1
|
Devi R, Arora P, Verma B, Hussain S, Chowdhary F, Tabssum R, Gupta S. ABCB transporters: functionality extends to more than auxin transportation. PLANTA 2025; 261:93. [PMID: 40100293 DOI: 10.1007/s00425-025-04662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
MAIN CONCLUSION ABCs transport diverse compounds; with plant's most abundant ABCG and ABCB subfamilies. ABCBs are multi-functional transporter proteins having role in plant adaptation. ATP-binding cassette (ABC) proteins have been known for the transportation of various structurally diverse compounds in all kingdoms of life. Plants possess a particularly high number of ABC transporters compared to other eukaryotes: the most abundant being ABCG followed by the ABCB subfamilies. While members of the ABCB subfamily are primarily known for auxin transportation, however, studies have shown their involvement in variety of other functions viz. growth and development, biotic and abiotic stresses, metal toxicity and homeostasis, cellular redox state stability, stomatal regulation, cell shape maintenance, and transport of secondary metabolites and phytohormones. These proteins are able to perform various biological processes due to their widespread localization in the plasma membrane, mitochondrial membrane, chloroplast, and tonoplast facilitating membrane transport influenced by various environmental and biological cues. The current review compiles published insights into the role of ABCB transporters, and also provides brief insights into the role of ABCB transporters in a medicinal plant, where the synthesis of its bioactive secondary metabolite is linked to the primary function of ABCBs, i.e., auxin transport. The review discusses ABCB subfamily members as multi-functional protein and comprehensively examines their role in various biological processes that help plants to survive under unfavorable environmental conditions.
Collapse
Affiliation(s)
- Ritu Devi
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palak Arora
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Bhawna Verma
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahnawaz Hussain
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Fariha Chowdhary
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rubeena Tabssum
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suphla Gupta
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India.
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Wang Y, Strauss S, Smith RS, Sampathkumar A. Actin-mediated avoidance of tricellular junction influences global topology at the Arabidopsis shoot apical meristem. Cell Rep 2024; 43:114844. [PMID: 39418163 DOI: 10.1016/j.celrep.2024.114844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/22/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Division plane orientation contributes to cell shape and topological organization, playing a key role in morphogenesis, but the precise physical and molecular mechanism influencing these processes remains largely obscure in plants. In particular, it is less clear how the placement of the new walls occurs in relation to the walls of neighboring cells. Here, we show that genetic perturbation of the actin cytoskeleton results in more rectangular cell shapes and higher incidences of four-way junctions, perturbing the global topology of cells in the shoot apical meristem of Arabidopsis thaliana. Actin mutants also exhibit changes in the expansion rate of the new versus the maternal cell wall after division, affecting the evolution of internal angles at tricellular junctions. Further, the increased width of the preprophase band in the actin mutant contributes to inaccuracy in the placement of the new cell wall. Computational simulation further substantiates this hypothesis and reproduces the observed cell shape defects.
Collapse
Affiliation(s)
- Yang Wang
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany; Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark
| | - Soeren Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany; Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Colney Ln, NR4 7UH Norwich, UK
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
3
|
Ying W, Wang Y, Wei H, Luo Y, Ma Q, Zhu H, Janssens H, Vukašinović N, Kvasnica M, Winne JM, Gao Y, Tan S, Friml J, Liu X, Russinova E, Sun L. Structure and function of the Arabidopsis ABC transporter ABCB19 in brassinosteroid export. Science 2024; 383:eadj4591. [PMID: 38513023 DOI: 10.1126/science.adj4591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024]
Abstract
Brassinosteroids are steroidal phytohormones that regulate plant development and physiology, including adaptation to environmental stresses. Brassinosteroids are synthesized in the cell interior but bind receptors at the cell surface, necessitating a yet to be identified export mechanism. Here, we show that a member of the ATP-binding cassette (ABC) transporter superfamily, ABCB19, functions as a brassinosteroid exporter. We present its structure in both the substrate-unbound and the brassinosteroid-bound states. Bioactive brassinosteroids are potent activators of ABCB19 ATP hydrolysis activity, and transport assays showed that ABCB19 transports brassinosteroids. In Arabidopsis thaliana, ABCB19 and its close homolog, ABCB1, positively regulate brassinosteroid responses. Our results uncover an elusive export mechanism for bioactive brassinosteroids that is tightly coordinated with brassinosteroid signaling.
Collapse
Affiliation(s)
- Wei Ying
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yaowei Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Hong Wei
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yongming Luo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Qian Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Heyuan Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Hilde Janssens
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Miroslav Kvasnica
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Palacký University, 77900 Olomouc, Czech Republic
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Yongxiang Gao
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shutang Tan
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Xin Liu
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Linfeng Sun
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
4
|
Niu M, Tian K, Chen Q, Yang C, Zhang M, Sun S, Wang X. A multi-trait GWAS-based genetic association network controlling soybean architecture and seed traits. FRONTIERS IN PLANT SCIENCE 2024; 14:1302359. [PMID: 38259929 PMCID: PMC10801003 DOI: 10.3389/fpls.2023.1302359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024]
Abstract
Ideal plant architecture is essential for enhancing crop yields. Ideal soybean (Glycine max) architecture encompasses an appropriate plant height, increased node number, moderate seed weight, and compact architecture with smaller branch angles for growth under high-density planting. However, the functional genes regulating plant architecture are far not fully understood in soybean. In this study, we investigated the genetic basis of 12 agronomic traits in a panel of 496 soybean accessions with a wide geographical distribution in China. Analysis of phenotypic changes in 148 historical elite soybean varieties indicated that seed-related traits have mainly been improved over the past 60 years, with targeting plant architecture traits having the potential to further improve yields in future soybean breeding programs. In a genome-wide association study (GWAS) of 12 traits, we detected 169 significantly associated loci, of which 61 overlapped with previously reported loci and 108 new loci. By integrating the GWAS loci for different traits, we constructed a genetic association network and identified 90 loci that were associated with a single trait and 79 loci with pleiotropic effects. Of these 79 loci, 7 hub-nodes were strongly linked to at least three related agronomic traits. qHub_5, containing the previously characterized Determinate 1 (Dt1) locus, was associated not only with plant height and node number (as determined previously), but also with internode length and pod range. Furthermore, we identified qHub_7, which controls three branch angle-related traits; the candidate genes in this locus may be beneficial for breeding soybean with compact architecture. These findings provide insights into the genetic relationships among 12 important agronomic traits in soybean. In addition, these studies uncover valuable loci for further functional gene studies and will facilitate molecular design breeding of soybean architecture.
Collapse
Affiliation(s)
- Mengrou Niu
- Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Sanya Institute of Henan University, Henan University, Sanya, Hainan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Zhengzhou, China
- The Academy for Advanced Interdisciplinary Studies, Henan University, Zhengzhou, China
| | - Kewei Tian
- Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Sanya Institute of Henan University, Henan University, Sanya, Hainan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Zhengzhou, China
- The Academy for Advanced Interdisciplinary Studies, Henan University, Zhengzhou, China
| | - Qiang Chen
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang, Hebei, China
| | - Chunyan Yang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang, Hebei, China
| | - Mengchen Zhang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang, Hebei, China
| | - Shiyong Sun
- Sanya Institute of Henan University, Henan University, Sanya, Hainan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Zhengzhou, China
- The Academy for Advanced Interdisciplinary Studies, Henan University, Zhengzhou, China
| | - Xuelu Wang
- Sanya Institute of Henan University, Henan University, Sanya, Hainan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Zhengzhou, China
- The Academy for Advanced Interdisciplinary Studies, Henan University, Zhengzhou, China
| |
Collapse
|
5
|
Xie Z, Zhang L, Zhang Q, Lu Y, Dong C, Li D, Liu X, Xia C, Kong X. A Glu209Lys substitution in DRG1/TaACT7, which disturbs F-actin organization, reduces plant height and grain length in bread wheat. THE NEW PHYTOLOGIST 2023; 240:1913-1929. [PMID: 37668262 DOI: 10.1111/nph.19246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
Plant height and grain size are two important agronomic traits that are closely related to crop yield. Numerous dwarf and grain-shape mutants have been studied to identify genes that can be used to increase crop yield and improve breeding programs. In this study, we characterized a dominant mutant, dwarf and round grain 1 (drg1-D), in bread wheat (Triticum aestivum L.). drg1-D plants exhibit multiple phenotypic changes, including dwarfism, round grains, and insensitivity to brassinosteroids (BR). Cell structure observation in drg1-D mutant plants showed that the reduced organ size is due to irregular cell shape. Using map-based cloning and verification in transgenic plants, we found that a Glu209Lys substitution in the DRG1 protein is responsible for the irregular cell size and arrangement in the drg1-D mutant. DRG1/TaACT7 encodes an actin family protein that is essential for polymerization stability and microfilament (MF) formation. In addition, the BR response and vesicular transport were altered by the abnormal actin cytoskeleton in drg1-D mutant plants. Our study demonstrates that DRG1/TaACT7 plays an important role in wheat cell shape determination by modulating actin organization and intracellular material transport, which could in the longer term provide tools to better understand the polymerization of actin and its assembly into filaments and arrays.
Collapse
Affiliation(s)
- Zhencheng Xie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lichao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yan Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunhao Dong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Danping Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xu Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chuan Xia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
6
|
Khoso MA, Zhang H, Khoso MH, Poudel TR, Wagan S, Papiashvili T, Saha S, Ali A, Murtaza G, Manghwar H, Liu F. Synergism of vesicle trafficking and cytoskeleton during regulation of plant growth and development: A mechanistic outlook. Heliyon 2023; 9:e21976. [PMID: 38034654 PMCID: PMC10682163 DOI: 10.1016/j.heliyon.2023.e21976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
The cytoskeleton is a fundamental component found in all eukaryotic organisms, serving as a critical factor in various essential cyto-biological mechanisms, particularly in the locomotion and morphological transformations of plant cells. The cytoskeleton is comprised of three main components: microtubules (MT), microfilaments (MF), and intermediate filaments (IF). The cytoskeleton plays a crucial role in the process of cell wall formation and remodeling throughout the growth and development of cells. It is a highly organized and regulated network composed of filamentous components. In the basic processes of intracellular transport, such as mitosis, cytokinesis, and cell polarity, the plant cytoskeleton plays a crucial role according to recent studies. The major flaws in the organization of the cytoskeletal framework are at the root of the aberrant organogenesis currently observed in plant mutants. The regulation of protein compartmentalization and abundance within cells is predominantly governed by the process of vesicle/membrane transport, which plays a crucial role in several signaling cascades.The regulation of membrane transport in eukaryotic cells is governed by a diverse array of proteins. Recent developments in genomics have provided new tools to study the evolutionary relationships between membrane proteins in different plant species. It is known that members of the GTPases, COP, SNAREs, Rabs, tethering factors, and PIN families play essential roles in vesicle transport between plant, animal, and microbial species. This Review presents the latest research on the plant cytoskeleton, focusing on recent developments related to the cytoskeleton and summarizing the role of various proteins in vesicle transport. In addition, the report predicts future research direction of plant cytoskeleton and vesicle trafficking, potential research priorities, and provides researchers with specific pointers to further investigate the significant link between cytoskeleton and vesicle trafficking.
