1
|
You SH, Chen YP, Shi WJ, Li X, Wu Z, Yao QH. Genome-wide analysis of OPR family genes in Vitis vinifera and the role of VvOPR1 in copper, zinc tolerance. FRONTIERS IN PLANT SCIENCE 2025; 16:1509472. [PMID: 40078634 PMCID: PMC11897507 DOI: 10.3389/fpls.2025.1509472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
12-oxo-phytodienoic acid reductase (OPR) is one of the key enzymes in the octadecanoid pathway, and it controls the last step of jasmonic acid (JA) biosynthesis. Although multiple isoforms and functions of OPRs have been identified in various plants, no OPR genes have been identified, and their possible roles in grapevine development and defense mechanisms remain unknown. In this study, nine VvOPR genes were identified from grapevine genome and classified into two subfamilies. Systematic analyses of the physical and chemical properties, the expression and structure of the VvOPR genes, promoter elements, and chromosome locations were performed via bioinformatics and molecular biology methods. In addition, we described the characterization of the OPRI gene VvOPR1, which was synthesized via a PCR-based two-step DNA synthesis quantification reverse-transcription (PTDS) method. VvOPR1 expression is tissue-specific and induced by various stresses. The overexpression of VvOPR1 in Arabidopsis and rice (OT) significantly increased tolerance to Cu, Zn stress, and Cu, Zn stress-induced restriction of the germination rate, root/shoot length and fresh weight was significantly alleviated in OT. In OT, VvOPR1 enhanced the photosynthetic capacity, promoted ABA synthesis and the ABA-dependent stress response pathway, improved the antioxidation capacity by increasing the activities of ROS scavengers and the expression level of the related genes, while enhancing the accumulation of proline, AsA, GSH and reducing MDA and H2O2 levels. Moreover, VvOPR1 reduced Cu2+, Zn2+ accumulation and translocation. Together, we first systematically characterized the grapevine OPR gene family and reported that VvOPR1 responded to Cu, Zn stress in an ABA-dependent manner, and was quite independent of JA synthesis and signaling. All of the above results provide an important research basis and theoretical basis for further revealing the functions of VvOPR in grapevines in the future.
Collapse
Affiliation(s)
- Shuang-Hong You
- Fruit Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yuan-Ping Chen
- Fruit Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Wen-Jing Shi
- Fruit Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Xue Li
- Fruit Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Zheng Wu
- Fruit Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Quan-Hong Yao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
2
|
Zhang W, Li S, Xu W, Wang Q, Zhang H, Liu X, Chen X, Xu D, Chen H. Knocking out artificially selected gene GmAOC4 H8 improves germination in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:54. [PMID: 39992407 DOI: 10.1007/s00122-025-04840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
Seed germination is an essential stage in the life cycle of flowering plants, influencing the field emergence rates of seeds. Consequently, the role of GmAOC4 in soybean seed germination was investigated in the present study. Results suggested that the chloroplast-localized GmAOC4 exhibited high expression levels in the roots and young pods and during the seed germination stage in soybeans. It was found that GmAOC4 has been artificially selected during soybean domestication and improvement and that GmAOC4H8 showed repressed seed germination, of which the frequency in landraces and cultivars decreased when compared with wild soybean. Knocking out GmAOC4H8 via CRISPR/Cas9 led to enhanced germination in gmaoc4 mutants, suggesting its negative regulation on seed germination in soybeans. Additionally, decreased endogenous jasmonic acid (JA) and JA precursor, 12-oxo-phytodienoic acid, were found in gmaoc4 mutants. RNA-seq analyses revealed that 91 and 269 differentially expressed genes (DEGs) were up-regulated and down-regulated in gmaoc4 mutants, respectively. Among these DEGs, three genes were involved in JA biosynthetic and signaling pathways. Our results offer new insights into the mechanism of soybean seed germination regulation by GmAOC4.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Songsong Li
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Wenjing Xu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Qiong Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Hongmei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Xiaoqing Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Donghe Xu
- Japan International Research Center for Agricultural Science, Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan.
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China.
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu Province, China.
| |
Collapse
|
3
|
Adhikari A, Kaur S, Forouhar F, Kale S, Park SW. OPDA signaling channels resource (e-) allocation from the photosynthetic electron transfer chain to plastid cysteine biosynthesis in defense activation. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:594-606. [PMID: 39435638 DOI: 10.1093/jxb/erae421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
A primary precursor of jasmonates, 12-oxo-phytodienoic acid (OPDA), is an autonomous hormone signal that activates and fine-tunes plant defense responses, as well as growth and development. However, the architecture of its signaling circuits remains largely elusive. Here we describe that OPDA signaling drives photosynthetic reductant powers toward sulfur assimilation in the chloroplasts, incorporating sulfide into cysteine. Under stressed states, OPDA-accumulated in the chloroplasts-binds and promotes cyclophilin 20-3, an OPDA receptor, to transfer electrons from thioredoxin F2, an electron carrier in the photosynthesis reaction, to serine acetyltransferase 1 (SAT1). The charge carrier (H+, e-) then splits dimeric SAT1 trimers in half to signal the recruitment of dimeric O-acetylserine(thiol)lyase B, forming a hetero-oligomeric cysteine synthase complex (CSC). CSC formation and its metabolic products (especially glutathione) then coordinate redox-resolved retrograde signaling from the chloroplasts to the nucleus in adjusting expression of OPDA-responsive genes such as GLUTAREDOXIN 480 and CYTOCHROME P450, and triggering defense responses against various ecological constraints such as salinity and excess oxidants, as well as mechanical wounding. We thus conclude that OPDA signaling regulates a unique metabolic switch in channeling light input into outputs that fuel/shape a multitude of physiological processes, optimizing plant growth fitness and survival capacity under a range of environmental stress cues.
Collapse
Affiliation(s)
- Ashna Adhikari
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Simrandeep Kaur
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Farhad Forouhar
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Proteomics & Macromolecular Crystallography Shared Resource, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shiv Kale
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sang-Wook Park
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
4
|
Široká J, Ament A, Mik V, Pospíšil T, Kralová M, Zhang C, Pernisová M, Karady M, Nožková V, Nishizato Y, Kaji T, Saito R, Htitich M, Floková K, Wasternack C, Strnad M, Ueda M, Novák O, Brunoni F. Amide conjugates of the jasmonate precursor cis-(+)-12-oxo-phytodienoic acid regulate its homeostasis during plant stress responses. PLANT PHYSIOLOGY 2024; 197:kiae636. [PMID: 39607728 DOI: 10.1093/plphys/kiae636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Jasmonates are a family of oxylipin phytohormones regulating plant development and growth and mediating "defense versus growth" responses. The upstream JA biosynthetic precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA) acts independently of CORONATIVE INSENSITIVE 1-mediated JA signaling in several stress-induced and developmental processes. However, its perception and metabolism are only partially understood. An isoleucine analog of the biologically active JA-Ile, OPDA-Ile, was detected years ago in wounded leaves of flowering plants, opening up the possibility that conjugation of cis-OPDA to amino acids might be a relevant mechanism for cis-OPDA regulation. Here, we extended the analysis of amino acid conjugates of cis-OPDA and identified naturally occurring OPDA-Val, OPDA-Phe, OPDA-Ala, OPDA-Glu, and OPDA-Asp accumulating in response to biotic and abiotic stress in Arabidopsis (Arabidopsis thaliana). The OPDA amino acid conjugates displayed cis-OPDA-related plant responses in a JA-Ile-dependent manner. We also showed that the synthesis and hydrolysis of cis-OPDA amino acid conjugates are mediated by members of the amidosynthetase GRETCHEN HAGEN 3 and the amidohydrolase INDOLE-3-ACETYL-LEUCINE RESISTANT 1/ILR1-like families. Thus, OPDA amino acid conjugates function in the catabolism or temporary storage of cis-OPDA in stress responses instead of acting as chemical signals per se.
Collapse
Affiliation(s)
- Jitka Široká
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-77900, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc CZ-77900, Czech Republic
| | - Anita Ament
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-77900, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc CZ-77900, Czech Republic
| | - Václav Mik
- Department of Experimental Biology,Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-77900, Czech Republic
| | - Tomáš Pospíšil
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-77900, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc CZ-77900, Czech Republic
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-77900 Olomouc, Czech Republic
| | - Michaela Kralová
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-77900, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc CZ-77900, Czech Republic
| | - Chao Zhang
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-77900, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc CZ-77900, Czech Republic
| | - Markéta Pernisová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science & Plant Sciences Core Facility, Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Michal Karady
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-77900, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc CZ-77900, Czech Republic
| | - Vladimira Nožková
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-77900 Olomouc, Czech Republic
| | - Yuho Nishizato
- Graduate School of Science, Tohoku University, Aoba-ku, Sendai JP-980-8578, Japan
| | - Takuya Kaji
- Graduate School of Science, Tohoku University, Aoba-ku, Sendai JP-980-8578, Japan
| | - Rina Saito
- Graduate School of Science, Tohoku University, Aoba-ku, Sendai JP-980-8578, Japan
| | - Mohamed Htitich
- Department of Development and Environmental Studies, Faculty of Science, Palacký University, tř. 17. listopadu 12, CZ-77146 Olomouc, Czech Republic
| | - Kristýna Floková
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-77900, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc CZ-77900, Czech Republic
| | - Claus Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale) D-06120, Germany
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-77900, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc CZ-77900, Czech Republic
| | - Minoru Ueda
- Graduate School of Science, Tohoku University, Aoba-ku, Sendai JP-980-8578, Japan
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-77900, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc CZ-77900, Czech Republic
| | - Federica Brunoni
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-77900, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc CZ-77900, Czech Republic
| |
Collapse
|
5
|
Wang Q, Feng F, Zhang K, He Y, Qi W, Ma Z, Song R. ZmICE1a regulates the defence-storage trade-off in maize endosperm. NATURE PLANTS 2024; 10:1999-2013. [PMID: 39604637 DOI: 10.1038/s41477-024-01845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 10/08/2024] [Indexed: 11/29/2024]
Abstract
The endosperm of cereal grains feeds the entire world as a major food supply; however, little is known about its defence response during endosperm development. The Inducer of CBF Expression 1 (ICE1) is a well-known regulator of cold tolerance in plants. ICE1 has a monocot-specific homologue that is preferentially expressed in cereal endosperms but with an unclear regulatory function. Here we characterized the function of monocot-specific ZmICE1a, which is expressed in the entire endosperm, with a predominant expression in its peripheral regions, including the aleurone layer, subaleurone layer and basal endosperm transfer layer in maize (Zea mays). Loss of function of ZmICE1a reduced starch content and kernel weight. RNA sequencing and CUT&Tag-seq analyses revealed that ZmICE1a positively regulates genes in starch synthesis while negatively regulating genes in aleurone layer-specific defence and the synthesis of indole-3-acetic acid and jasmonic acid (JA). Exogenous indole-3-acetic acid and JA both induce the expression of numerous defence genes, which show distinct spatial-specific expression in the basal endosperm transfer layer and subaleurone layer, respectively. Moreover, we dissected a JA-ZmJAZ9-ZmICE1a-MPI signalling axis involved in JA-mediated defence regulation. Overall, our study revealed ZmICE1a as a key regulator of endosperm defence response and a coordinator of the defence-storage trade-off in endosperm development.
Collapse
Affiliation(s)
- Qun Wang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Fan Feng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Kechun Zhang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yonghui He
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zeyang Ma
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, China.
| | - Rentao Song
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, China.
| |
Collapse
|
6
|
Hubert B, Leprince O, Buitink J. Sleeping but not defenceless: seed dormancy and protection. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6110-6124. [PMID: 38758708 PMCID: PMC11480657 DOI: 10.1093/jxb/erae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/16/2024] [Indexed: 05/19/2024]
Abstract
To ensure their vital role in disseminating the species, dormant seeds have developed adaptive strategies to protect themselves against pathogens and predators. This is orchestrated through the synthesis of an array of constitutive defences that are put in place in a developmentally regulated manner, which are the focus of this review. We summarize the defence activity and the nature of the molecules coming from the exudate of imbibing seeds that leak into their vicinity, also referred to as the spermosphere. As a second layer of protection, the dual role of the seed coat will be discussed; as a physical barrier and a multi-layered reservoir of defence compounds that are synthesized during seed development. Since imbibed dormant seeds can persist in the soil for extensive periods, we address the question of whether during this time a constitutively regulated defence programme is switched on to provide further protection, via the well-defined pathogenesis-related (PR) protein family. In addition, we review the hormonal and signalling pathways that might be involved in the interplay between dormancy and defence and point out questions that need further attention.
