1
|
Wei X, Manandhar L, Kim H, Chhetri A, Hwang J, Jang G, Park C, Park R. Pexophagy and Oxidative Stress: Focus on Peroxisomal Proteins and Reactive Oxygen Species (ROS) Signaling Pathways. Antioxidants (Basel) 2025; 14:126. [PMID: 40002313 PMCID: PMC11851658 DOI: 10.3390/antiox14020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Peroxisomes generate reactive oxygen species (ROS) and also play a role in protecting cells from the damaging effects of such radicals. Dysfunctional peroxisomes are recognized by receptors and degraded by a selective type of macroautophagy called pexophagy. Oxidative stress is one of the signals that activates pexophagy through multiple signaling pathways. Conversely, impaired pexophagy results in the accumulation of damaged peroxisomes, which in turn leads to elevated ROS levels and oxidative stress, resulting as cellular dysfunction and the progression of diseases such as neurodegeneration, cancer, and metabolic disorders. This review explores the molecular mechanisms driving pexophagy and its regulation by oxidative stress with a particular focus on ROS. This highlights the role of peroxisomal proteins and ROS-mediated signaling pathways in regulating pexophagy. In addition, emerging evidence suggests that the dysregulation of pexophagy is closely linked to neurological disorders, underscoring its potential as a therapeutic target. Understanding the intricate crosstalk between pexophagy and oxidative stress provides new insights into the maintenance of cellular homeostasis and offers promising directions for addressing neurological disorders that are tightly associated with pexophagy and oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (X.W.); (L.M.); (H.K.); (A.C.); (J.H.); (G.J.); (C.P.)
| |
Collapse
|
2
|
Li X, Zheng J, Su J, Wang L, Luan L, Wang T, Bai F, Zhong Q, Gong Q. Myotubularin 2 interacts with SEC23A and negatively regulates autophagy at ER exit sites in Arabidopsis. Autophagy 2025; 21:141-159. [PMID: 39177202 DOI: 10.1080/15548627.2024.2394302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024] Open
Abstract
Starvation- or stress-induced phosphatidylinositol 3-phosphate (PtdIns3P/PI3P) production at the endoplasmic reticulum (ER) subdomains organizes phagophore assembly and autophagosome formation. Coat protein complex II (COPII) vesicles budding from ER exit site (ERES) also contribute to autophagosome formation. Whether any PtdIns3P phosphatase functions at ERES to inhibit macroautophagy/autophagy is unknown. Here we report Myotubularin 2 (MTM2) of Arabidopsis as a PtdIns3P phosphatase that localizes to ERES and negatively regulates autophagy. MTM2 binds PtdIns3P with its PH-GRAM domain in vitro and acts toward PtdIns3P in vivo. Transiently expressed MTM2 colocalizes with ATG14b, a subunit of the phosphatidylinositol 3-kinase (PtdIns3K) complex, and overexpression of MTM2 blocks autophagic flux and causes over-accumulation of ATG18a, ATG5, and ATG8a. The mtm2 mutant has higher levels of autophagy and is more tolerant to starvation, whereas MTM2 overexpression leads to reduced autophagy and sensitivity to starvation. The phenotypes of mtm2 are suppressed by ATG2 mutation, suggesting that MTM2 acts upstream of ATG2. Importantly, MTM2 does not affect the endosomal functions of PtdIns3P. Instead, MTM2 specifically colocalizes with COPII coat proteins and is cradled by the ERES-defining protein SEC16. MTM2 interacts with SEC23A with its phosphatase domain and inhibits COPII-mediated protein secretion. Finally, a role for MTM2 in salt stress response is uncovered. mtm2 resembles the halophyte Thellungiella salsuginea in its efficient vacuolar compartmentation of Na+, maintenance of chloroplast integrity, and timely regulation of autophagy-related genes. Our findings reveal a balance between PtdIns3P synthesis and turnover in autophagosome formation, and provide a new link between autophagy and COPII function.Abbreviations: ATG: autophagy related; BFA: brefeldin A; BiFC: bimolecular fluorescence complementation; CHX: cycloheximide; ConA: concanamycin A; COPII: coat protein complex II; ER: endoplasmic reticulum; ERES: ER exit site; MS: Murashige and Skoog; MTM: myotubularin; MVB: multivesicular body; PAS: phagophore assembly site; PI: phosphoinositide; TEM: transmission electron microscopy; WT: wild-type.
Collapse
Affiliation(s)
- Xinjing Li
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jing Zheng
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Jing Su
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, P. R. China
| | - Lin Luan
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Taotao Wang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, P. R. China
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
3
|
Hoffmann N, McFarlane HE. Xyloglucan side chains enable polysaccharide secretion to the plant cell wall. Dev Cell 2024; 59:2609-2625.e8. [PMID: 38971156 DOI: 10.1016/j.devcel.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/16/2024] [Accepted: 06/08/2024] [Indexed: 07/08/2024]
Abstract
Plant cell walls are essential for growth. The cell wall hemicellulose xyloglucan (XyG) is produced in the Golgi apparatus before secretion. Loss of the Arabidopsis galactosyltransferase MURUS3 (MUR3) decreases XyG d-galactose side chains and causes intracellular aggregations and dwarfism. It is unknown how changing XyG synthesis can broadly impact organelle organization and growth. We show that intracellular aggregations are not unique to mur3 and are found in multiple mutant lines with reduced XyG D-galactose side chains. mur3 aggregations disrupt subcellular trafficking and induce formation of intracellular cell-wall-like fragments. Addition of d-galacturonic acid onto XyG can restore growth and prevent mur3 aggregations. These results indicate that the presence, but not the composition, of XyG side chains is essential, likely by ensuring XyG solubility. Our results suggest that XyG polysaccharides are synthesized in a highly substituted form for efficient secretion and then later modified by cell-wall-localized enzymes to fine-tune cell wall properties.
Collapse
Affiliation(s)
- Natalie Hoffmann
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Heather E McFarlane
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
4
|
Otegui MS, Steelheart C, Ma W, Ma J, Kang BH, De Medina Hernandez VS, Dagdas Y, Gao C, Goto-Yamada S, Oikawa K, Nishimura M. Vacuolar degradation of plant organelles. THE PLANT CELL 2024; 36:3036-3056. [PMID: 38657116 PMCID: PMC11371181 DOI: 10.1093/plcell/koae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Plants continuously remodel and degrade their organelles due to damage from their metabolic activities and environmental stressors, as well as an integral part of their cell differentiation programs. Whereas certain organelles use local hydrolytic enzymes for limited remodeling, most of the pathways that control the partial or complete dismantling of organelles rely on vacuolar degradation. Specifically, selective autophagic pathways play a crucial role in recognizing and sorting plant organelle cargo for vacuolar clearance, especially under cellular stress conditions induced by factors like heat, drought, and damaging light. In these short reviews, we discuss the mechanisms that control the vacuolar degradation of chloroplasts, mitochondria, endoplasmic reticulum, Golgi, and peroxisomes, with an emphasis on autophagy, recently discovered selective autophagy receptors for plant organelles, and crosstalk with other catabolic pathways.
Collapse
Affiliation(s)
- Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Charlotte Steelheart
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wenlong Ma
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Juncai Ma
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Byung-Ho Kang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | - Yasin Dagdas
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shino Goto-Yamada
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow 30-348, Poland
| | - Kazusato Oikawa
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Mikio Nishimura
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| |
Collapse
|
5
|
Zhou X, Zhang Q, Zhao Y, Ding S, Yu GH. Integrated Multi-Omics Analyses Reveal That Autophagy-Mediated Cellular Metabolism Is Required for the Initiation of Pollen Germination. Int J Mol Sci 2023; 24:15014. [PMID: 37834462 PMCID: PMC10573924 DOI: 10.3390/ijms241915014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Autophagy is an evolutionarily conserved mechanism for degrading and recycling various cellular components, functioning in both normal development and stress conditions. This process is tightly regulated by a set of autophagy-related (ATG) proteins, including ATG2 in the ATG9 cycling system and ATG5 in the ATG12 conjugation system. Our recent research demonstrated that autophagy-mediated compartmental cytoplasmic deletion is essential for pollen germination. However, the precise mechanisms through which autophagy regulates pollen germination, ensuring its fertility, remain largely unknown. Here, we applied multi-omics analyses, including transcriptomic and metabolomic approaches, to investigate the downstream pathways of autophagy in the process of pollen germination. Although ATG2 and ATG5 play similar roles in regulating pollen germination, high-throughput transcriptomic analysis reveals that silencing ATG5 has a greater impact on the transcriptome than silencing ATG2. Cross-comparisons of transcriptome and proteome analysis reveal that gene expression at the mRNA level and protein level is differentially affected by autophagy. Furthermore, high-throughput metabolomics analysis demonstrates that pathways related to amino acid metabolism and aminoacyl-tRNA biosynthesis were affected by both ATG2 and ATG5 silencing. Collectively, our multi-omics analyses reveal the central role of autophagy in cellular metabolism, which is critical for initiating pollen germination and ensuring pollen fertility.
Collapse
Affiliation(s)
| | | | | | | | - Guang-Hui Yu
- College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (X.Z.)
| |
Collapse
|
6
|
Kim JH, Jung H, Song K, Lee HN, Chung T. The phosphatidylinositol 3-phosphate effector FYVE3 regulates FYVE2-dependent autophagy in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1160162. [PMID: 37008475 PMCID: PMC10050702 DOI: 10.3389/fpls.2023.1160162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Phosphatidylinositol 3-phosphate (PI3P) is a signaling phospholipid that play a key role in endomembrane trafficking, specifically autophagy and endosomal trafficking. However, the mechanisms underlying the contribution of PI3P downstream effectors to plant autophagy remain unknown. Known PI3P effectors for autophagy in Arabidopsis thaliana include ATG18A (Autophagy-related 18A) and FYVE2 (Fab1p, YOTB, Vac1p, and EEA1 2), which are implicated in autophagosome biogenesis. Here, we report that FYVE3, a paralog of plant-specific FYVE2, plays a role in FYVE2-dependent autophagy. Using yeast two-hybrid and bimolecular fluorescence complementation assays, we determined that the FYVE3 protein was associated with autophagic machinery containing ATG18A and FYVE2, by interacting with ATG8 isoforms. The FYVE3 protein was transported to the vacuole, and the vacuolar delivery of FYVE3 relies on PI3P biosynthesis and the canonical autophagic machinery. Whereas the fyve3 mutation alone barely affects autophagic flux, it suppresses defective autophagy in fyve2 mutants. Based on the molecular genetics and cell biological data, we propose that FYVE3 specifically regulates FYVE2-dependent autophagy.