Collapse
Affiliation(s)
- Muneer Ahmed Khoso
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hailong Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Mir Hassan Khoso
- Department of Biochemistry, Shaheed Mohtarma Benazir Bhutto Medical University Larkana, Pakistan
| | - Tika Ram Poudel
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Sindho Wagan
- Laboratory of Pest Physiology Biochemistry and Molecular Toxicology Department of Forest Protection Northeast Forestry University Harbin 150040, China
| | - Tamar Papiashvili
- School of Economics and Management Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Sudipta Saha
- School of Forestry, Department of Silviculture, Northeast Forestry University, Harbin 150040, China
| | - Abid Ali
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ghulam Murtaza
- Department of Biochemistry and Molecular Biology Harbin Medical University China, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
| | - Fen Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
| |
Collapse
|
7
|
Li X, Cao B, Du D, Song L, Tian L, Xie X, Chen Z, Ding Y, Cheng X, Yao Y, Guo W, Su Z, Sun Q, Ni Z, Chai L, Liu J. TaACTIN7-D regulates plant height and grain shape in bread wheat. J Genet Genomics 2023; 50:895-908. [PMID: 37709194 DOI: 10.1016/j.jgg.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/03/2023] [Accepted: 09/03/2023] [Indexed: 09/16/2023]
Abstract
Exploitation of new gene resources and genetic networks contributing to the control of crop yield-related traits, such as plant height, grain size, and shape, may enable us to breed modern high-yielding wheat varieties through molecular methods. In this study, via ethylmethanesulfonate mutagenesis, we identify a wheat mutant plant, mu-597, that shows semi-dwarf plant architecture and round grain shape. Through bulked segregant RNA-seq and map-based cloning, the causal gene for the semi-dwarf phenotype of mu-597 is located. We find that a single-base mutation in the coding region of TaACTIN7-D (TaACT7-D), leading to a Gly-to-Ser (G65S) amino acid mutation at the 65th residue of the deduced TaACT7-D protein, can explain the semi-dwarfism and round grain shape of mu-597. Further evidence shows that the G65S mutation in TaACT7-D hinders the polymerization of actin from monomeric (G-actin) to filamentous (F-actin) status while attenuates wheat responses to multiple phytohormones, including brassinosteroids, auxin, and gibberellin. Together, these findings not only define a new semi-dwarfing gene resource that can be potentially used to design plant height and grain shape of bread wheat but also establish a direct link between actin structure modulation and phytohormone signal transduction.
Collapse
Affiliation(s)
- Xiongtao Li
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Beilu Cao
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Dejie Du
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Long Song
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Lulu Tian
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Xiaoming Xie
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Zhaoyan Chen
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Yanpeng Ding
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Xuejiao Cheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Zhenqi Su
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Lingling Chai
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China.
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Cui X, Zou M, Li J. Basally distributed actin array drives embryonic hypocotyl elongation during the seed-to-seedling transition in Arabidopsis. THE NEW PHYTOLOGIST 2023; 240:191-206. [PMID: 37537721 DOI: 10.1111/nph.19149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023]
Abstract
Seed germination is a vital developmental transition for the production of progeny by sexual reproduction in spermatophytes. The seed-to-seedling transition is predominately driven by hypocotyl cell elongation. However, the mechanism that underlies hypocotyl growth remains largely unknown. In this study, we characterized the actin array reorganization in embryonic hypocotyl epidermal cells. Live-cell imaging revealed a basally organized actin array formed during hypocotyl cell elongation. This polarized actin assembly is a barrel-shaped network, which comprises a backbone of longitudinally aligned actin cables and a fine actin cap linking these cables. We provide genetic evidence that the basal actin array formation requires formin-mediated actin polymerization and directional movement of actin filaments powered by myosin XIs. In fh1-1 and xi3ko mutants, actin filaments failed to reorganize into the basal actin array, and the hypocotyl cell elongation was inhibited compared with wild-type plants. Collectively, our work uncovers the molecular mechanisms for basal actin array assembly and demonstrates the connection between actin polarization and hypocotyl elongation during seed-to-seedling transition.
Collapse
Affiliation(s)
- Xuan Cui
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Minxia Zou
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Jiejie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing, 100875, China
- Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
9
|
Xiang M, Yuan S, Zhang Q, Liu X, Li Q, Leng Z, Sha J, Anderson CT, Xiao C. Galactosylation of xyloglucan is essential for the stabilization of the actin cytoskeleton and endomembrane system through the proper assembly of cell walls. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5104-5123. [PMID: 37386914 DOI: 10.1093/jxb/erad237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023]
Abstract
Xyloglucan, a major hemicellulose, interacts with cellulose and pectin to assemble primary cell walls in plants. Loss of the xyloglucan galactosyltransferase MURUS3 (MUR3) leads to the deficiency of galactosylated xyloglucan and perturbs plant growth. However, it is unclear whether defects in xyloglucan galactosylation influence the synthesis of other wall polysaccharides, cell wall integrity, cytoskeleton behaviour, and endomembrane homeostasis. Here, we found that in mur3-7 etiolated seedlings cellulose was reduced, CELLULOSE SYNTHASE (CESA) genes were down-regulated, the density and mobility of cellulose synthase complexes (CSCs) were decreased, and cellulose microfibrils become discontinuous. Pectin, rhamnogalacturonan II (RGII), and boron contents were reduced in mur3-7 plants, and B-RGII cross-linking was abnormal. Wall porosity and thickness were significantly increased in mur3-7 seedlings. Endomembrane aggregation was also apparent in the mur3-7 mutant. Furthermore, mutant seedlings and their actin filaments were more sensitive to Latrunculin A (LatA) treatment. However, all defects in mur3-7 mutants were substantially restored by exogenous boric acid application. Our study reveals the importance of MUR3-mediated xyloglucan galactosylation for cell wall structural assembly and homeostasis, which is required for the stabilization of the actin cytoskeleton and the endomembrane system.
Collapse
Affiliation(s)
- Min Xiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Shuai Yuan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qing Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xiaohui Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qingyao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Zhengmei Leng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Jingjing Sha
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
10
|
Solanki M, Shukla LI. Recent advances in auxin biosynthesis and homeostasis. 3 Biotech 2023; 13:290. [PMID: 37547917 PMCID: PMC10400529 DOI: 10.1007/s13205-023-03709-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
UNLABELLED The plant proliferation is linked with auxins which in turn play a pivotal role in the rate of growth. Also, auxin concentrations could provide insights into the age, stress, and events leading to flowering and fruiting in the sessile plant kingdom. The role in rejuvenation and plasticity is now evidenced. Interest in plant auxins spans many decades, information from different plant families for auxin concentrations, transcriptional, and epigenetic evidences for gene regulation is evaluated here, for getting an insight into pattern of auxin biosynthesis. This biosynthesis takes place via an tryptophan-independent and tryptophan-dependent pathway. The independent pathway initiated before the tryptophan (trp) production involves indole as the primary substrate. On the other hand, the trp-dependent IAA pathway passes through the indole pyruvic acid (IPyA), indole-3-acetaldoxime (IAOx), and indole acetamide (IAM) pathways. Investigations on trp-dependent pathways involved mutants, namely yucca (1-11), taa1, nit1, cyp79b and cyp79b2, vt2 and crd, and independent mutants of tryptophan, ins are compiled here. The auxin conjugates of the IAA amide and ester-linked mutant gh3, iar, ilr, ill, iamt1, ugt, and dao are remarkable and could facilitate the assimilation of auxins. Efforts are made herein to provide an up-to-date detailed information about biosynthesis leading to plant sustenance. The vast information about auxin biosynthesis and homeostasis is consolidated in this review with a simplified model of auxin biosynthesis with keys and clues for important missing links since auxins can enable the plants to proliferate and override the environmental influence and needs to be probed for applications in sustainable agriculture. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-023-03709-6.
Collapse
Affiliation(s)
- Manish Solanki
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
- Puducherry, India
| | - Lata Israni Shukla
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
| |
Collapse
|
11
|
Niñoles R, Arjona P, Azad SM, Hashim A, Casañ J, Bueso E, Serrano R, Espinosa A, Molina I, Gadea J. Kaempferol-3-rhamnoside overaccumulation in flavonoid 3'-hydroxylase tt7 mutants compromises seed coat outer integument differentiation and seed longevity. THE NEW PHYTOLOGIST 2023; 238:1461-1478. [PMID: 36829299 DOI: 10.1111/nph.18836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Seeds slowly accumulate damage during storage, which ultimately results in germination failure. The seed coat protects the embryo from the external environment, and its composition is critical for seed longevity. Flavonols accumulate in the outer integument. The link between flavonol composition and outer integument development has not been explored. Genetic, molecular and ultrastructural assays on loss-of-function mutants of the flavonoid biosynthesis pathway were used to study the effect of altered flavonoid composition on seed coat development and seed longevity. Controlled deterioration assays indicate that loss of function of the flavonoid 3' hydroxylase gene TT7 dramatically affects seed longevity and seed coat development. Outer integument differentiation is compromised from 9 d after pollination in tt7 developing seeds, resulting in a defective suberin layer and incomplete degradation of seed coat starch. These distinctive phenotypes are not shared by other mutants showing abnormal flavonoid composition. Genetic analysis indicates that overaccumulation of kaempferol-3-rhamnoside is mainly responsible for the observed phenotypes. Expression profiling suggests that multiple cellular processes are altered in the tt7 mutant. Overaccumulation of kaempferol-3-rhamnoside in the seed coat compromises normal seed coat development. This observation positions TRANSPARENT TESTA 7 and the UGT78D1 glycosyltransferase, catalysing flavonol 3-O-rhamnosylation, as essential players in the modulation of seed longevity.