Collapse
Affiliation(s)
- Benjamin Hubert
- INRAE, Institut Agro, Université d'Angers, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Olivier Leprince
- INRAE, Institut Agro, Université d'Angers, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Julia Buitink
- INRAE, Institut Agro, Université d'Angers, IRHS, SFR QUASAV, F‐49000 Angers, France
| |
Collapse
|
7
|
Alonso S, Gautam K, Iglesias-Moya J, Martínez C, Jamilena M. Crosstalk between Ethylene, Jasmonate and ABA in Response to Salt Stress during Germination and Early Plant Growth in Cucurbita pepo. Int J Mol Sci 2024; 25:8728. [PMID: 39201415 PMCID: PMC11354493 DOI: 10.3390/ijms25168728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The crosstalk of phytohormones in the regulation of growth and development and the response of plants to environmental stresses is a cutting-edge research topic, especially in crop species. In this paper, we study the role and crosstalk between abscisic acid (ABA), ethylene (ET), and jasmonate (JA) in the control of germination and seedling growth in water or in standard nutrient solution and under salt stress (supplemented with 100-200 mM NaCl). The roles of ET and JA were studied using squash ET- and JA-deficient mutants aco1a and lox3a, respectively, while the crosstalk between ET, JA, and ABA was determined by comparing the expression of the key ABA, JA, and ET genes in wild-type (WT) and mutant genotypes under standard conditions and salt stress. Data showed that ET and JA are positive regulators of squash germination, a function that was found to be mediated by downregulating the ABA biosynthesis and signaling pathways. Under salt stress, aco1a germinated earlier than WT, while lox3a showed the same germination rate as WT, indicating that ET, but not JA, restricts squash germination under unfavorable salinity conditions, a function that was also mediated by upregulation of ABA. ET and JA were found to be negative regulators of plant growth during seedling establishment, although ET inhibits both the aerial part and the root, while JA inhibits only the root. Both aco1a and lox3a mutant roots showed increased tolerance to salt stress, a phenotype that was found to be mainly mediated by JA, although we cannot exclude that it is also mediated by ABA.
Collapse
Affiliation(s)
| | | | | | - Cecilia Martínez
- Department of Biology and Geology, Agri-Food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120 Almería, Spain; (S.A.); (K.G.); (J.I.-M.)
| | - Manuel Jamilena
- Department of Biology and Geology, Agri-Food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120 Almería, Spain; (S.A.); (K.G.); (J.I.-M.)
| |
Collapse
|
8
|
Wang Y, Jin G, Song S, Jin Y, Wang X, Yang S, Shen X, Gan Y, Wang Y, Li R, Liu JX, Hu J, Pan R. A peroxisomal cinnamate:CoA ligase-dependent phytohormone metabolic cascade in submerged rice germination. Dev Cell 2024; 59:1363-1378.e4. [PMID: 38579719 DOI: 10.1016/j.devcel.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
The mechanism underlying the ability of rice to germinate underwater is a largely enigmatic but key research question highly relevant to rice cultivation. Moreover, although rice is known to accumulate salicylic acid (SA), SA biosynthesis is poorly defined, and its role in underwater germination is unknown. It is also unclear whether peroxisomes, organelles essential to oilseed germination and rice SA accumulation, play a role in rice germination. Here, we show that submerged imbibition of rice seeds induces SA accumulation to promote germination in submergence. Two submergence-induced peroxisomal Oryza sativa cinnamate:CoA ligases (OsCNLs) are required for this SA accumulation. SA exerts this germination-promoting function by inducing indole-acetic acid (IAA) catabolism through the IAA-amino acid conjugating enzyme GH3. The metabolic cascade we identified may potentially be adopted in agriculture to improve the underwater germination of submergence-intolerant rice varieties. SA pretreatment is also a promising strategy to improve submerged rice germination in the field.
Collapse
Affiliation(s)
- Yukang Wang
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Gaochen Jin
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Shuyan Song
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Yijun Jin
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiaowen Wang
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Shuaiqi Yang
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xingxing Shen
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yinbo Gan
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yuexing Wang
- China National Rice Research Institute, Hangzhou 310006, China
| | - Ran Li
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
| | - Ronghui Pan
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China.
| |
Collapse
|
9
|
Gao J, Liu Y, Zhao D, Ding Y, Gao L, Su X, Song K, He X. CeO 2NP priming enhances the seed vigor of alfalfa ( Medicago sativa) under salt stress. FRONTIERS IN PLANT SCIENCE 2024; 14:1264698. [PMID: 38264026 PMCID: PMC10803516 DOI: 10.3389/fpls.2023.1264698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
Soil salinization is a common environmental problem that seriously threatens crop yield and food security, especially through its impact on seed germination. Nanoparticle priming, an emerging seed treatment method, is receiving increasing attention in improving crop yield and stress resistance. This study used alfalfa seeds as materials to explore the potential benefits of cerium oxide nanoparticle (CeO2NP) priming to promote seed germination and improve salt tolerance. CeO2NPs at concentrations up to 500 mg/L were able to significantly alleviate salt stress in alfalfa seeds (200 mM), with 50 mg/L of CeO2NP having the best effect, significantly (P< 0.05) increasing germination potential (from 4.0% to 51.3%), germination rate (from 10.0% to 62.7%), root length (from 8.3 cm to 23.1 cm), and seedling length (from 9.8 cm to 13.7 cm). Priming treatment significantly (P< 0.05) increased seed water absorption by removing seed hardness and also reducing abscisic acid and jasmonic acid contents to relieve seed dormancy. CeO2NP priming increased α-amylase activity and osmoregulatory substance level, decreased reactive oxygen species and malonaldehyde contents and relative conductivity, and increased catalase enzyme activity. Seed priming regulated carotenoid, zeatin, and plant hormone signal transduction pathways, among other metabolic pathways, while CeO2NP priming additionally promoted the enrichment of α-linolenic acid and diterpenoid hormone metabolic pathways under salt stress. In addition, CeO2NPs enhanced α-amylase activity (by 6.55%) in vitro. The optimal tested concentration (50 mg/L) of CeO2NPs was able to improve the seed vigor, enhance the activity of α-amylase, regulate the osmotic level and endogenous hormone levels, and improve the salt tolerance of alfalfa seeds. This study demonstrates the efficacy of a simple seed treatment strategy that can improve crop stress resistance, which is of great importance for reducing agricultural costs and promoting sustainable agricultural development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xueqing He
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Sun Y, Zhang F, Wei J, Song K, Sun L, Yang Y, Qin Q, Yang S, Li Z, Xu G, Sun S, Xue Y. Phosphate Transporter OsPT4, Ubiquitinated by E3 Ligase OsAIRP2, Plays a Crucial Role in Phosphorus and Nitrogen Translocation and Consumption in Germinating Seed. RICE (NEW YORK, N.Y.) 2023; 16:54. [PMID: 38052756 PMCID: PMC10697913 DOI: 10.1186/s12284-023-00666-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023]
Abstract
Phosphorus (P) and nitrogen (N) are essential macronutrients necessary for plant growth and development. OsPT4 is a high-affinity phosphate (Pi) transporter that has a positive impact on nutrient uptake and seed development. In this study, the expression patterns of different Pi transporter genes in germinating seeds were determined, and the relative expression of OsPT4 was induced in Pi-deficient seeds and gradually increased with the passage of germination time. The analysis of P, N, Pi, and amino acid concentrations in germinating seeds of OsPT4 mutants showed that the OsPT4 mutation caused P and N retention and a continuous reduction in multiple amino acid concentrations in germinating seeds. Transcriptome analysis and qRT-PCR results also indicated that the OsPT4 mutation inhibits the expression of genes related to P and N transportation and amino acid synthesis in germinating seeds. In addition, the paraffin section and TUNEL assay of OsPT4 mutant germinating seeds suggests that OsPT4 mutation causes programmed cell death (PCD) delayed in the aleurone layer and inhibition of leaf outgrowth. Moreover, we also found that OsPT4 was ubiquitinated by OsAIRP2, which is a C3HC4-type RING E3 Ub ligase. Our studies illustrate that OsPT4 plays a crucial role in P and N collaborative translocation and consumption in germinating seeds. It also provides a theoretical basis for the molecules and physiological mechanisms of P and N cross-talk under suppressed Pi uptake conditions.
Collapse
Affiliation(s)
- Yafei Sun
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Fang Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jia Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Ke Song
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Lijuan Sun
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yang Yang
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Qin Qin
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Shiyan Yang
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Zhouwen Li
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yong Xue
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
11
|
Ezediokpu MN, Halitschke R, Krause K, Boland W, Kothe E. Pre-symbiotic response of the compatible host spruce and low-compatibility host pine to the ectomycorrhizal fungus Tricholoma vaccinum. Front Microbiol 2023; 14:1280485. [PMID: 38111643 PMCID: PMC10725908 DOI: 10.3389/fmicb.2023.1280485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Mutualistic ectomycorrhizal symbiosis requires the exchange of signals even before direct contact of the partners. Volatiles, and specifically volatile terpenoids, can be detected at a distance and may trigger downstream signaling and reprogramming of metabolic responses. The late-stage ectomycorrhizal fungus Tricholoma vaccinum shows high host specificity with its main host spruce, Picea abies, while rarely associations can be found with pine, Pinus sylvestris. Hence, a comparison of the host and the low-compatibility host's responses can untangle differences in early signaling during mycorrhiza formation. We investigated sesquiterpenes and identified different patterns of phytohormone responses with spruce and pine. To test the specific role of volatiles, trees were exposed to the complete volatilome of the fungus versus volatiles present when terpene synthases were inhibited by rosuvastatin. The pleiotropic response in spruce included three non-identified products, a pyridine derivative as well as two diterpenes. In pine, other terpenoids responded to the fungal signal. Using exposure to the fungal volatilome with or without terpene synthesis inhibited, we could find a molecular explanation for the longer time needed to establish the low-compatibility interaction.
Collapse
Affiliation(s)
- Marycolette Ndidi Ezediokpu
- Microbial Communication, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Rayko Halitschke
- Mass Spectrometry and Metabolomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Katrin Krause
- Microbial Communication, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Wilhelm Boland
- Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Erika Kothe
- Microbial Communication, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
12
|
Zhang X, Chen X, Teixeira da Silva JA, Zhang T, Xiong Y, Li Y, Yuan Y, Pan X, Ma G. Characterization of sandalwood (E,E)-α-farnesene synthase whose overexpression enhances cold tolerance through jasmonic acid biosynthesis and signaling in Arabidopsis. PLANTA 2023; 258:54. [PMID: 37515637 DOI: 10.1007/s00425-023-04212-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
MAIN CONCLUSION Santalum album (E,E)-α-farnesene synthase catalyzes FPP into (E,E)-α-farnesene. Overexpression of the SaAFS gene positively improved cold stress tolerance through JA biosynthesis and signaling pathways in Arabidopsis. Volatile terpenoids are released from plants that suffer negative effects following exposure to various biotic and abiotic stresses. Recent studies revealed that (E,E)-α-farnesene synthase (AFS) plays a significant role in a plant's defence against biotic attack. However, little is known about whether AFS contributes to plant resistance to cold stress. In this study, a SaAFS gene was isolated from Indian sandalwood (Santalum album L.) and functionally characterized. The SaAFS protein mainly converts farnesyl diphosphate to (E,E)-α-farnesene. SaAFS was clustered into the AFS clade from angiosperms, suggesting a highly conserved enzyme. SaAFS displayed a significant response to cold stress and methyl jasmonate. SaAFS overexpression (OE) in Arabidopsis enhanced cold tolerance by increasing proline content, reducing malondialdehyde content, electrolyte leakage, and accumulating reactive oxygen species. Transcriptomic analysis revealed that upregulated genes related to stress response and JA biosynthesis and signaling were detected in SaAFS-OE lines compared with wild type plants that were exposed to cold stress. Endogenous JA and jasmonoyl-isoleucine content increased significantly in SaAFS-OE lines exposed to cold stress. Collectively considered, these results suggest that the SaAFS gene is a positive regulator during cold stress tolerance via JA biosynthesis and signaling pathways.
