1
|
Xu R, Jiang S, Ge H, Zhang B, Shu J, Zhang T, Cao L, Zhang S. MhIDA small peptides modulate the growth and development of roots in Malus hupehensis. PLANT CELL REPORTS 2025; 44:110. [PMID: 40304744 DOI: 10.1007/s00299-025-03492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/08/2025] [Indexed: 05/02/2025]
Abstract
KEY MESSAGE MhIDA small peptides promote apple root growth by enhancing auxin synthesis and cell wall remodeling gene expression, revealing a peptide-based strategy to improve root architecture. Although small peptides have been well documented as crucial regulators of plant growth and development, the molecular mechanisms underlying lateral root morphogenesis in Malus hupehensis remain poorly understood. In this research, exogenous application of 1 µM MhIDA-Like family peptides increased primary root (PR) length by 14.31-19.96% and lateral root (LR) number by 124.54-149.08%. MhIDA, predominant expression in the root tip and lateral root primordium, demonstrated the most substantial promoting effects on PR elongation, LR number and density when the treatment concentration reached 1 µM. Furthermore, similar effects were found in MhIDA-overexpression transgenic apple seedlings, with the number and density of transgenic LRs increase by 80.52 and 126.86%, respectively, compared with wild-type seedlings. More importantly, 1 µM MhIDA treatment induced significant hormonal alterations, with the content of auxin, salicylic acid and gibberellic acid increasing by 1.5-fold, 1.4-fold, and 2.1-fold, respectively, compared to control. The qRT-PCR results showed that MhIDA could induce the expression of auxin synthesis genes (MhTAA1 and MhYUCC1) that were up-regulated by about twofold, and the cell wall remodeling-related genes (MhEXP17, MhXTR6, MhPGAZAT and MhPGLR) were upregulated by about 2- to 4-fold after 1 µM MhIDA treatment, thereby regulating LR emergence and formation of Malus hupehensis. Overall, these findings suggested the MhIDA peptide can promote the growth and development of roots, laying the foundation for cultivating apple rootstocks with strong roots and higher resistance to abiotic stress.
Collapse
Affiliation(s)
- Ruirui Xu
- College of Biology and Oceanography, Weifang University, Weifang, 261061, Shandong, China
| | - Shuna Jiang
- College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Hongjuan Ge
- Qingdao Agriculture Academy, Qingdao, 266100, Shandong, China
| | - Buhang Zhang
- College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Jing Shu
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan, 250100, China
| | - Tianpeng Zhang
- College of Biology and Oceanography, Weifang University, Weifang, 261061, Shandong, China.
| | - Lijun Cao
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA.
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA.
| | - Shizhong Zhang
- College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
2
|
Zhou K, Wu F, Deng L, Xiao Y, Yang W, Zhao J, Wang Q, Chang Z, Zhai H, Sun C, Han H, Du M, Chen Q, Yan J, Xin P, Chu J, Han Z, Chai J, Howe GA, Li CB, Li C. Antagonistic systemin receptors integrate the activation and attenuation of systemic wound signaling in tomato. Dev Cell 2025; 60:535-550.e8. [PMID: 39631391 DOI: 10.1016/j.devcel.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/22/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Pattern recognition receptor (PRR)-mediated perception of damage-associated molecular patterns (DAMPs) triggers the first line of inducible defenses in both plants and animals. Compared with animals, plants are sessile and regularly encounter physical damage by biotic and abiotic factors. A longstanding problem concerns how plants achieve a balance between wound defense response and normal growth, avoiding overcommitment to catastrophic defense. Here, we report that two antagonistic systemin receptors, SYR1 and SYR2, of the wound peptide hormone systemin in tomato act in a ligand-concentration-dependent manner to regulate immune homeostasis. Whereas SYR1 acts as a high-affinity receptor to initiate systemin signaling, SYR2 functions as a low-affinity receptor to attenuate systemin signaling. The expression of systemin and SYR2, but not SYR1, is upregulated upon SYR1 activation. Our findings provide a mechanistic explanation for how plants appropriately respond to tissue damage based on PRR-mediated perception of DAMP concentrations and have implications for uncoupling defense-growth trade-offs.
Collapse
Affiliation(s)
- Ke Zhou
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Fangming Wu
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Deng
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Yu Xiao
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wentao Yang
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhai Zhao
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Qinyang Wang
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeqian Chang
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huawei Zhai
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Chuanlong Sun
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Hongyu Han
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Minmin Du
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qian Chen
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jijun Yan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peiyong Xin
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhifu Han
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Jijie Chai
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Chang-Bao Li
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Chuanyou Li
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
3
|
Zhang Z, Han H, Zhao J, Liu Z, Deng L, Wu L, Niu J, Guo Y, Wang G, Gou X, Li C, Li C, Liu CM. Peptide hormones in plants. MOLECULAR HORTICULTURE 2025; 5:7. [PMID: 39849641 PMCID: PMC11756074 DOI: 10.1186/s43897-024-00134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses. Since the discovery of the first plant peptide hormone, systemin, in tomato in 1991, putative peptide hormones have continuously been identified in different plant species, showing their importance in both short- and long-range signal transductions. The roles of peptide hormones are implicated in, but not limited to, processes such as self-incompatibility, pollination, fertilization, embryogenesis, endosperm development, stem cell regulation, plant architecture, tissue differentiation, organogenesis, dehiscence, senescence, plant-pathogen and plant-insect interactions, and stress responses. This article, collectively written by researchers in this field, aims to provide a general overview for the discoveries, functions, chemical natures, transcriptional regulations, and post-translational modifications of peptide hormones in plants. We also updated recent discoveries in receptor kinases underlying the peptide hormone sensing and down-stream signal pathways. Future prospective and challenges will also be discussed at the end of the article.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junxiang Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lei Deng
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junpeng Niu
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Guodong Wang
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Chuanyou Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Chun-Ming Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
4
|
Lalun VO, Breiden M, Galindo-Trigo S, Smakowska-Luzan E, Simon RGW, Butenko MA. A dual function of the IDA peptide in regulating cell separation and modulating plant immunity at the molecular level. eLife 2024; 12:RP87912. [PMID: 38896460 PMCID: PMC11186634 DOI: 10.7554/elife.87912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
The abscission of floral organs and emergence of lateral roots in Arabidopsis is regulated by the peptide ligand inflorescence deficient in abscission (IDA) and the receptor protein kinases HAESA (HAE) and HAESA-like 2 (HSL2). During these cell separation processes, the plant induces defense-associated genes to protect against pathogen invasion. However, the molecular coordination between abscission and immunity has not been thoroughly explored. Here, we show that IDA induces a release of cytosolic calcium ions (Ca2+) and apoplastic production of reactive oxygen species, which are signatures of early defense responses. In addition, we find that IDA promotes late defense responses by the transcriptional upregulation of genes known to be involved in immunity. When comparing the IDA induced early immune responses to known immune responses, such as those elicited by flagellin22 treatment, we observe both similarities and differences. We propose a molecular mechanism by which IDA promotes signatures of an immune response in cells destined for separation to guard them from pathogen attack.
Collapse
Affiliation(s)
- Vilde Olsson Lalun
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of OsloOsloNorway
| | - Maike Breiden
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine UniversityDüsseldorfGermany
| | - Sergio Galindo-Trigo
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of OsloOsloNorway
| | - Elwira Smakowska-Luzan
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC)ViennaAustria
| | - Rüdiger GW Simon
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine UniversityDüsseldorfGermany
| | - Melinka A Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of OsloOsloNorway
| |
Collapse
|
5
|
Ma X, He Z, Yuan Y, Liang Z, Zhang H, Lalun VO, Liu Z, Zhang Y, Huang Z, Huang Y, Li J, Zhao M. The transcriptional control of LcIDL1-LcHSL2 complex by LcARF5 integrates auxin and ethylene signaling for litchi fruitlet abscission. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1206-1226. [PMID: 38517216 DOI: 10.1111/jipb.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
At the physiological level, the interplay between auxin and ethylene has long been recognized as crucial for the regulation of organ abscission in plants. However, the underlying molecular mechanisms remain unknown. Here, we identified transcription factors involved in indoleacetic acid (IAA) and ethylene (ET) signaling that directly regulate the expression of INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) and its receptor HAESA (HAE), which are key components initiating abscission. Specifically, litchi IDA-like 1 (LcIDL1) interacts with the receptor HAESA-like 2 (LcHSL2). Through in vitro and in vivo experiments, we determined that the auxin response factor LcARF5 directly binds and activates both LcIDL1 and LcHSL2. Furthermore, we found that the ETHYLENE INSENSITIVE 3-like transcription factor LcEIL3 directly binds and activates LcIDL1. The expression of IDA and HSL2 homologs was enhanced in LcARF5 and LcEIL3 transgenic Arabidopsis plants, but reduced in ein3 eil1 mutants. Consistently, the expressions of LcIDL1 and LcHSL2 were significantly decreased in LcARF5- and LcEIL3-silenced fruitlet abscission zones (FAZ), which correlated with a lower rate of fruitlet abscission. Depletion of auxin led to an increase in 1-aminocyclopropane-1-carboxylic acid (the precursor of ethylene) levels in the litchi FAZ, followed by abscission activation. Throughout this process, LcARF5 and LcEIL3 were induced in the FAZ. Collectively, our findings suggest that the molecular interactions between litchi AUXIN RESPONSE FACTOR 5 (LcARF5)-LcIDL1/LcHSL2 and LcEIL3-LcIDL1 signaling modules play a role in regulating fruitlet abscission in litchi and provide a long-sought mechanistic explanation for how the interplay between auxin and ethylene is translated into the molecular events that initiate abscission.