Collapse
|
7
|
Wang J, Zhang Q, Bao Y, Bassham D. Autophagic degradation of membrane-bound organelles in plants. Biosci Rep 2023; 43:BSR20221204. [PMID: 36562332 PMCID: PMC9842949 DOI: 10.1042/bsr20221204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic cells have evolved membrane-bound organelles, including the endoplasmic reticulum (ER), Golgi, mitochondria, peroxisomes, chloroplasts (in plants and green algae) and lysosomes/vacuoles, for specialized functions. Organelle quality control and their proper interactions are crucial both for normal cell homeostasis and function and for environmental adaption. Dynamic turnover of organelles is tightly controlled, with autophagy playing an essential role. Autophagy is a programmed process for efficient clearing of unwanted or damaged macromolecules or organelles, transporting them to vacuoles for degradation and recycling and thereby enhancing plant environmental plasticity. The specific autophagic engulfment of organelles requires activation of a selective autophagy pathway, recognition of the organelle by a receptor, and selective incorporation of the organelle into autophagosomes. While some of the autophagy machinery and mechanisms for autophagic removal of organelles is conserved across eukaryotes, plants have also developed unique mechanisms and machinery for these pathways. In this review, we discuss recent progress in understanding autophagy regulation in plants, with a focus on autophagic degradation of membrane-bound organelles. We also raise some important outstanding questions to be addressed in the future.
Collapse
Affiliation(s)
- Jiaojiao Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Bao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, U.S.A
| |
Collapse
|
8
|
Li L, Lee CP, Ding X, Qin Y, Wijerathna-Yapa A, Broda M, Otegui MS, Millar AH. Defects in autophagy lead to selective in vivo changes in turnover of cytosolic and organelle proteins in Arabidopsis. THE PLANT CELL 2022; 34:3936-3960. [PMID: 35766863 PMCID: PMC9516138 DOI: 10.1093/plcell/koac185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/21/2022] [Indexed: 05/26/2023]
Abstract
Identification of autophagic protein cargo in plants in autophagy-related genes (ATG) mutants is complicated by changes in protein synthesis and protein degradation. To detect autophagic cargo, we measured protein degradation rate in shoots and roots of Arabidopsis (Arabidopsis thaliana) atg5 and atg11 mutants. These data show that less than a quarter of proteins changing in abundance are probable cargo and revealed roles of ATG11 and ATG5 in degradation of specific glycolytic enzymes and of other cytosol, chloroplast, and ER-resident proteins, and a specialized role for ATG11 in degradation of proteins from mitochondria and chloroplasts. Protein localization in transformed protoplasts and degradation assays in the presence of inhibitors confirm a role for autophagy in degrading glycolytic enzymes. Autophagy induction by phosphate (Pi) limitation changed metabolic profiles and the protein synthesis and degradation rates of atg5 and atg11 plants. A general decrease in the abundance of amino acids and increase in secondary metabolites in autophagy mutants was consistent with altered catabolism and changes in energy conversion caused by reduced degradation rate of specific proteins. Combining measures of changes in protein abundance and degradation rates, we also identify ATG11 and ATG5-associated protein cargo of low Pi-induced autophagy in chloroplasts and ER-resident proteins involved in secondary metabolism.
Collapse
Affiliation(s)
- Lei Li
- Authors for correspondence (L.L.) and (A.H.M)
| | - Chun Pong Lee
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Xinxin Ding
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yu Qin
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Akila Wijerathna-Yapa
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Martyna Broda
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
9
|
Muhammad D, Smith KA, Bartel B. Plant peroxisome proteostasis-establishing, renovating, and dismantling the peroxisomal proteome. Essays Biochem 2022; 66:229-242. [PMID: 35538741 PMCID: PMC9375579 DOI: 10.1042/ebc20210059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/28/2022]
Abstract
Plant peroxisomes host critical metabolic reactions and insulate the rest of the cell from reactive byproducts. The specialization of peroxisomal reactions is rooted in how the organelle modulates its proteome to be suitable for the tissue, environment, and developmental stage of the organism. The story of plant peroxisomal proteostasis begins with transcriptional regulation of peroxisomal protein genes and the synthesis, trafficking, import, and folding of peroxisomal proteins. The saga continues with assembly and disaggregation by chaperones and degradation via proteases or the proteasome. The story concludes with organelle recycling via autophagy. Some of these processes as well as the proteins that facilitate them are peroxisome-specific, while others are shared among organelles. Our understanding of translational regulation of plant peroxisomal protein transcripts and proteins necessary for pexophagy remain based in findings from other models. Recent strides to elucidate transcriptional control, membrane dynamics, protein trafficking, and conditions that induce peroxisome turnover have expanded our knowledge of plant peroxisomal proteostasis. Here we review our current understanding of the processes and proteins necessary for plant peroxisome proteostasis-the emergence, maintenance, and clearance of the peroxisomal proteome.
Collapse
Affiliation(s)
| | - Kathryn A Smith
- Department of BioSciences, Rice University, Houston, TX 77005, U.S.A
| | - Bonnie Bartel
- Department of BioSciences, Rice University, Houston, TX 77005, U.S.A
| |
Collapse
|
10
|
Asif N, Lin F, Li L, Zhu X, Nawaz S. Regulation of Autophagy Machinery in Magnaporthe oryzae. Int J Mol Sci 2022; 23:8366. [PMID: 35955497 PMCID: PMC9369213 DOI: 10.3390/ijms23158366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 01/18/2023] Open
Abstract
Plant diseases cause substantial loss to crops all over the world, reducing the quality and quantity of agricultural goods significantly. One of the world's most damaging plant diseases, rice blast poses a substantial threat to global food security. Magnaporthe oryzae causes rice blast disease, which challenges world food security by causing substantial damage in rice production annually. Autophagy is an evolutionarily conserved breakdown and recycling system in eukaryotes that regulate homeostasis, stress adaption, and programmed cell death. Recently, new studies found that the autophagy process plays a vital role in the pathogenicity of M. oryzae and the regulation mechanisms are gradually clarified. Here we present a brief summary of the recent advances, concentrating on the new findings of autophagy regulation mechanisms and summarize some autophagy-related techniques in rice blast fungus. This review will help readers to better understand the relationship between autophagy and the virulence of plant pathogenic fungi.
Collapse
Affiliation(s)
- Nida Asif
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.Z.)
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.Z.)
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.Z.)
| | - Sehar Nawaz
- Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| |
Collapse
|
11
|
Cheng S, Wang Q, Manghwar H, Liu F. Autophagy-Mediated Regulation of Different Meristems in Plants. Int J Mol Sci 2022; 23:ijms23116236. [PMID: 35682913 PMCID: PMC9180974 DOI: 10.3390/ijms23116236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a highly conserved cell degradation process that widely exists in eukaryotic cells. In plants, autophagy helps maintain cellular homeostasis by degrading and recovering intracellular substances through strict regulatory pathways, thus helping plants respond to a variety of developmental and environmental signals. Autophagy is involved in plant growth and development, including leaf starch degradation, senescence, anthers development, regulation of lipid metabolism, and maintenance of peroxisome mass. More and more studies have shown that autophagy plays a role in stress response and contributes to maintain plant survival. The meristem is the basis for the formation and development of new tissues and organs during the post-embryonic development of plants. The differentiation process of meristems is an extremely complex process, involving a large number of morphological and structural changes, environmental factors, endogenous hormones, and molecular regulatory mechanisms. Recent studies have demonstrated that autophagy relates to meristem development, affecting plant growth and development under stress conditions, especially in shoot and root apical meristem. Here, we provide an overview of the current knowledge about how autophagy regulates different meristems under different stress conditions and possibly provide new insights for future research.
Collapse
Affiliation(s)
| | | | | | - Fen Liu
- Correspondence: (H.M.); (F.L.)
| |
Collapse
|
12
|
Luong AM, Koestel J, Bhati KK, Batoko H. Cargo receptors and adaptors for selective autophagy in plant cells. FEBS Lett 2022; 596:2104-2132. [PMID: 35638898 DOI: 10.1002/1873-3468.14412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/08/2022] [Accepted: 05/23/2022] [Indexed: 11/06/2022]
Abstract
Plant selective (macro)autophagy is a highly regulated process whereby eukaryotic cells spatiotemporally degrade some of their constituents that have become superfluous or harmful. The identification and characterization of the factors determining this selectivity make it possible to integrate selective (macro)autophagy into plant cell physiology and homeostasis. The specific cargo receptors and/or scaffold proteins involved in this pathway are generally not structurally conserved, as are the biochemical mechanisms underlying recognition and integration of a given cargo into the autophagosome in different cell types. This review discusses the few specific cargo receptors described in plant cells to highlight key features of selective autophagy in the plant kingdom and its integration with plant physiology, so as to identify evolutionary convergence and knowledge gaps to be filled by future research.
Collapse
Affiliation(s)
- Ai My Luong
- Louvain Institute of Biomolecular Science and Technology, University of Louvain Croix du Sud 4, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Jérôme Koestel
- Louvain Institute of Biomolecular Science and Technology, University of Louvain Croix du Sud 4, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Kaushal Kumar Bhati
- Louvain Institute of Biomolecular Science and Technology, University of Louvain Croix du Sud 4, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Henri Batoko
- Louvain Institute of Biomolecular Science and Technology, University of Louvain Croix du Sud 4, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
13
|
Xu C, Fan J. Links between autophagy and lipid droplet dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2848-2858. [PMID: 35560198 DOI: 10.1093/jxb/erac003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/06/2022] [Indexed: 06/15/2023]
Abstract
Autophagy is a catabolic process in which cytoplasmic components are delivered to vacuoles or lysosomes for degradation and nutrient recycling. Autophagy-mediated degradation of membrane lipids provides a source of fatty acids for the synthesis of energy-rich, storage lipid esters such as triacylglycerol (TAG). In eukaryotes, storage lipids are packaged into dynamic subcellular organelles, lipid droplets. In times of energy scarcity, lipid droplets can be degraded via autophagy in a process termed lipophagy to release fatty acids for energy production via fatty acid β-oxidation. On the other hand, emerging evidence suggests that lipid droplets are required for the efficient execution of autophagic processes. Here, we review recent advances in our understanding of metabolic interactions between autophagy and TAG storage, and discuss mechanisms of lipophagy. Free fatty acids are cytotoxic due to their detergent-like properties and their incorporation into lipid intermediates that are toxic at high levels. Thus, we also discuss how cells manage lipotoxic stresses during autophagy-mediated mobilization of fatty acids from lipid droplets and organellar membranes for energy generation.