Collapse
Affiliation(s)
- Xinhua Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Xiaohong Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | | - Ting Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuping Xiong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuan Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yunfei Yuan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoping Pan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guohua Ma
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
13
|
Silva-Martins G, Roussin-Léveillée C, Bolaji A, Veerapen VP, Moffett P. A Jasmonic Acid-Related Mechanism Affects ARGONAUTE5 Expression and Antiviral Defense Against Potato Virus X in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:425-433. [PMID: 36853196 DOI: 10.1094/mpmi-11-22-0224-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
During virus infection, Argonaute (AGO) proteins bind to Dicer-produced virus small interfering RNAs and target viral RNA based on sequence complementarity, thereby limiting virus proliferation. The Arabidopsis AGO2 protein is important for resistance to multiple viruses, including potato virus X (PVX). In addition, AGO5 is important in systemic defense against PVX. Normally AGO5 is expressed only in reproductive tissues, and its induction by virus infection is thought to be important for its participation in antiviral defense. However, it is unclear what mechanisms induce AGO5 expression in response to virus infection. Here, we show that dde2-2, a mutant compromised in jasmonic acid (JA) biosynthesis, displays constitutive upregulation of AGO5. This mutant also showed increased resistance to PVX and this resistance was dependent on a functional AGO5 gene. Furthermore, methyl jasmonate treatment ablated AGO5 expression in leaves during virus infection and resulted in increased susceptibility to virus. Our results further support a role for AGO5 in antiviral RNA silencing and a negative regulation by JA, a plant hormone associated with defense against plant-feeding arthropods, which are often the vectors of plant viruses. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Guilherme Silva-Martins
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | | | - Ayooluwa Bolaji
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Varusha Pillay Veerapen
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
14
|
Zhu J, Wei X, Yin C, Zhou H, Yan J, He W, Yan J, Li H. ZmEREB57 regulates OPDA synthesis and enhances salt stress tolerance through two distinct signalling pathways in Zea mays. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37326336 DOI: 10.1111/pce.14644] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
In plant, APETALA2/ethylene-responsive factor (AP2/ERF)-domain transcription factors are important in regulating abiotic stress tolerance. In this study, ZmEREB57 encoding a AP2/ERF transcription factor was identified and its function was investigated in maize. ZmEREB57 is a nuclear protein with transactivation activity induced by several abiotic stress types. Furthermore, two CRISPR/Cas9 knockout lines of ZmEREB57 showed enhanced sensitivity to saline conditions, whereas the overexpression of ZmEREB57 increased salt tolerance in maize and Arabidopsis. DNA affinity purification sequencing (DAP-Seq) analysis revealed that ZmEREB57 notably regulates target genes by binding to promoters containing an O-box-like motif (CCGGCC). ZmEREB57 directly binds to the promoter of ZmAOC2 involved in the synthesis of 12-oxo-phytodienoic acid (OPDA) and jasmonic acid (JA). Transcriptome analysis revealed that several genes involved in regulating stress and redox homeostasis showed differential expression patterns in OPDA- and JA-treated maize seedlings exposed to salt stress compared to those treated with salt stress alone. Analysis of mutants deficient in the biosynthesis of OPDA and JA revealed that OPDA functions as a signalling molecule in the salt response. Our results indicate that ZmEREB57 involves in salt tolerance by regulating OPDA and JA signalling and confirm early observations that OPDA signalling functions independently of JA signalling.
Collapse
Affiliation(s)
- Jiantang Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xuening Wei
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Chaoshu Yin
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Hui Zhou
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Jiahui Yan
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Wenxing He
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hui Li
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
15
|
Ivanauskaite A, Rantala M, Laihonen L, Konert MM, Schwenner N, Mühlenbeck JS, Finkemeier I, Mulo P. Loss of Chloroplast GNAT Acetyltransferases Results in Distinct Metabolic Phenotypes in Arabidopsis. PLANT & CELL PHYSIOLOGY 2023; 64:549-563. [PMID: 37026998 DOI: 10.1093/pcp/pcad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/16/2023] [Indexed: 05/17/2023]
Abstract
Acetylation is one of the most common chemical modifications found on a variety of molecules ranging from metabolites to proteins. Although numerous chloroplast proteins have been shown to be acetylated, the role of acetylation in the regulation of chloroplast functions has remained mainly enigmatic. The chloroplast acetylation machinery in Arabidopsis thaliana consists of eight General control non-repressible 5 (GCN5)-related N-acetyltransferase (GNAT)-family enzymes that catalyze both N-terminal and lysine acetylation of proteins. Additionally, two plastid GNATs have also been reported to be involved in the biosynthesis of melatonin. Here, we have characterized six plastid GNATs (GNAT1, GNAT2, GNAT4, GNAT6, GNAT7 and GNAT10) using a reverse genetics approach with an emphasis on the metabolomes and photosynthesis of the knock-out plants. Our results reveal the impact of GNAT enzymes on the accumulation of chloroplast-related compounds, such as oxylipins and ascorbate, and the GNAT enzymes also affect the accumulation of amino acids and their derivatives. Specifically, the amount of acetylated arginine and proline was significantly decreased in the gnat2 and gnat7 mutants, respectively, as compared to the wild-type Col-0 plants. Additionally, our results show that the loss of the GNAT enzymes results in increased accumulation of Rubisco and Rubisco activase (RCA) at the thylakoids. Nevertheless, the reallocation of Rubisco and RCA did not have consequent effects on carbon assimilation under the studied conditions. Taken together, our results show that chloroplast GNATs affect diverse aspects of plant metabolism and pave way for future research into the role of protein acetylation.
Collapse
Affiliation(s)
- Aiste Ivanauskaite
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Marjaana Rantala
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Laura Laihonen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Minna M Konert
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Naike Schwenner
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Jens S Mühlenbeck
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Paula Mulo
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
16
|
Niaz M, Zhang L, Lv G, Hu H, Yang X, Cheng Y, Zheng Y, Zhang B, Yan X, Htun A, Zhao L, Sun C, Zhang N, Ren Y, Chen F. Identification of TaGL1-B1 gene controlling grain length through regulation of jasmonic acid in common wheat. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:979-989. [PMID: 36650924 PMCID: PMC10106860 DOI: 10.1111/pbi.14009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 05/04/2023]
Abstract
Grain length is one of the most important factors in determining wheat yield. Here, a stable QTL for grain length was mapped on chromosome 1B in a F10 recombinant inbred lines (RIL) population, and the gene TaGL1-B1 encoding carotenoid isomerase was identified in a secondary large population through multiple strategies. The genome-wide association study (GWAS) in 243 wheat accessions revealed that the marker for TaGL1-B1 was the most significant among all chromosomes. EMS mutants of TaGL1 possessed significantly reduced grain length, whereas TaGL1-B1-overexpressed lines possessed significantly increased grain length. Moreover, TaGL1-B1 strongly interacted with TaPAP6. TaPAP6-overexpressed lines had significantly increased grain length. Transcriptome analysis suggested that TaPAP6 was possibly involved in the accumulation of JA (jasmonic acid). Consistently, JA content was significantly increased in the TaGL1-B1 and TaPAP6 overexpression lines. Additionally, the role of TaGL1-B1 in regulating carotenoids was verified through QTL mapping, GWAS, EMS mutants and overexpression lines. Notably, overexpression of TaGL1-B1 significantly increased wheat yield in multiple locations. Taken together, overexpression of TaGL1-B1 enhanced grain length, probably through interaction with TaPAP6 to cause the accumulation of JA that improved carotenoid content and photosynthesis, thereby resulted in increased wheat yield. This study provided valuable genes controlling grain length to improve yield and a potential insight into the molecular mechanism of modulating JA-mediated grain size in wheat.
Collapse
Affiliation(s)
- Mohsin Niaz
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Lingran Zhang
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Guoguo Lv
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Huiting Hu
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Xi Yang
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Yongzhen Cheng
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Yueting Zheng
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Bingyang Zhang
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Xiangning Yan
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Aye Htun
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
17
|
Thakro V, Malik N, Basu U, Srivastava R, Narnoliya L, Daware A, Varshney N, Mohanty JK, Bajaj D, Dwivedi V, Tripathi S, Jha UC, Dixit GP, Singh AK, Tyagi AK, Upadhyaya HD, Parida SK. A superior gene allele involved in abscisic acid signaling enhances drought tolerance and yield in chickpea. PLANT PHYSIOLOGY 2023; 191:1884-1912. [PMID: 36477336 PMCID: PMC10022645 DOI: 10.1093/plphys/kiac550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/15/2022] [Indexed: 06/17/2023]
Abstract
Identifying potential molecular tags for drought tolerance is essential for achieving higher crop productivity under drought stress. We employed an integrated genomics-assisted breeding and functional genomics strategy involving association mapping, fine mapping, map-based cloning, molecular haplotyping and transcript profiling in the introgression lines (ILs)- and near isogenic lines (NILs)-based association panel and mapping population of chickpea (Cicer arietinum). This combinatorial approach delineated a bHLH (basic helix-loop-helix) transcription factor, CabHLH10 (Cicer arietinum bHLH10) underlying a major QTL, along with its derived natural alleles/haplotypes governing yield traits under drought stress in chickpea. CabHLH10 binds to a cis-regulatory G-box promoter element to modulate the expression of RD22 (responsive to desiccation 22), a drought/abscisic acid (ABA)-responsive gene (via a trans-expression QTL), and two strong yield-enhancement photosynthetic efficiency (PE) genes. This, in turn, upregulates other downstream drought-responsive and ABA signaling genes, as well as yield-enhancing PE genes, thus increasing plant adaptation to drought with reduced yield penalty. We showed that a superior allele of CabHLH10 introgressed into the NILs improved root and shoot biomass and PE, thereby enhancing yield and productivity during drought without compromising agronomic performance. Furthermore, overexpression of CabHLH10 in chickpea and Arabidopsis (Arabidopsis thaliana) conferred enhanced drought tolerance by improving root and shoot agro-morphological traits. These findings facilitate translational genomics for crop improvement and the development of genetically tailored, climate-resilient, high-yielding chickpea cultivars.
Collapse
Affiliation(s)
- Virevol Thakro
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Naveen Malik
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Udita Basu
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rishi Srivastava
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Laxmi Narnoliya
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anurag Daware
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nidhi Varshney
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitendra K Mohanty
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepak Bajaj
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vikas Dwivedi
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Uday Chand Jha
- Crop Improvement Division, Indian Institute of Pulses Research (IIPR), Kanpur 208024, India
| | - Girish Prasad Dixit
- Crop Improvement Division, Indian Institute of Pulses Research (IIPR), Kanpur 208024, India
| | - Ashok K Singh
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Akhilesh K Tyagi
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
| | | | | |
Collapse
|
18
|
Mei S, Zhang M, Ye J, Du J, Jiang Y, Hu Y. Auxin contributes to jasmonate-mediated regulation of abscisic acid signaling during seed germination in Arabidopsis. THE PLANT CELL 2023; 35:1110-1133. [PMID: 36516412 PMCID: PMC10015168 DOI: 10.1093/plcell/koac362] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/21/2022] [Accepted: 12/09/2022] [Indexed: 05/30/2023]
Abstract
Abscisic acid (ABA) represses seed germination and postgerminative growth in Arabidopsis thaliana. Auxin and jasmonic acid (JA) stimulate ABA function; however, the possible synergistic effects of auxin and JA on ABA signaling and the underlying molecular mechanisms remain elusive. Here, we show that exogenous auxin works synergistically with JA to enhance the ABA-induced delay of seed germination. Auxin biosynthesis, perception, and signaling are crucial for JA-promoted ABA responses. The auxin-dependent transcription factors AUXIN RESPONSE FACTOR10 (ARF10) and ARF16 interact with JASMONATE ZIM-DOMAIN (JAZ) repressors of JA signaling. ARF10 and ARF16 positively mediate JA-increased ABA responses, and overaccumulation of ARF16 partially restores the hyposensitive phenotype of JAZ-accumulating plants defective in JA signaling in response to combined ABA and JA treatment. Furthermore, ARF10 and ARF16 physically associate with ABSCISIC ACID INSENSITIVE5 (ABI5), a critical regulator of ABA signaling, and the ability of ARF16 to stimulate JA-mediated ABA responses is mainly dependent on ABI5. ARF10 and ARF16 activate the transcriptional function of ABI5, whereas JAZ repressors antagonize their effects. Collectively, our results demonstrate that auxin contributes to the synergetic modulation of JA on ABA signaling, and explain the mechanism by which ARF10/16 coordinate with JAZ and ABI5 to integrate the auxin, JA, and ABA signaling pathways.
