1
|
Lu X, Lei Y, Xu Z, Cheng Z, Liu M, Tai Y, Han X, Hao Z, Li M, Zhang D, Yong H, Han J, Wang Z, Li WX, Weng J, Zhou Z, Li X. Natural variations in the promoter of ZmDeSI2 encoding a deSUMOylating isopeptidase controls kernel methionine content in maize. MOLECULAR PLANT 2025; 18:872-891. [PMID: 40269497 DOI: 10.1016/j.molp.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
Improving the methionine (Met) content in maize kernels is of key importance to the animal feed industry; however, the genetic and molecular mechanisms governing maize kernel Met content remain largely unexplored. In this study, we leveraged a panel consisting of 348 diverse inbred maize lines to explore the genetic and molecular mechanisms that control kernel Met levels. A genome-wide association study followed by transcriptomic analysis identified the deSUMOylating isopeptidase gene ZmDeSI2. Further biochemical experiments revealed that ZmDeSI2 directly reduces the SUMOylation and accumulation of the sulfite reductase ZmSIR, thereby repressing Met accumulation. Natural variants in the ZmDeSI2 promoter region were found to serve as key determinants of the expression of this gene, predominantly due to the absence or presence of a ZmWRKY105 transcription factor binding site. The elite ZmDeSI2Hap2 haplotype without this binding site in the ZmDeSI2 promoter was associated with a 1.36-fold increase in Met levels in the kernels of modified near-isogenic lines generated through marker-assisted breeding. Taken together, these results provide new insights into the molecular processes that control Met biosynthesis, highlighting an elite natural variant suitable for application in maize breeding for Met biofortification.
Collapse
Affiliation(s)
- Xin Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Lei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhennan Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zixiang Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxin Tai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohua Han
- Institute of Food Crops, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Zhuanfang Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingshun Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Degui Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongjun Yong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jienan Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenhua Wang
- Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wen-Xue Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianfeng Weng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Zhiqiang Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xinhai Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
2
|
Lei W, Liu J, Zhang W, Xu J, Bo T, Wang Z, Wang W. Photocatalytic degradation of methylene blue by CdS quantum dots biosynthesized by cysteine synthetase TtCsa1 from Tetrahymena thermophila. Int J Biol Macromol 2025; 305:141166. [PMID: 39971067 DOI: 10.1016/j.ijbiomac.2025.141166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/21/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
H2S is a crucial endogenous gaseous signaling molecule involved in various metabolic pathways and is associated with the biological response to heavy metal stress. The biomineralization of CdS serves as a critical mechanism for responding to cadmium stress and removing Cd2+ in different organisms. CdS is also a widely utilized semiconductor material for the photocatalytic degradation of dyes. In this study, we found that cysteine synthetase 1 (TtCsa1) is involved in CdS formation under cadmium stress in Tetrahymena thermophila. TtCsa1 also catalyzed CdS formation in vitro, and the synthesized CdS material exhibited controllable particle size and photoluminescence. Concurrently, cysteine and glutathione functioned as capping agents to regulate CdS particle size. The biosynthetically produced CdS degraded 90 % of methylene blue under UV light. Furthermore, CdS-ZnS nanocomposites were synthesized by adding Zn2+ into the CdS biosynthetic system, which decreased the size of CdS particles and increased the degradation rate of methylene blue. The results indicate that the CdS biosynthesized by TtCsa1 from Tetrahymena thermophila is effective in the photocatalytic degradation of organic dyes.
Collapse
Affiliation(s)
- Wenliang Lei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Juan Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Wenyong Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Zhiwen Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China.
| |
Collapse
|
3
|
Cui J, Li C, Qi J, Yu W, Li C. Hydrogen sulfide in plant cold stress: functions, mechanisms, and challenge. PLANT MOLECULAR BIOLOGY 2024; 115:12. [PMID: 39718661 DOI: 10.1007/s11103-024-01535-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024]
Abstract
Cold stress is an environmental factor that seriously restricts the growth, production and survival of plants, and has received extensive attention in recent years. Hydrogen sulfide (H2S) is an ubiquitous gas signaling molecule, and its role in alleviating plant cold stress has become a research focus in recent years. This paper reviews for the first time the significant effect of H2S on improving plant cold resistance, which makes up for the gaps in the existing literature. In general, H2S improves plant tolerance to cold stress by activating antioxidant reaction and promoting the accumulation of metabolic substances such as chlorophyll, flavonoids, proline, sucrose and total soluble sugar in plants. Interestingly, H2S also interacts with nitric oxide (NO), auxin, jasmonic acid (JA), salicylic acid (SA), and ethylene (ETH) to alleviate cold stress. More importantly, in the process of alleviating cold stress with H2S, gene expression related to H2S synthesis, cold response and antioxidant is up-regulated or down-regulated, leading to the improvement of plant cold resistance. This paper also points out the problems existing in the current research and the potential of H2S in agricultural practice, and provides relevant theoretical references for future research in this field.
Collapse
Affiliation(s)
- Jing Cui
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Chuanghao Li
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jin Qi
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Changxia Li
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
4
|
Xu Z, Liu D, Zhu J, Zhao J, Shen S, Wang Y, Yu P. Catalysts for sulfur: understanding the intricacies of enzymes orchestrating plant sulfur anabolism. PLANTA 2024; 261:16. [PMID: 39690279 DOI: 10.1007/s00425-024-04594-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
MAIN CONCLUSION This review highlights the sulfur transporters, key enzymes and their encoding genes involved in plant sulfur anabolism, focusing on their occurrence, chemistry, location, function, and regulation within sulfur assimilation pathways. Sulfur, a vital element for plant life, plays diverse roles in metabolism and stress response. This review provides a comprehensive overview of the sulfur assimilation pathway in plants, highlighting the intricate network of enzymes and their regulatory mechanisms. The primary focus is on the key enzymes involved: ATP sulfurylase (ATPS), APS reductase (APR), sulfite reductase (SiR), serine acetyltransferase (SAT), and O-acetylserine(thiol)lyase (OAS-TL). ATPS initiates the process by activating sulfate to form APS, which is then reduced to sulfite by APR. SiR further reduces sulfite to sulfide, a crucial step that requires significant energy. The cysteine synthase complex (CSC), formed by SAT and OAS-TL, facilitates the synthesis of cysteine, thereby integrating serine metabolism with sulfur assimilation. The alternative sulfation pathway, catalyzed by APS kinase and sulfotransferases, is explored for its role in synthesizing essential secondary metabolites. This review also delves into the regulatory mechanism of these enzymes such as environmental stresses, sulfate availability, phytohormones, as well as translational and post-translational regulations. Understanding the key transporters and enzymes in sulfur assimilation pathways and their corresponding regulation mechanisms can help researchers grasp the importance of sulfur anabolism for the life cycle of plants, clarify how these enzymes and their regulatory processes are integrated to balance plant life systems in response to changes in both external conditions and intrinsic signals.
Collapse
Affiliation(s)
- Ziyue Xu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Dun Liu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jiadong Zhu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
| | - Jiayi Zhao
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
- Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Shenghai Shen
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Yueduo Wang
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
| | - Pei Yu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China.
- Marine College, Shandong University, Weihai, 264209, China.
| |
Collapse
|
5
|
Piotrowska J, Wawrzyńska A, Olszak M, Krzyszton M, Apodiakou A, Alseekh S, Ramos JML, Hoefgen R, Kopriva S, Sirko A. Analysis of the quadruple lsu mutant reveals molecular determinants of the role of LSU proteins in sulfur assimilation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2919-2936. [PMID: 39612294 DOI: 10.1111/tpj.17155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 12/01/2024]
Abstract
Because plants are immobile, they have developed intricate mechanisms to sense and absorb nutrients, adjusting their growth and development accordingly. Sulfur is an essential macroelement, but our understanding of its metabolism and homeostasis is limited. LSU (RESPONSE TO LOW SULFUR) proteins are plant-specific proteins with unknown molecular functions and were first identified during transcriptomic studies on sulfur deficiency in Arabidopsis. These proteins are crucial hubs that integrate environmental signals and are involved in the response to various stressors. Herein, we report the direct involvement of LSU proteins in primary sulfur metabolism. Our findings revealed that the quadruple lsu mutant, q-lsu-KO, which was grown under nonlimiting sulfate conditions, exhibited a molecular response resembling that of sulfur-deficient wild-type plants. This led us to explore the interactions of LSU proteins with sulfate reduction pathway enzymes. We found that all LSU proteins interact with ATPS1 and ATPS3 isoforms of ATP sulfurylase, all three isoforms of adenosine 5´ phosphosulfate reductase (APR), and sulfite reductase (SiR). Additionally, in vitro assays revealed that LSU1 enhances the enzymatic activity of SiR. These results highlight the supportive role of LSU proteins in the sulfate reduction pathway.
Collapse
Affiliation(s)
- Justyna Piotrowska
- Laboratory of Plant Protein Homeostasis, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Anna Wawrzyńska
- Laboratory of Plant Protein Homeostasis, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Olszak
- Laboratory of Plant Protein Homeostasis, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Michal Krzyszton
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Anastasia Apodiakou
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Saleh Alseekh
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - José María López Ramos
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Rainer Hoefgen
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Agnieszka Sirko
- Laboratory of Plant Protein Homeostasis, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Xu X, Sun SK, Gao A, Huang XY, Wirtz M, Hell R, Zhao FJ. Biofortifying multiple micronutrients and decreasing arsenic accumulation in rice grain simultaneously by expressing a mutant allele of OAS-TL gene. THE NEW PHYTOLOGIST 2024; 244:2382-2395. [PMID: 39351644 DOI: 10.1111/nph.20168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 11/22/2024]
Abstract
Rice grains typically contain relatively high levels of toxic arsenic (As) but low levels of essential micronutrients. Biofortification of essential micronutrients while decreasing As accumulation in rice would benefit human nutrition and health. We generated transgenic rice expressing a gain-of-function mutant allele astol1 driven by the OsGPX1 promoter. astol1 encodes a plastid-localized O-acetylserine (thiol) lyase (OAS-TL) with Ser189Asn substitution (OsASTOL1S189N), which enhances cysteine biosynthesis by forming an indissociable cysteine synthase complex with its partner serine acetyltransferase (SAT). The effects on growth, As tolerance, and nutrient and As accumulation in rice grain were evaluated in hydroponic, pot and field experiments. The expression of OsASTOL1S189N in pOsGPX1::astol1 transgenic lines enhanced SAT activity, sulphate uptake, biosynthesis of cysteine, glutathione, phytochelatins and nicotianamine, and enhanced tolerance to As. The expression of OsASTOL1S189N decreased As accumulation while increased the accumulation of multiple macronutrients (especially sulphur, nitrogen and potassium) and micronutrients (especially zinc and selenium) in rice grain in a pot experiment and two field experiments, and had little effect on plant growth and grain yield. Our study provides a new strategy to genetically engineer rice to biofortify multiple essential nutrients, reducing As accumulation in rice grain and enhancing As tolerance simultaneously.
