1
|
You J, Li M, Kong X, Hou Q, Li H, Li B, Zhou Q, Zhou R. Differences in homologous and heterologous nucleocytoplasmic interactions of cytoplasmic male sterility lines in Gossypium barbadense. Sci Rep 2025; 15:12498. [PMID: 40216878 PMCID: PMC11992020 DOI: 10.1038/s41598-025-95027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
The utilization of crop hybrids plays an important role in crop breeding and production, and the innovation of the male sterile germplasm is the basis for this utilization. Cotton has a very clear hybrid advantage, and the hybrid advantage in yield and quality has been widely utilized in cotton breeding. However, the exploitation of heterosis in cotton is currently dominated by cytoplasmic male sterility (CMS) lines. These CMS lines are found only in Harknessi cotton. They have a single cytoplasmic origin. Additionally, they exhibit a significant negative effect of cytoplasmic-nuclear interactions. To minimize this effect, it is necessary to select and breed CMS lines. In these CMS lines, both the cytoplasm and nucleus should originate from the same variety. However, no homologous cytoplasmic-nuclear CMS germplasm has been created, and its mechanism of occurrence has not been determined. In this study, two homologous cytoplasmic-nuclear CMS lines and two heterologous cytoplasmic-nuclear CMS lines were utilized, and the heterologous cytoplasmic-nuclear CMS lines were aborted at a relatively early stage. The physiological indexes related to reactive oxygen species ROS-mediated metabolic processes in the heterologous cytoplasmic-nuclear CMS lines were lower than those of the homologous cytoplasmic-nuclear CMS lines, including the enzyme activities of POD and CAT from tetrad to mature pollen grain, and the metabolite content of malondialdehyde (MDA) was inversely correlated with the enzyme activities of the heterologous cytoplasmic-nuclear CMS lines. Resequencing analysis of four cotton mitochondrial genomes (mt genomes) revealed that the heterologous cytoplasmic-nuclear CMS lines were more complex than the homologous cytoplasmic-nuclear CMS lines, and the homologous CMS lines showed a higher degree of collinearity with the maintainer lines. This indicates that heterologous cytoplasmic-nuclear interactions are more likely to lead to mtDNA structural variation. Taken together, the results showed that the cytoplasmic-nuclear homologous system was less affected by the cytoplasmic-nuclear interaction and was the best combination for the study of male sterility.
Collapse
Affiliation(s)
- Jingyi You
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530006, China
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Min Li
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| | - Xiangjun Kong
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Qingguang Hou
- Hechi Institute of Agricultural Sciences/Guangxi Academy of Agricultural Sciences Hechi Branch, Hechi, 546306, Guangxi, China
| | - Hongwei Li
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, 422000, China
| | - Bin Li
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530006, China
| | - Qiong Zhou
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530006, China.
| | - Ruiyang Zhou
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530006, China.
| |
Collapse
|
2
|
Gao S, Li J, Zeng Y, Li H, Guo Z, Guo H, Zhang M, Gu Y, Su R, Ye W, Zou A, Sun X, Zhang Z, Zhang H, Guo Y, Ma W, Yuan P, Li Z, Li J. CTB6 Confers Cold Tolerance at the Booting Stage by Maintaining Tapetum Development in Rice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411357. [PMID: 39840555 PMCID: PMC11905004 DOI: 10.1002/advs.202411357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/28/2024] [Indexed: 01/23/2025]
Abstract
Rice is highly sensitive to cold stress, particularly at the booting stage, which significantly threatens rice production. In this study, we cloned a gene, CTB6, encoding a lipid transfer protein involved in cold tolerance at the booting stage in rice, based on our previous fine-mapped quantitative trait locus (QTL) qCTB10-2. CTB6 is mainly expressed in the tapetum and young microspores of the anther. CTB6 interacts with catalases (CATs) to maintain their stability, thereby scavenging reactive oxygen species (ROS) accumulation in anthers and facilitating tapetum development under cold stress conditions. Additionally, CTB6 has lipid-binding ability and affects the lipid content in anthers to regulate cold tolerance at the booting stage. Haplotype analysis and promoter activity assay revealed a specific single nucleotide polymorphism (SNP)-489 variation in the promoter of CTB6, which enhances its expression and results in improved cold tolerance in Hap1-K varieties. The CTB6 near-isogenic line (NIL) exhibited enhanced cold tolerance at the booting stage, with no significant effects on other agronomic traits. Our findings uncover a natural variation of CTB6 for cold tolerance at the booting stage and provide new genetic resources for cold tolerance breeding in rice.
Collapse
Affiliation(s)
- Shilei Gao
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jin Li
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Huahui Li
- Institute of Food Crop Research, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Zhenhua Guo
- Rice Research Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154026, China
| | - Haifeng Guo
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Meng Zhang
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yunsong Gu
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Runbin Su
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wei Ye
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Andong Zou
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xingming Sun
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhanying Zhang
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hongliang Zhang
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yongmei Guo
- Institute of Food Crop Research, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Wendong Ma
- Rice Research Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154026, China
| | - Pingrong Yuan
- Institute of Food Crop Research, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Zichao Li
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinjie Li
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
3
|
Qi X, Jin W, Zhong W, Han J, Afzal M, Yue Q, Wang G, Jan M. Evaluating Physiological and Hormonal Responses of Two Distinct Rice Genotypes Under High Temperatures. PLANTS (BASEL, SWITZERLAND) 2025; 14:710. [PMID: 40094603 PMCID: PMC11901512 DOI: 10.3390/plants14050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Climate change poses a major threat to rice productivity, particularly due to high-temperature stress during anthesis, which severely impacts the grain yield. Understanding the physiological and biochemical responses of different rice genotypes to high-temperature stress is critical for breeding resilient varieties. In this study, we assessed two contrasting rice genotypes, high-temperature-tolerant-1 (HTR-1) and high-temperature-sensitive (HTS-5), to confirm previously established physiological and hormonal mechanisms associated with high-temperature tolerance. The study evaluated morphological, physiological, and biochemical markers at the anthesis stage under control (29/24 °C) and high-temperature stress (38 °C for six hours) conditions. Our results confirmed that HTR-1 exhibits superior tolerance through better antioxidant enzyme activity, higher anther dehiscence, and lower oxidative damage. The genotype HTS-5 exhibited a substantial rise in hydrogen peroxide (1.9-fold) and malondialdehyde (1.74-fold) levels, accompanied by the reduced activity of antioxidant enzymes. Furthermore, the high transcript level of cytosolic APX (OsAPX1, OsAPX2), peroxisomal APX (OsAPX3 and OsAPX4), OsCATA, and OsCATB confirmed high antioxidant activity in HTR-1. Moreover, the GA and IAA levels were reduced in both genotypes, while the ABA concentration was increased significantly in the anthers of HTS-5 as compared to those of HTR-1. This suggests that higher ABA production, along with higher reactive oxygen species (ROS) in the anthers, could lead to sterility in rice under high-temperature scenarios. These findings confirmed HTR-1 as a promising genetic resource for breeding heat-tolerant rice, by validating physiological and biochemical mechanisms of high-temperature resilience. This study also provides practical insights for selecting suitable genotypes to improve rice production under the challenges of climate change.
Collapse
Affiliation(s)
- Xiaoyu Qi
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Q.); (M.A.); (G.W.)
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Weicai Jin
- College of Agriculture, South China Agriculture University, Guangzhou 510642, China; (W.J.); (W.Z.); (J.H.)
| | - Wenhao Zhong
- College of Agriculture, South China Agriculture University, Guangzhou 510642, China; (W.J.); (W.Z.); (J.H.)
| | - Jiatong Han
- College of Agriculture, South China Agriculture University, Guangzhou 510642, China; (W.J.); (W.Z.); (J.H.)
| | - Muhammad Afzal
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Q.); (M.A.); (G.W.)
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Qiang Yue
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Guoping Wang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Q.); (M.A.); (G.W.)
| | - Mehmood Jan
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Q.); (M.A.); (G.W.)
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
- College of Agriculture, South China Agriculture University, Guangzhou 510642, China; (W.J.); (W.Z.); (J.H.)
| |
Collapse
|
4
|
Ma J, Ren W, Jiang S, Kong L, Ma L, He J, Wang D, Liu W, Ma W, Liu X. Identification and expression analysis of the RBOH gene family of Isatis indigotica Fort. and the potential regulation mechanism of RBOH gene on H 2O 2 under salt stress. PLANT CELL REPORTS 2025; 44:52. [PMID: 39934507 DOI: 10.1007/s00299-025-03442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
KEY MESSAGE RBOH gene may regulate the resistance of Isatis indigotica Fort. to salt stress by mediating the production of H2O2. RBOH gene plays an important role in plant growth and development, abiotic and biotic stress response, and hormone signalling. However, studies on RBOH gene expression and molecular mechanism of Isatis indigotica Fort. under salt stress have not been reported. This study identified 10 genes of the I. indigotica RBOH gene family (IiRBOH) and divided them into five subfamilies (I-V). Genes within the same class show conserved structural features and similar amino acid sequences. Analysis of CRE suggested that IiRBOH genes might play roles in growth and development, metabolism, hormone regulation, and stress response. Two physiological indicators of I. indigotica treated with salt for different days were detected. It was found that the content of H2O2 in the I. indigotica tissue first increased, then decreased and increased again. The catalase activity also showed a trend of first increasing and then decreasing. The qRT-PCR results showed that these IiRBOH genes showed different expression patterns in response to salt stress, and some of these genes may be involved in the resistance of I. indigotica to salt stress. Through RT-PCR analysis and screening on the PlantCARE website, it was found that IiRBOHA and IiRBOHC not only possess W-box CRE but also exhibit high expression under salt stress. Y1H experiments were conducted with the WRKY genes predicted by phylogenetic analysis to regulate salt stress potentially, and it was discovered that IiWRKY6 and IiWRKY54 can directly activate the transcription of the IiRBOHA gene promoter. This study preliminarily explored the mechanism by which the RBOH gene in I. indigotica mediates H2O2 to resist salt stress, thus laying a foundation for further research on the biological functions of the RBOH gene in I. indigotica.
Collapse
Affiliation(s)
- Junbai Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping Road, Harbin, 150040, China
| | - Weichao Ren
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping Road, Harbin, 150040, China
| | - Shan Jiang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping Road, Harbin, 150040, China
| | - Lingyang Kong
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping Road, Harbin, 150040, China
| | - Lengleng Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping Road, Harbin, 150040, China
| | - Jiajun He
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping Road, Harbin, 150040, China
| | - Danli Wang
- Yichun Branch of Heilongjiang Academy of Forestry, Xinxing West Road, YiChun, 153000, China
| | - Weili Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping Road, Harbin, 150040, China.
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping Road, Harbin, 150040, China.
| | - Xiubo Liu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Guanghua Street, Jiamusi, 154007, China.
| |
Collapse
|
5
|
Xiao L, Zhang J, Guo S, Jin H, Ouyang Q, Long X, Yan Z, Tian E. Exploration of the molecular mechanism behind a novel natural genic male-sterile mutation of 1205A in Brassica napus. BMC PLANT BIOLOGY 2025; 25:142. [PMID: 39901064 PMCID: PMC11789325 DOI: 10.1186/s12870-025-06150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/22/2025] [Indexed: 02/05/2025]
Abstract
The use of a male sterility hybrid seed production system has resulted in a significant increase in rapeseed yields by over 20%. Nevertheless, the mechanisms underlying male sterility remain largely unexamined. This study presents a spontaneous recessive genic male-sterile (RGMS) mutant of 1205A, which was employed to establish two two-line hybrid production systems: 1205AB and NT7G132AB. Cytological investigations reveal that the mutation occurs at the early microspore stage, resulting in premature degradation of pollen. Through inheritance analysis, linkage mapping, and bulked-segregant analysis sequencing (BSA-Seq), a single gene locus, designated Bna1205ams1, was identified within the QTL region on chrC03 (15.36-18.90 Mb). The development of three newly co-segregated kompetitive allele-specific PCR (KASP) markers, in conjunction with two traditional co-segregated markers, allowed for the refinement of the QTL of Bna1205ams1 to a segment of 181.47 kb. This refinement facilitated the identification of a candidate gene, BnaC03g27700D, through functional and expression analyses. Furthermore, the subcellular localization of BnaC03g27700D was examined. Metabolic fluctuations associated with the fertility gene were observed, particularly in processes related to aborted tapetal programmed cell death (PCD), which may contribute to reduced pollen fertility with abnormal pollen exine. A strong correlation was also established between BnaC03g27700D and thirteen metabolites. This study not only offers valuable insights into the research and practical application of plant male sterility but also serves as a case study on the genetic regulatory mechanisms governing male sterility.