Collapse
Affiliation(s)
- Song Mei
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Minghui Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwen Ye
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
19
|
Chang Y, Shi M, Sun Y, Cheng H, Ou X, Zhao Y, Zhang X, Day B, Miao C, Jiang K. Light-induced stomatal opening in Arabidopsis is negatively regulated by chloroplast-originated OPDA signaling. Curr Biol 2023; 33:1071-1081.e5. [PMID: 36841238 DOI: 10.1016/j.cub.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/02/2022] [Accepted: 02/02/2023] [Indexed: 02/27/2023]
Abstract
Stomatal movement is orchestrated by diverse signaling cascades and metabolic activities in guard cells. Light triggers the opening of the pores through the phototropin-mediated pathway, which leads to the activation of plasma membrane H+-ATPase and thereby facilitates potassium accumulation through Kin+ channels. However, it remains poorly understood how phototropin signaling is fine-tuned to prevent excessive stomatal opening and consequent water loss. Here, we show that the stomatal response to light is negatively regulated by 12-oxo-phytodienoic acid (OPDA), an oxylipin metabolite produced through enzymatic oxygenation of polyunsaturated fatty acids (PUFAs). We identify a set of phospholipase-encoding genes, phospholipase (PLIP)1/2/3, which are transactivated rapidly in guard cells upon illumination in a phototropin-dependent manner. These phospholipases release PUFAs from the chloroplast membrane, which is oxidized by guard-cell lipoxygenases and further metabolized to OPDA. The OPDA-deficient mutants had wider stomatal pores, whereas mutants containing elevated levels of OPDA showed the opposite effect on stomatal aperture. Transmembrane solute fluxes that drive stomatal aperture were enhanced in lox6-1 guard cells, indicating that OPDA signaling ultimately impacts on activities of proton pumps and Kin+ channels. Interestingly, the accelerated stomatal kinetics in lox6-1 leads to increased plant growth without cost in water or macronutrient use. Together, our results reveal a new role for chloroplast membrane oxylipin metabolism in stomatal regulation. Moreover, the accelerated stomatal opening kinetics in OPDA-deficient mutants benefits plant growth and water use efficiency.
Collapse
Affiliation(s)
- Yuankai Chang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China
| | - Mianmian Shi
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yanfeng Sun
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China
| | - Hui Cheng
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China
| | - Xiaobin Ou
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yi Zhao
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Xuebin Zhang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Chen Miao
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China.
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
20
|
Jimenez Aleman GH, Thirumalaikumar VP, Jander G, Fernie AR, Skirycz A. OPDA, more than just a jasmonate precursor. PHYTOCHEMISTRY 2022; 204:113432. [PMID: 36115386 DOI: 10.1016/j.phytochem.2022.113432] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
The oxylipin 12-oxo-phytodienoic acid (OPDA) is known as a biosynthetic precursor of the important plant hormone jasmonic acid. However, OPDA is also a signaling molecule with functions independent of jasmonates. OPDA involvement in diverse biological processes, from plant defense and stress responses to growth regulation and development, has been documented across plant species. OPDA is synthesized in the plastids from alpha-linolenic acid, and OPDA binding to plastidial cyclophilins activates TGA transcription factors upstream of genes associated with stress responses. Here, we summarize what is known about OPDA metabolism and signaling while briefly discussing its jasmonate dependent and independent roles. We also describe open questions, such as the OPDA protein interactome and biological roles of OPDA conjugates.
Collapse
Affiliation(s)
| | | | - Georg Jander
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany.
| | | |
Collapse
|
21
|
Liu S, Li T, Zhang P, Zhao L, Yi D, Zhang Z, Cong B. Insights into the Jasmonate Signaling in Basal Land Plant Revealed by the Multi-Omics Analysis of an Antarctic Moss Pohlia nutans Treated with OPDA. Int J Mol Sci 2022; 23:13507. [PMID: 36362295 PMCID: PMC9658390 DOI: 10.3390/ijms232113507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 09/28/2023] Open
Abstract
12-oxo-phytodienoic acid (OPDA) is a biosynthetic precursor of jasmonic acid and triggers multiple biological processes from plant development to stress responses. However, the OPDA signaling and relevant regulatory networks were largely unknown in basal land plants. Using an integrated multi-omics technique, we investigated the global features in metabolites and transcriptional profiles of an Antarctic moss (Pohlia nutans) in response to OPDA treatment. We detected 676 metabolites based on the widely targeted metabolomics approach. A total of 82 significantly changed metabolites were observed, including fatty acids, flavonoids, phenolic acids, amino acids and derivatives, and alkaloids. In addition, the transcriptome sequencing was conducted to uncover the global transcriptional profiles. The representative differentially expressed genes were summarized into functions including Ca2+ signaling, abscisic acid signaling, jasmonate signaling, lipid and fatty acid biosynthesis, transcription factors, antioxidant enzymes, and detoxification proteins. The integrated multi-omics analysis revealed that the pathways of jasmonate and ABA signaling, lipid and fatty acid biosynthesis, and flavonoid biosynthesis might dominate the molecular responses to OPDA. Taken together, these observations provide insights into the molecular evolution of jasmonate signaling and the adaptation mechanisms of Antarctic moss to terrestrial habitats.
Collapse
Affiliation(s)
- Shenghao Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266061, China
| | - Tingting Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Pengying Zhang
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Linlin Zhao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266061, China
| | - Dan Yi
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Zhaohui Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266061, China
| | - Bailin Cong
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| |
Collapse
|
22
|
Sohn SI, Pandian S, Rakkammal K, Largia MJV, Thamilarasan SK, Balaji S, Zoclanclounon YAB, Shilpha J, Ramesh M. Jasmonates in plant growth and development and elicitation of secondary metabolites: An updated overview. FRONTIERS IN PLANT SCIENCE 2022; 13:942789. [PMID: 36035665 PMCID: PMC9407636 DOI: 10.3389/fpls.2022.942789] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Secondary metabolites are incontestably key specialized molecules with proven health-promoting effects on human beings. Naturally synthesized secondary metabolites are considered an important source of pharmaceuticals, food additives, cosmetics, flavors, etc., Therefore, enhancing the biosynthesis of these relevant metabolites by maintaining natural authenticity is getting more attention. The application of exogenous jasmonates (JAs) is well recognized for its ability to trigger plant growth and development. JAs have a large spectrum of action that covers seed germination, hypocotyl growth regulation, root elongation, petal expansion, and apical hook growth. This hormone is considered as one of the key regulators of the plant's growth and development when the plant is under biotic or abiotic stress. The JAs regulate signal transduction through cross-talking with other genes in plants and thereby deploy an appropriate metabolism in the normal or stressed conditions. It has also been found to be an effective chemical elicitor for the synthesis of naturally occurring secondary metabolites. This review discusses the significance of JAs in the growth and development of plants and the successful outcomes of jasmonate-driven elicitation of secondary metabolites including flavonoids, anthraquinones, anthocyanin, xanthonoid, and more from various plant species. However, as the enhancement of these metabolites is essentially measured via in vitro cell culture or foliar spray, the large-scale production is significantly limited. Recent advancements in the plant cell culture technology lay the possibilities for the large-scale manufacturing of plant-derived secondary metabolites. With the insights about the genetic background of the metabolite biosynthetic pathway, synthetic biology also appears to be a potential avenue for accelerating their production. This review, therefore, also discussed the potential manoeuvres that can be deployed to synthesis plant secondary metabolites at the large-scale using plant cell, tissue, and organ cultures.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | | | | | - Senthil Kumar Thamilarasan
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | | | - Yedomon Ange Bovys Zoclanclounon
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Jayabalan Shilpha
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Manikandan Ramesh
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
23
|
Gong D, He F, Liu J, Zhang C, Wang Y, Tian S, Sun C, Zhang X. Understanding of Hormonal Regulation in Rice Seed Germination. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071021. [PMID: 35888110 PMCID: PMC9324290 DOI: 10.3390/life12071021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 01/06/2023]
Abstract
Seed germination is a critical stage during the life cycle of plants. It is well known that germination is regulated by a series of internal and external factors, especially plant hormones. In Arabidopsis, many germination-related factors have been identified, while in rice, the important crop and monocot model species and the further molecular mechanisms and regulatory networks controlling germination still need to be elucidated. Hormonal signals, especially those of abscisic acid (ABA) and gibberellin (GA), play a dominant role in determining whether a seed germinates or not. The balance between the content and sensitivity of these two hormones is the key to the regulation of germination. In this review, we present the foundational knowledge of ABA and GA pathways obtained from germination research in Arabidopsis. Then, we highlight the current advances in the identification of the regulatory genes involved in ABA- or GA-mediated germination in rice. Furthermore, other plant hormones regulate seed germination, most likely by participating in the ABA or GA pathways. Finally, the results from some regulatory layers, including transcription factors, post-transcriptional regulations, and reactive oxygen species, are also discussed. This review aims to summarize our current understanding of the complex molecular networks involving the key roles of plant hormones in regulating the seed germination of rice.
Collapse
Affiliation(s)
- Diankai Gong
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Fei He
- Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (F.H.); (J.L.)
| | - Jingyan Liu
- Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (F.H.); (J.L.)
| | - Cheng Zhang
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Yanrong Wang
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Shujun Tian
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Chi Sun
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Xue Zhang
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
- Correspondence: ; Tel.: +86-150-4020-6835
| |
Collapse
|
24
|
Shinya T, Miyamoto K, Uchida K, Hojo Y, Yumoto E, Okada K, Yamane H, Galis I. Chitooligosaccharide elicitor and oxylipins synergistically elevate phytoalexin production in rice. PLANT MOLECULAR BIOLOGY 2022; 109:595-609. [PMID: 34822009 DOI: 10.1007/s11103-021-01217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
We show that in rice, the amino acid-conjugates of JA precursor, OPDA, may function as a non-canonical signal for the production of phytoalexins in coordination with the innate chitin signaling. The core oxylipins, jasmonic acid (JA) and JA-Ile, are well-known as potent regulators of plant defense against necrotrophic pathogens and/or herbivores. However, recent studies also suggest that other oxylipins, including 12-oxo-phytodienoic acid (OPDA), may contribute to plant defense. Here, we used a previously characterized metabolic defense marker, p-coumaroylputrescine (CoP), and fungal elicitor, chitooligosaccharide, to specifically test defense role of various oxylipins in rice (Oryza sativa). While fungal elicitor triggered a rapid production of JA, JA-Ile, and their precursor OPDA, rice cells exogenously treated with the compounds revealed that OPDA, rather than JA-Ile, can stimulate the CoP production. Next, reverse genetic approach and oxylipin-deficient rice mutant (hebiba) were used to uncouple oxylipins from other elicitor-triggered signals. It appeared that, without oxylipins, residual elicitor signaling had only a minimal effect but, in synergy with OPDA, exerted a strong stimulatory activity towards CoP production. Furthermore, as CoP levels were compromised in the OPDA-treated Osjar1 mutant cells impaired in the oxylipin-amino acid conjugation, putative OPDA-amino acid conjugates emerged as hypothetical regulators of CoP biosynthesis. Accordingly, we found several OPDA-amino acid conjugates in rice cells treated with exogenous OPDA, and OPDA-Asp was detected, although in small amounts, in the chitooligosaccharide-treated rice. However, as synthetic OPDA-Asp and OPDA-Ile, so far, failed to induce CoP in cells, it suggests that yet another presumed OPDA-amino acid form(s) could be acting as novel regulator(s) of phytoalexins in rice.