Collapse
Affiliation(s)
- Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
14
|
Goto-Yamada S, Oikawa K, Yamato KT, Kanai M, Hikino K, Nishimura M, Mano S. Image-Based Analysis Revealing the Molecular Mechanism of Peroxisome Dynamics in Plants. Front Cell Dev Biol 2022; 10:883491. [PMID: 35592252 PMCID: PMC9110829 DOI: 10.3389/fcell.2022.883491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are present in eukaryotic cells and have essential roles in various biological processes. Plant peroxisomes proliferate by de novo biosynthesis or division of pre-existing peroxisomes, degrade, or replace metabolic enzymes, in response to developmental stages, environmental changes, or external stimuli. Defects of peroxisome functions and biogenesis alter a variety of biological processes and cause aberrant plant growth. Traditionally, peroxisomal function-based screening has been employed to isolate Arabidopsis thaliana mutants that are defective in peroxisomal metabolism, such as lipid degradation and photorespiration. These analyses have revealed that the number, subcellular localization, and activity of peroxisomes are closely related to their efficient function, and the molecular mechanisms underlying peroxisome dynamics including organelle biogenesis, protein transport, and organelle interactions must be understood. Various approaches have been adopted to identify factors involved in peroxisome dynamics. With the development of imaging techniques and fluorescent proteins, peroxisome research has been accelerated. Image-based analyses provide intriguing results concerning the movement, morphology, and number of peroxisomes that were hard to obtain by other approaches. This review addresses image-based analysis of peroxisome dynamics in plants, especially A. thaliana and Marchantia polymorpha.
Collapse
Affiliation(s)
- Shino Goto-Yamada
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Kazusato Oikawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Katsuyuki T. Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Masatake Kanai
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Kazumi Hikino
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Mikio Nishimura
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
- *Correspondence: Shoji Mano
| |
Collapse
|
15
|
Laloum D, Magen S, Soroka Y, Avin-Wittenberg T. Exploring the Contribution of Autophagy to the Excess-Sucrose Response in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23073891. [PMID: 35409249 PMCID: PMC8999498 DOI: 10.3390/ijms23073891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/13/2022] [Accepted: 03/29/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an essential intracellular eukaryotic recycling mechanism, functioning in, among others, carbon starvation. Surprisingly, although autophagy-deficient plants (atg mutants) are hypersensitive to carbon starvation, metabolic analysis revealed that they accumulate sugars under such conditions. In plants, sugars serve as both an energy source and as signaling molecules, affecting many developmental processes, including root and shoot formation. We thus set out to understand the interplay between autophagy and sucrose excess, comparing wild-type and atg mutant seedlings. The presented work showed that autophagy contributes to primary root elongation arrest under conditions of exogenous sucrose and glucose excess but not during fructose or mannitol treatment. Minor or no alterations in starch and primary metabolites were observed between atg mutants and wild-type plants, indicating that the sucrose response relates to its signaling and not its metabolic role. Extensive proteomic analysis of roots performed to further understand the mechanism found an accumulation of proteins essential for ROS reduction and auxin maintenance, which are necessary for root elongation, in atg plants under sucrose excess. The analysis also suggested mitochondrial and peroxisomal involvement in the autophagy-mediated sucrose response. This research increases our knowledge of the complex interplay between autophagy and sugar signaling in plants.
Collapse
|
16
|
Macgregor SR, Lee HK, Nelles H, Johnson DC, Zhang T, Ma C, Goring DR. Autophagy is required for self-incompatible pollen rejection in two transgenic Arabidopsis thaliana accessions. PLANT PHYSIOLOGY 2022; 188:2073-2084. [PMID: 35078230 PMCID: PMC8969033 DOI: 10.1093/plphys/kiac026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/22/2021] [Indexed: 05/16/2023]
Abstract
Successful reproduction in the Brassicaceae is mediated by a complex series of interactions between the pollen and the pistil, and some species have an additional layer of regulation with the self-incompatibility trait. While the initial activation of the self-incompatibility pathway by the pollen S-locus protein 11/S locus cysteine-rich protein and the stigma S Receptor Kinase is well characterized, the downstream mechanisms causing self-pollen rejection are still not fully understood. In previous studies, we detected the presence of autophagic bodies with self-incompatible (SI) pollinations in Arabidopsis lyrata and transgenic Arabidopsis thaliana lines, but whether autophagy was essential for self-pollen rejection was unknown. Here, we investigated the requirement of autophagy in this response by crossing mutations in the essential AUTOPHAGY7 (ATG7) and ATG5 genes into two different transgenic SI A. thaliana lines in the Col-0 and C24 accessions. By using these previously characterized transgenic lines that express A. lyrata and Arabidopsis halleri self-incompatibility genes, we demonstrated that disrupting autophagy weakened their SI responses in the stigma. When the atg7 or atg5 mutations were present, an increased number of SI pollen was found to hydrate and form pollen tubes that successfully fertilized the SI pistils. Additionally, we confirmed the presence of GFP-ATG8a-labeled autophagosomes in the stigmatic papillae following SI pollinations. Together, these findings support the requirement of autophagy in the self-incompatibility response and add to the growing understanding of the intracellular mechanisms employed in the transgenic A. thaliana stigmas to reject self-pollen.
Collapse
Affiliation(s)
- Stuart R Macgregor
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | | | - Hayley Nelles
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | - Daniel C Johnson
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | - Tong Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
17
|
Kim JH, Jung H, Choi YE, Chung T. Autophagy inducers lead to transient accumulation of autophagosomes in Arabidopsis roots. PLANT CELL REPORTS 2022; 41:463-471. [PMID: 34977975 DOI: 10.1007/s00299-021-02821-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
This study reveals that plant roots show a rapid termination of autophagy induction, offering a plant model for studying how excessive autophagy is deterred. In eukaryotes, autophagy is an intracellular mechanism that is important for recycling nutrients by degrading various macromolecules and organelles in vacuoles and lysosomes. Autophagy is induced when the nutrient supply to plant cells is limited. The protein kinase target of rapamycin (TOR) complex negatively regulates autophagy when nutrients are present in adequate amounts. The TOR inhibitor AZD8055 is an autophagy inducer that is useful for studying starvation-induced autophagy in plant cells. The mechanism by which AZD8055 increases the autophagic flux in plant cells has not been studied in detail. Here, we show that AZD8055-induced autophagy requires phosphatidylinositol 3-kinase activity and canonical AUTOPHAGY-RELATED (ATG) genes in Arabidopsis thaliana. Autophagic flux rapidly increased in seedlings treated with AZD8055. Unexpectedly, autophagy induction was transient in root cells and terminated earlier than in cotyledon cells. Transient induction is partly caused by a temporary effect of AZD8055 on phagophore initiation. These findings indicate a TOR-independent mechanism for terminating autophagy induction, thereby paving the way for elucidating how excess autophagy is prevented in plant roots.
Collapse
Affiliation(s)
- Jeong Hun Kim
- Department of Biological Sciences, Pusan National University, 63 Beon-gil 2, Busandaehag-ro, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Hyera Jung
- Department of Biological Sciences, Pusan National University, 63 Beon-gil 2, Busandaehag-ro, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Ye Eun Choi
- Department of Biological Sciences, Pusan National University, 63 Beon-gil 2, Busandaehag-ro, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Taijoon Chung
- Department of Biological Sciences, Pusan National University, 63 Beon-gil 2, Busandaehag-ro, Geumjeong-gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
18
|
Kim JH, Lee HN, Huang X, Jung H, Otegui MS, Li F, Chung T. FYVE2, a phosphatidylinositol 3-phosphate effector, interacts with the COPII machinery to control autophagosome formation in Arabidopsis. THE PLANT CELL 2022; 34:351-373. [PMID: 34718777 PMCID: PMC8846182 DOI: 10.1093/plcell/koab263] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Autophagy is an intracellular trafficking mechanism by which cytosolic macromolecules and organelles are sequestered into autophagosomes for degradation inside the vacuole. In various eukaryotes including yeast, metazoans, and plants, the precursor of the autophagosome, termed the phagophore, nucleates in the vicinity of the endoplasmic reticulum (ER) with the participation of phosphatidylinositol 3-phosphate (PI3P) and the coat protein complex II (COPII). Here we show that Arabidopsis thaliana FYVE2, a plant-specific PI3P-binding protein, provides a functional link between the COPII machinery and autophagy. FYVE2 interacts with the small GTPase Secretion-associated Ras-related GTPase 1 (SAR1), which is essential for the budding of COPII vesicles. FYVE2 also interacts with ATG18A, another PI3P effector on the phagophore membrane. Fluorescently tagged FYVE2 localized to autophagic membranes near the ER and was delivered to vacuoles. SAR1 fusion proteins were also targeted to the vacuole via FYVE2-dependent autophagy. Either mutations in FYVE2 or the expression of dominant-negative mutant SAR1B proteins resulted in reduced autophagic flux and the accumulation of autophagic organelles. We propose that FYVE2 regulates autophagosome biogenesis through its interaction with ATG18A and the COPII machinery, acting downstream of ATG2.
Collapse
Affiliation(s)
- Jeong Hun Kim
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Han Nim Lee
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xiao Huang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Hyera Jung
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Faqiang Li
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, P. R. China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Taijoon Chung
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
19
|
Kang BH, Anderson CT, Arimura SI, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. THE PLANT CELL 2022; 34:10-52. [PMID: 34633455 PMCID: PMC8846186 DOI: 10.1093/plcell/koab247] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Shin-ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Villenave d'Ornon F-33140, France
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 29071, Spain
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Kai Dünser
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Yangnan Gu
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yu Tang
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri, St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
20
|
Liu W, Liu Z, Mo Z, Guo S, Liu Y, Xie Q. ATG8-Interacting Motif: Evolution and Function in Selective Autophagy of Targeting Biological Processes. FRONTIERS IN PLANT SCIENCE 2021; 12:783881. [PMID: 34912364 PMCID: PMC8666691 DOI: 10.3389/fpls.2021.783881] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/28/2021] [Indexed: 05/26/2023]
Abstract
Autophagy is an evolutionarily conserved vacuolar process functioning in the degradation of cellular components for reuse. In plants, autophagy is generally activated upon stress and its regulation is executed by numbers of AuTophaGy-related genes (ATGs), of which the ATG8 plays a dual role in both biogenesis of autophagosomes and recruitment of ATG8-interacting motif (AIM) anchored selective autophagy receptors (SARs). Such motif is either termed as AIM or ubiquitin-interacting motif (UIM), corresponding to the LC3-interacting region (LIR)/AIM docking site (LDS) or the UIM docking site (UDS) of ATG8, respectively. To date, dozens of AIM or UIM containing SARs have been characterized. However, the knowledge of these motifs is still obscured. In this review, we intend to summarize the current understanding of SAR proteins and discuss the conservation and diversification of the AIMs/UIMs, expectantly providing new insights into the evolution of them in various biological processes in plants.