Collapse
Affiliation(s)
- Lijing Xiao
- Agricultural College of Guizhou University, Guizhou University, Guiyang, 550025, China
| | - Jinze Zhang
- Agricultural College of Guizhou University, Guizhou University, Guiyang, 550025, China
| | - Shaomin Guo
- Rapeseed Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550081, China
| | - Hairun Jin
- Agricultural College of Guizhou University, Guizhou University, Guiyang, 550025, China
| | - Qingjing Ouyang
- Agricultural College of Guizhou University, Guizhou University, Guiyang, 550025, China
| | - Xu Long
- Agricultural College of Guizhou University, Guizhou University, Guiyang, 550025, China
| | - Zhongbin Yan
- Agricultural College of Guizhou University, Guizhou University, Guiyang, 550025, China
| | - Entang Tian
- Agricultural College of Guizhou University, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
6
|
Ma Y, Zhao S, Ma X, Dong G, Liu C, Ding Y, Hou B. A high temperature responsive UDP-glucosyltransferase gene OsUGT72F1 enhances heat tolerance in rice and Arabidopsis. PLANT CELL REPORTS 2025; 44:48. [PMID: 39900733 DOI: 10.1007/s00299-025-03438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/18/2025] [Indexed: 02/05/2025]
Abstract
KEY MESSAGE OsUGT72F1 enhances heat tolerance in plants by improving ROS scavenging and modifying multiple metabolic pathways, under the regulation of transcription factors OsHSFA3 and OsHSFA4a. High temperature is one of the most critical environmental constraints affecting plant growth and development, ultimately leading to yield losses in crops such as rice (Oryza sativa L.). UDP (uridine diphosphate)-dependent glycosyltransferases (UGTs) are believed to play crucial roles in coping with environmental stresses. However, the functions for the vast majority of UGTs under high temperature stress remain largely unknown. In this study, we isolated and characterized a high temperature responsive UDP-glycosyltransferase gene OsUGT72F1 in rice. Our findings demonstrated that overexpression of OsUGT72F1 enhanced heat-stress tolerance, while the mutant plants displayed a sensitive phenotype under the same stress conditions. Ectopic expression of OsUGT72F1 in Arabidopsis thaliana also conferred improved heat tolerance to the plants. Further investigation revealed that OsUGT72F1 reduced the generation of reactive oxygen species (ROS) and boosted the activity of antioxidant enzymes, thereby alleviating oxidative damage under heat-stress conditions. Moreover, transcriptomic analysis indicated that the action of OsUGT72F1 leads to the upregulation of multiple metabolic pathways including phenylpropanoid biosynthesis, zeatin biosynthesis, and flavonoid biosynthesis. In addition, the upstream regulatory mechanism of the OsUGT72F1 gene has been identified. We found that the transcription factors OsHSFA3 and OsHSFA4a can bind to the OsUGT72F1 promoter and enhance its transcription level. Together, this study revealed that the glycosyltransferase gene OsUGT72F1 plays a vital role in the adaptive adjustment of high temperature stress in plants, revealing a new heat tolerance pathway and providing a promising gene candidate for the breeding of heat-resistant crop varieties.
Collapse
Affiliation(s)
- Yuqing Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shuman Zhao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xinmei Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Guangrui Dong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chonglin Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yi Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Bingkai Hou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
7
|
Wang N, Li X, Zhu J, Yang ZN. Molecular and cellular mechanisms of photoperiod- and thermo-sensitive genic male sterility in plants. MOLECULAR PLANT 2025; 18:26-41. [PMID: 39702966 DOI: 10.1016/j.molp.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Photoperiod- and thermo-sensitive genic male sterile (P/TGMS) lines display male sterility under high-temperature/long-day light conditions and male fertility under low-temperature/short-day light conditions. P/TGMS lines are the fundamental basis for the two-line hybrid breeding, which has notably increased the yield potential and grain quality of rice cultivars. In this review, we focus on the research progress on photoperiod- and thermo-sensitive genic male sterility in plants. The essence of P/TGMS line is their ability to produce viable pollen under varying conditions. We overview the processes involved in anther and pollen development, as well as the molecular, cellular, and genetic mechanisms underlying P/TGMS in Arabidopsis, rice, and other crops. Slow development has been identified as a common mechanism of P/TGMS fertility restoration in both Arabidopsis and rice, while reactive oxygen species homeostasis has been implicated in rice P/TGMS. Furthermore, we discuss the prospective applications of P/TGMS and potential solutions to the challenges in this field. This review deepens the understanding of the mechanisms underlying P/TGMS and its utilization in two-line hybrid breeding across diverse crops.
Collapse
Affiliation(s)
- Na Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiang Li
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jun Zhu
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
8
|
Zhang S, An X, Jiang Y, Hou Q, Ma B, Jiang Q, Zhang K, Zhao L, Wan X. Plastid-localized ZmENR1/ZmHAD1 complex ensures maize pollen and anther development through regulating lipid and ROS metabolism. Nat Commun 2024; 15:10857. [PMID: 39738019 DOI: 10.1038/s41467-024-55208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Lipid metabolism is critical for male reproduction in plants. Many lipid-metabolic genic male-sterility (GMS) genes function in the anther tapetal endoplasmic reticulum, while little is known about GMS genes involved in de novo fatty acid biosynthesis in the anther tapetal plastid. In this study, we identify a maize male-sterile mutant, enr1, with early tapetal degradation, defective anther cuticle, and pollen exine. Using genetic mapping, we clone a key GMS gene, ZmENR1, which encodes a plastid-localized enoyl-acyl carrier protein (ACP) reductase. ZmENR1 interacts with β-hydroxyacyl-ACP dehydratase (ZmHAD1) to enhance the efficiency of de novo fatty acid biosynthesis. Furthermore, the ZmENR1/ZmHAD1 complex is regulated by a Maize Male Sterility 1 (ZmMS1)-mediated feedback repression loop to ensure anther cuticle and pollen exine formation by affecting the expression of cutin/wax- and sporopollenin-related genes. Intriguingly, homologous genes of ENR1 from rice and Arabidopsis also regulate male fertility, suggesting that the ENR1-mediated pathway likely represents a conserved regulatory mechanism underlying male reproduction in flowering plants.
Collapse
Affiliation(s)
- Shaowei Zhang
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
| | - Xueli An
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Yilin Jiang
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
| | - Quancan Hou
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
| | - Bin Ma
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
| | - Qingping Jiang
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
| | - Kai Zhang
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
| | - Lina Zhao
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China.
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China.
| |
Collapse
|
9
|
Renzetti M, Funck D, Trovato M. Proline and ROS: A Unified Mechanism in Plant Development and Stress Response? PLANTS (BASEL, SWITZERLAND) 2024; 14:2. [PMID: 39795262 PMCID: PMC11723217 DOI: 10.3390/plants14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025]
Abstract
The proteinogenic amino acid proline plays crucial roles in both plant development and stress responses, far exceeding its role in protein synthesis. However, the molecular mechanisms and the relative importance of these additional functions of proline remain under study. It is well documented that both stress responses and developmental processes are associated with proline accumulation. Under stress conditions, proline is believed to confer stress tolerance, while under physiological conditions, it assists in developmental processes, particularly during the reproductive phase. Due to proline's properties as a compatible osmolyte and potential reactive oxygen species (ROS) scavenger, most of its beneficial effects have historically been attributed to the physicochemical consequences of its accumulation in plants. However, emerging evidence points to proline metabolism as the primary driver of these beneficial effects. Recent reports have shown that proline metabolism, in addition to supporting reproductive development, can modulate root meristem size by controlling ROS accumulation and distribution in the root meristem. The dynamic interplay between proline and ROS highlights a sophisticated regulatory network essential for plant resilience and survival. This fine-tuning mechanism, enabled by the pro-oxidant and antioxidant properties of compartmentalized proline metabolism, can modulate redox balance and ROS homeostasis, potentially explaining many of the multiple roles attributed to proline. This review uniquely integrates recent findings on the dual role of proline in both ROS scavenging and signaling, provides an updated overview of the most recent research published to date, and proposes a unified mechanism that could account for many of the multiple roles assigned to proline in plant development and stress defense. By focusing on the interplay between proline and ROS, we aim to provide a comprehensive understanding of this proposed mechanism and highlight the potential applications in improving crop resilience to environmental stress. Additionally, we address current gaps in understanding and suggest future research directions to further elucidate the complex roles of proline in plant biology.
Collapse
Affiliation(s)
- Marco Renzetti
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy;
| | - Dietmar Funck
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany;
| | - Maurizio Trovato
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
10
|
Huang LC, Li YY, Lai JX, An Y, Song XQ, Zhao ST, Zhang J, Lu MZ. Superoxide anions induce tension wood formation by promoting cambium cell activity. PLANT PHYSIOLOGY 2024; 197:kiae672. [PMID: 39715459 DOI: 10.1093/plphys/kiae672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024]
Abstract
Tension wood (TW), characterized by increased cambium cell proliferation and few vessels, is a classical model for the mechanical analysis of wood formation. In this study, we found higher superoxide anion (O2.-) levels in the cambium zone of poplar (Populus alba × P. glandulosa clone "84K") TW than in that of opposite wood during gravistimulation. Treatment with an O2.- activator (methyl viologen) resulted in tension-wood-like xylem tissue formation, and transgenic plants with reduced cambium O2.- levels presented an attenuated gravity response. Time-course detection of O2.- and indole-3-acetic acid (IAA) levels revealed that auxin responses were enhanced following increases in O2.- levels, suggesting that IAA mediates TW induction downstream of O2.-. Rapid division but advanced programmed cell death in cambium cells was detected in both gravistimulated and O2.- activator-treated plants. These findings suggest that high O2.- levels trigger downstream IAA signaling to promote cambium cell proliferation and induce TW formation.
Collapse
Affiliation(s)
- Li-Chao Huang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
| | - Yu-Yu Li
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Jian-Xin Lai
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Yi An
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xue-Qin Song
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100094, China
| | - Shu-Tang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100094, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
11
|
Su J, Liu Y, Han F, Gao F, Gan F, Huang K, Li Z. ROS, an Important Plant Growth Regulator in Root Growth and Development: Functional Genes and Mechanism. BIOLOGY 2024; 13:1033. [PMID: 39765700 PMCID: PMC11673109 DOI: 10.3390/biology13121033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025]
Abstract
Roots are fundamental to the growth, development, and survival of plants. Beyond anchoring the plant, roots absorb water and nutrients, supporting the plant's ability to grow and function normally. Root systems, originating from the apical meristem, exhibit significant diversity depending on the plant species. ROS are byproducts of aerobic metabolism, present in both above- and below-ground plant tissues. While ROS were once considered merely harmful byproducts of oxygen metabolism, they are now recognized as critical signaling molecules that regulate plant growth and development. Under stress conditions, plants produce elevated levels of ROS, which can inhibit growth. However, moderate ROS levels act as signals that integrate various regulatory pathways, contributing to normal plant development. However, there is still a lack of comprehensive and systematic research on how ROS precisely regulate root growth and development. This review provides an overview of ROS production pathways and their regulatory mechanisms in plants, with a particular focus on their influence on root development.