Collapse
Affiliation(s)
- Regina Niñoles
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Paloma Arjona
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Sepideh M Azad
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Aseel Hashim
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Jose Casañ
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Eduardo Bueso
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Ramón Serrano
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Ana Espinosa
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Isabel Molina
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Jose Gadea
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| |
Collapse
|
12
|
Aryal B, Xia J, Hu Z, Stumpe M, Tsering T, Liu J, Huynh J, Fukao Y, Glöckner N, Huang HY, Sáncho-Andrés G, Pakula K, Ziegler J, Gorzolka K, Zwiewka M, Nodzynski T, Harter K, Sánchez-Rodríguez C, Jasiński M, Rosahl S, Geisler MM. An LRR receptor kinase controls ABC transporter substrate preferences during plant growth-defense decisions. Curr Biol 2023; 33:2008-2023.e8. [PMID: 37146609 DOI: 10.1016/j.cub.2023.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/27/2023] [Accepted: 04/13/2023] [Indexed: 05/07/2023]
Abstract
The exporter of the auxin precursor indole-3-butyric acid (IBA), ABCG36/PDR8/PEN3, from the model plant Arabidopsis has recently been proposed to also function in the transport of the phytoalexin camalexin. Based on these bonafide substrates, it has been suggested that ABCG36 functions at the interface between growth and defense. Here, we provide evidence that ABCG36 catalyzes the direct, ATP-dependent export of camalexin across the plasma membrane. We identify the leucine-rich repeat receptor kinase, QIAN SHOU KINASE1 (QSK1), as a functional kinase that physically interacts with and phosphorylates ABCG36. Phosphorylation of ABCG36 by QSK1 unilaterally represses IBA export, allowing camalexin export by ABCG36 conferring pathogen resistance. As a consequence, phospho-dead mutants of ABCG36, as well as qsk1 and abcg36 alleles, are hypersensitive to infection with the root pathogen Fusarium oxysporum, caused by elevated fungal progression. Our findings indicate a direct regulatory circuit between a receptor kinase and an ABC transporter that functions to control transporter substrate preference during plant growth and defense balance decisions.
Collapse
Affiliation(s)
- Bibek Aryal
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jian Xia
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Zehan Hu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Tashi Tsering
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jie Liu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - John Huynh
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Yoichiro Fukao
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Nina Glöckner
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Hsin-Yao Huang
- Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Gloria Sáncho-Andrés
- Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Konrad Pakula
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznań, Poland; NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Joerg Ziegler
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Karin Gorzolka
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics Masaryk University, CEITEC MU Kamenice 5, Building A26, 625 00 Brno, Czech Republic
| | - Tomasz Nodzynski
- Mendel Centre for Plant Genomics and Proteomics Masaryk University, CEITEC MU Kamenice 5, Building A26, 625 00 Brno, Czech Republic
| | - Klaus Harter
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | | | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznań, Poland; Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Sabine Rosahl
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Markus M Geisler
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
13
|
He R, Su H, Wang X, Ren Z, Zhang K, Feng T, Zhang M, Li Z, Li L, Zhuang J, Gong Z, Zhou Y, Duan L. Coronatine promotes maize water uptake by directly binding to the aquaporin ZmPIP2;5 and enhancing its activity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:703-720. [PMID: 36511119 DOI: 10.1111/jipb.13432] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Water uptake is crucial for crop growth and development and drought stress tolerance. The water channel aquaporins (AQP) play important roles in plant water uptake. Here, we discovered that a jasmonic acid analog, coronatine (COR), enhanced maize (Zea mays) root water uptake capacity under artificial water deficiency conditions. COR treatment induced the expression of the AQP gene Plasma membrane intrinsic protein 2;5 (ZmPIP2;5). In vivo and in vitro experiments indicated that COR also directly acts on ZmPIP2;5 to improve water uptake in maize and Xenopus oocytes. The leaf water potential and hydraulic conductivity of roots growing under hyperosmotic conditions were higher in ZmPIP2;5-overexpression lines and lower in the zmpip2;5 knockout mutant, compared to wild-type plants. Based on a comparison between ZmPIP2;5 and other PIP2s, we predicted that COR may bind to the functional site in loop E of ZmPIP2;5. We confirmed this prediction by surface plasmon resonance technology and a microscale thermophoresis assay, and showed that deleting the binding motif greatly reduced COR binding. We identified the N241 residue as the COR-specific binding site, which may activate the channel of the AQP tetramer and increase water transport activity, which may facilitate water uptake under hyperosmotic stress.
Collapse
Affiliation(s)
- Rui He
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Huiqing Su
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhijie Ren
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Kun Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Tianyu Feng
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Legong Li
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Junhong Zhuang
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuyi Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
14
|
Zhang L, Guo Y, Zhang Y, Li Y, Pei Y, Zhang M. Regulation of PIN-FORMED Protein Degradation. Int J Mol Sci 2023; 24:ijms24010843. [PMID: 36614276 PMCID: PMC9821320 DOI: 10.3390/ijms24010843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Auxin action largely depends on the establishment of auxin concentration gradient within plant organs, where PIN-formed (PIN) auxin transporter-mediated directional auxin movement plays an important role. Accumulating studies have revealed the need of polar plasma membrane (PM) localization of PIN proteins as well as regulation of PIN polarity in response to developmental cues and environmental stimuli, amongst which a typical example is regulation of PIN phosphorylation by AGCVIII protein kinases and type A regulatory subunits of PP2A phosphatases. Recent findings, however, highlight the importance of PIN degradation in reestablishing auxin gradient. Although the underlying mechanism is poorly understood, these findings provide a novel aspect to broaden the current knowledge on regulation of polar auxin transport. In this review, we summarize the current understanding on controlling PIN degradation by endosome-mediated vacuolar targeting, autophagy, ubiquitin modification and the related E3 ubiquitin ligases, cytoskeletons, plant hormones, environmental stimuli, and other regulators, and discuss the possible mechanisms according to recent studies.
Collapse
Affiliation(s)
- Liuqin Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yifan Guo
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yujie Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yuxin Li
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Mi Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel./Fax: +86-023-68251883
| |
Collapse
|
15
|
Ortiz NR, Guy N, Garcia YA, Sivils JC, Galigniana MD, Cox MB. Functions of the Hsp90-Binding FKBP Immunophilins. Subcell Biochem 2023; 101:41-80. [PMID: 36520303 DOI: 10.1007/978-3-031-14740-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Hsp90 chaperone is known to interact with a diverse array of client proteins. However, in every case examined, Hsp90 is also accompanied by a single or several co-chaperone proteins. One class of co-chaperone contains a tetratricopeptide repeat (TPR) domain that targets the co-chaperone to the C-terminal region of Hsp90. Within this class are Hsp90-binding peptidylprolyl isomerases, most of which belong to the FK506-binding protein (FKBP) family. Despite the common association of FKBP co-chaperones with Hsp90, it is abundantly clear that the client protein influences, and is often influenced by, the particular FKBP bound to Hsp90. Examples include Xap2 in aryl hydrocarbon receptor complexes and FKBP52 in steroid receptor complexes. In this chapter, we discuss the known functional roles played by FKBP co-chaperones and, where possible, relate distinctive functions to structural differences between FKBP members.
Collapse
Affiliation(s)
- Nina R Ortiz
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Naihsuan Guy
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Yenni A Garcia
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Jeffrey C Sivils
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Mario D Galigniana
- Departamento de Química Biológica/IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires, Argentina
| | - Marc B Cox
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
16
|
Numata T, Sugita K, Ahamed Rahman A, Rahman A. Actin isovariant ACT7 controls root meristem development in Arabidopsis through modulating auxin and ethylene responses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6255-6271. [PMID: 35749807 DOI: 10.1093/jxb/erac280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The meristem is the most functionally dynamic part in a plant. The shaping of the meristem requires constant cell division and elongation, which are influenced by hormones and the cytoskeletal component, actin. Although the roles of hormones in modulating meristem development have been extensively studied, the role of actin in this process is still elusive. Using the single and double mutants of the vegetative class actin, we demonstrate that actin isovariant ACT7 plays an important role in root meristem development. In the absence of ACT7, but not ACT8 and ACT2, depolymerization of actin was observed. Consistently, the act7 mutant showed reduced cell division, cell elongation, and meristem length. Intracellular distribution and trafficking of auxin transport proteins in the actin mutants revealed that ACT7 specifically functions in the root meristem to facilitate the trafficking of auxin efflux carriers PIN1 and PIN2, and consequently the transport of auxin. Compared with act7, the act7act8 double mutant exhibited slightly enhanced phenotypic response and altered intracellular trafficking. The altered distribution of auxin in act7 and act7act8 affects the response of the roots to ethylene, but not to cytokinin. Collectively, our results suggest that ACT7-dependent auxin-ethylene response plays a key role in controlling Arabidopsis root meristem development.
Collapse
Affiliation(s)
- Takahiro Numata
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Kenji Sugita
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Arifa Ahamed Rahman
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| | - Abidur Rahman
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, Japan
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
17
|
Yang Y, Liu F, Liu L, Zhu M, Yuan J, Mai YX, Zou JJ, Le J, Wang Y, Palme K, Li X, Wang Y, Wang L. The unconventional prefoldin RPB5 interactor mediates the gravitropic response by modulating cytoskeleton organization and auxin transport in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1916-1934. [PMID: 35943836 DOI: 10.1111/jipb.13341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Gravity-induced root curvature involves the asymmetric distribution of the phytohormone auxin. This response depends on the concerted activities of the auxin transporters such as PIN-FORMED (PIN) proteins for auxin efflux and AUXIN RESISTANT 1 (AUX1) for auxin influx. However, how the auxin gradient is established remains elusive. Here we identified a new mutant with a short root, strong auxin distribution in the lateral root cap and an impaired gravitropic response. The causal gene encoded an Arabidopsis homolog of the human unconventional prefoldin RPB5 interactor (URI). AtURI interacted with prefoldin 2 (PFD2) and PFD6, two β-type PFD members that modulate actin and tubulin patterning in roots. The auxin reporter DR5rev :GFP showed that asymmetric auxin redistribution after gravistimulation is disordered in aturi-1 root tips. Treatment with the endomembrane protein trafficking inhibitor brefeldin A indicated that recycling of the auxin transporter PIN2 is disrupted in aturi-1 roots as well as in pfd mutants. We propose that AtURI cooperates with PFDs to recycle PIN2 and modulate auxin distribution.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Fang Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
| | - Le Liu
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
| | - Mingyue Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Jinfeng Yuan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Yan-Xia Mai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Jun-Jie Zou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonghong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Klaus Palme
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| |
Collapse
|
18
|
Liu J, Ghelli R, Cardarelli M, Geisler M. Arabidopsis TWISTED DWARF1 regulates stamen elongation by differential activation of ABCB1,19-mediated auxin transport. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4818-4831. [PMID: 35512423 DOI: 10.1093/jxb/erac185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Despite clear evidence that a local accumulation of auxin is likewise critical for male fertility, much less is known about the components that regulate auxin-controlled stamen development. In this study, we analyzed physiological and morphological parameters in mutants of key players of ABCB-mediated auxin transport, and spatially and temporally dissected their expression on the protein level as well as auxin fluxes in the Arabidopsis stamens. Our analyses revealed that the FKBP42, TWISTED DWARF1 (TWD1), promotes stamen elongation and, to a lesser extent, anther dehiscence, as well as pollen maturation, and thus is required for seed development. Most of the described developmental defects in twd1 are shared with the abcb1 abcb19 mutant, which can be attributed to the fact that TWD1-as a described ABCB chaperone-is a positive regulator of ABCB1- and ABCB19-mediated auxin transport. However, reduced stamen number was dependent on TWD1 but not on investigated ABCBs, suggesting additional players downstream of TWD1. We predict an overall housekeeping function for ABCB1 during earlier stages, while ABCB19 seems to be responsible for the key event of rapid elongation at later stages of stamen development. Our data indicate that TWD1 controls stamen development by differential activation of ABCB1,19-mediated auxin transport in the stamen.