Collapse
Affiliation(s)
- Wanqing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Zinan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Zulong Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Shaoying Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Sandalio LM, Peláez-Vico MA, Molina-Moya E, Romero-Puertas MC. Peroxisomes as redox-signaling nodes in intracellular communication and stress responses. PLANT PHYSIOLOGY 2021; 186:22-35. [PMID: 33587125 PMCID: PMC8154099 DOI: 10.1093/plphys/kiab060] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/22/2021] [Indexed: 05/05/2023]
Abstract
Peroxisomes are redox nodes playing a diverse range of roles in cell functionality and in the perception of and responses to changes in their environment.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
- Author for communication:
| | - Maria Angeles Peláez-Vico
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - Eliana Molina-Moya
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - Maria C Romero-Puertas
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
22
|
Gomez RE, Lupette J, Chambaud C, Castets J, Ducloy A, Cacas JL, Masclaux-Daubresse C, Bernard A. How Lipids Contribute to Autophagosome Biogenesis, a Critical Process in Plant Responses to Stresses. Cells 2021; 10:1272. [PMID: 34063958 PMCID: PMC8224036 DOI: 10.3390/cells10061272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 01/18/2023] Open
Abstract
Throughout their life cycle, plants face a tremendous number of environmental and developmental stresses. To respond to these different constraints, they have developed a set of refined intracellular systems including autophagy. This pathway, highly conserved among eukaryotes, is induced by a wide range of biotic and abiotic stresses upon which it mediates the degradation and recycling of cytoplasmic material. Central to autophagy is the formation of highly specialized double membrane vesicles called autophagosomes which select, engulf, and traffic cargo to the lytic vacuole for degradation. The biogenesis of these structures requires a series of membrane remodeling events during which both the quantity and quality of lipids are critical to sustain autophagy activity. This review highlights our knowledge, and raises current questions, regarding the mechanism of autophagy, and its induction and regulation upon environmental stresses with a particular focus on the fundamental contribution of lipids. How autophagy regulates metabolism and the recycling of resources, including lipids, to promote plant acclimation and resistance to stresses is further discussed.
Collapse
Affiliation(s)
- Rodrigo Enrique Gomez
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Josselin Lupette
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Clément Chambaud
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Julie Castets
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Amélie Ducloy
- Institut Jean-Pierre Bourgin, UMR 1318 AgroParisTech-INRAE, Université Paris-Saclay, 78000 Versailles, France; (A.D.); (J.-L.C.); (C.M.-D.)
| | - Jean-Luc Cacas
- Institut Jean-Pierre Bourgin, UMR 1318 AgroParisTech-INRAE, Université Paris-Saclay, 78000 Versailles, France; (A.D.); (J.-L.C.); (C.M.-D.)
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, UMR 1318 AgroParisTech-INRAE, Université Paris-Saclay, 78000 Versailles, France; (A.D.); (J.-L.C.); (C.M.-D.)
| | - Amélie Bernard
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| |
Collapse
|
23
|
Nakamura S, Hagihara S, Otomo K, Ishida H, Hidema J, Nemoto T, Izumi M. Autophagy Contributes to the Quality Control of Leaf Mitochondria. PLANT & CELL PHYSIOLOGY 2021; 62:229-247. [PMID: 33355344 PMCID: PMC8112837 DOI: 10.1093/pcp/pcaa162] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/05/2020] [Indexed: 05/11/2023]
Abstract
In autophagy, cytoplasmic components of eukaryotic cells are transported to lysosomes or the vacuole for degradation. Autophagy is involved in plant tolerance to the photooxidative stress caused by ultraviolet B (UVB) radiation, but its roles in plant adaptation to UVB damage have not been fully elucidated. Here, we characterized organellar behavior in UVB-damaged Arabidopsis (Arabidopsis thaliana) leaves and observed the occurrence of autophagic elimination of dysfunctional mitochondria, a process termed mitophagy. Notably, Arabidopsis plants blocked in autophagy displayed increased leaf chlorosis after a 1-h UVB exposure compared to wild-type plants. We visualized autophagosomes by labeling with a fluorescent protein-tagged autophagosome marker, AUTOPHAGY8 (ATG8), and found that a 1-h UVB treatment led to increased formation of autophagosomes and the active transport of mitochondria into the central vacuole. In atg mutant plants, the mitochondrial population increased in UVB-damaged leaves due to the cytoplasmic accumulation of fragmented, depolarized mitochondria. Furthermore, we observed that autophagy was involved in the removal of depolarized mitochondria when mitochondrial function was disrupted by mutation of the FRIENDLY gene, which is required for proper mitochondrial distribution. Therefore, autophagy of mitochondria functions in response to mitochondrion-specific dysfunction as well as UVB damage. Together, these results indicate that autophagy is centrally involved in mitochondrial quality control in Arabidopsis leaves.
Collapse
Affiliation(s)
- Sakuya Nakamura
- Center for Sustainable Resource Science (CSRS), RIKEN, Wako, 351-0198 Japan
| | - Shinya Hagihara
- Center for Sustainable Resource Science (CSRS), RIKEN, Wako, 351-0198 Japan
| | - Kohei Otomo
- Exploratory Research Center on Life and Living Systems (ExCELLs), National Institute of Natural Sciences, Okazaki, 444-8787 Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8787 Japan
- Department of Physiological Sciences, The Graduate University for Advanced Study (SOKENDAI), Hayama, 240-0193 Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0020 Japan
| | - Hiroyuki Ishida
- Department of Applied Plant Science, Graduate School of Agricultural Sciences, Tohoku University, Sendai, 980-0845, Japan
| | - Jun Hidema
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Tomomi Nemoto
- Exploratory Research Center on Life and Living Systems (ExCELLs), National Institute of Natural Sciences, Okazaki, 444-8787 Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8787 Japan
- Department of Physiological Sciences, The Graduate University for Advanced Study (SOKENDAI), Hayama, 240-0193 Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0020 Japan
| | - Masanori Izumi
- Center for Sustainable Resource Science (CSRS), RIKEN, Wako, 351-0198 Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, 322-0012 Japan
| |
Collapse
|
24
|
Nakamura S, Hagihara S, Izumi M. Mitophagy in plants. Biochim Biophys Acta Gen Subj 2021; 1865:129916. [PMID: 33932484 DOI: 10.1016/j.bbagen.2021.129916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Mitochondria play a central role in primary metabolism in plants as well as in heterotrophic eukaryotes. Plants must control the quality and number of mitochondria in response to a changing environment, across cell types and developmental stages. Mitophagy is defined as the degradation of mitochondria by autophagy, an evolutionarily conserved system for the removal and recycling of intracellular components. Recent studies have highlighted the importance of mitophagy in plant stress responses. This review article summarizes our current knowledge of plant mitophagy and discusses the underlying mechanisms. In plants, chloroplasts cooperate with mitochondria for energy production, and autophagy also targets chloroplasts through a process known as chlorophagy. Advances in plant autophagy studies now allow a comparative analysis of the autophagic turnover of mitochondria and chloroplasts, via the selective degradation of their soluble proteins, fragments, or entire organelles.
Collapse
Affiliation(s)
- Sakuya Nakamura
- Center for Sustainable Resource Science (CSRS), RIKEN, 351-0198 Wako, Japan
| | - Shinya Hagihara
- Center for Sustainable Resource Science (CSRS), RIKEN, 351-0198 Wako, Japan
| | - Masanori Izumi
- Center for Sustainable Resource Science (CSRS), RIKEN, 351-0198 Wako, Japan.
| |
Collapse
|
25
|
Pérez-Pérez ME, Lemaire SD, Crespo JL. The ATG4 protease integrates redox and stress signals to regulate autophagy. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3340-3351. [PMID: 33587749 DOI: 10.1093/jxb/erab063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Autophagy is a highly conserved degradative pathway that ensures cellular homeostasis through the removal of damaged or useless intracellular components including proteins, membranes, or even entire organelles. A main hallmark of autophagy is the biogenesis of autophagosomes, double-membrane vesicles that engulf and transport to the vacuole the material to be degraded and recycled. The formation of autophagosomes responds to integrated signals produced as a consequence of metabolic reactions or different types of stress and is mediated by the coordinated action of core autophagy-related (ATG) proteins. ATG4 is a key Cys-protease with a dual function in both ATG8 lipidation and free ATG8 recycling whose balance is crucial for proper biogenesis of the autophagosome. ATG4 is conserved in the green lineage, and its regulation by different post-translational modifications has been reported in the model systems Chlamydomonas reinhardtii and Arabidopsis. In this review, we discuss the major role of ATG4 in the integration of stress and redox signals that regulate autophagy in algae and plants.
Collapse
Affiliation(s)
- María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Avda. Américo Vespucio, Sevilla, Spain
| | - Stéphane D Lemaire
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Paris, France
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France
| | - José L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Avda. Américo Vespucio, Sevilla, Spain
| |
Collapse
|
26
|
Qi H, Xia FN, Xiao S. Autophagy in plants: Physiological roles and post-translational regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:161-179. [PMID: 32324339 DOI: 10.1111/jipb.12941] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/22/2020] [Indexed: 05/20/2023]
Abstract
In eukaryotes, autophagy helps maintain cellular homeostasis by degrading and recycling cytoplasmic materials via a tightly regulated pathway. Over the past few decades, significant progress has been made towards understanding the physiological functions and molecular regulation of autophagy in plant cells. Increasing evidence indicates that autophagy is essential for plant responses to several developmental and environmental cues, functioning in diverse processes such as senescence, male fertility, root meristem maintenance, responses to nutrient starvation, and biotic and abiotic stress. Recent studies have demonstrated that, similar to nonplant systems, the modulation of core proteins in the plant autophagy machinery by posttranslational modifications such as phosphorylation, ubiquitination, lipidation, S-sulfhydration, S-nitrosylation, and acetylation is widely involved in the initiation and progression of autophagy. Here, we provide an overview of the physiological roles and posttranslational regulation of autophagy in plants.