Collapse
Affiliation(s)
- Jialin Su
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China;
| | - Yumei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fuxin Gao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fangyi Gan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ke Huang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China;
| | - Zhansheng Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Han S, Wang X, Cong H, Wu Y, Cai H. Assessment of quality and antioxidant capacity of peach in response to different UV-C dose irradiation. J Food Sci 2024; 89:8900-8909. [PMID: 39437228 DOI: 10.1111/1750-3841.17479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
The effects of different doses of UV-C irradiation (0, 0.5, 1.0, 2.0, and 4.0 kJ m-2) on the quality and antioxidant capacity of peach fruit were examined. Results showed that irradiation at 2.0 kJ m-2 led to higher firmness and total soluble solids, as well as lower weight loss and decay index. Additionally, peach fruits irradiated with 2.0 kJ m-2 UV-C exhibited increased production of reactive oxygen species, which in turn stimulated the synthesis of total phenolics and total flavonoids and enhanced the activities of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase. Overall, the best abiotic stress effect was observed with 2.0 kJ m-2 UV-C irradiation, resulting in improved shelf quality and increased antioxidant capacity of peach fruits during storage. PRACTICAL APPLICATION: This study provides a theoretical basis for the application of UV-C irradiation in peach fruit preservation.
Collapse
Affiliation(s)
- Shuai Han
- Study of Food and Pharmacy, Shanghai Zhongqiao Vocational and Technical University, Shanghai, China
| | - Xu Wang
- College of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Haihua Cong
- Study of Food and Pharmacy, Shanghai Zhongqiao Vocational and Technical University, Shanghai, China
| | - Youzhi Wu
- Study of Food and Pharmacy, Shanghai Zhongqiao Vocational and Technical University, Shanghai, China
| | - Hongfang Cai
- College of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| |
Collapse
|
13
|
Bosch M, Franklin-Tong V. Regulating programmed cell death in plant cells: Intracellular acidification plays a pivotal role together with calcium signaling. THE PLANT CELL 2024; 36:4692-4702. [PMID: 39197046 PMCID: PMC11530775 DOI: 10.1093/plcell/koae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/03/2024] [Accepted: 08/22/2024] [Indexed: 08/30/2024]
Abstract
Programmed cell death (PCD) occurs in different tissues in response to a number of different signals in plant cells. Drawing from work in several different contexts, including root-cap cell differentiation, plant response to biotic and abiotic stress, and some self-incompatibility (SI) systems, the data suggest that, despite differences, there are underlying commonalities in the early decision-making stages of PCD. Here, we focus on how 2 cellular events, increased [Ca2+]cyt levels and cytosolic acidification, appear to act as early signals involved in regulating both developmental and stimulus-induced PCD in plant cells.
Collapse
Affiliation(s)
- Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| | - Vernonica Franklin-Tong
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
14
|
Wang R, Shi YC, Zhang B, Liu WR, Tan FQ, Lu F, Jiang N, Cheng LC, Xie KD, Wu XM, Guo WW. Gene expression profiles and metabolic pathways responsible for male sterility in cybrid pummelo. PLANT CELL REPORTS 2024; 43:262. [PMID: 39407042 DOI: 10.1007/s00299-024-03357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024]
Abstract
KEY MESSAGE Abnormal expression of genes regulating anther and pollen development and insufficient accumulation of male sterility (MS)- related metabolites lead to MS in cybrid pummelo Male sterility (MS) is a major cause of seedlessness in citrus, which is an important trait for fresh fruit. Understanding the mechanism of MS is important for breeding seedless citrus cultivars. In this study, we dissected the transcriptional, metabolic and physiological mechanisms of MS in somatic cybrid of pummelo (G1 + HBP). G1 + HBP exhibited severe male sterility, manifesting as retarded anther differentiation, abnormal anther wall development (especially tapetum and endothecium), and deficient pollen wall formation. In the anthers of G1 + HBP, the expression of genes regulating anther differentiation and tapetum development was abnormal, and the expression of genes regulating endothecium secondary lignification thickening and pollen wall formation was down-regulated. The transcription of genes involved in MS-related biological processes, such as jasmonic acid (JA) signaling pathway, primary metabolism, flavonoid metabolism, and programmed cell death, was altered in G1 + HBP anthers, and the accumulation of MS-associated metabolites, including fatty acids, amino acids, sugars, ATP, flavonols and reactive oxygen species (ROS), was down-regulated in G1 + HBP anthers. In summary, abnormal expression of key genes regulating anther and pollen development, altered transcription of key genes involved in MS-related metabolic pathways, and insufficient accumulation of MS-related metabolites together lead to MS in G1 + HBP. The critical genes and the metabolism pathways identified herein provide new insights into the formation mechanism of MS in citrus and candidate genes for breeding seedless citrus.
Collapse
Affiliation(s)
- Rong Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, China
| | - Yang-Cao Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wan-Rong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng-Quan Tan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fang Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Jiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lai-Chao Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kai-Dong Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Meng Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wen-Wu Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
15
|
Ma L, Zhang T, Zhu QH, Zhang X, Sun J, Liu F. HSP70 and APX1 play important roles in cotton male fertility by mediating ROS homeostasis. Int J Biol Macromol 2024; 278:134856. [PMID: 39168224 DOI: 10.1016/j.ijbiomac.2024.134856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Male sterility is used in the production of hybrid seeds and can improve the breeding efficiency of cotton hybrids. Reactive oxygen species is closely associated with the tapetum and pollen development, but their relationship in cotton male fertility remains unclear. In this study, we comprehensively compared the cytology and proteome of the anthers from an Upland cotton (Gossypium hirsutum) material, Shida 98 (WT), and its nearly-isogenic male sterile line Shida 98A (MS). Cytology indicated delayed PCD in the tapetum and defects in microspores in MS anthers. And further studies revealed disruption of ROS homeostasis. Proteomic analysis identified proteins with differential abundance mainly being related to redox homeostasis, protein folding, and apoptotic signaling pathways. GhAPX1 interacted with GhHSP70 and played a crucial role in the development of cotton anthers. Exogenous application of HSP70 inhibitor increased H2O2 content and decreased the activity of APX1 and pollen viability. The GhAPX1 mutants generated by CRISPR/Cas9-mediated gene editing exhibited premature degradation of the tapetum, significant decrease in pollen viability, and significant increase in H2O2 content. Altogether, our results imply HSP70 and APX1 being the key players jointly regulating male fertility by mediating ROS homeostasis. These results provide insights into the proteins associated with male fertility.
Collapse
Affiliation(s)
- Lihong Ma
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Tao Zhang
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra 2601, Australia
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Jie Sun
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Feng Liu
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
16
|
Nguyen TH, Kim MJ, Kim J. The transcription factor LBD10 sustains pollen tube growth and integrity by modulating reactive oxygen species homeostasis via the regulation of flavonol biosynthesis in Arabidopsis. THE NEW PHYTOLOGIST 2024; 244:131-146. [PMID: 39113420 DOI: 10.1111/nph.20029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/11/2024] [Indexed: 09/17/2024]
Abstract
Reproduction in angiosperms relies on the precise growth of pollen tubes, facilitating the delivery of sperm cells to the ovule for double fertilization. LATERAL ORGAN BOUNDARIES DOMAIN10 (LBD10), a plant-specific transcription factor, plays a pivotal role in Arabidopsis pollen development. Here, we uncovered LBD10's function in sustaining pollen tube growth and integrity. The lbd10 mutant exhibited elevated levels of reactive oxygen species (ROS) and hydrogen peroxide (H2O2) in both pollen grains and tubes, leading to compromised pollen tube growth. The inhibition of ROS synthesis and scavenging of excess ROS with an antioxidant treatment each alleviated these defects in lbd10. The lbd10 mutant displayed reduced flavonol accumulation in both pollen grains and tubes. All the altered phenotypes of lbd10 were complemented by expressing LBD10 under its native promoter. Exogenous application of flavonoids recused the defects in pollen tube growth and integrity in lbd10, along with reducing the excess levels of ROS and H2O2. LBD10 directly binds the promoters of key flavonol biosynthesis genes in chromatin and promotes reporter gene expression in Arabidopsis mesophyll protoplasts. Our findings indicate that LBD10 modulates ROS homeostasis by transcriptionally activating genes crucial for flavonol biosynthesis, thereby maintaining pollen tube growth and integrity.
Collapse
Affiliation(s)
- Thu-Hien Nguyen
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
| | - Min Jung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
| | - Jungmook Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Korea
| |
Collapse
|
17
|
Sun Y, Ang Y, Fu M, Bai Y, Chen J, He Y, Zeng H. Temperature change regulates pollen fertility of a PTGMS rice line PA64S by modulating the ROS homeostasis and PCD within the tapetum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:615-636. [PMID: 39226401 DOI: 10.1111/tpj.17004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
Photoperiod and temperature-sensitive male sterility rice is an important line for two-line hybrid rice, and the changes in the cultivation temperature strictly control its pollen fertility. However, the mechanism by which temperature variation regulates pollen fertility is still unclear. This study obtained stable fertile PA64S(F) and sterile PA64S(S) rice from PA64S by controlling temperature changes. PA64S(F) shows a normal anther development and fertile pollen under low temperature (21°C), and PA64S(S) shows delayed degradation of the tapetum cells, leading to abnormal pollen wall formation and ubisch development under normal temperature (28°C). The accumulation of reactive oxygen species (ROS) positively correlates with the programmed cell death (PCD) process of tapetum cells. The delayed accumulation of ROS in the PA64S(S) tapetum at early stages leads to a delayed initiation of the PCD process. Importantly, we localized ascorbic acid (ASA) accumulation in the tapetum cells and determined that ASA is a major antioxidant for ROS homeostasis. ROS-inhibited accumulation plants (PA64S-ASA) demonstrated pollen sterility, higher ASA and lower ROS accumulation in the tapetum, and the absence of PCD processes in the tapetum cell. Abnormal changes in the tapetum of PA64S(S) rice disrupted metabolic pathways such as lipid metabolism, cutin and wax synthesis, sugar accumulation, and phenylpropane, affecting pollen wall formation and substance accumulation, suggesting that the timely accumulation of ROS is critical for male fertility. This study highlights the central role of ROS homeostasis in fertility alteration and also provides an avenue to address the effect of environmental temperature changes on pollen fertility in rice.
Collapse
Affiliation(s)
- Yujun Sun
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yina Ang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ming Fu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunxiu Bai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiasheng Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ying He
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hanlai Zeng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Liu H, You H, Liu C, Zhao Y, Chen J, Chen Z, Li Y, Tang D, Shen Y, Cheng Z. GLUTAMYL-tRNA SYNTHETASE 1 deficiency confers thermosensitive male sterility in rice by affecting reactive oxygen species homeostasis. PLANT PHYSIOLOGY 2024; 196:1014-1028. [PMID: 38976569 DOI: 10.1093/plphys/kiae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
Abstract
Temperature is one of the key environmental factors influencing crop fertility and yield. Understanding how plants sense and respond to temperature changes is, therefore, crucial for improving agricultural production. In this study, we characterized a temperature-sensitive male sterile mutant in rice (Oryza sativa), glutamyl-tRNA synthetase 1-2 (ers1-2), that shows reduced fertility at high temperatures and restored fertility at low temperatures. Mutation of ERS1 resulted in severely delayed pollen development and meiotic progression at high temperatures, eventually leading to male sterility. Moreover, meiosis-specific events, including synapsis and crossover formation, were also delayed in ers1-2 compared with the wild type. However, these defects were all mitigated by growing ers1-2 at low temperatures. Transcriptome analysis and measurement of ascorbate, glutathione, and hydrogen peroxide (H2O2) contents revealed that the delayed meiotic progression and male sterility in ers1-2 were strongly associated with changes in reactive oxygen species (ROS) homeostasis. At high temperatures, ers1-2 exhibited decreased accumulation of ROS scavengers and overaccumulation of ROS. In contrast, at low temperatures, the antioxidant system of ROS was more active, and ROS contents were lower. These data suggest that ROS homeostasis in ers1-2 is disrupted at high temperatures but restored at low temperatures. We speculate that ERS1 dysfunction leads to changes in ROS homeostasis under different conditions, resulting in delayed or rescued meiotic progression and thermosensitive male fertility. ers1-2 may hold great potential as a thermosensitive material for crop heterosis breeding.