Collapse
Affiliation(s)
- Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan.
| | - Koji Miyamoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, 320-8551, Japan
| | - Kenichi Uchida
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, 320-8551, Japan
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Tochigi, 320-8551, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Emi Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Tochigi, 320-8551, Japan
| | - Kazunori Okada
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Hisakazu Yamane
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, 320-8551, Japan
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Tochigi, 320-8551, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| |
Collapse
|
25
|
Chandrasekaran U, Zhao X, Luo X, Wei S, Shu K. Endosperm weakening: The gateway to a seed's new life. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 178:31-39. [PMID: 35276594 DOI: 10.1016/j.plaphy.2022.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Seed germination is a crucial stage in a plant's life cycle, during which the embryo, surrounded by several tissues, undergoes a transition from the quiescent to a highly active state. Endosperm weakening, a key step in this transition, plays an important role in radicle protrusion. Endosperm weakening is initiated upon water uptake, followed by multiple key molecular events occurring within and outside endosperm cells. Although available transcriptomes have provided information about pivotal genes involved in this process, a complete understanding of the signaling pathways are yet to be elucidated. Much remains to be learnt about the diverse intercellular signals, such as reactive oxygen species-mediated redox signals, phytohormone crosstalk, environmental cue-dependent oxidative phosphorylation, peroxisomal-mediated pectin degradation, and storage protein mobilization during endosperm cell wall loosening. This review discusses the evidences from recent researches into the mechanism of endosperm weakening. Further, given that the endosperm has great potential for manipulation by crop breeding and biotechnology, we offer several novel insights, which will be helpful in this research field and in its application to the improvement of crop production.
Collapse
Affiliation(s)
| | - Xiaoting Zhao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Shaowei Wei
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China.
| |
Collapse
|
26
|
Nguyen TN, Tuan PA, Ayele BT. Jasmonate regulates seed dormancy in wheat via modulating the balance between gibberellin and abscisic acid. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2434-2453. [PMID: 35104307 DOI: 10.1093/jxb/erac041] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Jasmonate (JA) regulates seed dormancy and germination; however, the underlying mechanisms remain poorly understood. Furthermore, it is unclear if JA is an essential regulator of dormancy and germination. We investigated whether the role of JA in regulating seed dormancy in wheat (Triticum aestivum L.) is mediated by modulation of gibberellin (GA)/abscisic acid (ABA) balance and if the reciprocal modulation of JA level and sensitivity is required for GA-mediated dormancy loss using physiological, pharmacological, and targeted transcriptomic and metabolomic approaches. JA-induced dormancy release in wheat seeds was associated with no change in GA level but up-regulation of GA signaling and ABA catabolism genes, and reduction of the ABA level. Although JA did not affect the expression levels of ABA signaling genes, up-regulation of germination-associated genes indicates a contribution of reduced ABA sensitivity to dormancy release. After-ripening-mediated dormancy loss was also associated with JA-GA synergistic and JA-ABA antagonistic interplays. The prevalence of no effect of GA, which effectively broke dormancy, on the JA-Ile level and expression patterns of JA biosynthesis/signaling and responsive genes reflects that GA-mediated dormancy release occurs independently of JA. Our study concludes that JA induces seed dormancy release in wheat via modulating ABA/GA balance; however, JA is not an essential regulator of dormancy and germination.
Collapse
Affiliation(s)
- Tran-Nguyen Nguyen
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Pham Anh Tuan
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Belay T Ayele
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| |
Collapse
|
27
|
Enomoto H. Distribution analysis of jasmonic acid-related compounds in developing Glycine max L. (soybean) seeds using mass spectrometry imaging and liquid chromatography-mass spectrometry. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:194-203. [PMID: 34312911 DOI: 10.1002/pca.3079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Jasmonic acid (JA) and its precursors are oxylipins derived from α-linolenic acid (αLA) and hexadecatrienoic acid, and regulate seed development. However, their spatial distribution in the developing Glycine max L. (soybean) seeds has not been elucidated. OBJECTIVE To investigate the distribution of JA-related compounds in the developing soybean seeds using desorption electrospray ionisation-mass spectrometry imaging (DESI-MSI) and liquid chromatography-electrospray ionisation-mass spectrometry (LC-ESI-MS) analyses. METHODS Cryosections of developing seeds were prepared using adhesive films, and subjected to DESI-MSI analysis. Verification of the DESI-MSI ion images were performed using DESI-tandem MSI (MS/MSI), LC-ESI-MS and tandem MS (MS/MS). RESULTS In the DESI-MSI mass spectrum, peaks matching the chemical formulae of αLA, 12-oxo-phytodienoic acid (OPDA), and 3-oxo-2-(2-(Z)-pentenyl)-cyclopentane-1-octanoic acid (OPC-8:0) were detected. These compounds were mainly distributed in the seed coat, especially near the hilum. This was consistent with the quantitative results obtained by LC-ESI-MS. While, DESI-MS/MSI and LC-ESI-MS/MS suggested the presence of isomers for OPDA and OPC-8:0. The effect of isomers on the DESI-MSI ion images was small for OPDA, and considerable for OPC-8:0. CONCLUSION These results demonstrated that free αLA, OPDA, and OPC-8:0 were the abundant JA-related compounds mainly distributed in the seed coat of the developing soybeans. OPDA and OPC-8:0 might exert a biological role in the seed coat. To the best of my knowledge, this is the first report on the accumulation of OPDA and OPC-8:0 in the seed coat. The combination of DESI-MSI and LC-ESI-MS is a useful tool for distribution analysis of JA-related compounds in the developing seeds.
Collapse
Affiliation(s)
- Hirofumi Enomoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Japan
- Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University, Utsunomiya, Japan
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Japan
| |
Collapse
|
28
|
Zhang W, Xu W, Li S, Zhang H, Liu X, Cui X, Song L, Zhu Y, Chen X, Chen H. GmAOC4 modulates seed germination by regulating JA biosynthesis in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:439-447. [PMID: 34674010 DOI: 10.1007/s00122-021-03974-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE An allene oxide cyclase 4, GmAOC4, was determined by GWAS and RT-PCR to be significantly associated with seed germination in soybean, and regulates seed germination by promoting more JA accumulation. The seed germination phase is a critical component of the plant lifecycle, and a better understanding of the mechanism behind seed germination in soybeans is needed. We used a genome-wide association study (GWAS) to detect a GWAS signal on chromosome 18. In this GWAS signal, SNP S18_56189166 was located within the 3'untranslated region of Glyma.18G280900, which encodes allene oxide cyclase 4 (named GmAOC4). Analysis of real-time PCR demonstrated that expression levels of GmAOC4 in the low-germination variety (KF, carrying SNP S18_56189166-T) were higher than in the high-germination variety (NN, carrying SNP S18_56189166-C). In these two varieties, KF showed a higher JA concentration than NN at 0 and 24 h after imbibition. Moreover, the overexpression of GmAOC4 led to an increase in the concentration of jasmonic acid (JA) in soybean hairy roots and Arabidopsis thaliana. Furthermore, it was found that GmAOC4-OE lines showed less seed germination than the wild type (WT) under normal conditions in Arabidopsis. After 7 days of ABA treatment, transgenic lines exhibited lower seed germination and higher expression levels of AtABI5 compared with WT, indicating that the overexpression of GmAOC4 resulted in hypersensitivity to ABA. Our findings demonstrate that GmAOC4, which promotes more JA accumulation, helps to regulate seed germination in soybeans.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wenjing Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Songsong Li
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongmei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiaoqing Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiaoyan Cui
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Li Song
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yuelin Zhu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
29
|
BnA.JAZ5 Attenuates Drought Tolerance in Rapeseed through Mediation of ABA–JA Crosstalk. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Drought stress reduces water availability in plant cells and influences rapeseed yield. Currently, key genetic regulators that contribute to rapeseed response to drought remain largely unexplored, which limits breeding of drought-resistant rapeseed. In this study, we found that Brassica napus JASMONATE ZIM-DOMAIN 5 (BnA.JAZ5), one of the transcriptional repressors functioning in the jasmonate (JA) signaling pathway, was triggered by drought treatment in rapeseed, and drought-susceptibility increased in BnA.JAZ5-overexpressing rapeseed plants as compared to wild-type plants, resulting in a lower survival rate after recovery from dehydration. After recovery for 3 days, 22–40% of p35S::BnA.JAZ5 transgenic plants survived, while approximately 61% of wild-type plants survived. Additionally, seed germination of BnA.JAZ5-overexpressing rapeseed was hyposensitive to abscisic acid (ABA). The germination rate of five transgenic lines was 32~42% under 9 µM ABA treatment, while the germination rate of wild-type plants was 14%. We also found that the average stomatal density of five overexpressing lines was 371~446/mm2, which is higher than that of wild-type (232/mm2) plants under normal conditions. These results indicate that BnA.JAZ5 regulated drought response in an ABA-dependent manner, possibly by affecting stomatal density. Interestingly, methyl jasmonate (MeJA) treatment rescued the ABA-hyposensitive seed germination, revealing crosstalk between JAZ5-meidated JA and the ABA signaling pathway. Taken together, our results suggest that BnA.JAZ5 attenuated drought resistance through the ABA-dependent pathway, which could represent important genetic loci for drought-resistant rapeseed breeding.
Collapse
|
30
|
Chen X, Yoong FY, O'Neill CM, Penfield S. Temperature during seed maturation controls seed vigour through ABA breakdown in the endosperm and causes a passive effect on DOG1 mRNA levels during entry into quiescence. THE NEW PHYTOLOGIST 2021; 232:1311-1322. [PMID: 34314512 DOI: 10.1111/nph.17646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/20/2021] [Indexed: 05/08/2023]
Abstract
Temperature variation during seed set is an important modulator of seed dormancy and impacts the performance of crop seeds through effects on establishment rate. It remains unclear how changing temperature during maturation leads to dormancy and growth vigour differences in nondormant seedlings. Here we take advantage of the large seed size in Brassica oleracea to analyse effects of temperature on individual seed tissues. We show that warm temperature during seed maturation promotes seed germination, while removal of the endosperm from imbibed seeds abolishes temperature-driven effects on germination. We demonstrate that cool temperatures during early seed maturation lead to abscisic acid (ABA) retention specifically in the endosperm at desiccation. During this time temperature affects ABA dynamics in individual seed tissues and regulates ABA catabolism. We also show that warm-matured seeds preinduce a subset of germination-related programmes in the endosperm, whereas cold-matured seeds continue to store maturation-associated transcripts including DOG1 because of effects on mRNA degradation before quiescence, rather than because of the effect of temperature on transcription. We propose that effects of temperature on seed vigour are explained by endospermic ABA breakdown and the divergent relationships between temperature and mRNA breakdown and between temperature, seed moisture and the glass transition.
Collapse
Affiliation(s)
- Xiaochao Chen
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Fei-Yian Yoong
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Carmel M O'Neill
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
31
|
Yang M, Han X, Yang J, Jiang Y, Hu Y. The Arabidopsis circadian clock protein PRR5 interacts with and stimulates ABI5 to modulate abscisic acid signaling during seed germination. THE PLANT CELL 2021; 33:3022-3041. [PMID: 34152411 PMCID: PMC8462813 DOI: 10.1093/plcell/koab168] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/17/2021] [Indexed: 05/03/2023]
Abstract
Seed germination and postgerminative growth require the precise coordination of multiple intrinsic and environmental signals. The phytohormone abscisic acid (ABA) suppresses these processes in Arabidopsis thaliana and the circadian clock contributes to the regulation of ABA signaling. However, the molecular mechanism underlying circadian clock-mediated ABA signaling remains largely unknown. Here, we found that the core circadian clock proteins PSEUDO-RESPONSE REGULATOR5 (PRR5) and PRR7 physically associate with ABSCISIC ACID-INSENSITIVE5 (ABI5), a crucial transcription factor of ABA signaling. PRR5 and PRR7 positively modulate ABA signaling redundantly during seed germination. Disrupting PRR5 and PRR7 simultaneously rendered germinating seeds hyposensitive to ABA, whereas the overexpression of PRR5 enhanced ABA signaling to inhibit seed germination. Consistent with this, the expression of several ABA-responsive genes is upregulated by PRR proteins. Genetic analysis demonstrated that PRR5 promotes ABA signaling mainly dependently on ABI5. Further mechanistic investigation revealed that PRR5 stimulates the transcriptional function of ABI5 without affecting its stability. Collectively, our results indicate that these PRR proteins function synergistically with ABI5 to activate ABA responses during seed germination, thus providing a mechanistic understanding of how ABA signaling and the circadian clock are directly integrated through a transcriptional complex involving ABI5 and central circadian clock components.