Collapse
Affiliation(s)
- Hua Qi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fan-Nv Xia
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
27
|
Li W, He P, Huang Y, Li YF, Lu J, Li M, Kurihara H, Luo Z, Meng T, Onishi M, Ma C, Jiang L, Hu Y, Gong Q, Zhu D, Xu Y, Liu R, Liu L, Yi C, Zhu Y, Ma N, Okamoto K, Xie Z, Liu J, He RR, Feng D. Selective autophagy of intracellular organelles: recent research advances. Theranostics 2021; 11:222-256. [PMID: 33391472 PMCID: PMC7681076 DOI: 10.7150/thno.49860] [Citation(s) in RCA: 282] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy (hereafter called autophagy) is a highly conserved physiological process that degrades over-abundant or damaged organelles, large protein aggregates and invading pathogens via the lysosomal system (the vacuole in plants and yeast). Autophagy is generally induced by stress, such as oxygen-, energy- or amino acid-deprivation, irradiation, drugs, etc. In addition to non-selective bulk degradation, autophagy also occurs in a selective manner, recycling specific organelles, such as mitochondria, peroxisomes, ribosomes, endoplasmic reticulum (ER), lysosomes, nuclei, proteasomes and lipid droplets (LDs). This capability makes selective autophagy a major process in maintaining cellular homeostasis. The dysfunction of selective autophagy is implicated in neurodegenerative diseases (NDDs), tumorigenesis, metabolic disorders, heart failure, etc. Considering the importance of selective autophagy in cell biology, we systemically review the recent advances in our understanding of this process and its regulatory mechanisms. We emphasize the 'cargo-ligand-receptor' model in selective autophagy for specific organelles or cellular components in yeast and mammals, with a focus on mitophagy and ER-phagy, which are finely described as types of selective autophagy. Additionally, we highlight unanswered questions in the field, helping readers focus on the research blind spots that need to be broken.
Collapse
|
28
|
Zhao P, Zhou XM, Zhao LL, Cheung AY, Sun MX. Autophagy-mediated compartmental cytoplasmic deletion is essential for tobacco pollen germination and male fertility. Autophagy 2020; 16:2180-2192. [PMID: 31983274 PMCID: PMC7751669 DOI: 10.1080/15548627.2020.1719722] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 10/23/2019] [Accepted: 01/17/2020] [Indexed: 01/23/2023] Open
Abstract
In plants, macroautophagy/autophagy has mainly been associated with stress-related processes but how it impacts normal physiological and developmental processes remains largely unexplored. Pollen germination is the critical first step toward fertilization in flowering plants. It is metabolically demanding and relies on high levels of cytoplasmic reorganization activities to support a dramatic morphological transformation that underlies the development of a pollen tube as the conduit to deliver sperm for fertilization. The role of autophagy in this process remains unclear. Here we provide evidence that pollen germination is accompanied by elevated autophagic activity and successful pollen tube emergence depends on autophagy-mediated cytoplasmic deletion. Genetic and cytological experiments demonstrate that inhibition of autophagy prevents pollen germination while induces the persistence of a layer of undegraded cytoplasm at the germination aperture. Together, these results unveil a novel compartmentalized autophagy. Furthermore, high-throughput comparative lipidomic analyses show that suppressed autophagy-induced inhibition of pollen germination is accompanied by altered profiles of stored and signaling lipids. Proteomic analyses reveal that autophagy likely exert its role in pollen germination via downstream mitochondria-related pathways. These findings reveal a critical role for autophagy in initiating pollen germination and provide evidences for compartmental cytoplasmic deletion being crucial for male fertility. Abbreviations: 3-MA: 3-methyladenine; ATG: autophagy-related gene; Cer: ceramide; CL: cardiolipin; Con A: concanamycin A; DAG: diradylglycerol; GO: gene ontology; HAG: hour after germination; LC-MS: liquid chromatography-mass spectrometry; MAG: min after germination; MDC: monodansylcadaverine; PE: phosphatidylethanolamine; PI: phosphatidylinositol; PLD: phospholipase D; PtdIns3K: phosphatidylinositol 3-kinase; RT-qPCR: quantitative real-time reverse transcription PCR; TAG: triradylglycerol; TEM: transmission electron microscopy; TMT: tandem mass tagging.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xue-Mei Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lin-Lin Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Alice Y. Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA, USA
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Dündar G, Teranishi M, Hidema J. Autophagy-deficient Arabidopsis mutant atg5, which shows ultraviolet-B sensitivity, cannot remove ultraviolet-B-induced fragmented mitochondria. Photochem Photobiol Sci 2020; 19:1717-1729. [PMID: 33237047 DOI: 10.1039/c9pp00479c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondria damaged by ultraviolet-B radiation (UV-B, 280-315 nm) are removed by mitophagy, a selective autophagic process. Recently, we demonstrated that autophagy-deficient Arabidopsis thaliana mutants exhibit a UV-B-sensitive phenotype like that of cyclobutane pyrimidine dimer (CPD)-specific photolyase (PHR1)-deficient mutants. To explore the relationship between UV-B sensitivity and autophagy in UV-B-damaged plants, we monitored mitochondrial dynamics and autophagy in wild-type Arabidopsis (ecotype Columbia); an autophagy-deficient mutant, atg5; a PHR1-deficient mutant, phr1; an atg5 phr1 double mutant; and AtPHR1-overexpressing (AtPHR1ox) plants following high-dose UV-B exposure (1.5 W m-2 for 1 h). At 10 h after exposure, the number of mitochondria per mesophyll leaf cell was increased and the volumes of individual mitochondria were decreased independently of UV-B-induced CPD accumulation in all genotypes. At 24 h after exposure, the mitochondrial number had recovered or almost recovered to pre-exposure levels in plants with functional autophagy (WT, phr1, and AtPHR1ox), but had increased even further in atg5. This suggested that the high dose of UV-B led to the inactivation and fragmentation of mitochondria, which were removed by mitophagy activated by UV-B. The UV-B-sensitive phenotype of the atg5 phr1 double mutant was more severe than that of atg5 or phr1. In wild-type, phr1, and AtPHR1ox plants, autophagy-related genes were strongly expressed following UV-B exposure independently of UV-B-induced CPD accumulation. Therefore, mitophagy might be one of the important repair mechanisms for UV-B-induced damage. The severe UV-B-sensitive phenotype of atg5 phr1 is likely an additive effect of deficiencies in independent machineries for UV-B protection, autophagy, and CPD photorepair.
Collapse
Affiliation(s)
- Gönül Dündar
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan.
| | | | | |
Collapse
|
30
|
Westermann J, Koebke E, Lentz R, Hülskamp M, Boisson-Dernier A. A Comprehensive Toolkit for Quick and Easy Visualization of Marker Proteins, Protein-Protein Interactions and Cell Morphology in Marchantia polymorpha. FRONTIERS IN PLANT SCIENCE 2020; 11:569194. [PMID: 33178238 PMCID: PMC7593560 DOI: 10.3389/fpls.2020.569194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/22/2020] [Indexed: 05/17/2023]
Abstract
Even though stable genomic transformation of sporelings and thalli of Marchantia polymorpha is straightforward and efficient, numerous problems can arise during critical phases of the process such as efficient spore production, poor selection capacity of antibiotics or low transformation efficiency. It is therefore also desirable to establish quick methods not relying on stable transgenics to analyze the localization, interactions and functions of proteins of interest. The introduction of foreign DNA into living cells via biolistic mechanisms has been first reported roughly 30 years ago and has been commonly exploited in established plant model species such as Arabidopsis thaliana or Nicotiana benthamiana. Here, we report the fast and reliable transient biolistic transformation of Marchantia thallus epidermal cells using fluorescent protein fusions. We present a catalog of fluorescent markers which can be readily used for tagging of a variety of subcellular compartments. Moreover, we report the functionality of the bimolecular fluorescence complementation (BiFC) in M. polymorpha with the example of the p-body markers MpDCP1/2. Finally, we provide standard staining procedures for live cell imaging in M. polymorpha, applicable to visualize cell boundaries or cellular structures, to complement or support protein localizations and to understand how results gained by transient transformations can be embedded in cell architecture and dynamics. Taken together, we offer a set of easy and quick tools for experiments that aim at understanding subcellular localization, protein-protein interactions and thus functions of proteins of interest in the emerging early diverging land plant model M. polymorpha.
Collapse
Affiliation(s)
| | | | | | | | - Aurélien Boisson-Dernier
- Institute for Plant Sciences, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
31
|
McLoughlin F, Marshall RS, Ding X, Chatt EC, Kirkpatrick LD, Augustine RC, Li F, Otegui MS, Vierstra RD. Autophagy Plays Prominent Roles in Amino Acid, Nucleotide, and Carbohydrate Metabolism during Fixed-Carbon Starvation in Maize. THE PLANT CELL 2020; 32:2699-2724. [PMID: 32616663 PMCID: PMC7474275 DOI: 10.1105/tpc.20.00226] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/04/2020] [Accepted: 06/27/2020] [Indexed: 05/31/2023]
Abstract
Autophagic recycling of proteins, lipids, nucleic acids, carbohydrates, and organelles is essential for cellular homeostasis and optimal health, especially under nutrient-limiting conditions. To better understand how this turnover affects plant growth, development, and survival upon nutrient stress, we applied an integrated multiomics approach to study maize (Zea mays) autophagy mutants subjected to fixed-carbon starvation induced by darkness. Broad metabolic alterations were evident in leaves missing the core autophagy component ATG12 under normal growth conditions (e.g., lipids and secondary metabolism), while changes in amino acid-, carbohydrate-, and nucleotide-related metabolites selectively emerged during fixed-carbon starvation. Through combined proteomic and transcriptomic analyses, we identified numerous autophagy-responsive proteins, which revealed processes underpinning the various metabolic changes seen during carbon stress as well as potential autophagic cargo. Strikingly, a strong upregulation of various catabolic processes was observed in the absence of autophagy, including increases in simple carbohydrate levels with a commensurate drop in starch levels, elevated free amino acid levels with a corresponding reduction in intact protein levels, and a strong increase in the abundance of several nitrogen-rich nucleotide catabolites. Altogether, this analysis showed that fixed-carbon starvation in the absence of autophagy adjusts the choice of respiratory substrates, promotes the transition of peroxisomes to glyoxysomes, and enhances the retention of assimilated nitrogen.
Collapse
Affiliation(s)
- Fionn McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Xinxin Ding
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison, Wisconsin 53706
| | - Elizabeth C Chatt
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Liam D Kirkpatrick
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Robert C Augustine
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Faqiang Li
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison, Wisconsin 53706
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
32
|
Ran J, Hashimi SM, Liu JZ. Emerging Roles of the Selective Autophagy in Plant Immunity and Stress Tolerance. Int J Mol Sci 2020; 21:E6321. [PMID: 32878263 PMCID: PMC7503401 DOI: 10.3390/ijms21176321] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a conserved recycling system required for cellular homeostasis. Identifications of diverse selective receptors/adaptors that recruit appropriate autophagic cargoes have revealed critical roles of selective autophagy in different biological processes in plants. In this review, we summarize the emerging roles of selective autophagy in both biotic and abiotic stress tolerance and highlight the new features of selective receptors/adaptors and their interactions with both the cargoes and Autophagy-related gene 8s (ATG8s). In addition, we review how the two major degradation systems, namely the ubiquitin-proteasome system (UPS) and selective autophagy, are coordinated to cope with stress in plants. We especially emphasize how plants develop the selective autophagy as a weapon to fight against pathogens and how adapted pathogens have evolved the strategies to counter and/or subvert the immunity mediated by selective autophagy.