Collapse
Affiliation(s)
- Huixin Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanli You
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Changzhen Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yangzi Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuoran Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhukuan Cheng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
19
|
Yao Q, Li P, Wang X, Liao S, Wang P, Huang S. Molecular mechanisms underlying the negative effects of transient heatwaves on crop fertility. PLANT COMMUNICATIONS 2024; 5:101009. [PMID: 38915200 DOI: 10.1016/j.xplc.2024.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/04/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
Transient heatwaves occurring more frequently as the climate warms, yet their impacts on crop yield are severely underestimated and even overlooked. Heatwaves lasting only a few days or even hours during sensitive stages, such as microgametogenesis and flowering, can significantly reduce crop yield by disrupting plant reproduction. Recent advances in multi-omics and GWAS analysis have shed light on the specific organs (e.g., pollen, lodicule, style), key metabolic pathways (sugar and reactive oxygen species metabolism, Ca2+ homeostasis), and essential genes that are involved in crop responses to transient heatwaves during sensitive stages. This review therefore places particular emphasis on heat-sensitive stages, with pollen development, floret opening, pollination, and fertilization as the central narrative thread. The multifaceted effects of transient heatwaves and their molecular basis are systematically reviewed, with a focus on key structures such as the lodicule and tapetum. A number of heat-tolerance genes associated with these processes have been identified in major crops like maize and rice. The mechanisms and key heat-tolerance genes shared among different stages may facilitate the more precise improvement of heat-tolerant crops.
Collapse
Affiliation(s)
- Qian Yao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ping Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Shuhua Liao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
20
|
Chen Y, Zhang R, Wang R, Li J, Wu B, Zhang H, Xiao G. Overexpression of OsRbohH Enhances Heat and Drought Tolerance through ROS Homeostasis and ABA Mediated Pathways in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2494. [PMID: 39273977 PMCID: PMC11397177 DOI: 10.3390/plants13172494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/05/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Respiratory burst oxidase homologs (Rbohs) are the primary producers of reactive oxygen species (ROS), which have been demonstrated to play critical roles in plant responses to abiotic stress. Here, we explored the function of OsRbohH in heat and drought stress tolerance by generating overexpression lines (OsRbohH-OE). OsRbohH was highly induced by various abiotic stress and hormone treatments. Compared to wild-type (WT) controls, OsRbohH-OE plants exhibited enhanced tolerance to heat and drought, as determined by survival rate analyses and total chlorophyll content. Histochemical staining revealed that OsRbohH-OE accumulated less ROS. This is consistent with the observed increase in catalase (CAT) and peroxidase (POD) activities, as well as a reduced electrolyte leakage rate and malondialdehyde (MDA) content. Moreover, OsRbohH-OE exhibited enhanced sensitivity to exogenous abscisic acid (ABA), accompanied by altered expression levels of ABA synthesis and catabolic genes. Further analysis indicated that transgenic lines had lower transcripts of ABA signaling-related genes (OsDREB2A, OsLEA3, OsbZIP66, and OsbZIP72) under heat but higher levels under drought than WT. In conclusion, these results suggest that OsRbohH is a positive regulator of heat and drought tolerance in rice, which is probably performed through OsRbohH-mediated ROS homeostasis and ABA signaling.
Collapse
Affiliation(s)
- Yating Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Rui Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Rujie Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jiangdi Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Bin Wu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guiqing Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
21
|
Ibrahim S, Mira MM, Hill RD, Stasolla C. The Brassica napus phytoglobin 1 (BnPgb1) mitigates the decrease in plant fertility resulting from high temperature stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 300:154302. [PMID: 38945072 DOI: 10.1016/j.jplph.2024.154302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
High temperature stress during flowering adversely affects plant fertility, decreasing plant productivity. Daily cycles of heat stress (HS), imposed on Brassica napus L. plants by slowly ramping the temperature from 23 °C to 35 °C before lowering back to pre-stress conditions, inhibited flower and silique formation, with fewer seeds per silique during the stress period, as well as decreased pollen viability. Heat stress also elevated the transcripts and protein levels of class 1 phytoglobin BnPgb1, with the protein accumulating preferentially within the anther walls. Over-expression of BnPgb1 was sufficient to attenuate the reduction in plant fertility at high temperatures while its down-regulation exacerbated the effects of HS. Relative to WT anthers, the rise in ROS and ROS-induced damage caused by HS was limited when BnPgb1 was over-expressed, and this was linked to changes in antioxidant responses. High temperatures reduced the level of ascorbic acid (AsA) in anthers by favoring its oxidation via ascorbate oxidase (AOA) and limiting its regeneration through suppression of monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR). Anthers of heat-stressed plants over-expressing BnPgb1 retained a higher AsA content with concomitant increased activities of DHAR, MDHAR, ascorbate peroxidase (APX) and superoxide dismutase (SOD). These changes suggest that BnPgb1 potentiates antioxidant responses during HS which mitigate the depression of fertility.
Collapse
Affiliation(s)
- Shimaa Ibrahim
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2N2, MB, Canada
| | - Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2N2, MB, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2N2, MB, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2N2, MB, Canada.
| |
Collapse
|
22
|
Althiab-Almasaud R, Teyssier E, Chervin C, Johnson MA, Mollet JC. Pollen viability, longevity, and function in angiosperms: key drivers and prospects for improvement. PLANT REPRODUCTION 2024; 37:273-293. [PMID: 37926761 DOI: 10.1007/s00497-023-00484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Pollen grains are central to sexual plant reproduction and their viability and longevity/storage are critical for plant physiology, ecology, plant breeding, and many plant product industries. Our goal is to present progress in assessing pollen viability/longevity along with recent advances in our understanding of the intrinsic and environmental factors that determine pollen performance: the capacity of the pollen grain to be stored, germinate, produce a pollen tube, and fertilize the ovule. We review current methods to measure pollen viability, with an eye toward advancing basic research and biotechnological applications. Importantly, we review recent advances in our understanding of how basic aspects of pollen/stigma development, pollen molecular composition, and intra- and intercellular signaling systems interact with the environment to determine pollen performance. Our goal is to point to key questions for future research, especially given that climate change will directly impact pollen viability/longevity. We find that the viability and longevity of pollen are highly sensitive to environmental conditions that affect complex interactions between maternal and paternal tissues and internal pollen physiological events. As pollen viability and longevity are critical factors for food security and adaptation to climate change, we highlight the need to develop further basic research for better understanding the complex molecular mechanisms that modulate pollen viability and applied research on developing new methods to maintain or improve pollen viability and longevity.
Collapse
Affiliation(s)
- Rasha Althiab-Almasaud
- Université de Toulouse, LRSV, Toulouse INP, CNRS, UPS, 31326, Castanet-Tolosan, France
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Eve Teyssier
- Université de Toulouse, LRSV, Toulouse INP, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Christian Chervin
- Université de Toulouse, LRSV, Toulouse INP, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Mark A Johnson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Jean-Claude Mollet
- Univ Rouen Normandie, GLYCOMEV UR4358, SFR NORVEGE, Fédération Internationale Normandie-Québec NORSEVE, Carnot I2C, RMT BESTIM, GDR Chemobiologie, IRIB, F-76000, Rouen, France.
| |
Collapse
|
23
|
Marchetti F, Distéfano AM, Cainzos M, Setzes N, Cascallares M, López GA, Zabaleta E, Carolina Pagnussat G. Cell death in bryophytes: emerging models to study core regulatory modules and conserved pathways. ANNALS OF BOTANY 2024; 134:367-384. [PMID: 38953500 PMCID: PMC11341678 DOI: 10.1093/aob/mcae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024]
Abstract
This review summarizes recent progress in our current understanding of the mechanisms underlying the cell death pathways in bryophytes, focusing on conserved pathways and particularities in comparison to angiosperms. Regulated cell death (RCD) plays key roles during essential processes along the plant life cycle. It is part of specific developmental programmes and maintains homeostasis of the organism in response to unfavourable environments. Bryophytes could provide valuable models to study developmental RCD processes as well as those triggered by biotic and abiotic stresses. Some pathways analogous to those present in angiosperms occur in the gametophytic haploid generation of bryophytes, allowing direct genetic studies. In this review, we focus on such RCD programmes, identifying core conserved mechanisms and raising new key questions to analyse RCD from an evolutionary perspective.
Collapse
Affiliation(s)
- Fernanda Marchetti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Ayelén Mariana Distéfano
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Maximiliano Cainzos
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Nicolás Setzes
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Milagros Cascallares
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriel Alejandro López
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
24
|
Fu L, Zhang J, Li M, Wang C, Chen Y, Fan X, Sun H. ldi-miR396-LdPMaT1 enhances reactive oxygen species scavenging capacity and promotes drought tolerance in Lilium distichum Nakai autotetraploids. PLANT, CELL & ENVIRONMENT 2024; 47:2733-2748. [PMID: 38073433 DOI: 10.1111/pce.14783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/03/2023] [Accepted: 12/01/2023] [Indexed: 07/12/2024]
Abstract
Drought is a key environmental stress that inhibits plant growth, development, yield and quality. Whole-genome replication is an effective method for breeding drought resistant cultivars. Here, we evaluated the tolerance of Lilium distichum Nakai diploids (2n = 2× = 24) and artificially induced autotetraploids (2n = 4× = 48) to drought simulated by polyethylene glycol (PEG) stress. Autotetraploids showed stronger drought tolerance than diploids, and high-throughput sequencing during PEG stress identified five differentially expressed miRNAs. Transcriptome analysis revealed significantly different reactive oxygen species (ROS)-scavenger expression levels between diploids and autotetraploids, which increased the drought tolerance of autotetraploids. Specifically, we identified ldi-miR396b and its only target gene (LdPMaT1) for further study based on its expression level and ROS-scavenging ability in response to drought stress (DS). Autotetraploids showed higher expression of LdPMaT1 and significantly downregulated expression of ldi-miR396b under DS compared with diploids. Through a short tandem target mimic (STTM) in transgenic lilies, functional studies revealed that miR396b silencing promotes LdPMaT1 expression and the DS response. Under PEG stress, STTM393 transgenic lines showed improved drought resistance mediated by lowered MDA content but exhibited high antioxidant enzyme activity, consistent with the autotetraploid results. Collectively, these findings suggest that ldi-miR396b-LdPMaT1 potentially enhances ROS-scavenging ability, which contributes to improved stress adaptation in autotetraploid lilies.
Collapse
Affiliation(s)
- Linlan Fu
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang Agricultural University, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
- College of Public utility, Jiangsu Urban and Rural Construction Vocational College, Changzhou, China
| | - Jing Zhang
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Min Li
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang Agricultural University, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
| | - Chunxia Wang
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang Agricultural University, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
| | - Yang Chen
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang Agricultural University, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
| | - Xinyue Fan
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang Agricultural University, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
| | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang Agricultural University, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
| |
Collapse
|
25
|
Geng R, Li X, Huang J, Zhou W. The chloroplast singlet oxygen-triggered biosynthesis of salicylic acid and jasmonic acid is mediated by EX1 and GUN1 in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024; 47:2852-2864. [PMID: 38600785 DOI: 10.1111/pce.14910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/29/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
Reactive oxygen species (ROS) and defence hormones like salicylic acid (SA) and jasmonic acid (JA) play pivotal roles in triggering cell death. However, the precise mechanism governing the interaction between ROS and SA/JA remains elusive. Recently, our research revealed that RNAi mutants with suppressed expression of PROGRAMMED CELL DEATH8 (PCD8) exhibit an overabundance of tetrapyrrole intermediates, particularly uroporphyrinogen III (Uro III), leading to the accumulation of singlet oxygen (1O2) during the transition from darkness to light, thereby instigating leaf necrosis. In this investigation, we uncovered that 1O2 stimulates biosynthesis of SA and JA, activating SA/JA signalling and the expression of responsive genes in PCD8 RNAi (pcd8) mutants. Introducing NahG or knocking out PAD4 or NPR1 significantly alleviates the cell death phenotype of pcd8 mutants, while coi1 partially mitigates the pcd8 phenotype. Further exploration revealed that EX1 and GUN1 can partially rescue the pcd8 phenotype by reducing the levels of Uro III and 1O2. Notably, mutations in EX1 mutations but not GUN1, substantially diminish SA content in pcd8 mutants compared to the wild type, implying that EX1 acts as the primary mediator of 1O2 signalling-mediated SA biosynthesis. Moreover, the triple ex1 gun1 pcd8 displays a phenotype similar to ex1. Overall, our findings underscore that the 1O2-induced cell death phenotype requires EX1/GUN1-mediated retrograde signalling in pcd8 mutants, providing novel insights into the interplay between ROS and SA/JA.