Collapse
Affiliation(s)
- Xuejie Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sheng-Kai Sun
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Axiang Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Markus Wirtz
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
7
|
Tóth D, Tengölics R, Aarabi F, Karlsson A, Vidal-Meireles A, Kovács L, Kuntam S, Körmöczi T, Fernie AR, Hudson EP, Papp B, Tóth SZ. Chloroplastic ascorbate modifies plant metabolism and may act as a metabolite signal regardless of oxidative stress. PLANT PHYSIOLOGY 2024; 196:1691-1711. [PMID: 39106412 PMCID: PMC11444284 DOI: 10.1093/plphys/kiae409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/06/2024] [Accepted: 07/01/2024] [Indexed: 08/09/2024]
Abstract
Ascorbate (Asc) is a major plant metabolite that plays crucial roles in various processes, from reactive oxygen scavenging to epigenetic regulation. However, to what extent and how Asc modulates metabolism is largely unknown. We investigated the consequences of chloroplastic and total cellular Asc deficiencies by studying chloroplastic Asc transporter mutant lines lacking PHOSPHATE TRANSPORTER 4; 4 and the Asc-deficient vtc2-4 mutant of Arabidopsis (Arabidopsis thaliana). Under regular growth conditions, both Asc deficiencies caused minor alterations in photosynthesis, with no apparent signs of oxidative damage. In contrast, metabolomics analysis revealed global and largely overlapping alterations in the metabolome profiles of both Asc-deficient mutants, suggesting that chloroplastic Asc modulates plant metabolism. We observed significant alterations in amino acid metabolism, particularly in arginine metabolism, activation of nucleotide salvage pathways, and changes in secondary metabolism. In addition, proteome-wide analysis of thermostability revealed that Asc may interact with enzymes involved in arginine metabolism, the Calvin-Benson cycle, and several photosynthetic electron transport components. Overall, our results suggest that, independent of oxidative stress, chloroplastic Asc modulates the activity of diverse metabolic pathways in vascular plants and may act as an internal metabolite signal.
Collapse
Affiliation(s)
- Dávid Tóth
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
- Doctoral School of Biology, University of Szeged, Közép fasor 52, Szeged H-6722, Hungary
| | - Roland Tengölics
- HCEMM-BRC Metabolic Systems Biology Lab, Temesvári krt. 62, Szeged H-6726, Hungary
- Synthetic and Systems Biology Unit, HUN-REN Biological Research Centre, Institute of Biochemistry, Temesvári krt. 62, Szeged H-6726, Hungary
- Metabolomics Lab, Core Facilities, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Fayezeh Aarabi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Anna Karlsson
- Science for Life Laboratory, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, PO Box 1031, Solna 171 21, Sweden
| | - André Vidal-Meireles
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
| | - László Kovács
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Soujanya Kuntam
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Tímea Körmöczi
- HCEMM-BRC Metabolic Systems Biology Lab, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Elton P Hudson
- Science for Life Laboratory, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, PO Box 1031, Solna 171 21, Sweden
| | - Balázs Papp
- HCEMM-BRC Metabolic Systems Biology Lab, Temesvári krt. 62, Szeged H-6726, Hungary
- Synthetic and Systems Biology Unit, HUN-REN Biological Research Centre, Institute of Biochemistry, Temesvári krt. 62, Szeged H-6726, Hungary
- National Laboratory for Health Security, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Szilvia Z Tóth
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
| |
Collapse
|
8
|
Moseler A, Wagner S, Meyer AJ. Protein persulfidation in plants: mechanisms and functions beyond a simple stress response. Biol Chem 2024:hsz-2024-0038. [PMID: 39303198 DOI: 10.1515/hsz-2024-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Posttranslational modifications (PTMs) can modulate the activity, localization and interactions of proteins and (re)define their biological function. Understanding how changing environments can alter cellular processes thus requires detailed knowledge about the dynamics of PTMs in time and space. A PTM that gained increasing attention in the last decades is protein persulfidation, where a cysteine thiol (-SH) is covalently bound to sulfane sulfur to form a persulfide (-SSH). The precise cellular mechanisms underlying the presumed persulfide signaling in plants are, however, only beginning to emerge. In the mitochondrial matrix, strict regulation of persulfidation and H2S homeostasis is of prime importance for maintaining mitochondrial bioenergetic processes because H2S is a highly potent poison for cytochrome c oxidase. This review summarizes the current knowledge about protein persulfidation and corresponding processes in mitochondria of the model plant Arabidopsis. These processes will be compared to the respective processes in non-plant models to underpin similarities or highlight apparent differences. We provide an overview of mitochondrial pathways that contribute to H2S and protein persulfide generation and mechanisms for H2S fixation and de-persulfidation. Based on current proteomic data, we compile a plant mitochondrial persulfidome and discuss how persulfidation may regulate protein function.
Collapse
Affiliation(s)
- Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Stephan Wagner
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| |
Collapse
|
9
|
Feng YX, Tian P, Li CZ, Hu XD, Lin YJ. Elucidating the intricacies of the H 2S signaling pathway in gasotransmitters: Highlighting the regulation of plant thiocyanate detoxification pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116307. [PMID: 38593497 DOI: 10.1016/j.ecoenv.2024.116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
In recent decades, there has been increasing interest in elucidating the role of sulfur-containing compounds in plant metabolism, particularly emphasizing their function as signaling molecules. Among these, thiocyanate (SCN-), a compound imbued with sulfur and nitrogen, has emerged as a significant environmental contaminant frequently detected in irrigation water. This compound is known for its potential to adversely impact plant growth and agricultural yield. Although adopting exogenous SCN- as a nitrogen source in plant cells has been the subject of thorough investigation, the fate of sulfur resulting from the assimilation of exogenous SCN- has not been fully explored. There is burgeoning curiosity in probing the fate of SCN- within plant systems, especially considering the possible generation of the gaseous signaling molecule, hydrogen sulfide (H2S) during the metabolism of SCN-. Notably, the endogenous synthesis of H2S occurs predominantly within chloroplasts, the cytosol, and mitochondria. In contrast, the production of H2S following the assimilation of exogenous SCN- is explicitly confined to chloroplasts and mitochondria. This phenomenon indicates complex interplay and communication among various subcellular organelles, influencing signal transduction and other vital physiological processes. This review, augmented by a small-scale experimental study, endeavors to provide insights into the functional characteristics of H2S signaling in plants subjected to SCN--stress. Furthermore, a comparative analysis of the occurrence and trajectory of endogenous H2S and H2S derived from SCN--assimilation within plant organisms was performed, providing a focused lens for a comprehensive examination of the multifaceted roles of H2S in rice plants. By delving into these dimensions, our objective is to enhance the understanding of the regulatory mechanisms employed by the gasotransmitter H2S in plant adaptations and responses to SCN--stress, yielding invaluable insights into strategies for plant resilience and adaptive capabilities.
Collapse
Affiliation(s)
- Yu-Xi Feng
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China; Jiangmen Laboratory of Carbon Science and Technology, Hong Kong University of Science and Technology (Guangzhou), Jiangmen, Guangdong 529199, People's Republic of China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541004, People's Republic of China.
| | - Peng Tian
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Cheng-Zhi Li
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Xiao-Dong Hu
- Jiangmen Laboratory of Carbon Science and Technology, Hong Kong University of Science and Technology (Guangzhou), Jiangmen, Guangdong 529199, People's Republic of China
| | - Yu-Juan Lin
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541004, People's Republic of China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, People's Republic of China.
| |
Collapse
|
10
|
Feng YX, Tian P, Lin YJ, Cao DY, Li CZ, Ullah A. Gaseous signaling molecule H 2S as a multitasking signal molecule in ROS metabolism of Oryza sativa under thiocyanate (SCN -) pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122816. [PMID: 37898431 DOI: 10.1016/j.envpol.2023.122816] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/04/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The induction of disruption in the electronic transport chain by thiocyanate (SCN-) leads to an excessive generation of reactive oxygen species (ROS) within rice (Oryza sativa). Hydrogen sulfide (H2S) assumes a crucial role as a gaseous signaling molecule, holding significant potential in alleviating SCN--related stress. Nevertheless, there remains a dearth of understanding regarding the intricate interplay between H2S and ROS in Oryza sativa amidst SCN- pollution. In this investigation, a hydroponics-based experiment was meticulously devised to explore how H2S-mediated modifications influence the genetic feedback network governing ROS metabolism within the subcellular organelles of Oryza sativa when exposed to varying effective concentrations (EC20: 24 mg SCN/L; EC50: 96 mg SCN/L; EC75: 300 mg SCN/L) of SCN-. The findings unveiled the enhanced capacity of Oryza sativa to uptake SCN- under H2S + SCN- treatments in comparison to SCN- treatments alone. Notably, the relative growth rate (RGR) of seedlings subjected to H2S + SCN- exhibited a superior performance when contrasted with seedlings exposed solely to SCN-. Furthermore, the application of exogenous H2S yielded a significant reduction in ROS levels within Oryza sativa tissues during SCN- exposure. To elucidate the intricacies of gene regulation governing ROS metabolism at the mRNA level, the 52 targeted genes were categorized into four distinct types, namely: initial regulatory ROS generation genes (ROS-I), direct ROS scavenging genes (ROS-II), indirect ROS scavenging genes (ROS-III), and lipid oxidation genes (ROS-IV). On the whole, exogenous H2S exhibited the capacity to activate the majority of ROS-I ∼ ROS-IV genes within both Oryza sativa tissues at the EC20 concentration of SCN-. However, genetic positive/negative feedback networks emphasized the pivotal role of ROS-II genes in governing ROS metabolism within Oryza sativa. Notably, these genes were predominantly activated within the cytoplasm, chloroplasts, mitochondria, peroxisomes, and the cell wall.
Collapse
Affiliation(s)
- Yu-Xi Feng
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China; Jiangmen Laboratory of Carbon Science and Technology, Hong Kong University of Science and Technology (Guangzhou), Jiangmen, Guangdong, 529199, China.
| | - Peng Tian
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| | - Yu-Juan Lin
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| | - Dan-Yang Cao
- Jiangmen Laboratory of Carbon Science and Technology, Hong Kong University of Science and Technology (Guangzhou), Jiangmen, Guangdong, 529199, China
| | - Cheng-Zhi Li
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| | - Abid Ullah
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| |
Collapse
|
11
|
Jiang Q, Hua X, Shi H, Liu J, Yuan Y, Li Z, Li S, Zhou M, Yin C, Dou M, Qi N, Wang Y, Zhang M, Ming R, Tang H, Zhang J. Transcriptome dynamics provides insights into divergences of the photosynthesis pathway between Saccharum officinarum and Saccharum spontaneum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1278-1294. [PMID: 36648196 DOI: 10.1111/tpj.16110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Saccharum spontaneum and Saccharum officinarum contributed to the genetic background of modern sugarcane cultivars. Saccharum spontaneum has shown a higher net photosynthetic rate and lower soluble sugar than S. officinarum. Here, we analyzed 198 RNA-sequencing samples to investigate the molecular mechanisms for the divergences of photosynthesis and sugar accumulation between the two Saccharum species. We constructed gene co-expression networks based on differentially expressed genes (DEGs) both for leaf developmental gradients and diurnal rhythm. Our results suggested that the divergence of sugar accumulation may be attributed to the enrichment of major carbohydrate metabolism and the oxidative pentose phosphate pathway. Compared with S. officinarum, S. spontaneum DEGs showed a high enrichment of photosynthesis and contained more complex regulation of photosynthesis-related genes. Noticeably, S. spontaneum lacked gene interactions with sulfur assimilation stimulated by photorespiration. In S. spontaneum, core genes related to clock and photorespiration displayed a sensitive regulation by the diurnal rhythm and phase-shift. Small subunit of Rubisco (RBCS) displayed higher expression in the source tissues of S. spontaneum. Additionally, it was more sensitive under a diurnal rhythm, and had more complex gene networks than that in S. officinarum. This indicates that the differential regulation of RBCS Rubisco contributed to photosynthesis capacity divergence in both Saccharum species.