Collapse
Affiliation(s)
- Milian Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jiajia Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Author for correspondence:
| |
Collapse
|
32
|
Li C, Luo Y, Jin M, Sun S, Wang Z, Li Y. Response of Lignin Metabolism to Light Quality in Wheat Population. FRONTIERS IN PLANT SCIENCE 2021; 12:729647. [PMID: 34589105 PMCID: PMC8473876 DOI: 10.3389/fpls.2021.729647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/13/2021] [Indexed: 06/02/2023]
Abstract
The low red/far-red (R/FR) light proportion at the base of the high-density wheat population leads to poor stem quality and increases lodging risk. We used Shannong 23 and Shannong 16 as the test materials. By setting three-light quality treatments: normal light (CK), red light (RL), and far-red light (FRL), we irradiated the base internodes of the stem with RL and FRL for 7h. Our results showed that RL irradiation enhanced stem quality, as revealed by increased breaking strength, stem diameter, wall thickness and, dry weight per unit length, and the total amount of lignin and related gene expression increased, at the same time. The composition of lignin subunits was related to the lodging resistance of wheat. The proportion of S+G subunits and H subunits played a key role in wheat lodging resistance. RL could increase the content of S subunits and G subunits and the proportion of S+G subunits, reduce the proportion of H subunits. We described here, to the best of our knowledge, the systematic study of the mechanism involved in the regulation of stem breaking strength by light quality, particularly the effect of light quality on lignin biosynthesis and its relationship with lodging resistance in wheat.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong Li
- State Key Laboratory of Crop Biology, Agronomy College of Shandong Agricultural University, Tai’an, China
| |
Collapse
|
33
|
Smolikova G, Strygina K, Krylova E, Leonova T, Frolov A, Khlestkina E, Medvedev S. Transition from Seeds to Seedlings: Hormonal and Epigenetic Aspects. PLANTS (BASEL, SWITZERLAND) 2021; 10:1884. [PMID: 34579418 PMCID: PMC8467299 DOI: 10.3390/plants10091884] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 01/21/2023]
Abstract
Transition from seed to seedling is one of the critical developmental steps, dramatically affecting plant growth and viability. Before plants enter the vegetative phase of their ontogenesis, massive rearrangements of signaling pathways and switching of gene expression programs are required. This results in suppression of the genes controlling seed maturation and activation of those involved in regulation of vegetative growth. At the level of hormonal regulation, these events are controlled by the balance of abscisic acid and gibberellins, although ethylene, auxins, brassinosteroids, cytokinins, and jasmonates are also involved. The key players include the members of the LAFL network-the transcription factors LEAFY COTYLEDON1 and 2 (LEC 1 and 2), ABSCISIC ACID INSENSITIVE3 (ABI3), and FUSCA3 (FUS3), as well as DELAY OF GERMINATION1 (DOG1). They are the negative regulators of seed germination and need to be suppressed before seedling development can be initiated. This repressive signal is mediated by chromatin remodeling complexes-POLYCOMB REPRESSIVE COMPLEX 1 and 2 (PRC1 and PRC2), as well as PICKLE (PKL) and PICKLE-RELATED2 (PKR2) proteins. Finally, epigenetic methylation of cytosine residues in DNA, histone post-translational modifications, and post-transcriptional downregulation of seed maturation genes with miRNA are discussed. Here, we summarize recent updates in the study of hormonal and epigenetic switches involved in regulation of the transition from seed germination to the post-germination stage.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Ksenia Strygina
- Postgenomic Studies Laboratory, Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (K.S.); (E.K.); (E.K.)
| | - Ekaterina Krylova
- Postgenomic Studies Laboratory, Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (K.S.); (E.K.); (E.K.)
| | - Tatiana Leonova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (T.L.); (A.F.)
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (T.L.); (A.F.)
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena Khlestkina
- Postgenomic Studies Laboratory, Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (K.S.); (E.K.); (E.K.)
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
34
|
Zhao X, Li N, Song Q, Li X, Meng H, Luo K. OPDAT1, a plastid envelope protein involved in 12-oxo-phytodienoic acid export for jasmonic acid biosynthesis in Populus. TREE PHYSIOLOGY 2021; 41:1714-1728. [PMID: 33835169 DOI: 10.1093/treephys/tpab037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/01/2021] [Indexed: 05/27/2023]
Abstract
Twelve-oxo-phytodienoic acid (OPDA), the cyclopentenone precursor of jasmonic acid (JA), is required for the wounding response of plants. OPDA is derived from plastid-localized α-linolenic acid (α-LeA; 18:3) via the octadecanoid pathway, and is further exported from plastids to the cytosol for JA biosynthesis. However, the mechanism of OPDA transport from plastids has yet to be elucidated. In the current study, a plastid inner envelope-localized protein, designated 12-oxo-Phtyodienoic Acid Transporter 1 (OPDAT1), was identified and shown to potentially be involved in OPDA export from plastids, in Populus trichocarpa. Torr. OPDAT1 is expressed predominantly in young leaves of P. trichocarpa. Functional expression of OPDAT1 in yeast cells revealed that OPDAT1 is involved in OPDA transport. Loss-of-function of OPDAT1 in poplar resulted in increased accumulation of OPDA in the extracted plastids and a reduction in JA concentration, whereas an OPDAT1-overexpressing line showed a reverse tendency in OPDA accumulation and JA biosynthesis. OPDAT1 transcripts were rapidly induced by mechanical wounding of leaves, and an opdat1 mutant transgenic plant displayed increased susceptibility to spider mite (Tetranychus urticae) infestation. Collectively, these data suggest that OPDAT1 is an inner envelope transporter for OPDA, and this has potential implications for JA biosynthesis in poplar under environmental stresses.
Collapse
Affiliation(s)
- Xin Zhao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Nannan Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qin Song
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaohong Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Hongjun Meng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
35
|
Varshney V, Majee M. JA Shakes Hands with ABA to Delay Seed Germination. TRENDS IN PLANT SCIENCE 2021; 26:764-766. [PMID: 34053891 DOI: 10.1016/j.tplants.2021.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/09/2021] [Accepted: 05/17/2021] [Indexed: 05/06/2023]
Abstract
Seed germination is a multifaceted process, controlled by many cues, wherein phytohormones play a central role. Despite extensive studies, it remains obscure how hormonal balance and crosstalk between hormones regulate seed germination. Here we highlight new findings showing that crosstalk between jasmonates (JA) and abscisic acid (ABA) delays seed germination.
Collapse
Affiliation(s)
- Vishal Varshney
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Majee
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
36
|
Ghorbel M, Brini F, Sharma A, Landi M. Role of jasmonic acid in plants: the molecular point of view. PLANT CELL REPORTS 2021; 40:1471-1494. [PMID: 33821356 DOI: 10.1007/s00299-021-02687-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/23/2021] [Indexed: 05/12/2023]
Abstract
Recent updates in JA biosynthesis, signaling pathways and the crosstalk between JA and others phytohormones in relation with plant responses to different stresses. In plants, the roles of phytohormone jasmonic acid (JA), amino acid conjugate (e.g., JA-Ile) and their derivative emerged in last decades as crucial signaling compounds implicated in stress defense and development in plants. JA has raised a great interest, and the number of researches on JA has increased rapidly highlighting the importance of this phytohormone in plant life. First, JA was considered as a stress hormone implicated in plant response to biotic stress (pathogens and herbivores) which confers resistance to biotrophic and hemibiotrophic pathogens contrarily to salicylic acid (SA) which is implicated in plant response to necrotrophic pathogens. JA is also implicated in plant responses to abiotic stress (such as soil salinity, wounding and UV). Moreover, some researchers have recently revealed that JA controls several physiological processes like root growth, growth of reproductive organs and, finally, plant senescence. JA is also involved in the biosynthesis of various metabolites (e.g., phytoalexins and terpenoids). In plants, JA signaling pathways are well studied in few plants essentially Arabidopsis thaliana, Nicotiana benthamiana, and Oryza sativa L. confirming the crucial role of this hormone in plants. In this review, we highlight the last foundlings about JA biosynthesis, JA signaling pathways and its implication in plant maturation and response to environmental constraints.
Collapse
Affiliation(s)
- Mouna Ghorbel
- Biology Department, Faculty of Science, University of Ha'il, P.O. box, Ha'il, 2440, Saudi Arabia
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, B.P '1177', 3018, Sfax, Tunisia
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, B.P '1177', 3018, Sfax, Tunisia
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Marco Landi
- Department of Agriculture, Food and Environment - University of Pisa, 56124, Pisa, Italy.
| |
Collapse
|
37
|
Enomoto H, Miyamoto K. Unique localization of jasmonic acid-related compounds in developing Phaseolus vulgaris L. (common bean) seeds revealed through desorption electrospray ionization-mass spectrometry imaging. PHYTOCHEMISTRY 2021; 188:112812. [PMID: 34015625 DOI: 10.1016/j.phytochem.2021.112812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Jasmonic acid (JA) and its precursors are oxylipins derived from α-linolenic acid (αLA). Presumably, they are involved in the regulation of seed embryogenesis, dormancy, and germination. However, their spatial localization in the developing Phaseolus vulgaris L. (common bean) seeds has not been fully elucidated. Therefore, desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) was performed to investigate their localization in the developing seeds. Peaks corresponding to the chemical formulae of αLA and 3-oxo-2-(2-(Z)-pentenyl)-cyclopentane-1-octanoic acid (OPC-8:0) were localized mainly in the radicle and seed coat, while that of 12-oxo-phytodienoic acid (OPDA) in the seed coat. This was consistent with the quantitative results obtained using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) analysis. In contrast, DESI-tandem MSI (MS/MSI) and LC-ESI-MS/MS analyses showed that the effects of isomers on the DESI-MSI ion images were small for αLA and OPDA, but not for OPC-8:0. This indicated that DESI-MSI could accurately visualize αLA and OPDA, while DESI-MS/MSI was necessary to visualize OPC-8:0. The results demonstrated that free αLA and OPC-8:0 were abundant in the radicle and seed coat, while free OPDA was accumulated in the seed coat. Interestingly, the localization pattern of OPDA was similar to that of JA. In addition, compared to the concentrations of OPDA, the concentration of OPC-8:0 was lower in the seed coat and higher in the radicle. These results suggest that OPDA and/or JA play a biological role mainly in the seed coat, while OPC-8:0 is biologically active mainly in the radicle. Therefore, DESI-MSI coupled with LC-ESI-MS is a useful tool for spatial analysis of JA-related compounds in developing common bean seeds.
Collapse
Affiliation(s)
- Hirofumi Enomoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, 320-8551, Japan; Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University, Utsunomiya, 320-8551, Japan; Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, 320-8551, Japan.
| | - Koji Miyamoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, 320-8551, Japan; Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University, Utsunomiya, 320-8551, Japan
| |
Collapse
|
38
|
Yan L, Zhang J, Chen H, Luo H. Genome-wide analysis of ATP-binding cassette transporter provides insight to genes related to bioactive metabolite transportation in Salvia miltiorrhiza. BMC Genomics 2021; 22:315. [PMID: 33933003 PMCID: PMC8088630 DOI: 10.1186/s12864-021-07623-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND ATP-binding cassette (ABC) transporters have been found to play important roles in metabolic transport in plant cells, influencing subcellular compartmentalisation and tissue distribution of these metabolic compounds. Salvia miltiorrhiza Bunge, known as Danshen in traditional Chinese medicine, is a highly valued medicinal plant used to treat cardiovascular and cerebrovascular diseases. The dry roots and rhizomes of S. miltiorrhiza contain biologically active secondary metabolites of tanshinone and salvianolic acid. Given an assembled and annotated genome and a set of transcriptome data of S. miltiorrhiza, we analysed and identified the candidate genes that likely involved in the bioactive metabolite transportation of this medicinal plant, starting with the members of the ABC transporter family. RESULTS A total of 114 genes encoding ABC transporters were identified in the genome of S. miltiorrhiza. All of these ABC genes were divided into eight subfamilies: 3ABCA, 31ABCB, 14ABCC, 2ABCD, 1ABCE, 7ABCF, 46ABCG, and 10 ABCI. Gene expression analysis revealed tissue-specific expression profiles of these ABC transporters. In particular, we found 18 highly expressed transporters in the roots of S. miltiorrhiza, which might be involved in transporting the bioactive compounds of this medicinal plant. We further investigated the co-expression profiling of these 18 genes with key enzyme genes involved in tanshinone and salvianolic acid biosynthetic pathways using quantitative reverse transcription polymerase chain reaction (RT-qPCR). From this RT-qPCR validation, we found that three ABC genes (SmABCG46, SmABCG40, and SmABCG4) and another gene (SmABCC1) co-expressed with the key biosynthetic enzymes of these two compounds, respectively, and thus might be involved in tanshinone and salvianolic acid transport in root cells. In addition, we predicted the biological functions of S. miltiorrhiza ABC transporters using phylogenetic relationships and analysis of the transcriptome to find biological functions. CONCLUSIONS Here, we present the first systematic analysis of ABC transporters in S. miltiorrhiza and predict candidate transporters involved in bioactive compound transportation in this important medicinal plant. Using genome-wide identification, transcriptome profile analysis, and phylogenetic relationships, this research provides a new perspective on the critical functions of ABC transporters in S. miltiorrhiza.