Collapse
Affiliation(s)
- Rudan Geng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
Gong W, Oubounyt M, Baumbach J, Dresselhaus T. Heat-stress-induced ROS in maize silks cause late pollen tube growth arrest and sterility. iScience 2024; 27:110081. [PMID: 38979009 PMCID: PMC11228802 DOI: 10.1016/j.isci.2024.110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/12/2024] [Accepted: 05/20/2024] [Indexed: 07/10/2024] Open
Abstract
The reproductive phase of plants is highly sensitive to ambient temperature stresses. To investigate sensitivity of female reproductive organs in grass crops during the pollination phase, we exposed the elongated stigma (silk) of maize to ambient environment at the silking stage. Moderate heat stress causes cell death of silk hair cells but did not affect early pollen tube growth inside the silk. Late pollen tube growth arrest was observed, leading to sterility. Heat stress causes elevated levels of reactive oxygen species (ROS) in silks, whose levels can be reduced by scavengers partly restoring pollen tube growth and fertility. A number of biological processes including hydrogen peroxide catabolic processes and bHLH transcription factor genes are downregulated by heat stress, while some NAC transcription factor genes are strongly upregulated. In conclusion, this study now provides a basis to select genes for engineering heat-stress-tolerant grass crops during the pollination phase.
Collapse
Affiliation(s)
- Wen Gong
- Cell Biology and Plant Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Mhaned Oubounyt
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 22607 Hamburg, Germany
| | - Jan Baumbach
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 22607 Hamburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
27
|
Zhou L, Mao Y, Yang Y, Wang J, Zhong X, Han Y, Zhang Y, Shi Q, Huang X, Meyers BC, Zhu J, Yang Z. Temperature and light reverse the fertility of rice P/TGMS line ostms19 via reactive oxygen species homeostasis. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2020-2032. [PMID: 38421616 PMCID: PMC11182586 DOI: 10.1111/pbi.14322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/30/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024]
Abstract
P/TGMS (Photo/thermo-sensitive genic male sterile) lines are crucial resources for two-line hybrid rice breeding. Previous studies revealed that slow development is a general mechanism for sterility-fertility conversion of P/TGMS in Arabidopsis. However, the difference in P/TGMS genes between rice and Arabidopsis suggests the presence of a distinct P/TGMS mechanism in rice. In this study, we isolated a novel P/TGMS line, ostms19, which shows sterility under high-temperature conditions and fertility under low-temperature conditions. OsTMS19 encodes a novel pentatricopeptide repeat (PPR) protein essential for pollen formation, in which a point mutation GTA(Val) to GCA(Ala) leads to ostms19 P/TGMS phenotype. It is highly expressed in the tapetum and localized to mitochondria. Under high temperature or long-day photoperiod conditions, excessive ROS accumulation in ostms19 anthers during pollen mitosis disrupts gene expression and intine formation, causing male sterility. Conversely, under low temperature or short-day photoperiod conditions, ROS can be effectively scavenged in anthers, resulting in fertility restoration. This indicates that ROS homeostasis is critical for fertility conversion. This relationship between ROS homeostasis and fertility conversion has also been observed in other tested rice P/TGMS lines. Therefore, we propose that ROS homeostasis is a general mechanism for the sterility-fertility conversion of rice P/TGMS lines.
Collapse
Affiliation(s)
- Lei Zhou
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Yi‐Chen Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Yan‐Ming Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Jun‐Jie Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Xiang Zhong
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Yu Han
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Yan‐Fei Zhang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Qiang‐Sheng Shi
- Jiangxi Yangtze River Economic Zone Research InstituteJiujiang UniversityJiujiangJiangxiChina
| | - Xue‐hui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | | | - Jun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Zhong‐Nan Yang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life SciencesShanghai Normal UniversityShanghaiChina
| |
Collapse
|
28
|
Seo Y, Zhou Z, Lai Y, Chen G, Pembleton K, Wang S, He JZ, Song P. Micro- and nanoplastics in agricultural soils: Assessing impacts and navigating mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172951. [PMID: 38703838 DOI: 10.1016/j.scitotenv.2024.172951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Micro-/nanoplastic contamination in agricultural soils raises concerns on agroecosystems and poses potential health risks. Some of agricultural soils have received significant amounts of micro-/nanoplastics (MNPs) through plastic mulch film and biosolid applications. However, a comprehensive understanding of the MNP impacts on soils and plants remains elusive. The interaction between soil particles and MNPs is an extremely complex issue due to the different properties and heterogeneity of soils and the diverse characteristics of MNPs. Moreover, MNPs are a class of relatively new anthropogenic pollutants that may negatively affect plants and food. Herein, we presented a comprehensive review of the impacts of MNPs on the properties of soil and the growth of plants. We also discussed different strategies for mitigating or eliminating MNP contamination. Moreover, perspectives for future research on MNP contamination in the agricultural soils are also highlighted.
Collapse
Affiliation(s)
- Yoonjung Seo
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia
| | - Zhezhe Zhou
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia; Centre for Future Materials, University of Southern Queensland, Springfield, Australia
| | - Yunru Lai
- Centre for Sustainable Agricultural Systems, University of Southern Queensland, Springfield, Australia.
| | - Guangnan Chen
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia.
| | - Keith Pembleton
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Ji-Zheng He
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pingan Song
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia; Centre for Future Materials, University of Southern Queensland, Springfield, Australia.
| |
Collapse
|
29
|
Liu J, Ye Q, Jiang W, Liu S, Wu Z, Hu X, Wang X, Zhang Z, Guo D, Chen X, He H, Hu L. Abnormal Degraded Tapetum 1 (ADT1) is required for tapetal cell death and pollen development in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:170. [PMID: 38913206 DOI: 10.1007/s00122-024-04677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
The timely degradation of tapetum, the innermost somatic anther cell layer in flowering plants, is critical for pollen development. Although several genes involved in tapetum development have been characterized, the molecular mechanisms underlying tapetum degeneration remain elusive. Here, we showed that mutation in Abnormal Degraded Tapetum 1 (ADT1) resulted in overaccumulation of Reactive Oxygen Species (ROS) and abnormal anther development, causing earlier tapetum Programmed Cell Death (PCD) and pollen abortion. ADT1 encodes a nuclear membrane localized protein, which is strongly expressed in the developing microspores and tapetal cells during early anther development. Moreover, ADT1 could interact with metallothionein MT2b, which was related to ROS scavenging and cell death regulation. These findings indicate that ADT1 is required for proper timing of tapetum PCD by regulating ROS homeostasis, expanding our understanding of the regulatory network of male reproductive development in rice.
Collapse
Affiliation(s)
- Jialin Liu
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
- School of Advanced Agricultural Sciences, Weifang University, Weifang, 261000, China
| | - Qing Ye
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wenxiang Jiang
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shiqiang Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zheng Wu
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiafei Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoqing Wang
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zelin Zhang
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dandan Guo
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaorong Chen
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Haohua He
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China.
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lifang Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China.
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
30
|
Hou L, Liu Z, Zhang D, Liu S, Chen Z, Wu Q, Shang Z, Wang J, Wang J. BR regulates wheat root salt tolerance by maintaining ROS homeostasis. PLANTA 2024; 260:5. [PMID: 38777878 DOI: 10.1007/s00425-024-04429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
MAIN CONCLUSION Trace amounts of epibrassinolide (EpiBL) could partially rescue wheat root length inhibition in salt-stressed situation by scavenging ROS, and ectopic expression of TaDWF4 or TaBAK1 enhances root salt tolerance in Arabidopsis by balancing ROS level. Salt stress often leads to ion toxicity and oxidative stress, causing cell structure damage and root development inhibition in plants. While prior research indicated the involvement of exogenous brassinosteroid (BR) in plant responses to salt stress, the precise cytological role and the function of BR in wheat root development under salt stress remain elusive. Our study demonstrates that 100 mM NaCl solution inhibits wheat root development, but 5 nM EpiBL partially rescues root length inhibition by decreasing H2O2 content, oxygen free radical (OFR) content, along with increasing the peroxidase (POD) and catalase (CAT) activities in salt-stressed roots. The qRT-PCR experiment also shows that expression of the ROS-scavenging genes (GPX2 and CAT2) increased in roots after applying BR, especially during salt stress situation. Transcriptional analysis reveals decreased expression of BR synthesis and root meristem development genes under salt stress in wheat roots. Differential expression gene (DEG) enrichment analysis highlights the significant impact of salt stress on various biological processes, particularly "hydrogen peroxide catabolic process" and "response to oxidative stress". Additionally, the BR biosynthesis pathway is enriched under salt stress conditions. Therefore, we investigated the involvement of wheat BR synthesis gene TaDWF4 and BR signaling gene TaBAK1 in salt stress responses in roots. Our results demonstrate that ectopic expression of TaDWF4 or TaBAK1 enhances salt tolerance in Arabidopsis by balancing ROS (Reactive oxygen species) levels in roots.
Collapse
Affiliation(s)
- Lijiang Hou
- Key Laboratory of Anyang Wheat Breeding Engineering Research Center, Anyang Institute of Technology, Anyang, 455000, Henan, China
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zihui Liu
- Department of Biochemistry, Baoding University, Baoding, 071000, Hebei, China
| | - Dongzhi Zhang
- College of Life Sciences and Engineering, Hexi University, Zhangye, Gansu, 734000, China
| | - Shuhan Liu
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, 464000, Henan, China
| | - Zhenzhen Chen
- Xinyang Academy of Agricultural Sciences, Xinyang, 464000, Henan, China
| | - Qiufang Wu
- Key Laboratory of Anyang Wheat Breeding Engineering Research Center, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Zengzhen Shang
- Key Laboratory of Anyang Wheat Breeding Engineering Research Center, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Jingshun Wang
- Key Laboratory of Anyang Wheat Breeding Engineering Research Center, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Junwei Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
31
|
Ali MF, Muday GK. Reactive oxygen species are signaling molecules that modulate plant reproduction. PLANT, CELL & ENVIRONMENT 2024; 47:1592-1605. [PMID: 38282262 DOI: 10.1111/pce.14837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
Reactive oxygen species (ROS) can serve as signaling molecules that are essential for plant growth and development but abiotic stress can lead to ROS increases to supraoptimal levels resulting in cellular damage. To ensure efficient ROS signaling, cells have machinery to locally synthesize ROS to initiate cellular responses and to scavenge ROS to prevent it from reaching damaging levels. This review summarizes experimental evidence revealing the role of ROS during multiple stages of plant reproduction. Localized ROS synthesis controls the formation of pollen grains, pollen-stigma interactions, pollen tube growth, ovule development, and fertilization. Plants utilize ROS-producing enzymes such as respiratory burst oxidase homologs and organelle metabolic pathways to generate ROS, while the presence of scavenging mechanisms, including synthesis of antioxidant proteins and small molecules, serves to prevent its escalation to harmful levels. In this review, we summarized the function of ROS and its synthesis and scavenging mechanisms in all reproductive stages from gametophyte development until completion of fertilization. Additionally, we further address the impact of elevated temperatures induced ROS on impairing these reproductive processes and of flavonol antioxidants in maintaining ROS homeostasis to minimize temperature stress to combat the impact of global climate change on agriculture.