Collapse
Affiliation(s)
- Qing Jiang
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiuting Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, 530004, China
| | - Huihong Shi
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jia Liu
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, 530004, China
| | - Zhen Li
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuangyu Li
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meiqing Zhou
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chongyang Yin
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meijie Dou
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Nameng Qi
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongjun Wang
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, 530004, China
| | - Ray Ming
- Department of Plant Biology, The University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Haibao Tang
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jisen Zhang
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, 530004, China
| |
Collapse
|
12
|
Wang Y, Cheng P, Zhao G, Li L, Shen W. Phytomelatonin and gasotransmitters: a crucial combination for plant physiological functions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5851-5862. [PMID: 35430633 DOI: 10.1093/jxb/erac159] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/13/2022] [Indexed: 05/05/2023]
Abstract
Melatonin, a molecule that was first identified in animal tissues, has been confirmed to be involved as a potential phytohormone in a variety of plant physiological responses. It is considered primarily as an antioxidant with important actions in controlling reactive oxygen and reactive nitrogen species. In addition to its role in regulating plant growth and development, phytomelatonin is involved in protection against abiotic and biotic stresses. The 'gasotransmitter'-that is, a gaseous signaling molecule-is a new concept that has been advanced in the past two decades, with functions in animal and plant physiological regulation. Gasotransmitters including nitric oxide, carbon monoxide, hydrogen sulfide, methane, and, more recently identified, hydrogen gas are critical and indispensable in a wide range of biological processes. This review investigates the interrelationship between phytomelatonin and the above-mentioned gasotransmitters from the perspective of biosynthetic origin and functions. Moreover, the potential future research directions for phytomelatonin and gasotransmitters interactions are discussed.
Collapse
Affiliation(s)
- Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Gan Zhao
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Dong Y, Aref R, Forieri I, Schiel D, Leemhuis W, Meyer C, Hell R, Wirtz M. The plant TOR kinase tunes autophagy and meristem activity for nutrient stress-induced developmental plasticity. THE PLANT CELL 2022; 34:3814-3829. [PMID: 35792878 PMCID: PMC9516127 DOI: 10.1093/plcell/koac201] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/29/2022] [Indexed: 05/26/2023]
Abstract
Plants, unlike animals, respond to environmental challenges with comprehensive developmental transitions that allow them to cope with these stresses. Here we discovered that antagonistic activation of the Target of Rapamycin (TOR) kinase in Arabidopsis thaliana roots and shoots is essential for the nutrient deprivation-induced increase in the root-to-shoot ratio to improve foraging for mineral ions. We demonstrate that sulfate limitation-induced downregulation of TOR in shoots activates autophagy, resulting in enhanced carbon allocation to the root. The allocation of carbon to the roots is facilitated by the specific upregulation of the sucrose-transporter genes SWEET11/12 in shoots. SWEET11/12 activation is indispensable for enabling sucrose to act as a carbon source for growth and as a signal for tuning root apical meristem activity via glucose-TOR signaling. The sugar-stimulated TOR activity in the root suppresses autophagy and maintains root apical meristem activity to support root growth to enhance mining for new sulfate resources in the soil. We provide direct evidence that the organ-specific regulation of autophagy is essential for the increased root-to-shoot ratio in response to sulfur limitation. These findings uncover how sulfur limitation controls the central sensor kinase TOR to enable nutrient recycling for stress-induced morphological adaptation of the plant body.
Collapse
Affiliation(s)
- Yihan Dong
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Rasha Aref
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ilaria Forieri
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - David Schiel
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Wiebke Leemhuis
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Christian Meyer
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | | | | |
Collapse
|
14
|
de Bont L, Donnay N, Couturier J, Rouhier N. Redox regulation of enzymes involved in sulfate assimilation and in the synthesis of sulfur-containing amino acids and glutathione in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:958490. [PMID: 36051294 PMCID: PMC9426629 DOI: 10.3389/fpls.2022.958490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Sulfur is essential in plants because of its presence in numerous molecules including the two amino acids, cysteine, and methionine. Cysteine serves also for the synthesis of glutathione and provides sulfur to many other molecules including protein cofactors or vitamins. Plants absorb sulfate from their environment and assimilate it via a reductive pathway which involves, respectively, a series of transporters and enzymes belonging to multigenic families. A tight control is needed to adjust each enzymatic step to the cellular requirements because the whole pathway consumes energy and produces toxic/reactive compounds, notably sulfite and sulfide. Glutathione is known to regulate the activity of some intermediate enzymes. In particular, it provides electrons to adenosine 5'-phosphosulfate reductases but also regulates the activity of glutamate-cysteine ligase by reducing a regulatory disulfide. Recent proteomic data suggest a more extended post-translational redox control of the sulfate assimilation pathway enzymes and of some associated reactions, including the synthesis of both sulfur-containing amino acids, cysteine and methionine, and of glutathione. We have summarized in this review the known oxidative modifications affecting cysteine residues of the enzymes involved. In particular, a prominent regulatory role of protein persulfidation seems apparent, perhaps because sulfide produced by this pathway may react with oxidized thiol groups. However, the effect of persulfidation has almost not yet been explored.
Collapse
Affiliation(s)
- Linda de Bont
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
| | - Natacha Donnay
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
| | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
- Institut Universitaire de France, F-75000, Paris, France
| | | |
Collapse
|
15
|
Khan MS, Soyk A, Wolf I, Peter M, Meyer AJ, Rausch T, Wirtz M, Hell R. Discriminative Long-Distance Transport of Selenate and Selenite Triggers Glutathione Oxidation in Specific Subcellular Compartments of Root and Shoot Cells in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:894479. [PMID: 35812960 PMCID: PMC9263558 DOI: 10.3389/fpls.2022.894479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Selenium is an essential trace element required for seleno-protein synthesis in many eukaryotic cells excluding higher plants. However, a substantial fraction of organically bound selenide in human nutrition is directly or indirectly derived from plants, which assimilate inorganic selenium into organic seleno-compounds. In humans, selenium deficiency is associated with several health disorders Despite its importance for human health, selenium assimilation and metabolism is barely understood in plants. Here, we analyzed the impact of the two dominant forms of soil-available selenium, selenite and selenate, on plant development and selenium partitioning in plants. We found that the reference plant Arabidopsis thaliana discriminated between selenate and selenite application. In contrast to selenite, selenate was predominantly deposited in leaves. This explicit deposition of selenate caused chlorosis and impaired plant morphology, which was not observed upon selenite application. However, only selenate triggered the accumulation of the macronutrient sulfur, the sister element of selenium in the oxygen group. To understand the oxidation state-specific toxicity mechanisms for selenium in plants, we quantified the impact of selenate and selenite on the redox environment in the plastids and the cytosol in a time-resolved manner. Surprisingly, we found that selenite first caused the oxidation of the plastid-localized glutathione pool and had a marginal impact on the redox state of the cytosolic glutathione pool, specifically in roots. In contrast, selenate application caused more vigorous oxidation of the cytosolic glutathione pool but also impaired the plastidic redox environment. In agreement with the predominant deposition in leaves, the selenate-induced oxidation of both glutathione pools was more pronounced in leaves than in roots. Our results demonstrate that Se-species dependent differences in Se partitioning substantially contribute to whole plant Se toxicity and that these Se species have subcellular compartment-specific impacts on the glutathione redox buffer that correlate with toxicity symptoms.
Collapse
Affiliation(s)
- Muhammad Sayyar Khan
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Anna Soyk
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Ingo Wolf
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Miriam Peter
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Andreas J. Meyer
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
- INRES - Chemical Signalling, University of Bonn, Bonn, Germany
| | - Thomas Rausch
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
16
|
Khan MS, Lu Q, Cui M, Rajab H, Wu H, Chai T, Ling HQ. Crosstalk Between Iron and Sulfur Homeostasis Networks in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:878418. [PMID: 35755678 PMCID: PMC9224419 DOI: 10.3389/fpls.2022.878418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The widespread deficiency of iron (Fe) and sulfur (S) is becoming a global concern. The underlying mechanisms regulating Fe and S sensing and signaling have not been well understood. We investigated the crosstalk between Fe and S using mutants impaired in Fe homeostasis, sulfate assimilation, and glutathione (GSH) biosynthesis. We showed that chlorosis symptoms induced by Fe deficiency were not directly related to the endogenous GSH levels. We found dynamic crosstalk between Fe and S networks and more interestingly observed that the upregulated expression of IRT1 and FRO2 under S deficiency in Col-0 was missing in the cad2-1 mutant background, which suggests that under S deficiency, the expression of IRT1 and FRO2 was directly or indirectly dependent on GSH. Interestingly, the bottleneck in sulfite reduction led to a constitutively higher IRT1 expression in the sir1-1 mutant. While the high-affinity sulfate transporter (Sultr1;2) was upregulated under Fe deficiency in the roots, the low-affinity sulfate transporters (Sultr2;1, and Sultr2;2) were down-regulated in the shoots of Col-0 seedlings. Moreover, the expression analysis of some of the key players in the Fe-S cluster assembly revealed that the expression of the so-called Fe donor in mitochondria (AtFH) and S mobilizer of group II cysteine desulfurase in plastids (AtNFS2) were upregulated under Fe deficiency in Col-0. Our qPCR data and ChIP-qPCR experiments suggested that the expression of AtFH is likely under the transcriptional regulation of the central transcription factor FIT.
Collapse
Affiliation(s)
- Muhammad Sayyar Khan
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Qiao Lu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Man Cui
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hala Rajab
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Huilan Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Tuanyao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Malmir N, Zamani M, Motallebi M, Fard NA, Mekuto L. Cyanide Biodegradation by Trichoderma harzianum and Cyanide Hydratase Network Analysis. Molecules 2022; 27:3336. [PMID: 35630813 PMCID: PMC9143735 DOI: 10.3390/molecules27103336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/23/2022] Open
Abstract
Cyanide is a poisonous and dangerous chemical that binds to metals in metalloenzymes, especially cytochrome C oxidase and, thus, interferes with their functionalities. Different pathways and enzymes are involved during cyanide biodegradation, and cyanide hydratase is one of the enzymes that is involved in such a process. In this study, cyanide resistance and cyanide degradation were studied using 24 fungal strains in order to find the strain with the best capacity for cyanide bioremediation. To confirm the capacity of the tested strains, cyano-bioremediation and the presence of the gene that is responsible for the cyanide detoxification was assessed. From the tested organisms, Trichoderma harzianum (T. harzianum) had a significant capability to resist and degrade cyanide at a 15 mM concentration, where it achieved an efficiency of 75% in 7 days. The gene network analysis of enzymes that are involved in cyanide degradation revealed the involvement of cyanide hydratase, dipeptidase, carbon-nitrogen hydrolase-like protein, and ATP adenylyltransferase. This study revealed that T. harzianum was more efficient in degrading cyanide than the other tested fungal organisms, and molecular analysis confirmed the experimental observations.
Collapse
Affiliation(s)
- Narges Malmir
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh km 15, Tehran-Karaj Highway, Tehran P.O. Box 14965/161, Iran; (N.M.); (M.Z.); (M.M.); (N.A.F.)
- Department of Chemical Engineering, University of Johannesburg, Johannesburg 2028, South Africa
| | - Mohammadreza Zamani
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh km 15, Tehran-Karaj Highway, Tehran P.O. Box 14965/161, Iran; (N.M.); (M.Z.); (M.M.); (N.A.F.)
- Department of Chemical Engineering, University of Johannesburg, Johannesburg 2028, South Africa
| | - Mostafa Motallebi
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh km 15, Tehran-Karaj Highway, Tehran P.O. Box 14965/161, Iran; (N.M.); (M.Z.); (M.M.); (N.A.F.)
- Department of Chemical Engineering, University of Johannesburg, Johannesburg 2028, South Africa
| | - Najaf Allahyari Fard
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh km 15, Tehran-Karaj Highway, Tehran P.O. Box 14965/161, Iran; (N.M.); (M.Z.); (M.M.); (N.A.F.)
- Department of Chemical Engineering, University of Johannesburg, Johannesburg 2028, South Africa
| | - Lukhanyo Mekuto
- Department of Chemical Engineering, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
18
|
Abstract
As sessile organisms, plants have developed sophisticated mechanism to sense and utilize nutrients from the environment, and modulate their growth and development according to the nutrient availability. Research in the past two decades revealed that nutrient assimilation is not occurring spontaneously, but nutrient signaling networks are complexly regulated and integrate sensing and signaling, gene expression, and metabolism to ensure homeostasis and coordination with plant energy conversion and other processes. Here, we review the importance of the macronutrient sulfur (S) and compare the knowledge of S signaling with other important macronutrients, such as nitrogen (N) and phosphorus (P). We focus on key advances in understanding sulfur sensing and signaling, uptake and assimilation, and we provide new analysis of published literature, to identify core genes regulated by the key transcriptional factor in S starvation response, SLIM1/EIL3, and compare the impact on other nutrient deficiency and stresses on S-related genes.
