1
|
Mi L, Liu H, Zhang J, Guo Y, Shi J, Lu Y, Cheng J, Wang H, Cheng D, Valverde BE, Qiang S, Chen S. Low-temperature-induced singlet oxygen adaptation decreases susceptibility to the mycotoxin TeA in invasive plant Ageratina adenophora. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109508. [PMID: 39826341 DOI: 10.1016/j.plaphy.2025.109508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
The mycotoxin tenuazonic acid (TeA) inhibits photosynthesis and is expected to be developed as a bioherbicide to control Ageratina adenophora that is one of the most serious invasive alien plants in China. New leaves sprouting from A. adenophora at low temperatures (LT) in early spring are less sensitive to TeA compared to those growing in summer. However, the molecular mechanism of LT-caused decrease in the susceptibility of A. adenophora to TeA is unclear. In this study, three singlet oxygen-responsive genes (SORGs) and three jasmonic acid responsive genes (JARGs) were cloned to further probe the role of singlet oxygen (1O2) signaling during TeA-induced disease development in A. adenophora leaves exposed to LT. TeA triggered chloroplast-derived 1O2 production as a result of photosystem II (PSII) photoinhibition during leaf lesion formation in A. adenophora. Moreover, TeA indeed induced the expression of SORGs and JARGs as well as a high level of JA generation, activating the 1O2 signaling pathway in A. adenophora. LT (12°C) pretreatment can cause PSII photoinhibition and increase the SORG AaAAA-ATPase expression level in A. adenophora leaves, meaning that 1O2 signaling was activated by LT. Thus TeA led to less increase of the SORGs and JARGs expression and JA level in plants pretreated by LT compared with non-pretreated plants, although both of them had the same level of 1O2 production after TeA treatment. It was concluded that the low susceptibility to TeA of A. adenophora subjected to LT can be attributed to the occurrence of 1O2 acclimation.
Collapse
Affiliation(s)
- Liru Mi
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Haiou Liu
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Jing Zhang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yanjing Guo
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jiale Shi
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yuping Lu
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jing Cheng
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - He Wang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Dan Cheng
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Bernal E Valverde
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China; Research and Development in Tropical Agriculture, Alajuela, 4050, Costa Rica
| | - Sheng Qiang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shiguo Chen
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
2
|
Zhang ZW, Fu YF, Chen GD, Reinbothe C, Reinbothe S, Yuan S. The interplay of singlet oxygen and ABI4 in plant growth regulation. TRENDS IN PLANT SCIENCE 2025; 30:156-166. [PMID: 39414457 DOI: 10.1016/j.tplants.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
Abscisic acid (ABA) and the AP2/ERF (APETALA 2/ETHYLENE-RESPONSIVE FACTOR)-type transcription factor ABA INSENSITIVE 4 (ABI4) control plant growth and development. We review how singlet oxygen, which is produced in chloroplasts of the fluorescent mutant of Arabidopsis thaliana (arabidopsis), and ABI4 may cooperate in transcriptional and translational reprogramming to cause plants to halt growth or demise. Key elements of singlet oxygen- and ABI4-dependent chloroplast-to-nucleus retrograde signaling involve the chloroplast EXECUTER (EX) 1 and EX2 proteins as well as nuclear WRKY transcription factors. Mutants designed to study singlet oxygen signaling, that lack either ABI4 or the EX1 and EX2 proteins, do not show most of the growth effects of singlet oxygen. We propose a model that positions ABI4 downstream of WRKY transcription factors and EX1 and EX2.
Collapse
Affiliation(s)
- Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Investigation and Monitoring, Protection, and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Yu-Fan Fu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Investigation and Monitoring, Protection, and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Guang-Deng Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Investigation and Monitoring, Protection, and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China.
| | - Christiane Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes, Université Grenoble Alpes, Grenoble 38400, France
| | - Steffen Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes, Université Grenoble Alpes, Grenoble 38400, France.
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Investigation and Monitoring, Protection, and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China.
| |
Collapse
|
3
|
Lemke MD, Abate AN, Woodson JD. Investigating the mechanism of chloroplast singlet oxygen signaling in the Arabidopsis thaliana accelerated cell death 2 mutant. PLANT SIGNALING & BEHAVIOR 2024; 19:2347783. [PMID: 38699898 PMCID: PMC11073415 DOI: 10.1080/15592324.2024.2347783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024]
Abstract
As sessile organisms, plants have evolved complex signaling mechanisms to sense stress and acclimate. This includes the use of reactive oxygen species (ROS) generated during dysfunctional photosynthesis to initiate signaling. One such ROS, singlet oxygen (1O2), can trigger retrograde signaling, chloroplast degradation, and programmed cell death. However, the signaling mechanisms are largely unknown. Several proteins (e.g. PUB4, OXI1, EX1) are proposed to play signaling roles across three Arabidopsis thaliana mutants that conditionally accumulate chloroplast 1O2 (fluorescent in blue light (flu), chlorina 1 (ch1), and plastid ferrochelatase 2 (fc2)). We previously demonstrated that these mutants reveal at least two chloroplast 1O2 signaling pathways (represented by flu and fc2/ch1). Here, we test if the 1O2-accumulating lesion mimic mutant, accelerated cell death 2 (acd2), also utilizes these pathways. The pub4-6 allele delayed lesion formation in acd2 and restored photosynthetic efficiency and biomass. Conversely, an oxi1 mutation had no measurable effect on these phenotypes. acd2 mutants were not sensitive to excess light (EL) stress, yet pub4-6 and oxi1 both conferred EL tolerance within the acd2 background, suggesting that EL-induced 1O2 signaling pathways are independent from spontaneous lesion formation. Thus, 1O2 signaling in acd2 may represent a third (partially overlapping) pathway to control cellular degradation.
Collapse
Affiliation(s)
- Matthew D. Lemke
- The School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Alexa N. Abate
- The School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Jesse D. Woodson
- The School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
4
|
Liu K, Zhao H, Lee KP, Yu Q, Di M, Wang L, Kim C. EXECUTER1 and singlet oxygen signaling: A reassessment of nuclear activity. THE PLANT CELL 2024; 37:koae296. [PMID: 39499663 DOI: 10.1093/plcell/koae296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/03/2024] [Accepted: 10/31/2024] [Indexed: 11/07/2024]
Abstract
Chloroplasts are recognized as environmental sensors, capable of translating environmental fluctuations into diverse signals to communicate with the nucleus. Among the reactive oxygen species produced in chloroplasts, singlet oxygen (1O2) has been extensively studied due to its dual roles, encompassing both damage and signaling activities, and the availability of conditional mutants overproducing 1O2 in chloroplasts. In particular, investigating the Arabidopsis (Arabidopsis thaliana) mutant known as fluorescent (flu) has led to the discovery of EXECUTER1 (EX1), a plastid 1O2 sensor residing in the grana margin of the thylakoid membrane. 1O2-triggered EX1 degradation is critical for the induction of 1O2-responsive nuclear genes (SOrNGs). However, a recent study showed that EX1 relocates from chloroplasts to the nucleus upon 1O2 release, where it interacts with WRKY18 and WRKY40 (WRKY18/40) transcription factors to regulate SOrNG expression. In this study, we challenge this assertion. Our confocal microscopy analysis and subcellular fractionation assays demonstrate that EX1 does not accumulate in the nucleus. While EX1 appears in nuclear fractions, subsequent thermolysin treatment assays indicate that it adheres to the outer nuclear region rather than localizing inside the nucleus. Furthermore, luciferase complementation imaging and yeast 2-hybrid assays reveal that EX1 does not interact with nuclear WRKY18/40. Consequently, our study refines the current model of 1O2 signaling by ruling out the nuclear relocation of intact EX1 as a means of communication between the chloroplast and nucleus.
Collapse
Affiliation(s)
- Kaiwei Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| | - Huan Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Keun Pyo Lee
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| | - Qing Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Di
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Liangsheng Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Rai S, Lemke MD, Arias AM, Gomez Mendez MF, Dehesh K, Woodson JD. Transcript profiling of plastid ferrochelatase two mutants reveals that chloroplast singlet oxygen signals lead to global changes in RNA profiles and are mediated by Plant U-Box 4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593788. [PMID: 38798329 PMCID: PMC11118471 DOI: 10.1101/2024.05.13.593788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background In response to environmental stresses, chloroplasts generate reactive oxygen species, including singlet oxygen (1O2), an excited state of oxygen that regulates chloroplast-to-nucleus (retrograde) signaling, chloroplast turnover, and programmed cell death (PCD). Yet, the central signaling mechanisms and downstream responses remain poorly understood. The Arabidopsis thaliana plastid ferrochelatase two (fc2) mutant conditionally accumulates 1O2 and Plant U-Box 4 (PUB4), a cytoplasmic E3 ubiquitin ligase, is involved in propagating 1O2 signals for chloroplast turnover and cellular degradation. Thus, the fc2 and fc2 pub4 mutants are useful genetic tools to elucidate these signaling pathways. Previous studies have focused on the role of 1O2 in promoting cellular degradation in fc2 mutants, but its impact on retrograde signaling from mature chloroplasts (the major site of 1O2 production) is poorly understood. Results To gain mechanistic insights into 1O2 signaling pathways, we compared transcriptomes of adult wt, fc2, and fc2 pub4 plants. The accumulation of 1O2 in fc2 plants broadly repressed genes involved in chloroplast function and photosynthesis, while inducing genes and transcription factors involved in abiotic and biotic stress, the biosynthesis of jasmonic acid (JA) and salicylic acid (SA), microautophagy, and senescence. Elevated JA and SA levels were observed in 1O2-stressed fc2 plants. pub4 reversed most of this 1O2-induced gene expression and reduced the JA content in fc2 plants. The pub4 mutation also blocked JA-induced senescence pathways in the dark. However, fc2 pub4 plants maintained constitutively elevated levels of SA even in the absence of bulk 1O2 accumulation. Conclusions Together, this work demonstrates that in fc2 plants, 1O2 leads to a robust retrograde signal that may protect cells by downregulating photosynthesis and ROS production while simultaneously mounting a stress response involving SA and JA. The induction of microautophagy and senescence pathways indicate that 1O2-induced cellular degradation is a genetic response to this stress, and the bulk of this transcriptional response is modulated by the PUB4 protein. However, the effect of pub4 on hormone synthesis and signaling is complex and indicates that an intricate interplay of SA and JA are involved in promoting stress responses and programmed cell death during photo-oxidative damage.
