytosol and nucleus. In addition, we have found that p-Tyr42 RhoA PLD1 and MYH9 associate with the ZEB1 promoter. The suppression of ZEB1 mRNA levels was achieved through the knockdown of RhoA, PLD1, and MYH9 using si-RNAs. Taken together, we propose that p-Tyr42 RhoA and PLD1, responsible for producing PA, and PA-bound MYH9 are involved in the regulation of ZEB1 expression, thereby promoting cell migration.
Collapse
Affiliation(s)
- Shohel Mahmud
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
- National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Amir Hamza
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
| | - Yoon-Beom Lee
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
| | - Jung-Ki Min
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
| | - Rokibul Islam
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh
| | - Oyungerel Dogsom
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
- Department of Biology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| | - Jae-Bong Park
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
- Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Kangwon-do, Republic of Korea
| |
Collapse
|