1
|
Li J, Yao X, Zhang J, Li M, Xie Q, Yang Y, Chen G, Zhang X, Hu Z. Genome-Wide Identification and Expression Analysis of Hexokinase Gene Family Under Abiotic Stress in Tomato. PLANTS (BASEL, SWITZERLAND) 2025; 14:441. [PMID: 39943003 PMCID: PMC11819920 DOI: 10.3390/plants14030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025]
Abstract
In plants, hexokinase (HXK) is a kind of bifunctional enzyme involved in sugar metabolism and sugar signal transduction that plays important roles in plant growth and development and stress response. Some HXK genes without a phosphorylation function have been found in Arabidopsis, tobacco, etc., but these genes have not been identified in tomato. Therefore, further genome-wide systematic identification and characterization is necessary for tomato HXK genes. In this study, six HXK genes were identified from the tomato genome distributed across six different chromosomes, named SlHXK1-6. Gene structure analysis showed that the SlHXK genes contain the same number of introns and exons. Gene duplication and collinearity analysis revealed two pairs of tandem repeats among SlHXKs, and a higher collinearity between tomatoes and potatoes were found. Response elements associated with phytohormones, abiotic stresses, and growth and development were identified in the promoter sequences of SlHXKs. Quantitative real-time PCR (qRT-PCR) results further indicated the potential role of SlHXKs in tomato development and stress responses. The expression levels of most SlHXKs were significantly induced by abiotic stress, hormone, and sugar solution treatments. In particular, the expression of SlHXK1 was significantly induced by various treatments. Functional complementation experiments were performed using HXK-deficient yeast strain YSH7.4-3C (hxk1, hxk2, and glk1), and the results showed that SlHXK5 and SlHXK6 were unable to phosphorylate glucose and fructose in yeast. In conclusion, these results provide valuable foundations for further exploring the sugar metabolism and sugar signal transduction mechanisms of HXK and the functions of SlHXK genes in various abiotic stresses, and some SlHXKs may be key genes for enhancing plants' tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing 400030, China; (J.L.); (Q.X.); (Y.Y.); (G.C.)
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China;
| | - Xiong Yao
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China;
| | - Jianling Zhang
- Laboratory of Plant Germplasm Resources Innovation and Utilization, College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China;
| | - Maoyu Li
- Chongqing Seed Station, Chongqing 401121, China;
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing 400030, China; (J.L.); (Q.X.); (Y.Y.); (G.C.)
| | - Yingwu Yang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing 400030, China; (J.L.); (Q.X.); (Y.Y.); (G.C.)
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing 400030, China; (J.L.); (Q.X.); (Y.Y.); (G.C.)
| | - Xianwei Zhang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China;
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing 400030, China; (J.L.); (Q.X.); (Y.Y.); (G.C.)
| |
Collapse
|
2
|
Tyagi K, Chandan RK, Sahoo D, Ghosh S, Gupta S, Jha G. The host and pathogen myo-inositol-1-phosphate synthases are required for Rhizoctonia solani AG1-IA infection in tomato. MOLECULAR PLANT PATHOLOGY 2024; 25:e13470. [PMID: 39376048 PMCID: PMC11458890 DOI: 10.1111/mpp.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 10/09/2024]
Abstract
The myo-inositol-1-phosphate synthase (MIPS) catalyses the biosynthesis of myo-inositol, an important sugar that regulates various physiological and biochemical processes in plants. Here, we provide evidence that host (SlMIPS1) and pathogen (Rs_MIPS) myo-inositol-1-phosphate synthase (MIPS) genes are required for successful infection of Rhizoctonia solani, a devastating necrotrophic fungal pathogen, in tomato. Silencing of either SlMIPS1 or Rs_MIPS prevented disease, whereas an exogenous spray of myo-inositol enhanced disease severity. SlMIPS1 was upregulated upon R. solani infection, and potentially promoted source-to-sink transition, induced SWEET gene expression, and facilitated sugar availability in the infected tissues. In addition, salicylic acid (SA)-jasmonic acid homeostasis was altered and SA-mediated defence was suppressed; therefore, disease was promoted. On the other hand, silencing of SlMIPS1 limited sugar availability and induced SA-mediated defence to prevent R. solani infection. Virus-induced gene silencing of NPR1, a key gene in SA signalling, rendered SlMIPS1-silenced tomato lines susceptible to infection. These analyses suggest that induction of SA-mediated defence imparts disease tolerance in SlMIPS1-silenced tomato lines. In addition, we present evidence that SlMIPS1 and SA negatively regulate each other to modulate the defence response. SA treatment reduced SlMIPS1 expression and myo-inositol content in tomato, whereas myo-inositol treatment prevented SA-mediated defence. We emphasize that downregulation of host/pathogen MIPS can be an important strategy for controlling diseases caused by R. solani in agriculturally important crops.
Collapse
Affiliation(s)
- Kriti Tyagi
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Ravindra K. Chandan
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Debashis Sahoo
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Srayan Ghosh
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Santosh Kumar Gupta
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Gopaljee Jha
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| |
Collapse
|
3
|
Zhang Q, Wang X, Zhao T, Luo J, Liu X, Jiang J. CYTOSOLIC INVERTASE2 regulates flowering and reactive oxygen species-triggered programmed cell death in tomato. PLANT PHYSIOLOGY 2024; 196:1110-1125. [PMID: 38991558 DOI: 10.1093/plphys/kiae374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024]
Abstract
Cytosolic invertase (CIN) in plants hydrolyzes sucrose into fructose and glucose, influencing flowering time and organ development. However, the underlying molecular mechanisms remain elusive. Through expressional, genetic, and histological analyses, we identified a substantially role of SlCIN2 (localized in mitochondria) in regulating flowering and pollen development in tomato (Solanum lycopersicum). The overexpression of SlCIN2 resulted in increased hexose accumulation and decreased sucrose and starch content. Our findings indicated that SlCIN2 interacts with Sucrose transporter2 (SlSUT2) to inhibit the sucrose transport activity of SlSUT2, thereby suppressing sucrose content in flower buds and delaying flowering. We found that higher levels of glucose in SlCIN2-overexpressing anthers result in the accumulation of abscisic acid (ABA) and reactive oxygen species (ROS), thereby disrupting programmed cell death (PCD) in anthers and delaying the end of tapetal degradation. Exogenous sucrose partially restored fertility in SlCIN2-overexpressing plants. This study revealed the mechanism by which SlCIN2 regulates pollen development and demonstrated a strategy for creating sugar-regulated gene male sterility lines for tomato hybrid seed production.
Collapse
Affiliation(s)
- Qiongqiong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xi Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Tianying Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Junfeng Luo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China
| | - Jing Jiang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China
| |
Collapse
|
4
|
Ali MF, Muday GK. Reactive oxygen species are signaling molecules that modulate plant reproduction. PLANT, CELL & ENVIRONMENT 2024; 47:1592-1605. [PMID: 38282262 DOI: 10.1111/pce.14837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
Reactive oxygen species (ROS) can serve as signaling molecules that are essential for plant growth and development but abiotic stress can lead to ROS increases to supraoptimal levels resulting in cellular damage. To ensure efficient ROS signaling, cells have machinery to locally synthesize ROS to initiate cellular responses and to scavenge ROS to prevent it from reaching damaging levels. This review summarizes experimental evidence revealing the role of ROS during multiple stages of plant reproduction. Localized ROS synthesis controls the formation of pollen grains, pollen-stigma interactions, pollen tube growth, ovule development, and fertilization. Plants utilize ROS-producing enzymes such as respiratory burst oxidase homologs and organelle metabolic pathways to generate ROS, while the presence of scavenging mechanisms, including synthesis of antioxidant proteins and small molecules, serves to prevent its escalation to harmful levels. In this review, we summarized the function of ROS and its synthesis and scavenging mechanisms in all reproductive stages from gametophyte development until completion of fertilization. Additionally, we further address the impact of elevated temperatures induced ROS on impairing these reproductive processes and of flavonol antioxidants in maintaining ROS homeostasis to minimize temperature stress to combat the impact of global climate change on agriculture.
Collapse
Affiliation(s)
- Mohammad Foteh Ali
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston Salem, NC, United States
| | - Gloria K Muday
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston Salem, NC, United States
| |
Collapse
|
5
|
Wang Q, Liu W, Leung CC, Tarté DA, Gendron JM. Plants distinguish different photoperiods to independently control seasonal flowering and growth. Science 2024; 383:eadg9196. [PMID: 38330117 PMCID: PMC11134419 DOI: 10.1126/science.adg9196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024]
Abstract
Plants measure daylength (photoperiod) to regulate seasonal growth and flowering. Photoperiodic flowering has been well studied, but less is known about photoperiodic growth. By using a mutant with defects in photoperiodic growth, we identified a seasonal growth regulation pathway that functions in long days in parallel to the canonical long-day photoperiod flowering mechanism. This is achieved by using distinct mechanisms to detect different photoperiods: The flowering pathway measures photoperiod as the duration of light intensity, whereas the growth pathway measures photoperiod as the duration of photosynthetic activity (photosynthetic period). Plants can then independently control expression of genes required for flowering or growth. This demonstrates that seasonal flowering and growth are dissociable, allowing them to be coordinated independently across seasons.
Collapse
Affiliation(s)
- Qingqing Wang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Wei Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Chun Chung Leung
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Daniel A. Tarté
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Joshua M. Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
6
|
Yamada K, Mine A. Sugar coordinates plant defense signaling. SCIENCE ADVANCES 2024; 10:eadk4131. [PMID: 38266087 PMCID: PMC10807812 DOI: 10.1126/sciadv.adk4131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Pathogen recognition triggers energy-intensive defense systems. Although successful defense should depend on energy availability, how metabolic information is communicated to defense remains unclear. We show that sugar, especially glucose-6-phosphate (G6P), is critical in coordinating defense in Arabidopsis. Under sugar-sufficient conditions, phosphorylation levels of calcium-dependent protein kinase 5 (CPK5) are elevated by G6P-mediated suppression of protein phosphatases, enhancing defense responses before pathogen invasion. Subsequently, recognition of bacterial flagellin activates sugar transporters, leading to increased cellular G6P, which elicits CPK5-independent signaling promoting synthesis of the phytohormone salicylic acid (SA) for antibacterial defense. In contrast, while perception of fungal chitin does not promote sugar influx or SA accumulation, chitin-induced synthesis of the antifungal compound camalexin requires basal sugar influx activity. By monitoring sugar levels, plants determine defense levels and execute appropriate outputs against bacterial and fungal pathogens. Together, our findings provide a comprehensive view of the roles of sugar in defense.