Collapse
Affiliation(s)
- Snigdha Rai
- The School of Plant Sciences, University of Arizona, Tucson, AZ
| | | | - Anika M. Arias
- The School of Plant Sciences, University of Arizona, Tucson, AZ
| | - Maria F. Gomez Mendez
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA
| | | |
Collapse
|
6
|
Lee KP, Kim C. Photosynthetic ROS and retrograde signaling pathways. THE NEW PHYTOLOGIST 2024; 244:1183-1198. [PMID: 39286853 DOI: 10.1111/nph.20134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Sessile plants harness mitochondria and chloroplasts to sense and adapt to diverse environmental stimuli. These complex processes involve the generation of pivotal signaling molecules, including reactive oxygen species (ROS), phytohormones, volatiles, and diverse metabolites. Furthermore, the specific modulation of chloroplast proteins, through activation or deactivation, significantly enhances the plant's capacity to engage with its dynamic surroundings. While existing reviews have extensively covered the role of plastidial retrograde modules in developmental and light signaling, our focus lies in investigating how chloroplasts leverage photosynthetic ROS to navigate environmental fluctuations and counteract oxidative stress, thereby sustaining primary metabolism. Unraveling the nuanced interplay between photosynthetic ROS and plant stress responses holds promise for uncovering new insights that could reinforce stress resistance and optimize net photosynthesis rates. This exploration aspires to pave the way for innovative strategies to enhance plant resilience and agricultural productivity amidst changing environmental conditions.
Collapse
Affiliation(s)
- Keun Pyo Lee
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
7
|
Berardi N, Amirsadeghi S, Swanton CJ. Plant competition cues activate a singlet oxygen signaling pathway in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:964476. [PMID: 39228834 PMCID: PMC11368760 DOI: 10.3389/fpls.2024.964476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
Oxidative stress responses of Arabidopsis to reflected low red to far-red signals (R:FR ≈ 0.3) generated by neighboring weeds or an artificial source of FR light were compared with a weed-free control (R:FR ≈1.6). In the low R:FR treatments, induction of the shade avoidance responses (SAR) coincided with increased leaf production of singlet oxygen (1O2). This 1O2 increase was not due to protochlorophyllide accumulation and did not cause cell death. Chemical treatments, however, with 5-aminolevulinic acid (the precursor of tetrapyrrole biosynthesis) and glutathione (a quinone A reductant) enhanced cell death and growth inhibition. RNA sequencing revealed that transcriptome responses to the reflected low R:FR light treatments minimally resembled previously known Arabidopsis 1O2 generating systems that rapidly generate 1O2 following a dark to light transfer. The upregulation of only a few early 1O2 responsive genes (6 out of 1931) in the reflected low R:FR treatments suggested specificity of the 1O2 signaling. Moreover, increased expression of two enzyme genes, the SULFOTRANSFERASE ST2A (ST2a) and the early 1O2-responsive IAA-LEUCINE RESISTANCE (ILR)-LIKE6 (ILL6), which negatively regulate jasmonate level, suggested that repression of bioactive JAs may promote the shade avoidance (versus defense) and 1O2 acclimation (versus cell death) responses to neighboring weeds.
Collapse
Affiliation(s)
- Nicole Berardi
- Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, ON, Canada
| | - Sasan Amirsadeghi
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
8
|
Goggin FL, Fischer HD. Singlet oxygen signalling and its potential roles in plant biotic interactions. PLANT, CELL & ENVIRONMENT 2024; 47:1957-1970. [PMID: 38372069 DOI: 10.1111/pce.14851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/20/2024]
Abstract
Singlet oxygen (SO) is among the most potent reactive oxygen species, and readily oxidizes proteins, lipids and DNA. It can be generated at the plant surface by phototoxins in the epidermis, acting as a direct defense against pathogens and herbivores (including humans). SO can also accumulate within mitochondria, peroxisomes, cytosol and the nucleus through multiple enzymatic and nonenzymatic processes. However, the majority of research on intracellular SO generation in plants has focused on transfer of light energy to triplet oxygen by photopigments from the chloroplast. SO accumulates in response to diverse stresses that perturb chloroplast metabolism, and while its high reactivity limits diffusion distances, it participates in retrograde signalling through the EXECUTER1 sensor, generation of carotenoid metabolites and possibly other unknown pathways. SO thereby reprogrammes nuclear gene expression and modulates hormone signalling and programmed cell death. While SO signalling has long been known to regulate plant responses to high-light stress, recent literature also suggests a role in plant interactions with insects, bacteria and fungi. The goals of this review are to provide a brief overview of SO, summarize evidence for its involvement in biotic stress responses and discuss future directions for the study of SO in defense signalling.
Collapse
Affiliation(s)
- Fiona L Goggin
- Department of Entomology and Plant Pathology, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Hillary D Fischer
- Department of Entomology and Plant Pathology, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| |
Collapse
|
9
|
Lemke MD, Woodson JD. A genetic screen for dominant chloroplast reactive oxygen species signaling mutants reveals life stage-specific singlet oxygen signaling networks. FRONTIERS IN PLANT SCIENCE 2024; 14:1331346. [PMID: 38273946 PMCID: PMC10809407 DOI: 10.3389/fpls.2023.1331346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Introduction Plants employ intricate molecular mechanisms to respond to abiotic stresses, which often lead to the accumulation of reactive oxygen species (ROS) within organelles such as chloroplasts. Such ROS can produce stress signals that regulate cellular response mechanisms. One ROS, singlet oxygen (1O2), is predominantly produced in the chloroplast during photosynthesis and can trigger chloroplast degradation, programmed cell death (PCD), and retrograde (organelle-to-nucleus) signaling. However, little is known about the molecular mechanisms involved in these signaling pathways or how many different signaling 1O2 pathways may exist. Methods The Arabidopsis thaliana plastid ferrochelatase two (fc2) mutant conditionally accumulates chloroplast 1O2, making fc2 a valuable genetic system for studying chloroplast 1O2-initiated signaling. Here, we have used activation tagging in a new forward genetic screen to identify eight dominant fc2 activation-tagged (fas) mutations that suppress chloroplast 1O2-initiated PCD. Results While 1O2-triggered PCD is blocked in all fc2 fas mutants in the adult stage, such cellular degradation in the seedling stage is blocked in only two mutants. This differential blocking of PCD suggests that life-stage-specific 1O2-response pathways exist. In addition to PCD, fas mutations generally reduce 1O2-induced retrograde signals. Furthermore, fas mutants have enhanced tolerance to excess light, a natural mechanism to produce chloroplast 1O2. However, general abiotic stress tolerance was only observed in one fc2 fas mutant (fc2 fas2). Together, this suggests that plants can employ general stress tolerance mechanisms to overcome 1O2 production but that this screen was mostly specific to 1O2 signaling. We also observed that salicylic acid (SA) and jasmonate (JA) stress hormone response marker genes were induced in 1O2-stressed fc2 and generally reduced by fas mutations, suggesting that SA and JA signaling is correlated with active 1O2 signaling and PCD. Discussion Together, this work highlights the complexity of 1O2 signaling by demonstrating that multiple pathways may exist and introduces a suite of new 1O2 signaling mutants to investigate the mechanisms controlling chloroplast-initiated degradation, PCD, and retrograde signaling.
Collapse
Affiliation(s)
| | - Jesse D. Woodson
- The School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
10
|
Biswal AK, Pattanayak GK, Ruhil K, Kandoi D, Mohanty SS, Leelavati S, Reddy VS, Govindjee G, Tripathy BC. Reduced expression of chlorophyllide a oxygenase (CAO) decreases the metabolic flux for chlorophyll synthesis and downregulates photosynthesis in tobacco plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1-16. [PMID: 38435853 PMCID: PMC10901765 DOI: 10.1007/s12298-023-01395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 03/05/2024]
Abstract
UNLABELLED Chlorophyll b is synthesized from chlorophyllide a, catalyzed by chlorophyllide a oxygenase (CAO). To examine whether reduced chlorophyll b content regulates chlorophyll (Chl) synthesis and photosynthesis, we raised CAO transgenic tobacco plants with antisense CAO expression, which had lower chlorophyll b content and, thus, higher Chl a/b ratio. Further, these plants had (i) lower chlorophyll b and total Chl content, whether they were grown under low or high light; (ii) decreased steady-state levels of chlorophyll biosynthetic intermediates, due, perhaps, to a feedback-controlled reduction in enzyme expressions/activities; (iii) reduced electron transport rates in their intact leaves, and reduced Photosystem (PS) I, PS II and whole chain electron transport activities in their isolated thylakoids; (iv) decreased carbon assimilation in plants grown under low or high light. We suggest that reduced synthesis of chlorophyll b by antisense expression of CAO, acting at the end of Chl biosynthesis pathway, downregulates the chlorophyll b biosynthesis, resulting in decreased Chl b, total chlorophylls and increased Chl a/b. We have previously shown that the controlled up-regulation of chlorophyll b biosynthesis and decreased Chl a/b ratio by over expression of CAO enhance the rates of electron transport and CO2 assimilation in tobacco. Conversely, our data, presented here, demonstrate that-antisense expression of CAO in tobacco, which decreases Chl b biosynthesis and increases Chl a/b ratio, leads to reduced photosynthetic electron transport and carbon assimilation rates, both under low and high light. We conclude that Chl b modulates photosynthesis; its controlled down regulation/ up regulation decreases/ increases light-harvesting, rates of electron transport, and carbon assimilation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-023-01395-5.
Collapse
Affiliation(s)
- Ajaya K. Biswal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Gopal K. Pattanayak
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Kamal Ruhil
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Deepika Kandoi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- Department of Life Sciences, Sharda University, Greater Noida, UP, India
| | - Sushree S. Mohanty
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Sadhu Leelavati
- International Center for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| | - Vanga S. Reddy
- International Center for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| | - Govindjee Govindjee
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Baishnab C. Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- Department of Biotechnology, Sharda University, Greater Noida, UP 201310 India
| |
Collapse
|
11
|
Bali S, Gautam A, Dhiman A, Michael R, Dogra V. Salicylate and jasmonate intertwine in ROS-triggered chloroplast-to-nucleus retrograde signaling. PHYSIOLOGIA PLANTARUM 2023; 175:e14041. [PMID: 37882286 DOI: 10.1111/ppl.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Plants, being sessile, are frequently exposed to environmental perturbations, affecting their sustenance and survival. In response, distinct inherent mechanisms emerged during plant evolution to deal with environmental stresses. Among various organelles, chloroplast plays an indispensable role in plant cells. Besides providing the site for photosynthesis and biosynthesis of many important primary and secondary metabolites, including hormones, chloroplasts also act as environmental sensors. Any environmental perturbation directly influences the photosynthetic electron transport chain, leading to excess accumulation of reactive oxygen species (ROS), causing oxidative damages to biomolecules in the vicinity. To prevent excess ROS accumulation and the consequent oxidative damages, the chloroplast activates retrograde signaling (RS) pathways to reprogramme nuclear gene expression, defining plant's response to stress. Based on levels and site of ROS accumulation, distinct biomolecules are oxidized, generating specific derivatives that act as genuine signaling molecules, triggering specific RS pathways to instigate distinctive responses, including growth inhibition, acclimation, and programmed cell death. Though various RS pathways independently modulate nuclear gene expression, they also implicate the defense hormone salicylic acid (SA) and oxylipins, including 12-oxo-phytodienoic acid (OPDA) and jasmonic acid (JA), by promoting their biosynthesis and utilizing them for intra- and intercellular communications. Several studies reported the involvement of both hormones in individual RS pathways, but the precise dissection of their activation and participation in a given RS pathway remains an enigma. The present review describes the current understanding of how SA and JA intertwine in ROS-triggered RS pathways. We have also emphasized the future perspectives for elucidating stress specificity and spatiotemporal accumulation of respective hormones in a given RS pathway.