Collapse
Affiliation(s)
- Xingshuai Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zidi He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Ye Yuan
- Dongguan Botanical Garden, Dongguan, 523128, China
| | - Zhijian Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Hang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Vilde Olsson Lalun
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Blindernveien 31, Oslo, 0316, Norway
| | - Zhuoyi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanqing Zhang
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Zhiqiang Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yulian Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
6
|
Maier LP, Felix G, Fliegmann J. LuBiA (Luciferase-Based Binding Assay): Glowing Peptides as Sensitive Probes to Study Ligand-Receptor Interactions. Methods Mol Biol 2024; 2731:265-278. [PMID: 38019441 DOI: 10.1007/978-1-0716-3511-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The quantitative and qualitative biochemical description of molecular interactions is fundamental to the study of ligand/receptor pairs and their structure/function relationships. Bioactive peptides often are active at (sub-)nanomolar concentrations, indicating they have a high affinity for their sites of action, notably binding sites on receptors. Since such receptor proteins are commonly of low abundance, highly sensitive detection methods are required to study these ligand/receptor interactions. We present a protocol for an inexpensive luminescence-based detection setup in which the peptide ligand of interest is extended with the 11-amino acid HiBiT tag. This tag can be quantified easily down to fmol amounts by its ability to reconstitute the enzymatic activity of LgBiT, a truncated version of the Oplophorus gracilirostris luciferase.
Collapse
Affiliation(s)
- Louis-Philippe Maier
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
- Department of Plant Molecular Biology (DBMV), University of Lausanne, Lausanne, Switzerland
| | - Georg Felix
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Judith Fliegmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
7
|
Wang X, Meng X. Rapid Identification of Peptide-Receptor-Coreceptor Complexes in Protoplasts. Methods Mol Biol 2024; 2731:241-251. [PMID: 38019439 DOI: 10.1007/978-1-0716-3511-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Secreted signaling peptides, also called peptide hormones, play crucial roles in regulating plant growth, development, and immunity. Plant peptide hormones are perceived by plasma membrane-localized receptor-like kinases (RLKs) or receptor-like proteins (RLPs) that harbor specific extracellular domains to bind and recognize the corresponding peptide ligands. Binding of a peptide ligand to its receptor usually induces the hetero-dimerization of the cognate receptor and a coreceptor, followed by the phosphorylation and activation of the receptor complex to transduce downstream signaling. Therefore, matching peptide ligands with their respective receptors/coreceptors is crucial for elucidating peptide hormone signaling pathways. In this chapter, using the RGF7 peptide-RGI4/RGI5 receptor-BAK1 coreceptor complex as an example, we describe a rapid method to identify the peptide ligand-receptor-coreceptor complexes via co-immunoprecipitation assays using recombinant proteins transiently expressed in Arabidopsis protoplasts.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiangzong Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China.
| |
Collapse
|
8
|
Lanooij J, Smakowska-Luzan E. Isothermal Titration Calorimetry to Study Plant Peptide Ligand-Receptor Interactions. Methods Mol Biol 2024; 2731:295-310. [PMID: 38019443 DOI: 10.1007/978-1-0716-3511-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The field of plant receptor biology has rapidly expanded in the past three decades. However, the demonstration of direct interaction between receptor-ligand pairs remains a challenge. Identifying and quantifying protein-ligand interactions is crucial for understanding how they regulate certain physiological processes. An important aspect is the quantification of different parameters of the interaction, like binding affinity, kinetics, and ligand specificity that drive the formation of signaling complexes. In this chapter, we discuss Isothermal Titration Calorimetry (ITC) as a label-free technique to measure thermodynamic parameters of ligand binding with high accuracy and reproducibility. We provide a detailed guideline how to design, perform, analyze, and interpret ITC measurements using as an example the interaction between the SCHENGEN3/GASSHO1 (SGN3/GSO1) leucine-rich repeat receptor-like kinase and its sulfated peptide ligand CASPARIAN STRIP INTEGRITY FACTOR 2 (CIF2).
Collapse
Affiliation(s)
- Judith Lanooij
- Wageningen University and Research, Laboratory of Biochemistry, Wageningen, The Netherlands
| | - Elwira Smakowska-Luzan
- Wageningen University and Research, Laboratory of Biochemistry, Wageningen, The Netherlands.
| |
Collapse
|
9
|
Singh P, Maurya SK, Singh D, Sane AP. The rose INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE genes, RbIDL1 and RbIDL4, regulate abscission in an ethylene-responsive manner. PLANT CELL REPORTS 2023; 42:1147-1161. [PMID: 37069436 DOI: 10.1007/s00299-023-03017-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/03/2023] [Indexed: 06/16/2023]
Abstract
KEY MESSAGE RbIDL1 and RbIDL4 are up-regulated in an ethylene-responsive manner during rose petal abscission and restored the Arabidopsis ida-2 mutant abscission defect suggesting functional conservation of the IDA pathway in rose. Abscission is an ethylene-regulated developmental process wherein plants shed unwanted organs in a controlled manner. The INFLORESCENCE DEFICIENT IN ABSCISSION family has been identified as a key regulator of abscission in Arabidopsis, encoding peptides that interact with receptor-like kinases to activate abscission. Loss of function ida mutants show abscission deficiency in Arabidopsis. Functional conservation of the IDA pathway in other plant abscission processes is a matter of interest given the discovery of these genes in several plants. We have identified four members of the INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE family from the ethylene-sensitive, early-abscising fragrant rose, Rosa bourboniana. All four are conserved in sequence and possess well-defined PIP, mIDa and EPIP motifs. Three of these, RbIDL1, RbIDL2 and RbIDL4 show a three-fourfold increase in transcript levels in petal abscission zones (AZ) during ethylene-induced petal abscission as well as natural abscission. The genes are also expressed in other floral tissues but respond differently to ethylene in these tissues. RbIDL1 and RbIDL4, the more prominently expressed IDL genes in rose, can complement the abscission defect of the Arabidopsis ida-2 mutant; while, promoters of both genes can drive AZ-specific expression in an ethylene-responsive manner even in Arabidopsis silique AZs indicating recognition of AZ-specific and ethylene-responsive cis elements in their promoters by the abscission machinery of rose as well as Arabidopsis.
Collapse
Affiliation(s)
- Priya Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shiv Kumar Maurya
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Botany, Kishori Raman (PG) College, Mathura, India
| | - Deepika Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Lu HH, Meents AK, Fliegmann J, Hwang MJ, Suen CS, Masch D, Felix G, Mithöfer A, Yeh KW. Identification of a damage-associated molecular pattern (DAMP) receptor and its cognate peptide ligand in sweet potato (Ipomoea batatas). PLANT, CELL & ENVIRONMENT 2023. [PMID: 37267124 DOI: 10.1111/pce.14633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023]
Abstract
Sweet potato (Ipomoea batatas) is an important tuber crop, but also target of numerous insect pests. Intriguingly, the abundant storage protein in tubers, sporamin, has intrinsic trypsin protease inhibitory activity. In leaves, sporamin is induced by wounding or a volatile homoterpene and enhances insect resistance. While the signalling pathway leading to sporamin synthesis is partially established, the initial event, perception of a stress-related signal is still unknown. Here, we identified an IbLRR-RK1 that is induced upon wounding and herbivory, and related to peptide-elicitor receptors (PEPRs) from tomato and Arabidopsis. We also identified a gene encoding a precursor protein comprising a peptide ligand (IbPep1) for IbLRR-RK1. IbPep1 represents a distinct signal in sweet potato, which might work in a complementary and/or parallel pathway to the previously described hydroxyproline-rich systemin (HypSys) peptides to strengthen insect resistance. Notably, an interfamily compatibility in the Pep/PEPR system from Convolvulaceae and Solanaceae was identified.
Collapse
Affiliation(s)
- Hsueh-Han Lu
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Anja K Meents
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Judith Fliegmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Shu Suen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Diana Masch
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Georg Felix
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- The Weather Climate and Disaster Research Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Wang P, Wu T, Jiang C, Huang B, Li Z. Brt9SIDA/IDALs as peptide signals mediate diverse biological pathways in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111642. [PMID: 36804389 DOI: 10.1016/j.plantsci.2023.111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
As signal molecules, plant peptides play key roles in intercellular communication during growth and development, as well as stress responses. The 14-amino-acid (aa) INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) peptide was originally identified to play an essential role in the floral organ abscission of Arabidopsis. It is synthesized from its precursor, a small protein containing 77-aa residues with an N-terminal signal peptide sequence. Recently, the IDA/IDA-like (IDLs) genes are isolated in several angiosperms and are highly conserved in land plants. In addition, IDA/IDLs are not only involved in organ abscission but also function in multiple biological processes, including biotic and abiotic stress responses. Here, we summarize the post-translational modification and proteolytic processing, the evolutionary conservation, and the potential regulatory function of IDA/IDLs, and also present future perspectives to investigate the IDA/IDLs signaling pathway. We anticipate that this detailed knowledge will help to improve the understanding of the molecular mechanism of plant peptide signaling.
Collapse
Affiliation(s)
- Pingyu Wang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Ting Wu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Chen Jiang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Baowen Huang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
12
|
Reinar WB, Greulich A, Stø IM, Knutsen JB, Reitan T, Tørresen OK, Jentoft S, Butenko MA, Jakobsen KS. Adaptive protein evolution through length variation of short tandem repeats in Arabidopsis. SCIENCE ADVANCES 2023; 9:eadd6960. [PMID: 36947624 PMCID: PMC10032594 DOI: 10.1126/sciadv.add6960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Intrinsically disordered protein regions are of high importance for biotic and abiotic stress responses in plants. Tracts of identical amino acids accumulate in these regions and can vary in length over generations because of expansions and retractions of short tandem repeats at the genomic level. However, little attention has been paid to what extent length variation is shaped by natural selection. By environmental association analysis on 2514 length variable tracts in 770 whole-genome sequenced Arabidopsis thaliana, we show that length variation in glutamine and asparagine amino acid homopolymers, as well as in interaction hotspots, correlate with local bioclimatic habitat. We determined experimentally that the promoter activity of a light-stress gene depended on polyglutamine length variants in a disordered transcription factor. Our results show that length variations affect protein function and are likely adaptive. Length variants modulating protein function at a global genomic scale has implications for understanding protein evolution and eco-evolutionary biology.