Collapse
Affiliation(s)
- Li Yan
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianhong Zhang
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongyu Chen
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongmei Luo
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
39
|
Yan L, Zhang J, Chen H, Luo H. Genome-wide analysis of ATP-binding cassette transporter provides insight to genes related to bioactive metabolite transportation in Salvia miltiorrhiza. BMC Genomics 2021; 22:315. [PMID: 33933003 DOI: 10.21203/rs.3.rs-99773/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/16/2021] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND ATP-binding cassette (ABC) transporters have been found to play important roles in metabolic transport in plant cells, influencing subcellular compartmentalisation and tissue distribution of these metabolic compounds. Salvia miltiorrhiza Bunge, known as Danshen in traditional Chinese medicine, is a highly valued medicinal plant used to treat cardiovascular and cerebrovascular diseases. The dry roots and rhizomes of S. miltiorrhiza contain biologically active secondary metabolites of tanshinone and salvianolic acid. Given an assembled and annotated genome and a set of transcriptome data of S. miltiorrhiza, we analysed and identified the candidate genes that likely involved in the bioactive metabolite transportation of this medicinal plant, starting with the members of the ABC transporter family. RESULTS A total of 114 genes encoding ABC transporters were identified in the genome of S. miltiorrhiza. All of these ABC genes were divided into eight subfamilies: 3ABCA, 31ABCB, 14ABCC, 2ABCD, 1ABCE, 7ABCF, 46ABCG, and 10 ABCI. Gene expression analysis revealed tissue-specific expression profiles of these ABC transporters. In particular, we found 18 highly expressed transporters in the roots of S. miltiorrhiza, which might be involved in transporting the bioactive compounds of this medicinal plant. We further investigated the co-expression profiling of these 18 genes with key enzyme genes involved in tanshinone and salvianolic acid biosynthetic pathways using quantitative reverse transcription polymerase chain reaction (RT-qPCR). From this RT-qPCR validation, we found that three ABC genes (SmABCG46, SmABCG40, and SmABCG4) and another gene (SmABCC1) co-expressed with the key biosynthetic enzymes of these two compounds, respectively, and thus might be involved in tanshinone and salvianolic acid transport in root cells. In addition, we predicted the biological functions of S. miltiorrhiza ABC transporters using phylogenetic relationships and analysis of the transcriptome to find biological functions. CONCLUSIONS Here, we present the first systematic analysis of ABC transporters in S. miltiorrhiza and predict candidate transporters involved in bioactive compound transportation in this important medicinal plant. Using genome-wide identification, transcriptome profile analysis, and phylogenetic relationships, this research provides a new perspective on the critical functions of ABC transporters in S. miltiorrhiza.
Collapse
Affiliation(s)
- Li Yan
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianhong Zhang
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongyu Chen
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongmei Luo
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
40
|
Osama SK, Kerr ED, Yousif AM, Phung TK, Kelly AM, Fox GP, Schulz BL. Proteomics reveals commitment to germination in barley seeds is marked by loss of stress response proteins and mobilisation of nutrient reservoirs. J Proteomics 2021; 242:104221. [PMID: 33866056 DOI: 10.1016/j.jprot.2021.104221] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
Germination is a critical process in the reproduction and propagation of flowering plants, and is also the key stage of industrial grain malting. Germination commences when seeds are steeped in water, followed by degradation of the endosperm cell walls, enzymatic digestion of starch and proteins to provide nutrients for the growing plant, and emergence of the radicle from the seed. Dormancy is a state where seeds fail to germinate upon steeping, but which prevents inappropriate premature germination of the seeds before harvest from the field. This can result in inefficiencies in industrial malting. We used Sequential Window Acquisition of all THeoretical ions Mass Spectrometry (SWATH-MS) proteomics to measure changes in the barley seed proteome throughout germination. We found a large number of proteins involved in desiccation tolerance and germination inhibition rapidly decreased in abundance after imbibition. This was followed by a decrease in proteins involved in lipid, protein and nutrient reservoir storage, consistent with induction and activation of systems for nutrient mobilisation to provide nutrients to the growing embryo. Dormant seeds that failed to germinate showed substantial biochemical activity distinct from that of seeds undergoing germination, with differences in sulfur metabolic enzymes, endogenous alpha-amylase/trypsin inhibitors, and histone proteins. We verified our findings with analysis of germinating barley seeds from two commercial malting facilities, demonstrating that key features of the dynamic proteome of germinating barley seeds were conserved between laboratory and industrial scales. The results provide a more detailed understanding of the changes in the barley proteome during germination and give possible target proteins for testing or to inform selective breeding to enhance germination or control dormancy. SIGNIFICANCE: Germination is critical to the reproduction and propagation of flowering plants, and in industrial malting. Dormancy, where seeds fail to germinate upon steeping, can result in inefficiencies in industrial malting. Our DIA/SWATH-MS proteomics analyses identified key changes during germination, including an initial loss of proteins involved in desiccation tolerance and germination inhibition, followed by decreases in lipid, protein and nutrient reservoir storage. These changes were consistent between laboratory and industrial malting scales, and therefore demonstrate the utility of laboratory-scale barley germination as a model system for industrial malt house processes. We also showed that dormant seeds that failed to germinate showed substantial biochemical activity distinct from that of seeds undergoing germination, consistent with dormancy being an actively regulated state. Our results provide a more detailed understanding of the changes in the barley proteome during germination and give possible target proteins for testing or to inform selective breeding to enhance germination or control dormancy.
Collapse
Affiliation(s)
- Sarah K Osama
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Toowoomba, Qld 4350, Australia
| | - Edward D Kerr
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane 4072, Australia
| | - Adel M Yousif
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Sandy Bay Campus, TAS, 7005, Australia
| | - Toan K Phung
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane 4072, Australia
| | - Alison M Kelly
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Toowoomba, Qld 4350, Australia; Department of Agriculture and Fisheries, Leslie Research Facility, Toowoomba, Qld 4350, Australia
| | - Glen P Fox
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Toowoomba, Qld 4350, Australia; Department of Food Science and Technology, University of California Davis, CA 95616, USA.
| | - Benjamin L Schulz
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
41
|
Omidbakhshfard MA, Sokolowska EM, Di Vittori V, Perez de Souza L, Kuhalskaya A, Brotman Y, Alseekh S, Fernie AR, Skirycz A. Multi-omics analysis of early leaf development in Arabidopsis thaliana. PATTERNS 2021; 2:100235. [PMID: 33982025 PMCID: PMC8085607 DOI: 10.1016/j.patter.2021.100235] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 01/15/2023]
Abstract
The growth of plant organs is driven by cell division and subsequent cell expansion. The transition from proliferation to expansion is critical for the final organ size and plant yield. Exit from proliferation and onset of expansion is accompanied by major metabolic reprogramming, and in leaves with the establishment of photosynthesis. To learn more about the molecular mechanisms underlying the developmental and metabolic transitions important for plant growth, we used untargeted proteomics and metabolomics analyses to profile young leaves of a model plant Arabidopsis thaliana representing proliferation, transition, and expansion stages. The dataset presented represents a unique resource comprising approximately 4,000 proteins and 300 annotated small-molecular compounds measured across 6 consecutive days of leaf growth. These can now be mined for novel developmental and metabolic regulators of plant growth and can act as a blueprint for studies aimed at better defining the interface of development and metabolism in other species. Untargeted metabolomics and proteomics characterization of early leaf growth Translation is the primary determiner of protein abundance during early leaf growth 12-OPDA accumulation coincides with meristem arrest
Developmental and metabolic transitions occurring during plant growth are critical for crop yield. The multi-omics dataset presented here was generated to enable the identification of novel molecular players involved in the regulation of plant growth. It comprised approximately 4,000 proteins and 300 annotated small-molecular compounds, measured across early leaf development spanning major developmental transitions. As such, the work provides a blueprint for studies aimed at better defining the interface between metabolism and development, an appreciated yet understudied research frontier across all kingdoms of life.
Collapse
Affiliation(s)
| | | | - Valerio Di Vittori
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Anastasiya Kuhalskaya
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Boyce Thompson Institute, Ithaca, NY, USA
| |
Collapse
|
42
|
Chen L, Zhang L, Xiang S, Chen Y, Zhang H, Yu D. The transcription factor WRKY75 positively regulates jasmonate-mediated plant defense to necrotrophic fungal pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1473-1489. [PMID: 33165597 PMCID: PMC7904156 DOI: 10.1093/jxb/eraa529] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/02/2020] [Indexed: 05/04/2023]
Abstract
Necrotrophic fungi cause devastating diseases in both horticultural and agronomic crops, but our understanding of plant defense responses against these pathogens is still limited. In this study, we demonstrated that WRKY75 positively regulates jasmonate (JA)-mediated plant defense against necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola, and also affects the sensitivity of plants to JA-inhibited seed germination and root growth. Quantitative analysis indicated that several JA-associated genes, such as OCTADECANOID-RESPONSIVE ARABIDOPSIS (ORA59) and PLANT DEFENSIN 1.2A (PDF1.2), were significantly reduced in expression in wrky75 mutants, and enhanced in WRKY75 overexpressing transgenic plants. Immunoprecipitation assays revealed that WRKY75 directly binds to the promoter of ORA59 and represses itstranscription. In vivo and in vitro experiments suggested that WRKY75 interacts with several JASMONATE ZIM-domain proteins, repressors of the JA signaling pathway. We determined that JASMONATE-ZIM-DOMAIN PROTEIN 8 (JAZ8) represses the transcriptional function of WRKY75, thereby attenuating the expression of its regulation. Overexpression of JAZ8 repressed plant defense responses to B. cinerea. Our study provides evidence that WRKY75 functions as a critical component of the JA-mediated signaling pathway to positively regulate Arabidopsis defense responses to necrotrophic pathogens.
Collapse
Affiliation(s)
- Ligang Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Liping Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shengyuan Xiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanli Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Diqiu Yu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- Correspondence:
| |
Collapse
|
43
|
Jasmonates: biosynthesis, perception and signal transduction. Essays Biochem 2021; 64:501-512. [PMID: 32602544 DOI: 10.1042/ebc20190085] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022]
Abstract
Jasmonates (JAs) are physiologically important molecules involved in a wide range of plant responses from growth, flowering, senescence to defence against abiotic and biotic stress. They are rapidly synthesised from α-linolenic acid (ALA; C18:3 ∆9,12,15) by a process of oxidation, cyclisation and acyl chain shortening involving co-operation between the chloroplast and peroxisome. The active form of JA is the isoleucine conjugate, JA-isoleucine (JA-Ile), which is synthesised in the cytoplasm. Other active metabolites of JA include the airborne signalling molecules, methyl JA (Me-JA) and cis-jasmone (CJ), which act as inter-plant signalling molecules activating defensive genes encoding proteins and secondary compounds such as anthocyanins and alkaloids. One of the key defensive metabolites in many plants is a protease inhibitor that inactivates the protein digestive capabilities of insects, thereby, reducing their growth. The receptor for JA-Ile is a ubiquitin ligase termed as SCFCoi1 that targets the repressor protein JA Zim domain (JAZ) for degradation in the 26S proteasome. Removal of JAZ allows other transcription factors (TFs) to activate the JA response. The levels of JA-Ile are controlled through catabolism by hydroxylating enzymes of the cytochrome P450 (CYP) family. The JAZ proteins act as metabolic hubs and play key roles in cross-talk with other phytohormone signalling pathways in co-ordinating genome-wide responses. Specific subsets of JAZ proteins are involved in regulating different response outcomes such as growth inhibition versus biotic stress responses. Understanding the molecular circuits that control plant responses to pests and pathogens is a necessary pre-requisite to engineering plants with enhanced resilience to biotic challenges for improved agricultural yields.