Collapse
Affiliation(s)
- Shagun Bali
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Ayushi Gautam
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Aarzoo Dhiman
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Rahul Michael
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vivek Dogra
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
12
|
Fu Y, Fan B, Li X, Bao H, Zhu C, Chen Z. Autophagy and multivesicular body pathways cooperate to protect sulfur assimilation and chloroplast functions. PLANT PHYSIOLOGY 2023; 192:886-909. [PMID: 36852939 PMCID: PMC10231471 DOI: 10.1093/plphys/kiad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 06/01/2023]
Abstract
Autophagy and multivesicular bodies (MVBs) represent 2 closely related lysosomal/vacuolar degradation pathways. In Arabidopsis (Arabidopsis thaliana), autophagy is stress-induced, with deficiency in autophagy causing strong defects in stress responses but limited effects on growth. LYST-INTERACTING PROTEIN 5 (LIP5) is a key regulator of stress-induced MVB biogenesis, and mutation of LIP5 also strongly compromises stress responses with little effect on growth in Arabidopsis. To determine the functional interactions of these 2 pathways in Arabidopsis, we generated mutations in both the LIP5 and AUTOPHAGY-RELATED PROTEIN (ATG) genes. atg5/lip5 and atg7/lip5 double mutants displayed strong synergistic phenotypes in fitness characterized by stunted growth, early senescence, reduced survival, and greatly diminished seed production under normal growth conditions. Transcriptome and metabolite analysis revealed that chloroplast sulfate assimilation was specifically downregulated at early seedling stages in the atg7/lip5 double mutant prior to the onset of visible phenotypes. Overexpression of adenosine 5'-phosphosulfate reductase 1, a key enzyme in sulfate assimilation, substantially improved the growth and fitness of the atg7/lip5 double mutant. Comparative multi-omic analysis further revealed that the atg7/lip5 double mutant was strongly compromised in other chloroplast functions including photosynthesis and primary carbon metabolism. Premature senescence and reduced survival of atg/lip5 double mutants were associated with increased accumulation of reactive oxygen species and overactivation of stress-associated programs. Blocking PHYTOALEXIN DEFICIENT 4 and salicylic acid signaling prevented early senescence and death of the atg7/lip5 double mutant. Thus, stress-responsive autophagy and MVB pathways play an important cooperative role in protecting essential chloroplast functions including sulfur assimilation under normal growth conditions to suppress salicylic-acid-dependent premature cell-death and promote plant growth and fitness.
Collapse
Affiliation(s)
- Yunting Fu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Baofang Fan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Xifeng Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Hexigeduleng Bao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA
| |
Collapse
|
13
|
Li Y, Liu H, Ma T, Li J, Yuan J, Xu YC, Sun R, Zhang X, Jing Y, Guo YL, Lin R. Arabidopsis EXECUTER1 interacts with WRKY transcription factors to mediate plastid-to-nucleus singlet oxygen signaling. THE PLANT CELL 2023; 35:827-851. [PMID: 36423342 PMCID: PMC9940883 DOI: 10.1093/plcell/koac330] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 06/01/2023]
Abstract
Chloroplasts produce singlet oxygen (1O2), which causes changes in nuclear gene expression through plastid-to-nucleus retrograde signaling to increase plant fitness. However, the identity of this 1O2-triggered pathway remains unclear. Here, we identify mutations in GENOMES UNCOUPLED4 (GUN4) and GUN5 as suppressors of phytochrome-interacting factor1 (pif1) pif3 in regulating the photo-oxidative response in Arabidopsis thaliana. GUN4 and GUN5 specifically interact with EXECUTER1 (EX1) and EX2 in plastids, and this interaction is alleviated by treatment with Rose Bengal (RB) or white light. Impaired expression of GUN4, GUN5, EX1, or EX2 leads to insensitivity to excess light and overexpression of EX1 triggers photo-oxidative responses. Strikingly, upon light irradiation or RB treatment, EX1 transiently accumulates in the nucleus and the nuclear fraction of EX1 shows a similar molecular weight as the plastid-located protein. Point mutagenesis analysis indicated that nuclear localization of EX1 is required for its function. EX1 acts as a transcriptional co-activator and interacts with the transcription factors WRKY18 and WRKY40 to promote the expression of 1O2-responsive genes. This study suggests that EX1 may act in plastid-to-nucleus signaling and establishes a 1O2-triggered retrograde signaling pathway that allows plants adapt to changing light environments during chloroplast development.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanhong Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Ma
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jialong Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jiarui Yuan
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ran Sun
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Zhang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ya-Long Guo
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Tano DW, Kozlowska MA, Easter RA, Woodson JD. Multiple pathways mediate chloroplast singlet oxygen stress signaling. PLANT MOLECULAR BIOLOGY 2023; 111:167-187. [PMID: 36266500 DOI: 10.1007/s11103-022-01319-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Chloroplast singlet oxygen initiates multiple pathways to control chloroplast degradation, cell death, and nuclear gene expression. Chloroplasts can respond to stress and changes in the environment by producing reactive oxygen species (ROS). Aside from being cytotoxic, ROS also have signaling capabilities. For example, the ROS singlet oxygen (1O2) can initiate nuclear gene expression, chloroplast degradation, and cell death. To unveil the signaling mechanisms involved, researchers have used several 1O2-producing Arabidopsis thaliana mutants as genetic model systems, including plastid ferrochelatase two (fc2), fluorescent in blue light (flu), chlorina 1 (ch1), and accelerated cell death 2 (acd2). Here, we compare these 1O2-producing mutants to elucidate if they utilize one or more signaling pathways to control cell death and nuclear gene expression. Using publicly available transcriptomic data, we demonstrate fc2, flu, and ch1 share a core response to 1O2 accumulation, but maintain unique responses, potentially tailored to respond to their specific stresses. Subsequently, we used a genetic approach to determine if these mutants share 1O2 signaling pathways by testing the ability of genetic suppressors of one 1O2 producing mutant to suppress signaling in a different 1O2 producing mutant. Our genetic analyses revealed at least two different chloroplast 1O2 signaling pathways control cellular degradation: one specific to the flu mutant and one shared by fc2, ch1, and acd2 mutants, but with life-stage-specific (seedling vs. adult) features. Overall, this work reveals chloroplast stress signaling involving 1O2 is complex and may allow cells to finely tune their physiology to environmental inputs.
Collapse
Affiliation(s)
- David W Tano
- The School of Plant Sciences, University of Arizona, 1140 E, South Campus Drive, 303 Forbes Hall, Tucson, AZ, 85721-0036, USA
| | - Marta A Kozlowska
- The School of Plant Sciences, University of Arizona, 1140 E, South Campus Drive, 303 Forbes Hall, Tucson, AZ, 85721-0036, USA
| | - Robert A Easter
- The School of Plant Sciences, University of Arizona, 1140 E, South Campus Drive, 303 Forbes Hall, Tucson, AZ, 85721-0036, USA
| | - Jesse D Woodson
- The School of Plant Sciences, University of Arizona, 1140 E, South Campus Drive, 303 Forbes Hall, Tucson, AZ, 85721-0036, USA.
| |
Collapse
|
15
|
Lemke MD, Woodson JD. Targeted for destruction: degradation of singlet oxygen-damaged chloroplasts. PLANT SIGNALING & BEHAVIOR 2022; 17:2084955. [PMID: 35676885 PMCID: PMC9196835 DOI: 10.1080/15592324.2022.2084955] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Photosynthesis is an essential process that plants must regulate to survive in dynamic environments. Thus, chloroplasts (the sites of photosynthesis in plant and algae cells) use multiple signaling mechanisms to report their health to the cell. Such signals are poorly understood but often involve reactive oxygen species (ROS) produced from the photosynthetic light reactions. One ROS, singlet oxygen (1O2), can signal to initiate chloroplast degradation, but the cellular machinery involved in identifying and degrading damaged chloroplasts (i.e., chloroplast quality control pathways) is unknown. To provide mechanistic insight into these pathways, two recent studies have investigated degrading chloroplasts in the Arabidopsis thaliana1O2 over-producing plastid ferrochelatase two (fc2) mutant. First, a structural analysis of degrading chloroplasts was performed with electron microscopy, which demonstrated that damaged chloroplasts can protrude into the central vacuole compartment with structures reminiscent of fission-type microautophagy. 1O2-stressed chloroplasts swelled before these interactions, which may be a mechanism for their selective degradation. Second, the roles of autophagosomes and canonical autophagy (macroautophagy) were shown to be dispensable for 1O2-initiated chloroplast degradation. Instead, putative fission-type microautophagy genes were induced by chloroplast 1O2. Here, we discuss how these studies implicate this poorly understood cellular degradation pathway in the dismantling of 1O2-damaged chloroplasts.
Collapse
Affiliation(s)
- Matthew D. Lemke
- The School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Jesse D. Woodson
- The School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
16
|
Mackenzie SA, Mullineaux PM. Plant environmental sensing relies on specialized plastids. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7155-7164. [PMID: 35994779 DOI: 10.1093/jxb/erac334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In plants, plastids are thought to interconvert to various forms that are specialized for photosynthesis, starch and oil storage, and diverse pigment accumulation. Post-endosymbiotic evolution has led to adaptations and specializations within plastid populations that align organellar functions with different cellular properties in primary and secondary metabolism, plant growth, organ development, and environmental sensing. Here, we review the plastid biology literature in light of recent reports supporting a class of 'sensory plastids' that are specialized for stress sensing and signaling. Abundant literature indicates that epidermal and vascular parenchyma plastids display shared features of dynamic morphology, proteome composition, and plastid-nuclear interaction that facilitate environmental sensing and signaling. These findings have the potential to reshape our understanding of plastid functional diversification.
Collapse
Affiliation(s)
- Sally A Mackenzie
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Philip M Mullineaux
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| |
Collapse
|
17
|
Koh E, Brandis A, Fluhr R. Plastid and cytoplasmic origins of 1O 2-mediated transcriptomic responses. FRONTIERS IN PLANT SCIENCE 2022; 13:982610. [PMID: 36420020 PMCID: PMC9676463 DOI: 10.3389/fpls.2022.982610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The reactive oxygen species singlet oxygen, 1O2, has an extremely short half-life, yet is intimately involved with stress signalling in the cell. We previously showed that the effects of 1O2 on the transcriptome are highly correlated with 80S ribosomal arrest due to oxidation of guanosine residues in mRNA. Here, we show that dysregulation of chlorophyll biosynthesis in the flu mutant or through feeding by δ-aminolevulinic acid can lead to accumulation of photoactive chlorophyll intermediates in the cytoplasm, which generates 1O2 upon exposure to light and causes the oxidation of RNA, eliciting 1O2-responsive genes. In contrast, transcriptomes derived from DCMU treatment, or the Ch1 mutant under moderate light conditions display commonalties with each other but do not induce 1O2 gene signatures. Comparing 1O2 related transcriptomes to an index transcriptome induced by cycloheximide inhibition enables distinction between 1O2 of cytosolic or of plastid origin. These comparisons provide biological insight to cases of mutants or environmental conditions that produce 1O2.