Collapse
Affiliation(s)
- William B. Reinar
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Anne Greulich
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Ida M. Stø
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Jonfinn B. Knutsen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Trond Reitan
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Ole K. Tørresen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Melinka A. Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Kjetill S. Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
13
|
Stintzi A, Schaller A. Biogenesis of post-translationally modified peptide signals for plant reproductive development. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102274. [PMID: 35977439 DOI: 10.1016/j.pbi.2022.102274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Post-translationally modified peptides (PMPs) are important regulators of plant growth and development. They are derived from larger inactive precursors by post-translational modification (PTM) and proteolytic processing to result in the bioactive peptide signals. We discuss how and why these modifications contribute to the bioactivity of inflorescence deficient in abscission (IDA), phytosulfokine (PSK), and peptides of the Casparian strip integrity factor (CIF) family, as signaling molecules during reproductive development. The emerging picture suggests that PTMs evolved to increase the specificity of interaction of PMPs with cognate receptors and of PMP precursors with processing proteases. Cleavage sites in PMP precursors are recognized by subtilases (SBTs) in a highly specific manner. SBT-mediated processing results in the activation of PMP signals regulating stress-induced flower drop, the formation of the embryonic cuticle, and pollen development.
Collapse
Affiliation(s)
- Annick Stintzi
- Department of Plant Physiology and Biochemistry, University of Hohenheim, 70593 Stuttgart, Germany
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, University of Hohenheim, 70593 Stuttgart, Germany.
| |
Collapse
|
14
|
Concerted actions of PRR- and NLR-mediated immunity. Essays Biochem 2022; 66:501-511. [PMID: 35762737 DOI: 10.1042/ebc20220067] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 12/19/2022]
Abstract
Plants utilise cell-surface immune receptors (functioning as pattern recognition receptors, PRRs) and intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) to detect pathogens. Perception of pathogens by these receptors activates immune signalling and resistance to infections. PRR- and NLR-mediated immunity have primarily been considered parallel processes contributing to disease resistance. Recent studies suggest that these two pathways are interdependent and converge at multiple nodes. This review summarises and provides a perspective on these convergent points.
Collapse
|
15
|
Roman AO, Jimenez-Sandoval P, Augustin S, Broyart C, Hothorn LA, Santiago J. HSL1 and BAM1/2 impact epidermal cell development by sensing distinct signaling peptides. Nat Commun 2022; 13:876. [PMID: 35169143 PMCID: PMC8847575 DOI: 10.1038/s41467-022-28558-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/01/2022] [Indexed: 12/17/2022] Open
Abstract
The membrane receptor kinases HAESA and HSL2 recognize a family of IDA/IDL signaling peptides to control cell separation processes in different plant organs. The homologous HSL1 has been reported to regulate epidermal cell patterning by interacting with a different class of signaling peptides from the CLE family. Here we demonstrate that HSL1 binds IDA/IDL peptides with high, and CLE peptides with lower affinity, respectively. Ligand sensing capability and receptor activation of HSL1 require a SERK co-receptor kinase. Crystal structures with IDA/IDLs or with CLE9 reveal that HSL1-SERK1 complex recognizes the entire IDA/IDL signaling peptide, while only parts of CLE9 are bound to the receptor. In contrast, the receptor kinase BAM1 interacts with the entire CLE9 peptide with high affinity and specificity. Furthermore, the receptor tandem BAM1/BAM2 regulates epidermal cell division homeostasis. Consequently, HSL1-IDLs and BAM1/BAM2-CLEs independently regulate cell patterning in the leaf epidermal tissue.
Collapse
Affiliation(s)
- Andra-Octavia Roman
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Pedro Jimenez-Sandoval
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Sebastian Augustin
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Caroline Broyart
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Ludwig A Hothorn
- Institute of Biostatistics, Leibniz University, 30167, Hannover, Germany
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
16
|
Okuda S. Molecular mechanisms of plant peptide binding to receptors. Peptides 2021; 144:170614. [PMID: 34332962 DOI: 10.1016/j.peptides.2021.170614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/15/2021] [Accepted: 07/24/2021] [Indexed: 01/21/2023]
Abstract
Plants have evolved diverse peptide hormones and cognate receptors to orchestrate plant growth and development. Secreted peptide ligands are mainly sensed by membrane receptor kinases that mediate cell-cell communication. The secreted peptides are categorized into two groups: small linear post-translationally modified peptides and cysteine-rich peptides. The small linear peptides are recognized by the corresponding receptors and co-receptors in a conserved manner. By contrast, the cysteine-rich peptides are perceived by various types of receptor proteins using diverse binding modes. Recent studies have revealed the molecular and mechanistic origins of peptide recognition and receptor activation. This review summarizes plant-peptide binding modes and receptor-activation mechanisms that have been structurally characterized in recent studies.
Collapse
Affiliation(s)
- Satohiro Okuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| |
Collapse
|
17
|
Reinar WB, Lalun VO, Reitan T, Jakobsen KS, Butenko MA. Length variation in short tandem repeats affects gene expression in natural populations of Arabidopsis thaliana. THE PLANT CELL 2021; 33:2221-2234. [PMID: 33848350 PMCID: PMC8364236 DOI: 10.1093/plcell/koab107] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
The genetic basis for the fine-tuned regulation of gene expression is complex and ultimately influences the phenotype and thus the local adaptation of natural populations. Short tandem repeats (STRs) consisting of repetitive DNA motifs have been shown to regulate gene expression. STRs are variable in length within a population and serve as a heritable, but semi-reversible, reservoir of standing genetic variation. For sessile organisms, such as plants, STRs could be of major importance in fine-tuning gene expression as a response to a shifting local environment. Here, we used a transcriptome dataset from natural accessions of Arabidopsis thaliana to investigate population-wide gene expression patterns in light of genome-wide STR variation. We empirically modeled gene expression as a response to the STR length within and around the gene and demonstrated that an association between gene expression and STR length variation is unequivocally present in the sampled population. To support our model, we explored the promoter activity in a transcriptional regulator involved in root hair formation and provided experimentally determined causality between coding sequence length variation and promoter activity. Our results support a general link between gene expression variation and STR length variation in A. thaliana.
Collapse
Affiliation(s)
- William B. Reinar
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Vilde O. Lalun
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Trond Reitan
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Kjetill S. Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Melinka A. Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
18
|
Kim JS, Jeon BW, Kim J. Signaling Peptides Regulating Abiotic Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:704490. [PMID: 34349774 PMCID: PMC8326967 DOI: 10.3389/fpls.2021.704490] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/25/2021] [Indexed: 05/23/2023]
Abstract
As sessile organisms, plants are exposed to constantly changing environments that are often stressful for their growth and development. To cope with these stresses, plants have evolved complex and sophisticated stress-responsive signaling pathways regulating the expression of transcription factors and biosynthesis of osmolytes that confer tolerance to plants. Signaling peptides acting like phytohormones control various aspects of plant growth and development via cell-cell communication networks. These peptides are typically recognized by membrane-embedded receptor-like kinases, inducing activation of cellular signaling to control plant growth and development. Recent studies have revealed that several signaling peptides play important roles in plant responses to abiotic stress. In this mini review, we provide recent findings on the roles and signaling pathways of peptides that are involved in coordinating plant responses to abiotic stresses, such as dehydration, high salinity, reactive oxygen species, and heat. We also discuss recent developments in signaling peptides that play a role in plant adaptation responses to nutrient deficiency stress, focusing on nitrogen and phosphate deficiency responses.
Collapse
Affiliation(s)
- Jin Sun Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
- Department of Integrative Food, Bioscience and Technology, Chonnam National University, Gwangju, South Korea
| | - Byeong Wook Jeon
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, South Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
- Department of Integrative Food, Bioscience and Technology, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
19
|
Li R, Shi CL, Wang X, Meng Y, Cheng L, Jiang CZ, Qi M, Xu T, Li T. Inflorescence abscission protein SlIDL6 promotes low light intensity-induced tomato flower abscission. PLANT PHYSIOLOGY 2021; 186:1288-1301. [PMID: 33711162 PMCID: PMC8195514 DOI: 10.1093/plphys/kiab121] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/26/2021] [Indexed: 05/05/2023]
Abstract
In many fruiting plant species, flower abscission is induced by low light stress. Here, we elucidated how signaling mediated by the peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) controls low light-induced flower drop in tomato (Solanum lycopersicum). We analyzed the expression patterns of an IDA-Like gene (SlIDL6) during low light-induced flower abscission, and used tandem mass spectrometry to identify and characterize the mature SlIDL6 peptide. Tomato knockout lines were created to investigate the in vivo function of SlIDL6. In addition, yeast one-hybrid assays were used to investigate the binding of the SlWRKY17 transcription factor to the SlIDL6 promoter, and silencing of SlWRKY17 expression delayed low light-induced flower abscission. SlIDL6 was specifically expressed in the abscission zone and at high levels during low light-induced abscission and ethylene treatment. SlIDL6 knockout lines showed delayed low light-induced flower drop, and the application of SlIDL6 peptide accelerated abscission. Overexpression of SlIDL6 rescued the ida mutant phenotype in Arabidopsis (Arabidopsis thaliana), suggesting functional conservation between species. SlIDL6-mediated abscission was via an ethylene-independent pathway. We report a SlWRKY17-SlIDL6 regulatory module that functions in low light promoted abscission by increasing the expression of enzymes involved in cell wall remodeling and disassembly.