Collapse
Affiliation(s)
- Kohji Yamada
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
- JST, PRESTO, Kawaguchi, Japan
| | - Akira Mine
- JST, PRESTO, Kawaguchi, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Li J, Liu Y, Zhang J, Cao L, Xie Q, Chen G, Chen X, Hu Z. Suppression of a hexokinase gene SlHXK1 in tomato affects fruit setting and seed quality. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108160. [PMID: 37944243 DOI: 10.1016/j.plaphy.2023.108160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Hexokinase is considered to be the key molecule in sugar signaling and metabolism. Here, we reported that silencing SlHXK1 resulted in a decrease in flower number, increased rate of flower dropping, abnormal thickening of the anther wall, and reduced pollen and seed viability. An anatomical analysis revealed the loss of small cells and abnormal thickening of anther walls in SlHXK1-RNAi lines. Treatment with auxin and 1-methylcyclopropene inhibited flower dropping from the pedicel abscission zone. qRT-PCR analysis revealed that the effect of SlHXK1 on abscission was associated with the expression levels of genes related to key meristem, auxin, ethylene, cell wall metabolism and programmed cell death. Pollen germination and pollen staining experiments showed that pollen viability was significantly reduced in the SlHXK1-RNAi lines. Physiological and biochemical analyses showed that hexokinase activity and starch content were markedly decreased in the transgenic lines. The expression of genes related to tomato pollen development was also suppressed in the transgenic lines. Although the RNAi lines eventually produced some viable seeds, the yield and quality of the seeds was lower than that of wild-type plants. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that SlHXK1 interacted with SlKINγ. Furthermore, SlPIF4 inhibited the transcriptional expression of SlHXK1. In conclusion, our results demonstrate that SlHXK1 may play important roles in pollen, anther, seed and the pedicel abscission zone by affecting starch accumulation or cell wall synthesis, as well as by regulating the number of the transcripts of genes that are involved in auxin, ethylene and cell wall degradation.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Yu Liu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Jianling Zhang
- Laboratory of Plant Germplasm Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng, China.
| | - Lili Cao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Xuqing Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China.
| |
Collapse
|
8
|
Vanderwall M, Gendron JM. HEXOKINASE1 and glucose-6-phosphate fuel plant growth and development. Development 2023; 150:dev202346. [PMID: 37842778 PMCID: PMC10617624 DOI: 10.1242/dev.202346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
As photoautotrophic organisms, plants produce an incredible spectrum of pigments, anti-herbivory compounds, structural materials and energic intermediates. These biosynthetic routes help plants grow, reproduce and mitigate stress. HEXOKINASE1 (HXK1), a metabolic enzyme and glucose sensor, catalyzes the phosphorylation of hexoses, a key introductory step for many of these pathways. However, previous studies have largely focused on the glucose sensing and signaling functions of HXK1, and the importance of the enzyme's catalytic function is only recently being connected to plant development. In this brief Spotlight, we describe the developmental significance of plant HXK1 and its role in plant metabolic pathways, specifically in glucose-6-phosphate production. Furthermore, we describe the emerging connections between metabolism and development and suggest that HXK1 signaling and catalytic activity regulate discrete areas of plant development.
Collapse
Affiliation(s)
- Morgan Vanderwall
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Joshua M. Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
9
|
Adak A, Murray SC, Calderón CI, Infante V, Wilker J, Varela JI, Subramanian N, Isakeit T, Ané JM, Wallace J, de Leon N, Stull MA, Brun M, Hill J, Johnson CD. Genetic mapping and prediction for novel lesion mimic in maize demonstrates quantitative effects from genetic background, environment and epistasis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:155. [PMID: 37329482 DOI: 10.1007/s00122-023-04394-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
KEY MESSAGE A novel locus was discovered on chromosome 7 associated with a lesion mimic in maize; this lesion mimic had a quantitative and heritable phenotype and was predicted better via subset genomic markers than whole genome markers across diverse environments. Lesion mimics are a phenotype of leaf micro-spotting in maize (Zea mays L.), which can be early signs of biotic or abiotic stresses. Dissecting its inheritance is helpful to understand how these loci behave across different genetic backgrounds. Here, 538 maize recombinant inbred lines (RILs) segregating for a novel lesion mimic were quantitatively phenotyped in Georgia, Texas, and Wisconsin. These RILs were derived from three bi-parental crosses using a tropical pollinator (Tx773) as the common parent crossed with three inbreds (LH195, LH82, and PB80). While this lesion mimic was heritable across three environments based on phenotypic ([Formula: see text] = 0.68) and genomic ([Formula: see text] = 0.91) data, transgressive segregation was observed. A genome-wide association study identified a single novel locus on chromosome 7 (at 70.6 Mb) also covered by a quantitative trait locus interval (69.3-71.0 Mb), explaining 11-15% of the variation, depending on the environment. One candidate gene identified in this region, Zm00001eb308070, is related to the abscisic acid pathway involving in cell death. Genomic predictions were applied to genome-wide markers (39,611 markers) contrasted with a marker subset (51 markers). Population structure explained more variation than environment in genomic prediction, but other substantial genetic background effects were additionally detected. Subset markers explained substantially less genetic variation (24.9%) for the lesion mimic than whole genome markers (55.4%) in the model, yet predicted the lesion mimic better (0.56-0.66 vs. 0.26-0.29). These results indicate this lesion mimic phenotype was less affected by environment than by epistasis and genetic background effects, which explain its transgressive segregation.
Collapse
Affiliation(s)
- Alper Adak
- Department of Soil and Crop Sciences, Texas A&M University, Agronomy Field Lab 110/111, College Station, TX, 77843, USA
| | - Seth C Murray
- Department of Soil and Crop Sciences, Texas A&M University, Agronomy Field Lab 110/111, College Station, TX, 77843, USA.
| | - Claudia Irene Calderón
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Escuela de Biología, Universidad de San Carlos de Guatemala, Guatemala City, Guatemala
| | - Valentina Infante
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jennifer Wilker
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - José I Varela
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Nithya Subramanian
- Department of Soil and Crop Sciences, Texas A&M University, Agronomy Field Lab 110/111, College Station, TX, 77843, USA
| | - Thomas Isakeit
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jason Wallace
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Matthew A Stull
- Genomics and Bioinformatics Services, Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Marcel Brun
- Genomics and Bioinformatics Services, Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Joshua Hill
- Genomics and Bioinformatics Services, Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Charles D Johnson
- Genomics and Bioinformatics Services, Texas A&M AgriLife Research, College Station, TX, 77843, USA
| |
Collapse
|
10
|
Han M, Xu X, Xiong Y, Wei H, Yao K, Huang T, Long Y, Su T. Genome-Wide Survey and Expression Analyses of Hexokinase Family in Poplar (Populus trichocarpa). PLANTS 2022; 11:plants11152025. [PMID: 35956502 PMCID: PMC9370503 DOI: 10.3390/plants11152025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022]
Abstract
Hexokinase (HXK) family proteins exert critical roles in catalyzing hexose phosphorylation, sugar sensing, and modulation of plant growth and stress adaptation. Nevertheless, a large amount remains unknown about the molecular profile of HXK enzymes in Populus trichocarpa, a woody model tree species. A genome-wide survey of HXK-encoding genes, including phylogenies, genomic structures, exon/intron organization, chromosomal distribution, and conserved features, was conducted, identifying six putative HXK isogenes (PtHXK1-6) in the Populus genome. The evolutionary tree demonstrated that 135 homologous HXKs between 17 plant species were categorized into four major subfamilies (type A, B, C, and D), clustering one plastidic (PtHXK3) and five mitochondrial PtHXKs grouped into type A and B, respectively. The in silico deduction prompted the presence of the conserved sugar-binding core (motif 4), phosphorylation sites (motif 2 and 3), and adenosine-binding domains (motif 7). The transcriptomic sequencing (RNA-seq) and the quantitative real-time PCR (qRT-PCR) assays revealed that three isogenes (PtHXK2, 3, and 6) were abundantly expressed in leaves, stems, and roots, while others appeared to be dominantly expressed in the reproductive tissues. Under the stress exposure, PtHXK2 and 6 displayed a significant induction upon the pathogenic fungi (Fusarium solani) infection and marked promotions by glucose feeding in roots. In contrast, the PtHXK3 and 6 are ABA-responsive genes, following a dose-dependent manner. The comprehensive analyses of the genomic patterns and expression profiling provide theoretical clues and lay a foundation for unraveling the physiological and signaling roles underlying the fine-tuned PtHXKs responding to diverse stressors.
Collapse
Affiliation(s)
- Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (Y.X.); (H.W.); (K.Y.); (T.H.); (Y.L.)
| | - Xianglei Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (Y.X.); (H.W.); (K.Y.); (T.H.); (Y.L.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Yuan Xiong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (Y.X.); (H.W.); (K.Y.); (T.H.); (Y.L.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Haikun Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (Y.X.); (H.W.); (K.Y.); (T.H.); (Y.L.)
| | - Kejun Yao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (Y.X.); (H.W.); (K.Y.); (T.H.); (Y.L.)
| | - Tingting Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (Y.X.); (H.W.); (K.Y.); (T.H.); (Y.L.)
| | - Yingle Long
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (Y.X.); (H.W.); (K.Y.); (T.H.); (Y.L.)