Collapse
Affiliation(s)
- Daniela Ristova
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Stanislav Kopriva
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Zülpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
19
|
Magen S, Seybold H, Laloum D, Avin-Wittenberg T. Metabolism and autophagy in plants - A perfect match. FEBS Lett 2022; 596:2133-2151. [PMID: 35470431 DOI: 10.1002/1873-3468.14359] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 01/18/2023]
Abstract
Autophagy is a eukaryotic cellular transport mechanism that delivers intracellular macromolecules, proteins, and even organelles to a lytic organelle (vacuole in yeast and plants/lysosome in animals) for degradation and nutrient recycling. The process is mediated by highly conserved Autophagy-Related (ATG) proteins. In plants, autophagy maintains cellular homeostasis under favorable conditions, guaranteeing normal plant growth and fitness. Severe stress such as nutrient starvation and plant senescence further induce it, thus ensuring plant survival under unfavorable conditions by providing nutrients through the removal of damaged or aged proteins, or organelles. In this article, we examine the interplay between metabolism and autophagy, focusing on the different aspects of this reciprocal relationship. We show that autophagy has a strong influence on a range of metabolic processes, whereas, at the same time, even single metabolites can activate autophagy. We highlight the involvement of ATG genes in metabolism, examine the role of the macronutrients carbon and nitrogen, as well as various micronutrients, and take a closer look at how the interaction between autophagy and metabolism impacts on plant phenotypes and yield.
Collapse
Affiliation(s)
- Sahar Magen
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Israel
| | - Heike Seybold
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Israel
| | - Daniel Laloum
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Israel
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Israel
| |
Collapse
|
20
|
Kurmanbayeva A, Bekturova A, Soltabayeva A, Oshanova D, Nurbekova Z, Srivastava S, Tiwari P, Dubey AK, Sagi M. Active O-acetylserine-(thiol) lyase A and B confer improved selenium resistance and degrade l-Cys and l-SeCys in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2525-2539. [PMID: 35084469 DOI: 10.1093/jxb/erac021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The roles of cytosolic O-acetylserine-(thiol)-lyase A (OASTLA), chloroplastic OASTLB, and mitochondrial OASTLC in plant selenate resistance were studied in Arabidopsis. Impairment in OASTLA and OASTLB resulted in reduced biomass, chlorophyll and soluble protein content compared with selenate-treated OASTLC-impaired and wild-type plants. The generally lower total selenium (Se), protein-Se, organic-sulfur and protein-sulfur (S) content in oastlA and oastlB compared with wild-type and oastlC leaves indicated that Se accumulation was not the main cause for the stress symptoms in these mutants. Notably, the application of selenate positively induced S-starvation markers and the OASTLs, followed by increased sulfite reductase, sulfite oxidase activities, and increased sulfite and sulfide concentrations. Taken together, our results indicate a futile anabolic S-starvation response that resulted in lower glutathione and increased oxidative stress symptoms in oastlA and oastlB mutants. In-gel assays of l-cysteine and l-seleno-cysteine, desulfhydrase activities revealed that two of the three OASTL activity bands in each of the oastl single mutants were enhanced in response to selenate, whereas the impaired proteins exhibited a missing activity band. The absence of differently migrated activity bands in each of the three oastl mutants indicates that these OASTLs are major components of desulfhydrase activity, degrading l-cysteine and l-seleno-cysteine in Arabidopsis.
Collapse
Affiliation(s)
- Assylay Kurmanbayeva
- Department of Biotechnology and Microbiology, L. N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
| | - Aizat Bekturova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Aigerim Soltabayeva
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Dinara Oshanova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Zhadyrassyn Nurbekova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Sudhakar Srivastava
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Poonam Tiwari
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Arvind Kumar Dubey
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Moshe Sagi
- The Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| |
Collapse
|
21
|
Hill CR, Shafaei A, Balmer L, Lewis JR, Hodgson JM, Millar AH, Blekkenhorst LC. Sulfur compounds: From plants to humans and their role in chronic disease prevention. Crit Rev Food Sci Nutr 2022; 63:8616-8638. [PMID: 35380479 DOI: 10.1080/10408398.2022.2057915] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sulfur is essential for the health of plants and is an indispensable dietary component for human health and disease prevention. Its incorporation into our food supply is heavily reliant upon the uptake of sulfur into plant tissue and our subsequent intake. Dietary requirements for sulfur are largely calculated based upon requirements for the sulfur-containing amino acids (SAA), cysteine and methionine, to meet the demands for synthesis of proteins, enzymes, co-enzymes, vitamins, and hormones. SAA are found in abundance in animal sources and are relatively low in plants. However, some plants, particularly cruciferous and allium vegetables, produce many protective sulfur-containing secondary metabolites, such as glucosinolates and cysteine sulfoxides. The variety and quantity of these sulfur-containing metabolites are extensive and their effects on human health are wide-reaching. Many benefits appear to be related to sulfur's role in redox biochemistry, protecting against uncontrolled oxidative stress and inflammation; features consistent within cardiometabolic dysfunction and many chronic metabolic diseases of aging. This narrative explores the origins and importance of sulfur, its incorporation into our food supply and dietary sources. It also explores the overarching potential of sulfur for human health, particularly around the amelioration of oxidative stress and chronic inflammation, and subsequent chronic disease prevention.
Collapse
Affiliation(s)
- Caroline R Hill
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, Australia
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Australia
| | - Joshua R Lewis
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
- Centre for Kidney Research, Children's Hospital at Westmead School of Public Health, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Lauren C Blekkenhorst
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
22
|
Huang Q, Wang Y, Qin X, Zhao L, Liang X, Sun Y, Xu Y. Soil application of manganese sulfate effectively reduces Cd bioavailability in Cd-contaminated soil and Cd translocation and accumulation in wheat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152765. [PMID: 34990670 DOI: 10.1016/j.scitotenv.2021.152765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/05/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) pollution in wheat fields has caused serious food safety issues in China. Manganese (Mn)-containing materials have been widely used in paddy fields to reduce Cd accumulation in rice. However, the remediation effects of MnSO4 in wheat fields have not been well studied and the underlying mechanisms are poorly understood. Our field experiment showed that the application of 0.1% and 0.2% MnSO4 in soil reduced Cd concentrations significantly in wheat root, stem, leaf, and grain by 26.67-30.76%, 15.78-29.30%, 22.03-30.66%, and 30.57-50.55%, respectively, while increasing Mn concentrations significantly in these wheat tissues. MnSO4 application significantly increased soil available Mn content by 3.78-6.19 times, the free Mn oxides and amorphous Mn oxides by 1.72-10.38 times, and Mn oxides bound Cd contents by 10.23-39.55%, resulting in a reduction of Cd availability by 30.11-40.78%. Simultaneously, MnSO4 treatment altered the chemical forms of Cd and Mn, promoted the soluble protein concentration, and decreased the malondialdehyde (MDA) content in wheat roots. Additionally, soil application of MnSO4 down-regulated the expression of TaNramp5, TaHMA2, and TaLCT1 in wheat roots, mediating the reduction of wheat root Cd concentration, and increased the sequestration of Cd into vacuoles by up-regulating the expression of TaHMA3. These findings add to the current knowledge of how MnSO4 affects Cd mobilization and absorption via different mechanisms occurring both in the soil medium and at the plant level. This research indicates that soil application of MnSO4 has great potential to remediate Cd-contaminated wheat fields.
Collapse
Affiliation(s)
- Qingqing Huang
- Innovation Team of Remediation of Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Yale Wang
- Innovation Team of Remediation of Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China; School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xu Qin
- Innovation Team of Remediation of Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Lijie Zhao
- Innovation Team of Remediation of Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Xuefeng Liang
- Innovation Team of Remediation of Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Yuebing Sun
- Innovation Team of Remediation of Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Yingming Xu
- Innovation Team of Remediation of Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China.
| |
Collapse
|
23
|
Ren Z, Wang RY, Huang XY, Wang Y. Sulfur Compounds in Regulation of Stomatal Movement. FRONTIERS IN PLANT SCIENCE 2022; 13:846518. [PMID: 35360293 PMCID: PMC8963490 DOI: 10.3389/fpls.2022.846518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 05/06/2023]
Abstract
Sulfur, widely present in the soil and atmosphere, is one of the essential elements for plants. Sulfate is a dominant form of sulfur in soils taken up by plant roots. In addition to the assimilation into sulfur compounds essential for plant growth and development, it has been reported recently that sulfate as well as other sulfur containing compounds can also induce stomatal movement. Here, we first summarized the uptake and transport of sulfate and atmospheric sulfur, including H2O and SO2, and then, focused on the effects of inorganic and organic sulfur on stomatal movement. We concluded all the transporters for different sulfur compounds, and compared the expression level of those transporters in guard cells and mesophyll cells. The relationship between abscisic acid and sulfur compounds in regulation of stomatal movement were also discussed.
Collapse
Affiliation(s)
- Zirong Ren
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing, China
| | - Ru-Yuan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Xin-Yuan Huang,
| | - Yin Wang
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing, China
- Yin Wang,
| |
Collapse
|
24
|
Garneau MG, Lu MZ, Grant J, Tegeder M. Role of source-to-sink transport of methionine in establishing seed protein quantity and quality in legumes. PLANT PHYSIOLOGY 2021; 187:2134-2155. [PMID: 34618032 PMCID: PMC8644406 DOI: 10.1093/plphys/kiab238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 05/16/2023]
Abstract
Grain legumes such as pea (Pisum sativum L.) are highly valued as a staple source of protein for human and animal nutrition. However, their seeds often contain limited amounts of high-quality, sulfur (S) rich proteins, caused by a shortage of the S-amino acids cysteine and methionine. It was hypothesized that legume seed quality is directly linked to the amount of organic S transported from leaves to seeds, and imported into the growing embryo. We expressed a high-affinity yeast (Saccharomyces cerevisiae) methionine/cysteine transporter (Methionine UPtake 1) in both the pea leaf phloem and seed cotyledons and found source-to-sink transport of methionine but not cysteine increased. Changes in methionine phloem loading triggered improvements in S uptake and assimilation and long-distance transport of the S compounds, S-methylmethionine and glutathione. In addition, nitrogen and carbon assimilation and source-to-sink allocation were upregulated, together resulting in increased plant biomass and seed yield. Further, methionine and amino acid delivery to individual seeds and uptake by the cotyledons improved, leading to increased accumulation of storage proteins by up to 23%, due to both higher levels of S-poor and, most importantly, S-rich proteins. Sulfate delivery to the embryo and S assimilation in the cotyledons were also upregulated, further contributing to the improved S-rich storage protein pools and seed quality. Overall, this work demonstrates that methionine transporter function in source and sink tissues presents a bottleneck in S allocation to seeds and that its targeted manipulation is essential for overcoming limitations in the accumulation of high-quality seed storage proteins.