Collapse
Affiliation(s)
- Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Chun-Lin Shi
- Department of Biosciences, University of Oslo, Blindern, 0316 Oslo, Norway
| | - Xiaoyang Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Yan Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture Agricultural Research Service, California 95616, USA
- Department of Plant Sciences, University of California, California 95616, USA
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
- Author for communication:
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| |
Collapse
|
20
|
Characterization of Two Ethephon-Induced IDA-Like Genes from Mango, and Elucidation of Their Involvement in Regulating Organ Abscission. Genes (Basel) 2021; 12:genes12030439. [PMID: 33808710 PMCID: PMC8003476 DOI: 10.3390/genes12030439] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
In mango (Mangifera indica L.), fruitlet abscission limits productivity. The INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) peptide acts as a key component controlling abscission events in Arabidopsis. IDA-like peptides may assume similar roles in fruit trees. In this study, we isolated two mango IDA-like encoding-genes, MiIDA1 and MiIDA2. We used mango fruitlet-bearing explants and fruitlet-bearing trees, in which fruitlets abscission was induced using ethephon. We monitored the expression profiles of the two MiIDA-like genes in control and treated fruitlet abscission zones (AZs). In both systems, qRT-PCR showed that, within 24 h, both MiIDA-like genes were induced by ethephon, and that changes in their expression profiles were associated with upregulation of different ethylene signaling-related and cell-wall modifying genes. Furthermore, ectopic expression of both genes in Arabidopsis promoted floral-organ abscission, and was accompanied by an early increase in the cytosolic pH of floral AZ cells-a phenomenon known to be linked with abscission, and by activation of cell separation in vestigial AZs. Finally, overexpression of both genes in an Atida mutant restored its abscission ability. Our results suggest roles for MiIDA1 and MiIDA2 in affecting mango fruitlet abscission. Based on our results, we propose new possible modes of action for IDA-like proteins in regulating organ abscission.
Collapse
|
21
|
Wilmowicz E, Kućko A, Pokora W, Kapusta M, Jasieniecka-Gazarkiewicz K, Tranbarger TJ, Wolska M, Panek K. EPIP-Evoked Modifications of Redox, Lipid, and Pectin Homeostasis in the Abscission Zone of Lupine Flowers. Int J Mol Sci 2021; 22:3001. [PMID: 33809409 PMCID: PMC7999084 DOI: 10.3390/ijms22063001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
Yellow lupine is a great model for abscission-related research given that excessive flower abortion reduces its yield. It has been previously shown that the EPIP peptide, a fragment of LlIDL (INFLORESCENCE DEFICIENT IN ABSCISSION) amino-acid sequence, is a sufficient molecule to induce flower abortion, however, the question remains: What are the exact changes evoked by this peptide locally in abscission zone (AZ) cells? Therefore, we used EPIP peptide to monitor specific modifications accompanied by early steps of flower abscission directly in the AZ. EPIP stimulates the downstream elements of the pathway-HAESA and MITOGEN-ACTIVATED PROTEIN KINASE6 and induces cellular symptoms indicating AZ activation. The EPIP treatment disrupts redox homeostasis, involving the accumulation of H2O2 and upregulation of the enzymatic antioxidant system including superoxide dismutase, catalase, and ascorbate peroxidase. A weakening of the cell wall structure in response to EPIP is reflected by pectin demethylation, while a changing pattern of fatty acids and acyl lipids composition suggests a modification of lipid metabolism. Notably, the formation of a signaling molecule-phosphatidic acid is induced locally in EPIP-treated AZ. Collectively, all these changes indicate the switching of several metabolic and signaling pathways directly in the AZ in response to EPIP, which inevitably leads to flower abscission.
Collapse
Affiliation(s)
- Emilia Wilmowicz
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (M.W.); (K.P.)
| | - Agata Kućko
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159 Street, 02-776 Warsaw, Poland;
| | - Wojciech Pokora
- Department of Plant Physiology and Biotechnology, University of Gdańsk, 59 Wita Stwosza, 80-308 Gdańsk, Poland;
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, University of Gdańsk, 59 Wita Stwosza, 80-308 Gdańsk, Poland;
| | | | - Timothy John Tranbarger
- UMR DIADE, IRD Centre de Montpellier, Institut de Recherche pour le Développement, Université de Montpellier, 911 Avenue Agropolis BP 64501, 34394 CEDEX 5 Montpellier, France;
| | - Magdalena Wolska
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (M.W.); (K.P.)
| | - Katarzyna Panek
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (M.W.); (K.P.)
| |
Collapse
|
22
|
Steinbrenner AD, Muñoz-Amatriaín M, Chaparro AF, Aguilar-Venegas JM, Lo S, Okuda S, Glauser G, Dongiovanni J, Shi D, Hall M, Crubaugh D, Holton N, Zipfel C, Abagyan R, Turlings TCJ, Close TJ, Huffaker A, Schmelz EA. A receptor-like protein mediates plant immune responses to herbivore-associated molecular patterns. Proc Natl Acad Sci U S A 2020; 117:31510-31518. [PMID: 33229576 PMCID: PMC7733821 DOI: 10.1073/pnas.2018415117] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Herbivory is fundamental to the regulation of both global food webs and the extent of agricultural crop losses. Induced plant responses to herbivores promote resistance and often involve the perception of specific herbivore-associated molecular patterns (HAMPs); however, precisely defined receptors and elicitors associated with herbivore recognition remain elusive. Here, we show that a receptor confers signaling and defense outputs in response to a defined HAMP common in caterpillar oral secretions (OS). Staple food crops, including cowpea (Vigna unguiculata) and common bean (Phaseolus vulgaris), specifically respond to OS via recognition of proteolytic fragments of chloroplastic ATP synthase, termed inceptins. Using forward-genetic mapping of inceptin-induced plant responses, we identified a corresponding leucine-rich repeat receptor, termed INR, specific to select legume species and sufficient to confer inceptin-induced responses and enhanced defense against armyworms (Spodoptera exigua) in tobacco. Our results support the role of plant immune receptors in the perception of chewing herbivores and defense.
Collapse
Affiliation(s)
- Adam D Steinbrenner
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093;
- Department of Biology, University of Washington, Seattle, WA 98195
| | - Maria Muñoz-Amatriaín
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523
| | | | - Jessica Montserrat Aguilar-Venegas
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
- Laboratory of AgriGenomic Sciences, Escuela Nacional de Estudios Superiores Unidad Leon, Universidad Nacional Autonoma de Mexico, 37684 Leon, Mexico
| | - Sassoum Lo
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Satohiro Okuda
- Department for Botany and Plant Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Gaetan Glauser
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Julien Dongiovanni
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Da Shi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Marlo Hall
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Daniel Crubaugh
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Nicholas Holton
- The Sainsbury Laboratory, University of East Anglia, NR4 7UH Norwich, United Kingdom
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, NR4 7UH Norwich, United Kingdom
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, CH-8008 Zürich, Switzerland
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Ted C J Turlings
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Timothy J Close
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Alisa Huffaker
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
23
|
Stührwohldt N, Ehinger A, Thellmann K, Schaller A. Processing and Formation of Bioactive CLE40 Peptide Are Controlled by Posttranslational Proline Hydroxylation. PLANT PHYSIOLOGY 2020; 184:1573-1584. [PMID: 32907884 PMCID: PMC7608152 DOI: 10.1104/pp.20.00528] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/27/2020] [Indexed: 06/01/2023]
Abstract
Small posttranslationally modified signaling peptides are proteolytically derived from larger precursor proteins and subject to several additional steps of modification, including Pro hydroxylation, Hyp glycosylation, and/or Tyr sulfation. The processing proteases and the relevance of posttranslational modifications for peptide biogenesis and activity are largely unknown. In this study these questions were addressed for the Clavata3/Endosperm Surrounding Region (CLE) peptide CLE40, a peptide regulator of stem cell differentiation in the Arabidopsis (Arabidopsis thaliana) root meristem. We identify three subtilases (SBT1.4, SBT1.7, and SBT4.13) that cleave the CLE40 precursor redundantly at two sites. C-terminal processing releases the mature peptide from its precursor and is thus required for signal biogenesis. SBT-mediated cleavage at a second site within the mature peptide attenuates the signal. The second cleavage is prevented by Pro hydroxylation, resulting in the formation of mature and bioactive CLE40 in planta. Our data reveal a role for posttranslational modification by Pro hydroxylation in the regulation of CLE40 formation and activity.
Collapse
Affiliation(s)
- Nils Stührwohldt
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Alexandra Ehinger
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Kerstin Thellmann
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, 70593 Stuttgart, Germany
| |
Collapse
|
24
|
Khan SU, Khan MHU, Ahmar S, Fan C. Comprehensive study and multipurpose role of the CLV3/ESR-related (CLE) genes family in plant growth and development. J Cell Physiol 2020; 236:2298-2317. [PMID: 32864739 DOI: 10.1002/jcp.30021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 11/10/2022]
Abstract
The CLAVATA3/endosperm surrounding region-related (CLE) is one of the most important signaling peptides families in plants. These peptides signaling are common in the cell to cell communication and control various physiological and developmental processes, that is cell differentiation and proliferation, self-incompatibility, and the defense response. The CLE signaling systems are conserved across the plant kingdom but have a diverse mode of action in various developmental processes in different species. In this review, we concise various methods of peptides identification, structure, and molecular identity of the CLE family, the developmental role of CLE genes/peptides in plants, environmental stimuli, and CLE family and some other novel progress in CLE genes/peptides in various crops, and so forth. According to previous literature, about 1,628 CLE genes were identified in land plants, which deeply explained the tale of plant development. Nevertheless, some important queries need to be addressed to get clear insights into the CLE gene family in other organisms and their role in various physiological and developmental processes. Furthermore, we summarized the power of the CLE family around the environment as well as bifunctional activity and the crystal structure recognition mechanism of CLE peptides by their receptors and CLE clusters functions. We strongly believed that the discovery of the CLE family in other organisms would provide a significant breakthrough for future revolutionary and functional studies.