Collapse
Affiliation(s)
- Jie Ran
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (J.R.); (S.M.H.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Sayed M. Hashimi
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (J.R.); (S.M.H.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (J.R.); (S.M.H.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
33
|
Liao CY, Bassham DC. Combating stress: the interplay between hormone signaling and autophagy in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1723-1733. [PMID: 31725881 PMCID: PMC7067298 DOI: 10.1093/jxb/erz515] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/13/2019] [Indexed: 05/18/2023]
Abstract
Autophagy is a conserved recycling process in which cellular components are delivered to and degraded in the vacuole/lysosome for reuse. In plants, it assists in responding to dynamic environmental conditions and maintaining metabolite homeostasis under normal or stress conditions. Under stress, autophagy is activated to remove damaged components and to recycle nutrients for survival, and the energy sensor kinases target of rapamycin (TOR) and SNF-related kinase 1 (SnRK1) are key to this activation. Here, we discuss accumulating evidence that hormone signaling plays critical roles in regulating autophagy and plant stress responses, although the molecular mechanisms by which this occurs are often not clear. Several hormones have been shown to regulate TOR activity during stress, in turn controlling autophagy. Hormone signaling can also regulate autophagy gene expression, while, reciprocally, autophagy can regulate hormone synthesis and signaling pathways. We highlight how the interplay between major energy sensors, plant hormones, and autophagy under abiotic and biotic stress conditions can assist in plant stress tolerance.
Collapse
Affiliation(s)
- Ching-Yi Liao
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
- Correspondence:
| |
Collapse
|
34
|
Pan R, Liu J, Wang S, Hu J. Peroxisomes: versatile organelles with diverse roles in plants. THE NEW PHYTOLOGIST 2020; 225:1410-1427. [PMID: 31442305 DOI: 10.1111/nph.16134] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/08/2019] [Indexed: 05/18/2023]
Abstract
Peroxisomes are small, ubiquitous organelles that are delimited by a single membrane and lack genetic material. However, these simple-structured organelles are highly versatile in morphology, abundance and protein content in response to various developmental and environmental cues. In plants, peroxisomes are essential for growth and development and perform diverse metabolic functions, many of which are carried out coordinately by peroxisomes and other organelles physically interacting with peroxisomes. Recent studies have added greatly to our knowledge of peroxisomes, addressing areas such as the diverse proteome, regulation of division and protein import, pexophagy, matrix protein degradation, solute transport, signaling, redox homeostasis and various metabolic and physiological functions. This review summarizes our current understanding of plant peroxisomes, focusing on recent discoveries. Current problems and future efforts required to better understand these organelles are also discussed. An improved understanding of peroxisomes will be important not only to the understanding of eukaryotic cell biology and metabolism, but also to agricultural efforts aimed at improving crop performance and defense.
Collapse
Affiliation(s)
- Ronghui Pan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jun Liu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Saisai Wang
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
35
|
Jung H, Lee HN, Marshall RS, Lomax AW, Yoon MJ, Kim J, Kim JH, Vierstra RD, Chung T. Arabidopsis cargo receptor NBR1 mediates selective autophagy of defective proteins. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:73-89. [PMID: 31494674 PMCID: PMC6913707 DOI: 10.1093/jxb/erz404] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 08/30/2019] [Indexed: 05/04/2023]
Abstract
Aggrephagy, a type of selective autophagy that sequesters protein aggregates for degradation in the vacuole, is an important protein quality control mechanism, particularly during cell stress. In mammalian cells, aggrephagy and several other forms of selective autophagy are mediated by dedicated cargo receptors such as NEIGHBOR OF BRCA1 (NBR1). Although plant NBR1 homologs have been linked to selective autophagy during biotic stress, it remains unclear how they impact selective autophagy under non-stressed and abiotic stress conditions. Through microscopic and biochemical analysis of nbr1 mutants expressing autophagy markers and an aggregation-prone reporter, we tested the connection between NBR1 and aggrephagy in Arabidopsis. Although NBR1 is not essential for general autophagy, or for the selective clearance of peroxisomes, mitochondria, or the ER, we found that NBR1 is required for the heat-induced formation of autophagic vesicles. Moreover, cytoplasmic puncta containing aggregation-prone proteins, which were rarely observed in wild-type plants, were found to accumulate in nbr1 mutants under both control and heat stress conditions. Given that NBR1 co-localizes with these cytoplasmic puncta, we propose that Arabidopsis NBR1 is a plant aggrephagy receptor essential for maintaining proteostasis under both heat stress and non-stress conditions.
Collapse
Affiliation(s)
- Hyera Jung
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
| | - Han Nim Lee
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
- Present address: Department of Botany and Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, WI 53706, USA
| | - Richard S Marshall
- Department of Biology, Washington University in St Louis, St Louis, MO USA
| | - Aaron W Lomax
- Department of Genetics, University of Wisconsin, Madison, WI, USA
- Present address: Department of Soil Science, University of Wisconsin, Madison, WI 53706, USA
| | - Min Ji Yoon
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
- Present address: Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jimi Kim
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
| | - Jeong Hun Kim
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
| | - Richard D Vierstra
- Department of Biology, Washington University in St Louis, St Louis, MO USA
- Department of Genetics, University of Wisconsin, Madison, WI, USA
- Correspondence: or
| | - Taijoon Chung
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
- Correspondence: or
| |
Collapse
|
36
|
Zheng X, Wu M, Li X, Cao J, Li J, Wang J, Huang S, Liu Y, Wang Y. Actin filaments are dispensable for bulk autophagy in plants. Autophagy 2019; 15:2126-2141. [PMID: 30907219 PMCID: PMC6844523 DOI: 10.1080/15548627.2019.1596496] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022] Open
Abstract
Actin filament, also known as microfilament, is one of two major cytoskeletal elements in plants and plays important roles in various biological processes. Like in animal cells, actin filaments have been thought to participate in autophagy in plants. However, surprisingly, in this study we found that actin filaments are dispensable for the occurrence of autophagy in plants. Disruption of actin filaments by short term treatment with actin polymerization inhibitors, cytochalasin D and latrunculin B, or transient overexpression of Profilin 3 in Nicotiana benthamiana had no effect on basal autophagy as well as the upregulation of nocturnal autophagy and salt stress-induced autophagy. Furthermore, anti-microfilament drug treatment affected neither basal nor salt stress-induced autophagy in Arabidopsis. In addition, prolonged perturbation of actin filaments by silencing Actin7 or 24-h treatment with microfilament-disrupting agents in N. benthamiana caused endoplasmic reticulum (ER) disorganization and subsequent degradation via autophagy involving ATG2, 3, 5, 6 and 7. Our findings reveal that, unlike mammalian cells, actin filaments are unnecessary for bulk autophagy in plants.Abbreviations: ATG: autophagy-related; CD: cytochalasin D; Cvt pathway: cytoplasm to vacuole targeting pathway; DMSO: dimethyl sulfoxide; ER: endoplasmic reticulum; LatB: latrunculin B; Nb: Nicotiana benthamiana; PAS: phagophore assembly site; PRF3: Profilin 3; RER: rough ER; SER: smooth ER; TEM: transmission electron microscopy; TRV: Tobacco rattle virus; VIGS: virus-induced gene silencing; wpi: weeks post-agroinfiltration.
Collapse
Affiliation(s)
- Xiyin Zheng
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ming Wu
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xinyi Li
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jidong Cao
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinlin Li
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jieling Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
37
|
Huang X, Zheng C, Liu F, Yang C, Zheng P, Lu X, Tian J, Chung T, Otegui MS, Xiao S, Gao C, Vierstra RD, Li F. Genetic Analyses of the Arabidopsis ATG1 Kinase Complex Reveal Both Kinase-Dependent and Independent Autophagic Routes during Fixed-Carbon Starvation. THE PLANT CELL 2019; 31:2973-2995. [PMID: 31615848 PMCID: PMC6925010 DOI: 10.1105/tpc.19.00066] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/04/2019] [Accepted: 10/14/2019] [Indexed: 05/16/2023]
Abstract
Under nutrient and energy-limiting conditions, plants up-regulate sophisticated catabolic pathways such as autophagy to remobilize nutrients and restore energy homeostasis. Autophagic flux is tightly regulated under these circumstances through the AuTophaGy-related1 (ATG1) kinase complex, which relays upstream nutrient and energy signals to the downstream components that drive autophagy. Here, we investigated the role(s) of the Arabidopsis (Arabidopsis thaliana) ATG1 kinase during autophagy through an analysis of a quadruple mutant deficient in all four ATG1 isoforms. These isoforms appear to act redundantly, including the plant-specific, truncated ATG1t variant, and like other well-characterized atg mutants, homozygous atg1abct quadruple mutants display early leaf senescence and hypersensitivity to nitrogen and fixed-carbon starvations. Although ATG1 kinase is essential for up-regulating autophagy under nitrogen deprivation and short-term carbon starvation, it did not stimulate autophagy under prolonged carbon starvation. Instead, an ATG1-independent response arose requiring phosphatidylinositol-3-phosphate kinase (PI3K) and SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE1 (SnRK1), possibly through phosphorylation of the ATG6 subunit within the PI3K complex by the catalytic KIN10 subunit of SnRK1. Together, our data connect ATG1 kinase to autophagy and reveal that plants engage multiple pathways to activate autophagy during nutrient stress, which include the ATG1 route as well as an alternative route requiring SnRK1 and ATG6 signaling.plantcell;31/12/2973/FX1F1fx1.