Collapse
Affiliation(s)
- Jie Liu
- University of Fribourg, Department of Biology, CH-1700 Fribourg, Switzerland
| | - Roberta Ghelli
- IBPM-CNR, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, P. le A. Moro 5, 00185 Roma, Italy
| | - Maura Cardarelli
- IBPM-CNR, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, P. le A. Moro 5, 00185 Roma, Italy
| | - Markus Geisler
- University of Fribourg, Department of Biology, CH-1700 Fribourg, Switzerland
| |
Collapse
|
19
|
Su N, Zhu A, Tao X, Ding ZJ, Chang S, Ye F, Zhang Y, Zhao C, Chen Q, Wang J, Zhou CY, Guo Y, Jiao S, Zhang S, Wen H, Ma L, Ye S, Zheng SJ, Yang F, Wu S, Guo J. Structures and mechanisms of the Arabidopsis auxin transporter PIN3. Nature 2022; 609:616-621. [PMID: 35917926 DOI: 10.1038/s41586-022-05142-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
The PIN-FORMED (PIN) protein family of auxin transporters mediates the polar auxin transport and plays crucial roles in plant growth and development1,2. Here we present cryo-EM structures of PIN3 from Arabidopsis thaliana (AtPIN3) in the apo state and in complex with its substrate indole-3-acetic acid (IAA) and the inhibitor N-1-naphthylphthalamic acid (NPA) at 2.6-3.0 Å resolution. AtPIN3 exists as a homodimer, with the transmembrane helices (TMs) 1, 2, and 7 in the scaffold domain involved in dimerization. The dimeric AtPIN3 forms a large, joint extracellular-facing cavity at the dimer interface while each subunit adopts an inward-facing conformation. The structural and functional analyses, along with computational studies, reveal the structural basis for the recognition of IAA and NPA and elucidate the molecular mechanism of NPA inhibition on the PIN-mediated auxin transport. The AtPIN3 structures support an elevator-like model for the transport of auxin, whereby the transport domains undergo up-down rigid-body motions and the dimerized scaffold domains remain static.
Collapse
Affiliation(s)
- Nannan Su
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Aiqin Zhu
- Department of Biophysics and Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Tao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shenghai Chang
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Ye
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Zhang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhao
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qian Chen
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiangqin Wang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chen Yu Zhou
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Yirong Guo
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Shasha Jiao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Sufen Zhang
- College of agriculture and biotechnology, Zhejiang University, Hangzhou, China
| | - Han Wen
- DP Technology, Beijing, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Sheng Ye
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Shao Jian Zheng
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Yang
- Department of Biophysics and Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, Zhejiang, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China.
| | - Jiangtao Guo
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China. .,Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China. .,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.
| |
Collapse
|
20
|
Abstract
Auxin has always been at the forefront of research in plant physiology and development. Since the earliest contemplations by Julius von Sachs and Charles Darwin, more than a century-long struggle has been waged to understand its function. This largely reflects the failures, successes, and inevitable progress in the entire field of plant signaling and development. Here I present 14 stations on our long and sometimes mystical journey to understand auxin. These highlights were selected to give a flavor of the field and to show the scope and limits of our current knowledge. A special focus is put on features that make auxin unique among phytohormones, such as its dynamic, directional transport network, which integrates external and internal signals, including self-organizing feedback. Accented are persistent mysteries and controversies. The unexpected discoveries related to rapid auxin responses and growth regulation recently disturbed our contentment regarding understanding of the auxin signaling mechanism. These new revelations, along with advances in technology, usher us into a new, exciting era in auxin research.
Collapse
Affiliation(s)
- Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
21
|
Jenness MK, Tayengwa R, Bate GA, Tapken W, Zhang Y, Pang C, Murphy AS. Loss of Multiple ABCB Auxin Transporters Recapitulates the Major twisted dwarf 1 Phenotypes in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:840260. [PMID: 35528937 PMCID: PMC9069160 DOI: 10.3389/fpls.2022.840260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
FK506-BINDING PROTEIN 42/TWISTED DWARF 1 (FKBP42/TWD1) directly regulates cellular trafficking and activation of multiple ATP-BINDING CASSETTE (ABC) transporters from the ABCB and ABCC subfamilies. abcb1 abcb19 double mutants exhibit remarkable phenotypic overlap with twd1 including severe dwarfism, stamen elongation defects, and compact circinate leaves; however, twd1 mutants exhibit greater loss of polar auxin transport and additional helical twisting of roots, inflorescences, and siliques. As abcc1 abcc2 mutants do not exhibit any visible phenotypes and TWD1 does not interact with PIN or AUX1/LAX auxin transporters, loss of function of other ABCB auxin transporters is hypothesized to underly the remaining morphological phenotypes. Here, gene expression, mutant analyses, pharmacological inhibitor studies, auxin transport assays, and direct auxin quantitations were used to determine the relative contributions of loss of other reported ABCB auxin transporters (4, 6, 11, 14, 20, and 21) to twd1 phenotypes. From these analyses, the additional reduction in plant height and the twisted inflorescence, root, and silique phenotypes observed in twd1 compared to abcb1 abcb19 result from loss of ABCB6 and ABCB20 function. Additionally, abcb6 abcb20 root twisting exhibited the same sensitivity to the auxin transport inhibitor 1-napthalthalamic acid as twd1 suggesting they are the primary contributors to these auxin-dependent organ twisting phenotypes. The lack of obvious phenotypes in higher order abcb4 and abcb21 mutants suggests that the functional loss of these transporters does not contribute to twd1 root or shoot twisting. Analyses of ABCB11 and ABCB14 function revealed capacity for auxin transport; however, their activities are readily outcompeted by other substrates, suggesting alternate functions in planta, consistent with a spectrum of relative substrate affinities among ABCB transporters. Overall, the results presented here suggest that the ABCB1/19 and ABCB6/20 pairs represent the primary long-distance ABCB auxin transporters in Arabidopsis and account for all reported twd1 morphological phenotypes. Other ABCB transporters appear to participate in highly localized auxin streams or mobilize alternate transport substrates.
Collapse
Affiliation(s)
- Mark K. Jenness
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Reuben Tayengwa
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Gabrielle A. Bate
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Wiebke Tapken
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Yuqin Zhang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Changxu Pang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Angus S. Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| |
Collapse
|
22
|
Samakovli D, Roka L, Dimopoulou A, Plitsi PK, Žukauskait A, Georgopoulou P, Novák O, Milioni D, Hatzopoulos P. HSP90 affects root growth in Arabidopsis by regulating the polar distribution of PIN1. THE NEW PHYTOLOGIST 2021; 231:1814-1831. [PMID: 34086995 DOI: 10.1111/nph.17528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Auxin homeostasis and signaling affect a broad range of developmental processes in plants. The interplay between HSP90 and auxin signaling is channeled through the chaperoning capacity of the HSP90 on the TIR1 auxin receptor. The sophisticated buffering capacity of the HSP90 system through the interaction with diverse signaling protein components drastically shapes genetic circuitries regulating various developmental aspects. However, the elegant networking capacity of HSP90 in the global regulation of auxin response and homeostasis has not been appreciated. Arabidopsis hsp90 mutants were screened for gravity response. Phenotypic analysis of root meristems and cotyledon veins was performed. PIN1 localization in hsp90 mutants was determined. Our results showed that HSP90 affected the asymmetrical distribution of PIN1 in plasma membranes and influenced its expression in prompt cell niches. Depletion of HSP90 distorted polar distribution of auxin, as the acropetal auxin transport was highly affected, leading to impaired root gravitropism and lateral root formation. The essential role of the HSP90 in auxin homeostasis was profoundly evident from early development, as HSP90 depletion affected embryo development and the pattern formation of veins in cotyledons. Our data suggest that the HSP90-mediated distribution of PIN1 modulates auxin distribution and thereby auxin signaling to properly promote plant development.
Collapse
Affiliation(s)
- Despina Samakovli
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| | - Loukia Roka
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| | - Anastasia Dimopoulou
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| | - Panagiota Konstantinia Plitsi
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| | - Asta Žukauskait
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Paraskevi Georgopoulou
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| | - Ondřej Novák
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Dimitra Milioni
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| | - Polydefkis Hatzopoulos
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| |
Collapse
|
23
|
Abstract
Molecular genetic and structural studies have revealed the mechanisms of fundamental components of key auxin regulatory pathways consisting of auxin biosynthesis, transport, and signaling. Chemical biology methods applied in auxin research have been greatly expanded through the understanding of auxin regulatory pathways. Many small-molecule modulators of auxin metabolism, transport, and signaling have been generated on the basis of the outcomes of genetic and structural studies on auxin regulatory pathways. These chemical modulators are now widely used as essential tools for dissecting auxin biology in diverse plants. This review covers the structures, primary targets, modes of action, and applications of chemical tools in auxin biosynthesis, transport, and signaling.