Collapse
Affiliation(s)
- Eugene Koh
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Life Sciences Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Robert Fluhr
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
18
|
Yan J, Liu B, Cao Z, Chen L, Liang Z, Wang M, Liu W, Lin Y, Jiang B. Cytological, genetic and transcriptomic characterization of a cucumber albino mutant. FRONTIERS IN PLANT SCIENCE 2022; 13:1047090. [PMID: 36340338 PMCID: PMC9630852 DOI: 10.3389/fpls.2022.1047090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Photosynthesis, a fundamental process for plant growth and development, is dependent on chloroplast formation and chlorophyll synthesis. Severe disruption of chloroplast structure results in albinism of higher plants. In the present study, we report a cucumber albino alc mutant that presented white cotyledons under normal light conditions and was unable to produce first true leaf. Meanwhile, alc mutant could grow creamy green cotyledons under dim light conditions but died after exposure to normal light irradiation. No chlorophyll and carotenoid were detected in the alc mutant grown under normal light conditions. Using transmission electron microscopy, impaired chloroplasts were observed in this mutant. The genetic analysis indicated that the albino phenotype was recessively controlled by a single locus. Comparative transcriptomic analysis between the alc mutant and wild type revealed that genes involved in chlorophyll metabolism and the methylerythritol 4-phosphate pathway were affected in the alc mutant. In addition, three genes involved in chloroplast development, including two FtsH genes and one PPR gene, were found to have negligible expression in this mutant. The quality of RNA sequencing results was further confirmed by real-time quantitative PCR analysis. We also examined 12 homologous genes from alc mutant in other plant species, but no genetic variation in the coding sequences of these genes was found between alc mutant and wild type. Taken together, we characterized a cucumber albino mutant with albinism phenotype caused by chloroplast development deficiency and this mutant can pave way for future studies on plastid development.
Collapse
Affiliation(s)
- Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Bin Liu
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Zhenqiang Cao
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lin Chen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhaojun Liang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Min Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yu'e Lin
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
19
|
Foyer CH, Hanke G. ROS production and signalling in chloroplasts: cornerstones and evolving concepts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:642-661. [PMID: 35665548 PMCID: PMC9545066 DOI: 10.1111/tpj.15856] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 05/05/2023]
Abstract
Reactive oxygen species (ROS) such as singlet oxygen, superoxide (O2●- ) and hydrogen peroxide (H2 O2 ) are the markers of living cells. Oxygenic photosynthesis produces ROS in abundance, which act as a readout of a functional electron transport system and metabolism. The concept that photosynthetic ROS production is a major driving force in chloroplast to nucleus retrograde signalling is embedded in the literature, as is the role of chloroplasts as environmental sensors. The different complexes and components of the photosynthetic electron transport chain (PETC) regulate O2●- production in relation to light energy availability and the redox state of the stromal Cys-based redox systems. All of the ROS generated in chloroplasts have the potential to act as signals and there are many sulphhydryl-containing proteins and peptides in chloroplasts that have the potential to act as H2 O2 sensors and function in signal transduction. While ROS may directly move out of the chloroplasts to other cellular compartments, ROS signalling pathways can only be triggered if appropriate ROS-sensing proteins are present at or near the site of ROS production. Chloroplast antioxidant systems serve either to propagate these signals or to remove excess ROS that cannot effectively be harnessed in signalling. The key challenge is to understand how regulated ROS delivery from the PETC to the Cys-based redox machinery is organised to transmit redox signals from the environment to the nucleus. Redox changes associated with stromal carbohydrate metabolism also play a key role in chloroplast signalling pathways.
Collapse
Affiliation(s)
- Christine H. Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonB15 2TTUK
| | - Guy Hanke
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
20
|
Havaux M, Ksas B. Imaging of Lipid Peroxidation-Associated Chemiluminescence in Plants: Spectral Features, Regulation and Origin of the Signal in Leaves and Roots. Antioxidants (Basel) 2022; 11:antiox11071333. [PMID: 35883824 PMCID: PMC9312247 DOI: 10.3390/antiox11071333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Plants, like most living organisms, spontaneously emit photons of visible light. This ultraweak endogenous chemiluminescence is linked to the oxidative metabolism, with lipid peroxidation constituting a major source of photons in plants. We imaged this signal using a very sensitive cooled CCD camera and analysed its spectral characteristics using bandpass interference filters. In vitro oxidation of lipids induced luminescence throughout the visible spectrum (450−850 nm). However, luminescence in the red spectral domain (>640 nm) occurred first, then declined in parallel with the appearance of the emission in the blue-green (<600 nm). This temporal separation suggests that the chemical species emitting in the blue-green are secondary products, possibly deriving from the red light-emitting species. This conversion did not seem to occur in planta because spontaneous chemiluminescence from plant tissues (leaves, roots) occurred only in the red/far-red light domain (>640 nm), peaking at 700−750 nm. The spectrum of plant chemiluminescence was independent of chlorophyll. The in vivo signal was modulated by cellular detoxification mechanisms and by changes in the concentration of singlet oxygen in the tissues, although the singlet oxygen luminescence bands did not appear as major bands in the spectra. Our results indicate that the intensity of endogenous chemiluminescence from plant tissues is determined by the balance between the formation of luminescent species through secondary reactions involving lipid peroxide-derived intermediates, including singlet oxygen, and their elimination by metabolizing processes. The kinetic aspects of plant chemiluminescence must be taken into account when using the signal as an oxidative stress marker.
Collapse
|
21
|
Shi Y, Ke X, Yang X, Liu Y, Hou X. Plants response to light stress. J Genet Genomics 2022; 49:735-747. [DOI: 10.1016/j.jgg.2022.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
|
22
|
Woodson JD. Control of chloroplast degradation and cell death in response to stress. Trends Biochem Sci 2022; 47:851-864. [DOI: 10.1016/j.tibs.2022.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022]
|
23
|
Tano DW, Woodson JD. Putting the brakes on chloroplast stress signaling. MOLECULAR PLANT 2022; 15:388-390. [PMID: 35183786 DOI: 10.1016/j.molp.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Affiliation(s)
- David W Tano
- The School of Plant Sciences, University of Arizona, 303 Forbes Hall, 1140 E. South Campus Drive, Tucson, AZ, USA
| | - Jesse D Woodson
- The School of Plant Sciences, University of Arizona, 303 Forbes Hall, 1140 E. South Campus Drive, Tucson, AZ, USA.
| |
Collapse
|
24
|
Li M, Kim C. Chloroplast ROS and stress signaling. PLANT COMMUNICATIONS 2022; 3:100264. [PMID: 35059631 PMCID: PMC8760138 DOI: 10.1016/j.xplc.2021.100264] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 05/23/2023]
Abstract
Chloroplasts overproduce reactive oxygen species (ROS) under unfavorable environmental conditions, and these ROS are implicated in both signaling and oxidative damage. There is mounting evidence for their roles in translating environmental fluctuations into distinct physiological responses, but their targets, signaling cascades, and mutualism and antagonism with other stress signaling cascades and within ROS signaling remain poorly understood. Great efforts made in recent years have shed new light on chloroplast ROS-directed plant stress responses, from ROS perception to plant responses, in conditional mutants of Arabidopsis thaliana or under various stress conditions. Some articles have also reported the mechanisms underlying the complexity of ROS signaling pathways, with an emphasis on spatiotemporal regulation. ROS and oxidative modification of affected target proteins appear to induce retrograde signaling pathways to maintain chloroplast protein quality control and signaling at a whole-cell level using stress hormones. This review focuses on these seemingly interconnected chloroplast-to-nucleus retrograde signaling pathways initiated by ROS and ROS-modified target molecules. We also discuss future directions in chloroplast stress research to pave the way for discovering new signaling molecules and identifying intersectional signaling components that interact in multiple chloroplast signaling pathways.
Collapse
|
25
|
Koh E, Cohen D, Brandis A, Fluhr R. Attenuation of cytosolic translation by RNA oxidation is involved in singlet oxygen-mediated transcriptomic responses. PLANT, CELL & ENVIRONMENT 2021; 44:3597-3615. [PMID: 34370334 DOI: 10.1111/pce.14162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Singlet oxygen (1 O2 ) production is associated with stress signalling. Here, using Arabidopsis as a model system, we study the effects of the accumulation of 8-hydroxyguanosine (8-oxoG), a major product of 1 O2 -mediated RNA oxidation. We show that 8-oxoG can accumulate in vivo when 1 O2 is produced in the cytoplasm. Conditions for such production include the application of RB in the light, dark-to-light transitions in the flu mutant, or subjecting plants to combined dehydration/light exposure. Transcriptomes of these treatments displayed a significant overlap with transcripts stimulated by the cytosolic 80S ribosomal translation inhibitors, cycloheximide and homoharringtonine. We demonstrate that 8-oxoG accumulation correlates with a decrease in RNA translatability, resulting in the rapid decrease of the levels of labile gene repressor elements such as IAA1 and JAZ1 in a proteasome-dependent manner. Indeed, genes regulated by the labile repressors of the jasmonic acid signalling pathway were induced by cycloheximide, RB or dehydration/light treatment independently of the hormone. The results suggest that 1 O2 , by oxidizing RNA, attenuated cellular translatability and caused specific genes to be released from the repression of their cognate short half-life repressors. The findings here describe a novel means of gene regulation via the direct interaction of 1 O2 with RNA.
Collapse
Affiliation(s)
- Eugene Koh
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dekel Cohen
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Life Sciences Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Robert Fluhr
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
26
|
Wakao S, Niyogi KK. Chlamydomonas as a model for reactive oxygen species signaling and thiol redox regulation in the green lineage. PLANT PHYSIOLOGY 2021; 187:687-698. [PMID: 35237823 PMCID: PMC8491031 DOI: 10.1093/plphys/kiab355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 05/15/2023]
Abstract
One-sentence summary: Advances in proteomic and transcriptomic studies have made Chlamydomonas a powerful research model in redox and reactive oxygen species regulation with unique and overlapping mechanisms with plants.