Collapse
Affiliation(s)
- Matthew G Garneau
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA
| | - Ming-Zhu Lu
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA
| | - Jan Grant
- New Zealand Institute for Plant and Food Research Ltd, Christchurch 8140, New Zealand
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
25
|
Coordinated bacterial and plant sulfur metabolism in Enterobacter sp. SA187-induced plant salt stress tolerance. Proc Natl Acad Sci U S A 2021; 118:2107417118. [PMID: 34772809 PMCID: PMC8609655 DOI: 10.1073/pnas.2107417118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/22/2022] Open
Abstract
Although plant growth–promoting bacteria (PGPB) enhance the performance of plants, only a few mechanisms have been identified so far. We show that the sulfur metabolisms in both PGPB Enterobacter sp. SA187 and Arabidopsis plants play a key role in plant salt stress tolerance. Salt stress induces a sulfur starvation response in plants that is attenuated by SA187. Arabidopsis sulfur metabolic mutants are hypersensitive to salt stress but can be rescued by SA187. Most plant sulfur metabolism occurs in chloroplasts and is linked to stress-induced accumulation of reactive oxygen species that is suppressed by SA187. This work reveals that plant salt stress tolerance requires the coordinated regulation of the sulfur metabolic pathways in both beneficial microbe and host plant. Enterobacter sp. SA187 is a root endophytic bacterium that maintains growth and yield of plants under abiotic stress conditions. In this work, we compared the metabolic wirings of Arabidopsis and SA187 in the free-living and endophytic interaction states. The interaction of SA187 with Arabidopsis induced massive changes in bacterial gene expression for chemotaxis, flagellar biosynthesis, quorum sensing, and biofilm formation. Besides modification of the bacterial carbon and energy metabolism, various nutrient and metabolite transporters and the entire sulfur pathway were up-regulated. Under salt stress, Arabidopsis resembled plants under sulfate starvation but not when colonized by SA187, which reprogramed the sulfur regulon of Arabidopsis. In accordance, salt hypersensitivity of multiple Arabidopsis sulfur metabolism mutants was partially or completely rescued by SA187 as much as by the addition of sulfate, L-cysteine, or L-methionine. Many components of the sulfur metabolism that are localized in the chloroplast were partially rescued by SA187. Finally, salt-induced accumulation of reactive oxygen species as well as the hypersensitivity of LSU mutants were suppressed by SA187. LSUs encode a central regulator linking sulfur metabolism to chloroplast superoxide dismutase activity. The coordinated regulation of the sulfur metabolic pathways in both the beneficial microorganism and the host plant is required for salt stress tolerance in Arabidopsis and might be a common mechanism utilized by different beneficial microbes to mitigate the harmful effects of different abiotic stresses on plants.
Collapse
|
26
|
Guo Z, Zhao J, Wang M, Song S, Xia Z. Sulfur dioxide promotes seed germination by modulating reactive oxygen species production in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111027. [PMID: 34620432 DOI: 10.1016/j.plantsci.2021.111027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/01/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Sulfur dioxide (SO2) is generally considered to be toxic to cells, but recent studies have shown that SO2 has positive roles in stress defense responses in plants. However, whether SO2 functions as a signaling molecule in the developmental process, especially in seed germination, is yet to be studied. Here, we present data supporting the role of SO2 in seed germination and possible molecular mechanisms. SO2 treatment significantly promoted the seed germination and seed vigor in maize. The germinating seeds treated with SO2 treatment exhibited higher reactive oxygen species (ROS) levels and NADPH oxidase activities. Furthermore, the specific NADPH oxidase inhibitor diphenyleneiodinium (DPI) strongly inhibited ROS accumulations, and SO2-promoted seed germination and vigor. Meanwhile, α-Amylase activity and transcripts in germinating seeds treated with SO2 were significantly elevated. These data have demonstrated that NADPH oxidase-dependent ROS production contributes to the induction of α-Amylase activity, thereby promoting seed germination upon SO2 exposure. SO2 might function as a signaling molecule in plant growth and development, especially in seed germination. This study might provide a theoretical foundation for the potential exploitation of hydrated SO2 in seed germination control in crop management.
Collapse
Affiliation(s)
- Ziting Guo
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Jinjin Zhao
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Meiping Wang
- Library of Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Song Song
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, PR China; Synergetic Innovation Center of Henan Grain Crops and State Key Laboratory of Wheat & Maize Crop Science, Zhengzhou, 450002, PR China.
| |
Collapse
|
27
|
Jiang L, Wang Y, Xia A, Wang Q, Zhang X, Jez JM, Li Z, Tan W, He Y. A natural single-nucleotide polymorphism variant in sulfite reductase influences sulfur assimilation in maize. THE NEW PHYTOLOGIST 2021; 232:692-704. [PMID: 34254312 DOI: 10.1111/nph.17616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Plants absorb sulfur from the environment and assimilate it into suitable forms for the biosynthesis of a broad range of molecules. Although the biochemical pathway of sulfur assimilation is known, how genetic differences contribute to natural variation in sulfur assimilation remains poorly understood. Here, using a genome-wide association study, we uncovered a single-nucleotide polymorphism (SNP) variant in the sulfite reductase (SiR) gene that was significantly associated with SiR protein abundance in a maize natural association population. We also demonstrated that the synonymous C to G base change at SNP69 may repress translational activity by altering messenger RNA secondary structure, which leads to reduction in ZmSiR protein abundance and sulfur assimilation activity. Population genetic analyses showed that the SNP69C allele was likely a variant occurring after the initial maize domestication and accumulated with the spread of maize cultivation from tropical to temperate regions. This study provides the first evidence that genetic polymorphisms in the exon of ZmSiR could influence the protein abundance through a posttranscriptional mechanism and in part contribute to natural variation in sulfur assimilation. These findings provide a prospective target to improve maize varieties with proper sulfur nutrient levels assisted by molecular breeding and engineering.
Collapse
Affiliation(s)
- Luguang Jiang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Yan Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Aiai Xia
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Qi Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Xiaolei Zhang
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Joseph M Jez
- Department of Biology, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Weiming Tan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Yan He
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| |
Collapse
|
28
|
He L, Li M, Chen D, Qian Q, Zeng D, Zhu L. Rice Ferredoxins localize to chloroplasts/plastids and may function in different tissues. PLANT SIGNALING & BEHAVIOR 2021; 16:1926813. [PMID: 33989104 PMCID: PMC8281090 DOI: 10.1080/15592324.2021.1926813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Ferredoxins (Fds) play a unique and important role in photosynthetic electron transport. Recently, we characterized the function of Fd1 in rice (Oryza sativa L.), showing that Fd1 is the primary photosynthetic electron transport protein and that Fd1 participates in carbon assimilation. However, the subcellular localization and specific functions of other Fds in rice are not yet fully understood. Here, our subcellular localization analysis of the seven Fds in rice showed that they are located in the chloroplasts of photosynthetic tissues and the plastids of non-photosynthetic tissues. Moreover, qRT-PCR indicated that Fd1 transcript levels were highest in photosynthetic tissues, while Fd4 transcript levels were highest in non-photosynthetic tissues. Collectively, our results suggest that rice Fds are located in chloroplasts/plastids, but may function in different tissues, and Fd4 may be a non-photosynthetic type Fd.
Collapse
Affiliation(s)
- Lei He
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Man Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Dongdong Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
29
|
Forieri I, Aref R, Wirtz M, Hell R. Micrografting Provides Evidence for Systemic Regulation of Sulfur Metabolism between Shoot and Root. PLANTS 2021; 10:plants10081729. [PMID: 34451773 PMCID: PMC8402062 DOI: 10.3390/plants10081729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
The uptake of sulfate by roots and its reductive assimilation mainly in the leaves are not only essential for plant growth and development but also for defense responses against biotic and abiotic stresses. The latter functions result in stimulus-induced fluctuations of sulfur demand at the cellular level. However, the maintenance and acclimation of sulfur homeostasis at local and systemic levels is not fully understood. Previous research mostly focused on signaling in response to external sulfate supply to roots. Here we apply micrografting of Arabidopsis wildtype knock-down sir1-1 mutant plants that suffer from an internally lowered reductive sulfur assimilation and a concomitant slow growth phenotype. Homografts of wildtype and sir1-1 confirm the hallmarks of non-grafted sir1-1 mutants, displaying substantial induction of sulfate transporter genes in roots and sulfate accumulation in shoots. Heterografts of wildtype scions and sir1-1 rootstocks and vice versa, respectively, demonstrate a dominant role of the shoot over the root with respect to sulfur-related gene expression, sulfate accumulation and organic sulfur metabolites, including the regulatory compound O-acetylserine. The results provide evidence for demand-driven control of the shoot over the sulfate uptake system of roots under sulfur-sufficient conditions, allowing sulfur uptake and transport to the shoot for dynamic responses.
Collapse
Affiliation(s)
- Ilaria Forieri
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany; (I.F.); (R.A.); (M.W.)
| | - Rasha Aref
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany; (I.F.); (R.A.); (M.W.)
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Markus Wirtz
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany; (I.F.); (R.A.); (M.W.)
| | - Rüdiger Hell
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany; (I.F.); (R.A.); (M.W.)
- Correspondence: ; Tel.: +49-6221-54-5334
| |
Collapse
|
30
|
Gastoldi L, Ward LM, Nakagawa M, Giordano M, McGlynn SE. Changes in ATP Sulfurylase Activity in Response to Altered Cyanobacteria Growth Conditions. Microbes Environ 2021; 36. [PMID: 34039816 PMCID: PMC8209453 DOI: 10.1264/jsme2.me20145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We investigated variations in cell growth and ATP Sulfurylase (ATPS) activity when two cyanobacterial strains-Synechocystis sp. PCC6803 and Synechococcus sp. WH7803-were grown in conventional media, and media with low ammonium, low sulfate and a high CO2/low O2 atmosphere. In both organisms, a transition and adaptation to the reconstructed environmental media resulted in a decrease in ATPS activity. This variation appears to be decoupled from growth rate, suggesting the enzyme is not rate-limiting in S assimilation and raising questions about the role of ATPS redox regulation in cell physiology and throughout Earth history.
Collapse
Affiliation(s)
- Lucia Gastoldi
- Laboratory of Algal and Plant Physiology, Department of Life and Environmental Sciences (DISVA), Università Politecnica delle Marche (UNIVPM)
| | - Lewis M Ward
- Department of Earth and Planetary Sciences, Harvard University.,Earth-Life Science Institute, Tokyo Institute of Technology
| | | | - Mario Giordano
- Laboratory of Algal and Plant Physiology, Department of Life and Environmental Sciences (DISVA), Università Politecnica delle Marche (UNIVPM)
| | | |
Collapse
|
31
|
Kharwar S, Bhattacharjee S, Mishra AK. Bioinformatics analysis of enzymes involved in cysteine biosynthesis: first evidence for the formation of cysteine synthase complex in cyanobacteria. 3 Biotech 2021; 11:354. [PMID: 34249595 DOI: 10.1007/s13205-021-02899-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 11/29/2022] Open
Abstract
The biosynthesis of cysteine is crucial and critically regulated by two enzymes. i.e., serine acetyl transferase (SAT) and O-acetyl serine (thiol) lyase (OAS-TL). A descriptive account on the activity and regulatory mechanism of the enzyme is available in bacteria and plants. But no such studies yet performed in cyanobacteria, to understand the evolutionary aspect of cysteine biosynthesis and its regulation. Therefore, in our study a detailed bioinformatic analysis has been performed to understand all the possible features of cyanobacterial SATs and OAS-TLs. The analysis of SAT and OAS-TL sequences from cyanobacteria depicted that the large genome and morphological complexities favoured acquisition of these genes. Besides, conserved function of these enzymes was presumed by their sequence similarity. Further, the phylogenetic tree consisted of distinct clusters for unicellular, filamentous, and heterocytous strains. Nevertheless, the specificity pocket, SVKDR for OAS-TL having K as catalytic residue was also identified. Additionally, in silico protein modelling of SAT (SrpG) and OAS-TL (SrpH) of Synechococcus elongatus PCC 7942 was performed to gain insight into the structural attributes of the proteins. Finally, here we showed the possibility of hetero-oligomeric bi-enzyme cysteine synthase complex formation upon interaction of SAT and OAS-TL through protein-protein docking analysis thus provides a way to understand the regulation of cysteine biosynthesis in cyanobacteria. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02899-1.