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (Y.X.); (H.W.); (K.Y.); (T.H.); (Y.L.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-1589-598-3381
| |
Collapse
|
11
|
Wang F, Wang X, Zhang Y, Yan J, Ahammed GJ, Bu X, Sun X, Liu Y, Xu T, Qi H, Qi M, Li T. SlFHY3 and SlHY5 act compliantly to enhance cold tolerance through the integration of myo-inositol and light signaling in tomato. THE NEW PHYTOLOGIST 2022; 233:2127-2143. [PMID: 34936108 DOI: 10.1111/nph.17934] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Plants have evolved sophisticated regulatory networks to cope with dynamically changing light and temperature environments during day-night and seasonal cycles. However, the integration mechanisms of light and low temperature remain largely unclear. Here, we show that low red : far-red ratio (LR : FR) induces FAR-RED ELONGATED HYPOCOTYL3 (SlFHY3) transcription under cold stress in tomato (Solanum lycopersicum). Reverse genetic approaches revealed that knocking out SlFHY3 decreases myo-inositol accumulation and increases cold susceptibility, whereas overexpressing SlFHY3 induces myo-inositol accumulation and enhances cold tolerance in tomato plants. SlFHY3 physically interacts with ELONGATED HYPOCOTYL5 (SlHY5) to promote the transcriptional activity of SlHY5 on MYO-INOSITOL-1-PHOSPHATE SYNTHASE 3 (SlMIPS3) and induce myo-inositol accumulation in tomato plants under cold stress. Disruption of SlHY5 and SlMIPS3 largely suppresses the cold tolerance of SlFHY3-overexpressing plants and myo-inositol accumulation in tomato. Furthermore, silencing of SlMIPS3 drastically reduces myo-inositol accumulation and compromises LR : FR-induced cold tolerance in tomato. Together, our results reveal a crucial role of SlFHY3 in LR : FR-induced cold tolerance in tomato and unravel a novel regulatory mechanism whereby plants integrate dynamic environmental light signals and internal cues (inositol biosynthesis) to induce and control cold tolerance in tomato plants.
Collapse
Affiliation(s)
- Feng Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, China
| | - Xiujie Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ying Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiarong Yan
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471000, China
| | - Xin Bu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xin Sun
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yufeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, China
| |
Collapse
|
12
|
Neofunctionalization of Glycolytic Enzymes: An Evolutionary Route to Plant Parasitism in the Oomycete Phytophthora nicotianae. Microorganisms 2022; 10:microorganisms10020281. [PMID: 35208735 PMCID: PMC8879444 DOI: 10.3390/microorganisms10020281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/12/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023] Open
Abstract
Oomycetes, of the genus Phytophthora, comprise of some of the most devastating plant pathogens. Parasitism of Phytophthora results from evolution from an autotrophic ancestor and adaptation to a wide range of environments, involving metabolic adaptation. Sequence mining showed that Phytophthora spp. display an unusual repertoire of glycolytic enzymes, made of multigene families and enzyme replacements. To investigate the impact of these gene duplications on the biology of Phytophthora and, eventually, identify novel functions associated to gene expansion, we focused our study on the first glycolytic step on P. nicotianae, a broad host range pathogen. We reveal that this step is committed by a set of three glucokinase types that differ by their structure, enzymatic properties, and evolutionary histories. In addition, they are expressed differentially during the P. nicotianae life cycle, including plant infection. Last, we show that there is a strong association between the expression of a glucokinase member in planta and extent of plant infection. Together, these results suggest that metabolic adaptation is a component of the processes underlying evolution of parasitism in Phytophthora, which may possibly involve the neofunctionalization of metabolic enzymes.
Collapse
|
13
|
Dou L, Li Z, Wang H, Li H, Xiao G, Zhang X. The hexokinase Gene Family in Cotton: Genome-Wide Characterization and Bioinformatics Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:882587. [PMID: 35651774 PMCID: PMC9149573 DOI: 10.3389/fpls.2022.882587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/21/2022] [Indexed: 05/02/2023]
Abstract
Hexokinase (HXK) is involved in hexose phosphorylation, sugar sensing, and signal transduction, all of which regulate plant growth and adaptation to stresses. Gossypium hirsutum L. is one of the most important fiber crops in the world, however, little is known about the HXKs gene family in G. hirsutum L. We identified 17 GhHXKs from the allotetraploid G. hirsutum L. genome (AADD). G. raimondii (DD) and G. arboreum (AA) are the diploid progenitors of G. hirsutum L. and contributed equally to the At_genome and Dt_genome GhHXKs genes. The chromosomal locations and exon-intron structures of GhHXK genes among cotton species are conservative. Phylogenetic analysis grouped the HXK proteins into four and three groups based on whether they were monocotyledons and dicotyledons, respectively. Duplication event analysis demonstrated that HXKs in G. hirsutum L. primarily originated from segmental duplication, which prior to diploid hybridization. Experiments of qRT-PCR, transcriptome and promoter cis-elements demonstrated that GhHXKs' promoters have auxin and GA responsive elements that are highly expressed in the fiber initiation and elongation stages, while the promoters contain ABA-, MeJA-, and SA-responsive elements that are highly expressed during the synthesis of the secondary cell wall. We performed a comprehensive analysis of the GhHXK gene family is a vital fiber crop, which lays the foundation for future studies assessing its role in fiber development.
Collapse
Affiliation(s)
- Lingling Dou
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
| | - Zihan Li
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Huiqin Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - HuaiZhu Li
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
- *Correspondence: Guanghui Xiao,
| | - Xianliang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Xianliang Zhang,
| |
Collapse
|
14
|
Wang Z, Chen D, Sun F, Guo W, Wang W, Li X, Lan Y, Du L, Li S, Fan Y, Zhou Y, Zhao H, Zhou T. ARGONAUTE 2 increases rice susceptibility to rice black-streaked dwarf virus infection by epigenetically regulating HEXOKINASE 1 expression. MOLECULAR PLANT PATHOLOGY 2021; 22:1029-1040. [PMID: 34110094 PMCID: PMC8359002 DOI: 10.1111/mpp.13091] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/20/2021] [Accepted: 05/13/2021] [Indexed: 05/08/2023]
Abstract
ARGONAUTE (AGO) proteins play crucial roles in plant defence against virus invasion. To date, the role of OsAGO2 in rice antiviral defence remains largely unknown. In this study, we determined that the expression of OsAGO2 in rice was induced upon rice black-streaked dwarf virus (RBSDV) infection. Using transgenic rice plants overexpressing OsAGO2 and Osago2 mutants generated through transposon-insertion or CRISPR/Cas9 technology, we found that overexpression of OsAGO2 enhanced rice susceptibility to RBSDV infection. Osago2 mutant lines exhibited strong resistance to RBSDV infection through the elicitation of an early defence response, including reprogramming defence gene expression and production of reactive oxygen species (ROS). Compared to Nipponbare control, the expression level of OsHXK1 (HEXOKINASE 1) increased significantly, and the methylation levels of its promoter decreased in the Osago2 mutant on RBSDV infection. The expression profile of OsHXK1 was the opposite to that of OsAGO2 during RBSDV infection. Overexpression of OsHXK1 in rice also induced ROS production and enhanced rice resistance to RBSDV infection. These results indicate that OsHXK1 controls ROS accumulation and is regulated by OsAGO2 through epigenetic regulation. It is noteworthy that the Osago2 mutant plants are also resistant to southern rice black-streaked dwarf virus infection, another member of the genus Fijivirus. Based on the results presented in this paper, we conclude that OsAGO2 modulates rice susceptibility to fijivirus infection by suppressing OsHXK1 expression, leading to the onset of ROS-mediated resistance. This discovery may benefit future rice breeding programmes for virus resistance.
Collapse
Affiliation(s)
- Zhaoyun Wang
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
| | - Dongyue Chen
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjing, Jiangsu ProvinceChina
| | - Feng Sun
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
| | - Wei Guo
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
- Key Laboratory of Agricultural Biodiversity and Disease Control of Ministry of EducationCollege of Plant ProtectionYunnan Agricultural UniversityKunming, Yunnan ProvinceChina
| | - Wei Wang
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjing, Jiangsu ProvinceChina
| | - Xuejuan Li
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
| | - Ying Lan
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
| | - Linlin Du
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
| | - Shuo Li
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
| | - Yongjian Fan
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
| | - Yijun Zhou
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
| | - Hongwei Zhao
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjing, Jiangsu ProvinceChina
| | - Tong Zhou
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
- International Rice Research Institute and Jiangsu Academy of Agricultural Sciences Joint LaboratoryNanjing, Jiangsu ProvinceChina
| |
Collapse
|
15
|
Abstract
Nutrients are vital to life through intertwined sensing, signaling, and metabolic processes. Emerging research focuses on how distinct nutrient signaling networks integrate and coordinate gene expression, metabolism, growth, and survival. We review the multifaceted roles of sugars, nitrate, and phosphate as essential plant nutrients in controlling complex molecular and cellular mechanisms of dynamic signaling networks. Key advances in central sugar and energy signaling mechanisms mediated by the evolutionarily conserved master regulators HEXOKINASE1 (HXK1), TARGET OF RAPAMYCIN (TOR), and SNF1-RELATED PROTEIN KINASE1 (SNRK1) are discussed. Significant progress in primary nitrate sensing, calcium signaling, transcriptome analysis, and root-shoot communication to shape plant biomass and architecture are elaborated. Discoveries on intracellular and extracellular phosphate signaling and the intimate connections with nitrate and sugar signaling are examined. This review highlights the dynamic nutrient, energy, growth, and stress signaling networks that orchestrate systemwide transcriptional, translational, and metabolic reprogramming, modulate growth and developmental programs, and respond to environmental cues. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lei Li
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA; ,
| | - Kun-Hsiang Liu
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA; , .,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, and Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, China
| | - Jen Sheen
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA; ,
| |
Collapse
|
16
|
Ma L, Li G. Arabidopsis FAR-RED ELONGATED HYPOCOTYL3 negatively regulates carbon starvation responses. PLANT, CELL & ENVIRONMENT 2021; 44:1816-1829. [PMID: 33715163 DOI: 10.1111/pce.14044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Light is one of the most important environmental factors that affects various cellular processes in plant growth and development; it is also crucial for the metabolism of carbohydrates as it provides the energy source for photosynthesis. Under extended darkness conditions, carbon starvation responses are triggered by depletion of stored energy. Although light rapidly inhibits starvation responses, the molecular mechanisms by which light signalling affects this process remain largely unknown. In this study, we showed that the Arabidopsis thaliana light signalling protein FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and its homolog FAR-RED IMPAIRED RESPONSE1 (FAR1) are essential for plant survival after extended darkness treatment at both seedling and adult stages. Transmission electron microscopy analyses revealed that disruption of both FHY3 and FAR1 resulted in destruction of chloroplast envelopes and thylakoid membranes under extended darkness conditions. Furthermore, treatment with sucrose, but not glucose, completely rescued carbon starvation-induced cell death in the rosette leaves and arrested early seedling establishment in the fhy3 far1 plants. We thus concluded that the light signalling proteins FHY3 and FAR1 negatively regulate carbon starvation responses in Arabidopsis.