Collapse
Affiliation(s)
- Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama City 700-0005, Japan
| |
Collapse
|
24
|
Cell kinetics of auxin transport and activity in Arabidopsis root growth and skewing. Nat Commun 2021; 12:1657. [PMID: 33712581 PMCID: PMC7954861 DOI: 10.1038/s41467-021-21802-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/09/2021] [Indexed: 12/31/2022] Open
Abstract
Auxin is a key regulator of plant growth and development. Local auxin biosynthesis and intercellular transport generates regional gradients in the root that are instructive for processes such as specification of developmental zones that maintain root growth and tropic responses. Here we present a toolbox to study auxin-mediated root development that features: (i) the ability to control auxin synthesis with high spatio-temporal resolution and (ii) single-cell nucleus tracking and morphokinetic analysis infrastructure. Integration of these two features enables cutting-edge analysis of root development at single-cell resolution based on morphokinetic parameters under normal growth conditions and during cell-type-specific induction of auxin biosynthesis. We show directional auxin flow in the root and refine the contributions of key players in this process. In addition, we determine the quantitative kinetics of Arabidopsis root meristem skewing, which depends on local auxin gradients but does not require PIN2 and AUX1 auxin transporter activities. Beyond the mechanistic insights into root development, the tools developed here will enable biologists to study kinetics and morphology of various critical processes at the single cell-level in whole organisms.
Collapse
|
25
|
Ma H, Xu L, Fu Y, Zhu L. Arabidopsis QWRF1 and QWRF2 Redundantly Modulate Cortical Microtubule Arrangement in Floral Organ Growth and Fertility. Front Cell Dev Biol 2021; 9:634218. [PMID: 33634133 PMCID: PMC7901996 DOI: 10.3389/fcell.2021.634218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/15/2021] [Indexed: 11/13/2022] Open
Abstract
Floral organ development is fundamental to sexual reproduction in angiosperms. Many key floral regulators (most of which are transcription factors) have been identified and shown to modulate floral meristem determinacy and floral organ identity, but not much is known about the regulation of floral organ growth, which is a critical process by which organs to achieve appropriate morphologies and fulfill their functions. Spatial and temporal control of anisotropic cell expansion following initial cell proliferation is important for organ growth. Cortical microtubules are well known to have important roles in plant cell polar growth/expansion and have been reported to guide the growth and shape of sepals and petals. In this study, we identified two homolog proteins, QWRF1 and QWRF2, which are essential for floral organ growth and plant fertility. We found severely deformed morphologies and symmetries of various floral organs as well as a significant reduction in the seed setting rate in the qwrf1qwrf2 double mutant, although few flower development defects were seen in qwrf1 or qwrf2 single mutants. QWRF1 and QWRF2 display similar expression patterns and are both localized to microtubules in vitro and in vivo. Furthermore, we found altered cortical microtubule organization and arrangements in qwrf1qwrf2 cells, consistent with abnormal cell expansion in different floral organs, which eventually led to poor fertility. Our results suggest that QWRF1 and QWRF2 are likely microtubule-associated proteins with functional redundancy in fertility and floral organ development, which probably exert their effects via regulation of cortical microtubules and anisotropic cell expansion.
Collapse
Affiliation(s)
- Huifang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liyuan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Abas L, Kolb M, Stadlmann J, Janacek DP, Lukic K, Schwechheimer C, Sazanov LA, Mach L, Friml J, Hammes UZ. Naphthylphthalamic acid associates with and inhibits PIN auxin transporters. Proc Natl Acad Sci U S A 2021; 118:e2020857118. [PMID: 33443187 PMCID: PMC7817115 DOI: 10.1073/pnas.2020857118] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022] Open
Abstract
N-1-naphthylphthalamic acid (NPA) is a key inhibitor of directional (polar) transport of the hormone auxin in plants. For decades, it has been a pivotal tool in elucidating the unique polar auxin transport-based processes underlying plant growth and development. Its exact mode of action has long been sought after and is still being debated, with prevailing mechanistic schemes describing only indirect connections between NPA and the main transporters responsible for directional transport, namely PIN auxin exporters. Here we present data supporting a model in which NPA associates with PINs in a more direct manner than hitherto postulated. We show that NPA inhibits PIN activity in a heterologous oocyte system and that expression of NPA-sensitive PINs in plant, yeast, and oocyte membranes leads to specific saturable NPA binding. We thus propose that PINs are a bona fide NPA target. This offers a straightforward molecular basis for NPA inhibition of PIN-dependent auxin transport and a logical parsimonious explanation for the known physiological effects of NPA on plant growth, as well as an alternative hypothesis to interpret past and future results. We also introduce PIN dimerization and describe an effect of NPA on this, suggesting that NPA binding could be exploited to gain insights into structural aspects of PINs related to their transport mechanism.
Collapse
Affiliation(s)
- Lindy Abas
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria;
| | - Martina Kolb
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Johannes Stadlmann
- Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Dorina P Janacek
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Kristina Lukic
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Claus Schwechheimer
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Ulrich Z Hammes
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany;
| |
Collapse
|
27
|
Tan S, Luschnig C, Friml J. Pho-view of Auxin: Reversible Protein Phosphorylation in Auxin Biosynthesis, Transport and Signaling. MOLECULAR PLANT 2021; 14:151-165. [PMID: 33186755 DOI: 10.1016/j.molp.2020.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/07/2020] [Accepted: 11/07/2020] [Indexed: 05/24/2023]
Abstract
The phytohormone auxin plays a central role in shaping plant growth and development. With decades of genetic and biochemical studies, numerous core molecular components and their networks, underlying auxin biosynthesis, transport, and signaling, have been identified. Notably, protein phosphorylation, catalyzed by kinases and oppositely hydrolyzed by phosphatases, has been emerging to be a crucial type of post-translational modification, regulating physiological and developmental auxin output at all levels. In this review, we comprehensively discuss earlier and recent advances in our understanding of genetics, biochemistry, and cell biology of the kinases and phosphatases participating in auxin action. We provide insights into the mechanisms by which reversible protein phosphorylation defines developmental auxin responses, discuss current challenges, and provide our perspectives on future directions involving the integration of the control of protein phosphorylation into the molecular auxin network.
Collapse
Affiliation(s)
- Shutang Tan
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
28
|
Teale WD, Pasternak T, Dal Bosco C, Dovzhenko A, Kratzat K, Bildl W, Schwörer M, Falk T, Ruperti B, V Schaefer J, Shahriari M, Pilgermayer L, Li X, Lübben F, Plückthun A, Schulte U, Palme K. Flavonol-mediated stabilization of PIN efflux complexes regulates polar auxin transport. EMBO J 2021; 40:e104416. [PMID: 33185277 PMCID: PMC7780147 DOI: 10.15252/embj.2020104416] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 09/04/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023] Open
Abstract
The transport of auxin controls the rate, direction and localization of plant growth and development. The course of auxin transport is defined by the polar subcellular localization of the PIN proteins, a family of auxin efflux transporters. However, little is known about the composition and regulation of the PIN protein complex. Here, using blue-native PAGE and quantitative mass spectrometry, we identify native PIN core transport units as homo- and heteromers assembled from PIN1, PIN2, PIN3, PIN4 and PIN7 subunits only. Furthermore, we show that endogenous flavonols stabilize PIN dimers to regulate auxin efflux in the same way as does the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). This inhibitory mechanism is counteracted both by the natural auxin indole-3-acetic acid and by phosphomimetic amino acids introduced into the PIN1 cytoplasmic domain. Our results lend mechanistic insights into an endogenous control mechanism which regulates PIN function and opens the way for a deeper understanding of the protein environment and regulation of the polar auxin transport complex.
Collapse
Affiliation(s)
- William D Teale
- Institute of Biology IIUniversity of FreiburgFreiburgGermany
| | - Taras Pasternak
- Institute of Biology IIUniversity of FreiburgFreiburgGermany
| | | | | | | | - Wolfgang Bildl
- Institute of Physiology IIFaculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Manuel Schwörer
- Institute of Biology IIUniversity of FreiburgFreiburgGermany
| | - Thorsten Falk
- Institute for Computer ScienceUniversity of FreiburgFreiburgGermany
| | - Benadetto Ruperti
- Department of Agronomy, Food, Natural resources, Animals and Environment—DAFNAEUniversity of PadovaPadovaItaly
| | - Jonas V Schaefer
- High‐Throughput Binder Selection FacilityDepartment of BiochemistryUniversity of ZurichZurichSwitzerland
| | | | | | - Xugang Li
- Sino German Joint Research Center for Agricultural Biology, and State Key Laboratory of Crop BiologyCollege of Life Sciences, Shandong Agricultural UniversityTai'anChina
| | - Florian Lübben
- Institute of Biology IIUniversity of FreiburgFreiburgGermany
| | - Andreas Plückthun
- High‐Throughput Binder Selection FacilityDepartment of BiochemistryUniversity of ZurichZurichSwitzerland
| | - Uwe Schulte
- Institute of Physiology IIFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Logopharm GmbHFreiburgGermany
- Signalling Research Centres BIOSS and CIBSSFreiburgGermany
| | - Klaus Palme
- Institute of Biology IIUniversity of FreiburgFreiburgGermany
- Signalling Research Centres BIOSS and CIBSSFreiburgGermany
| |
Collapse
|
29
|
Soeno K, Sato A, Shimada Y. Investigation of Auxin Biosynthesis and Action Using Auxin Biosynthesis Inhibitors. Methods Mol Biol 2021; 2213:131-144. [PMID: 33270199 DOI: 10.1007/978-1-0716-0954-5_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Auxin plays important roles in almost all aspects of plant growth and development. Chemical genetics is an effective approach to understand auxin action, especially in nonmodel plant species, in which auxin-related mutants are not yet available. Among auxin-related chemical tools, we present approaches to utilize auxin biosynthesis inhibitors. The inhibitors are effective not only to understand auxin biosynthesis but also to understand auxin action. The effectiveness of the inhibitors can be assessed based on in vitro or in vivo assays. The in vitro assay employs enzyme inhibition assays. The in vivo assay employs UPLC-MS/MS-based analysis of endogenous IAA and its intermediates or metabolites.