Collapse
Affiliation(s)
- Surbhi Kharwar
- Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Samujjal Bhattacharjee
- Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
32
|
A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain. Nat Commun 2021; 12:1392. [PMID: 33654102 PMCID: PMC7925690 DOI: 10.1038/s41467-021-21282-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Rice grains typically contain high levels of toxic arsenic but low levels of the essential micronutrient selenium. Anthropogenic arsenic contamination of paddy soils exacerbates arsenic toxicity in rice crops resulting in substantial yield losses. Here, we report the identification of the gain-of-function arsenite tolerant 1 (astol1) mutant of rice that benefits from enhanced sulfur and selenium assimilation, arsenic tolerance, and decreased arsenic accumulation in grains. The astol1 mutation promotes the physical interaction of the chloroplast-localized O-acetylserine (thiol) lyase protein with its interaction partner serine-acetyltransferase in the cysteine synthase complex. Activation of the serine-acetyltransferase in this complex promotes the uptake of sulfate and selenium and enhances the production of cysteine, glutathione, and phytochelatins, resulting in increased tolerance and decreased translocation of arsenic to grains. Our findings uncover the pivotal sensing-function of the cysteine synthase complex in plastids for optimizing stress resilience and grain quality by regulating a fundamental macronutrient assimilation pathway. Contamination of paddy soils can lead to toxic arsenic accumulation in rice grains and low levels of the micronutrient selenium. Here the authors show that a gain of function mutant affecting an O-acetylserine (thiol) lyase enhances sulfur and selenium assimilation while reducing arsenic accumulation in grains.
Collapse
|
33
|
Kumar S, Kumar S, Mohapatra T. Interaction Between Macro- and Micro-Nutrients in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:665583. [PMID: 34040623 PMCID: PMC8141648 DOI: 10.3389/fpls.2021.665583] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 05/03/2023]
Abstract
Nitrogen (N), phosphorus (P), sulfur (S), zinc (Zn), and iron (Fe) are some of the vital nutrients required for optimum growth, development, and productivity of plants. The deficiency of any of these nutrients may lead to defects in plant growth and decreased productivity. Plant responses to the deficiency of N, P, S, Fe, or Zn have been studied mainly as a separate event, and only a few reports discuss the molecular basis of biological interaction among the nutrients. Macro-nutrients like N, P, and/or S not only show the interacting pathways for each other but also affect micro-nutrient pathways. Limited reports are available on the investigation of two-by-two or multi-level nutrient interactions in plants. Such studies on the nutrient interaction pathways suggest that an MYB-like transcription factor, phosphate starvation response 1 (PHR1), acts as a master regulator of N, P, S, Fe, and Zn homeostasis. Similarly, light-responsive transcription factors were identified to be involved in modulating nutrient responses in Arabidopsis. This review focuses on the recent advances in our understanding of how plants coordinate the acquisition, transport, signaling, and interacting pathways for N, P, S, Fe, and Zn nutrition at the molecular level. Identification of the important candidate genes for interactions between N, P, S, Fe, and/or Zn metabolic pathways might be useful for the breeders to improve nutrient use efficiency and yield/quality of crop plants. Integrated studies on pathways interactions/cross-talks between macro- and micro-nutrients in the agronomically important crop plants would be essential for sustainable agriculture around the globe, particularly under the changing climatic conditions.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Suresh Kumar, ; , orcid.org/0000-0002-7127-3079
| | | | | |
Collapse
|
34
|
Sarkar P, Lite C, Kumar P, Pasupuleti M, Saraswathi NT, Arasu MV, Al-Dhabi NA, Arshad A, Arockiaraj J. TL15 of Arthrospira platensis sulfite reductase scavenges free radicals demonstrated in oxidant induced larval zebrafish (Danio rerio) model. Int J Biol Macromol 2021; 166:641-653. [PMID: 33137391 DOI: 10.1016/j.ijbiomac.2020.10.222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
The antioxidant role of sulfite reductase (SiR) derived from Arthrospira platensis (Ap) was identified through a short peptide, TL15. The study showed that the expression of ApSiR was highly expressed on day ten due to sulfur deprived stress in Ap culture. TL15 peptide exhibited strong antioxidant activity when evaluated using antioxidant assays in a concentration ranging from 7.8 and 125 μM. Further, the cytotoxicity of TL15 peptide was investigated, even at the higher concentration (250 μM), TL15 did not exhibit any toxicity, when tested in vitro using human leucocytes. Moreover, a potential reduction in reactive oxygen species (ROS) production was observed due to the treatment of TL15 peptide (>15.6 μM) to H2O2 exposed leucocytes. For the in vivo assessment of TL15 toxicity and antioxidant ability, experiments were performed in zebrafish (Danio rerio) larvae to analyse the developmental toxicity of TL15 peptide. Results showed that, exposure to TL15 peptide in tested concentrations ranging from 10, 20, 40, and 80 μM, did not affect the development and physiological parameters of the zebrafish embryo/larvae such as morphology, survival, hatching and heart rate. Fluorescent assay was performed using DCFH-DA (2,7-dichlorodihydrofluorescein diacetate) to examine the production of intracellular reactive oxygen species (ROS) in zebrafish treated with TL15 peptide during the embryo-larval stages. Fluorescent images showed that pre-treatment with TL15 peptide to attenuate the H2O2 induced ROS levels in the zebrafish larvae in a dose-dependent manner. Further to uncover the underlying biochemical and antioxidant mechanism, the enzyme activity of superoxide dismutase (SOD), catalase (CAT) and lipid peroxidation (LPO) levels were studied in zebrafish larvae. TL15 pre-treated groups showed enhanced antioxidant enzyme activity, while the hydrogen peroxide (H2O2) exposed larvae showed significantly diminished activity. Overall results from the study revealed that, TL15 act as a potential antioxidant molecule with dose-specific antioxidant property. Thus, TL15 peptide could be an effective and promising source for biopharmaceutical applications.
Collapse
Affiliation(s)
- Purabi Sarkar
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Christy Lite
- Endocrine and Exposome Laboratory, Department of Zoology, Madras Christian College, Tambaram, Chennai 600 059, Tamil Nadu, India
| | - Praveen Kumar
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, Uttar Pradesh, India
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613 401, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
35
|
Oshanova D, Kurmanbayeva A, Bekturova A, Soltabayeva A, Nurbekova Z, Standing D, Dubey AK, Sagi M. Level of Sulfite Oxidase Activity Affects Sulfur and Carbon Metabolism in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:690830. [PMID: 34249061 PMCID: PMC8264797 DOI: 10.3389/fpls.2021.690830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/26/2021] [Indexed: 05/05/2023]
Abstract
Molybdenum cofactor containing sulfite oxidase (SO) enzyme is an important player in protecting plants against exogenous toxic sulfite. It was also demonstrated that SO activity is essential to cope with rising dark-induced endogenous sulfite levels and maintain optimal carbon and sulfur metabolism in tomato plants exposed to extended dark stress. The response of SO and sulfite reductase to direct exposure of low and high levels of sulfate and carbon was rarely shown. By employing Arabidopsis wild-type, sulfite reductase, and SO-modulated plants supplied with excess or limited carbon or sulfur supply, the current study demonstrates the important role of SO in carbon and sulfur metabolism. Application of low and excess sucrose, or sulfate levels, led to lower biomass accumulation rates, followed by enhanced sulfite accumulation in SO impaired mutant compared with wild-type. SO-impairment resulted in the channeling of sulfite to the sulfate reduction pathway, resulting in an overflow of organic S accumulation. In addition, sulfite enhancement was followed by oxidative stress contributing as well to the lower biomass accumulation in SO-modulated plants. These results indicate that the role of SO is not limited to protection against elevated sulfite toxicity but to maintaining optimal carbon and sulfur metabolism in Arabidopsis plants.
Collapse
Affiliation(s)
- Dinara Oshanova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Assylay Kurmanbayeva
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Aizat Bekturova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Aigerim Soltabayeva
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Zhadyrassyn Nurbekova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Dominic Standing
- The Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Arvind Kumar Dubey
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Moshe Sagi
- The Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
- *Correspondence: Moshe Sagi
| |
Collapse
|
36
|
González-Gordo S, Palma JM, Corpas FJ. Appraisal of H 2S metabolism in Arabidopsis thaliana: In silico analysis at the subcellular level. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:579-588. [PMID: 32846393 DOI: 10.1016/j.plaphy.2020.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 05/15/2023]
Abstract
Hydrogen sulfide (H2S) has become a new signal molecule in higher plants which seems to be involved in almost all physiological processes from seed germination, root and plant growth until flowering and fruit ripening. Moreover, H2S also participates in the mechanism of response against adverse environmental stresses. However, its basic biochemistry in plant cells can be considered in a nascent stage. Using the available information of the model plant Arabidopsis thaliana, the goal of the present study is to provide a broad overview of H2S metabolism and to display an in silico analysis of the 26 enzymatic components involved in the metabolism of H2S and their subcellular compartmentation (cytosol, chloroplast and mitochondrion) thus providing a wide picture of the cross-talk inside the organelles and amongst them and, consequently, to get a better understanding of the cellular and tissue implications of H2S. This information will be also relevant for other crop species, especially those whose whole genome is not yet available.
Collapse
Affiliation(s)
- Salvador González-Gordo
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - José M Palma
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Francisco J Corpas
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain.
| |
Collapse
|
37
|
He L, Li M, Qiu Z, Chen D, Zhang G, Wang X, Chen G, Hu J, Gao Z, Dong G, Ren D, Shen L, Zhang Q, Guo L, Qian Q, Zeng D, Zhu L. Primary leaf-type ferredoxin 1 participates in photosynthetic electron transport and carbon assimilation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:44-58. [PMID: 32603511 DOI: 10.1111/tpj.14904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Ferredoxins (Fds) play a crucial role in photosynthesis by regulating the distribution of electrons to downstream enzymes. Multiple Fd genes have been annotated in the Oryza sativa L. (rice) genome; however, their specific functions are not well understood. Here, we report the functional characterization of rice Fd1. Sequence alignment, phylogenetic analysis of seven rice Fd proteins and quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that rice Fd1 is a primary leaf-type Fd. Electron transfer assays involving NADP+ and cytochrome c indicated that Fd1 can donate electrons from photosystem I (PSI) to ferredoxin-NADP+ reductase. Loss-of-function fd1 mutants showed chlorosis and seedling lethality at the three-leaf stage. The deficiency of Fd1 impaired photosynthetic electron transport, which affected carbon assimilation. Exogenous glucose treatment partially restored the mutant phenotype, suggesting that Fd1 plays an important role in photosynthetic electron transport in rice. In addition, the transcript levels of Fd-dependent genes were affected in fd1 mutants, and the trend was similar to that observed in fdc2 plants. Together, these results suggest that OsFd1 is the primary Fd in photosynthetic electron transport and carbon assimilation in rice.
Collapse
Affiliation(s)
- Lei He
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Man Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhennan Qiu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- College of Life Science, Dezhou University, Dezhou, 253023, China
| | - Dongdong Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiaoqi Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guang Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Lan Shen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qiang Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| |
Collapse
|
38
|
Sun N, Song T, Ma Z, Dong L, Zhan L, Xing Y, Liu J, Song J, Wang S, Cai H. Overexpression of MsSiR enhances alkali tolerance in alfalfa (Medicago sativa L.) by increasing the glutathione content. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:538-546. [PMID: 32912487 DOI: 10.1016/j.plaphy.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
The sulfite reductase gene in Medicago sativa L. (MsSiR) encodes sulfite reductase (SiR) and catalyses the conversion of sulfite to sulfate in the sulfite assimilation pathway. In this study, we investigated the role of MsSiR in alfalfa by generating transgenic alfalfa that ectopically expressed MsSiR under the control of the CaMV35S promoter. The differences in alkali tolerance between the MsSiR-overexpressing and wild-type (WT) plants were analyzed, and the MsSiR-overexpressing plants exhibited an improved phenotype under alkali stress. Compared to WT plants, these plants demonstrated improved antioxidant activity as well as decreased H2O2 and O2- contents and increased glutathione reduced (GSH), Cysteine (Cys) and glutathione oxidized (GSSG) contents. MsSiR-overexpressing plants also exhibited high levels of adenosyl phosphosulfate reductases (APR), sulfite oxidase (SO) and MsSiR expression under alkali stress. It was speculated that MsSiR is involved in sulfur metabolism pathways, including the stabilization of sulfate and sulfite levels and the synthesis of GSH. These two processes achieve alkali tolerance by positively regulating the detoxification and antioxidant activities of alfalfa.