Collapse
Affiliation(s)
- Lin Ma
- School of Biological Science and Technology, University of Jinan, Jinan, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
17
|
MOS1 Negatively Regulates Sugar Responses and Anthocyanin Biosynthesis in Arabidopsis. Int J Mol Sci 2020; 21:ijms21197095. [PMID: 32993050 PMCID: PMC7584024 DOI: 10.3390/ijms21197095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
Sugars, which are important signaling molecules, regulate diverse biological processes in plants. However, the convergent regulatory mechanisms governing these physiological activities have not been fully elucidated. MODIFIER OF snc1-1 (MOS1), a modulator of plant immunity, also regulates floral transition, cell cycle control, and other biological processes. However, there was no evidence of whether this protein was involved in sugar responses. In this study, we found that the loss-of-function mutant mos1-6 (mos1) was hypersensitive to sugar and was characterized by defective germination and shortened roots when grown on high-sugar medium. The expression of MOS1 was enhanced by sucrose. Hexokinase 1, an important gene involved in sugar signaling, was upregulated in the mos1 mutant compared to wild-type Col-0 in response to sugar. Furthermore, the mos1 mutant accumulated more anthocyanin than did wild-type Col-0 when grown on high-sugar concentration medium or under high light. MOS1 was found to regulate the expression of flavonoid and anthocyanin biosynthetic genes in response to exogenous sucrose and high-light stress but with different underlying mechanisms, showing multiple functions in addition to immunity regulation in plant development. Our results suggest that the immune regulator MOS1 serves as a coordinator in the regulatory network, governing immunity and other physiological processes.
Collapse
|
18
|
Li J, Chen G, Zhang J, Shen H, Kang J, Feng P, Xie Q, Hu Z. Suppression of a hexokinase gene, SlHXK1, leads to accelerated leaf senescence and stunted plant growth in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110544. [PMID: 32771157 DOI: 10.1016/j.plantsci.2020.110544] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 05/18/2023]
Abstract
Sugars are the key regulatory molecules that impact diverse biological processes in plants. Hexokinase, the key rate-limiting enzyme in hexose metabolism, takes part in the first step of glycolytic pathway. Acting as a sensor that mediates sugar regulation, hexokinase has been proved to play significant roles in regulating plant growth and development. Here, we isolated a hexokinase gene SlHXK1 from tomato. Its transcript levels were higher in flowers and leaves than in other organs and decreased during leaf and petiole development. SlHXK1-RNAi lines displayed advanced leaf senescence and stunted plant growth. Physiological features including plant height, leaf length, thickness and size, the contents of chlorophyll, starch and MDA, and hexokinase activity were dramatically altered in SlHXK1-RNAi plants. Dark-induced leaf senescence were advanced and the transcripts of senescence-related genes after darkness treatment were markedly increased in SlHXK1-RNAi plants. RNA-seq and qRT-PCR analyses showed that the transcripts of genes related to plant hormones, photosynthesis, chloroplast development, chlorophyll synthesis and metabolism, cellular process, starch and sucrose metabolism, and senescence were significantly altered in SlHXK1-RNAi plants. Taken together, our data demonstrate that SlHXK1 is a significant gene involved in leaf senescence and plant growth and development in tomato through affecting starch turnover.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Jianling Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Hui Shen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Jing Kang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Panpan Feng
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
19
|
Hu L, Zhou K, Ren G, Yang S, Liu Y, Zhang Z, Li Y, Gong X, Ma F. Myo-inositol mediates reactive oxygen species-induced programmed cell death via salicylic acid-dependent and ethylene-dependent pathways in apple. HORTICULTURE RESEARCH 2020; 7:138. [PMID: 32922810 PMCID: PMC7459343 DOI: 10.1038/s41438-020-00357-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 05/08/2023]
Abstract
As a versatile compound, myo-inositol plays vital roles in plant biochemistry and physiology. We previously showed that exogenous application of myo-inositol had a positive role in salinity tolerance in Malus hupehensis Rehd. In this study, we used MdMIPS (the rate-limiting gene of myo-inositol biosynthesis) transgenic apple lines to gain new insights into the physiological role of myo-inositol in apple. Decreasing myo-inositol biosynthesis in apple lines by RNA silencing of MdMIPS1/2 led to extensive programmed cell death, which manifested as necrosis of both the leaves and roots and, ultimately, plant death. Necrosis was directly caused by the excessive accumulation of reactive oxygen species, which may be closely associated with the cell wall polysaccharide-mediated increase in salicylic acid and a compromised antioxidant system, and this process was enhanced by an increase in ethylene production. In addition, a high accumulation of sorbitol promoted necrosis. This synergetic interplay between salicylic acid and ethylene was further supported by the fact that increased myo-inositol accumulation significantly delayed leaf senescence in MdMIPS1-overexpressing apple lines. Taken together, our results indicated that apple myo-inositol regulates reactive oxygen species-induced programmed cell death through salicylic acid-dependent and ethylene-dependent pathways.
Collapse
Affiliation(s)
- Lingyu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Kun Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Guijin Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Shulin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Yuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Zhijun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Yangtiansu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| |
Collapse
|
20
|
Bruggeman Q, Piron-Prunier F, Tellier F, Faure JD, Latrasse D, Manza-Mianza D, Mazubert C, Citerne S, Boutet-Mercey S, Lugan R, Bergounioux C, Raynaud C, Benhamed M, Delarue M. Involvement of Arabidopsis BIG protein in cell death mediated by Myo-inositol homeostasis. Sci Rep 2020; 10:11268. [PMID: 32647331 PMCID: PMC7347573 DOI: 10.1038/s41598-020-68235-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/16/2020] [Indexed: 01/03/2023] Open
Abstract
Programmed cell death (PCD) is essential for several aspects of plant life. We previously identified the mips1 mutant of Arabidopsis thaliana, which is deficient for the enzyme catalysing myo-inositol synthesis, and that displays light-dependent formation of lesions on leaves due to Salicylic Acid (SA) over-accumulation. Rationale of this work was to identify novel regulators of plant PCD using a genetic approach. A screen for secondary mutations that abolish the mips1 PCD phenotype identified a mutation in the BIG gene, encoding a factor of unknown molecular function that was previously shown to play pleiotropic roles in plant development and defence. Physiological analyses showed that BIG is required for lesion formation in mips1 via SA-dependant signalling. big mutations partly rescued transcriptomic and metabolomics perturbations as stress-related phytohormones homeostasis. In addition, since loss of function of the ceramide synthase LOH2 was not able to abolish cell death induction in mips1, we show that PCD induction is not fully dependent of sphingolipid accumulation as previously suggested. Our results provide further insights into the role of the BIG protein in the control of MIPS1-dependent cell death and also into the impact of sphingolipid homeostasis in this pathway.
Collapse
Affiliation(s)
- Quentin Bruggeman
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Paris Diderot, Sorbonne Paris-Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Florence Piron-Prunier
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Paris Diderot, Sorbonne Paris-Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Frédérique Tellier
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Jean-Denis Faure
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - David Latrasse
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Paris Diderot, Sorbonne Paris-Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Deborah Manza-Mianza
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Paris Diderot, Sorbonne Paris-Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Christelle Mazubert
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Paris Diderot, Sorbonne Paris-Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Stéphanie Boutet-Mercey
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Raphael Lugan
- Institut de Biologie Moléculaire Des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Catherine Bergounioux
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Paris Diderot, Sorbonne Paris-Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Cécile Raynaud
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Paris Diderot, Sorbonne Paris-Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Paris Diderot, Sorbonne Paris-Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Marianne Delarue
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Paris Diderot, Sorbonne Paris-Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France.
| |
Collapse
|
21
|
Poór P. Effects of Salicylic Acid on the Metabolism of Mitochondrial Reactive Oxygen Species in Plants. Biomolecules 2020; 10:E341. [PMID: 32098073 PMCID: PMC7072379 DOI: 10.3390/biom10020341] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 01/16/2023] Open
Abstract
Different abiotic and biotic stresses lead to the production and accumulation of reactive oxygen species (ROS) in various cell organelles such as in mitochondria, resulting in oxidative stress, inducing defense responses or programmed cell death (PCD) in plants. In response to oxidative stress, cells activate various cytoprotective responses, enhancing the antioxidant system, increasing the activity of alternative oxidase and degrading the oxidized proteins. Oxidative stress responses are orchestrated by several phytohormones such as salicylic acid (SA). The biomolecule SA is a key regulator in mitochondria-mediated defense signaling and PCD, but the mode of its action is not known in full detail. In this review, the current knowledge on the multifaceted role of SA in mitochondrial ROS metabolism is summarized to gain a better understanding of SA-regulated processes at the subcellular level in plant defense responses.