Collapse
Affiliation(s)
- Kazuo Soeno
- Western Region Agricultural Research Center (WARC), National Agriculture and Food Research Organization (NARO), Kagawa, Japan
| | - Akiko Sato
- Yokohama City University, Kihara Institute for Biological Research, Yokohama, Kanagawa, Japan
| | - Yukihisa Shimada
- Yokohama City University, Kihara Institute for Biological Research, Yokohama, Kanagawa, Japan.
| |
Collapse
|
30
|
García-González J, van Gelderen K. Bundling up the Role of the Actin Cytoskeleton in Primary Root Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:777119. [PMID: 34975959 PMCID: PMC8716943 DOI: 10.3389/fpls.2021.777119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/11/2021] [Indexed: 05/19/2023]
Abstract
Primary root growth is required by the plant to anchor in the soil and reach out for nutrients and water, while dealing with obstacles. Efficient root elongation and bending depends upon the coordinated action of environmental sensing, signal transduction, and growth responses. The actin cytoskeleton is a highly plastic network that constitutes a point of integration for environmental stimuli and hormonal pathways. In this review, we present a detailed compilation highlighting the importance of the actin cytoskeleton during primary root growth and we describe how actin-binding proteins, plant hormones, and actin-disrupting drugs affect root growth and root actin. We also discuss the feedback loop between actin and root responses to light and gravity. Actin affects cell division and elongation through the control of its own organization. We remark upon the importance of longitudinally oriented actin bundles as a hallmark of cell elongation as well as the role of the actin cytoskeleton in protein trafficking and vacuolar reshaping during this process. The actin network is shaped by a plethora of actin-binding proteins; however, there is still a large gap in connecting the molecular function of these proteins with their developmental effects. Here, we summarize their function and known effects on primary root growth with a focus on their high level of specialization. Light and gravity are key factors that help us understand root growth directionality. The response of the root to gravity relies on hormonal, particularly auxin, homeostasis, and the actin cytoskeleton. Actin is necessary for the perception of the gravity stimulus via the repositioning of sedimenting statoliths, but it is also involved in mediating the growth response via the trafficking of auxin transporters and cell elongation. Furthermore, auxin and auxin analogs can affect the composition of the actin network, indicating a potential feedback loop. Light, in its turn, affects actin organization and hence, root growth, although its precise role remains largely unknown. Recently, fundamental studies with the latest techniques have given us more in-depth knowledge of the role and organization of actin in the coordination of root growth; however, there remains a lot to discover, especially in how actin organization helps cell shaping, and therefore root growth.
Collapse
Affiliation(s)
- Judith García-González
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Judith García-González,
| | - Kasper van Gelderen
- Plant Ecophysiology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Kasper van Gelderen,
| |
Collapse
|
31
|
Geisler MM. A Retro-Perspective on Auxin Transport. FRONTIERS IN PLANT SCIENCE 2021; 12:756968. [PMID: 34675956 PMCID: PMC8524130 DOI: 10.3389/fpls.2021.756968] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 05/13/2023]
|
32
|
Tan S, Di Donato M, Glanc M, Zhang X, Klíma P, Liu J, Bailly A, Ferro N, Petrášek J, Geisler M, Friml J. Non-steroidal Anti-inflammatory Drugs Target TWISTED DWARF1-Regulated Actin Dynamics and Auxin Transport-Mediated Plant Development. Cell Rep 2020; 33:108463. [PMID: 33264621 DOI: 10.1016/j.celrep.2020.108463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/18/2020] [Accepted: 11/10/2020] [Indexed: 12/28/2022] Open
Abstract
The widely used non-steroidal anti-inflammatory drugs (NSAIDs) are derivatives of the phytohormone salicylic acid (SA). SA is well known to regulate plant immunity and development, whereas there have been few reports focusing on the effects of NSAIDs in plants. Our studies here reveal that NSAIDs exhibit largely overlapping physiological activities to SA in the model plant Arabidopsis. NSAID treatments lead to shorter and agravitropic primary roots and inhibited lateral root organogenesis. Notably, in addition to the SA-like action, which in roots involves binding to the protein phosphatase 2A (PP2A), NSAIDs also exhibit PP2A-independent effects. Cell biological and biochemical analyses reveal that many NSAIDs bind directly to and inhibit the chaperone activity of TWISTED DWARF1, thereby regulating actin cytoskeleton dynamics and subsequent endosomal trafficking. Our findings uncover an unexpected bioactivity of human pharmaceuticals in plants and provide insights into the molecular mechanism underlying the cellular action of this class of anti-inflammatory compounds.
Collapse
Affiliation(s)
- Shutang Tan
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Martin Di Donato
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Matouš Glanc
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria; Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic
| | - Xixi Zhang
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria; Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Petr Klíma
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Jie Liu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Noel Ferro
- University of Bonn, Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, 53115 Bonn, Germany
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic; The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Markus Geisler
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
33
|
Geisler M, Hegedűs T. A twist in the ABC: regulation of ABC transporter trafficking and transport by FK506-binding proteins. FEBS Lett 2020; 594:3986-4000. [PMID: 33125703 DOI: 10.1002/1873-3468.13983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/02/2020] [Accepted: 10/15/2020] [Indexed: 01/07/2023]
Abstract
Post-transcriptional regulation of ATP-binding cassette (ABC) proteins has been so far shown to encompass protein phosphorylation, maturation, and ubiquitination. Yet, recent accumulating evidence implicates FK506-binding proteins (FKBPs), a type of peptidylprolyl cis-trans isomerase (PPIase) proteins, in ABC transporter regulation. In this perspective article, we summarize current knowledge on ABC transporter regulation by FKBPs, which seems to be conserved over kingdoms and ABC subfamilies. We uncover striking functional similarities but also differences between regulatory FKBP-ABC modules in plants and mammals. We dissect a PPIase- and HSP90-dependent and independent impact of FKBPs on ABC biogenesis and transport activity. We propose and discuss a putative new mode of transient ABC transporter regulation by cis-trans isomerization of X-prolyl bonds.
Collapse
Affiliation(s)
- Markus Geisler
- Department of Biology, University of Fribourg, Switzerland
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
34
|
Hao P, Xia J, Liu J, Di Donato M, Pakula K, Bailly A, Jasinski M, Geisler M. Auxin-transporting ABC transporters are defined by a conserved D/E-P motif regulated by a prolylisomerase. J Biol Chem 2020; 295:13094-13105. [PMID: 32699109 PMCID: PMC7489919 DOI: 10.1074/jbc.ra120.014104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
The plant hormone auxin must be transported throughout plants in a cell-to-cell manner to affect its various physiological functions. ABCB transporters are critical for this polar auxin distribution, but the regulatory mechanisms controlling their function is not fully understood. The auxin transport activity of ABCB1 was suggested to be regulated by a physical interaction with FKBP42/Twisted Dwarf1 (TWD1), a peptidylprolyl cis-trans isomerase (PPIase), but all attempts to demonstrate such a PPIase activity by TWD1 have failed so far. By using a structure-based approach, we identified several surface-exposed proline residues in the nucleotide binding domain and linker of Arabidopsis ABCB1, mutations of which do not alter ABCB1 protein stability or location but do affect its transport activity. P1008 is part of a conserved signature D/E-P motif that seems to be specific for auxin-transporting ABCBs, which we now refer to as ATAs. Mutation of the acidic residue also abolishes auxin transport activity by ABCB1. All higher plant ABCBs for which auxin transport has been conclusively proven carry this conserved motif, underlining its predictive potential. Introduction of this D/E-P motif into malate importer, ABCB14, increases both its malate and its background auxin transport activity, suggesting that this motif has an impact on transport capacity. The D/E-P1008 motif is also important for ABCB1-TWD1 interactions and activation of ABCB1-mediated auxin transport by TWD1. In summary, our data imply a new function for TWD1 acting as a putative activator of ABCB-mediated auxin transport by cis-trans isomerization of peptidyl-prolyl bonds.
Collapse
Affiliation(s)
- Pengchao Hao
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jian Xia
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jie Liu
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Martin Di Donato
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Konrad Pakula
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland; NanoBioMedical Centre, Adam Mickiewicz University, Poznan, Poland
| | - Aurélien Bailly
- Institute for Plant and Microbial Biology, Zurich, Switzerland
| | - Michal Jasinski
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland; Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan, Poland
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
35
|
Takatsuka H, Ito M. Cytoskeletal Control of Planar Polarity in Root Hair Development. FRONTIERS IN PLANT SCIENCE 2020; 11:580935. [PMID: 33014003 PMCID: PMC7496891 DOI: 10.3389/fpls.2020.580935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/19/2020] [Indexed: 05/29/2023]
|
36
|
Siao W, Coskun D, Baluška F, Kronzucker HJ, Xu W. Root-Apex Proton Fluxes at the Centre of Soil-Stress Acclimation. TRENDS IN PLANT SCIENCE 2020; 25:794-804. [PMID: 32673580 DOI: 10.1016/j.tplants.2020.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/13/2020] [Accepted: 03/04/2020] [Indexed: 05/22/2023]
Abstract
Proton (H+) fluxes in plant roots play critical roles in maintaining root growth and facilitating plant responses to multiple soil stresses, including fluctuations in nutrient supply, salt infiltration, and water stress. Soil mining for nutrients and water, rates of nutrient uptake, and the modulation of cell expansion all depend on the regulation of root H+ fluxes, particularly at the root apex, mediated primarily by the activity of plasma membrane (PM) H+-ATPases. Here, we summarize recent findings on the regulatory mechanisms of H+ fluxes at the root apex under three abiotic stress conditions - phosphate deficiency, salinity stress, and water deficiency - and present an integrated physiomolecular view of the functions of H+ fluxes in maintaining root growth in the acclimation to soil stress.
Collapse
Affiliation(s)
- Wei Siao
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Jinshan Fuzhou 350002, China; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Devrim Coskun
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, QC G1V 0A6, Canada
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, 53115 Bonn, Germany
| | - Herbert J Kronzucker
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3010, Australia; Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Weifeng Xu
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Jinshan Fuzhou 350002, China.
| |
Collapse
|
37
|
Tichá T, Samakovli D, Kuchařová A, Vavrdová T, Šamaj J. Multifaceted roles of HEAT SHOCK PROTEIN 90 molecular chaperones in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3966-3985. [PMID: 32293686 DOI: 10.1093/jxb/eraa177] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/06/2020] [Indexed: 05/20/2023]
Abstract
HEAT SHOCK PROTEINS 90 (HSP90s) are molecular chaperones that mediate correct folding and stability of many client proteins. These chaperones act as master molecular hubs involved in multiple aspects of cellular and developmental signalling in diverse organisms. Moreover, environmental and genetic perturbations affect both HSP90s and their clients, leading to alterations of molecular networks determining respectively plant phenotypes and genotypes and contributing to a broad phenotypic plasticity. Although HSP90 interaction networks affecting the genetic basis of phenotypic variation and diversity have been thoroughly studied in animals, such studies are just starting to emerge in plants. Here, we summarize current knowledge and discuss HSP90 network functions in plant development and cellular homeostasis.