Collapse
Affiliation(s)
- Setsuko Wakao
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Author for communication: Senior author
| | - Krishna K. Niyogi
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
27
|
Photoprotection during iron deficiency is mediated by the bHLH transcription factors PYE and ILR3. Proc Natl Acad Sci U S A 2021; 118:2024918118. [PMID: 34580211 DOI: 10.1073/pnas.2024918118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Iron (Fe) is an essential micronutrient whose availability is limiting in many soils. During Fe deficiency, plants alter the expression of many genes to increase Fe uptake, distribution, and utilization. In a genetic screen for suppressors of Fe sensitivity in the E3 ligase mutant bts-3, we isolated an allele of the bHLH transcription factor (TF) ILR3, ilr3-4 We identified a striking leaf bleaching phenotype in ilr3 mutants that was suppressed by limiting light intensity, indicating that ILR3 is required for phototolerance during Fe deficiency. Among its paralogs that are thought to be partially redundant, only ILR3 was required for phototolerance as well as repression of genes under Fe deficiency. A mutation in the gene-encoding PYE, a known transcriptional repressor under Fe deficiency, also caused leaf bleaching. We identified singlet oxygen as the accumulating reactive oxygen species (ROS) in ilr3-4 and pye, suggesting photosensitivity is due to a PSII defect resulting in ROS production. During Fe deficiency, ilr3-4 and pye chloroplasts retain normal ultrastructure and, unlike wild type (WT), contain stacked grana similar to Fe-sufficient plants. Additionally, we found that the D1 subunit of PSII is destabilized in WT during Fe deficiency but not in ilr3-4 and pye, suggesting that PSII repair is accelerated during Fe deficiency in an ILR3- and PYE-dependent manner. Collectively, our results indicate that ILR3 and PYE confer photoprotection during Fe deficiency to prevent the accumulation of singlet oxygen, potentially by promoting reduction of grana stacking to limit excitation and facilitate repair of the photosynthetic machinery.
Collapse
|
28
|
Alvarez-Fernandez R, Penfold CA, Galvez-Valdivieso G, Exposito-Rodriguez M, Stallard EJ, Bowden L, Moore JD, Mead A, Davey PA, Matthews JSA, Beynon J, Buchanan-Wollaston V, Wild DL, Lawson T, Bechtold U, Denby KJ, Mullineaux PM. Time-series transcriptomics reveals a BBX32-directed control of acclimation to high light in mature Arabidopsis leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1363-1386. [PMID: 34160110 DOI: 10.1111/tpj.15384] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/14/2021] [Indexed: 05/22/2023]
Abstract
The photosynthetic capacity of mature leaves increases after several days' exposure to constant or intermittent episodes of high light (HL) and is manifested primarily as changes in chloroplast physiology. How this chloroplast-level acclimation to HL is initiated and controlled is unknown. From expanded Arabidopsis leaves, we determined HL-dependent changes in transcript abundance of 3844 genes in a 0-6 h time-series transcriptomics experiment. It was hypothesized that among such genes were those that contribute to the initiation of HL acclimation. By focusing on differentially expressed transcription (co-)factor genes and applying dynamic statistical modelling to the temporal transcriptomics data, a regulatory network of 47 predominantly photoreceptor-regulated transcription (co-)factor genes was inferred. The most connected gene in this network was B-BOX DOMAIN CONTAINING PROTEIN32 (BBX32). Plants overexpressing BBX32 were strongly impaired in acclimation to HL and displayed perturbed expression of photosynthesis-associated genes under LL and after exposure to HL. These observations led to demonstrating that as well as regulation of chloroplast-level acclimation by BBX32, CRYPTOCHROME1, LONG HYPOCOTYL5, CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA-105 are important. In addition, the BBX32-centric gene regulatory network provides a view of the transcriptional control of acclimation in mature leaves distinct from other photoreceptor-regulated processes, such as seedling photomorphogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Ellie J Stallard
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Laura Bowden
- School of Life Sciences, Warwick University, Coventry, CV4 7AL, UK
| | - Jonathan D Moore
- School of Life Sciences, Warwick University, Coventry, CV4 7AL, UK
| | - Andrew Mead
- School of Life Sciences, Warwick University, Coventry, CV4 7AL, UK
| | - Phillip A Davey
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Jack S A Matthews
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Jim Beynon
- Department of Statistics, Warwick University, Coventry, CV4 7AL, UK
| | | | - David L Wild
- Department of Statistics, Warwick University, Coventry, CV4 7AL, UK
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Ulrike Bechtold
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Katherine J Denby
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Philip M Mullineaux
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| |
Collapse
|
29
|
Considine MJ, Foyer CH. Oxygen and reactive oxygen species-dependent regulation of plant growth and development. PLANT PHYSIOLOGY 2021; 186:79-92. [PMID: 33793863 PMCID: PMC8154071 DOI: 10.1093/plphys/kiaa077] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/29/2020] [Indexed: 05/04/2023]
Abstract
Oxygen and reactive oxygen species (ROS) have been co-opted during evolution into the regulation of plant growth, development, and differentiation. ROS and oxidative signals arising from metabolism or phytohormone-mediated processes control almost every aspect of plant development from seed and bud dormancy, liberation of meristematic cells from the quiescent state, root and shoot growth, and architecture, to flowering and seed production. Moreover, the phytochrome and phytohormone-dependent transmissions of ROS waves are central to the systemic whole plant signaling pathways that integrate root and shoot growth. The sensing of oxygen availability through the PROTEOLYSIS 6 (PRT6) N-degron pathway functions alongside ROS production and signaling but how these pathways interact in developing organs remains poorly understood. Considerable progress has been made in our understanding of the nature of hydrogen peroxide sensors and the role of thiol-dependent signaling networks in the transmission of ROS signals. Reduction/oxidation (redox) changes in the glutathione (GSH) pool, glutaredoxins (GRXs), and thioredoxins (TRXs) are important in the control of growth mediated by phytohormone pathways. Although, it is clear that the redox states of proteins involved in plant growth and development are controlled by the NAD(P)H thioredoxin reductase (NTR)/TRX and reduced GSH/GRX systems of the cytosol, chloroplasts, mitochondria, and nucleus, we have only scratched the surface of this multilayered control and how redox-regulated processes interact with other cell signaling systems.
Collapse
Affiliation(s)
- Michael J Considine
- The School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
- Author for communication:
| |
Collapse
|
30
|
Chen T, Cohen D, Itkin M, Malitsky S, Fluhr R. Lipoxygenase functions in 1O2 production during root responses to osmotic stress. PLANT PHYSIOLOGY 2021; 185:1638-1651. [PMID: 33793947 PMCID: PMC8133667 DOI: 10.1093/plphys/kiab025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/07/2021] [Indexed: 05/27/2023]
Abstract
Drought induces osmotic stress in roots, a condition simulated by the application of high-molecular-weight polyethylene glycol. Osmotic stress results in the reduction of Arabidopsis thaliana root growth and production of 1O2 from an unknown non-photosynthetic source. Reduced root growth can be alleviated by application of the 1O2 scavenger histidine (HIS). Here, we examined the possibility that 1O2 production involves Russell reactions occurring among the enzymatic products of lipoxygenases (LOXs), the fatty acid hydroperoxides. LOX activity was measured for purified soybean (Glycine max) LOX1 and in crude Arabidopsis root extracts using linoleic acid as substrate. Formation of the 13(S)-Hydroperoxy-9(Z),11(E)-octadecadienoic acid product was inhibited by salicylhdroxamic acid, which is a LOX inhibitor, but not by HIS, whereas 1O2 production was inhibited by both. D2O, which specifically extends the half-life of 1O2, augmented the LOX-dependent generation of 1O2, as expected from a Russell-type reaction. The addition of linoleic acid to roots stimulated 1O2 production and inhibited growth, suggesting that the availability of LOX substrate is a rate-limiting step. Indeed, water stress rapidly increased linoleic and linolenic acids by 2.5-fold in roots. Mutants with root-specific microRNA repression of LOXs showed downregulation of LOX protein and activity. The lines with downregulated LOX displayed significantly less 1O2 formation, improved root growth in osmotic stress, and an altered transcriptome response compared with wild type. The results show that LOXs can serve as an enzymatic source of "dark" 1O2 during osmotic stress and demonstrate a role for 1O2 in defining the physiological response.
Collapse
Affiliation(s)
- Tomer Chen
- Department of Plant and Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel
| | - Dekel Cohen
- Department of Plant and Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sergey Malitsky
- Department of Plant and Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel
| | - Robert Fluhr
- Department of Plant and Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel
| |
Collapse
|
31
|
Caroca R, Howell KA, Malinova I, Burgos A, Tiller N, Pellizzer T, Annunziata MG, Hasse C, Ruf S, Karcher D, Bock R. Knockdown of the plastid-encoded acetyl-CoA carboxylase gene uncovers functions in metabolism and development. PLANT PHYSIOLOGY 2021; 185:1091-1110. [PMID: 33793919 PMCID: PMC8133629 DOI: 10.1093/plphys/kiaa106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
De novo fatty acid biosynthesis in plants relies on a prokaryotic-type acetyl-CoA carboxylase (ACCase) that resides in the plastid compartment. The enzyme is composed of four subunits, one of which is encoded in the plastid genome, whereas the other three subunits are encoded by nuclear genes. The plastid gene (accD) encodes the β-carboxyltransferase subunit of ACCase and is essential for cell viability. To facilitate the functional analysis of accD, we pursued a transplastomic knockdown strategy in tobacco (Nicotiana tabacum). By introducing point mutations into the translational start codon of accD, we obtained stable transplastomic lines with altered ACCase activity. Replacement of the standard initiator codon AUG with UUG strongly reduced AccD expression, whereas replacement with GUG had no detectable effects. AccD knockdown mutants displayed reduced ACCase activity, which resulted in changes in the levels of many but not all species of cellular lipids. Limiting fatty acid availability caused a wide range of macroscopic, microscopic, and biochemical phenotypes, including impaired chloroplast division, reduced seed set, and altered storage metabolism. Finally, while the mutants displayed reduced growth under photoautotrophic conditions, they showed exaggerated growth under heterotrophic conditions, thus uncovering an unexpected antagonistic role of AccD activity in autotrophic and heterotrophic growth.