Collapse
Affiliation(s)
- Mohammad Foteh Ali
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston Salem, NC, United States
| | - Gloria K Muday
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston Salem, NC, United States
| |
Collapse
|
32
|
Wang S, Yang S, Jakada BH, Qin H, Zhan Y, Lan X. Transcriptomics reveal the involvement of reactive oxygen species production and sequestration during stigma development and pollination in Fraxinus mandshurica. FORESTRY RESEARCH 2024; 4:e014. [PMID: 39524420 PMCID: PMC11524289 DOI: 10.48130/forres-0024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 11/16/2024]
Abstract
Stigma development and successful pollination are essential for the continuous existence of flowering plants. However, the specific mechanisms regulating these important processes are not well understood. In this study, we investigated the development of the stigma in Fraxinus mandshurica, dividing it into three stages: S1, S2, and S3. Transcriptome data were used to analyze the gene expression patterns across these developmental stages, and 6,402 genes were observed to exhibit variable expression levels. Our analysis revealed a significant enrichment of pathways related to reactive oxygen species (ROS) and flavonoids, as indicated by the Kyoto Encyclopedia of Genes and Genomes enrichment analysis of the differentially expressed genes. Further examination by cluster analysis and quantitative polymerase chain reaction revealed that 58 genes were associated with ROS synthesis and seven genes were linked to flavonoid synthesis during the S2 and S3 stages. ROS accumulated during stigma development, which decreased rapidly upon pollen germination and pollen tube elongation, as confirmed by H2DCFDA staining. Moreover, ROS levels in mature stigmas were reduced by treatment with ROS scavengers, such as copper (II) chloride, sodium salicylate, and diphenyleneiodonium, an inhibitor of NADPH oxidases, which enhanced pollen adhesion and germination. These findings suggest that the balance between ROS production and sequestration plays a critical role in regulating stigma development and pollen germination in Fraxinus mandshurica.
Collapse
Affiliation(s)
- Shuqi Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Shun Yang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Bello Hassan Jakada
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Hongtao Qin
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yaguang Zhan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xingguo Lan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
33
|
Yin GM, Fang YR, Wang JG, Liu Y, Xiang X, Li S, Zhang Y. Arabidopsis HAPLESS13/AP-1µ is critical for pollen sac formation and tapetal function. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111998. [PMID: 38307351 DOI: 10.1016/j.plantsci.2024.111998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
The production of excess and viable pollen grains is critical for reproductive success of flowering plants. Pollen grains are produced within anthers, the male reproductive organ whose development involves precisely controlled cell differentiation, division, and intercellular communication. In Arabidopsis thaliana, specification of an archesporial cell (AC) at four corners of a developing anther, followed by programmed cell divisions, generates four pollen sacs, walled by four cell layers among which the tapetum is in close contact with developing microspores. Tapetum secretes callose-dissolving enzymes to release microspores at early stages and undergoes programmed cell death (PCD) to deliver nutrients and signals for microspore development at later stages. Except for transcription factors, plasma membrane (PM)-associated and secretory peptides have also been demonstrated to mediate anther development. Adaptor protein complexes (AP) recruit both cargos and coat proteins during vesicle trafficking. Arabidopsis AP-1µ/HAPLESS13 (HAP13) is a core component of AP-1 for protein sorting at the trans-Golgi network/early endosomes (TGN/EE). We report here that Arabidopsis HAP13 is critical for pollen sac formation and for sporophytic control of pollen production. Functional loss of HAP13 causes a reduction in pollen sac number. It also results in the dysfunction of tapetum such that secretory function of tapetum at early stages and PCD of tapetum at later stages are both compromised. We further show that the expression of SPL, the polar distribution of auxin maximum, as well as the asymmetric distribution of PIN1 are interfered in hap13 anthers, which in combination may lead to male sterility in hap13.
Collapse
Affiliation(s)
- Gui-Min Yin
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yi-Ru Fang
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jia-Gang Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yue Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xiaojiao Xiang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Sha Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Yan Zhang
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
34
|
Wang P, Liu WC, Han C, Wang S, Bai MY, Song CP. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:330-367. [PMID: 38116735 DOI: 10.1111/jipb.13601] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Reactive oxygen species (ROS) are produced as undesirable by-products of metabolism in various cellular compartments, especially in response to unfavorable environmental conditions, throughout the life cycle of plants. Stress-induced ROS production disrupts normal cellular function and leads to oxidative damage. To cope with excessive ROS, plants are equipped with a sophisticated antioxidative defense system consisting of enzymatic and non-enzymatic components that scavenge ROS or inhibit their harmful effects on biomolecules. Nonetheless, when maintained at relatively low levels, ROS act as signaling molecules that regulate plant growth, development, and adaptation to adverse conditions. Here, we provide an overview of current approaches for detecting ROS. We also discuss recent advances in understanding ROS signaling, ROS metabolism, and the roles of ROS in plant growth and responses to various abiotic stresses.
Collapse
Affiliation(s)
- Pengtao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Situ Wang
- Faculty of Science, McGill University, Montreal, H3B1X8, Canada
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
35
|
Singh SP, Verma RK, Goel R, Kumar V, Singh RR, Sawant SV. Arabidopsis BECLIN1-induced autophagy mediates reprogramming in tapetal programmed cell death by altering the gross cellular homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108471. [PMID: 38503186 DOI: 10.1016/j.plaphy.2024.108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
In flowering plants, the tapetum degeneration in post-meiotic anther occurs through developmental programmed cell death (dPCD), which is one of the most critical and sensitive steps for the proper development of male gametophytes and fertility. Yet the pathways of dPCD, its regulation, and its interaction with autophagy remain elusive. Here, we report that high-level expression of Arabidopsis autophagy-related gene BECLIN1 (BECN1 or AtATG6) in the tobacco tapetum prior to their dPCD resulted in developmental defects. BECN1 induces severe autophagy and multiple cytoplasm-to-vacuole pathways, which alters tapetal cell reactive oxygen species (ROS)-homeostasis that represses the tapetal dPCD. The transcriptome analysis reveals that BECN1- expression caused major changes in the pathway, resulting in altered cellular homeostasis in the tapetal cell. Moreover, BECN1-mediated autophagy reprograms the execution of tapetal PCD by altering the expression of the key developmental PCD marker genes: SCPL48, CEP1, DMP4, BFN1, MC9, EXI1, and Bcl-2 member BAG5, and BAG6. This study demonstrates that BECN1-mediated autophagy is inhibitory to the dPCD of the tapetum, but the severity of autophagy leads to autophagic death in the later stages. The delayed and altered mode of tapetal degeneration resulted in male sterility.
Collapse
Affiliation(s)
- Surendra Pratap Singh
- Plant Molecular Biology Laboratory, CSIR National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Department of Botany, University of Lucknow, Lucknow, 226007, India.
| | - Rishi Kumar Verma
- Plant Molecular Biology Laboratory, CSIR National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Ridhi Goel
- Plant Molecular Biology Laboratory, CSIR National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Verandra Kumar
- Plant Molecular Biology Laboratory, CSIR National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| | | | - Samir V Sawant
- Plant Molecular Biology Laboratory, CSIR National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
36
|
Gong J, Sun S, Zhu QH, Qin J, Yang Y, Zheng Z, Cheng S, Sun J. Gh4CL20/20A involved in flavonoid biosynthesis is essential for male fertility in cotton (Gossypium hirsutum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108484. [PMID: 38452452 DOI: 10.1016/j.plaphy.2024.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Flavonoids have been shown to play an essential role in plant growth and fertility. 4-Coumarate CoA ligase (4CL) is one of the indispensable enzymes involved in the biosynthesis of flavonoids. However, the role of 4CL and flavonoids in impact on cotton fertility is still unknown. In this study, on the basis of identification of an additional Gh4CL gene, Gh4CL20A, by using an updated G. hirsutum genome, we found that Gh4CL20A and its homologous Gh4CL20 were preferentially expressed in petals and stamens. The petals of the loss-of-function Gh4CL20/Gh4CL20A mutant generated by CRISPR/Cas9 gene editing remained white until wilting. Notably, the mutant showed indehiscent anthers, reduced number of pollen grains and pollen viability, leading to male sterility. Histological analysis revealed that abnormal degradation of anther tapetum at the tetrad stage and abnormal pollen grain development at the mature stage caused male sterility of the gene editing mutant. Analysis of the anther transcriptome identified a total of 10574 and 11962 genes up- and down-regulated in the mutant, respectively, compared to the wild-type. GO, KEGG, and WGCNA analyses linked the abnormality of the mutant anthers to the defective flavonoid biosynthetic pathway, leading to decreased activity of 4CL and chalcone isomerase (CHI) and reduced accumulation of flavonoids in the mutant. These results imply a role of Gh4CL20/Gh4CL20A in assuring proper development of cotton anthers by regulating flavonoid metabolism. This study elucidates a molecular mechanism underlying cotton anther development and provides candidate genes for creating cotton male sterile germplasm that has the potential to be used in production of hybrid seeds.
Collapse
Affiliation(s)
- Junming Gong
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China.
| | - Shichao Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China.
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, 2601, Australia.
| | - Jianghong Qin
- Cotton Research Institute, Shihezi Academy of Agricultural Sciences, Shihezi, China.
| | - Yonglin Yang
- Cotton Research Institute, Shihezi Academy of Agricultural Sciences, Shihezi, China.
| | - Zhihong Zheng
- Cotton Research Institute, Shihezi Academy of Agricultural Sciences, Shihezi, China.
| | - Shuaishuai Cheng
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China.
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China.
| |
Collapse
|
37
|
Ma T, Tan JR, Zhang Y, Li S. R-SNARE protein YKT61 mediates root apical meristem cell division via BRASSINOSTEROID-INSENSITIVE1 recycling. PLANT PHYSIOLOGY 2024; 194:1467-1480. [PMID: 38036295 DOI: 10.1093/plphys/kiad634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Root growth is sustained by cell division and differentiation of the root apical meristem (RAM), in which brassinosteroid (BR) signaling mediated via the dynamic targeting of BRASSINOSTEROID-INSENSITIVE1 (BRI1) plays complex roles. BRI1 is constitutively secreted to the plasma membrane (PM), internalized, and recycled or delivered into vacuoles, whose PM abundance is critical for BR signaling. Vesicle-target membrane fusion is regulated by heterotetrameric SNARE complexes. SNARE proteins have been implicated in BRI1 targeting, but how SNAREs affect RAM development is unclear. We report that Arabidopsis (Arabidopsis thaliana) YKT61, an atypical R-SNARE protein, is critical for BR-controlled RAM development through the dynamic targeting of BRI1. Functional loss of YKT61 is lethal for both male and female gametophytes. By using weak mutant alleles of YKT61, ykt61-partially complemented (ykt61-pc), we show that YKT61 knockdown results in a reduction of RAM length due to reduced cell division, similar to that in bri1-116. YKT61 physically interacts with BRI1 and is critical for the dynamic recycling of BRI1 to the PM. We further determine that YKT61 is critical for the dynamic biogenesis of vacuoles, for the maintenance of Golgi morphology, and for endocytosis, which may have a broad effect on development. Endomembrane compartments connected via vesicular machinery, such as SNAREs, influence nuclear-controlled cellular activities such as division and differentiation by affecting the dynamic targeting of membrane proteins, supporting a retro-signaling pathway from the endomembrane system to the nucleus.
Collapse
Affiliation(s)
- Ting Ma
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jun-Ru Tan
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Sha Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
38
|
Zhu Y, Su H, Liu XX, Sun JF, Xiang L, Liu YJ, Hu ZW, Xiong XY, Yang XM, Bhutto SH, Li GB, Peng YY, Wang H, Shen X, Zhao ZX, Zhang JW, Huang YY, Fan J, Wang WM, Li Y. Identification of NADPH Oxidase Genes Crucial for Rice Multiple Disease Resistance and Yield Traits. RICE (NEW YORK, N.Y.) 2024; 17:1. [PMID: 38170415 PMCID: PMC10764683 DOI: 10.1186/s12284-023-00678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
Reactive oxygen species (ROS) act as a group of signaling molecules in rice functioning in regulation of development and stress responses. Respiratory burst oxidase homologues (Rbohs) are key enzymes in generation of ROS. However, the role of the nine Rboh family members was not fully understood in rice multiple disease resistance and yield traits. In this study, we constructed mutants of each Rboh genes and detected their requirement in rice multiple disease resistance and yield traits. Our results revealed that mutations of five Rboh genes (RbohA, RbohB, RbohE, RbohH, and RbohI) lead to compromised rice blast disease resistance in a disease nursery and lab conditions; mutations of five Rbohs (RbohA, RbohB, RbohC, RbohE, and RbohH) result in suppressed rice sheath blight resistance in a disease nursery and lab conditions; mutations of six Rbohs (RbohA, RbohB, RbohC, RbohE, RbohH and RbohI) lead to decreased rice leaf blight resistance in a paddy yard and ROS production induced by PAMPs and pathogen. Moreover, all Rboh genes participate in the regulation of rice yield traits, for all rboh mutants display one or more compromised yield traits, such as panicle number, grain number per panicle, seed setting rate, and grain weight, resulting in reduced yield per plant except rbohb and rbohf. Our results identified the Rboh family members involved in the regulation of rice resistance against multiple pathogens that caused the most serious diseases worldwide and provide theoretical supporting for breeding application of these Rbohs to coordinate rice disease resistance and yield traits.