Collapse
|
44
|
Liu W, Park SW. 12- oxo-Phytodienoic Acid: A Fuse and/or Switch of Plant Growth and Defense Responses? FRONTIERS IN PLANT SCIENCE 2021; 12:724079. [PMID: 34490022 PMCID: PMC8418078 DOI: 10.3389/fpls.2021.724079] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/19/2021] [Indexed: 05/13/2023]
Abstract
12-oxo-Phytodienoic acid (OPDA) is a primary precursor of (-)-jasmonic acid (JA), able to trigger autonomous signaling pathways that regulate a unique subset of jasmonate-responsive genes, activating and fine-tuning defense responses, as well as growth processes in plants. Recently, a number of studies have illuminated the physiol-molecular activities of OPDA signaling in plants, which interconnect the regulatory loop of photosynthesis, cellular redox homeostasis, and transcriptional regulatory networks, together shedding new light on (i) the underlying modes of cellular interfaces between growth and defense responses (e.g., fitness trade-offs or balances) and (ii) vital information in genetic engineering or molecular breeding approaches to upgrade own survival capacities of plants. However, our current knowledge regarding its mode of actions is still far from complete. This review will briefly revisit recent progresses on the roles and mechanisms of OPDA and information gaps within, which help in understanding the phenotypic and environmental plasticity of plants.
Collapse
|
45
|
Pan J, Hu Y, Wang H, Guo Q, Chen Y, Howe GA, Yu D. Molecular Mechanism Underlying the Synergetic Effect of Jasmonate on Abscisic Acid Signaling during Seed Germination in Arabidopsis. THE PLANT CELL 2020; 32:3846-3865. [PMID: 33023956 PMCID: PMC7721325 DOI: 10.1105/tpc.19.00838] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 08/18/2020] [Accepted: 10/06/2020] [Indexed: 05/03/2023]
Abstract
Abscisic acid (ABA) is known to suppress seed germination and post-germinative growth of Arabidopsis (Arabidopsis thaliana), and jasmonate (JA) enhances ABA function. However, the molecular mechanism underlying the crosstalk between the ABA and JA signaling pathways remains largely elusive. Here, we show that exogenous coronatine, a JA analog structurally similar to the active conjugate jasmonate-isoleucine, significantly enhances the delayed seed germination response to ABA. Disruption of the JA receptor CORONATINE INSENSITIVE1 or accumulation of the JA signaling repressor JASMONATE ZIM-DOMAIN (JAZ) reduced ABA signaling, while jaz mutants enhanced ABA responses. Mechanistic investigations revealed that several JAZ repressors of JA signaling physically interact with ABSCISIC ACID INSENSITIVE3 (ABI3), a critical transcription factor that positively modulates ABA signaling, and that JAZ proteins repress the transcription of ABI3 and ABI5. Further genetic analyses showed that JA activates ABA signaling and requires functional ABI3 and ABI5. Overexpression of ABI3 and ABI5 simultaneously suppressed the ABA-insensitive phenotypes of the coi1-2 mutant and JAZ-accumulating (JAZ-ΔJas) plants. Together, our results reveal a previously uncharacterized signaling module in which JAZ repressors of the JA pathway regulate the ABA-responsive ABI3 and ABI5 transcription factors to integrate JA and ABA signals during seed germination and post-germinative growth.
Collapse
Affiliation(s)
- Jinjing Pan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Qiang Guo
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Yani Chen
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Gregg A Howe
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| |
Collapse
|
46
|
Dynamic transcriptomic analysis uncovers key genes and mechanisms involved in seed priming-induced tolerance to drought in barley. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Acharya P, Jayaprakasha GK, Semper J, Patil BS. 1H Nuclear Magnetic Resonance and Liquid Chromatography Coupled with Mass Spectrometry-Based Metabolomics Reveal Enhancement of Growth-Promoting Metabolites in Onion Seedlings Treated with Green-Synthesized Nanomaterials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13206-13220. [PMID: 32233481 DOI: 10.1021/acs.jafc.0c00817] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Seed priming is a promising approach to improve germination, emergence, and seedling growth by triggering pre-germinative metabolism and enhancing seedling vigor. Recently, nanopriming gained importance in seed improvement as a result of the small size and unique physicochemical characteristics of nanomaterials. In the present study, silver and gold nanoparticles were synthesized using onion extracts as the reducing agent. Similarly, the agro-food industrial byproducts citrus seed oil and curcumin-removed turmeric oleoresin were used for the preparation of nanoemulsions. For seed priming, these green-synthesized nanomaterials were incubated with seeds of two onion (Allium cepa L.) cultivars (Legend and 50147) for 72 h, and then the plants were grown in a greenhouse for 3 weeks. Seed priming with these nanomaterials increased seed germination and seedling emergence. One-dimensional 1H nuclear magnetic resonance and liquid chromatography coupled with mass spectrometry metabolomics studies showed that different nanopriming treatments distinctly altered the metabolome of onion seedlings. Seed priming treatments significantly inhibited plant hormones and growth regulators, such as abscisic acid and cis-(+)-12-oxo-phytodienoic acid, and enhanced germination stimulators, such as γ-aminobutyric acid and zeatin, in onion seeds and seedlings. Therefore, these priming treatments have positive impact on improving seed performance and plant growth.
Collapse
Affiliation(s)
- Pratibha Acharya
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, Texas 77845-2119, United States
| | - Guddadarangavvanahally K Jayaprakasha
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, Texas 77845-2119, United States
| | - James Semper
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, Texas 77845-2119, United States
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, Texas 77845-2119, United States
| |
Collapse
|
48
|
Wang Y, Hou Y, Qiu J, Wang H, Wang S, Tang L, Tong X, Zhang J. Abscisic acid promotes jasmonic acid biosynthesis via a 'SAPK10-bZIP72-AOC' pathway to synergistically inhibit seed germination in rice (Oryza sativa). THE NEW PHYTOLOGIST 2020; 228:1336-1353. [PMID: 32583457 PMCID: PMC7689938 DOI: 10.1111/nph.16774] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/15/2020] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) and jasmonic acid (JA) both inhibit seed germination, but their interactions during this process remain elusive. Here, we report the identification of a 'SAPK10-bZIP72-AOC' pathway, through which ABA promotes JA biosynthesis to synergistically inhibit rice seed germination. Using biochemical interaction and phosphorylation assays, we show that SAPK10 exhibits autophosphorylation activity on the 177th serine, which enables it to phosphorylate bZIP72 majorly on 71st serine. The SAPK10-dependent phosphorylation enhances bZIP72 protein stability as well as the DNA-binding ability to the G-box cis-element of AOC promoter, thereby elevating the AOC transcription and the endogenous concentration of JA. Blocking of JA biosynthesis significantly alleviated the ABA sensitivity on seed germination, suggesting that ABA-imposed inhibition partially relied on the elevated concentration of JA. Our findings shed a novel insight into the molecular networks of ABA-JA synergistic interaction during rice seed germination.
Collapse
Affiliation(s)
- Yifeng Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Yuxuan Hou
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Jiehua Qiu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Huimei Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Shuang Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
- College of Life ScienceYangtze UniversityJingzhou434025China
| | - Liqun Tang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Xiaohong Tong
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Jian Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| |
Collapse
|
49
|
Qiu X, Xu Y, Xiong B, Dai L, Huang S, Dong T, Sun G, Liao L, Deng Q, Wang X, Zhu J, Wang Z. Effects of exogenous methyl jasmonate on the synthesis of endogenous jasmonates and the regulation of photosynthesis in citrus. PHYSIOLOGIA PLANTARUM 2020; 170:398-414. [PMID: 32691420 DOI: 10.1111/ppl.13170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/28/2020] [Accepted: 07/15/2020] [Indexed: 05/21/2023]
Abstract
Methyl jasmonate (MeJA) is an airborne signaling phytohormone that can induce changes in endogenous jasmonates (JAs) and cause photosynthetic responses. However, the response of these two aspects of citrus plants at different MeJA concentrations is still unclear. Four MeJA concentrations were used in two citrus varieties, Huangguogan (C. reticulata × C. sinensis) and Shiranuhi [C. reticulata × (C. reticulata × C. sinensis)], to investigate the effects of MeJA dose on the endogenous JAs pathway and photosynthetic capacity. We observed that MeJA acted in a dose-dependent manner, and its stimulation in citrus leaves showed a bidirectional character at different concentrations. This work demonstrates that MeJA at only a concentration of 2.2 mM or less contributed to the activation of magnesium protoporphyrin IX methyltransferase (ChlM, EC 2.1.1.11) and protochlorophyllide oxidoreductase (POR, EC 1.3.1.11) and the simultaneous accumulation of Chl a and Chl b, which in turn contributed to an improved photosynthetic capacity and PSII photochemistry efficiency of citrus. Meanwhile, the inhibition of endogenous JAs synthesis by exogenous MeJA was observed. This was achieved by reducing the ratio of monogalactosyl diacylglycerol (MGDG) to diagalactosyl diacylglycerol (DGDG) and inhibiting the activities of key enzymes in JAs synthesis, especially 12-oxo-phytodienoic acid reductase (OPR, EC 1.3.1.42). Another noteworthy finding is that there may exist a JA-independent pathway that could regulate 12-oxo-phytodienoic acid (OPDA) synthesis. This study jointly analyzed the internal hormone regulation mechanism and the external physiological response, as well as revealed the effects of exogenous MeJA on promoting the photosynthesis and inhibiting the endogenous JAs synthesis.
Collapse
Affiliation(s)
- Xia Qiu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yinghuan Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
- Neusoft Institute Guangdong, Guangdong, 528225, China
| | - Bo Xiong
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Dai
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shengjia Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tiantian Dong
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guochao Sun
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xun Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jin Zhu
- Sichuan Horticultural Crop Extension Station, Sichuan, 610041, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
50
|
Liu W, Barbosa Dos Santos I, Moye A, Park SW. CYP20-3 deglutathionylates 2-CysPRX A and suppresses peroxide detoxification during heat stress. Life Sci Alliance 2020; 3:e202000775. [PMID: 32732254 PMCID: PMC7409537 DOI: 10.26508/lsa.202000775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 11/24/2022] Open
Abstract
In plants, growth-defense trade-offs occur because of limited resources, which demand prioritization towards either of them depending on various external and internal factors. However, very little is known about molecular mechanisms underlying their occurrence. Here, we describe that cyclophilin 20-3 (CYP20-3), a 12-oxo-phytodienoic acid (OPDA)-binding protein, crisscrosses stress responses with light-dependent electron reactions, which fine-tunes activities of key enzymes in plastid sulfur assimilations and photosynthesis. Under stressed states, OPDA, accumulates in the chloroplasts, binds and stimulates CYP20-3 to convey electrons towards serine acetyltransferase 1 (SAT1) and 2-Cys peroxiredoxin A (2CPA). The latter is a thiol-based peroxidase, protecting and optimizing photosynthesis by reducing its toxic byproducts (e.g., H2O2). Reduction of 2CPA then inactivates its peroxidase activity, suppressing the peroxide detoxification machinery, whereas the activation of SAT1 promotes thiol synthesis and builds up reduction capacity, which in turn triggers the retrograde regulation of defense gene expressions against abiotic stress. Thus, we conclude that CYP20-3 is a unique metabolic hub conveying resource allocations between plant growth and defense responses (trade-offs), ultimately balancing optimal growth phonotype.
Collapse
Affiliation(s)
- Wenshan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | | | - Anna Moye
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Sang-Wook Park
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| |
Collapse
|