Collapse
Affiliation(s)
- Péter Poór
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
22
|
Küstner L, Fürtauer L, Weckwerth W, Nägele T, Heyer AG. Subcellular dynamics of proteins and metabolites under abiotic stress reveal deferred response of the Arabidopsis thaliana hexokinase-1 mutant gin2-1 to high light. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:456-472. [PMID: 31386774 DOI: 10.1111/tpj.14491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 05/13/2023]
Abstract
Stress responses in plants imply spatio-temporal changes in enzymes and metabolites, including subcellular compartment-specific re-allocation processes triggered by sudden changes in environmental parameters. To investigate interactions of primary metabolism with abiotic stress, the gin2-1 mutant, defective in the sugar sensor hexokinase 1 (HXK1) was compared with its wildtype Landsberg erecta (Ler) based on time resolved, compartment-specific metabolome and proteome data obtained over a full diurnal cycle. The high light sensitive gin2-1 mutant was substantially delayed in subcellular re-distribution of metabolites upon stress, and this correlated with a massive reduction in proteins belonging to the ATP producing electron transport chain under high light, while fewer changes occurred in the cold. In the wildtype, compounds specifically protecting individual compartments could be identified, e.g., maltose and raffinose in plastids, myo-inositol in mitochondria, but gin2-1 failed to recruit these substances to the respective compartments, or responded only slowly to high irradiance. No such delay was obtained in the cold. At the whole cell level, concentrations of the amino acids, glycine and serine, provided strong evidence for an important role of the photorespiratory pathway during stress exposure, and different subcellular allocation of serine may contribute to the slow growth of the gin2-1 mutant under high irradiance.
Collapse
Affiliation(s)
- Lisa Küstner
- Department of Plant Biotechnology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Lisa Fürtauer
- Department Biology I, Plant Evolutionary Cell Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Thomas Nägele
- Department Biology I, Plant Evolutionary Cell Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | - Arnd G Heyer
- Department of Plant Biotechnology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| |
Collapse
|
23
|
Zhou K, Hu L, Li Y, Chen X, Zhang Z, Liu B, Li P, Gong X, Ma F. MdUGT88F1-Mediated Phloridzin Biosynthesis Regulates Apple Development and Valsa Canker Resistance. PLANT PHYSIOLOGY 2019; 180:2290-2305. [PMID: 31227620 PMCID: PMC6670087 DOI: 10.1104/pp.19.00494] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/09/2019] [Indexed: 05/03/2023]
Abstract
In apple (Malus domestica), the polyphenol profile is dominated by phloridzin, but its physiological role remains largely elusive. Here, we used MdUGT88F1 (a key UDP-glucose:phloretin 2'-O-glucosyltransferase gene) transgenic apple lines and Malus spp. germplasm to gain more insight into the physiological role of phloridzin in apple. Decreasing phloridzin biosynthesis in apple lines by RNA silencing of MdUGT88F1 led to a series of severe phenotypic changes that included severe stunting, reduced internode length, spindly leaf shape, increased stem numbers, and weak adventitious roots. These changes were associated directly with reduced lignin levels and disorders in cell wall polysaccharides. Moreover, compact organization of tissues and thickened bark enhanced resistance to Valsa canker (caused by the fungus Valsa mali), which was associated with lignin- and cell wall polysaccharide-mediated increases of salicylic acid and reactive oxygen species. Phloridzin was also assumed to be utilized directly as a sugar alternative and a toxin accelerator by V. mali in apple. Therefore, after infection with V. mali, a higher level of phloridzin slightly compromised resistance to Valsa canker in MdUGT88F1-overexpressing apple lines. Taken together, our results shed light on the importance of MdUGT88F1-mediated biosynthesis of phloridzin in the interplay between plant development and pathogen resistance in apple trees.
Collapse
Affiliation(s)
- Kun Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingyu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yangtiansu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaofeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhijun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bingbing Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
24
|
Zhao B, Qi K, Yi X, Chen G, Liu X, Qi X, Zhang S. Identification of hexokinase family members in pear (Pyrus × bretschneideri) and functional exploration of PbHXK1 in modulating sugar content and plant growth. Gene 2019; 711:143932. [DOI: 10.1016/j.gene.2019.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/19/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
|
25
|
Chen Q, Xu X, Xu D, Zhang H, Zhang C, Li G. WRKY18 and WRKY53 Coordinate with HISTONE ACETYLTRANSFERASE1 to Regulate Rapid Responses to Sugar. PLANT PHYSIOLOGY 2019; 180:2212-2226. [PMID: 31182557 PMCID: PMC6670108 DOI: 10.1104/pp.19.00511] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/01/2019] [Indexed: 05/18/2023]
Abstract
Sugars provide a source of energy; they also function as signaling molecules that regulate gene expression, affect metabolism, and alter growth in plants. Rapid responses to sugar signaling and metabolism are essential for optimal growth and fitness, but the regulatory mechanisms underlying these are largely unknown. In this study, we found that the rapid induction of sugar responses in Arabidopsis (Arabidopsis thaliana) requires the W-box cis-elements in the promoter region of GLC 6-PHOSPHATE/PHOSPHATE TRANSLOCATOR2, a well-studied sugar response marker gene. The transcription factors WRKY18 and WRKY53 directly bind to the W-Box cis-elements in the promoter region of sugar response genes and activate their expression. In addition, HISTONE ACETYLTRANSFERASE 1 (HAC1) is recruited to the WRKY18 and WRKY53 complex that resides on the promoters. In this complex, HAC1 facilitates the acetylation of histone 3 Lys 27 (H3K27ac) on the sugar-responsive genes. Taken together, our findings demonstrate a mechanism by which sugar regulates chromatin modification and gene expression, thus helping plants to adjust their growth in response to environmental changes.
Collapse
Affiliation(s)
- Qingshuai Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiyu Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Di Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Haisen Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Cankui Zhang
- Department of Agronomy, Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
26
|
He C, Chen J, Wang H, Wan Y, Zhou J, Dan Z, Zeng Y, Xu W, Zhu Y, Huang W, Yin L. Crystal structures of rice hexokinase 6 with a series of substrates shed light on its enzymatic mechanism. Biochem Biophys Res Commun 2019; 515:614-620. [PMID: 31176485 DOI: 10.1016/j.bbrc.2019.05.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/22/2019] [Indexed: 11/29/2022]
Abstract
Hexokinases (HXKs) have determined to be multifaceted proteins, and they are the only ones able to phosphorylate glucose in plants. However, the binding mode for ATP to plant HXKs remains unclear. Here, we report the crystal structures of rice hexokinase 6 (OsHXK6) in four different forms: (i) apo-form, (ii) binary complex with D-Glc, (iii) quaternary complex with ADP, PO4 and Mg2+, and (iv) pentanary complex with D-Glc, ADP, PO4, and Mg2+. The apo form is in the open state conformation, and the three others are in the closed state, indicating that glucose and ADP-PO4 binding induces a large conformational change by domain rearrangement. The quaternary complex is a novel intermediate during the catalytic reaction we trapped for the first time, which provides a new evidence for the enzymatic mechanism of HXKs. In addition, the latter two complexes reveal the binding mode for ADP-PO4 to plant HXKs, which provide the structural explanation for the dual-function of OsHXK6. In addition, we identified that residues Gly112, Thr261, Gly262, and Gly450 are essential to the binding between ADP-PO4 and OsHXK6 by a series of single mutations and enzymatic assays. Our study provide structural basis for the other functional studies of OsHXK6 in rice.
Collapse
Affiliation(s)
- Chunlan He
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, The Ministry of Agriculture, Wuhan University, Wuhan, 430072, China
| | - Juan Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, The Ministry of Agriculture, Wuhan University, Wuhan, 430072, China
| | - Hongjian Wang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yibin Wan
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jin Zhou
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhiwu Dan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, The Ministry of Agriculture, Wuhan University, Wuhan, 430072, China
| | - Yafei Zeng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, The Ministry of Agriculture, Wuhan University, Wuhan, 430072, China
| | - Wuwu Xu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, The Ministry of Agriculture, Wuhan University, Wuhan, 430072, China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, The Ministry of Agriculture, Wuhan University, Wuhan, 430072, China
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, The Ministry of Agriculture, Wuhan University, Wuhan, 430072, China.
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
27
|
OsAGO2 controls ROS production and the initiation of tapetal PCD by epigenetically regulating OsHXK1 expression in rice anthers. Proc Natl Acad Sci U S A 2019; 116:7549-7558. [PMID: 30902896 PMCID: PMC6462063 DOI: 10.1073/pnas.1817675116] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Understanding the development of anthers, the male reproductive organs of plants, has key implications for crop yield. Epigenetic mechanisms modulate gene expression by altering modifications of DNA or histones and via noncoding RNAs. Many studies have examined anther development, but the involvement of epigenetic mechanisms remains to be explored. Here, we investigated the role of an ARGONAUTE (AGO) family protein, OsAGO2. We find that OsAGO2 epigenetically regulates anther development by modulating DNA methylation modifications in the Hexokinase (OsHXK) promoter region. OsHXK1, in turn, affects anther development by regulating the production of reactive oxygen and the initiation of cell death in key anther structures. Identification of this epigenetic regulatory mechanism has implications for the production of hybrid crop varieties. Proteins of the ARGONAUTE (AGO) family function in the epigenetic regulation of gene expression. Although the rice (Oryza sativa) genome encodes 19 predicted AGO proteins, few of their functions have thus far been characterized. Here, we show that the AGO protein OsAGO2 regulates anther development in rice. OsAGO2 was highly expressed in anthers. Knockdown of OsAGO2 led to the overaccumulation of reactive oxygen species (ROS) and abnormal anther development, causing premature initiation of tapetal programmed cell death (PCD) and pollen abortion. The expression level of Hexokinase 1 (OsHXK1) increased significantly, and the methylation levels of its promoter decreased, in plants with knocked-down OsAGO2 expression. Overexpression of OsHXK1 also resulted in the overaccumulation of ROS, premature initiation of PCD, and pollen abortion. Moreover, knockdown of OsHXK1 restored pollen fertility in OsAGO2 knockdown plants. Chromatin immunoprecipitation assays demonstrated that OsAGO2 binds directly to the OsHXK1 promoter region, suggesting that OsHXK1 is a target gene of OsAGO2. These results indicate that OsHXK1 controls the appropriate production of ROS and the proper timing of tapetal PCD and is directly regulated by OsAGO2 through epigenetic regulation.