Collapse
Affiliation(s)
- Yong Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Su
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin-Xian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ji-Fen Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Xiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan-Jing Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhang-Wei Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Yu Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue-Mei Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sadam Hussain Bhutto
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuan-Ying Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xu Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
39
|
Li H, Yang Y, Zhang H, Li C, Du P, Bi M, Chen T, Qian D, Niu Y, Ren H, An L, Xiang Y. The Arabidopsis GPI-anchored protein COBL11 is necessary for regulating pollen tube integrity. Cell Rep 2023; 42:113353. [PMID: 38007687 DOI: 10.1016/j.celrep.2023.113353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 11/27/2023] Open
Abstract
Pollen tube integrity is required for achieving double fertilization in angiosperms. The rapid alkalinization factor4/19-ANXUR1/2-Buddha's paper seal 1/2 (RALF4/19-ANX1/2-BUPS1/2)-complex-mediated signaling pathway is critical to maintain pollen tube integrity, but the underlying mechanisms regulating the polar localization and distribution of these complex members at the pollen tube tip remain unclear. Here, we find that COBRA-like protein 11 (COBL11) loss-of-function mutants display a low pollen germination ratio, premature pollen tube burst, and seed abortion in Arabidopsis. COBL11 could interact with RALF4/19, ANX1/2, and BUPS1/2, and COBL11 functional deficiency could result in the disrupted distribution of RALF4 and ANX1, altered cell wall composition, and decreased levels of reactive oxygen species in pollen tubes. In conclusion, COBL11 is a regulator of pollen tube integrity during polar growth, which is conducted by a direct interaction that ensures the correct localization and polar distribution of RALF4 and ANX1 at the pollen tube tip.
Collapse
Affiliation(s)
- Hongxia Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yang Yang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongkai Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chengying Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Pingzhou Du
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai 519087, China
| | - Mengmeng Bi
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tao Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haiyun Ren
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai 519087, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
40
|
Peng G, Liu M, Zhu L, Luo W, Wang Q, Wang M, Chen H, Luo Z, Xiao Y, Zhang Y, Hong H, Liu Z, Zhou L, Guo G, Wang Y, Zhuang C, Zhou H. The E3 ubiquitin ligase CSIT1 regulates critical sterility-inducing temperature by ribosome-associated quality control to safeguard two-line hybrid breeding in rice. MOLECULAR PLANT 2023; 16:1695-1709. [PMID: 37743625 DOI: 10.1016/j.molp.2023.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/28/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Two-line hybrid breeding can fully utilize heterosis in crops. In thermo-sensitive genic male sterile (TGMS) lines, low critical sterility-inducing temperature (CSIT) is vital to safeguard the production of two-line hybrid seeds in rice (Oryza sativa), but the molecular mechanism determining CSIT is unclear. Here, we report the cloning of CSIT1, which encodes an E3 ubiquitin ligase, and show that CSIT1 modulates the CSIT of thermo-sensitive genic male sterility 5 (tms5)-based TGMS lines through ribosome-associated quality control (RQC). Biochemical assays demonstrated that CSIT1 binds to the 80S ribosomes and ubiquitinates abnormal nascent polypeptides for degradation in the RQC process. Loss of CSIT1 function inhibits the possible damage of tms5 to the ubiquitination system and protein translation, resulting in enhanced accumulation of anther-related proteins such as catalase to suppress abnormal accumulation of reactive oxygen species and premature programmed cell death in the tapetum, thereby leading to a much higher CSIT in the tms5-based TGMS lines. Taken together, our findings reveal a regulatory mechanism of CSIT, providing new insights into RQC and potential targets for future two-line hybrid breeding.
Collapse
Affiliation(s)
- Guoqing Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture & Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Minglong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Liya Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenlong Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qinghua Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mumei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huiqiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ziliang Luo
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA
| | - Yueping Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yongjie Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Haona Hong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Lingyan Zhou
- College of Agriculture & Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Guoqiang Guo
- Hengyang Academy of Agricultural Sciences, Hengyang 421101, China
| | - Yingxiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
41
|
Ali S, Tyagi A, Bae H. ROS interplay between plant growth and stress biology: Challenges and future perspectives. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108032. [PMID: 37757722 DOI: 10.1016/j.plaphy.2023.108032] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
In plants, reactive oxygen species (ROS) have emerged as a multifunctional signaling molecules that modulate diverse stress and growth responses. Earlier studies on ROS in plants primarily focused on its toxicity and ROS-scavenging processes, but recent findings are offering new insights on its role in signal perception and transduction. Further, the interaction of cell wall receptors, calcium channels, HATPase, protein kinases, and hormones with NADPH oxidases (respiratory burst oxidase homologues (RBOHs), provides concrete evidence that ROS regulates major signaling cascades in different cellular compartments related to stress and growth responses. However, at the molecular level there are many knowledge gaps regarding how these players influence ROS signaling and how ROS regulate them during growth and stress events. Furthermore, little is known about how plant sensors or receptors detect ROS under various environmental stresses and induce subsequent signaling cascades. In light of this, we provided an update on the role of ROS signaling in plant growth and stress biology. First, we focused on ROS signaling, its production and regulation by cell wall receptor like kinases. Next, we discussed the interplay between ROS, calcium and hormones, which forms a major signaling trio regulatory network of signal perception and transduction. We also provided an overview on ROS and nitric oxide (NO) crosstalk. Furthermore, we emphasized the function of ROS signaling in biotic, abiotic and mechanical stresses, as well as in plant growth and development. Finally, we conclude by highlighting challenges and future perspectives of ROS signaling in plants that warrants future investigation.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
42
|
Hua M, Yin W, Fernández Gómez J, Tidy A, Xing G, Zong J, Shi S, Wilson ZA. Barley TAPETAL DEVELOPMENT and FUNCTION1 (HvTDF1) gene reveals conserved and unique roles in controlling anther tapetum development in dicot and monocot plants. THE NEW PHYTOLOGIST 2023; 240:173-190. [PMID: 37563927 PMCID: PMC10952600 DOI: 10.1111/nph.19161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/20/2023] [Indexed: 08/12/2023]
Abstract
The anther tapetum helps control microspore release and essential components for pollen wall formation. TAPETAL DEVELOPMENT and FUNCTION1 (TDF1) is an essential R2R3 MYB tapetum transcription factor in Arabidopsis thaliana; however, little is known about pollen development in the temperate monocot barley. Here, we characterize the barley (Hordeum vulgare L.) TDF1 ortholog using reverse genetics and transcriptomics. Spatial/temporal expression analysis indicates HvTDF1 has tapetum-specific expression during anther stage 7/8. Homozygous barley hvtdf1 mutants exhibit male sterility with retarded tapetum development, delayed tapetum endomitosis and cell wall degeneration, resulting in enlarged, vacuolated tapetum surrounding collapsing microspores. Transient protein expression and dual-luciferase assays show TDF1 is a nuclear-localized, transcription activator, that directly activates osmotin proteins. Comparison of hvtdf1 transcriptome data revealed several pathways were delayed, endorsing the observed retarded anther morphology. Arabidopsis tdf1 mutant fertility was recovered by HvTDF1, supporting a conserved role for TDF1 in monocots and dicots. This indicates that tapetum development shares similarity between monocot and dicots; however, barley HvTDF1 appears to uniquely act as a modifier to activate tapetum gene expression pathways, which are subsequently also induced by other factors. Therefore, the absence of HvTDF1 results in delayed developmental progression rather than pathway failure, although inevitably still results in pollen degeneration.
Collapse
Affiliation(s)
- Miaoyuan Hua
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLeicsLE12 5RDUK
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Wenzhe Yin
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLeicsLE12 5RDUK
| | | | - Alison Tidy
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLeicsLE12 5RDUK
| | - Guangwei Xing
- Goethe University Frankfurt am MainMax‐von‐Laue Str. 9Frankfurt am Main60438Germany
| | - Jie Zong
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Shuya Shi
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLeicsLE12 5RDUK
| | - Zoe A. Wilson
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLeicsLE12 5RDUK
| |
Collapse
|
43
|
Zhang C, Zhang C, Xu X, Liao M, Tong N, Zhang Z, Chen Y, Xu Han X, Lin Y, Lai Z. Transcriptome analysis provides insight into the regulatory mechanisms underlying pollen germination recovery at normal high ambient temperature in wild banana ( Musa itinerans). FRONTIERS IN PLANT SCIENCE 2023; 14:1255418. [PMID: 37822335 PMCID: PMC10562711 DOI: 10.3389/fpls.2023.1255418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Introduction Cultivated banana are polyploid, with low pollen fertility, and most cultivars are male sterile, which leads to difficulties in banana breeding research. The selection of male parent with excellent resistance and pollen fertility is therefore essential for banana breeding. Wild banana (Musa itinerans) have developed many good characteristics during natural selection and constitute an excellent gene pool for breeding. Therefore, research on wild banana breeding is very important for banana breeding. Results In the current analysis, we examined the changes in viability of wild banana pollens at different temperatures by in vitro germination, and found that the germination ability of wild banana pollens cultured at 28°C for 2 days was higher than that of pollens cultured at 23°C (pollens that could not germinate normally under low temperature stress), 24°C (cultured at a constant temperature for 2 days) and 32°C (cultured at a constant temperature for 2 days). To elucidate the molecular mechanisms underlying the germination restoration process in wild banana pollens, we selected the wild banana pollens that had lost its germination ability under low temperature stress (23°C) as the control group (CK) and the wild banana pollens that had recovered its germination ability under constant temperature incubation of 28°C for 2 days as the treatment group (T) for transcriptome sequencing. A total of 921 differentially expressed genes (DEGs) were detected in CK vs T, of which 265 were up-regulated and 656 were down-regulated. The combined analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that the activation, metabolism of various substances (lipids, sugars, amino acids) play a major role in restoring pollen germination capacity. TCA cycle and the sesquiterpenoid and triterpenoid biosynthetic pathways were also significantly enriched in the KEGG pathway. And we found that some DEGs may be associated with pollen wall formation, DNA methylation and DNA repair. The cysteine content, free fatty acid (FFA) content, H2O2 content, fructose content, and sucrose content of pollen were increased at treatment of 28°C, while D-Golactose content was decreased. Finally, the GO pathway was enriched for a total of 24 DEGs related to pollen germination, of which 16 DEGs received targeted regulation by 14 MYBs. Discussions Our study suggests that the balance between various metabolic processes, pollen wall remodelling, DNA methylation, DNA repairs and regulation of MYBs are essential for germination of wild banana pollens.
Collapse
Affiliation(s)
- Chunyu Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chengyu Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoqiong Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Minzhang Liao
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ning Tong
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xu Xu Han
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, Toulouse, France
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
44
|
Chen H, Zhang S, Li R, Peng G, Chen W, Rautengarten C, Liu M, Zhu L, Xiao Y, Song F, Ni J, Huang J, Wu A, Liu Z, Zhuang C, Heazlewood JL, Xie Y, Chu Z, Zhou H. BOTRYOID POLLEN 1 regulates ROS-triggered PCD and pollen wall development by controlling UDP-sugar homeostasis in rice. THE PLANT CELL 2023; 35:3522-3543. [PMID: 37352123 PMCID: PMC10473207 DOI: 10.1093/plcell/koad181] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/25/2023]
Abstract
Uridine diphosphate (UDP)-sugars are important metabolites involved in the biosynthesis of polysaccharides and may be important signaling molecules. UDP-glucose 4-epimerase (UGE) catalyzes the interconversion between UDP-Glc and UDP-Gal, whose biological function in rice (Oryza sativa) fertility is poorly understood. Here, we identify and characterize the botryoid pollen 1 (bp1) mutant and show that BP1 encodes a UGE that regulates UDP-sugar homeostasis, thereby controlling the development of rice anthers. The loss of BP1 function led to massive accumulation of UDP-Glc and imbalance of other UDP-sugars. We determined that the higher levels of UDP-Glc and its derivatives in bp1 may induce the expression of NADPH oxidase genes, resulting in a premature accumulation of reactive oxygen species (ROS), thereby advancing programmed cell death (PCD) of anther walls but delaying the end of tapetal degradation. The accumulation of UDP-Glc as metabolites resulted in an abnormal degradation of callose, producing an adhesive microspore. Furthermore, the UDP-sugar metabolism pathway is not only involved in the formation of intine but also in the formation of the initial framework for extine. Our results reveal how UDP-sugars regulate anther development and provide new clues for cellular ROS accumulation and PCD triggered by UDP-Glc as a signaling molecule.