Collapse
Affiliation(s)
- Xiao Huang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunyan Zheng
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fen Liu
- Department of Biology, Washington University, St. Louis, Missouri 63130
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ping Zheng
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xing Lu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Taijoon Chung
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706
- Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | | | - Faqiang Li
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
38
|
Borek S, Stefaniak S, Śliwiński J, Garnczarska M, Pietrowska-Borek M. Autophagic Machinery of Plant Peroxisomes. Int J Mol Sci 2019; 20:E4754. [PMID: 31557865 PMCID: PMC6802006 DOI: 10.3390/ijms20194754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 12/28/2022] Open
Abstract
Peroxisomes are cell organelles that play an important role in plants in many physiological and developmental processes. The plant peroxisomes harbor enzymes of the β-oxidation of fatty acids and the glyoxylate cycle; photorespiration; detoxification of reactive oxygen and nitrogen species; as well as biosynthesis of hormones and signal molecules. The function of peroxisomes in plant cells changes during plant growth and development. They are transformed from organelles involved in storage lipid breakdown during seed germination and seedling growth into leaf peroxisomes involved in photorespiration in green parts of the plant. Additionally, intensive oxidative metabolism of peroxisomes causes damage to their components. Therefore, unnecessary or damaged peroxisomes are degraded by selective autophagy, called pexophagy. This is an important element of the quality control system of peroxisomes in plant cells. Despite the fact that the mechanism of pexophagy has already been described for yeasts and mammals, the molecular mechanisms by which plant cells recognize peroxisomes that will be degraded via pexophagy still remain unclear. It seems that a plant-specific mechanism exists for the selective degradation of peroxisomes. In this review, we describe the physiological role of pexophagy in plant cells and the current hypotheses concerning the mechanism of plant pexophagy.
Collapse
Affiliation(s)
- Sławomir Borek
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Szymon Stefaniak
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Jan Śliwiński
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Małgorzata Garnczarska
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland.
| |
Collapse
|
39
|
Autophagy controls reactive oxygen species homeostasis in guard cells that is essential for stomatal opening. Proc Natl Acad Sci U S A 2019; 116:19187-19192. [PMID: 31484757 DOI: 10.1073/pnas.1910886116] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) function as key signaling molecules to inhibit stomatal opening and promote stomatal closure in response to diverse environmental stresses. However, how guard cells maintain basal intracellular ROS levels is not yet known. This study aimed to determine the role of autophagy in the maintenance of basal ROS levels in guard cells. We isolated the Arabidopsis autophagy-related 2 (atg2) mutant, which is impaired in stomatal opening in response to light and low CO2 concentrations. Disruption of other autophagy genes, including ATG5, ATG7, ATG10, and ATG12, also caused similar stomatal defects. The atg mutants constitutively accumulated high levels of ROS in guard cells, and antioxidants such as ascorbate and glutathione rescued ROS accumulation and stomatal opening. Furthermore, the atg mutations increased the number and aggregation of peroxisomes in guard cells, and these peroxisomes exhibited reduced activity of the ROS scavenger catalase and elevated hydrogen peroxide (H2O2) as visualized using the peroxisome-targeted H2O2 sensor HyPer. Moreover, such ROS accumulation decreased by the application of 2-hydroxy-3-butynoate, an inhibitor of peroxisomal H2O2-producing glycolate oxidase. Our results showed that autophagy controls guard cell ROS homeostasis by eliminating oxidized peroxisomes, thereby allowing stomatal opening.
Collapse
|
40
|
Calero-Muñoz N, Exposito-Rodriguez M, Collado-Arenal AM, Rodríguez-Serrano M, Laureano-Marín AM, Santamaría ME, Gotor C, Díaz I, Mullineaux PM, Romero-Puertas MC, Olmedilla A, Sandalio LM. Cadmium induces reactive oxygen species-dependent pexophagy in Arabidopsis leaves. PLANT, CELL & ENVIRONMENT 2019; 42:2696-2714. [PMID: 31152467 DOI: 10.1111/pce.13597] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 05/22/2023]
Abstract
Cadmium treatment induces transient peroxisome proliferation in Arabidopsis leaves. To determine whether this process is regulated by pexophagy and to identify the mechanisms involved, we analysed time course-dependent changes in ATG8, an autophagy marker, and the accumulation of peroxisomal marker PEX14a. After 3 hr of Cd exposure, the transcript levels of ATG8h, ATG8c, a, and i were slightly up-regulated and then returned to normal. ATG8 protein levels also increased after 3 hr of Cd treatment, although an opposite pattern was observed in PEX14. Arabidopsis lines expressing GFP-ATG8a and CFP-SKL enabled us to demonstrate the presence of pexophagic processes in leaves. The Cd-dependent induction of pexophagy was demonstrated by the accumulation of peroxisomes in autophagy gene (ATG)-related Arabidopsis knockout mutants atg5 and atg7. We show that ATG8a colocalizes with catalase and NBR1 in the electron-dense peroxisomal core, thus suggesting that NBR1 may be an autophagic receptor for peroxisomes, with catalase being possibly involved in targeting pexophagy. Protein carbonylation and peroxisomal redox state suggest that protein oxidation may trigger pexophagy. Cathepsine B, legumain, and caspase 6 may also be involved in the regulation of pexophagy. Our results suggest that pexophagy could be an important step in rapid cell responses to cadmium.
Collapse
Affiliation(s)
- Nieves Calero-Muñoz
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | | | - Aurelio M Collado-Arenal
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - María Rodríguez-Serrano
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Ana M Laureano-Marín
- Institute of Plant Biochemistry and Photosynthesis, CSIC and Universidad de Sevilla, Seville, 41092, Spain
| | - M Estrella Santamaría
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM), The National Institute for Agricultural and Food Research and Technology (INIA), Madrid, 28223, Spain
| | - Cecilia Gotor
- Institute of Plant Biochemistry and Photosynthesis, CSIC and Universidad de Sevilla, Seville, 41092, Spain
| | - Isabel Díaz
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM), The National Institute for Agricultural and Food Research and Technology (INIA), Madrid, 28223, Spain
| | | | - María C Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Adela Olmedilla
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Luisa M Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| |
Collapse
|
41
|
Olmedilla A, Sandalio LM. Selective Autophagy of Peroxisomes in Plants: From Housekeeping to Development and Stress Responses. FRONTIERS IN PLANT SCIENCE 2019; 10:1021. [PMID: 31555306 PMCID: PMC6722239 DOI: 10.3389/fpls.2019.01021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/22/2019] [Indexed: 05/21/2023]
Abstract
Peroxisomes are dynamic organelles involved in multiple functions, including oxygen and nitrogen reactive species metabolism. In plants, these organelles have a close relationship with chloroplasts and mitochondria, characterized by intense metabolic activity and signal transduction. Peroxisomes undergo rapid changes in size, morphology, and abundance depending on the plant development stage and environmental conditions. As peroxisomes are essential not only for redox homeostasis but also for sensing stress, signaling transduction, and cell survival, their formation and degradation need to be rigorously regulated. In this review, new insights into the regulation of plant peroxisomes are briefly described, with a particular emphasis on pexophagy components and their regulation.
Collapse
Affiliation(s)
- Adela Olmedilla
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Luisa M. Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
42
|
Jiao Y, Srba M, Wang J, Chen W. Correlation of Autophagosome Formation with Degradation and Endocytosis Arabidopsis Regulator of G-Protein Signaling (RGS1) through ATG8a. Int J Mol Sci 2019; 20:ijms20174190. [PMID: 31461856 PMCID: PMC6747245 DOI: 10.3390/ijms20174190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022] Open
Abstract
Damaged or unwanted cellular proteins are degraded by either autophagy or the ubiquitin/proteasome pathway. In Arabidopsis thaliana, sensing of D-glucose is achieved by the heterotrimeric G protein complex and regulator of G-protein signaling 1 (AtRGS1). Here, we showed that starvation increases proteasome-independent AtRGS1 degradation, and it is correlated with increased autophagic flux. RGS1 promoted the production of autophagosomes and autophagic flux; RGS1-yellow fluorescent protein (YFP) was surrounded by vacuolar dye FM4-64 (red fluorescence). RGS1 and autophagosomes co-localized in the root cells of Arabidopsis and BY-2 cells. We demonstrated that the autophagosome marker ATG8a interacts with AtRGS1 and its shorter form with truncation of the seven transmembrane and RGS1 domains in planta. Altogether, our data indicated the correlation of autophagosome formation with degradation and endocytosis of AtRGS1 through ATG8a.
Collapse
Affiliation(s)
- Yue Jiao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
- College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Miroslav Srba
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague, Czech Republic
| | - Jingchun Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
- College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China.
- College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
43
|
Oikawa K, Hayashi M, Hayashi Y, Nishimura M. Re-evaluation of physical interaction between plant peroxisomes and other organelles using live-cell imaging techniques. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:836-852. [PMID: 30916439 DOI: 10.1111/jipb.12805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
The dynamic behavior of organelles is essential for plant survival under various environmental conditions. Plant organelles, with various functions, migrate along actin filaments and contact other types of organelles, leading to physical interactions at a specific site called the membrane contact site. Recent studies have revealed the importance of physical interactions in maintaining efficient metabolite flow between organelles. In this review, we first summarize peroxisome function under different environmental conditions and growth stages to understand organelle interactions. We then discuss current knowledge regarding the interactions between peroxisome and other organelles, i.e., the oil bodies, chloroplast, and mitochondria from the perspective of metabolic and physiological regulation, with reference to various organelle interactions and techniques for estimating organelle interactions occurring in plant cells.
Collapse
Affiliation(s)
- Kazusato Oikawa
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Makoto Hayashi
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama, 526-0829, Japan
| | - Yasuko Hayashi
- Department of Biology, Faculty of science, Niigata University, Niigata, 950-2181, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| |
Collapse
|
44
|
Fan J, Yu L, Xu C. Dual Role for Autophagy in Lipid Metabolism in Arabidopsis. THE PLANT CELL 2019; 31:1598-1613. [PMID: 31036588 PMCID: PMC6635848 DOI: 10.1105/tpc.19.00170] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/26/2019] [Accepted: 04/19/2019] [Indexed: 05/18/2023]
Abstract
Autophagy is a major catabolic pathway whereby cytoplasmic constituents including lipid droplets (LDs), storage compartments for neutral lipids, are delivered to the lysosome or vacuole for degradation. The autophagic degradation of cytosolic LDs, a process termed lipophagy, has been extensively studied in yeast and mammals, but little is known about the role for autophagy in lipid metabolism in plants. Organisms maintain a basal level of autophagy under favorable conditions and upregulate the autophagic activity under stress including starvation. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) basal autophagy contributes to triacylglycerol (TAG) synthesis, whereas inducible autophagy contributes to LD degradation. We found that disruption of basal autophagy impedes organellar membrane lipid turnover and hence fatty acid mobilization from membrane lipids to TAG. We show that lipophagy is induced under starvation as indicated by colocalization of LDs with the autophagic marker and the presence of LDs in vacuoles. We additionally show that lipophagy occurs in a process morphologically resembling microlipophagy and requires the core components of the macroautophagic machinery. Together, this study provides mechanistic insight into lipophagy and reveals a dual role for autophagy in regulating lipid synthesis and turnover in plants.