Collapse
|
28
|
Poór P, Patyi G, Takács Z, Szekeres A, Bódi N, Bagyánszki M, Tari I. Salicylic acid-induced ROS production by mitochondrial electron transport chain depends on the activity of mitochondrial hexokinases in tomato (Solanum lycopersicum L.). JOURNAL OF PLANT RESEARCH 2019; 132:273-283. [PMID: 30758749 PMCID: PMC7196940 DOI: 10.1007/s10265-019-01085-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/20/2018] [Indexed: 05/21/2023]
Abstract
The growth regulator, salicylic acid (SA) plays an important role in the induction of cell death in plants. Production of reactive oxygen species (ROS) by mitochondrial electron transport chain (mtETC), cytochrome c (cyt c) release from mitochondria and loss of mitochondrial integrity can be observed during cell death execution in plant tissues. The aim of this work was to study the putative role of hexokinases (HXKs) in the initiation of cell death using tomato (Solanum lycopersicum L.) leaves and mitochondria isolated from plants exposed to a sublethal, 0.1 mM and a cell death-inducing, 1 mM concentrations of SA. Both treatments enhanced ROS and nitric oxide (NO) production in the leaves, which contributed to a concentration-dependent loss of membrane integrity. Images prepared by transmission electron microscopy showed swelling and disorganisation of mitochondrial cristae and vacuolization of mitochondria after SA exposure. Using post-embedding immunohistochemistry, cyt c release from mitochondria was also detected after 1 mM SA treatment. Both SA treatments decreased the activity and transcript levels of HXKs in the leaves and the total mtHXK activity in the mitochondrial fraction. The role of mitochondrial hexokinases (mtHXKs) in ROS and NO production of isolated mitochondria was investigated by the addition of HXK substrate, glucose (Glc) and a specific HXK inhibitor, N-acetylglucosamine (NAG) to the mitochondrial suspension. Both SA treatments enhanced ROS production by mtETC in the presence of succinate and ADP, which was slightly inhibited by Glc and increased significantly by NAG in control and in 0.1 mM SA-treated mitochondria. These changes were not significant at 1 mM SA, which caused disorganisation of mitochondrial membranes. Thus the inhibition of mtHXK activity can contribute to the mitochondrial ROS production, but it is not involved in NO generation in SA-treated leaf mitochondria suggesting that SA can promote cell death by suppressing mtHXK transcription and activity.
Collapse
Affiliation(s)
- Péter Poór
- Department of Plant Biology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.
| | - Gábor Patyi
- Department of Plant Biology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Zoltán Takács
- Department of Plant Biology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - András Szekeres
- Department of Microbiology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Irma Tari
- Department of Plant Biology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| |
Collapse
|
29
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 19:ijms19092506. [PMID: 30149541 PMCID: PMC6165531 DOI: 10.3390/ijms19092506] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
30
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 57:2367-2379. [PMID: 30149541 DOI: 10.1093/pcp/pcw157] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/07/2018] [Accepted: 09/05/2016] [Indexed: 05/25/2023] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
31
|
Krasensky-Wrzaczek J, Kangasjärvi J. The role of reactive oxygen species in the integration of temperature and light signals. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3347-3358. [PMID: 29514325 DOI: 10.1093/jxb/ery074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/13/2018] [Indexed: 05/22/2023]
Abstract
The remarkable plasticity of the biochemical machinery in plants allows the integration of a multitude of stimuli, enabling acclimation to a wide range of growth conditions. The integration of information on light and temperature enables plants to sense seasonal changes and adjust growth, defense, and transition to flowering according to the prevailing conditions. By now, the role of reactive oxygen species (ROS) as important signaling molecules has been established. Here, we review recent data on ROS as important components in the integration of light and temperature signaling by crosstalk with the circadian clock and calcium signaling. Furthermore, we highlight that different environmental conditions critically affect the interpretation of stress stimuli, and consequently defense mechanisms and stress outcome. For example, day length plays an important role in whether enhanced ROS production under stress conditions is directed towards activation of redox poising mechanisms or triggering programmed cell death (PCD). Furthermore, a mild increase in temperature can cause down-regulation of immunity and render plants more sensitive to biotrophic pathogens. Taken together, the evidence presented here demonstrates the complexity of signaling pathways and outline the importance of their correct interpretation in context with the given environmental conditions.
Collapse
Affiliation(s)
- Julia Krasensky-Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finl
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finl
| |
Collapse
|
32
|
Fleet CM, Yen JY, Hill EA, Gillaspy GE. Co-suppression of AtMIPS demonstrates cooperation of MIPS1, MIPS2 and MIPS3 in maintaining myo-inositol synthesis. PLANT MOLECULAR BIOLOGY 2018; 97:253-263. [PMID: 29777485 DOI: 10.1007/s11103-018-0737-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
Co-suppressed MIPS2 transgenic lines allow bypass of the embryo lethal phenotype of the previously published triple knock-out and demonstrate the effects of MIPS on later stages of development. Regulation of inositol production is of interest broadly for its effects on plant growth and development. The enzyme L-myo-inositol 1-phosphate synthase (MIPS, also known as IPS) isomerizes D-glucose-6-P to D-inositol 3-P, and this is the rate-limiting step in inositol production. In Arabidopsis thaliana, the MIPS enzyme is encoded by three different genes, (AtMIPS1, AtMIPS2 and AtMIPS3), each of which has been shown to produce proteins with biochemically similar properties but differential expression patterns. Here, we report phenotypic and biochemical effects of MIPS co-suppression. We show that some plants engineered to overexpress MIPS2 in fact show reduced expression of AtMIPS1, AtMIPS2 and AtMIPS3, and show altered vegetative phenotype, reduced size and root length, and delayed flowering. Additionally, these plants show reduced inositol, increased glucose levels, and alteration of other metabolites. Our results suggest that the three AtMIPS genes work together to impact the overall synthesis of myo-inositol and overall inositol homeostasis.
Collapse
Affiliation(s)
- C M Fleet
- Biology Department, Emory & Henry College, Emory, VA, 24327, USA.
| | - J Y Yen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 93405, USA
| | - E A Hill
- Biology Department, Emory & Henry College, Emory, VA, 24327, USA
- Lincoln Memorial University College of Veterinary Medicine, Harrogate, TN, 37752, USA
| | - G E Gillaspy
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
33
|
Castro PH, Verde N, Tavares RM, Bejarano ER, Azevedo H. Sugar signaling regulation by arabidopsis SIZ1-driven sumoylation is independent of salicylic acid. PLANT SIGNALING & BEHAVIOR 2018; 13:e1179417. [PMID: 27136402 PMCID: PMC5933906 DOI: 10.1080/15592324.2016.1179417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
SUMO is a modifying peptide that regulates protein activity and is essential to eukaryotes. In plants, SUMO plays an important role in both development and the response to environmental stimuli. The best described sumoylation pathway component is the SUMO E3 ligase SIZ1. Its mutant displays inefficient responses to nutrient imbalance in phosphate, nitrate and copper. Recently, we reported that siz1 also displays altered responses to exogenous sugar supplementation. The siz1 mutant is a salicylic acid (SA) accumulator, and SA may interfere with sugar-dependent responses and signaling events. Here, we extended our previous studies to determine the importance of SA in the SIZ1 response to sugars, by introducing the bacterial salicylate hydroxylase NahG into the siz1 background. Results demonstrate that siz1 phenotypes involving delayed germination are partially dependent of SA levels, whereas the sugar-signaling effect of sugars is independent of SA.
Collapse
Affiliation(s)
- Pedro Humberto Castro
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Nuno Verde
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Rui Manuel Tavares
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Eduardo Rodríguez Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Dept. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Herlânder Azevedo
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| |
Collapse
|
34
|
Castro PH, Verde N, Tavares RM, Bejarano ER, Azevedo H. Sugar signaling regulation by arabidopsis SIZ1-driven sumoylation is independent of salicylic acid. PLANT SIGNALING & BEHAVIOR 2018; 13:e1179417. [PMID: 27136402 DOI: 10.1080/15592324.2016.11794170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
SUMO is a modifying peptide that regulates protein activity and is essential to eukaryotes. In plants, SUMO plays an important role in both development and the response to environmental stimuli. The best described sumoylation pathway component is the SUMO E3 ligase SIZ1. Its mutant displays inefficient responses to nutrient imbalance in phosphate, nitrate and copper. Recently, we reported that siz1 also displays altered responses to exogenous sugar supplementation. The siz1 mutant is a salicylic acid (SA) accumulator, and SA may interfere with sugar-dependent responses and signaling events. Here, we extended our previous studies to determine the importance of SA in the SIZ1 response to sugars, by introducing the bacterial salicylate hydroxylase NahG into the siz1 background. Results demonstrate that siz1 phenotypes involving delayed germination are partially dependent of SA levels, whereas the sugar-signaling effect of sugars is independent of SA.