Collapse
Affiliation(s)
- Tereza Tichá
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Despina Samakovli
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Anna Kuchařová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tereza Vavrdová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
38
|
Mao J, Li J. Regulation of Three Key Kinases of Brassinosteroid Signaling Pathway. Int J Mol Sci 2020; 21:E4340. [PMID: 32570783 PMCID: PMC7352359 DOI: 10.3390/ijms21124340] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023] Open
Abstract
Brassinosteroids (BRs) are important plant growth hormones that regulate a wide range of plant growth and developmental processes. The BR signals are perceived by two cell surface-localized receptor kinases, Brassinosteroid-Insensitive1 (BRI1) and BRI1-Associated receptor Kinase (BAK1), and reach the nucleus through two master transcription factors, bri1-EMS suppressor1 (BES1) and Brassinazole-resistant1 (BZR1). The intracellular transmission of the BR signals from BRI1/BAK1 to BES1/BZR1 is inhibited by a constitutively active kinase Brassinosteroid-Insensitive2 (BIN2) that phosphorylates and negatively regulates BES1/BZR1. Since their initial discoveries, further studies have revealed a plethora of biochemical and cellular mechanisms that regulate their protein abundance, subcellular localizations, and signaling activities. In this review, we provide a critical analysis of the current literature concerning activation, inactivation, and other regulatory mechanisms of three key kinases of the BR signaling cascade, BRI1, BAK1, and BIN2, and discuss some unresolved controversies and outstanding questions that require further investigation.
Collapse
Affiliation(s)
- Juan Mao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agriculture University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agriculture University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
39
|
Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots. Proc Natl Acad Sci U S A 2020; 117:15322-15331. [PMID: 32541049 PMCID: PMC7334516 DOI: 10.1073/pnas.2003346117] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plants are sessile organisms that cannot evade wounding or pathogen attack, and their cells are encapsulated within cell walls, making it impossible to use cell migration for wound healing like animals. Thus, regeneration in plants largely relies on the coordination of targeted cell expansion and oriented cell division. Here we show in the root that the major growth hormone auxin is specifically activated in wound-adjacent cells, regulating cell expansion, cell division rates, and regeneration-involved transcription factor ERF115. These wound responses depend on cell collapse of the eliminated cells presumably perceived by the cell damage-induced changes in cellular pressure. This largely broadens our understanding of how wound responses are coordinated on a cellular level to mediate wound healing and prevent overproliferation. Wound healing in plant tissues, consisting of rigid cell wall-encapsulated cells, represents a considerable challenge and occurs through largely unknown mechanisms distinct from those in animals. Owing to their inability to migrate, plant cells rely on targeted cell division and expansion to regenerate wounds. Strict coordination of these wound-induced responses is essential to ensure efficient, spatially restricted wound healing. Single-cell tracking by live imaging allowed us to gain mechanistic insight into the wound perception and coordination of wound responses after laser-based wounding in Arabidopsis root. We revealed a crucial contribution of the collapse of damaged cells in wound perception and detected an auxin increase specific to cells immediately adjacent to the wound. This localized auxin increase balances wound-induced cell expansion and restorative division rates in a dose-dependent manner, leading to tumorous overproliferation when the canonical TIR1 auxin signaling is disrupted. Auxin and wound-induced turgor pressure changes together also spatially define the activation of key components of regeneration, such as the transcription regulator ERF115. Our observations suggest that the wound signaling involves the sensing of collapse of damaged cells and a local auxin signaling activation to coordinate the downstream transcriptional responses in the immediate wound vicinity.
Collapse
|
40
|
Arieti RS, Staiger CJ. Auxin-induced actin cytoskeleton rearrangements require AUX1. THE NEW PHYTOLOGIST 2020; 226:441-459. [PMID: 31859367 PMCID: PMC7154765 DOI: 10.1111/nph.16382] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/10/2019] [Indexed: 05/06/2023]
Abstract
The actin cytoskeleton is required for cell expansion and implicated in cellular responses to the phytohormone auxin. However, the mechanisms that coordinate auxin signaling, cytoskeletal remodeling and cell expansion are poorly understood. Previous studies examined long-term actin cytoskeleton responses to auxin, but plants respond to auxin within minutes. Before this work, an extracellular auxin receptor - rather than the auxin transporter AUXIN RESISTANT 1 (AUX1) - was considered to precede auxin-induced cytoskeleton reorganization. In order to correlate actin array organization and dynamics with degree of cell expansion, quantitative imaging tools established baseline actin organization and illuminated individual filament behaviors in root epidermal cells under control conditions and after indole-3-acetic acid (IAA) application. We evaluated aux1 mutant actin organization responses to IAA and the membrane-permeable auxin 1-naphthylacetic acid (NAA). Cell length predicted actin organization and dynamics in control roots; short-term IAA treatments stimulated denser and more parallel, longitudinal arrays by inducing filament unbundling within minutes. Although AUX1 is necessary for full actin rearrangements in response to auxin, cytoplasmic auxin (i.e. NAA) stimulated a lesser response. Actin filaments became more 'organized' after IAA stopped elongation, refuting the hypothesis that 'more organized' actin arrays universally correlate with rapid growth. Short-term actin cytoskeleton response to auxin requires AUX1 and/or cytoplasmic auxin.
Collapse
Affiliation(s)
- Ruthie S. Arieti
- Department of Biological SciencesPurdue UniversityWest LafayetteIN47907‐2064USA
- Purdue University Interdisciplinary Life Sciences Graduate Program (PULSe)Purdue UniversityWest LafayetteIN47907USA
- Center for Plant BiologyPurdue UniversityWest LafayetteIN47907USA
| | - Christopher J. Staiger
- Department of Biological SciencesPurdue UniversityWest LafayetteIN47907‐2064USA
- Center for Plant BiologyPurdue UniversityWest LafayetteIN47907USA
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN47907USA
| |
Collapse
|
41
|
Rapid Detection of Hormonal Involvement in Light Responses. Methods Mol Biol 2020. [PMID: 31317415 DOI: 10.1007/978-1-4939-9612-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Many aspects of light-controlled metabolism and development of plants depend on hormonal pathways. Here, a method is described to identify such hormonal dependence in light-regulated processes. A number of compounds-hormones and chemicals which interfere with hormonal pathways-are listed because of their usefulness in pharmacological treatment experiments. As an example for practical use of such compounds, elongation growth is discussed. An experimental setup is described in which plants are grown so that their structures develop predominantly in a two-dimensional plane. Time-lapse imaging is used to follow the plants in time, and image analysis reveals changes in plant morphology.
Collapse
|
42
|
Zhu K, Zhang W, Sarwa R, Xu S, Li K, Yang Y, Li Y, Wang Z, Cao J, Li Y, Tan X. Proteomic analysis of a clavata-like phenotype mutant in Brassica napus. Genet Mol Biol 2020; 43:e20190305. [PMID: 32154828 PMCID: PMC7198001 DOI: 10.1590/1678-4685-gmb-2019-0305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/08/2020] [Indexed: 12/29/2022] Open
Abstract
Rapeseed is one of important oil crops in China. Better understanding of the
regulation network of main agronomic traits of rapeseed could improve the
yielding of rapeseed. In this study, we obtained an influrescence mutant that
showed a fusion phenotype, similar with the Arabidopsis
clavata-like phenotype, so we named the mutant as
Bnclavata-like (Bnclv-like). Phenotype
analysis illustrated that abnormal development of the inflorescence meristem
(IM) led to the fused-inflorescence phenotype. At the stage of protein
abundance, major regulators in metabolic processes, ROS metabolism, and
cytoskeleton formation were seen to be altered in this mutant. These results not
only revealed the relationship between biological processes and inflorescence
meristem development, but also suggest bioengineering strategies for the
improved breeding and production of Brassica napus.
Collapse
Affiliation(s)
- Keming Zhu
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China.,Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Wuhan, China
| | - Weiwei Zhang
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Rehman Sarwa
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Shuo Xu
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Kaixia Li
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Yanhua Yang
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Yulong Li
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Zheng Wang
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Jun Cao
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Yaoming Li
- Jiangsu University, Institute of Agricultural Engineering, Zhenjiang, China
| | - Xiaoli Tan
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
43
|
Koike I, Watanabe S, Okazaki K, Hayashi KI, Kasahara H, Shimomura K, Umehara M. Endogenous auxin determines the pattern of adventitious shoot formation on internodal segments of ipecac. PLANTA 2020; 251:73. [PMID: 32140780 DOI: 10.1007/s00425-020-03367-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Endogenous auxin determines the pattern of adventitious shoot formation. Auxin produced in the dominant shoot is transported to the internodal segment and suppresses growth of other shoots. Adventitious shoot formation is required for the propagation of economically important crops and for the regeneration of transgenic plants. In most plant species, phytohormones are added to culture medium to induce adventitious shoots. In ipecac (Carapichea ipecacuanha (Brot.) L. Andersson), however, adventitious shoots can be formed without phytohormone treatment. Thus, ipecac culture allows us to investigate the effects of endogenous phytohormones during adventitious shoot formation. In phytohormone-free culture, adventitious shoots were formed on the apical region of the internodal segments, and a high concentration of IAA was detected in the basal region. To explore the relationship between endogenous auxin and adventitious shoot formation, we evaluated the effects of auxin transport inhibitors, auxin antagonists, and auxin biosynthesis inhibitors on adventitious shoot formation in ipecac. Auxin antagonists and biosynthesis inhibitors strongly suppressed adventitious shoot formation, which was restored by exogenously applied auxin. Auxin biosynthesis and transport inhibitors significantly decreased the IAA level in the basal region and shifted the positions of adventitious shoot formation from the apical region to the middle region of the segments. These data indicate that auxin determines the positions of the shoots formed on internodal segments of ipecac. Only one of the shoots formed grew vigorously; this phenomenon is similar to apical dominance. When the largest shoot was cut off, other shoots started to grow. Naphthalene-1-acetic acid treatment of the cut surface suppressed shoot growth, indicating that auxin produced in the dominant shoot is transported to the internodal segment and suppresses growth of other shoots.
Collapse
Affiliation(s)
- Imari Koike
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Sachi Watanabe
- Department of Applied Biosciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Karin Okazaki
- Department of Applied Biosciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, Okayama, 700-0005, Japan
| | - Hiroyuki Kasahara
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Koichiro Shimomura
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Mikihisa Umehara
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan.