Collapse
Affiliation(s)
- Rodrigo Caroca
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Katharine A Howell
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Irina Malinova
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Asdrúbal Burgos
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Nadine Tiller
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Tommaso Pellizzer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | | | - Claudia Hasse
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| |
Collapse
|
32
|
Matilla AJ. Cellular oxidative stress in programmed cell death: focusing on chloroplastic 1O 2 and mitochondrial cytochrome-c release. JOURNAL OF PLANT RESEARCH 2021; 134:179-194. [PMID: 33569718 DOI: 10.1007/s10265-021-01259-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
The programmed cell death (PCD) occurs when the targeted cells have fulfilled their task or under conditions as oxidative stress generated by ROS species. Thus, plants have to deal with the singlet oxygen 1O2 produced in chloroplasts. 1O2 is unlikely to act as a primary retrograde signal owing to its high reactivity and short half-life. In addition to its high toxicity, the 1O2 generated under an excess or low excitation energy might also act as a highly versatile signal triggering chloroplast-to-nucleus retrograde signaling (ChNRS) and nuclear reprogramming or cell death. Molecular and biochemical studies with the flu mutant, which accumulates protochlorophyllide in the dark, demonstrated that chloroplastic 1O2-driven EXECUTER-1 (EX1) and EX2 proteins are involved in the 1O2-dependent response. Both EX1 and EX2 are necessary for full suppression of 1O2-induced gene expression. That is, EXECUTER proteolysis via the ATP-dependent zinc protease (FtsH) is an integral part of 1O2-triggered retrograde signaling. The existence of at least two independent ChNRS involving EX1 and β-cyclocitral, and dihydroactinidiolide and OXI1, respectively, seem clear. Besides, this update also focuses on plant PCD and its relation with mitochondrial cytochrome-c (Cytc) release to cytosol. Changes in the dynamics and morphology of mitochondria were shown during the onset of cell death. The mitochondrial damage and translocation of Cytc may be one of the major causes of PCD triggering. Together, this current overview illustrates the complexity of the cellular response to oxidative stress development. A puzzle with the majority of its pieces still not placed.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional, Facultad de Farmacia, Universidad de Santiago de Compostela (USC), Campus Vida, 15782, Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
33
|
Rac M, Shumbe L, Oger C, Guy A, Vigor C, Ksas B, Durand T, Havaux M. Luminescence imaging of leaf damage induced by lipid peroxidation products and its modulation by β-cyclocitral. PHYSIOLOGIA PLANTARUM 2021; 171:246-259. [PMID: 33215689 DOI: 10.1111/ppl.13279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 05/26/2023]
Abstract
Lipid peroxidation is a primary event associated with oxidative stress in plants. This phenomenon secondarily generates bioactive and/or toxic compounds such as reactive carbonyl species (RCS), phytoprostanes, and phytofurans, as confirmed here in Arabidopsis plants exposed to photo-oxidative stress conditions. We analyzed the effects of exogenous applications of secondary lipid oxidation products on Arabidopsis plants by luminescence techniques. Oxidative damage to attached leaves was measured by autoluminescence imaging, using a highly sensitive CCD camera, and the activity of the detoxification pathway, dependent on the transcription regulator SCARECROW-LIKE 14 (SCL14), was monitored with a bioluminescent line expressing the firefly LUCIFERASE (LUC) gene under the control of the ALKENAL REDUCTASE (AER) gene promoter. We identified 4-hydroxynonenal (HNE), and to a lesser extent 4-hydroxyhexenal (HHE), as highly reactive compounds that are harmful to leaves and can trigger AER gene expression, contrary to other RCS (pentenal, hexenal) and to isoprostanoids. Although the levels of HNE and other RCS were enhanced in the SCL14-deficient mutant (scl14), exogenously applied HNE was similarly damaging to this mutant, its wild-type parent and a SCL14-overexpressing transgenic line (OE:SCL14). However, strongly boosting the SCL14 detoxification pathway and AER expression by a pre-treatment of OE:SCL14 with the signaling apocarotenoid β-cyclocitral canceled the damaging effects of HNE. Conversely, in the scl14 mutant, the effects of β-cyclocitral and HNE were additive, leading to enhanced leaf damage. These results indicate that the cellular detoxification pathway induced by the low-toxicity β-cyclocitral targets highly toxic compounds produced during lipid peroxidation, reminiscent of a safener-type mode of action.
Collapse
Affiliation(s)
- Marek Rac
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Leonard Shumbe
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Brigitte Ksas
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Michel Havaux
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| |
Collapse
|
34
|
Hasanuzzaman M, Bhuyan MHMB, Parvin K, Bhuiyan TF, Anee TI, Nahar K, Hossen MS, Zulfiqar F, Alam MM, Fujita M. Regulation of ROS Metabolism in Plants under Environmental Stress: A Review of Recent Experimental Evidence. Int J Mol Sci 2020; 21:ijms21228695. [PMID: 33218014 PMCID: PMC7698618 DOI: 10.3390/ijms21228695] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation and subsequent damaging effects in plants but also for their diversified roles in signaling cascade, affecting other biomolecules, hormones concerning growth, development, or regulation of stress tolerance. Therefore, a good balance between ROS generation and the antioxidant defense system protects photosynthetic machinery, maintains membrane integrity, and prevents damage to nucleic acids and proteins. Notably, the antioxidant defense system not only scavenges ROS but also regulates the ROS titer for signaling. A glut of studies have been executed over the last few decades to discover the pattern of ROS generation and ROS scavenging. Reports suggested a sharp threshold level of ROS for being beneficial or toxic, depending on the plant species, their growth stages, types of abiotic stresses, stress intensity, and duration. Approaches towards enhancing the antioxidant defense in plants is one of the vital areas of research for plant biologists. Therefore, in this review, we accumulated and discussed the physicochemical basis of ROS production, cellular compartment-specific ROS generation pathways, and their possible distressing effects. Moreover, the function of the antioxidant defense system for detoxification and homeostasis of ROS for maximizing defense is also discussed in light of the latest research endeavors and experimental evidence.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
- Correspondence: (M.H.); (M.F.)
| | | | - Khursheda Parvin
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan;
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Tasnim Farha Bhuiyan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.F.B.); (K.N.)
| | - Taufika Islam Anee
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.F.B.); (K.N.)
| | | | - Faisal Zulfiqar
- Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Md. Mahabub Alam
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan;
- Correspondence: (M.H.); (M.F.)
| |
Collapse
|
35
|
D'Alessandro S, Beaugelin I, Havaux M. Tanned or Sunburned: How Excessive Light Triggers Plant Cell Death. MOLECULAR PLANT 2020; 13:1545-1555. [PMID: 32992028 DOI: 10.1016/j.molp.2020.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/23/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Plants often encounter light intensities exceeding the capacity of photosynthesis (excessive light) mainly due to biotic and abiotic factors, which lower CO2 fixation and reduce light energy sinks. Under excessive light, the photosynthetic electron transport chain generates damaging molecules, hence leading to photooxidative stress and eventually to cell death. In this review, we summarize the mechanisms linking the excessive absorption of light energy in chloroplasts to programmed cell death in plant leaves. We highlight the importance of reactive carbonyl species generated by lipid photooxidation, their detoxification, and the integrating role of the endoplasmic reticulum in the adoption of phototolerance or cell-death pathways. Finally, we invite the scientific community to standardize the conditions of excessive light treatments.
Collapse
Affiliation(s)
- Stefano D'Alessandro
- Aix-Marseille University, CEA, CNRS, UMR7265, BIAM, Institute of Biosciences and Biotechnologies of Aix Marseille, 13108 Saint-Paul-lez-Durance, France.
| | - Inès Beaugelin
- Singapore-CEA Alliance for Research in Circular Economy (SCARCE), School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore 637459, Republic of Singapore
| | - Michel Havaux
- Aix-Marseille University, CEA, CNRS, UMR7265, BIAM, Institute of Biosciences and Biotechnologies of Aix Marseille, 13108 Saint-Paul-lez-Durance, France.
| |
Collapse
|
36
|
Alamdari K, Fisher KE, Sinson AB, Chory J, Woodson JD. Roles for the chloroplast-localized pentatricopeptide repeat protein 30 and the 'mitochondrial' transcription termination factor 9 in chloroplast quality control. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:735-751. [PMID: 32779277 DOI: 10.1111/tpj.14963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/20/2020] [Indexed: 05/11/2023]
Abstract
Chloroplasts constantly experience photo-oxidative stress while performing photosynthesis. This is particularly true under abiotic stresses that lead to the accumulation of reactive oxygen species (ROS) which oxidize DNA, proteins and lipids. Reactive oxygen species can also act as signals to induce acclimation through chloroplast degradation, cell death and nuclear gene expression. To better understand the mechanisms behind ROS signaling from chloroplasts, we have used the Arabidopsis thaliana mutant plastid ferrochelatase two (fc2) that conditionally accumulates the ROS singlet oxygen (1 O2 ) leading to chloroplast degradation and eventually cell death. Here we have mapped mutations that suppress chloroplast degradation in the fc2 mutant and demonstrate that they affect two independent loci (PPR30 and mTERF9) encoding chloroplast proteins predicted to be involved in post-transcriptional gene expression. These mutants exhibited broadly reduced chloroplast gene expression, impaired chloroplast development and reduced chloroplast stress signaling. Levels of 1 O2 , however, could be uncoupled from chloroplast degradation, suggesting that PPR30 and mTERF9 are involved in ROS signaling pathways. In the wild-type background, ppr30 and mTERF9 mutants were also observed to be less susceptible to cell death induced by excess light stress. While broad inhibition of plastid transcription with rifampicin was also able to suppress cell death in fc2 mutants, specific reductions in plastid gene expression using other mutations was not always sufficient. Together these results suggest that plastid gene expression, or the expression of specific plastid genes by PPR30 and mTERF0, is a necessary prerequisite for chloroplasts to activate the 1 O2 signaling pathways to induce chloroplast quality control pathways and/or cell death.
Collapse
Affiliation(s)
- Kamran Alamdari
- The School of Plant Sciences, University of Arizona, 1140 E. South Campus Drive, 303 Forbes Building, Tucson, AZ, 85721, USA
| | - Karen E Fisher
- The School of Plant Sciences, University of Arizona, 1140 E. South Campus Drive, 303 Forbes Building, Tucson, AZ, 85721, USA
| | - Andrew B Sinson
- The Division of Biological Sciences, The University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- Plant Biology Laboratory, The Salk Institute, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Joanne Chory
- Plant Biology Laboratory, The Salk Institute, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute, The Salk Institute, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Jesse D Woodson
- The School of Plant Sciences, University of Arizona, 1140 E. South Campus Drive, 303 Forbes Building, Tucson, AZ, 85721, USA
| |
Collapse
|
37
|
Li B, Fang J, Singh RM, Zi H, Lv S, Liu R, Dogra V, Kim C. FATTY ACID DESATURASE5 Is Required to Induce Autoimmune Responses in Gigantic Chloroplast Mutants of Arabidopsis. THE PLANT CELL 2020; 32:3240-3255. [PMID: 32796124 PMCID: PMC7534476 DOI: 10.1105/tpc.20.00016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/11/2020] [Indexed: 05/08/2023]
Abstract
Chloroplasts mediate genetically controlled cell death via chloroplast-to-nucleus retrograde signaling. To decipher the mechanism, we examined chloroplast-linked lesion-mimic mutants of Arabidopsis (Arabidopsis thaliana) deficient in plastid division, thereby developing gigantic chloroplasts (GCs). These GC mutants, including crumpled leaf (crl), constitutively express immune-related genes and show light-dependent localized cell death (LCD), mirroring typical autoimmune responses. Our reverse genetic approach excludes any potential role of immune/stress hormones in triggering LCD. Instead, transcriptome and in silico analyses suggest that reactive electrophile species (RES) generated via oxidation of polyunsaturated fatty acids (PUFAs) or lipid peroxidation-driven signaling may induce LCD. Consistent with these results, the one of the suppressors of crl, dubbed spcrl4, contains a causative mutation in the nuclear gene encoding chloroplast-localized FATTY ACID DESATURASE5 (FAD5) that catalyzes the conversion of palmitic acid (16:0) to palmitoleic acid (16:1). The loss of FAD5 in the crl mutant might attenuate the levels of RES and/or lipid peroxidation due to the reduced levels of palmitic acid-driven PUFAs, which are prime targets of reactive oxygen species. The fact that fad5 also compromises the expression of immune-related genes and the development of LCD in other GC mutants substantiates the presence of an intrinsic retrograde signaling pathway, priming the autoimmune responses in a FAD5-dependent manner.