Collapse
Affiliation(s)
- Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
45
|
Kataya ARA, Muench DG, Moorhead GB. A Framework to Investigate Peroxisomal Protein Phosphorylation in Arabidopsis. TRENDS IN PLANT SCIENCE 2019; 24:366-381. [PMID: 30683463 DOI: 10.1016/j.tplants.2018.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Peroxisomes perform essential roles in a range of cellular processes, highlighted by lipid metabolism, reactive species detoxification, and response to a variety of stimuli. The ability of peroxisomes to grow, divide, respond to changing cellular needs, interact with other organelles, and adjust their proteome as required, suggest that, like other organelles, their specialized roles are highly regulated. Similar to most other cellular processes, there is an emerging role for protein phosphorylation to regulate these events. In this review, we establish a knowledge framework of key players that control protein phosphorylation events in the plant peroxisome (i.e., the protein kinases and phosphatases), and highlight a vastly expanded set of (phospho)substrates.
Collapse
Affiliation(s)
- Amr R A Kataya
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, 4036, Norway; Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada; www.katayaproject.com.
| | - Douglas G Muench
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada
| | - Greg B Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada
| |
Collapse
|
46
|
Avin-Wittenberg T. Autophagy and its role in plant abiotic stress management. PLANT, CELL & ENVIRONMENT 2019; 42:1045-1053. [PMID: 29998609 DOI: 10.1111/pce.13404] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 05/02/2023]
Abstract
Being unable to move, plants are regularly exposed to changing environmental conditions, among which various types of abiotic stress, such as heat, drought, salt, and so forth. These might have deleterious effects on plant performance and yield. Plants thus need to adapt using appropriate stress responses. One of the outcomes of abiotic stress is the need to degrade and recycle damaged proteins and organelles. Autophagy is a conserved eukaryotic mechanism functioning in the degradation of proteins, protein aggregates, and whole organelles. It was previously shown to have a role in plant abiotic stress. This review will describe the current knowledge regarding the involvement of autophagy in plant abiotic stress response, mechanisms functioning in autophagy induction during stress, and possible direction for future research.
Collapse
Affiliation(s)
- Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
47
|
Young PG, Passalacqua MJ, Chappell K, Llinas RJ, Bartel B. A facile forward-genetic screen for Arabidopsis autophagy mutants reveals twenty-one loss-of-function mutations disrupting six ATG genes. Autophagy 2019; 15:941-959. [PMID: 30734619 PMCID: PMC6526838 DOI: 10.1080/15548627.2019.1569915] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Macroautophagy is a process through which eukaryotic cells degrade large substrates including organelles, protein aggregates, and invading pathogens. Over 40 autophagy-related (ATG) genes have been identified through forward-genetic screens in yeast. Although homology-based analyses have identified conserved ATG genes in plants, only a few atg mutants have emerged from forward-genetic screens in Arabidopsis thaliana. We developed a screen that consistently recovers Arabidopsis atg mutations by exploiting mutants with defective LON2/At5g47040, a protease implicated in peroxisomal quality control. Arabidopsis lon2 mutants exhibit reduced responsiveness to the peroxisomally-metabolized auxin precursor indole-3-butyric acid (IBA), heightened degradation of several peroxisomal matrix proteins, and impaired processing of proteins harboring N-terminal peroxisomal targeting signals; these defects are ameliorated by preventing autophagy. We optimized a lon2 suppressor screen to expedite recovery of additional atg mutants. After screening mutagenized lon2-2 seedlings for restored IBA responsiveness, we evaluated stabilization and processing of peroxisomal proteins, levels of several ATG proteins, and levels of the selective autophagy receptor NBR1/At4g24690, which accumulates when autophagy is impaired. We recovered 21 alleles disrupting 6 ATG genes: ATG2/At3g19190, ATG3/At5g61500, ATG5/At5g17290, ATG7/At5g45900, ATG16/At5g50230, and ATG18a/At3g62770. Twenty alleles were novel, and 3 of the mutated genes lack T-DNA insertional alleles in publicly available repositories. We also demonstrate that an insertional atg11/At4g30790 allele incompletely suppresses lon2 defects. Finally, we show that NBR1 is not necessary for autophagy of lon2 peroxisomes and that NBR1 overexpression is not sufficient to trigger autophagy of seedling peroxisomes, indicating that Arabidopsis can use an NBR1-independent mechanism to target peroxisomes for autophagic degradation. Abbreviations: ATG: autophagy-related; ATI: ATG8-interacting protein; Col-0: Columbia-0; DSK2: dominant suppressor of KAR2; EMS: ethyl methanesulfonate; GFP: green fluorescent protein; IAA: indole-3-acetic acid; IBA: indole-3-butyric acid; ICL: isocitrate lyase; MLS: malate synthase; NBR1: Next to BRCA1 gene 1; PEX: peroxin; PMDH: peroxisomal malate dehydrogenase; PTS: peroxisomal targeting signal; thiolase: 3-ketoacyl-CoA thiolase; UBA: ubiquitin-associated; WT: wild type
Collapse
Affiliation(s)
- Pierce G Young
- a Department of Biosciences , Rice University , Houston , TX , USA
| | | | - Kevin Chappell
- a Department of Biosciences , Rice University , Houston , TX , USA.,b Department of Biology , University of Mary Hardin-Baylor , Belton , TX , USA
| | - Roxanna J Llinas
- a Department of Biosciences , Rice University , Houston , TX , USA
| | - Bonnie Bartel
- a Department of Biosciences , Rice University , Houston , TX , USA
| |
Collapse
|
48
|
Janse van Rensburg HC, Van den Ende W, Signorelli S. Autophagy in Plants: Both a Puppet and a Puppet Master of Sugars. FRONTIERS IN PLANT SCIENCE 2019; 10:14. [PMID: 30723485 PMCID: PMC6349728 DOI: 10.3389/fpls.2019.00014] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/07/2019] [Indexed: 05/20/2023]
Abstract
Autophagy is a major pathway that recycles cellular components in eukaryotic cells both under stressed and non-stressed conditions. Sugars participate both metabolically and as signaling molecules in development and response to various environmental and nutritional conditions. It is therefore essential to maintain metabolic homeostasis of sugars during non-stressed conditions in cells, not only to provide energy, but also to ensure effective signaling when exposed to stress. In both plants and animals, autophagy is activated by the energy sensor SnRK1/AMPK and inhibited by TOR kinase. SnRK1/AMPK and TOR kinases are both important regulators of cellular metabolism and are controlled to a large extent by the availability of sugars and sugar-phosphates in plants whereas in animals AMP/ATP indirectly translate sugar status. In plants, during nutrient and sugar deficiency, SnRK1 is activated, and TOR is inhibited to allow activation of autophagy which in turn recycles cellular components in an attempt to provide stress relief. Autophagy is thus indirectly regulated by the nutrient/sugar status of cells, but also regulates the level of nutrients/sugars by recycling cellular components. In both plants and animals sugars such as trehalose induce autophagy and in animals this is independent of the TOR pathway. The glucose-activated G-protein signaling pathway has also been demonstrated to activate autophagy, although the exact mechanism is not completely clear. This mini-review will focus on the interplay between sugar signaling and autophagy.
Collapse
Affiliation(s)
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
| | - Santiago Signorelli
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
- Departamento de Biologiía Vegetal, Facultad de Agronomía, Universidad de la Repuíblica, Montevideo, Uruguay
| |
Collapse
|
49
|
Norizuki T, Kanazawa T, Minamino N, Tsukaya H, Ueda T. Marchantia polymorpha, a New Model Plant for Autophagy Studies. FRONTIERS IN PLANT SCIENCE 2019; 10:935. [PMID: 31379911 PMCID: PMC6652269 DOI: 10.3389/fpls.2019.00935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/03/2019] [Indexed: 05/18/2023]
Abstract
Autophagy is a catabolic process for bulk and selective degradation of cytoplasmic components in the vacuole/lysosome. In Saccharomyces cerevisiae, ATG genes were identified as essential genes for autophagy, and most ATG genes are highly conserved among eukaryotes, including plants. Although reverse genetic analyses have revealed that autophagy is involved in responses to abiotic and biotic stresses in land plants, our knowledge of its molecular mechanism remains limited. This limitation is partly because of the multiplication of some ATG genes, including ATG8, in widely used model plants such as Arabidopsis thaliana, which adds complexity to functional studies. Furthermore, due to limited information on the composition and functions of the ATG genes in basal land plants and charophytes, it remains unclear whether multiplication of ATG genes is associated with neofunctionalization of these genes. To gain insight into the diversification of ATG genes during plant evolution, we compared the composition of ATG genes in plants with a special focus on a liverwort and two charophytes, which have not previously been analyzed. Our results showed that the liverwort Marchantia polymorpha and the charophytes Klebsormidium nitens and Chara braunii harbor fundamental sets of ATG genes with low redundancy compared with those of A. thaliana and the moss Physcomitrella patens, suggesting that multiplication of ATG genes occurred during land plant evolution. We also attempted to establish an experimental system for analyzing autophagy in M. polymorpha. We generated transgenic plants expressing fluorescently tagged MpATG8 to observe its dynamics in M. polymorpha and produced autophagy-defective mutants by genome editing using the CRISPR/Cas9 system. These tools allowed us to demonstrate that MpATG8 is transported into the vacuole in an MpATG2-, MpATG5-, and MpATG7-dependent manner, suggesting that fluorescently tagged MpATG8 can be used as an autophagosome marker in M. polymorpha. M. polymorpha can provide a powerful system for studying the mechanisms and evolution of autophagy in plants.
Collapse
Affiliation(s)
- Takuya Norizuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
| | - Takehiko Kanazawa
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
- *Correspondence: Takashi Ueda,
| |
Collapse
|
50
|
Su T, Li W, Wang P, Ma C. Dynamics of Peroxisome Homeostasis and Its Role in Stress Response and Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:705. [PMID: 31214223 PMCID: PMC6557986 DOI: 10.3389/fpls.2019.00705] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/13/2019] [Indexed: 05/19/2023]
Abstract
Peroxisomes play vital roles in plant growth, development, and environmental stress response. During plant development and in response to environmental stresses, the number and morphology of peroxisomes are dynamically regulated to maintain peroxisome homeostasis in cells. To execute their various functions in the cell, peroxisomes associate and communicate with other organelles. Under stress conditions, reactive oxygen species (ROS) produced in peroxisomes and other organelles activate signal transduction pathways, in a process known as retrograde signaling, to synergistically regulate defense systems. In this review, we focus on the recent advances in the plant peroxisome field to provide an overview of peroxisome biogenesis, degradation, crosstalk with other organelles, and their role in response to environmental stresses.
Collapse
|