Collapse
Affiliation(s)
- Pedro Humberto Castro
- a BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar , Braga , Portugal
| | - Nuno Verde
- a BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar , Braga , Portugal
| | - Rui Manuel Tavares
- a BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar , Braga , Portugal
| | - Eduardo Rodríguez Bejarano
- b Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC) , Dept. Biología Celular, Genética y Fisiología , Málaga , Spain
| | - Herlânder Azevedo
- c CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão , Vairão , Portugal
| |
Collapse
|
35
|
Aguilera-Alvarado GP, Sánchez-Nieto S. Plant Hexokinases are Multifaceted Proteins. PLANT & CELL PHYSIOLOGY 2017; 58:1151-1160. [PMID: 28449056 DOI: 10.1093/pcp/pcx062] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/19/2017] [Indexed: 05/09/2023]
Abstract
Sugars are the main carbon and energy source in cells, but they can also act as signaling molecules that affect the whole plant life cycle. Certain tissues can produce sugars and supply them to others, and this plant tissue heterogeneity makes sugar signaling a highly complex process that requires elements capable of perceiving changes in sugar concentrations among different tissues, cell compartments and developmental stages. In plants, the regulatory effects of glucose (Glc) have been the most studied to date. The first Glc sensor identified in plants was hexokinase (HXK), which is currently recognized as a dual-function protein. In addition to its catalytic activity, this enzyme can also repress the expression of some photosynthetic genes in response to high internal Glc concentrations. Additionally, the catalytic activity of HXKs has a profound impact on cell metabolism and other sugar signaling pathways that depend on phosphorylated hexoses and intermediate glycolytic products. HXKs are the only proteins that are able to phosphorylate Glc in plants, since no evidence has been provided to date concerning the existence of a glucokinase. Moreover, the intracellular localization of HXKs seems to be crucial to their activity and sensor functions. Recently, two new and surprising functions have been described for HXKs. In this review, we discuss the versatility of HXKs in regard to their catalytic and glucose sensor activities, intracellular location, protein-protein and hormone interactions, as well as how these HXK characteristics influence plant growth and development, in an effort to understand this enzyme's role in improving plant productivity.
Collapse
Affiliation(s)
- G Paulina Aguilera-Alvarado
- Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, México 04510, DF, México
| | - Sobeida Sánchez-Nieto
- Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, México 04510, DF, México
| |
Collapse
|
36
|
Convergence of mitochondrial and chloroplastic ANAC017/PAP-dependent retrograde signalling pathways and suppression of programmed cell death. Cell Death Differ 2017; 24:955-960. [PMID: 28498364 DOI: 10.1038/cdd.2017.68] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/04/2017] [Accepted: 04/03/2017] [Indexed: 12/23/2022] Open
Abstract
The energy-converting organelles mitochondria and chloroplasts are tightly embedded in cellular metabolism and stress response. To appropriately control organelle function, extensive regulatory mechanisms are at play that involve two-way exchange between the nucleus and mitochondria/chloroplasts. In recent years, our understanding of how mitochondria and chloroplasts provide 'retrograde' feedback to the nucleus, resulting in targeted transcriptional changes, has greatly increased. Nevertheless, mitochondrial and chloroplast retrograde signalling have largely been studied independently, and only few points of interaction have been found or proposed. Through reassessment of recent publications, this perspective proposes that two of the most well-studied retrograde signalling pathways in plants, those mediated by ANAC017 and those mediated by phosphoadenosine phosphate (PAP), are most likely convergent and can direct overlapping genes. Furthermore, at least part of this common retrograde response appears targeted towards suppression of programmed cell death (PCD) triggered by organellar defects. The identified target genes are discussed in light of their roles in PCD suppression and amplifying the signalling cascade via positive-feedback loops. Finally, a mechanism is proposed that may explain why the convergence of PAP/ANAC017-dependent signalling appears capable of suppressing some types of PCD lesions, but not others, based on the subcellular location of the initial PCD-inducing dysfunction.
Collapse
|
37
|
Baslam M, Baroja-Fernández E, Ricarte-Bermejo A, Sánchez-López ÁM, Aranjuelo I, Bahaji A, Muñoz FJ, Almagro G, Pujol P, Galarza R, Teixidor P, Pozueta-Romero J. Genetic and isotope ratio mass spectrometric evidence for the occurrence of starch degradation and cycling in illuminated Arabidopsis leaves. PLoS One 2017; 12:e0171245. [PMID: 28152100 PMCID: PMC5289593 DOI: 10.1371/journal.pone.0171245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/17/2017] [Indexed: 11/20/2022] Open
Abstract
Although there is a great wealth of data supporting the occurrence of simultaneous synthesis and breakdown of storage carbohydrate in many organisms, previous 13CO2 pulse-chase based studies indicated that starch degradation does not operate in illuminated Arabidopsis leaves. Here we show that leaves of gwd, sex4, bam4, bam1/bam3 and amy3/isa3/lda starch breakdown mutants accumulate higher levels of starch than wild type (WT) leaves when cultured under continuous light (CL) conditions. We also show that leaves of CL grown dpe1 plants impaired in the plastidic disproportionating enzyme accumulate higher levels of maltotriose than WT leaves, the overall data providing evidence for the occurrence of extensive starch degradation in illuminated leaves. Moreover, we show that leaves of CL grown mex1/pglct plants impaired in the chloroplastic maltose and glucose transporters display a severe dwarf phenotype and accumulate high levels of maltose, strongly indicating that the MEX1 and pGlcT transporters are involved in the export of starch breakdown products to the cytosol to support growth during illumination. To investigate whether starch breakdown products can be recycled back to starch during illumination through a mechanism involving ADP-glucose pyrophosphorylase (AGP) we conducted kinetic analyses of the stable isotope carbon composition (δ13C) in starch of leaves of 13CO2 pulsed-chased WT and AGP lacking aps1 plants. Notably, the rate of increase of δ13C in starch of aps1 leaves during the pulse was exceedingly higher than that of WT leaves. Furthermore, δ13C decline in starch of aps1 leaves during the chase was much faster than that of WT leaves, which provides strong evidence for the occurrence of AGP-mediated cycling of starch breakdown products in illuminated Arabidopsis leaves.
Collapse
Affiliation(s)
- Marouane Baslam
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra). Iruñako etorbidea 123, Mutiloabeti, Nafarroa, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra). Iruñako etorbidea 123, Mutiloabeti, Nafarroa, Spain
| | - Adriana Ricarte-Bermejo
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra). Iruñako etorbidea 123, Mutiloabeti, Nafarroa, Spain
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra). Iruñako etorbidea 123, Mutiloabeti, Nafarroa, Spain
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra). Iruñako etorbidea 123, Mutiloabeti, Nafarroa, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra). Iruñako etorbidea 123, Mutiloabeti, Nafarroa, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra). Iruñako etorbidea 123, Mutiloabeti, Nafarroa, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra). Iruñako etorbidea 123, Mutiloabeti, Nafarroa, Spain
| | - Pablo Pujol
- Servicio de Apoyo a la Investigación, Universidad Pública de Navarra, Campus de Arrosadia, Iruña, Nafarroa, Spain
| | - Regina Galarza
- Servicio de Apoyo a la Investigación, Universidad Pública de Navarra, Campus de Arrosadia, Iruña, Nafarroa, Spain
| | - Pilar Teixidor
- Centres Científics i Tecnològics, Universitat de Barcelona, C/ Lluís Solé I Sabarís 1–3, Barcelona, Spain
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra). Iruñako etorbidea 123, Mutiloabeti, Nafarroa, Spain
- * E-mail:
| |
Collapse
|
38
|
Li L, Sheen J. Dynamic and diverse sugar signaling. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:116-125. [PMID: 27423125 PMCID: PMC5050104 DOI: 10.1016/j.pbi.2016.06.018] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/17/2016] [Accepted: 06/27/2016] [Indexed: 05/18/2023]
Abstract
Sugars fuel life and exert numerous regulatory actions that are fundamental to all life forms. There are two principal mechanisms underlie sugar 'perception and signal transduction' in biological systems. Direct sensing and signaling is triggered via sugar-binding sensors with a broad range of affinity and specificity, whereas sugar-derived bioenergetic molecules and metabolites modulate signaling proteins and indirectly relay sugar signals. This review discusses the emerging sugar signals and potential sugar sensors discovered in plant systems. The findings leading to informative understanding of physiological regulation by sugars are considered and assessed. Comparative transcriptome analyses highlight the primary and dynamic sugar responses and reveal the convergent and specific regulators of key biological processes in the sugar-signaling network.
Collapse
Affiliation(s)
- Lei Li
- Department of Genetics, Harvard Medical School, USA; Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, MA 02114, USA
| | - Jen Sheen
- Department of Genetics, Harvard Medical School, USA; Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, MA 02114, USA.
| |
Collapse
|
39
|
Latrasse D, Benhamed M, Bergounioux C, Raynaud C, Delarue M. Plant programmed cell death from a chromatin point of view. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5887-5900. [PMID: 27639093 DOI: 10.1093/jxb/erw329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Programmed cell death (PCD) is a ubiquitous genetically regulated process consisting of the activation of finely controlled signalling pathways that lead to cellular suicide. PCD can be part of a developmental programme (dPCD) or be triggered by environmental conditions (ePCD). In plant cells, as in animal cells, extensive chromatin condensation and degradation of the nuclear DNA are among the most conspicuous features of cells undergoing PCD. Changes in chromatin condensation could either reflect the structural changes required for internucleosomal fragmentation of nuclear DNA or relate to large-scale chromatin rearrangements associated with a major transcriptional switch occurring during cell death. The aim of this review is to give an update on plant PCD processes from a chromatin point of view. The first part will be dedicated to chromatin conformational changes associated with cell death observed in various developmental and physiological conditions, whereas the second part will be devoted to histone dynamics and DNA modifications associated with critical changes in genome expression during the cell death process.