Collapse
Affiliation(s)
- Na Sun
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Tingting Song
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Zhiyun Ma
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Li Dong
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Lifeng Zhan
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Yimei Xing
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Jingmei Liu
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaxin Song
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Shuo Wang
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Hua Cai
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
39
|
Berger N, Vignols F, Przybyla-Toscano J, Roland M, Rofidal V, Touraine B, Zienkiewicz K, Couturier J, Feussner I, Santoni V, Rouhier N, Gaymard F, Dubos C. Identification of client iron-sulfur proteins of the chloroplastic NFU2 transfer protein in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4171-4187. [PMID: 32240305 DOI: 10.1093/jxb/eraa166] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/31/2020] [Indexed: 05/25/2023]
Abstract
Iron-sulfur (Fe-S) proteins have critical functions in plastids, notably participating in photosynthetic electron transfer, sulfur and nitrogen assimilation, chlorophyll metabolism, and vitamin or amino acid biosynthesis. Their maturation relies on the so-called SUF (sulfur mobilization) assembly machinery. Fe-S clusters are synthesized de novo on a scaffold protein complex and then delivered to client proteins via several transfer proteins. However, the maturation pathways of most client proteins and their specificities for transfer proteins are mostly unknown. In order to decipher the proteins interacting with the Fe-S cluster transfer protein NFU2, one of the three plastidial representatives found in Arabidopsis thaliana, we performed a quantitative proteomic analysis of shoots, roots, and seedlings of nfu2 plants, combined with NFU2 co-immunoprecipitation and binary yeast two-hybrid experiments. We identified 14 new targets, among which nine were validated in planta using a binary bimolecular fluorescence complementation assay. These analyses also revealed a possible role for NFU2 in the plant response to desiccation. Altogether, this study better delineates the maturation pathways of many chloroplast Fe-S proteins, considerably extending the number of NFU2 clients. It also helps to clarify the respective roles of the three NFU paralogs NFU1, NFU2, and NFU3.
Collapse
Affiliation(s)
- Nathalie Berger
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Florence Vignols
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | | | | | - Valérie Rofidal
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Brigitte Touraine
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | | | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Service unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Véronique Santoni
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | | | - Frédéric Gaymard
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Christian Dubos
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| |
Collapse
|
40
|
Jez JM. Structural biology of plant sulfur metabolism: from sulfate to glutathione. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4089-4103. [PMID: 30825314 DOI: 10.1093/jxb/erz094] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Sulfur is an essential element for all organisms. Plants must assimilate this nutrient from the environment and convert it into metabolically useful forms for the biosynthesis of a wide range of compounds, including cysteine and glutathione. This review summarizes structural biology studies on the enzymes involved in plant sulfur assimilation [ATP sulfurylase, adenosine-5'-phosphate (APS) reductase, and sulfite reductase], cysteine biosynthesis (serine acetyltransferase and O-acetylserine sulfhydrylase), and glutathione biosynthesis (glutamate-cysteine ligase and glutathione synthetase) pathways. Overall, X-ray crystal structures of enzymes in these core pathways provide molecular-level information on the chemical events that allow plants to incorporate sulfur into essential metabolites and revealed new biochemical regulatory mechanisms, such as structural rearrangements, protein-protein interactions, and thiol-based redox switches, for controlling different steps in these pathways.
Collapse
Affiliation(s)
- Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
41
|
Corpas FJ, Barroso JB, González-Gordo S, Muñoz-Vargas MA, Palma JM. Hydrogen sulfide: A novel component in Arabidopsis peroxisomes which triggers catalase inhibition. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:871-883. [PMID: 30652411 DOI: 10.1111/jipb.12779] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Plant peroxisomes have the capacity to generate different reactive oxygen and nitrogen species (ROS and RNS), such as H2 O2 , superoxide radical (O2 · - ), nitric oxide and peroxynitrite (ONOO- ). These organelles have an active nitro-oxidative metabolism which can be exacerbated by adverse stress conditions. Hydrogen sulfide (H2 S) is a new signaling gasotransmitter which can mediate the posttranslational modification (PTM) persulfidation. We used Arabidopsis thaliana transgenic seedlings expressing cyan fluorescent protein (CFP) fused to a canonical peroxisome targeting signal 1 (PTS1) to visualize peroxisomes in living cells, as well as a specific fluorescent probe which showed that peroxisomes contain H2 S. H2 S was also detected in chloroplasts under glyphosate-induced oxidative stress conditions. Peroxisomal enzyme activities, including catalase, photorespiratory H2 O2 -generating glycolate oxidase (GOX) and hydroxypyruvate reductase (HPR), were assayed in vitro with a H2 S donor. In line with the persulfidation of this enzyme, catalase activity declined significantly in the presence of the H2 S donor. To corroborate the inhibitory effect of H2 S on catalase activity, we also assayed pure catalase from bovine liver and pepper fruit-enriched samples, in which catalase activity was inhibited. Taken together, these data provide evidence of the presence of H2 S in plant peroxisomes which appears to regulate catalase activity and, consequently, the peroxisomal H2 O2 metabolism.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric oxide, Department of Biochemistry and Molecular Biology, Campus "Las Lagunillas", E-23071, University of Jaén, Jaén, Spain
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - María A Muñoz-Vargas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| |
Collapse
|
42
|
Feldman-Salit A, Veith N, Wirtz M, Hell R, Kummer U. Distribution of control in the sulfur assimilation in Arabidopsis thaliana depends on environmental conditions. THE NEW PHYTOLOGIST 2019; 222:1392-1404. [PMID: 30681147 DOI: 10.1111/nph.15704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/13/2019] [Indexed: 05/24/2023]
Abstract
Sulfur assimilation is central to the survival of plants and has been studied under different environmental conditions. Multiple studies have been published trying to determine rate-limiting or controlling steps in this pathway. However, the picture remains inconclusive with at least two different enzymes proposed to represent such rate-limiting steps. Here, we used computational modeling to gain an integrative understanding of the distribution of control in the sulfur assimilation pathway of Arabidopsis thaliana. For this purpose, we set up a new ordinary differential equation (ODE)-based, kinetic model of sulfur assimilation encompassing all biochemical reactions directly involved in this process. We fitted the model to published experimental data and produced a model ensemble to deal with parameter uncertainties. The ensemble was validated against additional published experimental data. We used the model ensemble to subsequently analyse the control pattern and robustly identified a set of processes that share the control in this pathway under standard conditions. Interestingly, the pattern of control is dynamic and not static, that is it changes with changing environmental conditions. Therefore, while adenosine-5'-phosphosulfate reductase (APR) and sulfite reductase (SiR) share control under standard laboratory conditions, APR takes over an even more dominant role under sulfur starvation conditions.
Collapse
Affiliation(s)
- Anna Feldman-Salit
- Department Modeling of Biological Processes, COS Heidelberg/Bioquant, INF 267, Heidelberg University, 69120, Heidelberg, Germany
| | - Nadine Veith
- Department Modeling of Biological Processes, COS Heidelberg/Bioquant, INF 267, Heidelberg University, 69120, Heidelberg, Germany
| | - Markus Wirtz
- Department Molecular Biology of Plants, COS Heidelberg, INF 360, Heidelberg University, 69120, Heidelberg, Germany
| | - Rüdiger Hell
- Department Molecular Biology of Plants, COS Heidelberg, INF 360, Heidelberg University, 69120, Heidelberg, Germany
| | - Ursula Kummer
- Department Modeling of Biological Processes, COS Heidelberg/Bioquant, INF 267, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
43
|
Chen Z, Zhao PX, Miao ZQ, Qi GF, Wang Z, Yuan Y, Ahmad N, Cao MJ, Hell R, Wirtz M, Xiang CB. SULTR3s Function in Chloroplast Sulfate Uptake and Affect ABA Biosynthesis and the Stress Response. PLANT PHYSIOLOGY 2019; 180:593-604. [PMID: 30837346 PMCID: PMC6501079 DOI: 10.1104/pp.18.01439] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/28/2019] [Indexed: 05/20/2023]
Abstract
Plants are major sulfur reducers in the global sulfur cycle. Sulfate, the major natural sulfur source in soil, is absorbed by plant roots and transported into plastids, where it is reduced and assimilated into Cys for further metabolic processes. Despite its importance, how sulfate is transported into plastids is poorly understood. We previously demonstrated using single Arabidopsis (Arabidopsis thaliana) genetic mutants that each member of the sulfate transporter (SULTR) subfamily 3 was able to transport sulfate across the chloroplast envelope membrane. To resolve the function of SULTR3s, we constructed a sultr3 quintuple mutant completely knocking out all five members of the subfamily. Here we report that all members of the SULTR3 subfamily show chloroplast membrane localization. Sulfate uptake by chloroplasts of the quintuple mutant is reduced by more than 50% compared with the wild type. Consequently, Cys and abscisic acid (ABA) content are reduced to ∼67 and ∼20% of the wild-type level, respectively, and strong positive correlations are found among sulfate, Cys, and ABA content. The sultr3 quintuple mutant shows obvious growth retardation with smaller rosettes and shorter roots. Seed germination of the sultr3 quintuple mutant is hypersensitive to exogenous ABA and salt stress, but is rescued by sulfide supplementation. Furthermore, sulfate-induced stomatal closure is abolished in the quintuple mutant, strongly suggesting that chloroplast sulfate is required for stomatal closure. Our genetic analyses unequivocally demonstrate that sulfate transporter subfamily 3 is responsible for more than half of the chloroplast sulfate uptake and influences downstream sulfate assimilation and ABA biosynthesis.
Collapse
Affiliation(s)
- Zhen Chen
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ping-Xia Zhao
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zi-Qing Miao
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Guo-Feng Qi
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhen Wang
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
- Shanghai Center for Plant Stress Biology, CAS, Shanghai 201602, China
| | - Yang Yuan
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Nisar Ahmad
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
- Department of Biotechnology, University of Science and Technology, 28100 Bannu, Pakistan
| | - Min-Jie Cao
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
- Shanghai Center for Plant Stress Biology, CAS, Shanghai 201602, China
| | - Ruediger Hell
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Cheng-Bin Xiang
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
44
|
Wu Y, Shi L, Li L, Fu L, Liu Y, Xiong Y, Sheen J. Integration of nutrient, energy, light, and hormone signalling via TOR in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2227-2238. [PMID: 30715492 PMCID: PMC6463029 DOI: 10.1093/jxb/erz028] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/08/2019] [Indexed: 05/04/2023]
Abstract
The multidomain target of rapamycin (TOR) is an atypical serine/threonine protein kinase resembling phosphatidylinositol lipid kinases, but retains high sequence identity and serves a remarkably conserved role as a master signalling integrator in yeasts, plants, and humans. TOR dynamically orchestrates cell metabolism, biogenesis, organ growth, and development transitions in response to nutrient, energy, hormone, and environmental cues. Here we review recent findings on the versatile and complex roles of TOR in transcriptome reprogramming, seedling, root, and shoot growth, and root hair production activated by sugar and energy signalling. We explore how co-ordination of TOR-mediated light and hormone signalling is involved in root and shoot apical meristem activation, proliferation of leaf primordia, cotyledon/leaf greening, and hypocotyl elongation. We also discuss the emerging TOR functions in response to sulfur assimilation and metabolism and consider potential molecular links and positive feedback loops between TOR, sugar, energy, and other essential macronutrients.