Collapse
Affiliation(s)
- Shahid U Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Hafeez U Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Sunny Ahmar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Sandoval PJ, Santiago J. In Vitro Analytical Approaches to Study Plant Ligand-Receptor Interactions. PLANT PHYSIOLOGY 2020; 182:1697-1712. [PMID: 32034053 PMCID: PMC7140929 DOI: 10.1104/pp.19.01396] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/30/2020] [Indexed: 05/15/2023]
Abstract
State-of-the-art in vitro methods characterize receptor-ligand interactions, highlighting experiment strategies, advantages and limitations.
Collapse
Affiliation(s)
- Pedro Jimenez Sandoval
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
26
|
Gou X, Li J. Paired Receptor and Coreceptor Kinases Perceive Extracellular Signals to Control Plant Development. PLANT PHYSIOLOGY 2020; 182:1667-1681. [PMID: 32144125 PMCID: PMC7140932 DOI: 10.1104/pp.19.01343] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/04/2020] [Indexed: 05/12/2023]
Abstract
Receptor-like protein kinase complexes regulate plant growth and development.
Collapse
Affiliation(s)
- Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
27
|
Li Q, Wang C, Mou Z. Perception of Damaged Self in Plants. PLANT PHYSIOLOGY 2020; 182:1545-1565. [PMID: 31907298 PMCID: PMC7140957 DOI: 10.1104/pp.19.01242] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/16/2019] [Indexed: 05/04/2023]
Abstract
Plants use specific receptor proteins on the cell surface to detect host-derived danger signals released in response to attacks by pathogens or herbivores and activate immune responses against them.
Collapse
Affiliation(s)
- Qi Li
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
28
|
Chivasa S, Goodman HL. Stress-adaptive gene discovery by exploiting collective decision-making of decentralized plant response systems. THE NEW PHYTOLOGIST 2020; 225:2307-2313. [PMID: 31625607 DOI: 10.1111/nph.16273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Despite having a network of cytoplasmic interconnections (plasmodesmata) facilitating rapid exchange of metabolites and signal molecules, plant cells use the extracellular matrix as an alternative route for cell-cell communication. The need for extracellular signalling in plasmodesmata-networked tissues is baffling. A hypothesis is proposed that this phenomenon defines the plant extracellular matrix as a 'democratic space' for collective decision-making in a decentralized system, similar to quorum-sensing in bacteria. Extracellular communication enables signal integration and coordination across several cell layers through ligand-activated plasma membrane receptors. Recent results from drought stress-adaptive responses and light-mediated signalling in cell death activation show operational utility of this decision-making process. Opportunities are discussed for new innovations in drought gene discovery using platforms targeting the extracellular matrix.
Collapse
Affiliation(s)
- Stephen Chivasa
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | | |
Collapse
|
29
|
Zhao M, Li J. Molecular Events Involved in Fruitlet Abscission in Litchi. PLANTS (BASEL, SWITZERLAND) 2020; 9:E151. [PMID: 31991594 PMCID: PMC7076479 DOI: 10.3390/plants9020151] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 01/23/2023]
Abstract
Abscission in plants is an active and highly coordinated physiological process in which organs abscise from the plant body at the abscission zone (AZ) in responding to either developmental or environmental cues. Litchi (Litchi chinensis Sonn.) is an important economic fruit crop widely grown in Southeast Asia particularly in South China. However, the excessive fruit drop during fruit development is a major limiting factor for litchi production. Thus, it is an important agricultural concern to understand the mechanisms underlying the fruit abscission in litchi. Here, we present a review focusing on the molecular events involved in the fruitlet abscission. We also highlight the recent advances on genes specifically associated with fruit abscission and perspectives for future research.
Collapse
Affiliation(s)
- Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
30
|
Fürst U, Zeng Y, Albert M, Witte AK, Fliegmann J, Felix G. Perception of Agrobacterium tumefaciens flagellin by FLS2 XL confers resistance to crown gall disease. NATURE PLANTS 2020; 6:22-27. [PMID: 31949311 DOI: 10.1038/s41477-019-0578-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Bacterial flagella are perceived by the innate immune systems of plants1 and animals2 alike, triggering resistance. Common to higher plants is the immunoreceptor FLAGELLIN-SENSING 2 (FLS2)3, which detects flagellin via its most conserved epitope, flg22. Agrobacterium tumefaciens, which causes crown gall disease in many crop plants, has a highly diverged flg22 epitope and evades immunodetection by plants so far studied. We asked whether, as a next step in this game of 'hide and seek', there are plant species that have evolved immunoreceptors with specificity for the camouflaged flg22Atum of A. tumefaciens. In the wild grape species Vitis riparia, we discovered FLS2XL, a previously unknown form of FLS2, that provides exquisite sensitivity to typical flg22 and to flg22Atum. As exemplified by ectopic expression in tobacco, FLS2XL can limit crown gall disease caused by A. tumefaciens.
Collapse
Affiliation(s)
- Ursula Fürst
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Yi Zeng
- The Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Markus Albert
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | | | - Judith Fliegmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Georg Felix
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
31
|
Segonzac C, Monaghan J. Modulation of plant innate immune signaling by small peptides. CURRENT OPINION IN PLANT BIOLOGY 2019; 51:22-28. [PMID: 31026543 DOI: 10.1016/j.pbi.2019.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
Small peptides regulate the cellular coordination of growth, development, and stress tolerance in plants. In addition to direct antimicrobial activities, small secreted peptides have emerged as key signaling molecules in the plant immune response. Here, we highlight recent discoveries of several small peptides that amplify and fine-tune immune signaling.
Collapse
Affiliation(s)
- Cécile Segonzac
- Department of Plant Science, Plant Genomics and Breeding Institute and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea.
| | | |
Collapse
|
32
|
Chakraborty S, Nguyen B, Wasti SD, Xu G. Plant Leucine-Rich Repeat Receptor Kinase (LRR-RK): Structure, Ligand Perception, and Activation Mechanism. Molecules 2019. [PMID: 31450667 DOI: 10.3390/molecules2473081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
In recent years, secreted peptides have been recognized as essential mediators of intercellular communication which governs plant growth, development, environmental interactions, and other mediated biological responses, such as stem cell homeostasis, cell proliferation, wound healing, hormone sensation, immune defense, and symbiosis, among others. Many of the known secreted peptide ligand receptors belong to the leucine-rich repeat receptor kinase (LRR-RK) family of membrane integral receptors, which contain more than 200 members within Arabidopsis making it the largest family of plant receptor kinases (RKs). Genetic and biochemical studies have provided valuable data regarding peptide ligands and LRR-RKs, however, visualization of ligand/LRR-RK complex structures at the atomic level is vital to understand the functions of LRR-RKs and their mediated biological processes. The structures of many plant LRR-RK receptors in complex with corresponding ligands have been solved by X-ray crystallography, revealing new mechanisms of ligand-induced receptor kinase activation. In this review, we briefly elaborate the peptide ligands, and aim to detail the structures and mechanisms of LRR-RK activation as induced by secreted peptide ligands within plants.
Collapse
Affiliation(s)
- Sayan Chakraborty
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Brian Nguyen
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Syed Danyal Wasti
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Guozhou Xu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
33
|
Plant Leucine-Rich Repeat Receptor Kinase (LRR-RK): Structure, Ligand Perception, and Activation Mechanism. Molecules 2019; 24:molecules24173081. [PMID: 31450667 PMCID: PMC6749341 DOI: 10.3390/molecules24173081] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 11/16/2022] Open
Abstract
In recent years, secreted peptides have been recognized as essential mediators of intercellular communication which governs plant growth, development, environmental interactions, and other mediated biological responses, such as stem cell homeostasis, cell proliferation, wound healing, hormone sensation, immune defense, and symbiosis, among others. Many of the known secreted peptide ligand receptors belong to the leucine-rich repeat receptor kinase (LRR-RK) family of membrane integral receptors, which contain more than 200 members within Arabidopsis making it the largest family of plant receptor kinases (RKs). Genetic and biochemical studies have provided valuable data regarding peptide ligands and LRR-RKs, however, visualization of ligand/LRR-RK complex structures at the atomic level is vital to understand the functions of LRR-RKs and their mediated biological processes. The structures of many plant LRR-RK receptors in complex with corresponding ligands have been solved by X-ray crystallography, revealing new mechanisms of ligand-induced receptor kinase activation. In this review, we briefly elaborate the peptide ligands, and aim to detail the structures and mechanisms of LRR-RK activation as induced by secreted peptide ligands within plants.