Collapse
Affiliation(s)
- D Latrasse
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - M Benhamed
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - C Bergounioux
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - C Raynaud
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - M Delarue
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| |
Collapse
|
40
|
Ma L, Tian T, Lin R, Deng XW, Wang H, Li G. Arabidopsis FHY3 and FAR1 Regulate Light-Induced myo-Inositol Biosynthesis and Oxidative Stress Responses by Transcriptional Activation of MIPS1. MOLECULAR PLANT 2016; 9:541-57. [PMID: 26714049 DOI: 10.1016/j.molp.2015.12.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/07/2015] [Accepted: 12/14/2015] [Indexed: 05/25/2023]
Abstract
myo-Inositol-1-phosphate synthase (MIPS) catalyzes the limiting step of inositol biosynthesis and has crucial roles in plant growth and development. In response to stress, the transcription of MIPS1 is induced and the biosynthesis of inositol or inositol derivatives is promoted by unknown mechanisms. Here, we found that the light signaling protein FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and its homolog FAR-RED IMPAIRED RESPONSE1 (FAR1) regulate light-induced inositol biosynthesis and oxidative stress responses by activating the transcription of MIPS1. Disruption of FHY3 and FAR1 caused light-induced cell death after dark-light transition, precocious leaf senescence, and increased sensitivity to oxidative stress. Reduction of salicylic acid (SA) accumulation by overexpression of SALICYLIC ACID 3-HYDROXYLASE largely suppressed the cell death phenotype of fhy3 far1 mutant plants, suggesting that FHY3- and FAR1-mediated cell death is dependent on SA. Furthermore, comparative analysis of chromatin immunoprecipitation sequencing and microarray results revealed that FHY3 and FAR1 directly target both MIPS1 and MIPS2. The fhy3 far1 mutant plants showed severely decreased MIPS1/2 transcript levels and reduced inositol levels. Conversely, constitutive expression of MIPS1 partially rescued the inositol contents, caused reduced transcript levels of SA-biosynthesis genes, and prevented oxidative stress in fhy3 far1. Taken together, our results indicate that the light signaling proteins FHY3 and FAR1 directly bind the promoter of MIPS1 to activate its expression and thereby promote inositol biosynthesis to prevent light-induced oxidative stress and SA-dependent cell death.
Collapse
Affiliation(s)
- Lin Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Tian Tian
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
| | - Xing-Wang Deng
- National Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
41
|
Kooke R, Kruijer W, Bours R, Becker F, Kuhn A, van de Geest H, Buntjer J, Doeswijk T, Guerra J, Bouwmeester H, Vreugdenhil D, Keurentjes JJB. Genome-Wide Association Mapping and Genomic Prediction Elucidate the Genetic Architecture of Morphological Traits in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:2187-203. [PMID: 26869705 PMCID: PMC4825126 DOI: 10.1104/pp.15.00997] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 02/11/2016] [Indexed: 05/05/2023]
Abstract
Quantitative traits in plants are controlled by a large number of genes and their interaction with the environment. To disentangle the genetic architecture of such traits, natural variation within species can be explored by studying genotype-phenotype relationships. Genome-wide association studies that link phenotypes to thousands of single nucleotide polymorphism markers are nowadays common practice for such analyses. In many cases, however, the identified individual loci cannot fully explain the heritability estimates, suggesting missing heritability. We analyzed 349 Arabidopsis accessions and found extensive variation and high heritabilities for different morphological traits. The number of significant genome-wide associations was, however, very low. The application of genomic prediction models that take into account the effects of all individual loci may greatly enhance the elucidation of the genetic architecture of quantitative traits in plants. Here, genomic prediction models revealed different genetic architectures for the morphological traits. Integrating genomic prediction and association mapping enabled the assignment of many plausible candidate genes explaining the observed variation. These genes were analyzed for functional and sequence diversity, and good indications that natural allelic variation in many of these genes contributes to phenotypic variation were obtained. For ACS11, an ethylene biosynthesis gene, haplotype differences explaining variation in the ratio of petiole and leaf length could be identified.
Collapse
Affiliation(s)
- Rik Kooke
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Willem Kruijer
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Ralph Bours
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Frank Becker
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - André Kuhn
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Henri van de Geest
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Jaap Buntjer
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Timo Doeswijk
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - José Guerra
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Dick Vreugdenhil
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Joost J B Keurentjes
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| |
Collapse
|
42
|
Bruggeman Q, Mazubert C, Prunier F, Lugan R, Chan KX, Phua SY, Pogson BJ, Krieger-Liszkay A, Delarue M, Benhamed M, Bergounioux C, Raynaud C. Chloroplast Activity and 3'phosphadenosine 5'phosphate Signaling Regulate Programmed Cell Death in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:1745-56. [PMID: 26747283 PMCID: PMC4775142 DOI: 10.1104/pp.15.01872] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/05/2016] [Indexed: 05/21/2023]
Abstract
Programmed cell death (PCD) is a crucial process both for plant development and responses to biotic and abiotic stress. There is accumulating evidence that chloroplasts may play a central role during plant PCD as for mitochondria in animal cells, but it is still unclear whether they participate in PCD onset, execution, or both. To tackle this question, we have analyzed the contribution of chloroplast function to the cell death phenotype of the myoinositol phosphate synthase1 (mips1) mutant that forms spontaneous lesions in a light-dependent manner. We show that photosynthetically active chloroplasts are required for PCD to occur in mips1, but this process is independent of the redox state of the chloroplast. Systematic genetic analyses with retrograde signaling mutants reveal that 3'-phosphoadenosine 5'-phosphate, a chloroplast retrograde signal that modulates nuclear gene expression in response to stress, can inhibit cell death and compromises plant innate immunity via inhibition of the RNA-processing 5'-3' exoribonucleases. Our results provide evidence for the role of chloroplast-derived signal and RNA metabolism in the control of cell death and biotic stress response.
Collapse
Affiliation(s)
- Quentin Bruggeman
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Christelle Mazubert
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Florence Prunier
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Raphaël Lugan
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Kai Xun Chan
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Su Yin Phua
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Barry James Pogson
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Anja Krieger-Liszkay
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Marianne Delarue
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Catherine Bergounioux
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France (Q.B., C.M., F.P., M.D., M.B., C.B., C.R.);Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France (R.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia (K.X.C., S.Y.P., B.J.P.);Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91191 Gif-sur-Yvette cedex, France (A.K.-L.); and Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| |
Collapse
|
43
|
Srivastava S, Bist V, Srivastava S, Singh PC, Trivedi PK, Asif MH, Chauhan PS, Nautiyal CS. Unraveling Aspects of Bacillus amyloliquefaciens Mediated Enhanced Production of Rice under Biotic Stress of Rhizoctonia solani. FRONTIERS IN PLANT SCIENCE 2016; 7:587. [PMID: 27200058 PMCID: PMC4858605 DOI: 10.3389/fpls.2016.00587] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/18/2016] [Indexed: 05/18/2023]
Abstract
Rhizoctonia solani is a necrotrophic fungi causing sheath blight in rice leading to substantial loss in yield. Excessive and persistent use of preventive chemicals raises human health and environment safety concerns. As an alternative, use of biocontrol agents is highly recommended. In the present study, an abiotic stress tolerant, plant growth promoting rhizobacteria Bacillus amyloliquefaciens (SN13) is demonstrated to act as a biocontrol agent and enhance immune response against R. solani in rice by modulating various physiological, metabolic, and molecular functions. A sustained tolerance by SN13 primed plant over a longer period of time, post R. solani infection may be attributed to several unconventional aspects of the plants' physiological status. The prolonged stress tolerance observed in presence of SN13 is characterized by (a) involvement of bacterial mycolytic enzymes, (b) sustained maintenance of elicitors to keep the immune system induced involving non-metabolizable sugars such as turanose besides the known elicitors, (c) a delicate balance of ROS and ROS scavengers through production of proline, mannitol, and arabitol and rare sugars like fructopyranose, β-D-glucopyranose and myoinositol and expression of ferric reductases and hypoxia induced proteins, (d) production of metabolites like quinazoline and expression of terpene synthase, and (e) hormonal cross talk. As the novel aspect of biological control this study highlights the role of rare sugars, maintenance of hypoxic conditions, and sucrose and starch metabolism in B. amyloliquefaciens (SN13) mediated sustained biotic stress tolerance in rice.
Collapse
Affiliation(s)
- Suchi Srivastava
- Division of Plant Microbe Interactions, Council of Scientific and Industrial Research (CSIR)-National Botanical Research InstituteLucknow, India
| | - Vidisha Bist
- Division of Plant Microbe Interactions, Council of Scientific and Industrial Research (CSIR)-National Botanical Research InstituteLucknow, India
| | - Sonal Srivastava
- Division of Plant Microbe Interactions, Council of Scientific and Industrial Research (CSIR)-National Botanical Research InstituteLucknow, India
| | - Poonam C. Singh
- Division of Plant Microbe Interactions, Council of Scientific and Industrial Research (CSIR)-National Botanical Research InstituteLucknow, India
| | - Prabodh K. Trivedi
- Gene Expression Lab, Council of Scientific and Industrial Research (CSIR)-National Botanical Research InstituteLucknow, India
| | - Mehar H. Asif
- Gene Expression Lab, Council of Scientific and Industrial Research (CSIR)-National Botanical Research InstituteLucknow, India
| | - Puneet S. Chauhan
- Division of Plant Microbe Interactions, Council of Scientific and Industrial Research (CSIR)-National Botanical Research InstituteLucknow, India
| | - Chandra S. Nautiyal
- Division of Plant Microbe Interactions, Council of Scientific and Industrial Research (CSIR)-National Botanical Research InstituteLucknow, India
- *Correspondence: Chandra S. Nautiyal,
| |
Collapse
|
44
|
Sparvoli F, Cominelli E. Seed Biofortification and Phytic Acid Reduction: A Conflict of Interest for the Plant? PLANTS 2015; 4:728-55. [PMID: 27135349 PMCID: PMC4844270 DOI: 10.3390/plants4040728] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/13/2015] [Indexed: 02/03/2023]
Abstract
Most of the phosphorus in seeds is accumulated in the form of phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate, InsP6). This molecule is a strong chelator of cations important for nutrition, such as iron, zinc, magnesium, and calcium. For this reason, InsP6 is considered an antinutritional factor. In recent years, efforts to biofortify seeds through the generation of low phytic acid (lpa) mutants have been noteworthy. Moreover, genes involved in the biosynthesis and accumulation of this molecule have been isolated and characterized in different species. Beyond its role in phosphorus storage, phytic acid is a very important signaling molecule involved in different regulatory processes during plant development and responses to different stimuli. Consequently, many lpa mutants show different negative pleitotropic effects. The strength of these pleiotropic effects depends on the specific mutated gene, possible functional redundancy, the nature of the mutation, and the spatio-temporal expression of the gene. Breeding programs or transgenic approaches aimed at development of new lpa mutants must take into consideration these different aspects in order to maximize the utility of these mutants.
Collapse
Affiliation(s)
- Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| |
Collapse
|