- Department of Applied Biosciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan.
| |
Collapse
|
44
|
Nongmaithem S, Devulapalli S, Sreelakshmi Y, Sharma R. Is naphthylphthalamic acid a specific phytotropin? It elevates ethylene and alters metabolic homeostasis in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110358. [PMID: 31928666 DOI: 10.1016/j.plantsci.2019.110358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/17/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
In higher plants, phytohormone indole-3-acetic acid is characteristically transported from the apex towards the base of the plant, termed as polar auxin transport (PAT). Among the inhibitors blocking PAT, N-1-naphthylphthalamic acid (NPA) that targets ABCB transporters is most commonly used. NPA-treated light-grown Arabidopsis seedlings show severe inhibition of hypocotyl and root elongation. In light-grown tomato seedlings, NPA inhibited root growth, but contrary to Arabidopsis stimulated hypocotyl elongation. The NPA-stimulation of hypocotyl elongation was milder in blue, red, and far-red light-grown seedlings. The NPA-treatment stimulated emission of ethylene from the seedlings. The scrubbing of ethylene by mercuric perchlorate reduced NPA-stimulated hypocotyl elongation. NPA action on hypocotyl elongation was antagonized by 1-methylcyclopropene, an inhibitor of ethylene action. NPA-treated seedlings had reduced levels of indole-3-butyric acid and higher levels of zeatin in the shoots. NPA did not alter indole-3-acetic levels in shoots. The analysis of metabolic networks indicated that NPA-treatment induced moderate shifts in the networks compared to exogenous ethylene that induced a drastic shift in metabolic networks. Our results indicate that in addition to ethylene, NPA-stimulated hypocotyl elongation in tomato may also involve zeatin and indole-3- butyric acid. Our results indicate that NPA-mediated physiological responses may vary in a species-specific fashion.
Collapse
Affiliation(s)
- Sapana Nongmaithem
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sameera Devulapalli
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
45
|
Zou M, Ren H, Li J. An Auxin Transport Inhibitor Targets Villin-Mediated Actin Dynamics to Regulate Polar Auxin Transport. PLANT PHYSIOLOGY 2019; 181:161-178. [PMID: 31311831 PMCID: PMC6716258 DOI: 10.1104/pp.19.00064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/25/2019] [Indexed: 05/14/2023]
Abstract
Auxin transport inhibitors are essential tools for understanding auxin-dependent plant development. One mode of inhibition affects actin dynamics; however, the underlying mechanisms remain unclear. In this study, we characterized the action of 2,3,5-triiodobenzoic acid (TIBA) on actin dynamics in greater mechanistic detail. By surveying mutants for candidate actin-binding proteins with reduced TIBA sensitivity, we determined that Arabidopsis (Arabidopsis thaliana) villins contribute to TIBA action. By directly interacting with the C-terminal headpiece domain of villins, TIBA causes villin to oligomerize, driving excessive bundling of actin filaments. The resulting changes in actin dynamics impair auxin transport by disrupting the trafficking of PIN-FORMED auxin efflux carriers and reducing their levels at the plasma membrane. Collectively, our study provides mechanistic insight into the link between the actin cytoskeleton, vesicle trafficking, and auxin transport.
Collapse
Affiliation(s)
- Minxia Zou
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Jiejie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
46
|
Donato M, Geisler M. HSP
90 and co‐chaperones: a multitaskers’ view on plant hormone biology. FEBS Lett 2019; 593:1415-1430. [DOI: 10.1002/1873-3468.13499] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Martin Donato
- Department of Biology University of Fribourg Switzerland
| | - Markus Geisler
- Department of Biology University of Fribourg Switzerland
| |
Collapse
|
47
|
da Silva Júnior WF, Bezerra de Menezes DL, de Oliveira LC, Koester LS, Oliveira de Almeida PD, Lima ES, de Azevedo EP, da Veiga Júnior VF, Neves de Lima ÁA. Inclusion Complexes of β and HPβ-Cyclodextrin with α, β Amyrin and In Vitro Anti-Inflammatory Activity. Biomolecules 2019; 9:biom9060241. [PMID: 31234312 PMCID: PMC6627979 DOI: 10.3390/biom9060241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 01/23/2023] Open
Abstract
α, β amyrin (ABAM) is a natural mixture of pentacyclic triterpenes that has a wide range of biological activities. ABAM is isolated from the species of the Burseraceae family, in which the species Protium is commonly found in the Amazon region of Brazil. The aim of this work was to develop inclusion complexes (ICs) of ABAM and β-cyclodextrin (βCD) and hydroxypropyl-β-cyclodextrin (HPβCD) by physical mixing (PM) and kneading (KN) methods. Interactions between ABAM and the CD’s as well as the formation of ICs were confirmed by physicochemical characterization in the solid state by Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetry (TG) and differential scanning calorimetry (DSC). Physicochemical characterization indicated the formation of ICs with both βCD and HPβCD. Such ICs were able to induce changes in the physicochemical properties of ABAM. In addition, the formation of ICs with cyclodextrins showed to be an effective and promising alternative to enhance the anti-inflammatory activity and safety of ABAM.
Collapse
Affiliation(s)
| | | | | | - Letícia Scherer Koester
- Production and Drug Control Department, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil.
| | | | - Emerson Silva Lima
- Laboratory of Biological Activity, Faculty of Pharmaceutical Sciences, Universidade Federal do Amazonas, Manaus 69077-000, AM, Brazil.
| | - Eduardo Pereira de Azevedo
- Graduate Program of Biotechnology, Laureate International Universities (UnP), Natal 59056-000, RN, Brazil.
| | | | | |
Collapse
|
48
|
Bellstaedt J, Trenner J, Lippmann R, Poeschl Y, Zhang X, Friml J, Quint M, Delker C. A Mobile Auxin Signal Connects Temperature Sensing in Cotyledons with Growth Responses in Hypocotyls. PLANT PHYSIOLOGY 2019; 180:757-766. [PMID: 31000634 PMCID: PMC6548272 DOI: 10.1104/pp.18.01377] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/07/2019] [Indexed: 05/19/2023]
Abstract
Plants have a remarkable capacity to adjust their growth and development to elevated ambient temperatures. Increased elongation growth of roots, hypocotyls, and petioles in warm temperatures are hallmarks of seedling thermomorphogenesis. In the last decade, significant progress has been made to identify the molecular signaling components regulating these growth responses. Increased ambient temperature utilizes diverse components of the light sensing and signal transduction network to trigger growth adjustments. However, it remains unknown whether temperature sensing and responses are universal processes that occur uniformly in all plant organs. Alternatively, temperature sensing may be confined to specific tissues or organs, which would require a systemic signal that mediates responses in distal parts of the plant. Here, we show that Arabidopsis (Arabidopsis thaliana) seedlings show organ-specific transcriptome responses to elevated temperatures and that thermomorphogenesis involves both autonomous and organ-interdependent temperature sensing and signaling. Seedling roots can sense and respond to temperature in a shoot-independent manner, whereas shoot temperature responses require both local and systemic processes. The induction of cell elongation in hypocotyls requires temperature sensing in cotyledons, followed by the generation of a mobile auxin signal. Subsequently, auxin travels to the hypocotyl, where it triggers local brassinosteroid-induced cell elongation in seedling stems, which depends upon a distinct, permissive temperature sensor in the hypocotyl.
Collapse
Affiliation(s)
- Julia Bellstaedt
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Jana Trenner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Rebecca Lippmann
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Yvonne Poeschl
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Xixi Zhang
- Developmental and Cell Biology of Plants, Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Jiri Friml
- Developmental and Cell Biology of Plants, Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Carolin Delker
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| |
Collapse
|
49
|
Liu W, Dan X, Lu WW, Zhao X, Ruan C, Wang T, Cui X, Zhai X, Ma Y, Wang D, Huang W, Pan H. Spatial Distribution of Biomaterial Microenvironment pH and Its Modulatory Effect on Osteoclasts at the Early Stage of Bone Defect Regeneration. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9557-9572. [PMID: 30720276 DOI: 10.1021/acsami.8b20580] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is generally accepted that biodegradable materials greatly influence the nearby microenvironment where cells reside; however, the range of interfacial properties has seldom been discussed due to technical bottlenecks. This study aims to depict biomaterial microenvironment boundaries by correlating interfacial H+ distribution with surrounding cell behaviors. Using a disuse-related osteoporotic mouse model, we confirmed that the abnormal activated osteoclasts could be suppressed under relatively alkaline conditions. The differentiation and apatite-resorption capability of osteoclasts were "switched off" when cultured in titrated material extracts with pH values higher than 7.8. To generate a localized alkaline microenvironment, a series of borosilicates were fabricated and their interfacial H+ distributions were monitored spatiotemporally by employing noninvasive microtest technology. By correlating interfacial H+ distribution with osteoclast "switch on/off" behavior, the microenvironment boundary of the tested material was found to be 400 ± 50 μm, which is broader than the generally accepted value, 300 μm. Furthermore, osteoporotic mice implanted with materials with higher interfacial pH values and boarder effective ranges had lower osteoclast activities and a thicker new bone. To conclude, effective proton microenvironment boundaries of degradable biomaterials were depicted and a weak alkaline microenvironment was shown to promote regeneration of osteoporotic bones possibly by suppressing abnormal activated osteoclasts.
Collapse
Affiliation(s)
- Wenlong Liu
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Xiuli Dan
- School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , 999077 Hong Kong , China
| | - William W Lu
- Department of Orthopaedics and Traumatology, Faculty of Medicine , The University of Hong Kong , 999077 Hong Kong , China
| | - Xiaoli Zhao
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Ting Wang
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics , The University of Hong Kong-Shenzhen Hospital, University of Hong Kong , Shenzhen 518053 , China
| | - Xu Cui
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Xinyun Zhai
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
- Department of Orthopaedics and Traumatology, Faculty of Medicine , The University of Hong Kong , 999077 Hong Kong , China
| | - Yufei Ma
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Deping Wang
- Institute of Bioengineering and Information Technology Materials, School of Materials Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Wenhai Huang
- Institute of Bioengineering and Information Technology Materials, School of Materials Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Haobo Pan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| |
Collapse
|
50
|
Baluška F, Mancuso S. Actin Cytoskeleton and Action Potentials: Forgotten Connections. THE CYTOSKELETON 2019. [DOI: 10.1007/978-3-030-33528-1_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|