Collapse
Affiliation(s)
- Bingqi Li
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Fang
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Rahul Mohan Singh
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hailing Zi
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shanshan Lv
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Vivek Dogra
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Havaux M. β-Cyclocitral and derivatives: Emerging molecular signals serving multiple biological functions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:35-41. [PMID: 32738580 DOI: 10.1016/j.plaphy.2020.07.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 05/16/2023]
Abstract
β-cyclocitral is a volatile short-chain apocarotenoid generated by enzymatic or non-enzymatic oxidation of the carotenoid β-carotene. β-cyclocitral has recently emerged as a new bioactive compound in various organisms ranging from plants and cyanobacteria to fungi and animals. In vascular plants, β-cyclocitral and its direct oxidation product, β-cyclocitric acid, are stress signals that accumulate under unfavorable environmental conditions such as drought or high light. Both compounds regulate nuclear gene expression through several signaling pathways, leading to stress acclimation. In cyanobacteria, β-cyclocitral functions as an inhibitor of competing microalgae and as a repellent against grazers. As a volatile compound, this apocarotenoid plays also an important role in intra-species and inter-species communication. This review summarizes recent findings on the multiple roles of β-cyclocitral and of some of its derivatives.
Collapse
Affiliation(s)
- Michel Havaux
- Aix-Marseille University, CNRS UMR7265, CEA, Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA/Cadarache, F-13108, Saint-Paul-lez-Durance, France.
| |
Collapse
|
39
|
Li S, Wang S, Wang P, Gao L, Yang R, Li Y. Label-free comparative proteomic and physiological analysis provides insight into leaf color variation of the golden-yellow leaf mutant of Lagerstroemia indica. J Proteomics 2020; 228:103942. [PMID: 32805451 DOI: 10.1016/j.jprot.2020.103942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022]
Abstract
GL1 is a golden-yellow leaf mutant that cultivated from natural bud-mutation of Lagerstroemia indica and has a very low level of photosynthetic pigment under sunlight. GL1 can gradually increase its pigment content and turn into pale-green leaf when shading under sunshade net (referred as Re-GL1). The mechanisms that cause leaf color variation are complicated and are not still unclear. Here, we have used a label-free comparative proteomics to investigate differences in proteins abundance and analyze the specific biological process associated with mechanisms of leaf color variation in GL1. A total of 245 and 160 proteins with different abundance were identified in GL1 vs WT and GL1 vs Re-GL1, respectively. Functional classification analysis revealed that the proteins with different abundance mainly related to photosynthesis, heat shock proteins, ribosome proteins, and oxidation-reduction. The proteins that the most significantly contributed to leaf color variation were photosynthetic proteins of PSII and PSI, which directly related to photooxidation and determined the photosynthetic performance of photosystem. Further analysis demonstrated that low jasmonic acid content was needed to golden-yellow leaf GL1. These findings lay a solid foundation for future studies into the molecular mechanisms that underlie leaf color formation of GL1. BIOLOGICAL SIGNIFICANCE: The natural bud mutant GL1 of L. indica is an example through changing leaf color to cope with complex environment. However, the molecular mechanism of leaf color variation are largely elusive. The proteins with different abundance identified from a label-free comparative proteomics revealed a range of biological processes associated with leaf color variation, including photosynthesis, oxidation-reduction and jasmonic acid signaling. The photooxidation and low level of jasmonic acid played a primary role in GL1 adaptation in golden-yellow leaf. These findings provide possible pathway or signal for the molecular mechanism associated with leaf color formation and as a valuable resource for signal transaction of chloroplast.
Collapse
Affiliation(s)
- Sumei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China
| | - Shuan Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China
| | - Peng Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China
| | - Lulu Gao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China
| | - Rutong Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China
| | - Ya Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China.
| |
Collapse
|
40
|
Huang J, Zhao X, Chory J. The Arabidopsis Transcriptome Responds Specifically and Dynamically to High Light Stress. Cell Rep 2020; 29:4186-4199.e3. [PMID: 31851942 PMCID: PMC7030938 DOI: 10.1016/j.celrep.2019.11.051] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/18/2019] [Accepted: 11/13/2019] [Indexed: 11/30/2022] Open
Abstract
The dynamic and specific transcriptome for high light (HL) stress in plants is poorly understood because heat has confounded previous studies. Here, we perform an in-depth temporal responsive transcriptome analysis and identify the core HL-responsive genes. By eliminating the effect of heat, we uncover a set of genes specifically regulated by high-intensity light-driven signaling. We find that 79% of HL-responsive genes restore their expression to baseline within a 14-h recovery period. Our study reveals that plants respond to HL through dynamic regulation of hormones, particularly abscisic acid (ABA), photosynthesis, and phenylpropanoid pathway genes. Blue/UV-A photoreceptors and phytochrome-interacting factor (PIF) genes are also responsive to HL. We further show that ABA biosynthesis-defective mutant nced3nced5, as well as pif4, pif5, pif4,5, and pif1,3,4,5 mutants, are hypersensitive to HL. Our study presents the dynamic and specific high-intensity light-driven transcriptional landscape in plants during HL stress. Huang et al. present the specific and dynamic transcriptome for high-intensity light (HL) stress in plants. They identify the core HL-responsive genes and uncover that plants respond to HL by dynamically regulating hormones, anthocyanin, photosynthesis, photoreceptors, and PIF genes. They show that ABA and PIFs are required for HL response.
Collapse
Affiliation(s)
- Jianyan Huang
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Xiaobo Zhao
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Joanne Chory
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
41
|
Singlet Oxygen and Protochlorophyllide Detection in Arabidopsis thaliana. Methods Mol Biol 2020. [PMID: 32857346 DOI: 10.1007/978-1-0716-0896-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Since the recognition of the reactive oxygen species singlet oxygen (1O2) as a versatile signal that induces various stress responses, the mechanisms underlying 1O2-induced signaling transduction pathways have become the subject of much current research. This in turn highlights the need for reliable detection methods for 1O2. Here we describe a protocol for the detection of 1O2 using a commercially available fluorescent probe (Singlet Oxygen Sensor Green) and provide a simple method for direct visualization and quantification of the 1O2-evolving photosensitizer protochlorophyllide in the Arabidopsis fluorescent mutant.
Collapse
|
42
|
Beaugelin I, Chevalier A, D'Alessandro S, Ksas B, Havaux M. Endoplasmic reticulum-mediated unfolded protein response is an integral part of singlet oxygen signalling in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1266-1280. [PMID: 31975462 DOI: 10.1111/tpj.14700] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 05/19/2023]
Abstract
Singlet oxygen (1 O2 ) is a by-product of photosynthesis that triggers a signalling pathway leading to stress acclimation or to cell death. By analyzing gene expressions in a 1 O2 -overproducing Arabidopsis mutant (ch1) under different light regimes, we show here that the 1 O2 signalling pathway involves the endoplasmic reticulum (ER)-mediated unfolded protein response (UPR). ch1 plants in low light exhibited a moderate activation of UPR genes, in particular bZIP60, and low concentrations of the UPR-inducer tunicamycin enhanced tolerance to photooxidative stress, together suggesting a role for UPR in plant acclimation to low 1 O2 levels. Exposure of ch1 to high light stress ultimately leading to cell death resulted in a marked upregulation of the two UPR branches (bZIP60/IRE1 and bZIP28/bZIP17). Accordingly, mutational suppression of bZIP60 and bZIP28 increased plant phototolerance, and a strong UPR activation by high tunicamycin concentrations promoted high light-induced cell death. Conversely, light acclimation of ch1 to 1 O2 stress put a limitation in the high light-induced expression of UPR genes, except for the gene encoding the BIP3 chaperone, which was selectively upregulated. BIP3 deletion enhanced Arabidopsis photosensitivity while plants treated with a chemical chaperone exhibited enhanced phototolerance. In conclusion, 1 O2 induces the ER-mediated UPR response that fulfils a dual role in high light stress: a moderate UPR, with selective induction of BIP3, is part of the acclimatory response to 1 O2 , and a strong activation of the whole UPR is associated with cell death.
Collapse
Affiliation(s)
- Inès Beaugelin
- Aix-Marseille University, CNRS, CEA, 13108, Saint-Paul-lez-Durance, France
| | - Anne Chevalier
- Aix-Marseille University, CNRS, CEA, 13108, Saint-Paul-lez-Durance, France
| | | | - Brigitte Ksas
- Aix-Marseille University, CNRS, CEA, 13108, Saint-Paul-lez-Durance, France
| | - Michel Havaux
- Aix-Marseille University, CNRS, CEA, 13108, Saint-Paul-lez-Durance, France
| |
Collapse
|
43
|
Bryophytes can recognize their neighbours through volatile organic compounds. Sci Rep 2020; 10:7405. [PMID: 32366980 PMCID: PMC7198583 DOI: 10.1038/s41598-020-64108-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/28/2020] [Indexed: 02/03/2023] Open
Abstract
Communication between vascular plants through volatile organic compounds (VOCs) impacts on ecosystem functioning. However, nothing is known about that between non-vascular plants. To investigate plant-plant VOCs interaction in bryophytes we exposed rare peatland moss Hamatocaulis vernicosus to VOCs of its common competitor Sphagnum flexuosum in an air-flow system of connected containers under artificial light, supplemented or unsupplemented by far-red (FR) light. When exposed to VOCs of S. flexuosum, shoots of H. vernicosus elongated and emitted six times higher amounts of a compound chemically related to β-cyclocitral, which is employed in stress signalling and allelopathy in vascular plants. The VOCs emission was affected similarly by FR light addition, possibly simulating competition stress. This is the first evidence of plant-plant VOCs interaction in non-vascular plants, analogous to that in vascular plants. The findings open new possibilities for understanding the language and evolution of communication in land plants.