Collapse
Affiliation(s)
- Yue Wu
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Lin Shi
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Lei Li
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Liwen Fu
- Basic Forestry and Proteomics Research Centre, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fujian Province, PR China
| | - Yanlin Liu
- Basic Forestry and Proteomics Research Centre, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fujian Province, PR China
| | - Yan Xiong
- Basic Forestry and Proteomics Research Centre, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fujian Province, PR China
| | - Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Rajab H, Khan MS, Malagoli M, Hell R, Wirtz M. Sulfate-Induced Stomata Closure Requires the Canonical ABA Signal Transduction Machinery. PLANTS 2019; 8:plants8010021. [PMID: 30654485 PMCID: PMC6359059 DOI: 10.3390/plants8010021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 01/15/2023]
Abstract
Phytohormone abscisic acid (ABA) is the canonical trigger for stomatal closure upon abiotic stresses like drought. Soil-drying is known to facilitate root-to-shoot transport of sulfate. Remarkably, sulfate and sulfide—a downstream product of sulfate assimilation—have been independently shown to promote stomatal closure. For induction of stomatal closure, sulfate must be incorporated into cysteine, which triggers ABA biosynthesis by transcriptional activation of NCED3. Here, we apply reverse genetics to unravel if the canonical ABA signal transduction machinery is required for sulfate-induced stomata closure, and if cysteine biosynthesis is also mandatory for the induction of stomatal closure by the gasotransmitter sulfide. We provide genetic evidence for the importance of reactive oxygen species (ROS) production by the plasma membrane-localized NADPH oxidases, RBOHD, and RBOHF, during the sulfate-induced stomatal closure. In agreement with the established role of ROS as the second messenger of ABA-signaling, the SnRK2-type kinase OST1 and the protein phosphatase ABI1 are essential for sulfate-induced stomata closure. Finally, we show that sulfide fails to close stomata in a cysteine-biosynthesis depleted mutant. Our data support the hypothesis that the two mobile signals, sulfate and sulfide, induce stomatal closure by stimulating cysteine synthesis to trigger ABA production.
Collapse
Affiliation(s)
- Hala Rajab
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, 25000 Peshawar, Pakistan.
| | - Muhammad Sayyar Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, 25000 Peshawar, Pakistan.
| | - Mario Malagoli
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy.
| | - Rüdiger Hell
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Markus Wirtz
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
46
|
Dong Y, Teleman AA, Jedmowski C, Wirtz M, Hell R. The Arabidopsis THADA homologue modulates TOR activity and cold acclimation. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:77-83. [PMID: 30098100 DOI: 10.1111/plb.12893] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/02/2018] [Indexed: 05/21/2023]
Abstract
Low temperature is one of the most important environmental factors that affect global survival of humans and animals and equally importantly the distribution of plants and crop productivity. Survival of metazoan cells under cold stress requires regulation of the sensor-kinase Target Of Rapamycin (TOR). TOR controls growth of eukaryotic cells by adjusting anabolic and catabolic metabolism. Previous studies identified the Thyroid Adenoma Associated (THADA) gene as the major effect locus by positive selection in the evolution of modern human adapted to cold. Here we investigate the role of THADA in TOR signaling and cold acclimation of plants. We applied BLAST searches and homology modeling to identify the AtTHADA (AT3G55160) in Arabidopsis thaliana as the highly probable orthologue protein. Reverse genetics approaches were combined with immunological detection of TOR activity and metabolite profiling to address the role of the TOR and THADA for growth regulation and cold acclimation. Depletion of the AtTHADA gene caused complete or partial loss of full-length mRNA, respectively, and significant retardation of growth under non-stressed conditions. Furthermore, depletion of AtTHADA caused hypersensitivity towards low-temperatures. Atthada displayed a lowered energy charge. This went along with decreased TOR activity, which offers a molecular explanation for the slow growth phenotype of Atthada. Finally, we used TOR RNAi lines to identify the de-regulation of TOR activity as one determinant for sensitivity towards low-temperatures. Taken together our results provide evidence for a conserved function of THADA in cold acclimation of eukaryotes and suggest that cold acclimation in plants requires regulation of TOR.
Collapse
Affiliation(s)
- Y Dong
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - A A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - M Wirtz
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - R Hell
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
47
|
Birrer SC, Dafforn KA, Sun MY, Williams RBH, Potts J, Scanes P, Kelaher BP, Simpson SL, Kjelleberg S, Swarup S, Steinberg P, Johnston EL. Using meta‐omics of contaminated sediments to monitor changes in pathways relevant to climate regulation. Environ Microbiol 2018; 21:389-401. [DOI: 10.1111/1462-2920.14470] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Simone C. Birrer
- Evolution and Ecology Research Centre is equivalent School of BEES, University of New South Wales Sydney NSW 2052 Australia
- The Sydney Institute of Marine Science Mosman NSW 2088 Australia
| | - Katherine A. Dafforn
- Department of Environmental Sciences Macquarie University North Ryde NSW 2109 Australia
| | - Melanie Y. Sun
- Evolution and Ecology Research Centre is equivalent School of BEES, University of New South Wales Sydney NSW 2052 Australia
- The Sydney Institute of Marine Science Mosman NSW 2088 Australia
| | - Rohan B. H. Williams
- Singapore Centre for Environmental Life Sciences Engineering Nanyang Technological University 637551 Singapore
| | - Jaimie Potts
- NSW Office of Environment and Heritage Lidcombe NSW 2141 Australia
| | - Peter Scanes
- NSW Office of Environment and Heritage Lidcombe NSW 2141 Australia
| | - Brendan P. Kelaher
- National Marine Science Centre and Centre for Coastal Biogeochemistry Research Southern Cross University Coffs Harbour NSW 2450 Australia
| | | | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering Nanyang Technological University 637551 Singapore
- Centre of Marine Bio‐Innovation School of BEES, University of New South Wales Sydney NSW 2052 Australia
| | - Sanjay Swarup
- Singapore Centre for Environmental Life Sciences Engineering Nanyang Technological University 637551 Singapore
| | - Peter Steinberg
- Department of Environmental Sciences Macquarie University North Ryde NSW 2109 Australia
- Centre of Marine Bio‐Innovation School of BEES, University of New South Wales Sydney NSW 2052 Australia
| | - Emma L. Johnston
- Evolution and Ecology Research Centre is equivalent School of BEES, University of New South Wales Sydney NSW 2052 Australia
- The Sydney Institute of Marine Science Mosman NSW 2088 Australia
| |
Collapse
|
48
|
Yamazaki T, Konosu E, Takeshita T, Hirata A, Ota S, Kazama Y, Abe T, Kawano S. Independent regulation of the lipid and starch synthesis pathways by sulfate metabolites in the green microalga Parachlorella kessleri under sulfur starvation conditions. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Batool S, Uslu VV, Rajab H, Ahmad N, Waadt R, Geiger D, Malagoli M, Xiang CB, Hedrich R, Rennenberg H, Herschbach C, Hell R, Wirtz M. Sulfate is Incorporated into Cysteine to Trigger ABA Production and Stomatal Closure. THE PLANT CELL 2018; 30:2973-2987. [PMID: 30538155 PMCID: PMC6354274 DOI: 10.1105/tpc.18.00612] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/30/2018] [Indexed: 05/18/2023]
Abstract
Plants close stomata when root water availability becomes limiting. Recent studies have demonstrated that soil-drying induces root-to-shoot sulfate transport via the xylem and that sulfate closes stomata. Here we provide evidence for a physiologically relevant signaling pathway that underlies sulfate-induced stomatal closure in Arabidopsis (Arabidopsis thaliana). We uncovered that, in the guard cells, sulfate activates NADPH oxidases to produce reactive oxygen species (ROS) and that this ROS induction is essential for sulfate-induced stomata closure. In line with the function of ROS as the second-messenger of abscisic acid (ABA) signaling, sulfate does not induce ROS in the ABA-synthesis mutant, aba3-1, and sulfate-induced ROS were ineffective at closing stomata in the ABA-insensitive mutant abi2-1 and a SLOW ANION CHANNEL1 loss-of-function mutant. We provided direct evidence for sulfate-induced accumulation of ABA in the cytosol of guard cells by application of the ABAleon2.1 ABA sensor, the ABA signaling reporter ProRAB18:GFP, and quantification of endogenous ABA marker genes. In concordance with previous studies, showing that ABA DEFICIENT3 uses Cys as the substrate for activation of the ABSCISIC ALDEHYDE OXIDASE3 (AAO3) enzyme catalyzing the last step of ABA production, we demonstrated that assimilation of sulfate into Cys is necessary for sulfate-induced stomatal closure and that sulfate-feeding or Cys-feeding induces transcription of NINE-CIS-EPOXYCAROTENOID DIOXYGENASE3, limiting the synthesis of the AAO3 substrate. Consequently, Cys synthesis-depleted mutants are sensitive to soil-drying due to enhanced water loss. Our data demonstrate that sulfate is incorporated into Cys and tunes ABA biosynthesis in leaves, promoting stomatal closure, and that this mechanism contributes to the physiological water limitation response.
Collapse
Affiliation(s)
- Sundas Batool
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Veli Vural Uslu
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Hala Rajab
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Nisar Ahmad
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
- Department of Biotechnology, University of Science and Technology, 28100 Bannu, Pakistan
| | - Rainer Waadt
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Dietmar Geiger
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, 97082 Wuerzburg, Germany
| | - Mario Malagoli
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Padova, Italy
| | - Cheng-Bin Xiang
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, 97082 Wuerzburg, Germany
| | - Heinz Rennenberg
- Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany
| | - Cornelia Herschbach
- Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany
| | - Ruediger Hell
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
50
|
Naumann M, Hubberten HM, Watanabe M, Hänsch R, Schöttler MA, Hoefgen R. Sulfite Reductase Co-suppression in Tobacco Reveals Detoxification Mechanisms and Downstream Responses Comparable to Sulfate Starvation. FRONTIERS IN PLANT SCIENCE 2018; 9:1423. [PMID: 30374361 PMCID: PMC6196246 DOI: 10.3389/fpls.2018.01423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/07/2018] [Indexed: 05/30/2023]
Abstract
Sulfite reductase (SIR) is a key enzyme in higher plants in the assimilatory sulfate reduction pathway. SIR, being exclusively localized in plastids, catalyzes the reduction of sulfite (SO3 2-) to sulfide (S2-) and is essential for plant life. We characterized transgenic plants leading to co-suppression of the SIR gene in tobacco (Nicotiana tabacum cv. Samsun NN). Co-suppression resulted in reduced but not completely extinguished expression of SIR and in a reduction of SIR activity to about 20-50% of the activity in control plants. The reduction of SIR activity caused chlorotic and necrotic phenotypes in tobacco leaves, but with varying phenotype strength even among clones and increasing from young to old leaves. In transgenic plants compared to control plants, metabolite levels upstream of SIR accumulated, such as sulfite, sulfate and thiosulfate. The levels of downstream metabolites were reduced, such as cysteine, glutathione (GSH) and methionine. This metabolic signature resembles a sulfate deprivation phenotype as corroborated by the fact that O-acetylserine (OAS) accumulated. Further, chlorophyll contents, photosynthetic electron transport, and the contents of carbohydrates such as starch, sucrose, fructose, and glucose were reduced. Amino acid compositions were altered in a complex manner due to the reduction of contents of cysteine, and to some extent methionine. Interestingly, sulfide levels remained constant indicating that sulfide homeostasis is crucial for plant performance and survival. Additionally, this allows concluding that sulfide does not act as a signal in this context to control sulfate uptake and assimilation. The accumulation of upstream compounds hints at detoxification mechanisms and, additionally, a control exerted by the downstream metabolites on the sulfate uptake and assimilation system. Co-suppression lines showed increased sensitivity to additionally imposed stresses probably due to the accumulation of reactive compounds because of insufficient detoxification in combination with reduced GSH levels.
Collapse
Affiliation(s)
- Marcel Naumann
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Division of Quality of Plant Products, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | | | - Mutsumi Watanabe
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Nara Institute of Science and Technology, Ikoma, Japan
| | - Robert Hänsch
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|