Collapse
|
34
|
Shi CL, Alling RM, Hammerstad M, Aalen RB. Control of Organ Abscission and Other Cell Separation Processes by Evolutionary Conserved Peptide Signaling. PLANTS (BASEL, SWITZERLAND) 2019; 8:225. [PMID: 31311120 PMCID: PMC6681299 DOI: 10.3390/plants8070225] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/06/2019] [Accepted: 07/10/2019] [Indexed: 01/10/2023]
Abstract
Plants both generate and shed organs throughout their lifetime. Cell separation is in function during opening of anthers to release pollen; floral organs are detached after pollination when they have served their purpose; unfertilized flowers are shed; fruits and seeds are abscised from the mother plant to secure the propagation of new generations. Organ abscission takes place in specialized abscission zone (AZ) cells where the middle lamella between adjacent cell files is broken down. The plant hormone ethylene has a well-documented promoting effect on abscission, but mutation in ethylene receptor genes in Arabidopsis thaliana only delays the abscission process. Microarray and RNA sequencing have identified a large number of genes differentially expressed in the AZs, especially genes encoding enzymes involved in cell wall remodelling and disassembly. Mutations in such genes rarely give a phenotype, most likely due to functional redundancy. In contrast, mutation in the INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) blocks floral organ abscission in Arabidopsis. IDA encodes a small peptide that signals through the leucine-rich repeat receptor-like kinases HAESA (HAE) and HAE-LIKE2 (HSL2) to control floral organ abscission and facilitate lateral root emergence. Untimely abscission is a severe problem in many crops, and in a more applied perspective, it is of interest to investigate whether IDA-HAE/HSL2 is involved in other cell separation processes and other species. Genes encoding IDA and HSL2 orthologues have been identified in all orders of flowering plants. Angiosperms have had enormous success, with species adapted to all kinds of environments, adaptations which include variation with respect to which organs they shed. Here we review, from an evolutionary perspective, the properties of the IDA-HAE/HSL2 signaling module and the evidence for its hypothesized involvement in various cell separation processes in angiosperms.
Collapse
Affiliation(s)
- Chun-Lin Shi
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Renate Marie Alling
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Marta Hammerstad
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Reidunn B Aalen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway.
| |
Collapse
|
35
|
Tranbarger TJ, Domonhédo H, Cazemajor M, Dubreuil C, Fischer U, Morcillo F. The PIP Peptide of INFLORESCENCE DEFICIENT IN ABSCISSION Enhances Populus Leaf and Elaeis guineensis Fruit Abscission. PLANTS (BASEL, SWITZERLAND) 2019; 8:E143. [PMID: 31151222 PMCID: PMC6630328 DOI: 10.3390/plants8060143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 01/18/2023]
Abstract
The programmed loss of a plant organ is called abscission, which is an important cell separation process that occurs with different organs throughout the life of a plant. The use of floral organ abscission in Arabidopsis thaliana as a model has allowed greater understanding of the complexities of organ abscission, but whether the regulatory pathways are conserved throughout the plant kingdom and for all organ abscission types is unknown. One important pathway that has attracted much attention involves a peptide ligand-receptor signalling system that consists of the secreted peptide IDA (INFLORESCENCE DEFICIENT IN ABSCISSION) and at least two leucine-rich repeat (LRR) receptor-like kinases (RLK), HAESA (HAE) and HAESA-LIKE2 (HSL2). In the current study we examine the bioactive potential of IDA peptides in two different abscission processes, leaf abscission in Populus and ripe fruit abscission in oil palm, and find in both cases treatment with IDA peptides enhances cell separation and abscission of both organ types. Our results provide evidence to suggest that the IDA-HAE-HSL2 pathway is conserved and functions in these phylogenetically divergent dicot and monocot species during both leaf and fruit abscission, respectively.
Collapse
Affiliation(s)
- Timothy John Tranbarger
- UMR DIADE, Institut de Recherche pour le Développement, Université de Montpellier, 34394 Montpellier, France.
- Ecology and Genetics Laboratory, Pontificia Universidad Católica del Ecuador (PUCE), 17-01-21-84 Quito, Ecuador.
| | | | - Michel Cazemajor
- CRAPP, INRAB, BP 1 Pobè, Benin.
- PalmElit SAS, F-34980 Montferrier-sur-Lez, France.
| | - Carole Dubreuil
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
- DRT DPACA, CEA Tech Cadarache, 13108 Saint Paul Lez Durance, France.
| | - Urs Fischer
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
- KWS SAAT SE, RD-BT, 37574 Einbeck, Germany.
| | | |
Collapse
|
36
|
Olsson V, Joos L, Zhu S, Gevaert K, Butenko MA, De Smet I. Look Closely, the Beautiful May Be Small: Precursor-Derived Peptides in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:153-186. [PMID: 30525926 DOI: 10.1146/annurev-arplant-042817-040413] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
During the past decade, a flurry of research focusing on the role of peptides as short- and long-distance signaling molecules in plant cell communication has been undertaken. Here, we focus on peptides derived from nonfunctional precursors, and we address several key questions regarding peptide signaling. We provide an overview of the regulatory steps involved in producing a biologically active peptide ligand that can bind its corresponding receptor(s) and discuss how this binding and subsequent activation lead to specific cellular outputs. We discuss different experimental approaches that can be used to match peptide ligands with their receptors. Lastly, we explore how peptides evolved from basic signaling units regulating essential processes in plants to more complex signaling systems as new adaptive traits developed and how nonplant organisms exploit this signaling machinery by producing peptide mimics.
Collapse
Affiliation(s)
- Vilde Olsson
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
| | - Lisa Joos
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Shanshuo Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Melinka A Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
37
|
Stührwohldt N, Schaller A. Regulation of plant peptide hormones and growth factors by post-translational modification. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:49-63. [PMID: 30047205 DOI: 10.1111/plb.12881] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/20/2018] [Indexed: 05/24/2023]
Abstract
The number, diversity and significance of peptides as regulators of cellular differentiation, growth, development and defence of plants has long been underestimated. Peptides have now emerged as an important class of signals for cell-to-cell communication over short distances, and also for long-range signalling. We refer to these signalling molecules as peptide growth factors and peptide hormones, respectively. As compared to remarkable progress with respect to the mechanisms of peptide perception and signal transduction, the biogenesis of signalling peptides is still in its infancy. This review focuses on the biogenesis and activity of small post-translationally modified peptides. These peptides are derived from inactive pre-pro-peptides of approximately 70-120 amino acids. Multiple post-translational modifications (PTMs) may be required for peptide maturation and activation, including proteolytic processing, tyrosine sulfation, proline hydroxylation and hydroxyproline glycosylation. While many of the enzymes responsible for these modifications have been identified, their impact on peptide activity and signalling is not fully understood. These PTMs may or may not be required for bioactivity, they may inactivate the peptide or modify its signalling specificity, they may affect peptide stability or targeting, or its binding affinity with the receptor. In the present review, we will first introduce the peptides that undergo PTMs and for which these PTMs were shown to be functionally relevant. We will then discuss the different types of PTMs and the impact they have on peptide activity and plant growth and development. We conclude with an outlook on the open questions that need to be addressed in future research.
Collapse
Affiliation(s)
- N Stührwohldt
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - A Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
38
|
Hazarika RR, Sostaric N, Sun Y, van Noort V. Large-scale docking predicts that sORF-encoded peptides may function through protein-peptide interactions in Arabidopsis thaliana. PLoS One 2018; 13:e0205179. [PMID: 30321192 PMCID: PMC6188750 DOI: 10.1371/journal.pone.0205179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023] Open
Abstract
Several recent studies indicate that small Open Reading Frames (sORFs) embedded within multiple eukaryotic non-coding RNAs can be translated into bioactive peptides of up to 100 amino acids in size. However, the functional roles of the 607 Stress Induced Peptides (SIPs) previously identified from 189 Transcriptionally Active Regions (TARs) in Arabidopsis thaliana remain unclear. To provide a starting point for functional annotation of these plant-derived peptides, we performed a large-scale prediction of peptide binding sites on protein surfaces using coarse-grained peptide docking. The docked models were subjected to further atomistic refinement and binding energy calculations. A total of 530 peptide-protein pairs were successfully docked. In cases where a peptide encoded by a TAR is predicted to bind at a known ligand or cofactor-binding site within the protein, it can be assumed that the peptide modulates the ligand or cofactor-binding. Moreover, we predict that several peptides bind at protein-protein interfaces, which could therefore regulate the formation of the respective complexes. Protein-peptide binding analysis further revealed that peptides employ both their backbone and side chain atoms when binding to the protein, forming predominantly hydrophobic interactions and hydrogen bonds. In this study, we have generated novel predictions on the potential protein-peptide interactions in A. thaliana, which will help in further experimental validation.
Collapse
Affiliation(s)
- Rashmi R. Hazarika
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Nikolina Sostaric
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Yifeng Sun
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Faculty of Engineering Technology, Campus Group T, KU Leuven, Leuven, Belgium
| | - Vera van Noort
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
39
|
Shi CL, von Wangenheim D, Herrmann U, Wildhagen M, Kulik I, Kopf A, Ishida T, Olsson V, Anker MK, Albert M, Butenko MA, Felix G, Sawa S, Claassen M, Friml J, Aalen RB. The dynamics of root cap sloughing in Arabidopsis is regulated by peptide signalling. NATURE PLANTS 2018; 4:596-604. [PMID: 30061750 DOI: 10.1038/s41477-018-0212-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
Abstract
The root cap protects the stem cell niche of angiosperm roots from damage. In Arabidopsis, lateral root cap (LRC) cells covering the meristematic zone are regularly lost through programmed cell death, while the outermost layer of the root cap covering the tip is repeatedly sloughed. Efficient coordination with stem cells producing new layers is needed to maintain a constant size of the cap. We present a signalling pair, the peptide IDA-LIKE1 (IDL1) and its receptor HAESA-LIKE2 (HSL2), mediating such communication. Live imaging over several days characterized this process from initial fractures in LRC cell files to full separation of a layer. Enhanced expression of IDL1 in the separating root cap layers resulted in increased frequency of sloughing, balanced with generation of new layers in a HSL2-dependent manner. Transcriptome analyses linked IDL1-HSL2 signalling to the transcription factors BEARSKIN1/2 and genes associated with programmed cell death. Mutations in either IDL1 or HSL2 slowed down cell division, maturation and separation. Thus, IDL1-HSL2 signalling potentiates dynamic regulation of the homeostatic balance between stem cell division and sloughing activity.