Collapse
Affiliation(s)
- Huiqiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Shuqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ruiqi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guoqing Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Weipan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Carsten Rautengarten
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Minglong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Liya Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yueping Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fengshun Song
- Key Laboratory of Rice Genetics Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Jinlong Ni
- Key Laboratory of Rice Genetics Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Jilei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Aimin Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Joshua L Heazlewood
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhizhan Chu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
45
|
Jahed KR, Saini AK, Sherif SM. Coping with the cold: unveiling cryoprotectants, molecular signaling pathways, and strategies for cold stress resilience. FRONTIERS IN PLANT SCIENCE 2023; 14:1246093. [PMID: 37649996 PMCID: PMC10465183 DOI: 10.3389/fpls.2023.1246093] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Low temperature stress significantly threatens crop productivity and economic sustainability. Plants counter this by deploying advanced molecular mechanisms to perceive and respond to cold stress. Transmembrane proteins initiate these responses, triggering a series of events involving secondary messengers such as calcium ions (Ca2+), reactive oxygen species (ROS), and inositol phosphates. Of these, calcium signaling is paramount, activating downstream phosphorylation cascades and the transcription of cold-responsive genes, including cold-regulated (COR) genes. This review focuses on how plants manage freeze-induced damage through dual strategies: cold tolerance and cold avoidance. Tolerance mechanisms involve acclimatization to decreasing temperatures, fostering gradual accumulation of cold resistance. In contrast, avoidance mechanisms rely on cryoprotectant molecules like potassium ions (K+), proline, glycerol, and antifreeze proteins (AFPs). Cryoprotectants modulate intracellular solute concentration, lower the freezing point, inhibit ice formation, and preserve plasma membrane fluidity. Additionally, these molecules demonstrate antioxidant activity, scavenging ROS, preventing protein denaturation, and subsequently mitigating cellular damage. By forming extensive hydrogen bonds with water molecules, cryoprotectants also limit intercellular water movement, minimizing extracellular ice crystal formation, and cell dehydration. The deployment of cryoprotectants is a key adaptive strategy that bolsters plant resilience to cold stress and promotes survival in freezing environments. However, the specific physiological and molecular mechanisms underlying these protective effects remain insufficiently understood. Therefore, this review underscores the need for further research to elucidate these mechanisms and assess their potential impact on crop productivity and sustainability, contributing to the progressive discourse in plant biology and environmental science.
Collapse
Affiliation(s)
| | | | - Sherif M. Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA, United States
| |
Collapse
|
46
|
Hou Q, An X, Ma B, Wu S, Wei X, Yan T, Zhou Y, Zhu T, Xie K, Zhang D, Li Z, Zhao L, Niu C, Long Y, Liu C, Zhao W, Ni F, Li J, Fu D, Yang ZN, Wan X. ZmMS1/ZmLBD30-orchestrated transcriptional regulatory networks precisely control pollen exine development. MOLECULAR PLANT 2023; 16:1321-1338. [PMID: 37501369 DOI: 10.1016/j.molp.2023.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/09/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Because of its significance for plant male fertility and, hence, direct impact on crop yield, pollen exine development has inspired decades of scientific inquiry. However, the molecular mechanism underlying exine formation and thickness remains elusive. In this study, we identified that a previously unrecognized repressor, ZmMS1/ZmLBD30, controls proper pollen exine development in maize. Using an ms1 mutant with aberrantly thickened exine, we cloned a male-sterility gene, ZmMs1, which encodes a tapetum-specific lateral organ boundary domain transcription factor, ZmLBD30. We showed that ZmMs1/ZmLBD30 is initially turned on by a transcriptional activation cascade of ZmbHLH51-ZmMYB84-ZmMS7, and then it serves as a repressor to shut down this cascade via feedback repression to ensure timely tapetal degeneration and proper level of exine. This activation-feedback repression loop regulating male fertility is conserved in maize and sorghum, and similar regulatory mechanism may also exist in other flowering plants such as rice and Arabidopsis. Collectively, these findings reveal a novel regulatory mechanism of pollen exine development by which a long-sought master repressor of upstream activators prevents excessive exine formation.
Collapse
Affiliation(s)
- Quancan Hou
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xueli An
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Biao Ma
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China
| | - Suowei Wu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xun Wei
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Tingwei Yan
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Zhou
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Taotao Zhu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China
| | - Ke Xie
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Danfeng Zhang
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Ziwen Li
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Lina Zhao
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Canfang Niu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Yan Long
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Chang Liu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China
| | - Wei Zhao
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China
| | - Fei Ni
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Daolin Fu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| |
Collapse
|
47
|
Zhang J, Zhang L, Liang D, Yang Y, Geng B, Jing P, Qu Y, Huang J. ROS accumulation-induced tapetal PCD timing changes leads to microspore abortion in cotton CMS lines. BMC PLANT BIOLOGY 2023; 23:311. [PMID: 37308826 DOI: 10.1186/s12870-023-04317-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cytoplasmic male sterility (CMS) is the basis of heterosis exploitation. CMS has been used to hybrid production in cotton, but its molecular mechanism remains unclear. CMS is associated with advanced or delayed tapetal programmed cell death (PCD), and reactive oxygen species (ROS) may mediate this process. In this study, we obtained Jin A and Yamian A, two CMS lines with different cytoplasmic sources. RESULTS Compared with maintainer Jin B, Jin A anthers showed advanced tapetal PCD with DNA fragmentation, producing excessive ROS which accumulated around the cell membrane, intercellular space and mitochondrial membrane. The activities of peroxidase (POD) and catalase (CAT) enzymes which can scavenge ROS were significantly decreased. However, Yamian A tapetal PCD was delayed with lower ROS content, and the activities of superoxide dismutase (SOD) and POD were higher than its maintainer. These differences in ROS scavenging enzyme activities may be caused by isoenzyme gene expressions. In addition, we found the excess ROS generated in Jin A mitochondria and ROS overflow from complex III might be the source in parallel with the reduction of ATP content. CONCLUSION ROS accumulation or abrogation were mainly caused by the joint action of ROS generation and scavenging enzyme activities transformation, which led to the abnormal progression of tapetal PCD, affected the development of microspores, and eventually contributed to male sterility. In Jin A, tapetal PCD in advance might be caused by mitochondrial ROS overproduction, accompanied by energy deficiency. The above studies will provide new insights into the cotton CMS and guide the follow-up research ideas.
Collapse
Affiliation(s)
- Jinlong Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Li Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Dong Liang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yujie Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Biao Geng
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Panpan Jing
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yunfang Qu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jinling Huang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
48
|
Mei X, Zhao Z, Bai Y, Yang Q, Gan Y, Wang W, Li C, Wang J, Cai Y. Salt Tolerant Gene 1 contributes to salt tolerance by maintaining photosystem II activity in maize. PLANT, CELL & ENVIRONMENT 2023; 46:1453-1471. [PMID: 36891878 DOI: 10.1111/pce.14551] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 05/22/2023]
Abstract
Salt stress is a major environmental factor limiting crop growth and productivity. Here, we show that Salt-Tolerant Gene 1 (ZmSTG1) contributes to salt tolerance by maintaining photosystem activity in maize. ZmSTG1 encodes an endoplasmic reticulum localized protein and retrotransposon insertion in the promoter region causes differential expression levels in maize inbred lines. Overexpression of ZmSTG1 improved plant growth vigor, and knockout of ZmSTG1 weakened plant growth under normal and salt stress conditions. Transcriptome and metabolome analyses indicated that ZmSTG1 might regulate the expression of lipid trafficking-related genes dependent on the abscisic acid (ABA) signaling pathway, thereby increasing the galactolipids and phospholipid concentrations in the photosynthetic membrane under salt stress. Chlorophyll fluorescence parameters showed that the knockout of ZmSTG1 led to significant impairment of plant photosystem II (PSII) activity under normal and salt stress conditions, whereas overexpression of ZmSTG1 dramatically improved plant PSII activity under salt stress conditions. We also demonstrated that the application of the salt-tolerant locus could enhance salt tolerance in hybrid maize plants. Taken together, we propose that ZmSTG1 may modulate the lipid composition in the photosynthetic membrane by affecting the expression of lipid trafficking-related genes to maintain the photosynthetic activity of plants under salt stress.
Collapse
Affiliation(s)
- Xiupeng Mei
- Maize Research Institute, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Zikun Zhao
- Maize Research Institute, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yang Bai
- Maize Research Institute, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Qiuyue Yang
- Maize Research Institute, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yuling Gan
- Maize Research Institute, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Wenqin Wang
- Maize Research Institute, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Chaofeng Li
- Maize Research Institute, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Jiuguang Wang
- Maize Research Institute, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yilin Cai
- Maize Research Institute, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
49
|
Saxena S, Das A, Kaila T, Ramakrishna G, Sharma S, Gaikwad K. Genomic survey of high-throughput RNA-Seq data implicates involvement of long intergenic non-coding RNAs (lincRNAs) in cytoplasmic male-sterility and fertility restoration in pigeon pea. Genes Genomics 2023; 45:783-811. [PMID: 37115379 DOI: 10.1007/s13258-023-01383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/21/2022] [Indexed: 04/29/2023]
Abstract
BACKGROUND Long-intergenic non-coding RNAs (lincRNAs) originate from intergenic regions and have no coding potential. LincRNAs have emerged as key players in the regulation of various biological processes in plant development. Cytoplasmic male-sterility (CMS) in association with restorer-of-fertility (Rf) systems makes it a highly reliable tool for exploring heterosis for producing commercial hybrid seeds. To date, there have been no reports of lincRNAs during pollen development in CMS and fertility restorer lines in pigeon pea. OBJECTIVE Identification of lincRNAs in the floral buds of cytoplasmic male-sterile (AKCMS11) and fertility restorer (AKPR303) pigeon pea lines. METHODS We employed a computational approach to identify lincRNAs in the floral buds of cytoplasmic male-sterile (AKCMS11) and fertility restorer (AKPR303) pigeon pea lines using RNA-Seq data. RESULTS We predicted a total of 2145 potential lincRNAs of which 966 were observed to be differentially expressed between the sterile and fertile pollen. We identified, 927 cis-regulated and 383 trans-regulated target genes of the lincRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the target genes revealed that these genes were specifically enriched in pathways like pollen and pollen tube development, oxidative phosphorylation, etc. We detected 23 lincRNAs that were co-expressed with 17 pollen-related genes with known functions. Fifty-nine lincRNAs were predicted to be endogenous target mimics (eTMs) for 25 miRNAs, and found to be associated with pollen development. The, lincRNA regulatory networks revealed that different lincRNA-miRNA-mRNA networks might be associated with CMS and fertility restoration. CONCLUSION Thus, this study provides valuable information by highlighting the functions of lincRNAs as regulators during pollen development in pigeon pea and utilization in hybrid seed production.
Collapse
Affiliation(s)
- Swati Saxena
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Antara Das
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Tanvi Kaila
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - G Ramakrishna
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
50
|
Doll NM. Stop vitamins: Low levels of ascorbic acid regulate the transition from cell proliferation to differentiation in Arabidopsis tapetum. THE PLANT CELL 2023; 35:1300-1301. [PMID: 36797218 PMCID: PMC10118262 DOI: 10.1093/plcell/koad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
|