Collapse
|
44
|
Unal D, García-Caparrós P, Kumar V, Dietz KJ. Chloroplast-associated molecular patterns as concept for fine-tuned operational retrograde signalling. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190443. [PMID: 32362264 DOI: 10.1098/rstb.2019.0443] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chloroplasts compose about one-quarter of the mesophyll cell volume and contain about 60% of the cell protein. Photosynthetic carbon assimilation is the dominating metabolism in illuminated leaves. To optimize the resource expenditure in these costly organelles and to control and adjust chloroplast metabolism, an intensive transfer of information between nucleus-cytoplasm and chloroplasts occurs in both directions as anterograde and retrograde signalling. Recent research identified multiple retrograde pathways that use metabolite transfer and include reaction products of lipids and carotenoids with reactive oxygen species (ROS). Other pathways use metabolites of carbon, sulfur and nitrogen metabolism, low molecular weight antioxidants and hormone precursors to carry information between the cell compartments. This review focuses on redox- and ROS-related retrograde signalling pathways. In analogy to the microbe-associated molecular pattern, we propose the term 'chloroplast-associated molecular pattern' which connects chloroplast performance to extrachloroplast processes such as nuclear gene transcription, posttranscriptional processing, including translation, and RNA and protein fate. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Dilek Unal
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany.,Molecular Biology and Genetic, Faculty of Science and Letter, Bilecik Seyh Edebali University, 11230 Bilecik, Turkey
| | - Pedro García-Caparrós
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany.,Department of Agronomy, University of Almeria, Higher Engineering School, Agrifood Campus of International Excellence ceiA3, Carretera de Sacramento s/n, La Cañada de San Urbano 04120, Almeria, Spain
| | - Vijay Kumar
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| |
Collapse
|
45
|
Gollan PJ, Aro EM. Photosynthetic signalling during high light stress and recovery: targets and dynamics. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190406. [PMID: 32362249 DOI: 10.1098/rstb.2019.0406] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The photosynthetic apparatus is one of the major primary sensors of the plant's external environment. Changes in environmental conditions affect the balance between harvested light energy and the capacity to deal with excited electrons in the stroma, which alters the redox homeostasis of the photosynthetic electron transport chain. Disturbances to redox balance activate photosynthetic regulation mechanisms and trigger signalling cascades that can modify the transcription of nuclear genes. H2O2 and oxylipins have been identified as especially prominent regulators of gene expression in response to excess light stress. This paper explores the hypothesis that photosynthetic imbalance triggers specific signals that target discrete gene profiles and biological processes. Analysis of the major retrograde signalling pathways engaged during high light stress and recovery demonstrates both specificity and overlap in gene targets. This work reveals distinct, time-resolved profiles of gene expression that suggest a regulatory interaction between rapidly activated abiotic stress response and induction of secondary metabolism and detoxification processes during recovery. The findings of this study show that photosynthetic electron transport provides a finely tuned sensor for detecting and responding to the environment through chloroplast retrograde signalling. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Peter J Gollan
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
46
|
Dmitrieva VA, Tyutereva EV, Voitsekhovskaja OV. Singlet Oxygen in Plants: Generation, Detection, and Signaling Roles. Int J Mol Sci 2020; 21:E3237. [PMID: 32375245 PMCID: PMC7247340 DOI: 10.3390/ijms21093237] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 01/17/2023] Open
Abstract
Singlet oxygen (1O2) refers to the lowest excited electronic state of molecular oxygen. It easily oxidizes biological molecules and, therefore, is cytotoxic. In plant cells, 1O2 is formed mostly in the light in thylakoid membranes by reaction centers of photosystem II. In high concentrations, 1O2 destroys membranes, proteins and DNA, inhibits protein synthesis in chloroplasts leading to photoinhibition of photosynthesis, and can result in cell death. However, 1O2 also acts as a signal relaying information from chloroplasts to the nucleus, regulating expression of nuclear genes. In spite of its extremely short lifetime, 1O2 can diffuse from the chloroplasts into the cytoplasm and the apoplast. As shown by recent studies, 1O2-activated signaling pathways depend not only on the levels but also on the sites of 1O2 production in chloroplasts, and can activate two types of responses, either acclimation to high light or programmed cell death. 1O2 can be produced in high amounts also in root cells during drought stress. This review summarizes recent advances in research on mechanisms and sites of 1O2 generation in plants, on 1O2-activated pathways of retrograde- and cellular signaling, and on the methods to study 1O2 production in plants.
Collapse
Affiliation(s)
| | | | - Olga V. Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg 197376, Russia; (V.A.D.); (E.V.T.)
| |
Collapse
|
47
|
Ambastha V, Chauhan G, Tiwari BS, Tripathy BC. Execution of programmed cell death by singlet oxygen generated inside the chloroplasts of Arabidopsis thaliana. PROTOPLASMA 2020; 257:841-851. [PMID: 31909436 DOI: 10.1007/s00709-019-01467-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Absorption of excess excitation energy induces overproduction of singlet oxygen (1O2) in plants. The major sources of singlet oxygen production are chlorophyll and its intermediates located in the chloroplast. Over-accumulation of the chlorophyll biosynthetic intermediate protochlorophyllide by the exogenous application of 5-aminolevulinic acid (ALA), the precursor of tetrapyrrole, induced singlet oxygen production in the plastidic membranes. Over-expression of protochlorophyllide oxidoreductase C (PORC) in Arabidopsis thaliana resulted in efficient light-induced photo-transformation of protochlorophyllide to chlorophyllide that limited the accumulation of protochlorophyllide. Consequently, the 1O2 generation decreased in the PORC overexpressors (PORCx) and their cell death was minimal. Conversely, porC-2 over-accumulated protochlorophyllide in response to ALA treatment and generated higher amounts of 1O2 in light and had highest cell death as monitored by Evans blue staining. The protoplasts isolated from PORCx plants, when treated with ALA, generated minimal amounts of 1O2 as revealed by singlet oxygen sensor green (SOSG) fluorescence emission from chloroplasts. Conversely, the protoplasts of porC-2 mutants under identical conditions generated the maximum SOSG fluorescence in their chloroplasts and cytosol surrounding the chloroplasts most likely due to the leakage from the organelle. The membrane blebbing, a hallmark of programmed cell death, was clearly visible in WT and porC-2 protoplasts. Similarly, the nick end labelling (TUNEL) assay revealed nicks in the DNA. The TUNEL-positive nuclei after 30 min of light exposure were highest in porC-2 and lowest in PORCx protoplasts. The results demonstrate that higher amounts of singlet oxygen produced in the chloroplasts play an important role in programmed cell death.
Collapse
Affiliation(s)
- Vivek Ambastha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Garima Chauhan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Budhi Sagar Tiwari
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba, Gandhinagar, Gujarat, 382007, India
| | - Baishnab C Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
48
|
Hu S, Ding Y, Zhu C. Sensitivity and Responses of Chloroplasts to Heat Stress in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:375. [PMID: 32300353 PMCID: PMC7142257 DOI: 10.3389/fpls.2020.00375] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
Increased temperatures caused by global warming threaten agricultural production, as warmer conditions can inhibit plant growth and development or even destroy crops in extreme circumstances. Extensive research over the past several decades has revealed that chloroplasts, the photosynthetic organelles of plants, are highly sensitive to heat stress, which affects a variety of photosynthetic processes including chlorophyll biosynthesis, photochemical reactions, electron transport, and CO2 assimilation. Important mechanisms by which plant cells respond to heat stress to protect these photosynthetic organelles have been identified and analyzed. More recent studies have made it clear that chloroplasts play an important role in inducing the expression of nuclear heat-response genes during the heat stress response. In this review, we summarize these important advances in plant-based research and discuss how the sensitivity, responses, and signaling roles of chloroplasts contribute to plant heat sensitivity and tolerance.
Collapse
Affiliation(s)
| | | | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
49
|
Bielczynski LW, Schansker G, Croce R. Consequences of the reduction of the Photosystem II antenna size on the light acclimation capacity of Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2020; 43:866-879. [PMID: 31834625 PMCID: PMC7154682 DOI: 10.1111/pce.13701] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/04/2019] [Accepted: 12/09/2019] [Indexed: 05/24/2023]
Abstract
In several systems, from plant's canopy to algal bioreactors, the decrease of the antenna size has been proposed as a strategy to increase the photosynthetic efficiency. However, still little is known about possible secondary effects of such modifications. This is particularly relevant because the modulation of the antenna size is one of the most important light acclimation responses in photosynthetic organisms. In our study, we used an Arabidopsis thaliana mutant (dLhcb2), which has a 60% decrease of Lhcb1 and Lhcb2, the two main components of the major Photosystem II antenna complex. We show that the mutant maintains the photosynthetic and photoprotective capacity of the Wild Type (WT) and adapts to different light conditions by remodelling its photosynthetic apparatus, but the regulatory mechanism differs from that of the WT. Surprisingly, it does not compensate for the decreased light-harvesting capacity by increasing other pigment-protein complexes. Instead, it lowers the ratio of the cytochrome b6 f and ATP synthase to the photosystems, regulating linear electron flow and maintaining the photosynthetic control at the level of these complexes as in the WT. We show that targeting the reduction of two specific antenna proteins, Lhcb1 and Lhcb2, represents a viable solution to obtain plants with a truncated antenna size, which still maintain the capacity to acclimate to different light conditions.
Collapse
Affiliation(s)
- Ludwik W. Bielczynski
- Biophysics of Photosynthesis/Energy, Faculty of Sciences, Department of Physics and AstronomyVU University AmsterdamAmsterdamThe Netherlands
| | - Gert Schansker
- Biophysics of Photosynthesis/Energy, Faculty of Sciences, Department of Physics and AstronomyVU University AmsterdamAmsterdamThe Netherlands
| | - Roberta Croce
- Biophysics of Photosynthesis/Energy, Faculty of Sciences, Department of Physics and AstronomyVU University AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
50
|
The Arabidopsis SAFEGUARD1 suppresses singlet oxygen-induced stress responses by protecting grana margins. Proc Natl Acad Sci U S A 2020; 117:6918-6927. [PMID: 32161131 DOI: 10.1073/pnas.1918640117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Singlet oxygen (1O2), the major reactive oxygen species (ROS) produced in chloroplasts, has been demonstrated recently to be a highly versatile signal that induces various stress responses. In the fluorescent (flu) mutant, its release causes seedling lethality and inhibits mature plant growth. However, these drastic phenotypes are suppressed when EXECUTER1 (EX1) is absent in the flu ex1 double mutant. We identified SAFEGUARD1 (SAFE1) in a screen of ethyl methanesulfonate (EMS) mutagenized flu ex1 plants for suppressor mutants with a flu-like phenotype. In flu ex1 safe1, all 1O2-induced responses, including transcriptional rewiring of nuclear gene expression, return to levels, such as, or even higher than, those in flu Without SAFE1, grana margins (GMs) of chloroplast thylakoids (Thys) are specifically damaged upon 1O2 generation and associate with plastoglobules (PGs). SAFE1 is localized in the chloroplast stroma, and release of 1O2 induces SAFE1 degradation via chloroplast-originated vesicles. Our paper demonstrates that flu-produced 1O2 triggers an EX1-independent signaling pathway and proves that SAFE1 suppresses this signaling pathway by protecting GMs.
Collapse
|