Collapse
Affiliation(s)
- Chun-Lin Shi
- Section of Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Daniel von Wangenheim
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Centre for Plant Integrative Biology, University of Nottingham, Loughborough, UK
| | - Ullrich Herrmann
- Section of Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
- Plant Developmental Biology and Plant Physiology, University of Kiel, Kiel, Germany
| | - Mari Wildhagen
- Section of Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ivan Kulik
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Andreas Kopf
- ETH Zurich, HPT E 73, Auguste-Piccard-Hof 1, Zürich, Switzerland
| | - Takashi Ishida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| | - Vilde Olsson
- Section of Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Mari Kristine Anker
- Section of Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Markus Albert
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Melinka A Butenko
- Section of Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Georg Felix
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Manfred Claassen
- ETH Zurich, HPT E 73, Auguste-Piccard-Hof 1, Zürich, Switzerland
| | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Reidunn B Aalen
- Section of Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
40
|
Kim J, Yang R, Chang C, Park Y, Tucker ML. The root-knot nematode Meloidogyne incognita produces a functional mimic of the Arabidopsis INFLORESCENCE DEFICIENT IN ABSCISSION signaling peptide. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3009-3021. [PMID: 29648636 PMCID: PMC5972575 DOI: 10.1093/jxb/ery135] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/27/2018] [Indexed: 05/12/2023]
Abstract
INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) is a signaling peptide that regulates cell separation in Arabidopsis including floral organ abscission and lateral root emergence. IDA is highly conserved in dicotyledonous flowering plant genomes. IDA-like sequences were also found in the genomic sequences of root-knot nematodes, Meloidogyne spp., which are globally deleterious pathogens of agriculturally important plants, but the role of these genes is unknown. Exogenous treatment of the Arabidopsis ida mutant with synthetic peptide identical to the M. incognita IDA-like 1 (MiIDL1) protein sequence minus its N-terminal signal peptide recovered both the abscission and root architecture defects. Constitutive expression of the full-length MiIDL1 open reading frame in the ida mutant substantially recovered the delayed floral organ abscission phenotype whereas transformants expressing a construct missing the MiIDL1 signal peptide retained the delayed abscission phenotype. Importantly, wild-type Arabidopsis plants harboring an MiIDL1-RNAi construct and infected with nematodes had approximately 40% fewer galls per root than control plants. Thus, the MiIDL1 gene produces a functional IDA mimic that appears to play a role in successful gall development on Arabidopsis roots.
Collapse
Affiliation(s)
- Joonyup Kim
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
- Department of Cell Biology and Molecular Genetics, Bioscience Research Bldg, University of Maryland, MD, USA
- Life and Industry Convergence Research Institute, Department of Horticulture Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Ronghui Yang
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, Bioscience Research Bldg, University of Maryland, MD, USA
| | - Younghoon Park
- Life and Industry Convergence Research Institute, Department of Horticulture Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Mark L Tucker
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
- Correspondence:
| |
Collapse
|
41
|
Liang X, Zhou JM. Receptor-Like Cytoplasmic Kinases: Central Players in Plant Receptor Kinase-Mediated Signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:267-299. [PMID: 29719165 DOI: 10.1146/annurev-arplant-042817-040540] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Receptor kinases (RKs) are of paramount importance in transmembrane signaling that governs plant reproduction, growth, development, and adaptation to diverse environmental conditions. Receptor-like cytoplasmic kinases (RLCKs), which lack extracellular ligand-binding domains, have emerged as a major class of signaling proteins that regulate plant cellular activities in response to biotic/abiotic stresses and endogenous extracellular signaling molecules. By associating with immune RKs, RLCKs regulate multiple downstream signaling nodes to orchestrate a complex array of defense responses against microbial pathogens. RLCKs also associate with RKs that perceive brassinosteroids and signaling peptides to coordinate growth, pollen tube guidance, embryonic and stomatal patterning, floral organ abscission, and abiotic stress responses. The activity and stability of RLCKs are dynamically regulated not only by RKs but also by other RLCK-associated proteins. Analyses of RLCK-associated components and substrates have suggested phosphorylation relays as a major mechanism underlying RK-mediated signaling.
Collapse
Affiliation(s)
- Xiangxiu Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, 100101 Beijing, China;
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, 100101 Beijing, China;
| |
Collapse
|
42
|
Liu S, Zhang C, Chao N, Lu J, Zhang Y. Cloning, Characterization, and Functional Investigation of VaHAESA from Vitis amurensis Inoculated with Plasmopara viticola. Int J Mol Sci 2018; 19:E1204. [PMID: 29659493 PMCID: PMC5979312 DOI: 10.3390/ijms19041204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 03/26/2018] [Accepted: 04/06/2018] [Indexed: 12/14/2022] Open
Abstract
Plant pattern recognition receptors (PRRs) are essential for immune responses and establishing symbiosis. Plants detect invaders via the recognition of pathogen-associated molecular patterns (PAMPs) by PRRs. This phenomenon is termed PAMP-triggered immunity (PTI). We investigated disease resistance in Vitis amurensis to identify PRRs that are important for resistance against downy mildew, analyzed the PRRs that were upregulated by incompatible Plasmopara viticola infection, and cloned the full-length cDNA of the VaHAESA gene. We then analyzed the structure, subcellular localization, and relative disease resistance of VaHAESA. VaHAESA and PRR-receptor-like kinase 5 (RLK5) are highly similar, belonging to the leucine-rich repeat (LRR)-RLK family and localizing to the plasma membrane. The expression of PRR genes changed after the inoculation of V. amurensis with compatible and incompatible P. viticola; during early disease development, transiently transformed V. vinifera plants expressing VaHAESA were more resistant to pathogens than those transformed with the empty vector and untransformed controls, potentially due to increased H₂O₂, NO, and callose levels in the transformants. Furthermore, transgenic Arabidopsis thaliana showed upregulated expression of genes related to the PTI pathway and improved disease resistance. These results show that VaHAESA is a positive regulator of resistance against downy mildew in grapevines.
Collapse
Affiliation(s)
- Shaoli Liu
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Chi Zhang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Nan Chao
- Center for Plant Biology, TSinghua University, Beijing 100084, China.
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200024, China.
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Yali Zhang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
43
|
Qi H, Niu L, Zhang J, Chen J, Wang S, Yang J, Guo S, Lawson T, Shi B, Song C. Large-area gold nanohole arrays fabricated by one-step method for surface plasmon resonance biochemical sensing. SCIENCE CHINA-LIFE SCIENCES 2018; 61:476-482. [DOI: 10.1007/s11427-017-9270-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022]
|
44
|
Wang L, Einig E, Almeida-Trapp M, Albert M, Fliegmann J, Mithöfer A, Kalbacher H, Felix G. The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects. NATURE PLANTS 2018; 4:152-156. [PMID: 29459726 DOI: 10.1038/s41477-018-0106-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/10/2018] [Indexed: 05/18/2023]
Abstract
The discovery in tomato of systemin, the first plant peptide hormone1,2, was a fundamental change for the concept of plant hormones. Numerous other peptides have since been shown to play regulatory roles in many aspects of the plant life, including growth, development, fertilization and interactions with symbiotic organisms3-6. Systemin, an 18 amino acid peptide derived from a larger precursor protein 7 , was proposed to act as the spreading signal that triggers systemic defence responses observed in plants after wounding or attack by herbivores1,7,8. Further work culminated in the identification of a leucine-rich repeat receptor kinase (LRR-RK) as the systemin receptor 160 (SR160)9,10. SR160 is a tomato homologue of Brassinosteroid Insensitive 1 (BRI1), which mediates the regulation of growth and development in response to the steroid hormone brassinolide11-13. However, a role of SR160/BRI1 as systemin receptor could not be corroborated by others14-16. Here, we demonstrate that perception of systemin depends on a pair of distinct LRR-RKs termed SYR1 and SYR2. SYR1 acts as a genuine systemin receptor that binds systemin with high affinity and specificity. Further, we show that presence of SYR1, although not decisive for local and systemic wound responses, is important for defence against insect herbivory.
Collapse
Affiliation(s)
- Lei Wang
- The Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Elias Einig
- The Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | | | - Markus Albert
- The Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Judith Fliegmann
- The Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Axel Mithöfer
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Georg Felix
- The Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
45
|
Campos WF, Dressano K, Ceciliato PHO, Guerrero-Abad JC, Silva AL, Fiori CS, Morato do Canto A, Bergonci T, Claus LAN, Silva-Filho MC, Moura DS. Arabidopsis thaliana rapid alkalinization factor 1-mediated root growth inhibition is dependent on calmodulin-like protein 38. J Biol Chem 2018; 293:2159-2171. [PMID: 29282286 PMCID: PMC5808775 DOI: 10.1074/jbc.m117.808881] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/09/2017] [Indexed: 11/06/2022] Open
Abstract
Arabidopsis thaliana rapid alkalinization factor 1 (AtRALF1) is a small secreted peptide hormone that inhibits root growth by repressing cell expansion. Although it is known that AtRALF1 binds the plasma membrane receptor FERONIA and conveys its signals via phosphorylation, the AtRALF1 signaling pathway is largely unknown. Here, using a yeast two-hybrid system to search for AtRALF1-interacting proteins in Arabidopsis, we identified calmodulin-like protein 38 (CML38) as an AtRALF1-interacting partner. We also found that CML38 and AtRALF1 are both secreted proteins that physically interact in a Ca2+- and pH-dependent manner. CML38-knockout mutants generated via T-DNA insertion were insensitive to AtRALF1, and simultaneous treatment with both AtRALF1 and CML38 proteins restored sensitivity in these mutants. Hybrid plants lacking CML38 and having high accumulation of the AtRALF1 peptide did not exhibit the characteristic short-root phenotype caused by AtRALF1 overexpression. Although CML38 was essential for AtRALF1-mediated root inhibition, it appeared not to have an effect on the AtRALF1-induced alkalinization response. Moreover, acridinium-labeling of AtRALF1 indicated that the binding of AtRALF1 to intact roots is CML38-dependent. In summary, we describe a new component of the AtRALF1 response pathway. The new component is a calmodulin-like protein that binds AtRALF1, is essential for root growth inhibition, and has no role in AtRALF1 alkalinization.
Collapse
Affiliation(s)
- Wellington F Campos
- From the Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, 13418-900 and
| | - Keini Dressano
- From the Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, 13418-900 and
| | - Paulo H O Ceciliato
- From the Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, 13418-900 and
| | - Juan Carlos Guerrero-Abad
- From the Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, 13418-900 and
| | - Aparecida Leonir Silva
- From the Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, 13418-900 and
| | - Celso S Fiori
- From the Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, 13418-900 and
| | - Amanda Morato do Canto
- From the Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, 13418-900 and
| | - Tábata Bergonci
- From the Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, 13418-900 and
| | - Lucas A N Claus
- From the Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, 13418-900 and
| | - Marcio C Silva-Filho
- the Laboratório de Biologia Molecular de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, 13418-900, Brazil
| | - Daniel S Moura
- From the Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, 13418-900 and
| |
Collapse
|
46
|
Muschietti JP, Wengier DL. How many receptor-like kinases are required to operate a pollen tube. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:73-82. [PMID: 28992536 DOI: 10.1016/j.pbi.2017.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 05/29/2023]
Abstract
Successful fertilization depends on active molecular dialogues that the male gametophyte can establish with the pistil and the female gametophyte. Pollen grains and stigmas must recognize each other; pollen tubes need to identify the pistil tissues they will penetrate, follow positional cues to exit the transmitting tract and finally, locate the ovules. These molecular dialogues directly affect pollen tube growth rate and orientation. Receptor-like kinases (RLKs) are natural candidates for the perception and decoding of extracellular signals and their transduction to downstream cytoplasmic interactors. Here, we update knowledge regarding how RLKs are involved in pollen tube growth, cell wall integrity and guidance. In addition, we use public data to build a pollen tube RLK interactome that might help direct experiments to elucidate the function of pollen RLKs and their associated proteins.
Collapse
Affiliation(s)
- Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Güiraldes 2160, Ciudad Universitaria, Pabellón II, Buenos Aires C1428EGA, Argentina.
| | - Diego L Wengier
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina.
| |
Collapse
|
47
|
Abstract
Plant peptides secreted as signal molecular to trigger cell-to-cell signaling are indispensable for plant growth and defense processes. Preciously, it is regraded some plant peptides function in plant growth and development, whereas others regulate defense response in plant-microbe interactions. However, this prejudice is got rid due to more and more evidence showed growth-related plant peptides also exhibit bifunctional roles in plant defense response against different microbial pathogens. Here we provide a mini-review of reported types of plant peptides, including their basic information, reported receptor ligands, and especially direct or indirect roles in plant immune responses.
Collapse
Affiliation(s)
- Z. Hu
- Department of Horticulture, Zhejiang University, Hangzhou, P.R. China
| | - H. Zhang
- Department of Horticulture, Zhejiang University, Hangzhou, P.R. China
| | - K. Shi
- Department of Horticulture, Zhejiang University, Hangzhou, P.R. China
- CONTACT Kai Shi Department of Horticulture, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
48
|
Stührwohldt N, Hohl M, Schardon K, Stintzi A, Schaller A. Post-translational maturation of IDA, a peptide signal controlling floral organ abscission in Arabidopsis. Commun Integr Biol 2017. [PMCID: PMC5824936 DOI: 10.1080/19420889.2017.1395119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The abscission of sepals, petals and stamens in Arabidopsis flowers is controlled by a peptide signal called IDA (Inflorescence Deficient in Abscission). IDA belongs to the large group of small post-translationally modified signaling peptides that are synthesized as larger precursors and require proteolytic processing and specific side chain modifications for signal biogenesis. Using tissue-specific expression of proteinase inhibitors as a novel approach for loss-of-function analysis, we recently identified the peptidases responsible for IDA maturation within the large family of subtilisin-like proteinases (subtilases; SBTs). Further biochemical and physiological assays identified three SBTs (AtSBT5.2, AtSBT4.12, AtSBT4.13) that cleave the IDA precursor to generate the N-terminus of the mature peptide. The C-terminal processing enzyme(s) remain(s) to be identified. While proline hydroxylation was suggested as additional post-translational modification required for IDA maturation, hydroxylated and non-hydroxylated IDA peptides were found to be equally active in bioassays for abscission.
Collapse
Affiliation(s)
- Nils Stührwohldt
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Mathias Hohl
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Katharina Schardon
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
49
|
Hind SR, Hoki JS, Baccile JA, Boyle PC, Schroeder FC, Martin GB. Detecting the interaction of peptide ligands with plant membrane receptors. ACTA ACUST UNITED AC 2017; 2:240-269. [PMID: 29098191 DOI: 10.1002/cppb.20053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The field of plant receptor biology has rapidly expanded in recent years, however the demonstration of direct interaction between receptor-ligand pairs remains a challenge. Click chemistry has revolutionized small molecule research but lacks popularity in plant research. Here we describe a method that tests for the direct physical interaction of a candidate receptor protein and a peptide ligand. This protocol describes the generation of the ligand probe, transient expression of a receptor protein, enrichment of membrane-bound receptors, photo-crosslinking and click chemistry-mediated reporter addition, and detection of the receptor-ligand complex. Copper-based click chemistry confers several advantages, including the versatility to use almost any azide-containing reporter molecule for detection or visualization of the complex and addition of the reporter molecule after receptor-ligand binding which reduces the need for bulky ligand modifications that could interfere with the interaction.
Collapse
Affiliation(s)
| | - Jason S Hoki
- Boyce Thompson Institute, Ithaca, New York.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Joshua A Baccile
- Boyce Thompson Institute, Ithaca, New York.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | | | - Frank C Schroeder
- Boyce Thompson Institute, Ithaca, New York.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Gregory B Martin
- Boyce Thompson Institute, Ithaca, New York.,School of Integrative Plant Science, Cornell University, Ithaca, New York
| |
Collapse
|
50
|
Patel N, Mohd-Radzman NA, Corcilius L, Crossett B, Connolly A, Cordwell SJ, Ivanovici A, Taylor K, Williams J, Binos S, Mariani M, Payne RJ, Djordjevic MA. Diverse Peptide Hormones Affecting Root Growth Identified in the Medicago truncatula Secreted Peptidome. Mol Cell Proteomics 2017; 17:160-174. [PMID: 29079721 DOI: 10.1074/mcp.ra117.000168] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
Multigene families encoding diverse secreted peptide hormones play important roles in plant development. A need exists to efficiently elucidate the structures and post-translational-modifications of these difficult-to-isolate peptide hormones in planta so that their biological functions can be determined. A mass spectrometry and bioinformatics approach was developed to comprehensively analyze the secreted peptidome of Medicago hairy root cultures and xylem sap. We identified 759 spectra corresponding to the secreted products of twelve peptide hormones including four CEP (C-TERMINALLY ENCODED PEPTIDE), two CLE (CLV3/ENDOSPERM SURROUNDING REGION RELATED) and six XAP (XYLEM SAP ASSOCIATED PEPTIDE) peptides. The MtCEP1, MtCEP2, MtCEP5 and MtCEP8 peptides identified differed in post-translational-modifications. Most were hydroxylated at conserved proline residues but some MtCEP1 derivatives were tri-arabinosylated. In addition, many CEP peptides possessed unexpected N- and C-terminal extensions. The pattern of these extensions suggested roles for endo- and exoproteases in CEP peptide maturation. Longer than expected, hydroxylated and homogeneously modified mono- and tri-arabinosylated CEP peptides corresponding to their in vivo structures were chemically synthesized to probe the effect of these post-translational-modifications on function. The ability of CEP peptides to elevate root nodule number was increased by hydroxylation at key positions. MtCEP1 peptides with N-terminal extensions or with tri-arabinosylation modification, however, were unable to impart increased nodulation. The MtCLE5 and MtCLE17 peptides identified were of precise size, and inhibited main root growth and increased lateral root number. Six XAP peptides, each beginning with a conserved DY sulfation motif, were identified including MtXAP1a, MtXAP1b, MtXAP1c, MtXAP3, MtXAP5 and MtXAP7. MtXAP1a and MtXAP5 inhibited lateral root emergence. Transcriptional analyses demonstrated peptide hormone gene expression in the root vasculature and tip. Since hairy roots can be induced on many plants, their corresponding root cultures may represent ideal source materials to efficiently identify diverse peptide hormones in vivo in a broad range of species.
Collapse
Affiliation(s)
- Neha Patel
- From the ‡Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia
| | - Nadiatul A Mohd-Radzman
- From the ‡Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia
| | - Leo Corcilius
- §School of Chemistry, The University of Sydney, Sydney, Australia
| | - Ben Crossett
- ¶Sydney Mass Spectrometry, The University of Sydney, Sydney, Australia
| | - Angela Connolly
- ¶Sydney Mass Spectrometry, The University of Sydney, Sydney, Australia
| | - Stuart J Cordwell
- ¶Sydney Mass Spectrometry, The University of Sydney, Sydney, Australia.,‖Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Australia
| | - Ariel Ivanovici
- From the ‡Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia
| | - Katia Taylor
- From the ‡Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia
| | - James Williams
- §School of Chemistry, The University of Sydney, Sydney, Australia
| | - Steve Binos
- **Thermo Fisher Scientific Pty. Ltd., 5 Caribbean Drive, Scoresby, VIC 3179, Australia
| | - Michael Mariani
- **Thermo Fisher Scientific Pty. Ltd., 5 Caribbean Drive, Scoresby, VIC 3179, Australia
| | - Richard J Payne
- §School of Chemistry, The University of Sydney, Sydney, Australia
| | - Michael A Djordjevic
- From the ‡Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia;
| |
Collapse
|